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Abstract. We show that there is a class-sized partial order P with the prop-

erty that forcing with P preserves ZFC, supercompact cardinals, inaccessible
cardinals and the value of 2κ for every inaccessible cardinal κ and, if κ is an in-

accessible cardinal and A is an arbitrary subset of κκ, then there is a P-generic

extension of the ground model V in which A is definable in 〈H(κ+)V[G],∈〉 by
a Σ1-formula with parameters.

We use this result to construct a class-sized partial order with the above

preservation properties that forces the existence of well-orders of H(κ+) defin-
able in the structure 〈H(κ+),∈〉 for every inaccessible cardinal κ. Assuming

GCH, David Asperó and Sy-David Friedman showed in [AF09] and [AF] that

there is a class-sized partial order preserving ZFC and various large cardinals
and forcing the existence of a well-order of the universe whose restriction to

H(κ+) is definable in 〈H(κ+)V[G],∈〉 by a parameter-free formula for every
uncountable regular cardinal κ. Our second result can be interpreted as a

boldface version of this result in the absence of the GCH.

1. Introduction

Given an uncountable regular cardinal κ, we call the set κκ consisting of all
functions f : κ −→ κ the generalized Baire Space for κ. The study of the descriptive
set theory of these spaces, i.e. of their definable subsets and the structural properties
of these subsets, was initiated by Alan Mekler and Jouko Väänänen in [MV93] and
deep links to model theory and logic were established (see [Vää95], [TV99], [Vää11]
and [FHK]). A discussion of some of these results is contained in Chapter IV of
[FHK]. In this paper, we study the definable subsets of this space when κ is a large
cardinal, especially a supercompact cardinal.

Remember that an uncountable cardinal κ is γ-supercompact with γ ≥ κ if there
is an elementary embedding j : V −→ M with crit(j) = κ, γ < j(κ) and γM ⊆ M .
This is equivalent to the existence of a normal ultrafilter on the set Pκ(γ) of all
subsets of γ of cardinality less than κ (see [Kan03, Theorem 22.7]). Given such
an ultrafilter U , we let MU denote the transitive collapse of the corresponding
ultrapower UltU (V) and jU : V −→ MU denote the corresponding elementary
embedding. Finally, we call a cardinal κ supercompact if κ is γ-supercompact for
all γ ≥ κ.
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Let κ be a supercompact cardinal and A be an arbitrary subset of κκ. We want to
construct an outer model W of the ground model V such that κ is still supercompact
in W, (2κ)V = (2κ)W and A is definable in the structure 〈H(κ+)W,∈〉. By extending
coding methods developed in [Lüc], this aim is achieved in the following theorem.

Theorem 1.1. There is a ZFC-preserving class forcing P definable without param-
eters that satisfies the following statements.

(i) Let κ be a cardinal with the property that there is no singular limit of
inaccessible cardinals ν with ν+ < κ ≤ 2ν . Then forcing with P does not
collapse κ and, if κ is regular, then P preserves the regularity of κ.

(ii) P preserves the inaccessibility of inaccessible cardinals and the supercom-
pactness of supercompact cardinals.

(iii) If α is an inaccessible cardinal and G is P generic over V, then (2α)V =
(2α)V[G].

(iv) If κ is an inaccessible cardinal and A is a subset of κκ, then there is a
condition p in P with the property that A is definable in 〈H(κ+)V[G],∈〉 by
a Σ1-formula with parameters whenever G is P-generic over V with p ∈ G.

In addition, if the class of inaccessible cardinals is bounded in On, then P is
forcing equivalent to a set-sized forcing.

In particular, if the Singular Cardinal Hypothesis holds in the ground model,
then forcing with P preserves cofinalities and cardinalities.

The proof of this result will actually show that certain degrees of supercompact-
ness are preserved. Let κ be γ-supercompact such that γ is a cardinal with γ = γ<κ,
2γ = γ+ and 2ν ≤ γ, where ν is the supremum of all inaccessible cardinals smaller
or equal to γ. Then κ will still be γ-supercompact after forcing with P. Given a
supercompact κ, we will use a classical result due to Robert Solovay to show that
there is a proper class of cardinals γ that satisfy the above properties with respect
to κ.

We want to use the above coding result to produce ZFC-models with definable
well-orders of H(κ+) for every supercompact cardinal κ. We give a brief overview
of related existing results. A detailed discussion of this topic can be found in
the first part of [Fri10]. In [FHa], Peter Holy and the first author constructed a
class forcing that adds such definable well-orders of low quantifier complexity and
preserves various large cardinals.

Theorem 1.2 ([Fri10, Theorem 9]). There is a class forcing which forces GCH,
preserves all supercompact cardinals (as well as a proper class of n-huge cardinals
for each n < ω) and adds a well-order of H(κ+) that is definable in 〈H(κ+),∈〉 by
a Σ1-formula with parameters for every uncountable regular cardinal κ.

If the GCH holds in the ground model, then results due to David Asperó and
the first author show that it possible to produce lightface definable well-orders of
H(κ+) for every uncountable regular cardinal κ.

Theorem 1.3 ([AF09, Theorem 1.1] and [AF, Theorem 1.1]). Assume GCH. There
is a formula ϕ(x, y) without parameters and a definable class-sized partial order P
preserving ZFC, GCH and cofinalities that satisfy the following statements.

(i) P forces that there is a well-order ≤ of the universe such that

{〈a, b〉 ∈ H(κ+)2 | 〈H(κ+),∈〉 |= ϕ(a, b)}
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is the restriction ≤� H(κ+) and is a well-order of H(κ+) whenever κ is a
regular uncountable cardinal.

(ii) For all regular cardinals κ ≤ λ, if κ is a λ-supercompact cardinal in V,
then κ remains λ-supercompact after forcing with P.

The second result of this paper shows that it is possible to add definable well-
orders of H(κ+) for every inaccessible cardinal κ without assuming GCH with a
class forcing that preserves supercompact cardinals and failures of the GCH at
inaccessible cardinals.

Theorem 1.4. There is a ZFC-preserving class forcing P definable without param-
eters that satisfies the following statements.

(i) Let κ be a cardinal with the property that there is no singular limit of
inaccessible cardinals ν with ν+ < κ ≤ 2ν . Then forcing with P does not
collapse κ and, if κ is regular, then P preserves the regularity of κ.

(ii) P preserves the inaccessibility of inaccessible cardinals and the supercom-
pactness of supercompact cardinals.

(iii) If α is an inaccessible cardinal and G is P generic over V, then (2α)V =
(2α)V[G] and there is a well-order of H(κ+)V[G] that is definable in the
structure 〈H(κ+)V[G],∈〉 by a formula with parameters.

In fact, the partial order P constructed in the proof of this result satisfies the
statements listed in Theorem 1.1.

2. Generic tree coding

The goal of this section is to construct a partial order that forces an arbitrary
subset A of κκ to be definable in 〈H(κ+),∈〉 by a Σ1-formula with parameters. This
construction will be a variation of the generic tree coding developed in [Lüc]. In
this section, we present a detailed discussion of the properties of this forcing verified
in [Lüc], because most of these results will be needed in later proofs. In order to
define this partial order, we give a brief review of our notation.

Given an ordinal λ and a set X, we let <λX denote the set of all functions f
with dom(f) ∈ λ and ran(f) ⊆ X. If κ is a cardinal, then we let κ<λ denote the
cardinality of <λκ. We call a set T ⊆ (<λX)n a subtree of (<λX)n if the following
statements hold.

(i) For all 〈s0, . . . , sn−1〉 ∈ T , lh(s0) = · · · = lh(sn−1).
(ii) If 〈s0, . . . , sn−1〉 ∈ T and α < lh(s0), then 〈s0 � α, . . . , sn−1 � α〉 ∈ T .

Given t = 〈t0, . . . , tn−1〉 ∈ T , we define lh(t) = lh(t0) and call the ordinal ht(T ) =
lub{lh(t) | t ∈ T} the height of T . A tuple of functions 〈x0, . . . , xn−1〉 ∈

(
ht(T )X

)n

is called a cofinal branch through T if 〈x0 � α, . . . , xn−1 � α〉 ∈ T for all α < ht(T ).
We let [T ] denote the set of all cofinal branches through T . If T is a subtree of
(<λX)n+1 for some λ ∈ On, then we define

p[T ] = {〈x0, . . . , xn−1〉 ∈
(
ht(T )X

)n | (∃xn) 〈x0, . . . , xn〉 ∈ [T ]}.

Definition 2.1. Let κ be an infinite cardinal. A subset A of κκ is a Σ1
1-subset if

there is a subtree T of <κκ× <κκ with A = p[T ].

Given an uncountable regular cardinal κ with κ = κ<κ, it is a well-known fact
that a subset of κκ is a Σ1

1-subset if and only if it is definable in the structure
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〈H(κ+),∈〉 by a Σ1-formula with parameters. A proof of this folklore result can be
found in [Lüc, Section 2].

We sketch the idea behind the definition of our forcing notion. Fix an uncount-
able regular cardinal κ with κ = κ<κ and an enumeration 〈sα | α < α〉 of all
elements in <κκ. We say that x ∈ κκ is coded by z ∈ κ2 and γ < κ if

sβ ⊆ x ⇐⇒ z(≺γ, β�) = 1

holds for all β < κ, where ≺·, ·� denote the Gödel-pairing function. Given a subset
A of κκ, our forcing will add a subtree TG of <κ2 with the property that, in the
generic extension, A is equal to the set of all x that are coded by some z ∈ [TG] and
γ < κ. This definition of A provides a tree T in the generic extension that satisfies
A = p[T ].

Definition 2.2. Given a limit ordinal λ, we call a pair 〈A, s〉 a λ-coding basis if
the following statements hold.

(i) A is a non-empty subset of λλ and s : λ −→ <λλ.
(ii) ran(s) contains {x � α | x ∈ A, α < λ} and all constant functions in <λλ.
(iii) For all α < λ, lh(s(α)) ≤ α and {β < λ | s(α) = s(β)} is unbounded in λ.

For the rest of this section, we fix a regular uncountable cardinal κ with κ = κ<κ.
Given a κ-coding basis 〈A, s〉, we define a partial order Ps(A). The domain of Ps(A)
consists of all triples p = 〈Tp, fp, hp〉 with the following properties.

(i) Tp is a subtree of <κ2 that satisfies the following statements.
(a) Tp has cardinality less than κ.
(b) If t ∈ Tp with lh(t)+1 < ht(Tp), then t has two immediate successors

in Tp.

(ii) fp : A
part−−−→ [Tp] is a partial function such that dom(fp) is a non-empty set

of cardinality less than κ.
(iii) hp : A

part−−−→ κ is a partial function with the following properties.
(a) dom(hp) = dom(fp).
(b) For all x ∈ dom(hp) and α, β < ht(Tp) with α = ≺hp(x), β�, we have

s(β) ⊆ x ⇐⇒ fp(x)(α) = 1.

We define p ≤Ps(A) q to hold if following statements are satisfied.
(a) Tp is either equal to Tq or an end-extension of Tq.
(b) If x ∈ dom(fq), then x ∈ dom(fp) and fq(x) is an initial segment of fp(x).
(c) hq = hp � dom(hq).

Lemma 2.3. Ps(A) is <κ-closed, satisfies the κ+-chain condition and has cardi-
nality at most 2κ.

Proof. If λ ∈ Lim ∩ κ and 〈pµ | µ < λ〉 is a strictly ≤Ps(A)-descending sequence in
Ps(A), then we define T =

⋃
µ<λ Tpµ

, h =
⋃

µ<λ hµ and

f(x) =
⋃
{fpµ

(x) | µ < λ, x ∈ dom(fpµ
)}

for all x ∈ dom(h). It is easy to see that p = 〈T, f, h〉 ∈ Ps(A) and p ≤Ps(A) pµ

holds for all µ < λ.
Next, assume that 〈pµ | µ < κ+〉 enumerates an antichain in Ps(A). By our

assumptions, we can assume Tpµ
= Tpρ

for all µ, ρ < κ+. A ∆-system argument
shows that we may assume the existence of an r ⊆ A with r = dom(fpµ

)∩dom(fpρ
),
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fpµ
� r = fpρ

� r and hpµ
� r = hpρ

� r for all µ < ρ < κ+. But this shows that
〈Tp0 , fp0 ∪ fp1 , hp0 ∪ hp1〉 is a common extension of p0 and p1, a contradiction.

Finally, the assumption κ = κ<κ implies that there are only κ-many such sub-
trees and 2κ-many such partial functions of cardinality less than κ. �

The next lemma will allow us to show that various subsets of Ps(A) are dense.

Lemma 2.4. Fix a condition p in Ps(A) and a sequence 〈cx ∈ κ2 | x ∈ dom(fp)〉.
There exists a ≤Ps(A)-descending sequence 〈pµ ∈ Ps(A) | ht(Tp) ≤ µ < κ〉 such that
p = pht(Tp) and the following statements hold for all ht(Tp) ≤ µ < κ.

(i) dom(fpµ
) = dom(fp) and ht(Tpµ

) = µ.
(ii) If x ∈ dom(fp) and µ 6= ≺hp(x), β� for all β < κ, then

fpµ+1(x)(µ) = cx(µ).

(iii) If µ ∈ Lim, then ran(fpµ
) = Tpµ+1 ∩ µ2.

Proof. We construct the sequences inductively. If µ ∈ Lim, then we define Tpµ =⋃
{Tpµ̄

| ht(Tp) ≤ µ̄ < µ}. Given x ∈ dom(fp), we define

fpµ(x) =
⋃
{fpµ̄(x) | ht(Tp) ≤ µ̄ < µ}.

If µ = µ̄ + 1 with µ̄ /∈ Lim, then Tpµ̄
has a maximal level and there is only one

suitable tree Tpµ
of height µ end-extending it. In particular, fpµ̄

(x) ∈ Tpµ
for all

x ∈ dom(fp). For all x ∈ dom(fp), we define fpµ
(x) to be the unique element t of

µ2 with fpµ̄(x) ⊆ t and

t(µ̄) =

 1, if µ̄ = ≺hp(x), β� and s(β) ⊆ x,
0, if µ̄ = ≺hp(x), β� and s(β) * x,
cx(µ̄), otherwise.

Finally, if µ = µ̄ + 1 with µ̄ ∈ Lim, then we set Tpµ
= Tpµ̄

∪ ran(fpµ̄
) and define

fpµ
as in the first successor case. �

Corollary 2.5. The following sets are dense subsets of Ps(A).
(i) Cµ = {p ∈ Ps(A) | ht(Tp) > µ} for all µ < κ.
(ii) Dx = {p ∈ Ps(A) | x ∈ dom(fp)} for all x ∈ A.
(iii) Ex,y = {p ∈ Ps(A) | x, y ∈ dom(fp), fp(x) 6= fp(y)} for all x, y ∈ A.
(iv) Fz = {p ∈ Ps(A) | ht(Tp) = µ + 1, z � µ /∈ Tp} for all z ∈ κ2.

Proof. (i) This statement follows directly from Lemma 2.4.
(ii) Given p ∈ Ps(A) with x /∈ dom(fp) and b ∈ [Tp], we define

q = 〈Tp, fp ∪ {〈x, b〉}, hp ∪ {〈x, ht(Tp)〉}〉.
Then q ∈ Dx and q ≤P(A) p.

(iii) Given p ∈ Ps(A), we can apply the above result to find q ≤Ps(A) p with
x, y ∈ dom(fq). There is ht(Tq) ≤ µ < κ with ≺hq(x), β0� 6= µ 6= ≺hq(y), β1� for
all β0, β1 < κ and we can use Lemma 2.4 to find q∗ ≤Ps(A) q with ht(Tq∗) = µ + 1
and fq∗(x)(µ) 6= fq∗(y)(µ).

(iv) Fix p ∈ Ps(A) and ht(Tp) ≤ µ < κ with µ 6= ≺hp(x), β� for all x ∈ dom(fp)
and β < κ. Using Lemma 2.4, we can find q ≤Ps(A) p with ht(Tq) = µ + 1,
dom(fq) = dom(fp) and fq(x)(µ) = 1 − z(µ) for all x ∈ dom(fp). In particular,
z � (µ + 1) /∈ ran(fq). Another application of the above lemma gives us conditions
s ≤Ps(A) r ≤Ps(A) q with ht(Ts) = ht(Tr) + 1 = ht(Tq) + ω + 1, dom(fs) = dom(fp)
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and Ts ∩ ht(Tr)2 = ran(fr). Since z � ht(Tr) 6= fr(x) for all x ∈ dom(fp), we have
z � ht(Tr) /∈ Ts. �

Corollary 2.6. Let G be Ps(A)-generic over V. The following statements hold
true in V[G].

(i) TG =
⋃

p∈G Tp is a subtree of <κ2 of height κ with [TG] ∩V = ∅.
(ii) If we define FG(x) =

⋃
{fp(x) | p ∈ G, x ∈ dom(fp)} for all x ∈ A, then

FG : A −→ [TG] is an injection.
(iii) Let HG =

⋃
p∈G hg. Then HG : A −→ κ and

(1) s(β) ⊆ x ⇐⇒ FG(x)(≺HG(x), β�) = 1

for all x ∈ A and β < κ. �

Lemma 2.7. If G be Ps(A)-generic over V, then ran(FG) = [TG]V[G].

Proof. Let Ṫ ∈ VPs(A) be the canonical name for TG and Ḟ ∈ VPs(A) be the
canonical name for FG.

Assume, toward a contradiction, that there is an x ∈ [TG]V[G] \ ran(FG) and let
τ ∈ VPs(A) be a name for x. By the above corollary, x /∈ V and there is a p0 ∈ G
with

p0  “τ ∈ [Ṫ ] ∧ τ /∈ V̌ ∧ τ /∈ ran(Ḟ )”.

For each r ≤Ps(A) p, we define a partial function tr : κ
part−−−→ 2 in V by setting

tr =
⋃
{t ∈ <κ2 | r  “ ť ⊆ τ ”}.

We have tr ∈ <κ2, because r  “τ /∈ V̌ ”. Note that r1 ≤Ps(A) r0 ≤Ps(A) p

implies tr0 ⊆ tr1 . Since 1lPs(A)  “τ � α̌ ∈ V̌ ” holds for all α < κ, the set
{r ≤P(A) p | α ⊆ dom(tr)} is dense below p for all α < κ.

Moreover, if p′ ≤Ps(A) p, then we can find a p′′ ≤Ps(A) p′ with the property that
for every x ∈ dom(fp′) there is an α < ht(Tp′′) ∩ dom(tp′′) with fp′′(x)(α) 6= tr(α),
because Ps(A) is <κ-closed.

Given p0 ≤Ps(A) p, the above remarks allow us to construct a strictly ≤Ps(A)-
descending sequence 〈pn ∈ Ps(A) | n < ω〉 with the following properties.

(i) For all n < ω, ht(Tpn
) ⊆ dom(tpn+1) and dom(tpn

) ( ht(Tpn+1).
(ii) For all n < ω and x ∈ dom(fpn

), there is an α ∈ dom(tpn+1) with

fpn+1(x)(α) 6= tpn+1(α).

The proof of Lemma 2.3 shows that there exists a greatest lower bound pω ∈
Ps(A) of the sequence 〈pn | n < ω〉. This means Tpω

=
⋃

n<ω Tpn
and dom(fpω

) =⋃
n<ω dom(fpn). Let t = tpω � ht(Tpω ). Since pω  “ ť ⊆ τ ∧ τ ∈ [Ṫ ] ”, we have

pω  “ ť ∈ Ṫ ”.
By our construction, we have µ = ht(Tpω ) ∈ Lim and t /∈ ran(fpω ). We can apply

Lemma 2.4 to find a condition p∗ ≤Ps(A) pω with ht(Tp∗) = µ+1 and t /∈ Tp∗ . This
obviously implies p∗  “ ť /∈ Ṫ ”, a contradiction. �

Lemma 2.8. Let G be Ps(A)-generic over V. The following statements are equiv-
alent for y ∈ (κκ)V[G].

(i) y ∈ A.
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(ii) There is z ∈ [TG]V[G] and γ < κ such that

(2) s(β) ⊆ y ⇐⇒ z(≺γ, β�) = 1

holds for all β < κ.

Proof. If y ∈ A, then Corollary 2.6 shows that FG(y) ∈ [TG] and HG(y) < κ witness
that the second statement holds true.

Pick y ∈ (κκ)V[G], z ∈ [TG]V[G] and γ < κ such that (2) holds. By Lemma 2.7,
we have z = FG(x) for some x ∈ A. Pick p ∈ G with x ∈ dom(fp). Assume, toward
a contradiction, that γ 6= hp(x) = HG(x). By Lemma 2.4 and our assumptions on
s, this implies that the set

Dt = {q ≤Ps(A) p | ht(Tq) = µ + 1, µ = ≺γ, β�, fq(x)(µ) = 0, s(β) = t}

is dense below p for all t ∈ ran(s) and there is a q ∈ G∩Dy�1 with q ≤Ps(A) p. Then
there is a β < κ with ht(Tq) = ≺γ, β� + 1, z(≺γ, β�) = 0 and s(β) = y � 1 ⊆ y,
contradicting (2). This shows γ = HG(x) and we can conclude that

s(β) ⊆ y ⇐⇒ z(≺γ, β�) = 1 ⇐⇒ FG(x)(≺HG(x), β�) = 1 ⇐⇒ s(β) ⊆ x

holds for all β < κ. Since every initial segment of x is of the form s(β) for some
β < κ, we can conclude y = x ∈ A. �

Theorem 2.9 ([Lüc, Theorem 1.5]). If G is Ps(A)-generic over V, then A is a
Σ1

1-subset of κκ in V[G].

Proof. In V[G], define T to be the set that consists of pairs 〈t, u〉 such that t ∈ <κκ,
u ∈ <κκ and there is γ < κ and v ∈ TG with lh(z) = lh(u) = lh(v), u(α) =
≺γ, v(α)� for all α < lh(s) and

s(β) ⊆ t ⇐⇒ v(≺γ, β�) = 1

for all β < lh(s) with ≺γ, β� < lh(s). It is easy to check that T is a tree.
If 〈x, y〉 ∈ [T ]V[G], then there is z ∈ [TG]V[G] and γ < κ with y(β) = ≺γ, z(β)�

and
s(β) ⊆ x ⇐⇒ z(≺γ, β�) = 1

for all β < κ. By Lemma 2.8, this implies x ∈ A.
Conversely, if x ∈ A and y ∈ (κκ)V[G] with y(α) = ≺HG(x), FG(x)(α)�, then

〈x, y〉 ∈ [T ] by our assumptions on s and Lemma 2.8. �

We close this section by proving a structural property of our coding forcing that
will be needed in the proof of supercompactness preservation.

Lemma 2.10. Assume P ⊆ Ps(A) satisfies the following properties.
(i) η = lub{ht(Tp) | p ∈ P} ∈ Lim ∩ κ.
(ii) D =

⋃
{dom(fp) | p ∈ P} has cardinality less than κ.

(iii) If p0, p1 ∈ P , then there is q ∈ P with q ≤Ps(A) p0, p1.
Then there is a unique condition pP ∈ Ps(A) with ht(TpP

) = η, dom(fpP
) = D and

pP ≤Ps(A) p for all p ∈ P .

Proof. Set T =
⋃
{Tp | p ∈ P}. Then T is a tree of height η and an end-extension

of Tp for all p ∈ P . If we define

F : D −→ [T ]; x 7−→
⋃
{fp(x) | p ∈ P, x ∈ dom(fp)} ∈ [T ],
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then this is a well-defined function. Moreover, for all x ∈ D there is a unique
H(x) < κ with hp(x) = H(x) for all p ∈ P with x ∈ dom(fp) and we can define
H : D −→ κ in this way.

If x ∈ D and α, β < η with α = ≺H(x), β�, then there is p ∈ P with x ∈ dom(fp)
and α, β < ht(Tp). We can conclude

s(β) ⊆ x ⇐⇒ fp(x)(α) = 1 ⇐⇒ F (x)(α) = 1.

This shows that pP = 〈T, F,H〉 is a condition in P with pP ≤ p for all p ∈ P .
Let q ∈ Ps(A) be a condition with ht(Tq) = η, dom(fq) = D and q ≤PS(A) p for

all p ∈ P . Since η ∈ Lim, for every t ∈ Tq there is a p ∈ P with lh(t) < ht(Tp)
and therefore t ∈ Tp. This shows Tq =

⋃
{Tp | p ∈ P} = T . In the same way, we

can show fq(x) =
⋃
{fp(x) | p ∈ P, x ∈ dom(fp)} = F (x) and hq(x) = H(x) for all

x ∈ D. This means q = pP . �

3. Coding well-orders

In this section, we show how to apply the results of the last section to construct
a definable well-order of H(κ+) in a Ps(A)-generic extension of the ground model.
Throughout this section κ is an uncountable regular cardinal with κ = κ<κ.

Given functions x, y ∈ κκ, let ≺x, y� denote the unique function z ∈ κκ such
that

z(≺α, β�) =

 x(β), if α = 0,
y(β), if α = 1,
0, otherwise

holds for all α, β < κ. We say that a κ-coding basis 〈A, s〉 codes a well-order of κκ
if there is a well-order ≤ of κκ such that A = {≺x, y� | x, y ∈ κκ, x ≤ y}.

Theorem 3.1. If 〈A, s〉 is a κ-coding basis that codes a well-order of κκ and G
is Ps(A)-generic over V, then there is a well-order of H(κ+) that is definable in
〈H(κ+),∈〉 by a formula with parameters.

Proof. We work in V[G]. Let ≤ denote the well-order of (κκ)V coded by A. By
Theorem 2.9, both ≤ and (κκ)V are definable in 〈H(κ+),∈〉.

Define R to be the set of all pairs 〈a, x〉 in H(κ+) × κ2 such that there is a
bijection b : κ −→ tc({a} ∪ κ) with the following properties.

(i) For all α, β < κ, x(≺0,≺α, β��) = 1 if and only if b(α) ∈ b(β).
(ii) For all α < κ, x(≺1, α�) = 1 if and only if b(α) ∈ a.

This relation is definable in 〈H(κ+),∈〉. If 〈a0, x〉, 〈a1, x〉 ∈ R, then it is easy to see
that a0 = a1 holds. Moreover, if 〈a, x〉 ∈ R and x ∈ V, then a is an element of
H(κ+)V. This shows that H(κ+)V is definable in 〈H(κ+),∈〉.

Since Ps(A)V is <κ-closed and A is definable in the above structure, we have
Ps(A)V = Ps(A) ⊆ H(κ+) and this partial order is definable in 〈H(κ+),∈〉. Given
y ∈ A and γ < κ, the proof of Lemma 2.8 shows that HG(y) = γ holds if and
only if there is a z ∈ [TG] such that (2) holds for all β < κ. We can conclude that
the function HG is definable in 〈H(κ+),∈〉. In combination with (1), this implies
that the function FG is also definable in this structure. The filter G consists of all
conditions p in Ps(A) such that TG is an end-extension of Tp and, if x ∈ dom(fp),
then fp(x) = FG(x) � ht(Tp) and hp(x) = HG(x). Since all of these parameters are
either elements of H(κ+) or definable in this structure, we can conclude that G is
definable in 〈H(κ+),∈〉.
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Let N denote the set of all function n : κ× κ −→ Ps(A) in V with the property
that An

α = {n(α, β) | β < κ} is an anti-chain in Ps(A) for all α < κ. We define E
to be the set consisting of all pairs 〈y, n〉 ∈ κ2×N such that

y(α) = 1 ⇐⇒ An
α ∩G 6= ∅

holds for all α < κ. By identifying functions in N with nice names for subsets of
κ, it is easy to see that the domain of E is κ2. Both relations N and R are all
definable in the above structure.

Define r : H(κ+) −→ (κ2)V to be the function that sends a ∈ H(κ+) to the
≤-least x ∈ (κ2)V such that R(a, y), E(y, n) and R(n, x) for some y ∈ κ2 and
n ∈ N . This function is definable in 〈H(κ+),∈〉 and yields a definable well-order of
H(κ+). �

Next, we introduce partial orders Cα that randomly well-order αα if α is a regular
uncountable cardinal with α = α<α. This coding is random in the sense that the
generic filter chooses the well-order of αα that is coded using a partial order of the
form Ps(A).

If α is not a regular uncountable cardinal with α = α<α, then we define α to
be the trivial partial order. Otherwise, we define the domain of Cα to consist of
conditions 〈A, s, p〉 such that either A = s = p = ∅ or 〈A, s〉 is an α-coding basis
that codes a well-ordering of αα and p ∈ Ps(A). We set 〈A, s, p〉 ≤Cα

〈B, t, q〉 if
either B = ∅ or A = B 6= ∅, s = t and p ≤Ps(A) q.

Proposition 3.2. Let α be a regular uncountable cardinal with α = α<α.
(i) Cα is <α-closed.
(ii) A filter G is Cα-generic over V if and only if there is an α-coding basis

〈A, s〉 coding a well-order of αα in V and H Ps(A)-generic over V with

(3) G = {〈∅, ∅, ∅〉} ∪ {〈A, s, p〉 ∈ Cα | p ∈ H}.
In particular, V[G] = V[H] holds in the above situation, forcing with Cα

preserves cofinalities, cardinalities and 2α and every set of ordinals of car-
dinality at most α in a Cα-generic extension of the ground model V is
covered by a set that is an element of V and has cardinality α in V.

(iii) If G is Cα-generic over V, then there is a well-order of H(α+) that is
definable in 〈H(α+),∈〉 by a formula with parameters. �

Note that Cα is uniformly definable in parameter α.

4. Iterated coding forcing

In this section, we use the coding forcing developed above in an iterated forcing
construction. Our account of iterated forcing follows [Bau83] and [Cum10] and we
will repeatedly use results proved there.

By the results of the last section, there is a unique forcing iteration

〈〈~C<α | α ∈ On〉, 〈Ċα | α ∈ On〉〉
with Easton support (see [Cum10, Definition 7.5]) satisfying the following proper-
ties.

(i) If β < α and α is inaccessible, then ~C<β , Ċβ ∈ Vα.
(ii) If α is not an inaccessible cardinal, then 1l~C<α

 “ Ċα is trivial”.
(iii) If α is an inaccessible cardinal, then 1l~C<α

 “ Ċα = Cα̌ ”.
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For all ν ≤ µ, we let Ċ[ν,µ) denote the canonical ~C<ν-name with

1l~C<ν
 “ Ċ[ν,β) is a partial order with domain {~p � [ν̌, µ̌) | ~p ∈ ~̌C<µ}”

such that there is a dense embedding e[ν,µ) : ~C<µ −→ ~C<ν ∗ Ċ[ν,µ) with e[ν,µ)(~p) =
〈~p � ν, q̇〉 and 1l~C<ν

 “ q̇ = ~̌p � [ν̌, µ̌)” (see [Bau83, Section 5]).

Proposition 4.1. Let α < µ and µ be a regular cardinal. Assume that there
are no inaccessible cardinals in (α, µ) and ~C<α+1 has the property that every set
of ordinals of cardinality less than µ in a ~C<α+1-generic extension of the ground
model is covered by a set of cardinality less than µ in the ground model. Then

1l~C<α+1
 “ Ċ[α+1,ν) is <µ̌-closed”

for all ν > α.

Proof. For all α < β < µ, we have 1l~C<β
 “ Ċβ is trivial” by the definition of ~C<ν

and our assumptions on µ. This shows that 1l~C<β
 “ Ċβ is <µ̌-closed” holds for

all β > α. Moreover, ~C<β is an inverse limit for every limit ordinal β > α with
cof(β) < µ. We can apply [Cum10, Proposition 7.12] to deduce the statement of
the claim. �

Proposition 4.2. If α is an inaccessible cardinal, then ~C<α preserves the inacces-
sibility of α.

Proof. Let G be ~C<α-generic over V. Fix β < α and let Gβ+1 denote the corre-
sponding filter in ~C<β+1. If µ = (|~C<β |+ + |β|)+, then there are no inaccessible
cardinals in (β, µ) and ĊV[Gβ+1]

[β+1,α) is <β+-closed by Proposition 4.1. This shows

(βα)V[G] ⊆ V[Gβ+1]. Since ~C<β+1 ∈ Vα and α is inaccessible in V[Gβ+1], the
statement of the claim follows directly. �

Proposition 4.3. ~C<ν preserves the inaccessibility of all inaccessible cardinals.

Proof. By Proposition 4.2 and our assumptions, ~C<ν preserves the cofinality, car-
dinality and inaccessibility of all inaccessible cardinals greater or equal to ν.

Let α < ν be an inaccessible cardinal. By Proposition 4.2, ~C<α preserves the
inaccessibility of α and 1l~C<α

 “ Ċα is not trivial”. Proposition 3.2 shows that
~C<α+1 preserves the inaccessibility of α. If µ = (|~C<α+1|+ + α)+, then there
are no inaccessible cardinals in (α, µ) and 1l~C<α+1

 “ Ċ[α+1,ν) is <µ̌-closed”. In

particular, ~C<ν preserves the inaccessibility of α. �

Lemma 4.4. Let α < ν and α be an inaccessible cardinal. Assume G is ~C<ν-
generic over V, Ḡ is the corresponding filter in ~C<α and Gα is the corresponding
filter in ĊḠ

α . Then (2α)V[G] = (2α)V, ĊḠ
α = CV[Ḡ]

α is not the trivial partial order and,
if 〈A, s〉 is an α-coding basis coding a well-order of αα in V[Ḡ] with 〈A, s, 1lPs(A)〉 ∈
Gα, then A is a Σ1

1-subset of αα in V[G] and there is a well-order of H(α+)V[G]

that is definable in 〈H(α+)V[G],∈〉 by a formula with parameters.

Proof. It follows directly from the definition of the forcing iteration that the par-
tial order ~C<α has cardinality α. This implies (2α)V[Ḡ] = (2α)V and we can ap-
ply Lemma 2.3 to conclude (2α)V[Ḡ][Gα] = (2α)V. By Proposition 4.2, α is an
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inaccessible cardinal in V[Ḡ] and there is an α-coding basis 〈A, s〉 in V[Ḡ] such
that 〈A, s, 1lPs(A)〉 ∈ Gα. Theorem 2.9 shows that A is a Σ1

1-subset of αα in
V[Ḡ][Gα] and there is a well-order of H(α+)V[Ḡ][Gα] definable in 〈H(α+)V[Ḡ][Gα],∈〉
by a formula with parameters by Theorem 3.1. As above, it is easy to show that
ĊḠ∗Gα

[α+1,ν) adds no new α-sequences of ordinals. We can conclude (2α)V[G] = (2α)V,

(αα)V[G] = (αα)V[Ḡ∗Gα] and H(α+)V[G] = H(α+)V[Ḡ][Gα]. �

Proposition 4.5. Let κ be an infinite cardinal with the property that κ /∈ (ν+, 2ν ]
holds whenever ν is a singular limit of inaccessible cardinals. Given µ > κ, ~C<µ

preserves the cardinality of κ and, if κ is regular, then ~C<µ preserves the regularity
of κ.

Proof. By Proposition 4.3, we may assume that κ is not inaccessible. Let

ν = sup{α < κ | α is an inaccessible cardinal}.

If ν = 0 or ν is inaccessible, then ν < κ, ~C<ν+1 satisfies the κ-chain condition
and 1l~C<ν+1

 “ Ċ[ν+1,µ) is <κ̌+-closed” holds by Proposition 4.1.

If ν is singular and κ = ν, then κ is a limit of inaccessible cardinals and ~C<µ

preserves the cardinality of κ by Proposition 4.3.
Let ν be singular and κ = ν+. Assume, toward a contradiction, that κ has

cardinality less or equal to ν in some ~C<µ-generic extension V[G] of the ground
model. Then there is an inaccessible cardinal α such with cof(κ)V[G]

< α < ν.
If Ḡ is the filter in ~C<α+1 induced by G, then cof(κ)V[Ḡ]

< κ, because ĊḠ
[α+1,µ)

is <α-closed by Proposition 4.1. But ~C<α+1 satisfies the κ-chain condition, a
contradiction. This shows that ~C<µ preserves the cardinality and cofinality of ν+.

If ν is singular and κ > 2ν , then ~C<ν+1 satisfies the κ-chain condition and
1l~C<ν+1

 “ Ċ[ν+1,µ) is <κ̌+-closed” holds by Proposition 4.1. �

5. Preserving supercompactness

This section is devoted to the proof of the following theorem.

Theorem 5.1. Let γ be a cardinal with 2γ = γ+ and 2ν ≤ γ, where

ν = sup{α ≤ γ | α is an inaccessible cardinal}.

If κ is γ-supercompact with γ = γ<κ, then

1l~C<λ
 “ κ̌ is γ̌-supercompact”

holds for all λ > ν.

Proof. By our assumptions, cof(γ) ≥ κ and ν ∈ [κ, γ) is a strong limit cardinal.
Let U be a normal ultrafilter on Pκ(γ). We will prove a number of claims that

will allow us to show that κ is γ-supercompact in every ~C<ν+1-generic extension
of the ground model. Given α ≤ β ∈ On, we define ~Q<α = ~CMU

<α , Q̇α = ĊMU

β and
Q̇[α,β) = ĊMU

[α,β).
Since ν is either an inaccessible cardinal or a limit of inaccessible cardinals, we

have ~C<α ∈ Vν ⊆ MU for all α < ν and this shows ~C<ν ∈ MU , because γMU ⊆ MU

holds. The definition of ~C<α is absolute between V and MU for every α ≤ ν. Hence
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elementarity implies ~C<ν = ~Q<ν . In particular, if Ḡ is ~C<ν-generic over V, then Ḡ

is ~Q<ν-generic over MU .

Claim 1. If Ḡ is ~C<ν-generic over V, then (γMU [Ḡ])V[Ḡ] ⊆ MU [Ḡ].

Proof of the claim. Let x ∈ V[Ḡ] with x ⊆ γ. We can find a ~C<ν-nice name
τ =

⋃
α<γ{α̌} × Aα with x = τ Ḡ. By the above remarks, we have ~C<ν ⊆ νVν and

every Aα has cardinality at most 2ν ≤ γ. This shows that every Aα is an element
of MU and we also get 〈Aα | α < γ〉 ∈ MU . Hence τ ∈ MU and x = τ Ḡ ∈ MU [Ḡ].
We can conclude (γ2)V[Ḡ] ⊆ MU [Ḡ].

Let X ∈ V[Ḡ] with X ⊆ On and |X|V[Ḡ] ≤ γ. Since ~C<ν satisfies the γ-
chain condition in V, there is an X0 ∈ V with X ⊆ X0 and |X0|V ≤ γ. By our
assumptions, X0 ∈ MU and |X0|MU ≤ γ. Let 〈ηα | α < γ〉 be an enumeration of
X0 in MU and x = {α < γ | ηα ∈ X} ∈ V[Ḡ]. By the above argument, x ∈ MU [Ḡ]
and this shows X ∈ MU [Ḡ].

The argument shows (γOn)V[Ḡ] ⊆ MU [Ḡ] and this implies the statement of the
claim, because MU [Ḡ] is a transitive ZFC-model with On ⊆ MU [Ḡ] ⊆ V[Ḡ]. �

Claim 2. If Ḡ is ~C<ν-generic over V, then ĊḠ
ν = Q̇Ḡ

ν .

Proof of the claim. If ν is not an inaccessible cardinal in V, then ν is not inacces-
sible in MU and both partial orders are trivial.

Now, assume that ν is inaccessible in V and MU . By Lemma 4.4, (2ν)V[Ḡ] =
(2ν)V ≤ γ and Claim 1 implies P(νν)V[Ḡ] = P(νν)MU [Ḡ]. This allows us to conclude
ĊḠ

ν = CV[Ḡ]
ν = CMU [Ḡ]

ν = Q̇Ḡ
ν . �

In particular, if G is ~C<ν+1-generic over V, then G is ~Q<ν+1-generic over MU .

Claim 3. If G is ~C<ν+1-generic over V, then (γMU [G])V[G] ⊆ MU [G].

Proof of the claim. Let Ḡ be the filter in ~C<ν corresponding to G and Gν be the
filter in ĊḠ

ν corresponding to G. By Proposition 3.2 and the above claims, there
is a partial order P in MU [Ḡ] and H ∈ MU [G] such that P satisfies the ν+-chain
condition in V[Ḡ], H is P-generic over V[Ḡ] and H induces Gν as in (3). Every anti-
chain in P in V[Ḡ] has cardinality at most γ in V[Ḡ] and (γMU [Ḡ])V[Ḡ] ⊆ MU [Ḡ],
we can repeat the proof of Claim 1 and deduce the statement of the claim. �

The proofs of the above claims show that every set of ordinals of cardinality at
most γ in a ~C<ν+1-generic extension of V is covered by a set of cardinality γ in V.
By our assumptions, this implies that every set of ordinals of cardinality at most γ

in a ~Q<ν+1-generic extension of MU is covered by a set of cardinality γ in MU . In
particular, forcing with ~Q<ν+1 preserves (γ+)MU = (γ+)V.

Claim 4. If G is ~C<ν+1-generic over V, then Q̇G
[ν+1,µ) is <γ+-closed in MU [G] for

all µ > ν and the power set of Q̇G
[ν+1,jU (ν)) in MU [G] has cardinality at most γ+ in

V[G].

Proof of the claim. In MU , the interval (ν, γ+) contains no inaccessible cardinals,
because γMU ⊆ MU holds and no ordinal in this interval is inaccessible in V. By
the above remark and an application of Proposition 4.1 in MU , we can conclude
that Q̇G

[ν+1,µ) is <γ+-closed in MU [G] for all µ > ν.
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By the definition of the partial order Ċ[α,β) and elementarity, the cardinality of
Q̇G

[ν+1,jU (ν)) in MU [G] is less or equal to the cardinality of ~Q<jU (ν) in MU . The

above computations and elementarity show that the cardinality of ~Q<jU (ν) in MU

is at most jU (2ν) and this ordinal is smaller or equal to jU (γ). If α < jU (γ), then
α is represented in MU by a function f : Pκ(γ) −→ γ contained in V. By our
assumptions, Pκ(γ) has cardinality γ in V and there are at most 2γ-many such
functions in V. Since 2γ = γ+ holds in V and (γ+)V[G] = (γ+)V, this shows that
jU (γ) has cardinality at most γ+ in V[G]. �

Since ~C<ν ∈ MU has cardinality at most γ in V, we have jU � ~C<ν ∈ MU and
there is a sequence

〈Ġα ∈ (V~Q<ν )MU | jU (κ) ≤ α < jU (ν)〉

of names in MU with the property that ĠḠ
α = {jU (~p) � α | ~p ∈ Ḡ} for all α ∈

[jU (κ), jU (ν)) whenever Ḡ is ~Q<ν-generic over MU .

Claim 5. Let α ∈ [jU (κ), jU (ν)) be an inaccessible cardinal in MU , H be ~Q<α-
generic over MU and Ḡ be the filter in ~Q<ν induced by H. If ĠḠ

α ⊆ H and
jU (~p)(α)H 6= 1lCMU [H]

α
for some ~p ∈ Ḡ, then the following statements hold.

(i) There is a unique α-coding basis 〈Aα, sα〉 coding a well-order of αα in
MU [H] such that for all ~p ∈ Ḡ with jU (~p)(α)H 6= 1lCMU [H]

α
there is a

q ∈ Psα(Aα)MU [H] with jU (~p)(α)H = 〈Aα, sα, q〉.
(ii) The set

Pα = {q ∈ Psα(Aα)MU [H] | (∃~p ∈ Ḡ) jU (~p)(α)H = 〈Aα, sα, q〉}
satisfies the statements (i)-(iii) of Lemma 2.10 in MU [H].

Proof of the claim. If ~p ∈ Ḡ and β < ν, then 1l~C<β
 “~p(β) ∈ Ċβ ”. By elementar-

ity, we have 1l~Q<α
 “ jU (~p)(α) ∈ Q̇α ” and, by Proposition 4.2, this implies

Qα = {jU (~p)(α)H | ~p ∈ Ḡ} ⊆ Q̇H
α = CMU [H]

α .

Given ~p0, ~p1 ∈ Ḡ, there is a ~p ∈ Ḡ with ~p ≤~C<ν
~p0, ~p1 and hence ~p � β 

“~p(β) ≤Ṗβ
~p0(β), ~p1(β)” for all β < ν. Since jU (~p) � α ∈ ĠḠ

α ⊆ H, this argument
shows that the elements of Qα are pairwise compatible.

Pick ~p∗ ∈ Ḡ with jU (~p∗)(α)H 6= 1lCMU [H]
α

and define 〈Aα, sα〉 ∈ MU [H] to be the
unique α-coding basis coding a well-order of αα with jU (~p∗)(α)H = 〈Aα, sα, q〉 for
some condition q ∈ Psα(Aα)MU [H]. By the above computations, every element of
Qα is either of the form 1lCMU [H]

α
or 〈Aα, sα, q〉 for some q ∈ Psα

(Aα)MU [H].
Since Ḡ has cardinality at most γ in MU [H], γ < jU (κ) ≤ α and α is regular in

MU [H], we know that η = lub{ht(Tq) | q ∈ Pα} < α and
⋃
{dom(fq) | q ∈ Pα} has

cardinality less than α in MU [H].
We show that η ∈ Lim∩α. Let ~p ∈ Ḡ and p ∈ Psα(Aα)MU [H] with 〈Aα, sα, p〉 =

jU (~p)(α)H 6= 1lCMU [H]
α

. Let D be the set consisting of all conditions ~q ∈ ~C<ν with
~q ≤~C<ν

~p and

~q � β  “(∀A, s, p)
[(

Ċβ = Cβ̌ ∧ ~p(β) = 〈A, s, p〉 6= 1lCβ̌

)
−→ (∃p̄)[~q(β) = 〈A, s, p̄〉 ∧ ht(Tp) < ht(Tp̄)]

]
”
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for all β < ν. An easy inductive construction using Lemma 2.4 shows that D is
dense below ~p in V. If ~q ∈ D∩Ḡ with jU (~q)(α)H = 〈Aα, sα, q〉, then ht(Tq) > ht(Tp)
holds in MU [H] by elementarity. This shows that η is a limit ordinal.

Finally, the conditions in Pα are pairwise compatible, because the conditions
in Qα are pairwise compatible and the first part of the claim shows that every
condition in Pα belongs to a condition in Qα. �

In MU , we define a sequence ~q∗ = 〈q̇α ∈ (V~Q<α)MU | α < jU (ν)〉 such that the
following statements hold in MU for all α < jU (ν).

(i) If α < jU (κ) or α is not an inaccessible cardinal, then 1l~Q<α
 “ q̇α = 1̇lQ̇α

”.
(ii) If α is an inaccessible cardinal in [jU (κ), jU (ν)), then q̇α is a canonical

~Q<α-name τ such that the following statements hold whenever H is ~Q<α-
generic over MU and Ḡ is the filter in ~Q<ν induced by H.
(a) If ĠḠ

α ⊆ H and jU (~p)(α)H 6= 1lQ̇H
α

for some ~p ∈ Ḡ, then τH =
〈Aα, sα, pPα

〉, where Aα, sα and Pα are defined as in Claim 5 and pPα

is defined as in Lemma 2.10.
(b) Otherwise, τH = 1lQ̇H

α
.

Claim 6. ~q∗ ∈ ~Q<jU (ν).

Proof of the claim. Let α ∈ [jU (κ), jU (ν)) be a regular cardinal in MU . For all
~p ∈ ~C<ν there is an ᾱ~p < α with jU (~p)(β) = 1̇lQ̇β

for all ᾱ~p ≤ β < α. Since

jU”~C<ν is an element of MU and has cardinality less than α in MU , we can find an
ᾱ ∈ (jU (κ), α) with jU (~p)(β) = 1̇lQ̇β

for all ~p ∈ ~C<ν and ᾱ ≤ β < α. If β ∈ (ᾱ, α)

is an inaccessible cardinal, H is ~Q<α-generic over MU and Ḡ is the filter in ~Q<ν

induced by H, then jU (~p)(β)H = 1lQ̇H
β

for all ~p ∈ Ḡ and q̇H
β = pPβ

= 1lQ̇H
β

by the

uniqueness of pPβ
. By the definition of q̇β , this shows q̇β = 1̇lQ̇β

. Therefore ~q∗ is a
sequence with Easton support. �

Claim 7. If H is ~Q<jU (ν)-generic over MU with ~q∗ ∈ H and Ḡ is the corresponding
filter in ~Q<ν , then jU”Ḡ ⊆ H.

Proof of the claim. Let α ∈ [ν, jU (ν)) and F be ~Q<α-generic over MU with ~q∗ �
α ∈ F . Assume that F induces Ḡ in ~Q<ν and

(4) ~q∗ � [ν, α) ≤Q̇Ḡ
[ν,α)

jU (~p) � [ν, α)

holds for all ~p ∈ Ḡ. Pick ~p ∈ Ḡ. There is a κ̄ < κ such that ~p(β) = 1̇lQ̇β
for all

β ∈ [κ̄, κ) and

jU (~p)(β) =
{

~p(β), if β < κ̄,

1̇lQ̇β
, if κ̄ ≤ β < ν.

by the definition of ~C<ν . In particular, ~p ≤~Q<ν
jU (~p) � ν. By our assumption, there

is a ~p∗ ∈ Ḡ with ~p∗ ≤~Q<ν
~p and

~p∗ ∗ (~q∗ � [ν, α)) ≤~Q<ν∗Q̇[ν,α)
i[ν,α)(jU (~p) � α).

This implies jU (~p) � α ∈ F and hence ĠḠ
α ⊆ F .
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Next, we show that (4) holds in MU [G] for all ~p ∈ Ḡ and α ∈ [ν, jU (ν)] by
induction. The case “α = ν ” is trivial and the case “α ∈ Lim” follows directly
from the induction hypothesis.

Assume α = ᾱ+1 with ᾱ ≥ ν. We may assume that ᾱ is an inaccessible cardinal
in MU . It suffices to show that

~q∗(ᾱ)F ≤Q̇F
ᾱ

jU (~p)(ᾱ)F

holds in MU [F ] whenever ~p ∈ Ḡ and F is ~Q<ᾱ-generic over MU such that ~q∗ �
ᾱ ∈ F and F induces Ḡ in ~Q<ν . We may assume that there is a ~p ∈ Ḡ with
jU (~p)(ᾱ)F 6= 1lQ̇F

ᾱ
. By the induction hypothesis and the above computations, we

directly get ĠḠ
ᾱ ⊆ F . The definition of ~q∗(ᾱ) and Claim 5 imply

~q∗(ᾱ)F = 〈Aα, sα, pPᾱ
〉 ≤Q̇F

ᾱ
jU (~p)(ᾱ)F

for all ~p ∈ Ḡ.
This induction shows that (4) holds if α = jU (ν) and ~p ∈ G. This allows us to

repeat the above computation and conclude jU”G ⊆ H. �

Claim 8. 1l~C<ν+1
 “ κ̌ is γ̌-supercompact”.

Proof of the claim. Let G be ~C<ν+1-generic over V, Ḡ be the corresponding filter
in ~C<ν and Gν be the corresponding filter in ĊḠ

ν . Claim 4 combined with Claim 3
shows that there is a H̄ ∈ V[G] such that ~q∗ ∈ H̄, H̄ is ~Q<jU (ν)-generic over MU

and H̄ induces G in ~Q<ν+1. By Claim 7, we have jU”Ḡ ⊆ H̄ and we can apply
[Cum10, Proposition 9.1] to define an elementary embedding j : V[Ḡ] −→ MU [H̄]
extending jU in V[G] that by setting j(τ Ḡ) = jU (τ)H̄ for all τ ∈ V~C<ν .

We show that there is a H∗ ∈ V[G] such that H∗ is Q̇H̄
jU (ν)-generic over MU

and j”Gν ⊆ H∗. We may assume that ν is an inaccessible cardinal. This implies
(2ν)V[Ḡ] = (2ν)V ≤ γ. By Proposition 3.2, there is a ν-coding basis 〈A, s〉 ∈ V[Ḡ]
coding a well-order of νν and a filter Fν ∈ V[G] such that Fν is Ps(A)V[Ḡ]-generic
over V[Ḡ] and Fν induces Gν as in (3).

By Claim 3, we have (γOn)V[G] ⊆ MU [G] ⊆ MU [H̄] ⊆ V[G] and this implies that
(γMU [H̄])V[G] ⊆ MU [H̄] holds. In particular, both Ps(A)V[Ḡ] and j � Ps(A)V[Ḡ]

are elements of MU [H̄], because Ps(A)V[Ḡ] has cardinality at most γ in V[Ḡ]. If
j(〈A, s〉) = 〈Ā, s̄〉 and P = j”Fν , then 〈Ā, s̄〉 is a jU (ν)-coding basis that codes a
well-order of jU (ν)jU (ν) in MU [H̄], P ⊆ Ps̄(Ā)MU [H̄] and P ∈ MU [H̄], because Fν is
an element of MU [H̄]. As in the proof of Claim 5, the set P satisfies the statements
(i)-(iii) of Lemma 2.10 in MU [H̄] and we can find a condition pP ∈ Ps̄(Ā)MU [H̄] as
in the statement of the Lemma.

In MU [H̄], Ps̄(Ā)MU [H̄] is <γ+-closed and has cardinality at most jU (γ). By the
proof of Claim 4, jU (γ) has cardinality at most γ+ in V[G] and there is a F∗ ∈ V[G]
such that pP ∈ F∗ and F∗ is Ps̄(Ā)MU [H̄]-generic over MU [H̄]. If H∗ ∈ V[G] is the
filter in CMU [H̄]

jU (ν) corresponding to F∗, then H∗ is Q̇H̄
jU (ν)-generic over MU [H̄] and

our construction ensures j”Gν ⊆ H∗. Another application of [Cum10, Proposition
9.1] to define an elementary embedding j∗ : V[G] −→ MU [H̄][H∗] in V[G] that
extends j. Since (γOn)V[G] ⊆ MU [H̄][H∗] ⊆ V[G], this argument shows that κ is
γ-supercompact in V[G]. �

Claim 9. If λ > ν, then 1l~C<λ
 “ κ̌ is γ̌-supercompact”.
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Proof of the claim. Let H be ~C<λ-generic over V and G be the corresponding filter
in ~C<ν+1. There are no inaccessible cardinals in (ν, γ+) and the above computations
show that ~C<ν+1 has the property that every set of ordinals of cardinality at most γ

in a ~C<ν+1-generic extension of the ground model is covered by a set of cardinality
γ in V. By Proposition 4.1, ĊG

[ν+1,λ) is <γ+-closed in V[G].
By Claim 8, there is a normal filter U∗ on Pκ(γ) in V[G] and U∗ is also a normal

filter on Pκ(γ) in V[H], because V[H] is a ĊG
[ν+1,λ)-generic extension of V[G] and

<γ+-closed forcing preserve normal filters on Pκ(γ). �

This completes the proof of the theorem. �

The following result due to Robert Solovay shows that, given a supercompact
cardinal κ, there is a proper class of cardinals γ satisfying the assumptions of
Theorem 5.1 with respect to κ. Remember that an uncountable cardinal is strongly
compact if for any set S, every κ-complete filter on S can be extended to a κ-
complete ultrafilter on S. Every supercompact cardinal is strongly compact (see
[Kan03, Corollary 22.18]).

Theorem 5.2 ([Sol74, Theorem 1]). If κ is a strongly compact cardinal and γ is a
singular strong limit cardinal greater than κ, then 2γ = γ+.

Let κ be a cardinal and γ0 ≥ κ. There is a singular strong limit cardinal γ > γ0

such that cof(γ) ≥ κ and there are no inaccessible cardinals in (γ0, γ]. If κ is
supercompact, then 2γ = γ+ by Theorem 5.2 and γ satisfies the assumptions of
Theorem 5.1. This proves the following statement.

Corollary 5.3. If κ is supercompact and γ ∈ On, then there is a ν ∈ On with

1l~C<λ
 “ κ̌ is γ̌-supercompact”

for all λ > ν. �

6. Proofs of the main results

Given α ≤ β ∈ On, let εα,β : ~C<α −→ ~C<β denote the canonical embedding
of partial orders. Let D be the class of all ~p such that there is a β ∈ On with
~p ∈ ~C<β and ~p 6= εα,β(~q) for all α < β and ~q ∈ ~C<α. Define P to be the class
forcing with domain D ordered by ~p ≤P ~q if there are α, β, γ ∈ On with α, β ≤ γ,
~p ∈ ~C<α, ~q ∈ ~C<β and εα,γ(~p) ≤~C<γ

εβ,γ(~q). This means that P is a direct limit of

the directed system 〈〈~C<α | α ∈ On〉, 〈εα,β | α ≤ β ∈ On〉〉. Since ~C<α is uniformly
definable in parameter α, P is definable without parameters.

Proof of Theorem 1.4. First, assume that the inaccessible cardinals are bounded in
On and define

ν = sup{α ∈ On | α is an inaccessible cardinal}.

We have 1l~C<ν+1
 “ Ċ[ν+1,λ) is trivial” for all λ > ν and this shows that P is

forcing equivalent to ~C<ν+1. Since ν is definable without parameters and each ~Cα

is definable in parameter α, the partial order ~C<ν+1 is definable without parame-
ters. Proposition 4.3, Lemma 4.4 and Corollary 5.3 show that ~C<ν+1 satisfies the
statements listed in Theorem 1.4 under this assumption.
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Now, assume that there are unboundedly many inaccessible cardinals in On. Let
G be P-generic over V.

For each β ∈ On, define Gβ = {εα,β(~p) | α ≤ β, ~p ∈ G ∩ ~C<α}. Then Gβ is
~C<β-generic over V, V[G] is the union of all V[Gβ ] and Gα is the filter induced by
Gβ in ~C<α whenever α ≤ β ∈ On.

Claim 1. If α is an inaccessible cardinal in V and x ∈ V[G] is a subset of α, then
x ∈ V[Gα+1].

Proof of the claim. There is a β > α with x ∈ V[Gβ ]. Since ~C<α+1 satisfies the
α+-chain condition in V, we can apply Proposition 4.1 to show that Ċ[α+1,β) is
<α+-closed in V[Gα+1] and this implies x ∈ V[Gα+1]. �

Claim 2. Let x be an element of V[G]. There is an inaccessible cardinal α such
that y ∈ V[Gα+1] for all y ∈ V[G] with y ⊆ x. In particular, V[G] satisfies the
Power Set Axiom.

Proof of the claim. By our assumption, we can find an inaccessible cardinal α in
V such that x ∈ V[Gα+1] and |x|V[Gα+1] ≤ α. Let i : x −→ α be an injection in
V[Gα+1]. If y ∈ V[G] is a subset of x, then there is β > α with y ∈ V[Gβ ]. By
Claim 1, we have f”y ∈ V[Gα+1] and therefore y ∈ V[Gα+1]. This argument shows
that P(x)V[Gα+1] is the power set of x in V[G]. �

Claim 3. V[G] is a model of ZFC.

Proof of the claim. Let ~p be a condition in P, A ∈ V and 〈Da | a ∈ A〉 be a V-
definable sequence of dense subclasses of P. There is α ∈ On with ~p ∈ ~C<α. Given
a ∈ A, define da = {~q � α | (∃β ≥ α) ~q ∈ Da ∩ ~C<β} ∈ V. Then 〈da | a ∈ A〉 ∈ V
and each da is predense in P. This shows that P is pretame with respect to V (see
[Fri00, page 33]). By [Fri00, Lemma 2.19], this implies that V[G] is a model of
ZFC−. �

Claim 4. Let κ be a cardinal in V with the property that there is no singular limit
of inaccessible cardinals ν with ν+ < κ ≤ 2ν in V. Then κ is a cardinal in V[G]
and, if κ is regular in V, then κ is regular in V[G].

Proof of the claim. By Proposition 4.5, κ is a cardinal in V[Gµ] for every µ ∈ On
and, if κ is regular in V, then κ is regular in every V[Gµ]. In combination with the
above remarks, this directly implies the statement of the claim. �

Claim 5. If κ is a supercompact cardinal in V, then κ is supercompact in V[G].

Proof of the claim. Given γ ∈ On, Corollary 5.3 shows that there is a ν ∈ On
such that κ is γ-supercompact in V[Gβ ] for all β > ν. By Claim 2, there is
an inaccessible cardinal α such that P(Pκ(γ))V[G] = P(Pκ(γ))V[Gα] and therefore
P(Pκ(γ))V[Gα] = P(Pκ(γ))V[Gβ ] for all β > ν. We can conclude that κ is γ-
supercompact in V[G]. �

Claim 6. If α is an inaccessible cardinal in V, then α is an inaccessible cardinal
in V[G] and (2α)V[G] = (2α)V.

Proof of the claim. By Proposition 4.3, α is an inaccessible cardinal in V[Gα+1]
and Lemma 4.4 shows that (2α)V[Gα+1] = (2α)V holds. The statement of the claim
follows directly from Claim 1. �
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Claim 7. Let α be an inaccessible cardinal in V. There is a well-order of H(α+)V[G]

that is definable in 〈H(α+)V[G],∈〉 by a formula with parameters.

Proof of the claim. By Claim 2, there is a ν > α with H(α+)V[G] = H(α+)V[Gν ].
The statements of the Claim follows directly from Lemma 4.4. �

This completes the proof of the theorem. �

Proof of Theorem 1.1. Let α be an inaccessible cardinal and A be a subset of αα.
There is a ~C<α-name ṗ with the property that, whenever G is ~C<α-generic over V,
then there is a α-coding basis 〈Ā, s̄〉 coding a well-order of αα in V[G] that satisfies
the following statements in V[G].

(i) ṗG = 〈Ā, s̄, 1lPs̄(Ā)V[G]〉 ∈ ĊG
α .

(ii) There is a well-order ≤ of αα witnessing that 〈Ā, s̄〉 codes a well-order of
αα such that A is an initial segment of this order of order-type |A|.

Pick ~p ∈ ~C<α+1 with ~p(α) = ṗ. Then p is a condition in P.
Let G be P-generic over V with p ∈ G. For each β ∈ On, define Gβ as in the

proof of Theorem 1.4 and let ṗGα = 〈Ā, s̄, 1lPs̄(Ā)V[Gα]〉 ∈ V[Gα]. By Claim 2 in the
above proof, there is a ν > α with H(α+)V[G] = H(α+)V[Gν ]. Lemma 4.4 implies
that Ā is a Σ1

1-subset of αα in V[Gν ] and therefore also in V[G]. Let ≤ denote the
well-order of (αα)V[Gα] produced by the above construction. Then ≤ is definable
in 〈H(α+)V[G],∈〉 and A is either equal to the domain of ≤ or to the set of all
≤-predecessors of an element of this domain. This shows that A is definable in
〈H(α+)V[G],∈〉 by a Σ1-formula with parameters. �

7. Open problems

We close this paper with some open problems related to the above results.
If the Singular Cardinal Hypothesis holds, then forcing with the class-sized par-

tial order constructed in Theorem 1.4 does not collapse cardinals. It is not obvious
if the converse of this implication also holds.

Question 7.1. Is it consistent that the partial order constructed in the proof of
Theorem 1.4 collapses cardinals?

Given a κ-coding basis 〈A, s〉, an easy argument shows that forcing with Ps(A)
adds a Cohen-subset of κ. Therefore, a positive answer to the above question would
follow from the existence of certain scales (see [Jec03, Definition 24.6]). The proof
of [Hon10, Observation 4.3] contains the idea behind this approach.

As mentioned in the abstract, Theorem 1.4 can be viewed as a boldface version of
Theorem 1.3 in the absence of the GCH. We may therefore ask whether a lightface
version of Theorem 1.4 is possible.

Question 7.2. Let κ be a regular uncountable cardinal κ with κ = κ<κ and 2κ >
κ+. Is there a cardinal preserving partial order P with the property that, whenever
V[G] is a P-generic extension of the ground model, then there is a well-order of
H(κ+)V[G] that is definable in 〈H(κ+)V[G],∈〉 by a formula without parameters?

In [FHb], Radek Honzik and the first author use a κ++-strong cardinal to produce
a model with a measurable κ with 2κ = κ++ and the property that there is a well-
order of H(κ+) that is definable in 〈H(κ+),∈〉 by a formula without parameters. It
is natural to ask whether this statement is optimal.
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Question 7.3. Is it consistent that there is a measurable cardinal κ such that
2κ > κ++ and there is a well-order of H(κ+) that is definable in 〈H(κ+),∈〉 by a
formula without parameters?

The result mentioned above is used in [FHb] to establish the consistency of
a definable failure of the Singular Cardinal Hypothesis, i.e. if the existence of a
κ++-strong cardinal is consistent, then it is consistent that ℵω is a strong limit
cardinal, 2ℵω = ℵω+2 and there is a well-order of H(ℵω+1) that is definable in
〈H(ℵω+1)V[G],∈〉 by a formula without parameters.

Starting from a supercompact cardinal, we can apply the Laver preparation (see
[Lav78]) and Theorem 1.4 to produce a positive answer to the boldface version of
Question 7.3. We may therefore ask whether the existence of stronger definable
failure of the Singular Cardinal Hypothesis is consistent.

Question 7.4. Is it consistent that there is a singular strong limit cardinal ν such
that 2ν > ν++ and there is a well-order of H(ν+) that is definable in 〈H(ν+),∈〉 by
a formula with parameters?

Finally, we ask whether the existence of a definable well-order of H(ℵω+1) can
be forced without applying some variation of Prikry-Forcing.

Question 7.5. Is there a partial order P with cardinality less than the least in-
accessible cardinal and the property that, whenever V[G] is a P-generic extension
of the ground model, then there is a well-order of H(ℵω+1)V[G] that is definable in
〈H(ℵω+1)V[G],∈〉 by a formula with parameters?
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