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Abstract We show first that it is consistent that κ is a mea-
surable cardinal where the GCH fails, while there is a lightface
definable wellorder of H(κ+). Then with further forcing we show
that it is consistent that GCH fails at ℵω, ℵω strong limit, while
there is a lightface definable wellorder of H(ℵω+1) (“definable
failure” of the singular cardinal hypothesis at ℵω). The large
cardinal hypothesis used is the existence of a κ++-strong cardi-
nal, where κ is κ++-strong if there is an embedding j : V → M

with critical point κ such that H(κ++) ⊆M . By work of M. Gi-
tik and W. J. Mitchell [12], [20], our large cardinal assumption
is almost optimal. The techniques of proof include the “tuning-
fork” method of [10] and [3], a generalisation to large cardinals
of the stationary-coding of [4] and a new “definable-collapse”
coding based on mutual stationarity. The fine structure of the
canonical inner model L[E] for a κ++-strong cardinal is used
throughout.
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1 Introduction

In his paper [14], L. Harrington showed how to make the continuum arbi-
trarily large, while introducing a ∆1

3 wellorder of P(ω). Using a forcing
with countable support, V. Fischer and S. D. Friedman showed in [4] how
to violate CH with a ∆1

3 wellorder of P(ω) while obtaining non-trivial be-
haviour of cardinal characteristics of the continuum. A related construction
with finite support and larger values of the continuum appears in [5].

In the first main result of this paper (see Theorem 4.1 below) we extend
these results to a measurable cardinal which violates GCH, and then in the
second part of this paper (see Theorem 5.1 below) we push this down to ℵω.
Both results are a contribution to the area of set-theoretical research which
studies the compatibility of large cardinals with definability in the presence
of axioms which fail in core models (such as the failure of GCH).

In order to prove Theorem 4.1, one must add many new subsets of κ,
wellorder them definably, and preserve the measurability of κ in the pro-
cess. The preservation of measurability of κ which violates GCH, starting
from a κ++-strong cardinal (see Definition 2.1), is a non-trivial problem,
first solved by W. H. Woodin in his “surgery argument” (see [2]). However,
Woodin’s argument relies heavily on the homogeneity properties of κ-Cohen
forcing. In order to overcome this restriction, the paper [10] introduced a
lifting argument based on the fusion property of κ-Sacks forcing, which is
not subject to these restrictions. The use of κ-Sacks forcing let to a number
of new results ([3, 8, 15, 9, 10, 11]), most notably to the solution of the old
problem concerning the number of normal measures ([9]).

We prove in this paper the following two theorems:

Theorem 1.1 (GCH) Starting from a κ++-strong cardinal κ, it is consis-
tent that GCH fails at κ, κ remains measurable, and there is a lightface
definable wellorder of H(κ+).

This theorem is proved by an iteration similar to [4], but applied to many
inaccessible cardinals simultaneously and using fine-structural properties of
the canonical inner model L[E] for a κ++-strong cardinal κ. Key steps are
the preservation of measurability of κ, using methods of [10], [3], and the
preservation of the desired stationary sets, based on ideas of [7].

Theorem 1.2 (GCH) Starting from a κ++-strong cardinal κ, it is consis-
tent that GCH fails at ℵω, 2

ℵn < ℵω for every n < ω, and there is a lightface
definable wellorder of H(ℵω+1).

The proof of this theorem starts with the model obtained in the first theorem
and uses mutually stationary sets defined via the fine structure of L[E] to
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introduce “definable” collapses which make κ equal to ℵω in the generic
extension. Since 2ℵω equals ℵω+2 in this model, we obtain a definable failure
of the Singular Cardinal Hypothesis at ℵω.

2 Preliminaries

2.1 Notation

The forcing notation is standard, following [16]. In particular, if P is a
forcing notion and p, q are conditions in P , we write p ≤ q to express that p
is a stronger condition than q. We say that P is κ-closed for an uncountable
regular cardinal κ if all decreasing sequences of length < κ have a lower
bound (similarly for the notion of κ-distributivity).

2.2 Strong cardinals

Definition 2.1 κ is called λ-strong for a cardinal λ > κ if there exists an
elementary embedding j : V → M with critical point κ such that λ < j(κ)
and H(λ) ⊆M .

In [8], the same property was called λ-hypermeasurable. In [8], you can
also find some discussion concerning the exact form of the definition (some
authors, such as [18] or [16], use the V -hierarchy instead of the H-hierarchy
to gauge the strength of the embedding).

Under GCH, we can without loss of generality assume that if κ is κ++-strong
(which will be the strength required in our argument), then j : V → M is
an extender ultrapower embedding in that

(2.1) M = {j(f)(α) | f : κ→ V, α < κ++},

where it holds that H(κ++) ⊆ M and κM ⊆ M (M is closed under κ-
sequences in the universe). The handbook article [2] is a rich source of
information on these notions.

2.3 Perfect tree forcing at an inaccessible

In [17], A. Kanamori generalizes the Sacks forcing at ω to a regular cardinal
κ. Although κ can be any regular cardinal, we will deal here only with the
case when κ is a (strongly) inaccessible cardinal. Assuming the reader’s
familiarity with this paper, or with some other exposition of the generalized
Sacks forcing, we give here a quick review and point out some differences in
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our definition. There are two new non-trivial requirements which need to
be added to the original definition of the perfect-tree forcing at ω so that
the perfect-tree forcing at an inaccessible κ behaves properly (for instance
is κ-closed). If p ⊆ 2<κ is a tree, then:

(2.2)

(i) If s0 ⊆ s1 ⊆ . . . is a sequence of nodes in p indexed by α < λ < κ for
some limit λ, then

⋃

α<λ sα is a node in p;
(ii) If s is a node in p, the length of s is a limit ordinal, and splitting nodes

t ( s are unbounded in s, then s splits.

In fact, unlike in [17], we will use the following modification (ii*) of (ii) given
in (2.3). The reason for this is to ensure that the lifting argument works
more easily, see later in the text in Section 4.

(2.3)

(ii*) If s is a node in p, the length of s is a limit ordinal α, and splitting
nodes t ( s are unbounded in s, then:
(a) If α has countable cofinality, then s splits.
(b) If α has uncountable cofinality, then s does not split.

Definition 2.2 Let κ be an inaccessible cardinal. We say that p is a cof
ω-splitting perfect κ-tree if p ⊆ 2<κ is a tree of height κ closed under initial
segments (i.e. if s ∈ p and s′ ⊆ s then s′ ∈ p), for each s ∈ p there is t ⊇ s in
p which splits (i.e. both ta0 and ta1 are in p), and p satisfies the conditions
(i) in (2.2) and (ii*) in (2.3).

If p and q are cof ω-splitting perfect κ-trees, we write p ≤ q to denote that
p is a stronger condition, where p ≤ q ↔ p ⊆ q.

Let p be a cof ω-splitting perfect κ-tree. We define some notation which we
find useful (the notation needs to take into account the cof ω splitting and
so it will divert slightly from the usual notation). By induction on α < κ we
define the α-th splitting level of p as follows. If the α-th splitting level of p
is already defined, we define the α+1-th splitting level of p as the collection
of all splitting nodes s ∈ p such that there is a t ( s with t being on the α-th
splitting level, and such that there is no splitting node between t and s. If α
is a limit ordinal, then we define the α-th splitting level as the collection of all
nodes s ∈ p such that s is the union of nodes tβ for β < α such that tβ is on
the β-th splitting level of p. Note that for a limit α, the α-th splitting level
of p consists of splitting nodes if and only if α has countable cofinality. We
denote the set {s ∈ p | s is on the α-th splitting level of p} by Splitα(p). We
write p ≤α q if p ≤ q and Splitα(p) = Splitα(q). If σ is a node in p, we denote
by p|σ the restriction of the tree p to σ, i.e. p|σ = {t ∈ p | t ⊆ σ ∨ σ ⊆ t}.
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Finally, let Succα(p) be equal to:

– If α is a successor ordinal, or a limit ordinal of countable cofinality, then
Succα(p) = {t ∈ p | ∃s ∈ Splitα(p) t = sai for i ∈ {0, 1}}.

– If α is a limit ordinal of uncountable cofinality, then Succα(p) = Splitα(p).

We view the nodes in Succα(p) as the possible choices (“successors”) at the
α-th splitting level (in case α is a limit ordinal of uncountable cofinality,
then there are no choices, and so Succα(p) = Splitα(p)). This notation will
be useful in the fusion arguments in Sections 3.3 and 4.

As in [17] and in [9], where the trees with modifications as in (ii*) are dis-
cussed, one can show that the forcing consisting of the cof ω-splitting perfect
κ-trees is κ-closed and satisfies κ-fusion (a decreasing sequence 〈pi | i < κ〉
is a fusion sequence if pi ≥i pi+1 for each i < κ; one can show that in this
case

⋂

i<κ pi is a cof ω-splitting κ-perfect tree). Under GCH this forcing has
the κ++-cc, and hence preserves all cofinalities.

One can naturally define a product and an iteration of the cof ω-splitting
perfect κ-tree forcing, as in [17]. The support of the forcing is of size ≤ κ.
Our notational conventions need to be extended to include the supports:
if p and q are conditions in the product or iteration of some length µ and
F is a subset of µ of size < κ, then p ≤α,F q means that for all ξ ∈ F ,
p ↾ ξ  p(ξ) ≤α q(ξ). We naturally extend the notion of the restriction p|σ
by coordinates if we work with a product. In the context of an iteration,
given σ : F → 2<κ, we need to determine first by induction on ξ ∈ F whether
the coordinate-wise restriction p|σ is meaningful: given the restriction (p ↾
ξ)|(σ ↾ξ), (p↾ξ+1)|(σ ↾ξ+1) is defined whenever (p↾ξ)|(σ ↾ξ)  σ(ξ) ∈ p(ξ).

Product-style and iteration-style forcings based on the perfect-tree forcing
were used in arguments where preservation of large cardinals was in focus,
see for instance [10], [9], and [8] (a product), [3] (an iteration), or [15], where
the cofinalities change. One can even formulate more general variants, such
as the κ-Miller forcing and combine it with the Sacks forcing, see [11].

Remark 2.3 In [10] and other papers referenced in the previous paragraph,
a perfect tree at an inaccessible κ is defined more restrictively: it is required
that the splitting nodes are determined uniquely by a certain club in κ. It
is easy to see that the forcing defined in [10] is a dense subforcing of our
forcing, and hence they are equivalent.

2.4 The extender model L[E]

We will give here only a brief review of the properties which we will need in
the proof.
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We will work in an extender model L[E] such that

(2.4) L[E] |= κ is a κ++-strong cardinal,

where E is an indexed sequence of partial extenders of length less than κ+3.
The indexing of extenders is a somewhat delicate question. For our needs, it
will suffice to say that the (full) extender at κ witnessing the κ++-strength
of κ is indexed at some limit ordinal µ ∈ (κ++, κ+3). Also, for every regular
cardinal λ < κ+3, Eλ = ∅, i.e. the extender indexed by λ is always trivial.
In general, the indexing is chosen to ensure that the extenders are added
“amenably” (see below).

We say that a regular cardinal θ is sufficiently large if θ > 22
κ

. We will
localize this to inaccessible cardinals α < κ: here θ is sufficiently large (with
respect to α) if θ > 22

α
. As we will start with GCH, it will be the case that

22
κ
= κ++ and 22

α
= α++.

In order to analyze the structure L[E], we will work with general structures
are of the form:

(2.5) 〈Lα[E],∈, E ↾α,Eα〉,

where α < κ+3, Lα[E] = Lα[E ↾α] and Eα is the top extender indexed at
α. We can assume that Eα ⊆ Lα[E], and moreover that the extra sets are
amenable in that for every x ∈ Lα[E], Eα ∩ x ∈ Lα[E], and (E ↾α) ∩ x ∈
Lα[E].

If θ is a regular cardinal, we can restrict ourselves to simpler structures of
the form

(2.6) 〈Lθ[E],∈, E ↾θ〉.

This is because of the fact mentioned above, namely that the top extender
Eθ is always empty for a regular cardinal θ < κ+3. We will write LE

θ to
denote the whole structure 〈Lθ[E],∈, E ↾θ〉.

For a limit ordinal α, we will identify E ↾ α with E ∩ Lα[E]; in particular
〈Lα[E],∈, E ↾α〉 = 〈Lα[E],∈, E ∩ Lα[E]〉 = LE

α .

The basic issue we need to review is condensation. We need some definitions
first which will help us to formulate the condensation principle for L[E] that
we need.

For a set model M = 〈M,∈, EM 〉, where EM is a unary predicate, we say
that A is Σn(M) in p ∈M if A is definable over M using a Σn formula with
the parameter p.

Definition 2.4 ̺ is the Σn-projectum of M if ̺ is the least ρ such that
for some p ∈ M , there is a set A which is Σn(M)-definable in p such that
A ∩ ωρ 6∈M . We say that p witnesses that ̺ is the Σn-projectum of M .
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Definition 2.5 M is n-sound ifM is the Σn-hull of ̺∪{p} inM , where ̺ is
the Σn-projectum of M and whenever p witnesses that ̺ is the Σn-projectum.

Fact 2.6 (Condensation) Suppose that M is Σn-elementary in 〈LE
θ , Eθ〉,

M̄ is the transitive collapse of M and the Σn-projectum of M̄ is a subset
of M . Also suppose that M̄ is n-sound and the cardinality of M is not the
successor of an inaccessible cardinal. Then M̄ is an initial segment of L[E].

Proof. See Theorem 8.2 and Pages 87-88 of [21]. Note that alternative
(b) in the referred results cannot occur as by our smallness assumption
about L[E], the total extenders on the E-sequence have length in intervals
[α+, α++) where α is inaccessible. �

The condensation properties articulated in Fact 2.6 of L[E] allow us to prove
the following facts.

Fact 2.7 Let θ be a fixed regular cardinal > α++, where α ≤ κ is an inac-
cessible cardinal. Then for every n < ω, there exists a continuous sequence
of Σn-elementary submodels 〈Mα,n

i | i < α+〉 of LE
θ such that for each i < α+

the following hold:

(i) Each Mα,n
i has size α.

(ii) α+ 1 ⊆M
α,n
i .

(iii) For i of cofinality α, Mα,n
i is closed under < α sequences existing in

L[E].
(iv) Moreover each M

α,n
i has the property that its transitive collapse π :

M
α,n
i → M̄

α,n
i yields an initial segment of the L[E]-hierarchy:

(2.7) 〈M̄α,n
i ,∈, π′′(E ∩Mα,n

i ) ∩ M̄α,n
i 〉 = LE

ᾱ for some ᾱ < α+.

(v) M̄α,n
i ∈ M̄α,n

i+1.

Proof. Let us write Nβ = 〈Nβ,∈, E
Nβ 〉, where β < α+, to denote the Σn-

Skolem hull of β ∪ {α} in LE
θ . Let us define C = {β < α+ |β = α+ ∩Nβ}.

Then for β ∈ Lim(C), Nβ satisfies the property of M in the hypothesis of
Fact 2.6 as β is the Σn-projectum of Nβ. Define 〈Mα,n

i | i < α+〉 to be the
enumeration of these Nβ’s. �

Note that Fact 2.7 readily generalizes to the following Facts:

Fact 2.8 The sequence as in Fact 2.7 can be so chosen to satisfy:

(i) Mα,n
0 contains any previously fixed parameter p from Lθ[E].

(ii) The closure under < α sequences and the condensation property (iv)
in Fact 2.7 hold relative to an additional parameter R, providing that
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R is a generic filter for a “small” forcing: Assume that R ⊆ α is
a generic filter over Lθ[E] for some cardinal-preserving forcing PR ∈
Lθ[E] of size at most α+ (in Lθ[E]). Then there exists for each n < ω

a continuous sequence 〈Mα,n
i | i < α+〉 of Σn-elementary substructures

of LE,R
θ = 〈Lθ[E][R],∈, E ∩Lθ[E], R〉 of size α whose elements satisfy:

(a) Each Mα,n
i contains R as an element.

(b) If i has cofinality α, the model Mα,n
i is closed under < α-sequences

in L[E][R].
(c) The transitive collapse M̄α,n

i of Mα,n
i is a generic extension of an

initial segment of the L[E] hierarchy:
(2.8)
〈M̄α,n

i ,∈, π′′(E ∩Mα,n
i ) ∩ M̄α,n

i , R〉 = L
E,R
ᾱ for some ᾱ < α+.

(d) M̄α,n
i ∈ M̄

α,n
i+1.

Proof. Ad (i). If p were the least parameter for which the sequence ofMα,n
i ’s

could not be chosen with p ∈ M
α,n
0 , then p is Σm-definable for some larger

m, contradicting Fact 2.7 for that m.

Ad (ii). Introduce the forcing PR as a parameter into Mα,n
0 and notice that

R is PR ∩Mα,n
i -generic over Mα,n

i for club-many i < α+ such that Mα,n
i

is Σn-elementary in LE
θ relative to R. The desired sequence is obtained by

adjoining R to the members of this club. �

Instead of having a distinct sequence for each n < ω, we can argue that we
can fix a single sequence which is fully elementary.

Fact 2.9 The sequences in Facts 2.7 and 2.8 can be chosen to satisfy that
each Mα

i is fully elementary in LE
θ , or L

E,R
θ , respectively.

Proof. Perform the above argument with LE
θ replaced by LE

θ+1 and intersect

the resulting models with LE
θ . �

We close this section by a fact on the definability of the sequence E:

Fact 2.10 Suppose V is a set-generic extension of L[E]. Then for every
regular uncountable κ, the sequence E ↾κ is lightface definable over H(κ)V .

Proof. See Theorems 3.29 and 3.33 of [23]. �

2.4.1 Suitability

The key concept of the proof is “suitability” of certain transitive structures
of the form 〈M,∈, EM 〉.
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Definition 2.11 Let E be the extender sequence fixed in Section 2.4. Given
an inaccessible cardinal α ≤ κ, a model M = 〈M,∈, EM 〉 is called α-suitable
if:

(i) M is transitive, and satisfies ZF− relative to EM .
(ii) M contains α+ 1 as a subset.
(iii) EM = E ∩M .
(iv) M thinks that it has an α++, and moreover it thinks that its α+ and

α++ are the α+ and α++ of (L[EM ])M = (L[E ∩M ])M .

Fact 2.12 The property of being a suitable structure of size α is lightface
expressible in H(α+) of L[E][G] for every G, which is a generic filter for a
set forcing notion.

Proof. By Fact 2.10. �

We give a couple of examples of suitable structures. The collapse of a struc-
ture Mα

i as in Fact 2.9 is an α-suitable structure. However, the intuition
is to include more structures, specifically all cardinal-preserving set generic
extensions of the initial segments of the L[E] hierarchy which obey ZF−.
Notice that for Lβ[E][G], where G is a P -generic filter for some cardinal-
preserving P ∈ Lβ[E] and α < β < α+ such that LE

β |= ZF−, the structure
〈Lβ[E][G],∈, E ∩ Lβ[E]〉 is α-suitable. More to the point, for each Mα

i as
in Fact 2.9, if P is a cardinal-preserving forcing notion (in V ) which is an
element of Mα

i and p ∈ P is (Mα
i , P )-generic (see Section 2.5), then when-

ever G is a P -generic filter containing p, the transitive collapse of Mα
i [G] is

a generic extension of an initial segment of the L[E]-hierarchy, and is thus
α-suitable.

Suitable structures capture enough information to allow for a coherent def-
inition of certain canonical almost disjoint stationary sets in cof(α) ∩ α+

for an inaccessible α ≤ κ, which are the vehicle of the coding for the defin-
able wellorder. For technical reasons, the stationary sets 〈Sα

ξ | ξ ∈ Aα〉 for a

given inaccessible α will be indexed by members of the set Aα = α++∪{−1},
where −1 is construed as a formal symbol denoting a fixed set different from
each ordinal in α++, but available in every model of ZF− (for instance we
can choose −1 = 〈0, 0〉). The purpose of the index −1 is to keep Sα

−1 sta-
tionary, while the stationarity of the sets Sα

ξ for ξ < α++ may be explicitly
killed by the coding forcing (see below in Section 3.2.1).

Lemma 2.13 For each inaccessible α ≤ κ, there are:

(i) A bookkeeping function Fα : α++ → Lα++ [E], which enumerates Lα++ [E]
with cofinally many repetitions, definable over LE

α++ via a formula ϕ,
and
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(ii) For Aα = α++ ∪ {−1}, there is a sequence 〈Sα
ξ | ξ ∈ Aα〉 of almost

disjoint stationary subsets of α+ ∩ cof(α) definable over LE
α++ via a

formula ψ,

such that the following hold:

Whenever M,N are α-suitable models, Fα,M , Fα,N denote the interpre-
tations of ϕ in M,N , respectively, ~Sα,M = 〈Sα,M

ξ | ξ ∈ (Aα)
M 〉, ~Sα,N =

〈Sα,N
ξ | ξ ∈ (Aα)

N 〉 denote the interpretations of ψ in M,N , respectively,

and (α+)M = (α+)N , then Fα,M , Fα,N agree on (α++)M ∩ (α++)N and
~Sα,M , ~Sα,N agree on (Aα)

M ∩ (Aα)
N . In particular, if M is α-suitable and

(α+)M = α+, the Fα,M and ~Sα,M equal the restrictions of Fα, ~Sα up to the
(α++)M (including −1).

Proof. Define for all δ < α++, F (δ) = a iff via Gödel pairing, δ codes a
pair (α0, α1) where a has rank α0 in the natural wellorder of LE

α++ (so that
the function F names a cofinally often). As regards the stationary sets, let
〈Di | i < α+〉 be the canonical LE

α+-definable ♦-sequence at α
+ (which exists

by condensation, see Fact 2.6): by induction on i < α+, let Di be the set D
such that 〈D,D′〉 is the L[E]-least pair such that D is a subset of i, D′ is
closed unbounded in i and D∩γ 6= Dγ for all γ in D′ (if no such pair exists,
we let Di = i).

For each ξ < α++, let Aξ be the L
E
α++-least subset of α

+ coding ξ and define
Sα
ξ , for ξ < α++ to be the set of all i < α+ such that Di = Aξ+1 ∩ i. Define
Sα
−1 similarly from A0. �

Assume now that the generic R in Fact 2.8 preserves all stationary sets Sα
ξ ,

ξ ∈ Aα. Then a sequence 〈Mα
i | i < α+〉 given by Fact 2.9 is useful to argue

that locally with respect to any fixed stationary set Sα
ξ0

in 〈Sα
ξ | ξ ∈ Aα〉, the

sequence 〈Sα
ξ | ξ ∈ Aα〉 can be treated as really disjoint. Although it makes

no difference here, we can assume that ξ0 6= −1 (because Lemma 2.14 will
later be invoked only when ξ0 6= −1).

Let us denote as γi the ordinal Mα
i ∩ α+ for each i < α+. Let S̃α

ξ0
= {i ∈

Sα
ξ0
| i = γi} ⊆ Sα

ξ0
. Evidently, S̃α

ξ0
is still a stationary subset of α+.

Lemma 2.14 Let 〈Sα
ξ | ξ ∈ Aα〉 be a sequence as in Lemma 2.13, 〈Mα

i | i <

α+〉 a sequence as in Fact 2.9, and let S̃α
ξ0

be as above. Then there exists

i ∈ S̃α
ξ0

such that i does not belong to Sα
β for any β ∈ Mα

i , β < α++, such
that β 6= ξ0.

Proof. Otherwise there exists for each i ∈ S̃α
ξ0

a β ∈ Mα
i such that β 6= ξ0

and i ∈ Sα
β . Because β is in Mα

i , it holds that β < i. Define a regressive

function f which to each i ∈ S̃α
ξ0

assigns some such β < i. By Fodor’s
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theorem, there is a stationary set T ⊆ S̃α
ξ0

and β0 such that f−1(β0) = T .
This implies that the intersection of T with Sα

β0
, and so also the intersection

of Sα
ξ0

with Sα
β0
, contains a stationary set, and is therefore of size α+. This

contradicts the almost-disjointness of 〈Sα
ξ | ξ ∈ Aα〉. �

2.5 (N,P )-generic conditions

To verify suitability of different structures, we will review some of the well-
known facts originating from the proper-forcing theory:

If N = 〈N,∈〉 is a (possibly non-transitive) model of ZF− which contains a
partial order P ∈ N , then if G is a P -generic filter over V , we write

N [G] = {σG |σ is a P -name in N}.

Fact 2.15 Consider a structure of the form 〈H(θ)V [G],∈,H(θ), G〉, where
θ is some large enough regular cardinal and G is a P -generic filter for some
P ∈ N for some set N . Assume

〈N,∈, N ∩H(θ), N ∩G〉 ≺ 〈H(θ)V [G],∈,H(θ), G〉.

Then N = N ∩H(θ)[N ∩G] and N ∩H(θ) ∩ORD = N ∩ORD.

Proof. Let q be in N . It holds in H(θ)V [G] that there is some q̇ a name in
H(θ) such that q̇G = q. By elementarity, it holds that there is some name
q̇ in N ∩H(θ) and q̇N∩G = q. Similarly, since H(θ) and H(θ)V [G] have the
same ordinals, the same must hold by elementarity for N and N ∩H(θ). �

Given an elementary substructure 〈N,∈〉 ≺ 〈H(θ),∈〉 and a forcing notion
P ∈ N , we can ensure under some conditions a suitable converse to Fact
2.15. We say that a condition p ∈ P is (N,P )-generic if every P -generic
filter G containing p meets in N every dense open set D which is an element
of N .

Note that if P ∪ {P} is a subset of N , then the weakest condition of P is
(N,P )-generic.

Fact 2.16 Assume P ∈ N , G is P -generic, and θ is a large enough regular
cardinal (large with respect to P ).

(i) If 〈N,∈〉 ≺ 〈H(θ),∈〉, then

〈N [G],∈〉 ≺ 〈H(θ)V [G],∈〉.

(ii) If moreover p ∈ P is (N,P )-generic and G contains p, then

〈N [G],∈, N,G ∩N〉 ≺ 〈H(θ)V [G],∈,H(θ), G〉.

12



Proof. For proofs of these facts, see [22], section III. �

As a corollary, if P ∈ Mα
i is a cardinal-preserving forcing notion, where

Mα
i is as in Fact 2.9, and p is (Mα

i , P )-generic and G is a P -generic filter
containing p, then the transitive collapse ofMα

i [G] is an α-suitable structure.

3 The forcing construction

3.1 The main idea

For any pair x, y of subsets of an inaccessible α ≤ κ let z = x ∗ y be
defined by z = {2ξ | ξ ∈ x} ∪ {2ξ + 1 | ξ ∈ y}. We will define an iteration
P = 〈(Pα, Ṗ

α) |α ≤ κ〉 so that for each α ≤ κ inaccessible and generic Gα+1

for Pα+1 the following holds in L[E][Gα+1]:

(i) 2α = α++.
(ii) There exists a wellorder <α in L[E][Gα+1] so that (where “W” is for

“wellorder”):
(W*) x <α y iff for some ordinal ξ < α++, Sα

αξ+2ζ is nonstationary
for ζ in x ∗ y and Sα

αξ+2ζ+1 is nonstationary for ζ not in x ∗ y.

We will show that (W*) can be equivalently expressed by a statement in
H(α+) of L[E][Gα+1]:

(W**) x <α y iff it holds in H(α+) of L[E][Gα+1] that there exists R a
subset of α such that for any α-suitable model M = 〈M,∈, EM 〉 of size
α containing R there exists an ordinal ξ < (α++)M such that Sα,M

αξ+2ζ is

nonstationary in M for ζ in x ∗ y and Sα,M
αξ+2ζ+1 is nonstationary in M for ζ

not in x ∗ y.

Note that (W**) is really expressible in H(α+) of L[E][Gα+1] by Fact 2.12.

Lemma 3.1 The direction from right to left in (W**) is provable.

Proof. Assume R ⊆ α satisfies the assumption on the right side of (W**),
in particular R ∈ L[E][Gα+1]. Because the forcing Pα+1 preserves cofinal-
ities (see Theorem 3.8) and the forcing Ṗα is an iteration of length α++

with support ≤ α (see Section 3.2 for details), R is actually an element of
L[E][Gα ∗ gαξ ], for some ξ < κ++ and generic filter gαξ for Ṗα

ξ . The size of

the forcing notion Pα ∗ Ṗα
ξ is just α+ in L[E] (again see Section 3.2).

Now, there is a general theorem which says that if V [G] is a generic extension
for some complete Boolean algebra P , then all intermediate models V ⊆
M ⊆ V [G] are obtained as generic models over some regular subalgebras
of P . Since L[E] ⊆ L[E][R] ⊆ L[E][Gα ∗ gαξ ], this implies (when translated
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back to the language of posets) that R is actually a generic filter for some
cofinality-preserving forcing of size less or equal α+.

Consider the α-suitable model 〈Lθ[E][R],∈, E∩Lθ[E]〉 for some large enough
regular θ > α++. By Fact 2.8 (ii), we can find an α-suitable 〈N,∈, N ∩E〉 of
size α which contains R as an element, and which is a transitive collapse of
an elementary substructure of 〈Lθ[E][R],∈, E ∩Lθ[E]〉. By our assumption,
in N , there exists an ordinal ξ < (α++)N such that Sα,N

αξ+2ζ is nonstationary
in N for ζ in x ∗ y and Sα

αξ+2ζ+1 is nonstationary in N for ζ not in x ∗ y.

By elementarity, there is an ξ < (α++)Lθ [E][R] = α++ such that Sα
αξ+2ζ is

nonstationary in Lθ[E][R] for ζ in x ∗ y and Sα
αξ+2ζ+1 is nonstationary in

Lθ[E][R] for ζ not in x ∗ y.

Since non-stationarity is preserved upwards, these sets remain non-stationary
in L[E][Gα+1] as required. �

The forcing detailed below is set up to ensure the converse, that is, that we
can witness x <α y in every suitable M of size α.

3.2 Definition of the forcing

Our forcing P = 〈(Pα, Ṗ
α) |α ≤ κ〉 will be an iteration with Easton support

of forcings Pα defined in V Pα for each inaccessible α ≤ κ, where Pα is itself
an iteration of length α++ with support of size ≤ α. Let Gα denote the
generic for the iteration Pα, then the forcing Pα for the stage α ≤ κ is
defined in L[E][Gα] according to Definition 3.2 (for further reference, the
Pα-generic over L[E][Gα] will be denoted as gα):

Definition 3.2 Pα = 〈(Pα
ξ , Q̇

α
ξ ) | ξ < α++〉 is an iteration of length α++

with supports of size ≤ α defined as follows (more details about the specific
forcings are stated in subsequent Sections 3.2.1–3.2.3).

• Limit stage ξ. For a limit ordinal ξ, define Pα
ξ as the iteration 〈(Pα

ζ , Q̇
α
ζ ) | ζ <

ξ〉 with supports of size ≤ α.

• Successor stage ξ+1. Let gαξ denote the Pα
ξ -generic. The forcing P

α
ξ+1

is defined as Pα
ξ ∗ Q̇α

ξ , where Q̇
α
ξ is a name for the forcing Qα

ξ defined
in L[E][Gα][g

α
ξ ] as follows:

Order subsets of α in L[E][Gα][g
α
ξ ] using an ordering <α

ξ defined as
follows: x <α

ξ y iff the L[E]-least Pα ∗ Pα
ξ -name for x is less than the

L[E]-least such name for y in the canonical wellorder of L[E]. We
assume that for ξ < ζ, the ordering <α

ξ is an initial segment of <α
ζ .

– Qα
ξ is the trivial forcing unless the bookkeeping function Fα denotes

at ξ a Pα ∗ Pα
ξ -name for a pair of subsets of α such that xξ <

α
ξ yξ.
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– If the bookkeeping function Fα denotes at ξ a Pα ∗ Pα
ξ -name for a

pair of subsets of α such that xξ <
α
ξ yξ, we set Q

α
ξ = Q

α,0
ξ ∗Q̇α,1

ξ ∗Ċα
ξ

defined as follows:

(i) Qα,0
ξ adds a club which will kill the stationary sets in the in-

terval [αξ, αξ + α) according to xξ ∗ yξ. See Section 3.2.1 for
the precise definition.
Let Hα

ξ be generic for Qα,0
ξ . Let Xα

ξ ∈ Lα++[E][Gα][g
α
ξ ][H

α
ξ ] be

a subset of α+ which codesGα∗g
α
ξ ∗H

α
ξ so that L[E][Gα][g

α
ξ ][H

α
ξ ] =

L[E][Xα
ξ ] (this is possible because this set has hereditary cardi-

nality < α++). For future convenience we assume that Xα
ξ ∩α

codes Gα. Let Xα
ξ also code a level 〈Lβ[E],∈, E ∩ Lβ[E]〉 for

some α+ < β < α++ such that Lβ[E] |= |ξ| ≤ α+.
We have (where “L” is for “localized”):
(L*) If M is α-suitable and Xα

ξ belongs to M , then ξ is less

than (α++)M , and Sα,M
αξ+2ζ is not stationary inM for ζ ∈ xξ∗yξ,

and Sα,M
αξ+2ζ+1 is not stationary in M for ζ 6∈ xξ ∗ yξ.

(ii) Qα,1
ξ localizes the property (L*) of Xα

ξ to a subset Y α
ξ ⊆ α+

such that:
(L**) For any γ < α+ of cofinality α and an α-suitable M of
size α containing Y α

ξ ∩ γ as an element: If γ = (α+)M then for

some ξ̄ less than (α++)M , Sα,M

αξ̄+2ζ
is not stationary in M for

ζ ∈ xξ ∗yξ, and S
α,M

αξ̄+2ζ+1
is not stationary in M for ζ 6∈ xξ ∗yξ.

See Section 3.2.2 for the precise definition.

(iii) Cα
ξ is a perfect-tree coding, which codes Y α

ξ into a subset of α.
See Section 3.2.3 for the precise definition.

We aim to show that this forcing preserves cofinalities, and also the desired
stationary sets (while killing some other desired stationary sets). We start
by defining the forcings Qα,0

ξ , Qα,1
ξ and Cα

ξ and analyzing their properties.

3.2.1 The killing stationarity forcing Q
α,0
ξ

This is a standard forcing. A condition p in this forcing is a closed increasing
sequence in α+ of size ≤ α such that p is disjoint from Sα

αξ+2ζ for each
ζ ∈ xξ ∗ yξ and from Sα

αξ+2ζ+1 for each ζ 6∈ xξ ∗ yξ. Since all stationary
sets in Sα

ξ for ξ ∈ Aα are composed of ordinals of cofinality α, this forcing
is easily seen to be α-closed. A standard argument, which uses the special
stationary set Sα

−1 which we have set apart, shows that this forcing is also
α+-distributive. By GCH at α, this forcing has size α+ and hence preserves
cofinalities.
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3.2.2 The localization forcing Q
α,1
ξ

Work in L[E][Xα
ξ ]. A condition inQα,1

ξ is an α+-Cohen condition r : α+ → 2,

|r| < α+, in L[E][Xα
ξ ] with the following properties:

(i) The domain dom(r) is a limit ordinal.
(ii) Xα

ξ ∩ dom(r) is the even part of r, i.e. for γ ∈ dom(r), γ belongs to
Xα

ξ iff r(2γ) = 1.
(iii) The property (L**) holds when restricted to r ↾ γ for γ ≤ dom(r) of

cofinality α, as in (r**):

(r**) For any limit γ < α+ of cofinality α, γ ≤ dom(r) and a suitable M
of size α containing r ↾ γ as an element: If γ = (α+)M then for some limit
ordinal ξ̄ < (α++)M , Sα,M

αξ̄+2ζ
is not stationary in M for ζ ∈ xξ ∗ yξ, and

S
α,M

αξ̄+2ζ+1
is not stationary in M for ζ 6∈ xξ ∗ yξ.

Lemma 3.3 Q
α,1
ξ is α-closed in L[E][Xα

ξ ].

Proof. This is because (r**) requires some non-trivial behavior only at
ordinals of cofinality α. �

The argument in Theorem 3.8 actually shows that this forcing is α+-preserving
(in fact contains an α+-closed dense subsets). The forcing has size α+ and
so preserves cofinalities.

We state a technical lemma which will be useful later:

Lemma 3.4 If q is a condition in Q
α,1
ξ and γ ≥ dom(q) + α is a limit

ordinal, then q can be extended to q∗ with dom(q∗) = γ.

Proof. Let q∗ be any extension with domain γ which codes on the odd part
of the interval [dom(q),dom(q) + α) the ordinal γ. Then no new instances
of (iii) in (r**) arise because no new γ of cofinality α needs to be considered
(for no M containing q∗ ↾ [dom(q),dom(q) + α) can it happen that there is
γ ≤ dom(q∗) with γ = (α+)M ), and so q∗ is a condition. �

3.2.3 The perfect-tree coding forcing Cα
ξ

We describe the forcing Cα
ξ . Let Y α

ξ ⊆ α+ be as above. We wish to find
R ⊆ α which codes Y α

ξ in the sense that L[E][Y α
ξ ][R] = L[E][R]. We assume

(the actual proof of this is delayed to Theorem 3.8) that L[E][Y α
ξ ] has the

same cardinals as L[E].

The perfect-tree coding Cα
ξ will use as conditions perfect α-trees with cof

ω-splitting, see Section 2.3, but we put extra restrictions on the branches in
these trees.
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Define a sequence of models 〈LE
µi
[Gα][Y

α
ξ ∩ i] | i < α+〉 such that: For each i,

µi is the least ordinal µ < α+ of cofinality α such that µ > sup{µk | k < i}
(this condition is vacuous for i = 0) so that LE

µi
[Gα][Y

α
ξ ∩ i] satisfies:

(i) It is a model of ZF− (relative to E);
(ii) it satisfies “α is the largest cardinal”;

We will denote the models LE
µi
[Gα][Y

α
ξ ∩ i] as Ai.

Note that by nature of conditions (i) and (ii), the models are closed under
< α-sequences existing in L[E][Y α

ξ ]: Let f : β → µi for some β < α, then
for some µ < µi, f : β → µ. Let π be an injection from µ into α, π ∈ Ai.
Then π ◦ f : β → α belongs to L[E][Gα] and therefore to Ai. It follows that
f = π−1 ◦ (π ◦ f) belongs to Ai.

We say that a set R ⊆ α codes Y α
ξ below i iff for all k < i,

k ∈ Y α
ξ ⇔ LE

µk
[Gα][Y

α
ξ ∩ k,R] |= ZF−.

For T ⊆ 2<α a perfect α-tree with cof ω-splitting, let |T | denote the least i
such that T ∈ Ai. A condition in Cα

ξ is a perfect α-tree T with cof ω-splitting
such that R codes Y α

ξ below |T | whenever R is a branch through T in a set
generic extension. Note that this property is expressible in A|T |. Also note
that Cα

ξ is non-empty: for instance the tree which splits everywhere except
at limits of uncountable cofinality (in order to obey the condition of cof
ω-splitting) is present in A0 where there are no requirements on coding.

The trees in Cα
ξ are ordered by inclusion : T ≤ T ′ iff T is a subtree of T ′.

All notational conventions set out in Section 2.3 apply.

We first show that the forcing Cα
ξ is α-closed.

Lemma 3.5 The forcing Cα
ξ is α-closed in L[E][Gα][Y

α
ξ ].

Proof. Given a decreasing sequence T0 ≥ T1 ≥ · · · of conditions of length
γ < α, it suffices to realise that if ν = sup{|Ti| | i < γ}, then the sequence
of the trees T0 ≥ T1 ≥ · · · is a subset of Aν , and by < α-closure, it is also
an element of Aν . It follows that the greatest lower bound

⋂

i<γ Ti is an
element of Aν , and hence no new instances of coding occur, which makes
⋂

i<γ Ti a condition. �

We show in Theorem 3.8 that Cα
ξ preserves also α+ (and larger cardinals as

well by α++-cc, due to GCH at α), and so it preserves all cofinalities.

The following lemma shows that the splitting levels can be separated by
an arbitrary gap. This will be used in the lifting argument, see Stage A
on page 28. We say that a cof ω-splitting perfect α-tree T does not split
between Splitk(T ) and β for some k < α and some β < α if for every node
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s ∈ Splitk(T ) such that the length of s is less than β it holds that all nodes
t in T of length ≤ β such that either t ⊇ sa0 or t ⊇ sa1 are non-splitting.

Lemma 3.6 If T belongs to Cα
ξ and k, β < α are two ordinals, then there

is T ∗ ≤k T in Cα
ξ such that T ∗ does not split between Splitk(T

∗) and β.

Proof. If |T | = i for some i < α+, then because Ai satisfies ZF
−, there is a

thinning T ∗ ≤k T in Ai which does not split between Splitk(T ) and β, and
so T ∗ is a condition in Cα

ξ . �

As with the localization forcing, we need to show that the conditions can be
extended arbitrarily.

Lemma 3.7 If T belongs to Cα
ξ and |T | ≤ i < α+, then there is T ∗ ≤ T in

Cα
ξ such that |T ∗| = i.

Proof. We prove this by induction on i. We may assume |T | < i, otherwise
there is nothing to prove. If i = k+1, then we may also assume by induction
that |T | = k and hence that T belongs to Ak.

If k ∈ Y α
ξ , then we take T ∗ ≤ T to have the property that R is PT -generic

over Ak whenever R is branch through T ∗, where PT is the forcing whose
conditions are the elements of T , ordered by extension (this forcing is iso-
morphic to the α-Cohen forcing). More precisely, the structure Ak has size
α in Ai, and so we can list all dense open sets of PT in α-many steps. By
induction on k < α construct T ∗ ≤ T so that the nodes on level k + 1 hit
the k-th dense open set. It follows that, LE

µk
[Gα][Y

α
ξ ∩k,R] |= ZF− for every

branch R of T ∗, by the PT -genericity of R. So T ∗ is a condition and |T ∗| = i.

If k 6∈ Y α
ξ , then choose a subset R0 ⊆ α in Ai coding a wellordering of α of

order type µk and take T ∗ ≤ T to be the tree whose branches are exactly the
branches R through T such that for all ζ, ζ ∈ R0 iff R goes right at the 2ζ-th
splitting level of T . Then T ∗ belongs to Ai and for R a branch through T ∗,
(R,T ) computes R0 and hence LE

µk
[Gα][Y

α
ξ ∩ k,R] is not a model of ZF−,

since it contains R0 as an element.

If i is a limit ordinal of cofinality less than α, use the α-closure of the forcing.
If i has cofinality α, argue as follows: Choose |T | = i0 < i1 < . . . to be an
α-sequence cofinal in i which belongs to Ai. Let T0 = T and for each k < α

let Tk+1 ∈ Cα
ξ be least in Aik+1

such that |Tk+1| = ik+1 and Tk+1 ≤k Tk.
Such Tk’s exist by induction. If T ∗ =

⋂

k<α Tk, then T
∗ ≤ T belongs to Ai

and satisfies the requirement for belonging to Cα
ξ . So T ∗ ≤ T , |T ∗| = i, as

desired. �
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3.3 Preservation of the desired stationary sets

Theorem 3.8 P preserves the desired stationary subsets of α+ for each
inaccessible α ≤ κ. In particular P preserves cofinalities and hence cardinals.

Proof. Let Gα be a generic for Pα. For an inaccessible α ≤ κ, and ξ < α++,
let gαξ be the generic for Pα

ξ over L[E][Gα]. If p is a condition in Pα, we

will write (p(ξ)0, p(ξ)1, p(ξ)2) to denote the forcing condition p(ξ) which is
an element of the forcing Qα,0

ξ ∗ Q̇α,1
ξ ∗ Ċα

ξ in L[E][Gα ∗ gαξ ].

First notice that for each inaccessible α ≤ κ, the forcing Pα has size α,
and so all stationary subsets of α+ are preserved in L[E][Gα]. Also, if S is
a stationary subset of α+ in L[E][Gα+1], i.e. in the extension of L[E][Gα]
by Pα, S will remain stationary in further extensions, and in particular in
L[E][Gκ+1], because the iteration P(> α) is α++-closed.

It follows that it suffices to check that for an inaccessible α ≤ κ, Pα over
L[E][Gα] preserves the desired stationary sets. By this we mean the fol-
lowing: Assume that for some p ∈ gα, and ξ < α++, the condition p ↾ ξ

forces that the stationary set Sα
αξ+ξ0

= S for some ξ0 < α should remain
stationary. In other words the bookkeeping function Fα at stage ξ either
does not denote a name for a pair xξ ∗ yξ of subsets of α in L[E][Gα ∗ g

α
ξ ], or

it denotes a name for a pair xξ ∗ yξ such that xξ <
α
ξ yξ and the forcing Qα,0

ξ

in Definition 3.2 does not explicitly kill the stationarity of S. Then we wish
to show that S remains stationary in the whole extension L[E][Gα ∗ gα].

Our strategy is as follows:

(†) Assume that our p also forces that Ċ is a club subset of α+. We wish
to find and extension q ≤ p such that q forces that Ċ ∩ S is non-empty.
The condition q will be the limit of a decreasing sequence 〈pk | k < α〉 of
conditions in Pα.

We now show how to ensure (†).

Choose a continuous sequence of submodelsMα
i [Gα] of Lθ[E][Gα] as in Fact

2.8 for some large enough regular θ > α++, with the full elementarity as
is ensured by Fact 2.9, with the parameter R = Gα (here we identify Gα

with a subset of α), such that Mα
0 [Gα] contains p, P

α, ξ, and Ċ and other
relevant parameters. Since in the generic extension by Gα all stationary
sets in 〈Sα

ξ | ξ ∈ Aα〉 remain stationary (see Lemma 2.13 for the definition
of these stationary sets), we can apply Lemma 2.14, and conclude that:

(3.9)

There exists i in S = Sα
αξ+ξ0

such that i = Mα
i [Gα] ∩ α

+ which does not

belong to any Sα
β for any β < α++ in Mα

i [Gα] such that β 6= αξ + ξ0. Fix
this M [Gα] = Mα

i [Gα]. Let 〈ik | k < α〉 be a sequence cofinal in this i. In
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preparation for an argument concerning the coordinates in the perfect-tree
coding forcing (see paragraph (C) on page 24), we choose this sequence to
belong to the least Lµ[E][Gα], in which the transitive collapse M̄ [Gα] of
M [Gα] has size α (note that if M̄ [Gα] has size α in Lµ[E][Gα], then i, which
is the α+ of M̄ [Gα], has also size α here).

The sequence 〈pk | k < α〉 will be constructed in M [Gα] in the sense that
every proper initial segment of the sequence will be in M [Gα], and the limit
q (not in M [Gα]) will force i ∈ Ċ. Since i ∈ S, this will achieve the desired
goal. To make sure that the limit of 〈pk | k < α〉 is correctly defined, we will
also need to ensure that q isM [Gα]-generic with respect to restrictions of Pα

to ξ < α++. Let 〈Dk | k < α〉 be an enumeration of all dense-open subsets of
Pα in M [Gα]. The next lemma shows that this sequence implicitly contains
all relevant dense open sets for the restricted forcings:

Lemma 3.9 For each ξ ∈ α++ ∩M [Gα], the sequence 〈Dk ↾ P
α
ξ | k < α〉,

where D ↾Pα
ξ = {p ↾ ξ ∈ Pα

ξ | p ∈ D}, enumerates all dense open sets in the
forcing Pα

ξ which belong to M [Gα].

Proof. Clearly, if D is dense open in Pα
ξ and an element of M [Gα], then

D̄ = {p ∈ Pα | p = raq, q ∈ Pα(> ξ) and r ∈ D} is definable, and hence an
element of M [Gα]. D̄ is also a dense open set in Pα, and so occurs in the
sequence 〈Dk | k < α〉, and so D̄ = Dk0 for some k0 and D = Dk0 ↾P

α
ξ . �

In constructing sequences below, we will need to build a fusion sequence on
the coordinates with the perfect-tree coding forcing. Since it is an iteration,
we will need to define a suitable form of fusion for names. Although for the
proof that the desired stationary sets are preserved a simpler form of fusion
suffices, we will formulate and use a more robust fusion which will anticipate
the lifting context in Section 4.

The iteration Pα is composed of three types of forcings (when it is nontriv-
ial): the stationarity killing forcing, the localization forcing, and the perfect
tree coding. Abusing the notation a little, we will refer to the stages of the
forcing where the perfect tree coding forcing Cα

ξ occurs as fusion coordi-

nates. We will denote these fusion coordinates as ξ2, where ξ < α++. (We
view the coordinate ξ < α++ as a triple (ξ0, ξ1, ξ2) with the correspond-
ing condition (p(ξ)0, p(ξ)1, p(ξ)2) so that p(ξ0) = p(ξ)0, p(ξ1) = p(ξ)1, and
p(ξ2) = p(ξ)2.) The collection of all fusion coordinates in α++ is denoted as
F . This convention will extend naturally to all concepts concerning fusion
type arguments.

If P is a forcing notion and ẋ a name for a ground model object, we say
that a ∈ P determines ẋ if there is y ∈ V such that a  ẋ = y.

The condition q desired in (†) above will be the limit of a sequence 〈pk | k <
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α〉, decreasing relative to a⊆-increasing and continuous sequence of supports
〈Fk | k < α〉:

p = p0 ≥0,F0∩F p1 ≥1,F1∩F · · · .

The sequence 〈pk | k < α〉 will be constructed to ensure that q (the limit of
pk’s) satisfies the following:

(*) For every k < α there is k̄ < α such that for every r ≤ q if for each
ξ2 ∈ Fk ∩ F , r ↾ ξ2 forces that r(ξ2) has a stem ẋ of length at least k̄, and
moreover r ↾ξ2 determines ẋ up to k̄, then r forces ζ ∈ Ċ for some ik ≤ ζ < i.

In particular q forces that i ∈ Ċ (because such r’s are dense below q).

The sequence 〈pk | k < α〉 will be constructed by induction. The definition
of Fk’s needs only to ensure that these sets are ⊆-increasing, continuous,
and eventually capture the whole support of its limit q: Fk ⊆ Fk+1, Fl =
⋃

{Fk | k < l} for a limit l, and
⋃

{Fk | k < α} = supp(q). At limit stages
l < α, pl will be defined to be the greatest lower bound of pk’s for k < l. Note
that the limits are correctly defined and stay within M [Gα] because M [Gα]
is closed under all < α sequences from M [Gα] existing in the universe, i.e.
in L[E][Gα], and all forcings are α-closed.

Given pk, we will describe now how pk+1 is to be constructed. The construc-
tion has two stages.

Stage 0. Determination. Using the construction detailed in the para-
graph Construction, Stage 0 below, construct p∗k+1 ≤k,Fk∩F pk (the deter-
mined version of pk) to satisfy the points (i)–(iii) below. See the paragraphs
below Definition 2.2 in Section 2.3 to review the relevant notation.

(i) If σ is a function from Fk ∩F to 2<α then σ is determined in the sense
that:

– Either for every ξ2 ∈ Fk ∩ F , p∗k+1 ↾ ξ
2|(σ ↾ ξ2) is a condition and

forces that σ(ξ2) is in Succk(pk(ξ
2)) (we call such σ’s suitable for

p∗k+1 on the domain Fk ∩ F ),
– Or there is ζ2 ∈ Fk ∩ F such that p∗k+1 ↾ ζ

2|(σ ↾ ζ2) is a condition
and forces that σ(ζ2) is not in Succk(pk(ζ

2));

(ii) Moreover there is some k̄ < α such that whenever σ is suitable for p∗k+1

on the domain Fk ∩ F then σ is a function from Fk ∩ F to 2k̄+1.

(iii) If σ is suitable for p∗k+1 on the domain Fk ∩ F and s = p∗k+1|σ, then
s↾ξ2 determines Splitk(pk(ξ

2)) (and hence also Succk(pk(ξ
2))) for each

ξ2 in Fk ∩ F .

Construction, Stage 0.
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Let 〈ξl | l < |Fk ∩ F |〉 be the increasing enumeration of Fk ∩ F . We abuse
here notation and write ξl instead of (ξ2)l to avoid over-indexing. We will
build inductively a decreasing sequence of conditions 〈pξl | l < |Fk∩F |〉 with
the greatest lower bound p∗k+1. In order to verify the condition (ii) in the
above list, we also identify a sequence of ordinals 〈ξ̄l | l < |Fk ∩F |〉 so that:
If σ : ξl ∩ Fk ∩ F → 2<α is suitable on the domain ξl ∩ Fk ∩ F , then its
range is included in 2ξ̄l+1.

Such sequences are constructed as follows. Set pξ0 = pk and ξ̄0 = 0.

If l is a limit ordinal, set pξl to be the greatest lower bound
∧

m<l p
ξm and

ξ̄l = sup{ξ̄m |m < l}.

To construct the condition pξl+1 if we already have pξl , let 〈σm |m < µ〉 be
an enumeration of all σ’s suitable for pξl ↾ξl on the domain ξl∩Fk∩F . Note
that µ can be taken to be smaller than α because of the bound ξ̄l.

Build a sequence 〈tm |m < µ〉 of conditions in the restricted forcing Pα ↾ ξl
with the following properties:

(3.10)

(i) t0 = pξl ↾ξl;

(ii) t0 ≥k,ξl∩Fk∩F t1 ≥k,ξl∩Fk∩F t2 ≥k,ξl∩Fk∩F · · ·

(iii) If m is a limit ordinal, let tm =
∧

n<m t
n;

(iv) Set t∗m+1 to be a condition below tm|σm which determines Splitk(pk(ξl)).
To ensure tm+1 ≤k,ξl∩Fk∩F tm, we will define tm+1(ξq) for every q < l

from t∗m+1 using the Maximal Principle as follows (at coordinates
ζ 6∈ Fk ∩ F , we keep tm+1(ζ) = t∗m+1(ζ)):

– The condition t∗m+1 ↾ ξq forces that tm+1(ξq) is a name for the tree
obtained from the tree tm(ξq) by replacing the subtree tm(ξq)|σm(ξq)
by the tree t∗m+1(ξq);

– For any other suitable σ, σ 6= σm, the condition (tm|σ) ↾ ξq forces
that tm+1(ξq) is a name for the tree tm(ξq).
Since the collection of conditions

{(tm|σ)↾ξq |σ is suitable for pξl ↾ξl}

is a maximal antichain below tm ↾ ξq, this implies that tm+1 ↾ ξq
forces tm+1(ξq) ≤k tm(ξq). Since this holds for every q < l, this
implies tm+1 ≤k,ξl∩Fk∩F tm.

Set pξl+1 = (
∧

m<µ t
m)a(pk(≥ ξl)), and ξ̄l+1 = max(ξ̄l, τ), where τ is the

supremum of the lengths of nodes in Splitk(pk(ξl)) determined with respect
to all suitable σm’s.
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Set p∗k+1 =
∧

l<|Fk∩F | p
ξl and k̄ = sup{ξ̄l | l < |Fk ∩ F |}. By nature of the

construction, we have that p∗k+1 ≤k,Fk∩F pk, k̄ < α, and the points (i)–(iii)
above are satisfied.

Stage 1. Construct pk+1 ≤k,Fk∩F p∗k+1 as the greatest lower bound of a
≤k,Fk∩F -decreasing sequence 〈pm |m < µ′〉, built using the sequence 〈σm |m <

µ′〉 of σ’s suitable for p∗k+1 on the domain Fk ∩F identified in Stage 0. Note
again that µ′ can be taken to be smaller than α.

At the successor step, let first ∗pm+1 be an extension of pm|σm which hits the
dense open set Dk (by a condition inM [Gα]) and determines the least ζ ∈ Ċ

above ik (and below i), and define pm+1 to be the condition which is obtained
from ∗pm+1(ξ2) for each ξ2 ∈ Fk ∩ F by amalgamating ∗pm+1|σm(ξ2) and
pm(ξ2) \ pm|σm(ξ2), in order to ensure pm+1 ≤k,Fk∩F pm. See (3.10)(iv)
above for details.

At limits, define pm to be the greatest lower bound.

Also make sure that at non-trivial coordinates ξ0 and ξ1 in Fk, the condition
pk+1 ↾ ξ

l for l ∈ {0, 1} forces that pk+1(ξ
l) extends past ik (and stays below

i) (this can be done by elementarity of M [Gα], and by invoking Lemma 3.4
for the coordinate ξ1). Similarly, make sure that for each ξ2 ∈ Fk ∩ F , the
condition pk+1 ↾ξ

2 forces that |pk+1(ξ
2)| ≥ ik (by invoking Lemma 3.7).

Verification. Let q be the greatest lower bound of 〈pk | k < α〉. We need to
verify that this is a condition in the forcing Pα. We do this by induction on
ξ ∈ supp(q) ⊆ M [Gα]. Assume q ↾ ξ is a condition. Recall that the ordinal
i and the sequence 〈ik | k < α〉 cofinal in i were chosen with some care, see
(3.9).

(A) Clearly, q ↾ ξ0 forces that q(ξ0) is a condition because it is forced to
be an increasing closed sequence of ordinals with i on top. By our
assumption on p, it is forced below p that S (which contains i) is a
stationary set which the conditions in ξ0 do not need to avoid.

(B) We need to verify that q ↾ ξ1 forces that q(ξ1) is a valid condition. Fix
a generic gαξ ∗ Hα

ξ for Pα
ξ ∗ Q̇α,0

ξ which contains q ↾ ξ1. It suffices to
verify that the definition of (r**) on page 16 holds for γ = i. By the
construction of q, and by application of Lemma 3.9, the condition q ↾ξ1

is (M [Gα], P
α
ξ ∗ Q̇α,0

ξ )-generic, which implies:

(3.11) 〈M [Gα][g
α
ξ ∗Hα

ξ ],M [Gα],M,∈, (gαξ ∗Hα
ξ ) ∩M [Gα]〉 ≺

≺ 〈Lθ[E][Gα][g
α
ξ ∗Hα

ξ ], Lθ[E][Gα], Lθ[E],∈, gαξ ∗Hα
ξ 〉.

In particular, ORD ∩M [Gα] = ORD ∩M [Gα][g
α
ξ ∗Hα

ξ ]. Moreover, we
know that that the domain of the transitive collapse π : M [Gα][g

α
ξ ∗

Hα
ξ ] → M̄ [Gα][ḡ

α
ξ ∗ H̄α

ξ ] is a generic extension, by virtue of (3.11), of
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an initial segment of the L[E] hierarchy and is therefore an α-suitable
structure, so that for some ᾱ < α+:

(3.12) M̄ [Gα][(ḡ
α
ξ ∗ H̄α

ξ ) ∩ M̄ [Gα]] = Lᾱ[E][Gα][(ḡ
α
ξ ∗ H̄α

ξ )].

The set Xα
ξ ⊆ α+ which codes Gα ∗g

α
ξ ∗Hα

ξ has a Pα
ξ1
-name τ in M [Gα]

(because Pα and ξ are in M [Gα] and so the name for Xα
ξ is definable in

M [Gα]). It follows that X
α
ξ = τ

(gα
ξ
∗Hα

ξ
) is an element ofM [Gα][g

α
ξ ∗H

α
ξ ],

and by the properties of the collapsing map π we can conclude that
Xα

ξ ∩ i belongs to M̄ [Gα][(ḡ
α ∗ H̄α

ξ )]. As X
α
ξ codes the generic gαξ ∗Hα

ξ

(besides Gα), it ensures the nonstationarity of Sα
αξ+2ζ for ζ ∈ xξ ∗ yξ

and of Sα
αξ+2ζ+1 for ζ 6∈ xξ ∗ yξ in all suitable models containing Xα

ξ

as an element. By elementarity and the fact that π(Xα
ξ ) = Xα

ξ ∩ i,

Xα
ξ ∩ i ensures the nonstationarity of S

α,M̄ [Gα]
αξ+2ζ for ζ ∈ xξ ∗ yξ and of

S
α,M̄ [Gα]
αξ+2ζ+1 for ζ 6∈ xξ ∗ yξ in all suitable models containing Xα

ξ ∩ i as

an element. Now if N is any suitable model containing (q(ξ1))g
α
ξ
∗Hα

ξ

as an element such that (α+)N = i, then N also contains Xα
ξ ∩ i as

an element (because (q(ξ1))g
α
ξ
∗Hα

ξ codes it on its even part) and as

π(α+) = i = (α+)N = (α+)M̄ [Gα], we have Sα,N
αξ+ζ = S

α,M̄ [Gα]
αξ+ζ for each

ζ < α, which concludes the argument and shows that q(ξ1) is indeed
forced to be a condition.

(C) We need to verify that q ↾ ξ2 forces that q(ξ2) is a condition in the
coding forcing Ċα

ξ . Fix a generic gαξ ∗H
α
ξ ∗Y α

ξ which contains q ↾ξ2. We

need to show that T = (q(ξ2))g
α
ξ
∗Hα

ξ
∗Y α

ξ is an element of Ai (because if
this is the case, |T | = i and no new instances of the coding occur).

Because we have chosen at the beginning 〈ik | k < α〉 in the least
Lµ[E][Gα] where M̄ [Gα] has size α, we know that T belongs to Lµ[E][Gα][Y

α
ξ ∩

i]. By our choice of µi’s it must be that µ ≤ µi, and so T belongs to
Ai as required.

This shows that only the stationary sets which are killed explicitly by the
forcings Q̇α,0

ξ are killed, while other stationary sets in 〈Sα
ξ | ξ ∈ Aα〉 are

preserved.

In order to show that Pα preserves cofinalities, it suffices to show that α+

remains a cardinal (preservation of other cofinalities follows by combination
of the α-closure and α++-cc of Pα). Modify the above proof: if ḟ : α→ α+

is a name for a function, then run the above argument with ḟ instead of Ċ
and find a bound on the range of ḟ in L[E][Gα].

This finishes the proof of Theorem 3.8. �
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3.4 A definable failure of GCH at every inaccessible less or

equal to κ

The argument above actually yields the following corollary.

Corollary 3.10 The model L[E][Gκ+1] satisfies for each inaccessible α ≤ κ

that 2α = α++ and there is a wellorder of the subsets of α lightface definable
in H(α+).

Proof. Under GCH, the forcing P preserves all cardinals (and cofinalities).
The wellorder is given by (W**) on page 13. The complexity of the wellorder
is Σ2 (equivalently ∆2) over H(α+). �

In the next section, we show that κ remains measurable after forcing with
P, which is one of the main theorems in our paper. Note that we needed
to iterate the forcing at every α ≤ κ in order to make allowances for the
reflection properties at κ, which is supposed to stay measurable after forcing
with P.

4 A definable failure of GCH at a measurable

In this section, we will prove the following theorem:

Theorem 4.1 (GCH) Starting from a κ++-strong cardinal κ, it is consis-
tent that GCH fails at κ, κ remains measurable, and there is a lightface
definable wellorder of H(κ+).

The proof will be given in a sequence of lemmas. Background material on
preservation of measurability, in particular on lifting of the embeddings to
generic extensions (e.g. Silver’s lemma), can be found in [2].

Using the facts developed in Section 2.4, fix a κ++-strong extender ultra-
power embedding j : V = L[E] →M with critical point κ. Let G = Gκ+1 =
Gκ ∗ g

κ be P-generic, where P is the forcing defined in Section 3.2.

By standard arguments (see for instance [10]) lift in L[E][Gκ+1] to j :
L[E][Gκ] → M [Gκ ∗ gκ ∗ F ], using the fact that H(κ++) = Lκ++[E] is
included in M , and so the forcing (P κ)M is identical to P κ. The generic
filter F for the iteration j(P) in the interval (κ, j(κ)) can be constructed in
L[E][Gκ+1] using the (κ+3)M -closure of this forcing applied to all relevant
dense open sets in M [Gκ ∗ gκ].

By an argument similar to Theorem 3.8 one can show that M [Gκ ∗g
κ ∗F ] is

closed under κ-sequences in L[E][Gκ+1]: M [Gκ ∗ gκ ∗ F ] contains the same
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subsets of κ as L[E][Gκ+1], and a fusion-based argument as in Theorem 3.8
ensures that this is enough for M [Gκ ∗ g

κ ∗ F ] to contain all κ-sequences of
ordinals.

We will show how to lift to gκ. First, we shall formulate the natural concept
of the κ-closure of j[gκ] and show that it is a filter. We shall later show that
this closure is in fact a generic filter. The generic on the M -side is thus in
a very elegant way generated by j[gκ].

Working in V [Gκ+1], set h = Clκ(j[g
κ]) to consist of all conditions p ∈

(P j(κ))M [Gκ∗gκ∗F ] (the top forcing in j(P)) such that there is a decreasing
sequence of length κ of conditions in j[gκ], such that p is greater or equal to
the greatest lower bound of this sequence.

Fact 4.2 h = Clκ(j[g
κ]) is a filter which contains j[gκ].

Proof. Use the fact thatM [Gκ∗g
κ∗F ] is closed under κ-sequences in V [Gκ+1]

and that the forcing (P j(κ))M [Gκ∗gκ∗F ] is j(κ)-closed, so in particular κ+-
closed. Given two elements p, q in h, construct by an induction of length
κ a sequence of conditions which is eventually below all conditions in the
sequences determining p, q. The limit of this sequence is below p, q and lies
in h. �

It follows that in order to lift j, it suffices to show that h meets every dense
open set in M [Gκ ∗ gκ ∗ F ].

Let j(f)(d) = D be a dense open set for some f whose range contains only
dense open sets of P κ in L[E][Gκ].

The first part of the proof, meeting of f(i)’s, is practically identical to
the argument in the proof of Theorem 3.8. We just concentrate on the
differences.

First part: Stages 0,1.

We say that q reduces f with respect to the sequence 〈pi | i < κ〉 and the
sequence 〈Fi | i < κ〉, if q is the greatest lower bound of this sequence and

(4.13)

(*) For every k < κ there is k̄ ≤ κ and Fk ⊆ supp(q) of size < κ such that
for every r ≤ q if for each ξ2 ∈ Fk ∩ F , r ↾ξ2 forces that r(ξ2) has a stem ẋ

of length at least k̄, and moreover r ↾ξ2 determines ẋ up to k̄, then r meets
f(k).

Lemma 4.3 For every p in P κ there is q ≤ p as above in (4.13). It follows
that some such q is in gκ.
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Proof. Choose a continuous sequence of submodels Mκ
k [Gκ] for k < κ of

Lθ[E][Gκ] as in Fact 2.8, with the full elementarity as is ensured by Fact
2.9, with the parameter R = Gκ (here we identify Gκ with a subset of κ),
such that Mκ

0 [Gκ] contains p, P
κ, f and other relevant parameters. Then

proceed as in (3.9) to fix i ∈ Sκ
−1, i =Mκ

i [Gκ]∩κ
+, which does not belong to

any Sκ
β for β ∈ κ++ ∩Mκ

i [Gκ] and β 6= −1. Fix this M [Gκ] =Mκ
i [Gκ]. Let

〈ik | k < κ〉 be a sequence cofinal in this i. Choose this sequence to belong
to the least Lµ[E][Gκ], in which the transitive collapse M̄ [Gκ] of M [Gκ] has
size κ. Let 〈Dk | k < κ〉 be a listing of all dense open sets of P κ which lie in
M [Gκ].

Using the model M [Gκ] and the sequence 〈ik | k < κ〉 fixed above, construct
〈pk | k < κ〉, where the successor step from pk to pk+1 looks as follows:

Stage 0. Determination. Proceed as in Stage 0, Determination on page 21.

Stage 1. Proceed as in Stage 1 on page 23 with the following modification:

• In Stage 1, when constructing pk+1, hitDk and f(k) (note that because
f is in M [Gκ], the sequence of f(k)’s is actually included in Dk’s, but
for easy indexing we prefer to hit f(k) at stage k + 1).

Note that by choosing i in Sκ
−1 we need not worry that by adding i on

top of the condition in the stationarity-killing forcing we might compromise
the coding (recall that the stationary set Sκ

−1 is set aside and not used for
coding). �

Fix q ∈ gκ satisfying (4.13) above.

Second part. Stages A,0,1. By elementarity, there are d̄ < j(κ) and
Td ⊆ supp(j(q)) of size < j(κ) such that if t ≤ j(q) and for each ξ2 ∈ Td∩F ,
t ↾ ξ2 forces that t(ξ2) has a stem ẋ of length at least d̄, and moreover t ↾ ξ2

determines ẋ up to d̄, then t meets j(f)(d). Td can be taken to be the
d-th element of the sequence j(〈Fk | k < κ〉), where 〈Fk | k < κ〉 is the
sequence of supports in the construction of q. Let Cd̄ be a club in κ so that
j(Cd̄)(κ+1) ≥ d̄, where we write Cd̄(ξ) for ξ < κ to denote the ξ-th element
of Cd̄ (for existence of such a club, see [10]).

Let r′ ≤ q be given. We construct r ≤ r′, in preparation to find t as above,
as the fusion limit of r′ = r0 ≥0,E0∩F r1 ≥1,E1∩F . . . using the following
construction.

First fix a submodel M [Gκ], an ordinal i and a sequence 〈ik | k < κ〉 as in
the proof of Lemma 4.3, so that M [Gκ] contains as parameters P κ, r′, q,
〈Fk | k < κ〉 (where 〈Fk | k < κ〉 is the sequence of supports used to construct
the condition q above), and other relevant objects. Let 〈Dk | k < κ〉 be an
enumeration of all dense open sets of P κ in M [Gκ].

27



We will need to do more than in Lemma 4.3 when we define the successor
step rk+1. Also, there is a special condition on the selection of supports
Ek’s:

• For each k, choose Ek so that Fk ⊆ Ek and Ek ∩ (supp(q) \ Fk) = ∅,
where 〈Fk | k < κ〉 is the sequence of supports used to construct the
condition q above.

The construction of rk+1 from rk is subdivided into three stages A, 0, and
1, obtaining conditions rk ≥k,Ek∩F rAk+1 ≥k,Ek∩F r∗k+1 ≥k,Ek∩F rk+1:

Stage A. Recall the notion of a κ-tree p not splitting between Splitk(p) and
β for k, β < κ, defined before Lemma 3.6.

Construct rAk+1 by thinning out (using just maximal names) each tree at the
coordinates ξ2 in (Ek ∪ FCd̄(k+1)) ∩ F so that:

– For each ξ2 ∈ Ek∩F , rAk+1 ↾ξ
2 forces that rAk+1(ξ

2) does not split between
Splitk(rk(ξ

2)) and Cd̄(k + 1).
– For each ξ2 ∈ FCd̄(k+1) \ Fk, r

A
k+1 ↾ ξ

2 forces that rAk+1(ξ
2) has its stem of

length at least Cd̄(k + 1).

Stage 0. As in Stage 0 on page 21, construct the determined version of rAk+1,
to be denoted as r∗k+1, so that:

(4.14)

• If ξ2 is in (Ek∪FCd̄(k+1))∩F and σ is suitable for r∗k+1 on the domain

Ek ∩ F and s = r∗k+1|σ, then s ↾ξ
2 determines (where Lengthα(p) for

a tree p denotes all elements of p of length α):

– Splitk(r
A
k+1(ξ

2)) and LengthCd̄(k+1)(r
A
k+1(ξ

2)) for ξ2 ∈ Ek ∩ F ;

– LengthCd̄(k+1)(r
A
k+1(ξ

2)) for ξ2 ∈ (FCd̄(k+1) \ Fk) ∩ F .

• There is some k̄ < α such that whenever σ is suitable for r∗k+1 on the

domain Ek ∩ F then σ is a function from Ek ∩ F to 2k̄+1.

Notice here that unlike in Stage 0 on page 21, we also need to determine
a part of the trees at coordinates ξ2 in (FCd̄(k+1) \ Fk) ∩ F : the induction
process as in Stage 0 on page 21 thus proceeds on (Ek ∪ FCd̄(k+1)) ∩ F ,
but only the coordinates in Ek ∩F , where the k-th splitting nodes must be
preserved, will be added to the domain of suitable σ’s.

Stage 1. As in Stage 1 on page 23, extend r∗k+1 to rk+1 in order to hit the
dense open set Dk.

Note that by extending rk+1 ≤k,Ek∩F r∗k+1, we will not change the de-
termined parts of trees r∗k+1(ξ

2) in (4.14) for the coordinates ξ2 ∈ (Ek ∪
FCd̄(k+1)) ∩ F .
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Choose some r ≤ q constructed above which is in g.

Lemma 4.4 Let g∗ denote the function which to each j(ξ2) in j[κ++] ∩ F

assigns the value gκ(ξ2), where we write gκ(ξ2) for the function κ → κ

which interprets the name for the generic for the perfect-tree coding at ξ2 in
L[E][Gκ][g

κ
ξ ∗H

κ
ξ ∗Y κ

ξ ]. Then the condition r∗ = j(r)|(g∗ ↾j[supp(r)]) meets
j(f)(d).

Proof. Let us write 〈E∗
k | k < j(κ)〉 for the j-image of the sequence of sup-

ports 〈Ek | k < κ〉 used in the construction of r; it follows that
⋃

k<j(κ)E
∗
k =

supp(j(r)). Also, E∗
κ = j[supp(r)] = j[

⋃

k<κEk]. Analogously we write
〈F ∗

k | k < j(κ)〉 for the j-image of the sequence of supports 〈Fk | k < κ〉
used in the construction of q. It follows that

⋃

k<j(κ) F
∗
k = supp(j(q)). It

also holds F ∗
κ = j[supp(q)] = j[

⋃

k<κ Fk]. By elementarity, F ∗
κ ⊆ E∗

κ and
E∗

κ ∩ (supp(j(q)) \ F ∗
κ ) = ∅.

We will show that r∗ ≤ j(q) satisfies:

(†) For each ξ2 in F ∗
j(Cd̄)(κ+1) ∩ F , r∗ ↾ ξ2 forces that r∗(ξ2) has a stem ẋ

of length at least j(Cd̄)(κ + 1), and moreover r∗ ↾ ξ2 determines ẋ up to to
j(Cd̄)(κ + 1).

Since by our choice of Cd̄ it holds that d ≤ d̄ ≤ j(Cd̄)(κ + 1), it follows by
(*)(4.13) and elementarity that r∗ meets j(f)(d).

In order to verify (†) consider the following points:

• j(Cd̄)(κ) = κ, and so F ∗
j(Cd̄)(κ+1) ∩ F ⊆ [E∗

κ ∪ (F ∗
j(Cd̄)(κ+1) \ F

∗
κ )] ∩ F ,

where E∗
κ and (F ∗

j(Cd̄)(κ+1) \ F
∗
κ ) are disjoint;

• g∗ ↾E∗
κ is suitable for j(r) on the domain E∗

κ because r is in gκ, and κ
is a limit ordinal of uncountable cofinality (and hence the suitability
just refers to the elements in Splitκ(j(r)(ξ

2)) for ξ2 in E∗
κ).

• By construction of r, the j-version of (4.14) holds for j(r)|(g∗ ↾ E∗
κ)

(note that j(r)|(g∗ ↾ E∗
κ) is below the restriction of r∗κ+1 to g∗ ↾ E∗

κ,
where r∗κ+1 is the κ+1-th stage of the j-version of the construction in
(4.14); in particular κ = κ̄ in the j-version of (4.14)). It follows:

– If ξ2 is in (E∗
κ∪F

∗
j(Cd̄)(κ+1))∩F and s = j(r)|(g∗ ↾E∗

κ), then s↾ξ
2

determines:

– Splitκ(j(r)(ξ
2)) and Lengthj(Cd̄)(κ+1)(j(r)(ξ

2)) for ξ2 ∈ E∗
κ∩F .

In this case the tree j(r)(ξ2) does not split between κ and
j(Cd̄)(κ + 1) and so g∗(ξ2) determines not only the branch of
length κ, but the unique branch of length at least j(Cd̄)(κ+1).
(Note that, crucially, the cof ω-splitting ensures that the tree
does not split at κ, which is a regular cardinal).
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– Lengthj(Cd̄)(κ+1)(j(r)(ξ
2)) for ξ2 ∈ (F ∗

j(Cd̄)(κ+1) \ F
∗
κ ) ∩ F .

In this case, the tree j(r)(ξ2) has the stem of length at least
j(Cd̄)(κ+ 1).

We have shown that r∗ indeed meets j(f)(d) as desired. �

Since r∗ is in h, the κ-closure of j[gκ] (because one can build a decreasing
sequence of conditions of length κ below r with the length of the stems
on the fusion coordinates in supp(r) being cofinal in κ, and the greatest
lower bound of the j-image of this sequence witnesses that r∗ is in h), we
can conclude that h meets D. Since D was arbitrary, h is a generic filter,
and so we can lift j in L[E][Gκ+1] to an embedding from L[E][Gκ+1] to
M [Gκ ∗ gκ ∗ F ∗ h]. It follows that κ remains measurable in L[E][Gκ+1],
which finishes the proof of Theorem 4.1.

5 A definable failure of SCH

In this section, we start with the generic extension L[E][Gκ+1] constructed
in Theorem 4.1, and proceed to “definably” collapse κ to ℵω, thus obtaining
a definable failure of SCH at the first limit cardinal.

Theorem 5.1 (GCH) Starting from a κ++-strong cardinal κ, it is consis-
tent that GCH fails at ℵω, 2

ℵn < ℵω for every n < ω, and there is a lightface
definable wellorder of H(ℵω+1).

The proof will be given in the following subsections.

5.1 Definition of the definable collapse forcing

Work for the moment in L[E]. Assume µ < ν ≤ κ are Mahlo cardinals, or
assume that µ = ℵ0 and ν is Mahlo. (Mahloness is not really necessary;
in fact inaccessible limits of inaccessibles would suffice for the arguments to
follow.)

Let I be the set of all inaccessible cardinals in the interval [µ, ν). Then in
L[E] there exists a sequence of mutually stationary sets with the following
properties.

Lemma 5.2 Work in L[E]. There exists a definable sequence 〈Sµ
i | i ∈ I〉

such that:

(i) Sµ
i is a subset of i+4 ∩ Cof(µ++) for each i ∈ I.
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(ii) The sequence 〈Sµ
i | i ∈ I〉 is mutually stationary with closure: For any

regular cardinal θ > µ++ and parameter x in H(θ), there is a µ++-
closed (i.e. closed under µ+-sequences) elementary submodel N of H(θ)
of size µ++ containing x such that sup(N ∩ i+4) belongs to Sµ

i for all
i ∈ I ∩N .

(iii) Property (ii) also holds if we replace a single Sµ
i by its complement in

i+4 ∩ Cof(µ++).

Proof. Ad (i). For any ordinal γ which is not a cardinal, let 〈β(γ), n(γ)〉 be
the lexicographically least pair 〈β, n〉 so that there is a Σn over 〈Lβ [E],∈
, E ↾β,Eβ〉 definable injection from γ to a smaller ordinal. We define Sµ

i to
consist of all γ’s in i+4 ∩Cof(µ++) greater than i+3 such that n(γ) is even.

Ad (ii). Suppose it fails. Let the pair θ, x be the least counterexample. Also
let LE

θ0
, LE

θ1
. . . enumerate the transitive Σ2-elementary submodels of LE

and set θ∗ = θµ++. For any ordinal δ let N+(δ) be the least Σ3-elementary
submodel of H(θ∗) containing δ as a subset and let C be the club of δ’s
less than µ+4 such that N+(δ) ∩ µ+4 = δ. Let δ∗ be the µ++-th element
of C; then the transitive collapse of N+(δ∗) is sound with Σ3-projectum δ∗

and therefore by condensation (see Fact 2.6) is an initial segment of L[E].
Therefore 〈β(δ∗), n(δ∗)〉 equals 〈β, 4〉, for some β. Now N+(δ∗) is µ++-
closed as cf(δ∗) = µ++ and therefore N = H(θ) ∩ N+(δ∗) is a µ++-closed
elementary submodel of H(θ) containing x such that N ∩µ+4 belongs to Sµ

µ .
If i belongs to I ∩N , then δ∗i = sup(N ∩ i+4) is the same as N+(δ∗i ) ∩ i

+4

as the latter is the union of the Σ3-Skolem hull of γ in LE
θi

for γ in N ∩ i+4,
i < µ++, and each of these hulls is an element of N+(δ∗). By soundness of
the transitive collapse of N+(δ∗i ) and condensation, δ∗i is an element of Sµ

i .
But thenN contradicts the fact that θ, x were chosen to be a counterexample
to (ii).

Ad (iii). Fix i. Suppose that the property (iii) fails and let the pair θ, x be
the least counterexample. Define N+(δ) for each δ as well as δ∗ exactly as
in the previous paragraph above, and let j be the least inaccessible greater
than i. As above, define δ∗j = sup(N+(δ∗)∩ j+4). Now we set N0 = N+(δ∗j )
and take N1 to be the µ++-th Σ4 elementary submodel of N0 containing
i+3 as a subset. More precisely, for δ < i+4 define N0(δ) to be the least
Σ4 elementary submodel of N0 containing δ as a subset, and let C1 be the
club of δ < i+4 such that N0(δ) ∩ i+4 = δ; set N1 = N0(δ

∗
i ), where δ

∗
i is

the µ++-the element of C1. Then by the same argument as in the previous
paragraph, N1 ∩ i+4 = δ∗i is an element of Cof(µ++) not in S

µ
i (as n(δ∗i )

equals 5). Finally, set N2 to be the µ++-th Σ5 elementary submodel of N1

containing µ+3 as a subset. Then N = N2 ∩H(θ) is the desired elementary
submodel of H(θ) which shows that the pair θ, x was not a counterexample
to property (iii) after all. �
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We now show that these mutually stationary sets survived the first forcing
in Theorem 4.1.

Lemma 5.3 Let 〈Sµ
i | i ∈ I〉 be as in Lemma 5.2. Then properties (i)–(iii)

still hold in L[E][Gκ+1].

Proof. Suppose that p is a condition in P = Pκ+1, θ is a regular cardinal
greater than κ++ and p forces ẋ to be an element of Ḣ(θ) (a name for H(θ)
in the generic extension). Note that it suffices to deal with θ larger than κ++

because the general case then follows. For property (ii), we must find q ≤ p

and Ṅ so that q forces Ṅ to be a µ++-closed elementary submodel of Ḣ(θ)
containing ẋ and Ṅ∩i+4 belongs to Sµ

i for each inaccessible i ∈ Ṅ which is at
least µ. In the ground model, letM be a µ++-closed elementary submodel of
H(θ) containing the name ẋ and the forcing P such that sup(M∩i+4) belongs
to Sµ

i for each inaccessible i ∈ M which is at least µ. If G is any generic
for P, thenM [Gµ+1] is elementary in H(θ)[Gµ+1] simply because the forcing
Pµ+1 is contained inM . Moreover M [Gµ+1] is µ

++-closed in H(θ)[Gµ+1]. In
the tail forcing P(> µ) in L[E][Gµ+1], let q(> µ) be a condition which meets
all dense sets on P(> µ) which belong toM [Gµ+1] and let q = pµ+1

aq(> µ).
Then if G is any P-generic containing q as an element we have that M [G]
is elementary and µ++-closed in H(θ)[G]. Moreover M [G] contains ẋG and
M [G]∩ORD =M ∩ORD. Hence M [G] witnesses property (ii) for θ and ẋ,
and q is the desired extension of p with Ṅ a name for M [G].

Verification of property (iii) proceeds in the same way. �

We can now define the forcing DefCol(µ+3, < ν) which will definably collapse
the cardinals in the interval [µ+4, ν).

Definition 5.4 Work in L[E][Gκ+1]. Given c ⊆ µ+3 cofinal in µ+3, we
denote by Statµ(c) the forcing defined below which will code c while collapsing
the first µ+3-many inaccessible cardinals in I greater than µ. Statµ(c) will
be the basic building block of the forcing DefCol(µ+3, < ν), which will be
defined later.

Let 〈iξ | ξ < µ+3〉 be the increasing enumeration of the first µ+3 inaccessible
cardinals ≥ µ. Let Ic denote the first µ+3-many inaccessibles whose indices
belong to c in the sense that iξ ∈ Ic ↔ ξ ∈ c. The forcing Statµ(c) shall
kill the costationarity of Sµ

i in Cof(µ++) for each i ∈ Ic, while preserving
the costationarity of Sµ

i in Cof(µ++) for i 6∈ Ic (by the expression “Sµ
i is

costationary in Cof(µ++)” we mean that (Cof(µ++)∩i+4)\Sµ
i is stationary).

More precisely, a condition p in Statµ(c) is a subset p of
⋃

{(i+3, i+4) | i ∈ Ic}
of size at most µ++ such that for each i in Ic, p ∩ (i+3, i+4) is closed and
p ∩ (Cof(µ++) ∩ (i+3, i+4)) is contained in S

µ
i . A condition p extends a
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condition q if p∩ (i+3, i+4) end-extends q∩ (i+3, i+4) for each i ∈ Ic. We call
{i ∈ Ic | p ∩ (i+3, i+4) 6= ∅} the support of p.

Lemma 5.5 Work in L[E][Gκ+1], and let c ⊆ µ+3 be an arbitrary set cofinal
in µ+3. Let γ be the supremum of the first µ+3-many inaccessible cardinals
in I. Then:

(i) Statµ(c) collapses cardinals in the interval [µ+4, γ].
(ii) Statµ(c) is µ+3-distributive. Hence it preserves all cardinals up to µ+3.
(iii) The size of Statµ(c) is γµ

++

= γ, and so the forcing preserves cardinals
≥ γ+. In particular, γ+ becomes the new µ+4.

(iv) The desired stationary sets are preserved: more precisely, in the generic
extension by Statµ(c), the set c is defined by the costationarity of Sµ

i

in Cof(µ++) for i < γ: ξ ∈ c iff S
µ
iξ

is costationary in Cof(µ++).

Proof. Ad (i). For ξ ∈ c, the generic adds a club Cξ through i+4
ξ or order

type µ+3. It follows that the generic adds a surjection from µ+3 onto i+4
ξ

because it is possible to partition i+4
ξ ∩Cof(ω) into i+4

ξ -many disjoint, cofinal
subsets and by a density argument, Cξ hits each of these pieces.

Ad (ii). Let 〈Dk | k < µ++〉 be a sequence of dense open sets and let p be
a condition. Fix a µ++-closed elementary submodel M ≺ H(γ+) of size
µ++ which contains 〈Dk | k < µ++〉 (and other relevant parameters) and
such that sup(M ∩ i+4) is in S

µ
i for each i ∈ M ∩ Ic. This is possible by

Lemma 5.3(ii). Let us denote as δi the supremum sup(M ∩ i+4), and fix a
sequence 〈mi

k | k < µ++〉 cofinal in δi, for each i ∈ Ic ∩M . Now build in
M a decreasing chain of conditions p = p0 ≥ p1 ≥ . . . of length µ++ such
that pk+1 is in Dk for each k < µ++, and pk+1 extends past mi

k in i+4 for
each i in the support of pk. By the choice of M , it follows that the limit of
this sequence exists (the limit is the union of the conditions pk’s with the
ordinals δi added on top) and lies in the intersection

⋂

{Dk | k < µ++}.

Ad (iii). Obvious.

Ad (iv). Fix an inaccessible j = iξ such that ξ 6∈ c (and so j 6∈ Ic). We
want to show that that Sµ

j remains costationary in Cof(µ++) in the generic

extension by Statµ(c). Let a condition p force that Ċ is a club in j+4. We
wish to show that there is a condition q ≤ p which forces that Ċ meets
(j+4 ∩Cof(µ++)) \Sµ

j . Fix a µ++-closed elementary submodel M ≺ H(γ+)

of size µ++ which contains j, p, Ċ (and other relevant parameters), and such
that sup(M ∩ i+4) is in S

µ
i for each i ∈ M ∩ Ic, and sup(M ∩ j+4) is in

the complement of Sµ
j in Cof(µ++). This is possible by Lemma 5.3(iii). As

in the previous paragraph, fix sequences 〈mi
k | k < µ++〉 cofinal in δi for

i ∈ Ic∩M . Also fix a sequence 〈nk | k < µ++〉 cofinal in sup(M ∩ j+4). Now
build in M a decreasing chain of conditions p = p0 ≥ p1 ≥ . . . of length µ++
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such that pk+1 forces that the k-th element of Ċ is greater than nk, and pk+1

extends past mi
k in i+4 for each i in the support of pk. By the choice of M ,

it follows that the limit of this sequence exists (the limit is the union of the
conditions pk’s with the ordinals δi added on top) and forces sup(M ∩ j+4)
to be in Ċ. �

We introduce now one more parameter into the definition of Statµ(c).

Definition 5.6 Work in L[E][Gκ+1]. We denote by Statµ(c, k) for k < ν

the forcing Statµ(c) above with the modification that instead of the first µ+3-
many inaccessibles in I we use the k-th segment of µ+3-many inaccessibles:
c ⊆ [µ+3k, µ+3k+µ+3) and we kill the costationarity of Sµ

iξ
in Cof(µ++) for

ξ ∈ c.

In particular Statµ(c) = Statµ(c, 0).

Definition 5.7 Work in L[E][Gκ+1]. We denote by DefCol(µ+3, < ν) the
forcing detailed below which will definably collapse all cardinals in the inter-
val [µ+4, ν).

DefCol(µ+3, < ν) is an iteration 〈(Pi, Q̇i) | i ∈ I〉 of length ν with support
of size ≤ µ++. To initiate the construction, set c0 = µ+3 and let Q̇0 be the
forcing Statµ(c0) = Statµ(c0, 0). Let f0 be Statµ(c0)-generic. By Lemma
5.5, the generic f0 can be viewed as a subset of µ+3 because the cardinals
in the interval [µ+4, γ] were collapsed (where γ is the supremum of the first
µ+3-many inaccessibles in I). In the next stage, we force with Statµ(f0, 1).
In general we define by induction:

Q̇i =

{

Statµ(µ+3, i) for i limit or i = 0
Statµ(fi−1, i) for i a successor,

where Fi = Fi−1 ∗ fi−1 is the generic for the i-th stage Pi = Pi−1 ∗ Q̇i−1 of
the iteration, where we view fi−1 as an (unbounded) subset of µ+3 coding
the collapsing function. Also, to make sense of the definition, the blocks
of inaccessibles are computed in L[E]. (Note that L[E] is definable in the
generic extension L[E][Gκ+1][Fi−1], and so the i-th segment of inaccessibles
above µ is definable here as well.)

Lemma 5.8 Work in L[E][Gκ+1]. The forcing DefCol(µ+3, < ν) satisfies
the following properties:

(i) It is µ+3-distributive.
(ii) It has ν-cc.
(iii) It collapses the cardinals in the interval [µ+4, ν).
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(iv) If F is DefCol(µ+3, < ν)-generic, then F is definable in H(κ+) of
L[E][Gκ+1][F ].

Proof. Ad (i). This is basically just like Lemma 5.5(ii), modified for the
iteration in the obvious way.

Ad (ii). This is true by the usual ∆-lemma argument because ν is inacces-
sible, and the supports are bounded in ν.

Ad (iii). Obvious by the construction of the forcing.

Ad (iv). In H(κ+) of L[E][Gκ+1][F ], the restriction E ↾ ν+ is certainly
definable (and Eν+ is empty). It follows that the generic F can be decoded
by looking at the costationarity in Cof(µ++) of the stationary sets Sµ

i for i ∈
I. The verification that the iteration preserves costationarity in Cof(µ++) of
S
µ
i ’s, whose costationarity is not explicitly killed by the forcing, is just like

the argument in Lemma 5.5(iv), modified for the iteration in the obvious
way. �

5.2 Definition of the Prikry-type forcing

In order to prove Theorem 5.1, we will use a Prikry-type forcing with defin-
able collapses. To ensure that it satisfies the Prikry property (while having
a nice chain condition), we will use the idea of the guiding generic which
originated in [19] and [6]. The construction of the guiding generic will make
crucial use of the chain condition of our definable collapse forcing.

Let j∗ : L[E][Gκ+1] → M∗ be the lifting of the embedding j : L[E] →
M , where j was fixed at the beginning of theorem 4.1. We will abuse
notation a little and will denote the lifted embedding again by j, so that
j : L[E][Gκ+1] →M∗. The lifted embedding j is still an extender ultrapower
embedding: M∗ = {j(f∗)(α) | f∗ : κ → L[E][Gκ+1], α < κ++}, where every
f∗ is derived from some f in L[E] with f∗(α) = (f(α))Gκ+1 , for α < κ. See
[2] for more details. (In fact this extender ultrapower embedding reduces to
a simple measure ultrapower embedding; see Fact 5.10 below.)

We now show that we have in L[E][Gκ+1] an appropriate guiding generic
which will be used to define our forcing.

Lemma 5.9 Consider the forcing DefCol(κ+3, < j(κ)) defined inM∗. Then
there exists in L[E][Gκ+1] a DefCol(κ+3, < j(κ))-generic over M∗. Let us
fix such a generic and denote it as Gguide.

Proof. By Lemma 5.8, DefCol(κ+3, < j(κ)) is κ+3-distributive in M∗ and
has j(κ)-cc. The j(κ)-cc ensures that all the maximal antichains in M∗ can

35



be represented as j(f∗)(α), where f : κ → H(κ+), f ∈ L[E], has its range
included in Pκ-names (recall that Pκ is the forcing P used in Theorem 4.1
without the top forcing at κ, i.e. P = Pκ ∗ Ṗ κ), and f∗ is defined from f

by f∗(α) = (f(α))Gκ for every α < κ. More precisely, due to the bounded
support of conditions in DefCol(κ+3, < j(κ)), the forcing DefCol(κ+3, <

j(κ)) can be viewed as a subset of H(j(κ)) of M∗. If A is a maximal
antichain in DefCol(κ+3, < j(κ)) belonging to M∗, then by the j(κ)-cc of
this forcing, A is smaller than j(κ) and so is present in H(j(κ)) of M∗. It
follows by the j(κ)-closure of j(P)(j(κ)) (the top forcing at j(κ)) that A
must have been added by the forcing j(P)j(κ). It follows that there is a

j(P)j(κ)-name Ȧ for A which lies in H(j(κ)) of the original M . Back on
the L[E]-side, this translates into the above claim that there is a function
f : κ→ H(κ) in L[E] such that j(f∗)(α) = A for some α < κ++.

Since L[E] satisfies GCH, there are only κ+-many such functions f∗. Using
the κ+3-distributivity of the forcing, and also the κ+-closure, it is possible
to build a sequence of length κ+ of conditions in DefCol(κ+3, < j(κ)) which
will hit all maximal antichains existing in M∗. �

Now we can define the forcing PDefCol, combining the definable collapses
with Prikry-style conditions, which will be used to prove Theorem 5.1. The
forcing is a variation of the by now standard forcing with Levy collapses,
used in this form in [12]. The new aspect of our forcing is to collapse κ to
ℵω in such a way that the collapsing generic is definable in the appropriate
sense in the extension.

In order to define the forcing, we will use another representation of our
model M∗.

Fact 5.10 The embedding j : L[E][Gκ+1] → M∗ is also a measure ultra-
power embedding: if a measure U is defined in L[E][Gκ+1] by X ∈ U ↔ κ ∈
j(X) then M∗ = Ult(L[E][Gκ+1], U) (the ultrapower of L[E][Gκ+1] via U),
and the canonical ultrapower embedding is identical to j.

Proof. Factor j as i ◦ k, where i : L[E][Gκ+1] → N = Ult(L[E][Gκ+1], U)
is the canonical ultrapower embedding, and k([f ]U ) = j(f)(κ). Since P(κ)
of L[E][Gκ+1] is included in N and has size κ++ (which implies that κ++

in N is the same as in L[E]), k is the identity below κ++. We now show
that rng(k) = M∗ which implies that k is the identity function, and so
j = i and N = M∗. Every element of M∗ is of the form j(f)(α), for some
α < κ++ and some function f in L[E][Gκ+1] with domain κ. Since k fixes the
ordinals < κ++, it follows that k(α) = α, and so j(f)(α) = (k ◦ i)(f)(α) =
(k ◦ i)(f)(k(α)) = k(i(f)(α)), which proves the fact because i(f)(α) is in N .

�
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Definition 5.11 Work in L[E][Gκ+1]. We define PDefCol similarly as in
[12]. A condition p in PDefCol is a finite sequence of the form (q0, κ1, q1, . . . , κn, qn, I),
where:

(i) κ1 < · · · < κn < κ are Mahlo cardinals.
(ii) q0 is a condition in DefCol(ω3, < κ1), for i ∈ {1, . . . , n − 1}, qi is

a condition in DefCol(κ+3
i , < κi+1), and finally qn is a condition in

DefCol(κ+3
n , < κ).

(iii) I is a function defined on an element of U (the normal measure derived
from j) such that I(α) ∈ DefCol(α+3, < κ) for every α ∈ dom(I), and
[I]U ∈ Gguide.

The extension relation is defined as follows.

Definition 5.12 A condition p = (q0, κ1, q1, . . . , κm, qm, I) extends a con-
dition p̄ = (q̄0, κ̄1, q̄1, . . . , κ̄n, q̄n, Ī) in PDefCol iff:

(i) n ≤ m,
(ii) For i ∈ {0, . . . , n}, qi ≤ q̄i and for i ∈ {1, . . . , n}, κi = κ̄i,
(iii) For i ∈ {n + 1, . . . ,m}, κi ∈ dom(I), and qi ≤ I(κi).
(iv) dom(I) ⊆ dom(Ī) and I(α) extends Ī(α) for every α ∈ dom(I).

Definition 5.13 A condition p directly extends p̄, which we write as p ≤∗ p̄,
if p ≤ p̄ and m = n.

If p = (q0, κ1, q1, . . . , κm, qm, I) is a condition, then we call the sequence
(q0, κ1, q1, . . . , κm, qm) the lower part of p and denote it as lp(p). The I is
called the upper part, and denoted as up(p). Furthermore, let κ(p) denote
the set {ℵ0, κ1, . . . , κm}. If κi lies in κ(p), we write p(κi) to denote the
condition qi (and p(ℵ0) denotes q0). This convention is also extended to
lower parts of conditions: if r is equal to lp(p) for some p, then we write
κ(r) to denote the cardinals κ(p).

The forcing PDefCol satisfies the same basic properties as the forcing in [12].

Lemma 5.14 Work in L[E][Gκ+1] and let H be PDefCol-generic.

(i) The forcing PDefCol has the κ+-cc.
(ii) (The Prikry property). If σ is a sentence in the forcing language and

p is a condition, then there is a direct extension q ≤∗ p deciding σ.
(iii) The forcing PDefCol forces κ to be ℵω, while preserving all cardinals

τ, τ+, τ++, τ+++ such that τ occurs in κ(p) for some p ∈ H.

Proof. Ad (i). Any two conditions with the same lower part are compatible
because the upper parts are compatible due to the membership of their
U -classes in the guiding generic Gguide.
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Ad (ii). The argument is virtually identical to the argument in [12], using the
fact that DefCol(κ+3, < j(κ)) is κ+3-distributive in M∗ and also κ++-closed
in M∗ (although only κ+-closure is relevant for the argument).

Ad (iii). The argument for (iii) is again analogous to [12], in particular
PDefCol factors naturally below a condition p and κi ∈ κ(p) into PDefCol

≤κi
×

PDefCol
>κi

. The forcing PDefCol
≤κi

contains finitely many DefCol-collapses, and

the tail forcing PDefCol
>κi

is κ+4
i -closed under the direct extension relation ≤∗.

This in combination with the Prikry property implies that all cardinals
τ, τ+, τ++, τ+++ such that τ occurs in κ(p) for some p ∈ H, are preserved.
(In particular, for each such τ > ℵ0, 2

τ = τ++, and so GCH fails cofinally
often below ℵω.) �

Now, we turn to the question of definability of the generic. We first show
that, analogously to other Prikry-type forcings, the generic H is definable
from its “lower part”.

Let H0 denote the lower part of H, i.e. H0 contains the lower part of all
conditions which lie in H:

H0 = {lp(p) | p ∈ H}.

Lemma 5.15 The generic filter H is definable from the lower part H0, in
particular L[E][Gκ+1][H] = L[E][Gκ+1][H0].

Proof. Set T = {τ | ∃p ∈ H τ ∈ κ(p)}. Note that T is definable just from
H0. Given a sequence r in H0, we say that I, where I is as in Definition
5.11, and in particular [I]U ∈ Gguide, does not conflict with H0 outside r if
(T \ κ(r)) ⊆ dom(I) and for each λ in T \ κ(r) there is a condition s ∈ H0

such that λ ∈ κ(s) and I(λ) ≥ s(λ).

Set
(5.15)
H∗ = {p ∈ PDefCol | lp(p) ∈ H0∧ and up(p) does not conflict with H0 outside κ(p)}.

It is routine to verify that H = H∗. �

Lemma 5.16 H0 is definable in H(ℵω+1) of L[E][Gκ+1][H] = L[E][Gκ+1][H0].

Proof. The H(ℵω+1) of L[E][Gκ+1][H] includes Lκ+[E], where the sequence
E ↾κ+ is definable. Since PDefCol factors naturally into PDefCol

≤κi
×PDefCol

>κi
below

each condition p such that κi ∈ κ(p) (where the second part is κ+4-closed
under the relation ≤∗), H0 is definable from the ω-many blocks (given by
elements τ ∈ κ(p) for some p ∈ H) of mutually stationary sets as in Lemma
5.8 (iv). �
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5.3 The definable wellorder

LetW denote L[E][Gκ+1]. We need to show that all elements ofH(ℵω+1)
W [H]

can be wellordered definably in H(ℵω+1)
W [H]. The basic idea is that ev-

ery element x of H(ℵω+1)
W [H] is in H(ℵω+1)

W [H] constructed from a pair
(a(x),H0), where a(x) lies in H(κ+)W . After verifying that the wellordering
of H(κ+)W (constructed in Theorem 4.1) is still definable in H(ℵω+1)

W [H],
we are finished because H0 is itself definable in H(ℵω+1)

W [H] by Lemma
5.16.

Lemma 5.17 H(κ+)W is definable in H(ℵω+1)
W [H], and the ordering <κ

defined at (W**) on page 13 still wellorders H(κ+)W in H(ℵω+1)
W [H].

Proof. Note that in the definition of the wellordering <κ in (W**) on page
13, we can equivalently consider just suitable models of the form 〈Lα[E][z],∈
, E ∩ Lα[E]〉 for α < κ+ and z a subset of κ. We show that the righthand
side of the equivalence in (W**) holds in H(κ+)W [H] if and only if it holds
in H(κ+)W , which proves the claim. Clearly, if the right-hand side holds
in W it will still hold in W [H]. Conversely, if the right-hand side holds in
W [H] then by reflection, inW [H] there really is a κ-block of canonical L[E]-
stationary sets which were killed according to x ∗ y; but as the forcing that
added H is κ+-cc and therefore does not kill stationarity, this stationary kill
already occurred in W . But then x <κ y holds (by the equivalent definition
(W*)). �

We now show that all subsets of κ are constructible from H(κ+)W together
with the set H0. We present this result in the form of a general lemma.

Lemma 5.18 Suppose that G is P -generic over V , where P is a forcing
notion, P is κ+-cc and V [G] = V [A], where A is a subset of κ. Then any
subset of κ in V [G] belongs to H(κ+)V [A].

Proof. Suppose that σ0 is a P -name for A and σ is an arbitrary nice P -name
for a subset of κ. Then by the κ+-cc, σ has size at most κ. Choose some
large H(θ) such that H(θ)[A] = H(θ)V [G]. In V , let M be an elementary
submodel of H(θ) of size κ containing P, σ0, σ as elements and κ as a subset.
Then M [G] contains A and σG as elements. Now G ∩M hits all maximal
antichains in M , as by the κ+-cc, any such maximal antichain is a subset of
M . Thus M [G] is elementary in H(θ)[G] = H(θ)V [G]. Let

(5.16) π : M̄ [Ḡ] →M [G]

be the inverse of the transitive collapse of M [G]. Then π is an elementary
embedding toH(θ)[G] and A, σG belong to M̄ [Ḡ]. Moreover by elementarity,
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M̄ [Ḡ] = M̄ [A]. So we have shown that σG, an arbitrary subset of κ in V [G],
belongs to M̄ [A] and therefore to H(κ+)[A], as desired. �

Based on the above Lemmas, we can define in H(ℵω+1)
W [H] a wellordering

≺ of subsets of ℵω as follows:

Given x a subset of ℵ
W [H]
ω = κ, find the <κ-least subset a(x) of κ in W such

that x is in L[a(x),H0] and the α(x) such that x is the α(x)-th subset of κ in
that model. Then x ≺ y iff a(x) <κ a(y) or [a(x) = a(y) and α(x) < α(y)].

This finishes the proof of Theorem 5.1.

6 Final comments

We close the paper with some open problems.

(1) The iteration in this paper cannot be used to make 2κ bigger than κ++.
This is analogous to difficulties in obtaining 2ℵ0 > ℵ2 with countable
support iteration. Another type of forcing seems to be required to obtain
2κ > κ++ in Theorem 4.1. However, there are no obvious candidates
because the fusion property was essential for the preservation of mea-
surability (forcings with < κ support are extremely hard to lift, and not
much is known beyond the surgery argument of W. H. Woodin).

(2) In Theorem 5.1, GCH fails cofinally often below ℵω. The reason is that
the new ℵω was first a measurable cardinal violating GCH before it was
collapsed. If one wishes to modify Theorem 5.1 so that ℵω is the first
cardinal which fails to satisfy GCH (thus showing that it is possible to
definably violate GCH first at ℵω), the most obvious way to proceed
would be to combine the extender-based Prikry forcing with collapses
(see [13], Section 4) together with some form of coding similar to the
one in this paper. Technical details involved might require new ideas in
the proof, though.

(3) An essential assumption of the proof was the existence of a “nice” initial
model for the large cardinal in question (the extender model L[E]). An
interesting problem is whether one can extend Theorem 4.1 for instance
to a supercompact cardinal κ, i.e. to have that GCH fails at κ, κ is
supercompact and there is a definable wellordering of H(κ+). There are
techniques to define a wellordering for large cardinals without appropri-
ate inner models, see for instance [1], but the resulting models always
satisfy GCH.
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