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Abstract

The continuum function α 7→ 2α on regular cardinals is known to have great free-
dom. Say that F is an Easton function iff for regular cardinals α and β, cf(F (α)) > α

and α < β → F (α) ≤ F (β). The classic example of an Easton function is the contin-

uum function α 7→ 2α on regular cardinals. If GCH holds then any Easton function
is the continuum function on regular cardinals of some cofinality-preserving exten-
sion V [G]; we say that F is realised in V [G]. However if we also wish to preserve
measurable cardinals, new restrictions must be put on F . We say that κ is F (κ)-
hypermeasurable iff there is an elementary embedding j : V → M with critical point
κ such that H(F (κ))V ⊆ M ; j will be called a witnessing embedding. We will show
that if GCH holds then for any Easton function F there is a cofinality-preserving
generic extension V [G] such that if κ, closed under F , is F (κ)-hypermeasurable in
V and there is a witnessing embedding j such that j(F )(κ) ≥ F (κ), then κ will
remain measurable in V [G].
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1 Introduction

By Easton’s results [3] the function α 7→ 2α (“continuum function”) on regular
cardinals has great freedom. In fact, apart from the obvious restrictions of
monotonicity, i.e. α < β → 2β ≤ 2α, and of Cantor’s theorem α < 2α, there is
only one non-trivial condition, namely the König inequality cf(2α) > α (which
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obviously implies Cantor’s theorem). Such freedom is however not compatible
with large cardinals possessing some kind of reflection. We for instance know,
by Scott’s theorem, that if κ is measurable, it cannot be the first cardinal where
GCH fails. Acknowledging the importance of large cardinals in set theory, is
seems reasonable to enquire what kind of restrictions the continuum function
must satisfy if some large cardinal structure should be preserved.

In [9], Menas showed that if an Easton function F is “locally definable”, then
all supercompact cardinals are preserved in a generic extension realizing F . We
show in this article how to extend this result to strong cardinals (see Section
3.2).

The focus of this article lies with the preservation of measurability, however.
We know by results of Mitchell [10] and Gitik [5] that non-trivial, i.e. GCH-
failing, values of the continuum function on measurable cardinals require more
than just measurability. The exact strength is captured by sequences of mea-
sures or extenders which compose together to create elementary embeddings
which are “stronger” than the usual measure ultrapower embeddings; for in-
stance 2κ = κ++ with κ being measurable can be forced from the assumption
that κ has Mitchell order o(κ) = κ++. Such sequences of measures or exten-
ders are easily obtained from hypermeasurable embeddings, and we will use
the slightly stronger assumption of hypermeasurability in our proofs.

Assuming GCH, we will show that for any Easton function F there is a
cofinality-preserving generic extension realizing F which preserves the mea-
surability of κ provided the following single non-trivial condition is satisfied:

There is an embedding j witnessing the F (κ)-hypermeasurability of κ

such that j(F )(κ) ≥ F (κ) (1)

By way of illustration, if F is defined for some n ∈ ω as F (α) = α+n for every
regular α, then if κ is κ+n-hypermeasurable and j is any witnessing embed-
ding, it follows by elementarity that j(F )(κ) = F (κ) = κ+n and consequently
the conditions above are satisfied and the theorem implies that κ remains
measurable.

2 Preliminaries

2.1 Product forcing

We first review some useful facts concerning product forcing (or “side-by-side”
forcing).
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To avoid confusion, we explicitly state that we use κ-distributive and κ-closed
for <κ-distributive and <κ-closed (just as κ-cc is in fact used for antichains
of size <κ).

The following lemma is often called “Easton’s lemma” as it first appeared in
the proof by Easton in [3].

Lemma 2.1 Assume P,Q ∈ V are forcing notions, P is κ-cc and Q is κ-
closed. Then the following holds:

(1) 1P  Q̌ is κ-distributive;
(2) 1Q  P̌ is κ-cc;
(3) As a corollary, if G is generic for P over V and H is generic for Q over

V , then G×H is generic for P × Q over V , i.e. G and H are mutually
generic.

For proof of (1), see [6] p. 234. (2) is easy.

We say that a forcing notion P is κ-Knaster if every subset X ⊆ P of size κ
has a subfamily Y ⊆ X of size κ such that the elements of Y are pairwise
compatible. The property of being κ-Knaster is an obvious strengthening of
the property of being κ-cc.

Lemma 2.2 If P is κ-Knaster and Q is κ-cc, then P × Q is κ-cc.

Proof. We will show that 1P  Q is κ-cc. Assume p̃  Ȧ is an antichain
in Q of size κ. Define a set X = {pα |α < κ} of conditions below p̃ such
that pα  Ȧ(α) = qα for some qα. By κ-Knasterness of P, there is a subfamily
X ′ = {pαξ

| ξ < κ} ofX such that the conditions inX ′ are pairwise compatible.
It follows that the set A′ = {qαξ

| pαξ
∈ X ′} is an antichain in V . This is a

contradiction. (Lemma 2.2) 2

2.2 Hypermeasurable cardinals

We will review the definition of a hypermeasurable cardinal and give some
related examples.

Definition 2.3 A cardinal κ is λ-hypermeasurable (or λ-strong), where λ is
a cardinal number, if there is an elementary embedding j with a critical point
κ from V into a transitive class M such that λ < j(κ) and H(λ) ⊆M .

Definition 2.4 An elementary embedding j : V → M is called an extender
embedding if there are A and B ⊆ j(A) such that M = {j(F )(a) |F : A →
V, a ∈ B}. In the context of this article, A will be the set of all finite subsets
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of the critical point of an embedding, i.e. A = [κ]<ω. It is equally possible to
consider all subsets of size less than κ, in this case A = H(κ) = Vκ. We call
B as above the support of the extender embedding.

The following fact can be shown easily, for instance using the arguments in
[8].

Fact 2.5 (GCH) If κ is F (κ)-hypermeasurable and j : V → M is a wit-
nessing embedding, then j can be factored through some jE : V → ME and
k : ME → M such that jE is an extender embedding with A = [κ]<ω and
B = [F (κ)]<ω witnessing the F (κ)-hypermeasurability of κ. Moreover, if F is
an Easton function and j(F )(κ) ≥ F (κ), then also jE(F )(κ) ≥ F (κ).

Proof. Consider the following commutative triangle:

V
j

//

jE

''P

P

P

P

P

P

P

P

P

P

P

P

P

P M

ME

k

OO

By the construction of the extender, it follows that k is the identity on F (κ).
The following holds: k(jE(F )(κ)) = k(jE(F ))(k(κ)) = k(jE(F ))(κ) = j(F )(κ).
If µ = jE(F )(κ) < F (κ) were true, then k would be the identity at µ, implying
that j(F )(κ) = µ, which is a contradiction. (Fact 2.5) 2

The above fact allows us to use only extender embeddings in our arguments
and these will be used tacitly throughout.

Remark 2.6 Note that Definition 2.3 is slightly different from the definition
found in [6] or [8], where κ is called κ+ α or just α-strong if Vκ+α is included
in M . The main difference is that we use the Hα = H(α) hierarchy instead
of the Vα hierarchy to measure the strength of the embedding j. 3 The defini-
tion using the Vα-hierarchy has the drawback of depending on the continuum
function in the given universe; thus it may happen that the degree of hyper-
measurability of a given cardinal drops, although the witnessing embedding
remains equally strong.

Example 2.7 In the article [4], one starts with GCH and κ being κ++-hyper-
measurable. Then one defines a forcing notion P of length κ+1 which iterates
generalized Sacks forcing Sacks(α, α++) for α ≤ κ inaccessible, making 2κ =
κ++ in the generic extension V [G], where G is P-generic. It is shown that

3 Under GCH, there is a straightforward correspondence between the measurement
of the strength of an embedding using the structures H(κ+α) and Vκ+α for an
inaccessible κ and ordinal number α. It holds that if M is an inner model of ZFC
then Vκ+α ⊆ M holds iff H(κ+α) ⊆ M holds. This correspondence is however lost
if GCH fails.
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the original j : V → M witnessing the hypermeasurability of κ can be lifted
to j : V [G] → M [j(G)]. It is straightforward to verify that H(κ++)V [G] is
included in M [j(G)], so κ remains κ++-hypermeasurable in V [G] according to
Definition 2.3. However, as 2κ becomes κ++ in V [G], κ may not stay κ + 2-
strong in V [G] according to the definition as in [6] since this would require
that P(κ++) of V [G] is included in M [j(G)].

We close this section with an observation concerning hypermeasurable cardi-
nals which will be relevant later in the argument.

Observation 2.8 (GCH) Let j : V → M for some transitive M be an em-
bedding with critical point κ such that H(λ) ⊆M , κ < λ < j(κ) and λ is inac-
cessible in M (such an embedding exists for example if κ is λ-hypermeasurable
for some V -inaccessible λ > κ). Then there exists λ̄ ≤ λ singular in V and
an embedding k : V → N which witnesses that κ is λ̄-hypermeasurable and λ̄
is inaccessible in N .

Proof. Without loss of generality assume that j is an extender embedding,
that is M = {j(f)(a) | f : [κ]<ω → V, a ∈ [λ]<ω}. If λ is singular in V ,
then we are done. So assume that λ is regular (and hence inaccessible) in
V . For each f : [κ]<ω → κ define a function θf : [λ]<ω → λ by setting
θf (a) = j(f)(a) if j(f)(a) < λ and θf (a) = 0 otherwise. Working in V , let
Cf ⊆ λ by a closed unbounded set of limit cardinals closed under θf ; as
κ+ < λ and the number of all θf is κ+, the intersection C =

⋂

f Cf is a
closed unbounded set in λ. Let λ̄ be some singular cardinal in C greater than
κ and let H = {j(f)(a) | f : [κ]<ω → V, a ∈ [λ̄]<ω}. If π : H ∼= N is the
transitive collapse map, we obtain that π ◦ j : V → N witnesses that κ is λ̄-
hypermeasurable. We are done once we show that λ̄ is regular in N . This will
follow from the fact that H ∩ λ = λ̄. Let α ∈ H ∩ λ be given; it is of the form
j(f)(a) for some f : [κ]<ω → κ and a ∈ [λ̄]<ω. As α < λ, j(f)(a) = θf (a) < λ̄

by the selection of λ̄ in Cf . Conversely, if α < λ̄, then α = j(id)(α). Finally,
without loss of generality we may assume that there is some fλ such that
j(fλ)(κ) = λ and hence λ ∈ H . Since then π(λ) = λ̄, the observation follows.

(Observation 2.8) 2

2.3 Preservation of measurability

As regards the preservation of measurability of a given cardinal κ in the generic
extension, it turns out that the most suitable way to achieve this is to lift the
original elementary embedding in the ground model.

Definition 2.9 Let P ∈ M be a forcing notion and j : M → N an elementary
embedding from M to N , both transitive models of ZFC. Let G be an M-
generic filter for P, and H an N-generic filter for j(P). We say that j∗ lifts
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the embedding j if j∗ is an elementary embedding j∗ : M [G] → N [H ] extending
j.

There is a simple sufficient condition which guarantees the existence of a lifting
j∗. The following lemma is due to Silver.

Lemma 2.10 (Lifting lemma) Let P ∈M be a forcing notion and j : M →
N an elementary embedding from M to N , both transitive models of ZFC.
Let G be an M-generic filter for P, and H an N-generic filter for j(P). If
j[G] ⊆ H, i.e. if the pointwise image of G under j is included in H, then

(1) j lifts to j∗ : M [G] → N [H ], and
(2) j∗(G) = H.

As we will be dealing with extender embeddings, it is useful to notice that by
using names for the elements of M [G], we can argue that if j is an extender
embedding, then so will be the lift j∗:

Lemma 2.11 Let the assumptions of Lemma 2.10 hold. Assume further that
j : M → N is an extender embedding, i.e. N = {j(F )(a) |F ∈ M,F : A →
V, a ∈ B ⊆ j(A)}. Assume j∗ : M [G] → N [j∗(G)] is a lift of j. Then j∗ is also
an extender embedding, and moreover the parameters A and B of the extender
embedding j remain the same, i.e.

N [j∗(G)] = {j∗(F )(a) |F ∈M [G], F : A→M [G], a ∈ B}.

Remark 2.12 If j∗ : M [G] → N [j∗(G)] is a lift of an embedding j : M → N

which witnessed the measurability of κ in M (i.e. j is definable in M), then κ
is still measurable in M [G], providing that j∗ is definable in M [G].

Remark 2.13 Assume j∗ : M [G] → N [j∗(G)] is a lift of an embedding j :
M → N which witnessed the measurability of κ in M . Assume further that
j∗ is definable in M [G]. Let Uj = {X ⊆ κ |X ∈ M,κ ∈ j(X)} be the normal
ultrafilter derived from j. Then Uj∗ extends the ultrafilter Uj : Uj ⊆ Uj∗. Note
however that the extension Uj∗ is in general very difficult to find 4 unless some
powerful structural information such as the embedding j is available.

In view of the Lifting lemma 2.10, the crucial part of the arguments dealing
with the preservation of measurability consists in finding an N -generic H

containing the pointwise image ofG. This may be rather difficult in some cases,
but if the forcing notion P is sufficiently distributive and the embedding to be
lifted is an extender embedding, the existence of such an H is straightforward.

Lemma 2.14 Assume j : M → N is an extender embedding as in Lemma

4 With the notable exception when the forcing notion P is of size <κ; in this case
any normal ultrafilter U in M generates a normal ultrafilter in the generic extension.
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2.11 and N = {j(F )(a) |F ∈ M,F : A → V, a ∈ B ⊆ j(A)}. Let G be M-
generic for a forcing notion P ∈M . If M satisfies that P is |A|+-distributive,
then

H = {q ∈ j(P) | ∃p ∈ G, j(p) ≤ q}

is N-generic for j(P) and contains the pointwise image of G.

Proof.H is obviously a filter. We show it is a generic filter. Let D = j(F )(d) be
a dense open set. We may assume that the range of F consists of dense open
sets in P. Let {aξ | ξ < |A|} be the enumeration of A. By distributivity, X =
⋂

ξ<|A| F (aξ) is dense. Let p ∈ X be in G; then M |= ∀a ∈ A, p ∈ F (a), and
by elementarity it follows that N |= ∀a ∈ j(A), j(p) ∈ j(F )(a). In particular,
j(p) ∈ j(F )(d) = D. (Lemma 2.14) 2

However, it is not true conversely that if P fails to be |A|+-distributive, then
H cannot be in some sense generated from the generic filter G. In fact, the
construction in [4] shows that in the context of Sacks forcing, distributivity can
be replaced by the weaker property of |A|-fusion (diverting from the notation
in this paper in this case, |A|-fusion refers to sequences of length |A| and not
< |A|; see Fact 2.18 below).

We close this preliminary section by a technical lemma which is useful in
constructing generic filters and is tacitly used throughout the arguments.

Lemma 2.15 Assume N ⊆ M are inner models of ZFC and M |= λN ⊆ N ,
i.e. N is closed under λ-sequences in M . If P ∈ N is λ+-cc in M and G is
P-generic over M , then M [G] |= λN [G] ⊆ N [G], i.e. N [G] is closed under
λ-sequences in M [G].

2.4 Generalized Sacks forcing

The proof of the theorem is centered around the technique developed in [4]
which uses the Sacks forcing instead of the Cohen forcing in the lifting argu-
ments. We will give a brief review here in a slightly generalized setting.

Though the concept of a perfect tree can be formulated for an arbitrary regular
cardinal, see also [7], we will use the forcing at inaccessible cardinals only and
this introduces further simplifications.

Definition 2.16 If α is an inaccessible cardinal, then p ⊆ 2<α is a perfect
α-tree if the following conditions hold:

(1) If s ∈ p, t ⊆ s, then t ∈ p;
(2) If s0 ⊆ s1 · · · is a sequence in p of length less than α, then the union of

si’s belongs to p;
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(3) For every s ∈ p there is some s ⊆ t such that t is a splitting node, i.e.
both t ∗ 0 and t ∗ 1 belong to p;

(4) Let Split(p) denote the set of s in p such that both s ∗ 0 and s ∗ 1 belong
to p. Then for some (unique) closed unbounded set C(p) ⊆ α, Split(p) =
{s ∈ p | length(s) ∈ C(p)}.

A perfect α-tree is an obvious generalization of the perfect tree at ω ordered by
inclusion; there is only one non-trivial condition, and this concerns the limit
levels of the tree: if s ∈ p is an element at a limit level and the splitting nodes
t ⊆ s are unbounded in s, then s must be a splitting node as well (continuous
splitting). As α is inaccessible, and consequently every level of p is of size <α,
the trees obeying (4) above are dense in the trees having continuous splitting.

Generalized perfect trees can be used to define a natural forcing notion.

Definition 2.17 The forcing notion Sacks(α, 1) contains as conditions the
perfect α-trees, the ordering is by inclusion (not the reverse inclusion), i.e.
p ≤ q iff p ⊆ q. Or generally, the forcing notion Sacks(α, λ), where 0 < λ

is an ordinal number, is a product of length λ of the forcing Sacks(α, 1) with
support of size at most α, i.e. a condition p in Sacks(α, λ) is a function from
λ to Sacks(α, 1) such that {ξ < λ | p(ξ) 6= 1Sacks(α,1)} has size at most α.

For p a condition in Sacks(α, 1), let 〈αi | i < α〉 be the increasing enumeration
of C(p) and let Spliti(p) be the set of s in p of length αi. For p, q ∈ Sacks(α, 1)
let us write p ≤β q iff p ≤ q and Spliti(p) = Spliti(q) for i < β. In the
generalization for the product Sacks(α, λ) we write p ≤β,X q (where X is some
subset of λ of size less than α) iff p ≤ q (i.e. for all i < λ, p(i) ≤ q(i)) and
moreover for each i ∈ X, p(i) ≤β q(i).

We will define several useful notions and state some facts.

Fact 2.18 The forcing Sacks(α, λ) satisfies the following α-fusion property:
Suppose p0 ≥ p1 ≥ . . . is a descending sequence in Sacks(α, λ) of length α and
suppose in addition that pi+1 ≤i,Xi

pi for each i less than α, where Xi form an
increasing sequence of subsets of λ of size less than α whose union is the union
of the supports of pi’s; such a sequence will be called a fusion sequence. Then
the pi’s have a lower bound in Sacks(α, λ) (obtained by taking intersections at
each component).

Definition 2.19 Assume p is a condition in Sacks(α, λ), X is a subset of λ
of size less than α and β is less than α. Then an (X, β)-thinning of p is an
extension of p obtained by thinning each p(i) for i ∈ X to a subtree consisting
of all nodes compatible with some particular node on the β-th splitting level of
p(i).

Definition 2.20 Assume D is a dense open set in Sacks(α, λ). We say that
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p ∈ Sacks(α, λ) reduces D iff for some subset X of λ of size less than α and
some β < α any (S, β)-thinning of p meets D.

The following important fact holds:

Fact 2.21 Let {Di | i < α} be a collection of α-many dense open sets in
Sacks(α, λ). Then for each p there is a condition q ≤ p, obtained as a lower
bound of a fusion sequence, such that q reduces each Di in the above sense.

Note that Sacks(α, λ) is obviously α++-cc (by the GCH at α) and α-closed.
Preservation of cardinals follows from Fact 2.21 which is used to show that
α+ is preserved as well. Also, Sacks(α, λ) adds λ-many new subsets of α (the
intersection of all trees in a generic filter at a given coordinate determines a
unique subset of α; this subset in turn determines the whole generic at the
given coordinate).

As discussed after Lemma 2.14, it is the α-fusion property which is strong
enough to replace the restrictive condition of distributivity in Lemma 2.14.
We will briefly review here the argument of [4] in a slightly more general
setting (for details consult [4]).

Theorem 2.22 (GCH) Let κ be a λ-hypermeasurable cardinal with λ greater
than κ and of cofinality at least κ+. Assume further that there is a witnessing
embedding j and a function fλ : κ → κ such that j(fλ)(κ) = λ. Then there
is a forcing iteration S = 〈Sα |α ≤ κ+ 1〉 of generalized Sacks forcings which
preserves measurability of κ and forces 2κ = λ. Moreover, the generic for
the j(κ)-th stage of the iteration j(S) is in some sense “generated” from the
generic at stage κ of S.

We will give a sketch of the proof. Fix a λ-hypermeasurable extender embed-
ding j : V → M with critical point κ; we may still assume that j(fλ)(κ) = λ.
As the cofinality of λ is at least κ+, M can be taken to be closed under κ-
sequences. Also, by GCH we have that λ < j(κ) < λ+. We define the iteration
S = 〈Sα |α ≤ κ + 1〉 as an Easton-supported forcing iteration of length κ + 1
which at every inaccessible α < κ adds fλ(α)-many new subsets of α using
the forcing Sacks(α, fλ(α)) and at stage κ adds λ-many new subsets of κ using
Sacks(κ, λ). Let us write the generic Gκ+1 for 〈Sα |α ≤ κ+ 1〉 as G ∗ g, where
G is Sκ-generic over V and g is Sacks(κ, λ)-generic over V [G].

Our aim is to lift the embedding j to V [G∗g]. Using the fact that j(fλ)(κ) = λ,
we can proceed as in [4] to lift partially to j : V [G] →M [G ∗ g ∗H ], where H
is a generic for the iteration in the interval (κ, j(κ)).

Now it remains to find a generic h for Sacks(j(κ), j(λ)) over M [G ∗ g ∗ H ]
containing the pointwise image of g. Denote j[g] by h∗. As g is a set of con-
ditions in Sacks(κ, λ) of V [G], h∗ is a set of conditions in Sacks(j(κ), j(λ)) of
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M [G ∗ g ∗H ]. The following lemma describes the “intersection” of the condi-
tions in h∗.

Lemma 2.23 For α < j(λ) let tα be the intersection of the trees j(p)(α), p ∈
g. If α belongs to the range of of j, then tα is a (κ, j(κ))-tuning fork, i.e. a
subtree of 2<j(κ) which is the union of two cofinal branches which split at κ.
If α does not belong to the range of j, then tα consists of exactly one cofinal
branch through 2<j(κ).

Proof. First notice that the intersection of
⋂

C∈V [G] j(C) where C is a closed
unbounded set in κ is equal to {κ}. The intersection obviously contains κ. Now
let Cfλ

⊆ κ be the closed unbounded set of closure points of fλ, i.e. for all
ξ ∈ Cfλ

, fλ(x) < ξ for each x ∈ [ξ]<ω (without loss of generality, all elements
of Cfλ

are limit cardinals). As j(fλ)(κ) = λ and
⋂

C∈V [G] j(C) ⊆ j(Cfλ
), it is

obvious that any element ξ of the intersection in the interval (κ, j(κ)) must be a
limit cardinal greater than λ. But any such hypothetical ξ can be expressed as
j(f)(x) for some f : [κ]<ω → κ and x ∈ [λ]<ω. If Cf is the closed unbounded set
of closure points of f , it is immediate that j(Cf) cannot contain ξ = j(f)(x).
Notice that not only j(f)(x) = ξ is not in j(Cf), but the whole interval [λ, ξ]
is disjoint from j(Cf) (as x ∈ [λ]<ω, the least closure point of j(f) above λ
must be greater than ξ). It follows that there is for each ξ < j(κ) a closed
unbounded set Cξ = Cfλ

∩ Cf such that

(κ, ξ] ∩ j(Cξ) = ∅. (2)

The analysis of the intersection of closed unbounded sets is important as the
following fact holds. If C is a closed unbounded subset of κ in V [G] and X is
a subset of λ of size at most κ, then any condition p ∈ Sacks(κ, λ) in V [G] has
an extension q such that for all i ∈ X, C(q(i)) (= the set of splitting levels of
the tree q(i)) is a subset of C. As every α < j(λ) can be expressed as some
j(f)(a) where f is a function from [κ]<ω to λ, by applying the above fact with
X = rng(f) we obtain that C(j(q)(α)) is a subset of j(C). It follows by (2)
that there is for each ξ < j(κ) a condition rξ in g such that the tree j(rξ)(α)
does not split between κ and ξ (though it may split at κ).

As M [G ∗ g ∗H ] contains all subsets of κ existing in V [G ∗ g], it follows that
the intersection tα of the j(p)(α), p ∈ g, is a subtree of 2<j(κ) which is the
union of at most two cofinal branches which can only differ at κ.

If α is in the range of j than it is obvious that all trees j(p)(α), p ∈ g, do
branch at κ (by elementarity and by the “continuous splitting” of a perfect
tree). If α is not in the range of j, then the intersection tα does not split at κ
(the proof can be found in [4]). (Lemma 2.23) 2

Definition 2.24 For α < j(λ) in the range of j, let (x(α)0, x(α)1) be the
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branches that make up the (κ, j(κ))-tuning fork at α, where x(α)0(κ) = 0 and
X(α)1(κ) = 1. For α < j(λ) not in the range of j let x(α)0 denote the unique
branch constituting the intersection of the j(p)(α), p ∈ g.

Lemma 2.25 Let h consist of all conditions p in Sacks(j(κ), j(λ)) of M [G ∗
g ∗ H ] such that for each α < j(λ), x(α)0 is contained in p(α). Then h is
generic for Sacks(j(κ), j(λ)) of M [G ∗ g ∗H ] and contains j[g].

Proof. Let D be a dense open set in Sacks(j(κ), j(λ)) in M [G ∗ g ∗H ]. As an
element of M [G∗g ∗H ], it can be written as j(f)(d) for some f and d ∈ [λ]<ω.
Without loss of generality we may assume that f(a) is a dense open set in
Sacks(κ, λ) for every a ∈ [κ]<ω.

Using Fact 2.21, there is a condition q ∈ g such that q reduces all dense
open sets f(a). By elementarity, j(q) reduces all dense open sets j(f)(a) for
a ∈ [λ]<ω and in particular reduces j(f)(d) = D.

In M [G ∗ g ∗H ] choose a subset X of j(λ) of size less than j(κ) and α < j(κ)
such that any (X,α)-thinning of j(q) meets D. Now for each i ∈ X thin j(q)
by choosing an initial segment of x(i)0 on the α-th splitting level of j(q)(i).
As this sequence of choices is in M [G ∗ g ∗ H ] (for proof see [4]), it follows
that this thinned out condition belongs to h and meets D. So h is generic for
Sacks(j(κ), j(λ)) ofM [G∗g∗H ] over M [G∗g∗H ] as desired. 5 (Lemma 2.25) 2

Amongst the main advantages of [4], apart from the fact that we avoid the
“modification” argument as in the Woodin-style approach (see for instance [1]
or a slightly different argument in [2]) is that we don’t have to enlarge the
universe V [G ∗ g] to complete the lifting. This adds a degree of uniformity
which will be used later in this article.

3 Easton’s theorem and large cardinals

3.1 Preservation of measurable cardinals

Definition 3.1 A class function F defined on regular cardinals is called an
Easton function if it satisfies the following two conditions which were shown
by Easton to be the only conditions provable about the continuum function on
regular cardinals in ZFC. Let κ, µ be arbitrary regular cardinals:

(1) If κ < µ, then F (κ) ≤ F (µ);

5 One must also verify that any two conditions in h are compatible with each other;
for argument, see [4].
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(2) κ < cf(F (κ)).

Note that Cantor’s theorem κ < 2κ = F (κ) is implied by (2) above.

It is obvious, however, that if a given large cardinal κ should remain measur-
able in a generic extension realizing a given Easton function F , the properties
of the cardinal κ and the properties of the function F need to combine in a
suitable way which requires more than the conditions given in Definition 3.1.

Example 3.2 (1) If for some λ < κ, κ ≤ F (λ), then κ will not be even
strongly inaccessible if F is realised.

(2) By a theorem of Scott, κ cannot be the least cardinal where GCH fails if
it should remain measurable.

(3) Or more generally, F should not “jump” at κ. For instance if F (λ) ≤ λ++

for λ < κ and F (κ) = κ+3, then κ cannot remain measurable if F is
realised.

We capture a sufficient condition for preservation of measurability in the fol-
lowing definition.

Definition 3.3 We say that a cardinal κ is good for F , or shortly F -good,
if the following properties hold:

(1) F [κ] ⊆ κ, i.e. κ is closed under F ;
(2) κ is F (κ)-hypermeasurable and this is witnessed by an embedding j : V →

M such that j(F )(κ) ≥ F (κ).

Our forcing to realise a given Easton function F will be a combination of
the Sacks forcing Sacks(ᾱ, β̄) (see Definition 2.17) and of the Cohen forcing
Add(α, β), where ᾱ, α are regular cardinals and β̄, β are ordinal numbers.
For notational convenience we will construe Add(α, β) as the < α-supported
product of Add(α, 1) of length β, where conditions in Add(α, 1) are functions
from α to 2 with domain of size less than α.

As our aim is the preservation of large cardinals, we cannot use the standard
Easton product-style forcing, but we need to use some kind of (reverse Easton)
iteration. The iteration however needs some “space” as otherwise it would
collapse cardinals, as the following observation shows.

Observation 3.4 Assume κ < λ are regular cardinals. If κ∗ is a cardinal
greater than λ, then forcing with Add(κ, κ∗) ∗ Add(λ, 1) collapses κ∗ to λ.

Proof. Let 〈xξ | ξ < κ∗〉 be the enumeration of subsets of κ in V Add(κ,κ∗); for
each ξ < κ∗, the set Dξ = {p ∈ Add(λ, 1) | ∃α < λ, p∩[α, α+κ) = xξ} is dense.
Consequently, there is a surjection from λ onto κ∗ in the generic extension of
V by Add(κ, κ∗) ∗ Add(λ, 1). (Observation 3.4) 2
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The concept of the “space” mentioned above is technically captured by the
closure points of the function F . We say that a cardinal κ is a closure point
of F if µ < κ implies F (µ) < κ. We will enumerate in the increasing order
the closed unbounded class of closure points of F as 〈iα |α < On〉. Note that
every iα must be a limit cardinal and iβ+1 has cofinality ω for every β. If κ is
a regular closure point, then κ equals iκ.

We will now give a full definition of a forcing notion to realise an Easton
function F .

Definition 3.5 Let an Easton function F satisfying the conditions (1), (2)
of 3.1 be given. Let 〈iα |α < On〉 be an increasing enumeration of the closure
points of F .

We will define an iteration PF =
〈

〈Piα |α < On〉, 〈Q̇iα |α < On〉
〉

indexed by

〈iα |α < On〉 such that:

• If iα is not an inaccessible cardinal, then

Piα+1 = Piα ∗ Q̇iα , (3)

where Q̇iα is a name for
∏

iα<λ<iα+1
Add(λ, F (λ)) (λ ranges over regular

cardinals and the product has the Easton support).
• If iα is an inaccessible cardinal, then

Piα+1 = Piα ∗ Q̇iα , (4)

where Q̇iα is a name for Sacks(iα, F (iα))×
∏

iα<λ<iα+1
Add(λ, F (λ)) (λ ranges

over regular cardinals and the product has the Easton support).
• If γ is a limit ordinal, then Piγ is an inverse limit unless iγ is a regular

cardinal, in which case Piγ is a direct limit (the usual Easton support).

Lemma 3.6 Under GCH, PF preserves all cofinalities.

Proof. The only non-standard feature of PF is the inclusion of the Sacks forcing.
It is enough to show that Sacks(κ, F (κ))×Add(κ+, F (κ+)) preserves cofinal-
ities. The product is κ-closed and κ++-cc, hence just the cardinal κ+ needs a
special argument. For this, it suffices to use the usual fusion-style argument
for the Sacks forcing in V Add(κ+,F (κ+)). (Lemma 3.6) 2

In fact, a more detailed analysis of the product Sacks(κ, α) and Add(κ+, β)
for arbitrary ordinals α, β shows that the Cohen forcing Add(κ+, β) remains
κ+-distributive after forcing with the Sacks forcing Sacks(κ, α). This will be
useful in further arguments.

Lemma 3.7 Let κ be an inaccessible cardinal and α an ordinal number. Let
P be any κ+-closed forcing notion.
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(1) Sacks(κ, 1) forces that P̌ is κ+-distributive.
(2) Or more generally, Sacks(κ, α) forces that P̌ is κ+-distributive.

Proof. Ad (1). Denote S = Sacks(κ, 1). The proof is a generalization of the
usual argument which shows that a κ+-closed forcing notion does not add
new κ-sequences. The difference is in the treatment of the Sacks coordinates
in S × P which are obviously not κ+-closed; however, they are closed under
fusion limits of length κ, and this will suffice to argue that new κ sequences
cannot appear between V S and V S×P.

Let 〈s, p〉 force that ḟ : κ→ On. It is enough to find a condition 〈s̃, p̃〉 ≤ 〈s, p〉
such that if 〈s̃, p̃〉 ∈ G × H , for arbitrary generic G × H for S × P, then
ḟG×H = f can be defined in V [G].

We will define a decreasing sequence of conditions 〈〈sα, pα〉 |α < κ〉 deciding
the values of ḟ(α) for α < κ where s̃ will be the fusion limit of 〈sα |α < κ〉
and p̃ will be the lower bound of 〈pα |α < κ〉.

Set 〈s0, p0〉 = 〈s, p〉. Assume 〈sα′ , pα′〉 are constructed for α′ < α and let first
〈s̄α, p̄α〉 be a lower bound of 〈sα′, pα′〉’s; we show how to construct 〈sα, pα〉. Let
Sα denote the set of splitting nodes of rank α in s̄α (the first splitting node
has rank 0). Pick some t ∈ Sα, and considering its immediate continuations
t∗0 and t∗1, find conditions 〈rt∗0, pt∗0〉, 〈rt∗1, pt∗1〉 and ordinals αt∗0, αt∗1 such
that the following conditions hold:

(1) p̄α ≥ pt∗0 ≥ pt∗1;
(2) rt∗0 ≤ s̄α ↾ t ∗ 0, rt∗1 ≤ s̄α ↾ t ∗ 1;
(3) 〈rt∗0, pt∗0〉  ḟ(α) = αt∗0 and 〈rt∗1, pt∗1〉  ḟ(α) = αt∗1.

Continue in this fashion considering successively all t ∈ Sα, taking care to
form a decreasing chain p̄α ≥ pt∗0 ≥ pt∗1 . . . ≥ pt′∗0 ≥ pt′∗1 ≥ . . ., for t, t′ ∈ Sα
(where t′ is considered after t) in the Cohen forcing. We define:

(1) pα = the lower bound of p̄α ≥ pt∗0 ≥ pt∗1 . . . ≥ pt′∗0 ≥ pt′∗1 ≥ . . .;
(2) sα = the amalgamation of the subtrees rt∗0, rt∗1 for all t ∈ Sα.

Finally, define 〈s̃, p̃〉 as the fusion limit of sα’s at the first coordinate and as
the lower bound at the second coordinate.

Let G×H be a generic for S × P containing 〈s̃, p̃〉. In V [G] define a function
f ′ : κ → On as follows: f ′(α) = β iff β = αt∗i, for i ∈ {0, 1}, where t is a
splitting node of rank α in s̃ and t ∗ i ⊆

⋃

s∈G stem(s).

It is straightforward to verify that f ′ = f = ḟG×H.

Ad (2). The proof proceeds in exactly the same way as (1) except that a
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generalized fusion is used for the Sacks(κ, α) forcing (it is essential here that
the conditions in the Sacks forcing can have support of size κ). (Lemma 3.7) 2

We can now state the main theorem.

Theorem 3.8 Assume GCH and let F be an Easton function according to
Definition 3.1. Then the generic extension by PF preserves all cofinalities and
realises F , i.e. 2κ = F (κ) for every regular cardinal κ. Moreover, if a cardinal
κ is good for F , then it will remain measurable.

The proof will be given in a sequence of lemmas.

It is obvious that the Easton function F is realised in V PF

. It remains to prove
that each F -good cardinal κ remains measurable in the generic extension. Let
an F -good cardinal κ be fixed. Fix also a j : V →M an F (κ)-hypermeasurable
extender embedding witnessing the F -goodness of κ.

V
j

//M

The properties of the Easton function F imply that cf(F (κ)) > κ, so in
particular M is closed under κ-sequences in V . It also holds that F (κ) <
j(κ) < F (κ)+, j(F )(κ) ≥ F (κ) (by goodness), M = {j(f)(a) | f : [κ]<ω →
V, a ∈ [F (κ)]<ω}, and H(F (κ))V = H(F (κ))M . Note that M is not closed even
under κ+-sequences in V , but the correct capturing of H(F (κ)) implies that
<cf(F (κ))H(F (κ)) ⊆ M , so M is closed under < cf(F (κ))-sequences providing
that they refer to objects in H(F (κ)).

We fix some notation first. Let G be a generic for PF . As usual, we will write
Gα for the generic G restricted to Pα. The generic for Q̇α taken in V [Gα] will
be denoted as gα; it follows that Gα+1 = Gα ∗ gα.

For reasons of notational simplicity, we write PM for j(PF ). Recall that PF

is defined as an iteration along the closure points 〈iα |α < On〉 of F ; by
elementarity, PM is defined using the closure points of j(F ), which we will
denote as 〈iMα |α < On〉. Since j is the identity on H(κ), the closure points of
F and j(F ) coincide up to and including κ, i.e. 〈iα |α ≤ κ〉 = 〈iMα |α ≤ κ〉.
Because κ is regular, we also have that iκ = κ. By elementarity, j(κ) is closed
under j(F ), and as j(κ) is regular in M , it follows that j(κ) = iMj(κ) and so in

particular F (κ) ≤ j(F )(κ) < iMκ+1 < j(κ) < F (κ)+ < iκ+1.

The general strategy of the proof is to lift the embedding j to V [G]. This
amounts to finding a suitable generic for PM . As the cardinal structure between
V and M is the same up to and including F (κ), it follows that the generics for
the V -regular cardinals ≤F (κ) need to be “copied” from the V [G]-side. The
forcing PM at the M-cardinals in the interval (F (κ), j(κ)) (and at F (κ) if F (κ)
is singular in V but regular in M) will be shown to be sufficiently well-behaved
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so that the corresponding generics can be constructed in V [G]. The next step
is the forcing PM at j(κ) where the task is twofold: not only do we need to
find a generic, but we need to find one which contains the pointwise image
under j of gκ. Precisely to resolve this difficult point, we have included the
Sacks forcing Sacks(κ, F (κ)) at stage κ because by [4] the point-wise image of
the generic gκ (or rather of its Sacks part) will (almost) generate the correct
generic for j(κ). Finally, we lift to all of V [G] using Lemma 2.14.

We will first lift the embedding j to V [Gκ]. As H(κ)V = H(κ)M , Pκ = PMκ
and it follows we can copy the generic Gκ.

Note: In order to keep track of where we are, we will use the following dotted
arrow convention to indicate that we are in the process of lifting the embed-
ding j to V [Gκ], but we have not yet completed the lifting. Once we lift the
embedding, the arrow will be printed in solid line.

V [Gκ]
j

//M [Gκ]

Recall by the definition of PF that the next step of iteration Qκ of V [Gκ] is the
product Sacks(κ, F (κ))×

∏

κ<λ<iκ+1
Add(λ, F (λ)), where λ ranges over regular

cardinals in V and the product has the Easton support; the corresponding forc-
ing inM [Gκ], to be denoted QM

κ , is Sacks(κ, j(F )(κ))×
∏

κ<λ<iM
κ+1

Add(λ, j(F )(λ)),

where λ ranges over regular cardinals in M .

Note. For typographical reasons, we employ the following notation for Qκ

and QM
κ .

– We write i(κ+ 1) for iκ+1 and iM(κ + 1) for iMκ+1;
– If λ is a regular cardinal in V in the interval [κ, i(κ + 1)), then Qλ stands

for the forcing Sacks(κ, F (κ)) if λ = κ, and for the forcing Add(λ, F (λ)) if
λ 6= κ;

– If µ < µ′ are cardinals in V (µ, µ′ may be singular) in the interval [κ, i(κ+
1)) then we write

∏

[µ,µ′)Qλ for the product Qκ restricted to the inter-
val [µ, µ′) (and similarly for other intervals (µ, µ′) etc.). Thus for instance
∏

[κ,i(κ+1))Qλ = Qκ.
– Analogously, if λ̄ is a regular cardinal in M in the interval [κ, iM(κ + 1)),

then QM
λ̄

stands for the forcing Sacks(κ, j(F )(κ)) in M [Gκ] if λ̄ = κ, and
for the forcing Add(λ̄, j(F )(λ̄)) in M [Gκ] if λ̄ 6= κ;

– If µ < µ′ are cardinals in M (µ, µ′ may be singular in M) in the interval
[κ, iM(κ+1)) then we write

∏M
[µ,µ′)Q

M
λ̄

for the M [Gκ]-product QM
κ restricted

to the interval [µ, µ′) (and similarly for other intervals (µ, µ′) etc.);
– Generic filters for these forcings (once they are found in the case of the

forcing in M [Gκ]) shall be denoted in the same fashion using the notation
g[µ,µ′) and gM[µ,µ′), respectively.

Now we return to the proof. We will proceed to show that g[κ,F (κ)] can be used
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to find in V [Gκ] an M [Gκ]-generic for
∏M

[κ,iM(κ+1))Q
M
λ̄

.

We will first correct the possible discrepancy between the values of F (λ) and
j(F )(λ) for V -regular λ in the interval [κ, F (κ)] (recall that λ ≤ F (κ) is a
cardinal in V if and only if it is a cardinal inM , but F (κ) may be regularM but
singular in V , so we need to remember in which universe we are: V or M). By
elementarity of j, j(κ) is closed under j(F ) and by the F -goodness of κ, F (κ) ≤
j(F )(κ) < j(κ). Let λ0 be the least regular cardinal greater than κ such that
F (κ) < F (λ0) (λ0 ≤ cf((F (κ)) as F (cf(F (κ))) has cofinality greater than
cf(F (κ)) and therefore cannot equal F (κ)). For a regular λ ∈ [κ, λ0), F (λ) =
F (κ) ≤ j(F )(κ) ≤ j(F )(λ). Also λ < λ0 ≤ cf(F (κ)) ≤ F (κ) < j(κ) and j(κ)
is closed under j(F ); it follows that j(F )(λ) < j(κ) and hence F (λ), j(F )(λ)
both have V -cardinality F (κ). Any bijection between F (λ) and j(F )(λ) for
a given λ generates an isomorphism between the forcings Sacks(κ, F (κ)) and
Sacks(κ, j(F )(κ)) if λ = κ and between Add(λ, F (λ)) and Add(λ, j(F )(λ))
otherwise. Denote the isomorphic forcings as Q∗λ, i.e. Qλ

∼= Q∗λ. If a V -regular
λ lies in the interval [λ0, F (κ)], then j(F )(λ) < j(κ) < F (κ)+ ≤ F (λ) and
so j(F )(λ) < F (λ). It follows we can truncate the product Qλ at the ordinal
j(F )(λ); let Q∗∗λ denote this truncation. It is immediate that

∏

[κ,F (κ)]Q
+
λ =df

∏

[κ,λ0) Q
∗
λ ×

∏

[λ0,F (κ)] Q
∗∗
λ (5)

is completely embeddable into
∏

[κ,F (κ)]Qλ and so there is a generic filter, to
be denoted g+

[κ,F (κ)], existing in V [G], which is
∏

[κ,F (κ)]Q
+
λ -generic over V [Gκ].

The generic g+
[κ,F (κ)] will be used to find a generic for

∏M
[κ,iM (κ+1))Q

M
λ̄

.

The manipulation to obtain
∏

[κ,F (κ)]Q
+
λ ensures agreement for λ ≤ F (κ) be-

tween the lengths of the products Qλ and QM
λ in V [Gκ] and M [Gκ], respec-

tively, but a word of caution is in order. For instance if F (κ) > κ+ is regu-
lar,

∏

[κ,F (κ)]Q
+
λ is never identical with

∏M
[κ,F (κ)]Q

M
λ̄

: Already for F (κ) = κ++

the forcing Add(κ++, j(F )(κ++)) in M [Gκ] fails to capture all conditions in
Add(κ++, j(F )(κ++)) in V [Gκ] as the supports in this forcing are κ+-sequences
extending above κ++, and some such sequences are missing in M [Gκ] (for in-
stance if F (κ) = κ++, (κ+3)M has cofinality κ+ in V ). Accordingly, we only
have (when F (κ) is regular in V greater than κ+)

∏M
[κ,F (κ)]Q

M
λ̄

⊆
∏

[κ,F (κ)]Q
+
λ .

We will deal separately with the two cases: F (κ) regular in V , and F (κ)
singular in V .

Lemma 3.9 Assume F (κ) is regular in V . There is in V [Gκ ∗ g[κ,F (κ)]] an
M [Gκ]-generic for

∏M
[κ,iM(κ+1))Q

M
λ̄

, which we will denote as gM[κ,iM(κ+1)).

Proof. As F (κ) is regular in V , it is also regular in M . Consequently, the
forcing

∏M
[κ,F (κ)]Q

M
λ̄

is F (κ)+-cc in M [Gκ] and as
∏M

(F (κ),iM (κ+1))Q
M
λ̄

is F (κ)+-
closed, the forcings are mutually generic in the sense of Lemma 2.1. It follows
that we can deal with

∏M
[κ,F (κ)]Q

M
λ̄

and
∏M

(F (κ),iM (κ+1))Q
M
λ̄

separately.
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A) The product
∏M

[κ,F (κ)]Q
M
λ̄

.

We will use g+
[κ,F (κ)] to obtain the required generic; in fact we will show that the

intersection gM[κ,F (κ)] = g+
[κ,F (κ)] ∩

∏M
[κ,F (κ)]Q

M
λ̄

is M [Gκ]-generic for
∏M

[κ,F (κ)]Q
M
λ̄

.

We will argue that a maximal antichain A ∈ M [Gκ] in
∏M

[κ,F (κ)]Q
M
λ̄

will stay

maximal in
∏

[κ,F (κ)]Q
+
λ , and so will be hit by g+

[κ,F (κ)].

For p ∈
∏

[κ,F (κ)]Q
+
λ write

supp(p) = {〈λ, α〉 | p(λ)(α) 6= 1}, (6)

where 1 stands for the empty condition in the relevant forcing, and analogously
for A ⊆

∏M
[κ,F (κ)]Q

M
λ̄

,

supp(A) = {〈λ, α〉 | ∃p ∈ A, 〈λ, α〉 ∈ supp(p)}. (7)

We will show that if A ∈ M [Gκ] is a maximal antichain in
∏M

[κ,F (κ)]Q
M
λ̄

and

p ∈
∏

[κ,F (κ)]Q
+
λ is arbitrary, then

X = supp(p) ∩ supp(A) ∈ M [Gκ] and p↾X ∈M [Gκ]. (8)

Providing we know (8), p ↾ X must be compatible with some a ∈ A, and
because p and a are compatible on the supports, they must be compatible
everywhere. It follows that A stays maximal in V [Gκ]. To argue for (8), the
F (κ)+-cc of

∏M
[κ,F (κ)]Q

M
λ̄

in M [Gκ] implies that the size of supp(A) in M [Gκ]
is at most F (κ). Since the size of supp(p) is strictly less than F (κ), (8) will
follow from the following property (9).

If a set x ∈M [Gκ] has size at most F (κ) in M [Gκ],

then <F (κ)x ∩ V [Gκ] ⊆ M [Gκ]. (9)

Let f : x → F (κ) be a 1-1 function, f ∈ M [Gκ], and let ~s ∈ <F (κ)x ∩ V [Gκ]
be given. Working in V [Gκ], it is obvious that f [~s] ∈ H(F (κ)). Since H(F (κ))
is the same in V [Gκ] and M [Gκ], f [~s] ∈ M [Gκ]. But as f is in M [Gκ], so is
f−1[f [~s]] = ~s.

B) The product
∏M

(F (κ),iM (κ+1))Q
M
λ̄

.

Notice that every dense open set of
∏M

(F (κ),iM (κ+1))Q
M
λ̄

in M [Gκ] is of the

form (j(f)(a))Gκ, a ∈ [F (κ)]<ω, where j(f)(a) is a PMκ -name, for some f :
[κ]<ω → H(κ+). Without loss of generality, we may assume that the range
of all such f contains just names for dense open sets. 6 For each such f ,

6 Formally, f(s) will be a name for a dense open set in the forcing Pκ, and so
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the set {〈j(f)(a), 1〉 | a ∈ [F (κ)]<ω} is a PMκ -name in M , which interprets
as a family {(j(f)(a))Gκ | a ∈ [F (κ)]<ω} of at most F (κ) many dense open
sets in M [Gκ] – it follows the intersection Df =

⋂

a∈[F (κ)]<ω (j(f)(a))Gκ is

dense in
∏M

(F (κ),iM (κ+1))Q
M
λ̄

since the forcing notion
∏M

(F (κ),iM (κ+1))Q
M
λ̄

is F (κ)+-
distributive in M [Gκ]. As there are only (κ+)κ = κ+ such f ’s, and M [Gκ] is
closed under κ-sequences in V [Gκ], we can construct a generic in V [Gκ] meet-
ing all the dense sets Df for all suitable f . Let us denote this generic as
gM(F (κ),iM (κ+1).

We finish the proof by setting gM[κ,iM(κ+1)) = gM[κ,F (κ)]×g
M
(F (κ),iM (κ+1)). (Lemma 3.9) 2

Lemma 3.10 Assume F (κ) is singular in V with cofinality δ < F (κ) (recall
that κ+ ≤ δ by the definition of Easton function). There is in V [Gκ ∗ g[κ,F (κ))]
an M [Gκ]-generic for

∏M
[κ,iM(κ+1))Q

M
λ̄

, which we will denote as gM[κ,iM(κ+1)).

The singularity of F (κ) implies that M [Gκ] may not be closed in V [Gκ] under
<F (κ)-sequences of elements of F (κ), but just under <δ-sequences. It follows
that the argument given in Lemma 3.9, in particular (9), cannot be used as
it stands. However, we will argue that the desired generic can be constructed
via “approximations” by induction along some sequence of regular cardinals
cofinal in F (κ).

In preparation for the argument, we will define a certain procedure which will
be used in the argument. Let 〈γi | i < δ〉 be a sequence of regular cardinals
cofinal in F (κ), with δ < γ0 (we may assume that this sequence belongs to M
if F (κ) is singular in M , as in that case, F (κ) has the same cofinality in M as
it has in V ). Generalizing our notation, if γi+1 < µ, where µ is an M-cardinal
(µ will in fact be always either F (κ) or iM(κ + 1)), and p ∈

∏M
[κ,µ)Q

M
λ̄

is a

condition, let pγi
denote p restricted to

∏M
[κ,γi]

QM
λ̄

(the “lower part of p”) and

pγi denote p restricted to
∏M

(γi,µ)Q
M
λ̄

(the “upper part of p”) (the parameter

µ will be understood from the context). Note that for each γi,
∏M

(γi,µ)Q
M
λ̄

is

γ+
i -closed and

∏M
[κ,γi]

QM
λ̄

is γ+
i -cc in M [Gκ].

Let γi, f : [κ]<ω → H(κ+), and a ∈ [γi]
<ω be arbitrary and assume that

j(f)(a) is a PMκ -name for a dense open set in
∏M

[κ,µ)Q
M
λ̄

, where µ is either

F (κ) + 1 or iMκ+1. Let us denote (j(f)(a))Gκ as D. Assume further that p is a
condition in

∏M
[κ,µ)Q

M
λ̄

.

Definition 3.11 q ∈
∏M

(γi,µ)Q
M
λ̄

is said to γi-reduce D below p if the following
holds:

j(f)(a) for a ∈ [F (κ)]<ω will be a name for a dense open set in PM
j(κ). We will

abuse notation and identify every j(f)(a) with a Pκ-name for a dense open set in
∏M

(F (κ),iM (κ+1))Q
M
λ̄

.
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(1) q extends the upper part of p, i.e. q ≤ pγi in
∏M

(γi,µ)Q
M
λ̄

;

(2) The set D = {q ≤ pγi
∈

∏M
[κ,γi]

QM
λ̄
| q∪ q ∈ D} is dense open in

∏M
[κ,γi]

QM
λ̄

below the lower part of p.

We will show how to construct such a reduction q (the argument is essentially
the one used to prove the Easton lemma 2.1 (1)). Choose some (r0, s0) such
that r0∪s0 ∈ D and r0 ≤ pγi

and s0 ≤ pγi . At stage ξ of the construction, let r′ξ
be any condition which is incompatible with the set of all previous conditions
{rζ | ζ < ξ} (if there is such) and let s′ξ be a lower bound of 〈sζ | ζ < ξ〉.
Choose rξ ≤ r′ξ and sξ ≤ s′ξ such that rξ ∪ sξ ∈ D. The construction is well-

defined since
∏M

[κ,γi]
QM
λ̄

is γ+
i -cc and consequently the process will stop at some

ρ < γ+
i . Set q to be the lower bound of all sζ for ζ < ρ. We will show that

q indeed γi-reduces D below p according to Definition 3.11. We only need to
check the condition (2) as (1) is obvious. Let q ≤ pγi

be given. It follows from
the construction that there is some rζ such that q and rζ are compatible with
some lower bound r̃. Also, rζ∪sζ ∈ D and consequently r̃∪q ∈ D by openness.
Note that as p ∈ M [Gκ] by assumption, the construction can be carried out
in M [Gκ] and consequently q will also be in M [Gκ].

We will need to distinguish several cases which will be handled in a sequence
of Sublemmas. Notice that by Observation 2.8, we cannot disregard the pos-
sibility that F (κ) is singular in V while it is regular in M .

Sublemma 3.12 If the cofinality of F (κ) in V is κ+ and F (κ) is singular in
V (F (κ) can be either regular or singular in M) then there is in V [Gκ∗g[κ,F (κ))]
an M [Gκ]-generic for

∏M
[κ,iM(κ+1))Q

M
λ̄

.

Proof. Fix the two following sequences:

(1) Sequence 〈γi | i < κ+〉 of regular cardinals cofinal in F (κ), where κ+ < γ0;
(2) Sequence 〈j(fα) |α < κ+〉, where 〈fα |α < κ+〉 enumerates all f : [κ]<ω →

H(κ+) such that f(s) is a name for a dense open set in Pκ for every
s ∈ [κ]<ω; j(f)(a) for a ∈ [F (κ)]<ω will thus range over names for dense
open sets in PMj(κ) but we will abuse notation and identify every j(f)(a)

for a ∈ [F (κ)]<ω with a name restricted to
∏M

[κ,iM(κ+1))Q
M
λ̄

in M [Gκ].

By induction on i < κ+, we will construct conditions pi ∈ M [Gκ] the tails of
which will reduce all dense open sets in

∏M
[κ,iM(κ+1))Q

M
λ̄

according to Definition
3.11. We will also consider their limit – a “master condition” – p∞ (possibly
outside M [Gκ]) .

Fix in advance some wellordering <0∈ M [Gκ] of the pairs in κ+ × [F (κ)]<ω

such that the restriction of <0 to k× [γk]
<ω for each k < κ+ has order type γk.

Assume that pi have been constructed for all i < k and we need to construct
pk. First let rk be a lower bound of pi for i < k and work below this condition.
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Carry out the following construction in M [Gκ]. By induction on <0 restricted
to k×[γk]

<ω construct a decreasing chain of conditions q(ξ,a) in
∏M

(γk ,i
M (κ+1))Q

M
λ̄

as follows. At stage (ξ, a), let first r(ξ,a) be the lower bound of q(ξ′,a′) for
(ξ′, a′) <0 (ξ, a). Using the argument below Definition 3.11, set q(ξ,a) to be a
condition which γk-reduces the dense open set with the name j(fξ)(a) below
(rk)γk

∪r(ξ,a). Since the induction has length γk and we consider only the initial
segment of order type k of the functions in the sequence 〈j(fξ) | ξ < κ+〉 (which
exists in M [Gκ]), the lower bound of all q(ξ,a) exists in M [Gκ]. Denoting this
lower bound q, we set pk to be equal to the union of the lower part of rk and
q, i.e. pk = (rk)γk

∪ q.

Set p∞ to be a lower bound of 〈pi | i < κ+〉 (p∞ may exist only in V [Gκ]). Let
us write p←∞ for p∞ restricted to the interval [κ, F (κ)) and p→∞ for the rest of p∞
defined at the interval [F (κ), iMκ+1). Note that p←∞ is an element of the forcing
∏

[κ,F (κ))Q
+
λ , while p→∞ is not an element of any of the forcings introduced so

far (it is just a union of certain conditions which exists in V [Gκ]).

Define the desired generic gM[κ,iM(κ+1)) as follows. Assume now that h is a
∏

[κ,F (κ))Q
+
λ -generic filter over V [Gκ] containing the condition p←∞, and set

h′ = {p→∞} ∪ {q ∈
∏M

[F (κ),iM (κ+1))Q
M
λ̄
| p→∞ ≤ q}. We claim that gM[κ,iM(κ+1)) =

(h× h′) ∩M [Gκ] is M [Gκ]-generic for
∏M

[κ,iM(κ+1))Q
M
λ̄

.

Let D = (j(f)(a))Gκ dense open be given, where a ∈ [γk′]
<ω for some k′ < κ+.

We will show that gM[κ,iM(κ+1)) meets D. Assume that the set D was dealt

with at substage (ξ, a) of the inductive construction of p∞ at stage k ≥ k′,
where j(f) is considered. Under this notation, recall that the set D = {q ≤
(rk)γk

| q ∪ q(ξ,a) ∈ D} is dense in M [Gκ] below (rk)γk
in

∏M
[κ,γk]Q

M
λ̄

. If A is a

maximal antichain contained in D, then

A remains maximal in
∏

[κ,γk]Q
+
λ in V [Gκ] (10)

To see that (10) is true, we argue as in Lemma 3.9 (8): Since A is a maximal
antichain contained in a dense set, it is a maximal antichain in the whole
forcing

∏M
[κ,γk]Q

M
λ̄

. As
∏M

[κ,γk]Q
M
λ̄

is γ+
k -cc inM [Gκ] and a support of a condition

p in
∏

[κ,γk]Q
+
λ has size < γk, the closure property of M [Gκ]

If a set x ∈M [Gκ] has size at most γk in M [Gκ],

then <γkx ∩ V [Gκ] ⊆M [Gκ] (11)

ensures that (10) is true. It follows that h restricted to
∏

[κ,γk]Q
+
λ must hit A;

let a be an element of h such that aγk
∈ D. It follows that aγk

∪q(ξ,a) meets D.
As both a and p←∞ are in h, there is some a′ ∈ h below both of them. But then
a′ ∪ p→∞ ∈ h× h′ and a′ ∪ p→∞ ≤ aγk

∪ q(ξ,a), and so aγk
∪ q(ξ,a) is in gM[κ,iM(κ+1))

and meets D.
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We finish the proof by arguing that g+
[κ,F (κ)) can be used to find in V [G] some

such generic h containing p←∞. By the homogeneity of the forcing
∏

[κ,F (κ))Q
+
λ

7

there is r ∈ g+
[κ,F (κ)) and an automorphism π :

∏

[κ,F (κ))Q
+
λ
∼=

∏

[κ,F (κ))Q
+
λ such

that π(r) = p←∞; it follows that h = π[g+
[κ,F (κ))] is

∏

[κ,F (κ))Q
+
λ -generic containing

p←∞ as desired. (Sublemma 3.12) 2

Sublemma 3.13 If the cofinality of F (κ), which we denote δ, is greater than
κ+ in V , and F (κ) is singular in V , then there is in V [Gκ ∗ g[κ,F (κ))] a M [Gκ]-
generic for

∏M
[κ,iM(κ+1))Q

M
λ̄

.

Proof. We will need to distinguish two cases.

Case (1): F (κ) is regular in M .

Recall the sequences 〈γi | i < δ〉, where κ+ < γ0, and 〈j(fα) |α < κ+〉 which
we used in the inductive construction in Sublemma 3.12. Unlike in Sublemma
3.12, we do not make the assumption that δ = κ+. Thus the two inductions
cannot be merged together as in Sublemma 3.12 and a more complicated
argument is called for. We will construct the desired generic for

∏M
[κ,iM(κ+1))Q

M
λ̄

in two steps.

A) The forcing
∏M

[κ,F (κ)]Q
M
λ̄

.

Intuitively, we need to define a generic for
∏M

[κ,F (κ)]Q
M
λ̄

by building a decreasing
list of conditions using induction along 〈γi | i < δ〉 and simultaneously along
〈j(fα) |α < κ+〉. 8 As both inductions can lead the construction outside the
model M [Gκ], we need to find a way to compatibly extend conditions “locally”
without leaving the class M [Gκ]. We shall do this by dividing the supports of
the conditions into segments corresponding to some elementary substructures
existing in M [Gκ].

Let mα for α < κ+ denote the following elementary substructure of some large
enough H(θ)M [Gκ] which is closed under <F (κ)-sequences existing in M [Gκ]:

mα = SkolemHullH(θ)M[Gκ ]
(

{
M
∏

[κ,F (κ)]

QM
λ̄ } ∪ F (κ) + 1 ∪ {j(fξ) | ξ ≤ α}

)

. (12)

Notice that each mα has size F (κ) in M [Gκ] and contains as elements all dense
open sets of the form (j(fξ)(a))

Gκ for a ∈ [F (κ)]<ω and ξ ≤ α.

7 In fact, we need homogeneity only for the Cohen forcing part of the forcing
∏

[κ,F (κ))Q
+
λ above γ0 as the master condition p←∞ is trivial below γ0. This implies

that we can disregard the Sacks forcing here.
8 This time, j(f)(a) for a ∈ [F (κ)]<ω will be identified with Pκ-names for dense
open sets in

∏M
[κ,F (κ)]Q

M
λ̄

.
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We will build a matrix of conditions {pi,α | i < δ, α < κ+} in
∏M

[κ,F (κ)]Q
M
λ̄

with
δ-many rows each of length κ+ such that the conditions will be decreasing both
in the rows and the columns. Moreover, for every i < δ and every α < κ+, the
sequence of conditions in the α-th column up to i, i.e. 〈pk,α | k < i〉, will exist
in mα. We will construct the matrix in δ-many steps, each of length κ+ (i.e.
we will be completing rows first).

The first “square” of the matrix p0,0 will be filled in as follows. By definition of
m0, all dense open sets in

∏M
[κ,F (κ)]Q

M
λ̄

of the form (j(f0)(a))
Gκ for a ∈ [γ0]

<ω

are in m0; by elementarity, they are dense open in m0. Working inside m0,
carry out the reduction argument described in Sublemma 3.12. In particular,
p0,0 will γ0-reduce all dense open sets (j(f0)(a))

Gκ for a ∈ [γ0]
<ω (below the

trivial condition 1 as we are filling in the first square). The square p0,1 will be
filled in in exactly the same way (considering f0 and f1), but working below
the condition p0,0 which is present inm1. In particular p0,1 will γ0-reduce below
p0,0 all dense open sets of the form (j(f1)(a))

Gκ for a ∈ [γ0]
<ω. Proceed this

way at every successor ordinal, obtaining p0,α+1. At a limit ordinal λ < κ+,
first take a lower bound q of 〈p0,α |α < λ〉 which by the closure properties of
mλ exists in mλ, and then work below this lower bound; the resulting p0,λ will
γ0-reduce below q all dense open sets of the form (j(fξ)(a))

Gκ for a ∈ [γ0]
<ω

and ξ ≤ λ. After κ+ steps we have completed the 0-th row of the matrix. Note
that the limit of 〈p0,α |α < κ+〉 may not exist in M [Gκ].

We now need to complete row 1. In order to complete the first square in row
1, we need to find p1,0 compatible with all conditions in the 0-th row of the
matrix. Though the lower bound of these conditions may not exist in M [Gκ],
we will argue that an intersection of the union of the conditions in the 0-th
row with m0 is in M [Gκ], and even in m0, i.e.

m0 ∩
⋃

α<κ+ p0,α ∈ m0 (13)

To see that (13) is true, we argue similarly as in Lemma 3.9. Each p0,α is
obviously in M [Gκ], and consequently p0,α ∩m0 is in M [Gκ] and in particular
in m0. The intersection (13) can thus be viewed as the union of a κ+-sequence
of elements in m0. But as m0 has size F (κ) in M [Gκ], such a sequence exists
in M [Gκ] due to the following closure property

κ+

F (κ) ∈M [Gκ], (14)

which is implied by the F (κ)-hypermeasurability of κ and the fact that κ+ is
smaller than the cofinality of F (κ).

It follows there is p1,0 which γ1-reduces all dense open sets (j(f0)(a))
Gκ for

a ∈ [γ1]
<ω below the condition m0 ∩

⋃

α<κ+ p0,α. In general for α < κ+, the
condition p1,α will reduce the relevant dense open sets below the common lower
bound of mα ∩

⋃

α<κ+ p0,α and the union of previous p1,β for β < α.
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It is immediate that the above construction can be repeated for any successor
ordinal i+ 1 below δ, i.e. if the matrix has been completed up to the stage i,
we can fill in the i+ 1-th row by the above argument.

Assume now that i < δ is a limit ordinal. First consider the sequence 〈pk,α | k <
i〉 for a single α < κ+. As the sequence is of length less then cofinality F (κ)
in M [Gκ] and contains elements from mα, which has size F (κ) in M [Gκ], we
can infer from

iF (κ) ∈M [Gκ] (15)

that the sequence exists in M [Gκ], and in particular in mα. Let qi,α ∈ mα

denote the lower bound of the sequence 〈pk,α | k < i〉 for each α < κ+. Now
repeat the above argument for the successor step considering the intersections
of mα and

⋃

α<κ+ qi,α.

We finish the construction by taking the limit of the whole matrix {pi,α | i <
δ, α < κ+}, obtaining some set p∞ existing in V [Gκ] (for instance first taking
limits of the rows and then the single limit of this sequence). Let p←∞ denote
the restriction of p∞ to the interval [κ, F (κ)) (note that p←∞ is a condition in
∏

[κ,F (κ))Q
+
λ ) and p→∞ the restriction of p∞ to {F (κ)} (note that p→∞ is a union of

conditions in (Add(F (κ), j(F )(F (κ))))M [Gκ] which exists in V [Gκ]). Arguing
as at the end of Sublemma 3.12, we find a

∏

[κ,F (κ))Q
+
λ -generic h, where p←∞

is in h, and define h′ to be generated by p→∞, such that h × h′ ∩ M [Gκ] is
∏M

[κ,F (κ)]Q
M
λ̄

-generic over M [Gκ]. Let us denote this generic as gM[κ,F (κ)].

B) The forcing
∏M

(F (κ),iM (κ+1))Q
M
λ̄

in M [Gκ].

The regularity of F (κ) in M implies that
∏M

[κ,F (κ)]Q
M
λ̄

and
∏M

(F (κ),iM (κ+1))Q
M
λ̄

are mutually generic. Working in V [Gκ], we construct the generic gM(F (κ),iM (κ+1))

for
∏M

(F (κ),iM (κ+1))Q
M
λ̄

exactly as in case B) of Lemma 3.9.

It follows that gM[κ,iM(κ+1)) = gM[κ,F (κ)] × gM(F (κ),iM (κ+1)) is the desired M [Gκ]-

generic for
∏M

[κ,iM(κ+1))Q
M
λ̄

.

Case (2): F (κ) is singular in M .

Recall once again the sequences 〈γi | i < δ〉, where κ+ < γ0, and 〈j(fα) |α <
κ+〉 which we used in the inductive construction in Sublemma 3.12 and Case
(1) of the present Sublemma.

The singularity of F (κ) in M [Gκ] introduces an important simplification into
the construction: 〈γi | i < δ〉 can be picked in M [Gκ] this time. Just run the
argument in Sublemma 3.12 with the following modification: Start with j(f0)
and run the argument using just this one function j(f0), obtaining some master
condition pf0∞. Since the sequence 〈γi | i < δ〉 is in M [Gκ], so is pf0∞. Now deal
with j(f1) and so on by induction on α < κ+. At each α < κ+ we can take
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the lower bound of the conditions p
fβ
∞ for β < α as we have closure under

κ-sequences. Denote the constructed generic as gM[κ,iM(κ+1)).

(Sublemma 3.13) 2

(Lemma 3.10) 2

It follows we have completed one more step in finding suitable generics for
PM .

V [Gκ]
j

//M [Gκ ∗ g
M
[κ,iM(κ+1))]

In order to construct another generic, we need to verify that we have preserved
closure under κ-sequences of M [Gκ ∗ g

M
[κ,iM(κ+1))] in V [Gκ ∗ g[κ,F (κ)]].

Lemma 3.14 M [Gκ∗g
M
[κ,iM(κ+1))] is closed under κ-sequences in V [Gκ∗g[κ,F (κ)]].

Proof. As mentioned above, M [Gκ] remains closed under κ-sequences in V [Gκ]
as the forcing Pκ is κ-cc. Let us denote as gS the projection of g[κ,i(κ+1)) to the
Sacks forcing. By Lemma 3.7, the forcing Add(κ+, F (κ+)) is κ+-distributive af-
ter the Sacks forcing Sacks(κ, F (κ)), and consequently it is enough to show clo-
sure just in V [Gκ∗gS]. Recall the “manipulation” argument just before Lemma
3.9 which removes the discrepancy between the values F (κ) and j(F )(κ); the
modification of Sacks(κ, F (κ)) changes this forcing to S∗ = Sacks(κ, j(F )(κ)).
Due to closure of M [Gκ] under κ-sequences, S∗ is the same in V [Gκ] and in
M [Gκ] and is the first step of the product

∏M
[κ,iM (κ+1))Q

M
λ̄

in the iteration PM

at stage κ. We are going to work in V [Gκ ∗ g
∗
S] = V [Gκ ∗ gS], where g∗S is the

generic for S∗, and as such is present in M [Gκ ∗ g
M
[κ,iM(κ+1))].

Let X be a κ-sequence of ordinal numbers in V [Gκ ∗g
∗
S], and let this be forced

by some p0 ∈ g∗S. By the fusion argument (carried out in V [Gκ]), there is for
every r ≤ p0 some pX ≤ r such that if pX is in g∗S, then X can be uniquely
determined from pX and g∗S restricted to the support of pX . Since such pX
are dense below p0, some such pX is in g∗S, and as pX and g∗S are present in
M [Gκ ∗ g

M
[κ,iM(κ+1))], so is X. (Lemma 3.14) 2

The preservation of closure allows us to prove:

Lemma 3.15 We can construct in V [Gκ ∗ g[κ,F (κ)]] an M [Gκ ∗ gM[κ,iM(κ+1))]-

generic for the stage PM
[iM

κ+1,j(κ))
.

Proof. As in Lemma 3.9, case B), work in V [Gκ ∗ g[κ,F (κ)]] and construct a
generic H hitting all dense sets. (Lemma 3.15) 2

It follows we can lift partially to V [Gκ]:

V [Gκ]
j

//M [Gκ ∗ g
M
[κ,iM(κ+1)) ∗H ]
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The next step is to lift to the
∏

[κ,i(κ+1))Qλ-generic g[κ,i(κ+1)) over V [Gκ].

Again due to Lemma 3.7, coupled with Lemma 2.14, the only non-trivial
part of this step is to lift to the generic filter gS for Sacks(κ, F (κ)). This
follows directly from the technique in [4], which is reviewed (and sufficiently
generalized) in Section 2.4 (note that the condition j(fλ)(κ) = λ in the proof of
Theorem 2.22 can be easily replaced by our assumption that j(F )(κ) ≥ F (κ)).

Let us denote the generic generated by j[gS] as h0. It follows we can lift as
follows:

V [Gκ ∗ gS]
j

//M [Gκ ∗ g
M
[κ,iM(κ+1)) ∗H ∗ h0]

We finish the lifting by an application of Lemma 2.14 in two stages, first to
the rest of the product

∏

[κ+,i(κ+1))Qλ and then to the rest of the iteration PF :

V [G]
j

//M [j(G)]

This proves Theorem 3.8 and shows that κ remains measurable in the generic
extension by PF .

3.2 Preservation of strong cardinals

In [9], Menas showed using a “master condition” argument that locally de-
finable (see Definition 3.16 below) Easton functions F can be realised while
preserving supercompact cardinals. We will show how to adapt his result to
strong cardinals using the above arguments.

Definition 3.16 An Easton function F , see Definition 3.1, is said to be lo-
cally definable if the following condition holds:

There is a sentence ψ and a formula ϕ(x, y) with two free variables such that
ψ is true in V and for all cardinals γ, if H(γ) |= ψ, then F [γ] ⊆ γ and

∀α, β ∈ γ(F (α) = β ⇔ H(γ) |= ϕ(α, β)). (16)

Theorem 3.17 (GCH) Assume F is locally definable in the sense of Defin-
ition 3.16. If PF is the forcing notion as in Definition 3.5, then V PF

realises
F and preserves all strong cardinals.

Proof. First note that since ψ is true in V , there exists a closed unbounded
class of cardinals Cψ such that if β ∈ Cψ, then H(β) |= ψ. It also holds that
the closed unbounded class Cψ is included in the closed unbounded class CF
of closure points of F .

Assume κ is a strong cardinal. We first show that κ is closed under F . Choose
some β greater than κ such that H(β) satisfies ψ and let j : V → M be an
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embedding witnessing β-hypermeasurability of κ; in particular H(β)V ⊆ M

and β < j(κ). Notice that for every α < κ, the following equivalence is true
by elementarity of j:

∃ξ ∈ (α, κ), ξ closed under F iff ∃ξ ∈ (α, j(κ)), ξ closed under j(F ) (17)

Since β in the interval (α, j(κ)) was chosen to satisfy ψ and thus it is closed
under F (and j(F )), we conclude that the closure points of F are unbounded
in κ, and consequently κ is closed under F .

Let G be a generic filter for PF . Assume that β > κ is a singular cardinal such
that H(β) satisfies ψ (it follows that β is a closure point of F ). We claim that
every extender embedding j : V → M witnessing the β++-hypermeasurability
of κ can be lifted to a j∗ : V [G] → M [j(G)] with H(β+) of V [G] included in
M [j(G)], thereby witnessing that κ is still β+-hypermeasurable in V [G]. As β
can be arbitrarily large, this implies that κ is still strong in V [G].

Let β > κ singular such that H(β) |= ψ be given. Let j : V → M be a
β++-hypermeasurable witnessing embedding; that is β++ < j(κ) < β+++ and
M = {j(f)(a) | f : [κ]<ω → V, a ∈ [β++]<ω}. Since κ is closed under F , j(κ)
is closed under j(F ). Moreover, since j(F ) is locally definable in M via the
formulas ψ and ϕ(x, y) and H(β)M = H(β)V , it follows that H(β)M |= ψ

and consequently F and j(F ) are identical on the interval [ω, β); in particular
β is closed under j(F ). The fact that H(β++) is correctly captured by M

implies that PF and j(PF ) coincide up to stage β, i.e. PFβ = j(PF )β, and thus
we may “copy” the generic Gβ, i.e. G restricted to β, and use it as a generic
for j(PF )β. Moreover, as PFβ is β++-cc, all nice PFβ -names for subsets of β+

in V are included in M , and consequently all subsets of β+ existing in V [Gβ ]
are also present in M [Gβ ]. It follows that H(β++) of V [Gβ] equals H(β++) of
M [Gβ ].

Applying the notation of the previous section, we denote β = i(β̄) = iM(β̄),
where i and iM enumerate the closure points of F and j(F ), respectively, and
β̄ ≤ β is some ordinal. The singularity of β in M implies that the next step
of the iteration, the product QM

β in M [Gβ ], is trivial at β, and so

QM
β =

∏M
[β+,iM (β̄+1))Q

M
λ̄

(18)

is the Easton-supported product of Cohen forcings in the interval [β+, iM(β̄+
1)), where iM(β̄ + 1) < j(κ) is the next closure point of j(F ) after β.

Due to Lemma 2.1, we know that
∏M

[β+,β++]Q
M
λ̄

= (Add(β+, j(F )(β+)))M [Gβ ]×

(Add(β++, j(F )(β++)))M [Gβ] and
∏M

[β+3M ,iM (β̄+1))Q
M
λ̄

are mutually generic, and
hence we can deal with them separately.
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As β++ ≤ F (β+) ≤ F (β++) and the size of j(F )(β+) and j(F )(β++) is β++

in V (due to closure of j(κ) under j(F )), we can “manipulate” the forcing
Add(β+, F (β+))×Add(β++, F (β++)) of V [Gβ] just like in (5) before Lemma
3.9. We obtain a forcing notion

∏

[β+,β++]Q
+
λ and a V [Gβ ]-generic g+

[β+,β++]

for
∏

[β+,β++]Q
+
λ . Since H(β++) of V [Gβ] is correctly captured in M [Gβ ], we

can argue as in Lemma 3.9, case A) that maximal antichains in
∏M

[β+,β++]Q
M
λ̄

existing in M [Gβ ] remain maximal in
∏

[β+,β++]Q
+
λ . It follows that

g+
[β+,β++] ∩M [Gβ ] is M [Gβ ]-generic for

∏M
[β+,β++]Q

M
λ̄
. (19)

Arguing as in Lemma 3.14, M [Gβ ] is easily seen to be still closed under
κ-sequences in V [Gβ ]. Consequently, we may construct a M [Gβ ]-generic for
∏M

[β+3M ,iM (β̄+1))Q
M
λ̄

just like in Lemma 3.9, Case B). Similarly, we construct a

generic for the iteration j(PF ) up to the closure point j(κ) (see Lemma 3.15).
We finish the proof by first lifting to the Sacks forcing at κ, using [4] and the
generalization in Section 2.4 of this paper, and then to the rest of the forcing
above κ (see the end of the proof for Theorem 3.8, just before this Section
3.2), finally obtaining

j∗ : V [G] →M [j∗(G)]. (20)

Notice that M [j∗(G)] captures all subsets of β in V [G], and hence κ is still
β+-hypermeasurable in V [G]. (Theorem 3.17) 2
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