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Abstract. Starting from a Laver-indestructible supercom-
pact κ and a weakly compact λ above κ, we show there is a
forcing extension where κ is a strong limit singular cardinal
with cofinality ω, 2κ = κ+3 = λ+, and the tree property holds
at κ++ = λ. Next we generalize this result to an arbitrary
cardinal µ such that κ < cf(µ) and λ+ ≤ µ. This result pro-
vides more information about possible relationships between
the tree property and the continuum function.
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1 Introduction

In [1], Cummings and Foreman showed that starting from a Laver-
indestructible supercompact cardinal κ and a weakly compact λ > κ,
one can construct a generic extension where 2κ = λ = κ++, κ is a singu-
lar strong limit cardinal with cofinality ω, and the tree property holds
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1 INTRODUCTION

at κ++. It is natural to try to generalize this result in at least two
directions.

First, one can ask whether – in addition to the properties identified in the
previous paragraph – κ can equal ℵω. Cummings and Foreman suggested
in [1] that this is possible, but did not provide any details. A model with
the tree property at ℵω+2, with ℵω strong limit, was first constructed by
Friedman and Halilović in [2], moreover from a significantly lower large
cardinal assumption of hypermeasurability.2 Shortly afterwards, Gitik,
answering a question posed in [2], showed in [4] that the same result can
be proved form a weaker and optimal assumption.

Second, one can ask whether it is possible to have 2κ greater than κ++

with the tree property at κ++. Using a variant of the Mitchell forc-
ing, Friedman and Halilović [3] proved that starting from a sufficiently
hypermeasurable κ, one can keep the measurability of κ together with
2κ > κ++ and the tree property at κ++.

In this paper, we generalize [1] in the second direction. In Theorem
2.1, we prove that starting from a Laver-indestructible supercompact κ
and a weakly compact λ above, one can find a forcing extension where
κ is strong limit singular with cofinality ω, 2κ = κ+3 = λ+, and the
tree property holds at κ++. In Theorem 3.1 we give an outline of a
generalisation in which the gap (κ, 2κ) can be arbitrarily large: 2κ = µ
for any cardinal µ > λ with cofinality greater than κ. The method of
the proof is based on the argument in [1], with reference to [6] which
fills a gap in the final stage of that argument.

1.1 Preliminaries

We review some useful results regarding projections of partial orders and
their Boolean completions. Let us recall that a projection π between a
partial order (P,≤P) and (Q,≤Q) is an order-preserving function from P
into Q such that π(1P) = 1Q, and for all p ∈ P and all q ≤Q π(p) there is
p̄ ≤P p such that π(p̄) ≤Q q. Note that the condition π(1P) = 1Q ensures

2The technique of proof in [2] used the Sacks forcing to obtain the tree property,
unlike the proof in [1] which is based on a Mitchell-style analysis.
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1 INTRODUCTION

that the range of π is dense in Q, and is sometimes omitted from the
definition of a projection. It is a standard fact (see for instance [5]) that
if π : P→ Q is a projection, then P is forcing equivalent to an iteration
Q ∗ P/Q for a quotient forcing which we denote P/Q.

Recall that if P is a separative partial order, we can identify P with a
dense suborder in the canonical Boolean completion of P without the
least element, denoted by RO+(P).

Lemma 1.1 Let P and Q be two separative partial orders. Assume that
for every P-generic filter G over V , there is in V [G] a Q-generic filter
F over V . Let Ḟ be a P-name such that P  (Ḟ is a Q-generic filter).
Then the following hold:

(i) Define π : P→ RO+(Q) by

(1.1) π(p) =
∧
{b ∈ RO+(Q) | p  b ∈ Ḟ}.

Set bP = π(1) =
∧
{b ∈ RO+(Q) | 1  b ∈ Ḟ}. Let RO+(Q)|bP

denote the partial order {b ∈ RO+(Q) | b ≤ bP}. Then

(1.2) π : P→ RO+(Q)|bP is a projection

and the range of π is dense in RO+(Q)|bP.
(ii) Suppose π is as in (i), π(1) = 1 and every q1, q2 in Q have the

supremum in Q. Then π can be defined just using −Q = {−q | q ∈
Q}:

(1.3) π(p) =
∧
{−q | q ∈ Q & p  −q ∈ Ḟ} =∧

{−q | q ∈ Q & p  q 6∈ Ḟ}.

Proof. (i). We first show (1.2). The preservation of the ordering is
easy. We check the density condition, i.e. for every p ∈ P and every
c ≤ π(p), there is p′ ≤ p such that π(p′) ≤ c. Let p and c be given. If
c = π(p), we are trivially done. So suppose c < π(p). If for every p′ ≤ p,
p′ 6 c ∈ Ḟ , then p  π(p)− c ∈ Ḟ , which contradicts the fact that π(p)
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1 INTRODUCTION

is the infimum of {b ∈ RO+(Q) | p  b ∈ Ḟ}. It follows that there is
some p′ ≤ p, p′  c ∈ Ḟ . Then π(p′) ≤ c as required.

We now show that the range of π is dense. Suppose for contradic-
tion there is b ≤ bP such that the range of π is disjoint from {b′ ∈
RO+(Q)|bP | b′ ≤ b}. Then bP − b is forced by 1 to be in Ḟ , a contradic-
tion because bP − b < bP.

(ii). Let p be fixed and let ap denote
∧
{−q | q ∈ Q & p  −q ∈ Ḟ}.

We wish to show that π(p) as in (1.1) is equal to ap. Clearly π(p) ≤ ap.
Suppose for contradiction π(p) < ap and set b = ap − π(p). By density,
there is qb ∈ Q such that qb ≤ b; in particular

(1.4) ap − qb < ap.

Since ap − qb ≥ π(p) and p  π(p) ∈ Ḟ , we have

(1.5) p  ap − qb ∈ Ḟ .

Now,

(1.6) ap − qb = ap ∧ −qb =
∧
{−q ∧ −qb | q ∈ Q & p  −q ∈ Ḟ}.

By (1.5), p  −q ∧ −qb = −(q ∨ qb) ∈ Ḟ , and hence −(q ∨ qb) is an
element of {−q | q ∈ Q & p  −q ∈ Ḟ} whenever p forces −q ∈ Ḟ . It
follows ap − qb = ap, contradicting (1.4), and so π(p) = ap as desired.

Note that if Q is not closed under the suprema of q1, q2 in Q, then the
proof still provides a simplification of the definition of π(p):

(1.7) π(p) =∧
{−b | (∃n ∈ ω)(∃q1, . . . , qn ∈ Q)(b = q1 ∨ . . . ∨ qn & p  −b ∈ Ḟ )}.

�

It would be tempting to try and prove that π(p) is equivalent to

(1.8)
∧
{q ∈ Q | p  q ∈ Ḟ},
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and not the rather unintuitive (1.3) or (1.7).3 However, (1.8) does not
work in general.

The following folklore results will be used tacitly later on when we deal
with projections on Boolean completions:

Lemma 1.2 Assume P and Q are separative partial orders and π : P→
RO+(Q) is a projection.

(i) If P′ is dense in P, then π|P′ : P′ → RO+(Q) is a projection.
(ii) (a) Assume P′ is forcing equivalent with P. Then there is a pro-

jection π′ : P′ → RO+(Q).
(b) Moreover, if P is dense in P′, then there is π′ ⊇ π such that

π′ : P′ → RO+(Q) is a projection.
(iii) Let R be a P-name for a forcing notion. Then π naturally extends

to a projection π′ : P ∗ R→ RO+(Q).

Proof. (i). Obvious.

(ii)(a). We show that if G′ is P′-generic, then we can find a Q-generic F
in V [G]. Since P and P′ are equivalent, there is some P -generic G such
that V [G′] = V [G]. By virtue of the projection π, there is a Q-generic
F in V [G], and therefore in V [G′]. The rest follows by Lemma 1.1.

(ii)(b). For p′ ∈ P′ define

π′(p′) =
∨
{π(p) | p ≤ p′}.

By density of P in P′, {π(p) | p ≤ p′} is non-empty for every p′ and
therefore π′(p′) is in RO+(Q) . If p′ ≤ q′ in P, then clearly π(p′) ≤ π(q′).
Suppose p′ ∈ P′ is arbitrary and b ≤ π′(p′). By the definition of π′(p),
there is b′ ≤ b such that for some p ≤ p′, p ∈ P, b′ ≤ π(p). It follows
there is some q ≤ p ≤ p′, q ∈ P, such that π(q) = π′(q) ≤ b′ ≤ b as
desired.

3Perhaps some intuition is salvaged by considering that if p  q ∈ Ḟ , q ∈ Q,
and q′ ∈ Q is incompatible with q, then p  −q′ ∈ Ḟ by the upwards closure of Ḟ .
Thus using density, q is captured as the infimum of all complements of q′ which are
incompatible with q: q =

∧
{−q′ | q′ ∈ Q & q′ ⊥ q}.
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(iii). Define

(1.9) π′(p, r) = π(p),

or every (p, r) in P ∗ R. If (p1, r1) ≤ (p2, r2), then in particular p1 ≤ p2,
and so π′(p1, r1) ≤ π′(p2, r2) because π is order-preserving. If (p, r) is
arbitrary and b ≤ π′(p, r) = π(p), then since π is a projection, there
is p′ ≤ p such that π(p′) ≤ b. Since (p′, r) ≤ (p, r), π′(p′, r) ≤ b is as
required. �

2 Gap three

Let µ be a regular cardinal. We write TP(µ) to say that µ satisfies
the tree property. If P is a forcing notion, we write V [P] to denote an
arbitrary generic extension by the forcing P. We say that a supercom-
pact cardinal κ is Laver-indestructible if it remains supercompact in any
forcing extension by a forcing which is κ-directed closed (where P is κ-
directed closed if for every D ⊆ P of size less than κ, if for all p1, p2 in
D there is e ∈ D such that e ≤ p1 and e ≤ p2, then there is p ∈ P, with
p ≤ d for all d ∈ D).

Theorem 2.1 Assume GCH and let κ be a Laver-indestructible super-
compact cardinal and κ < λ, λ weakly compact. Then there is a forcing
notion R such that the following hold:

(i) R preserves cardinals ≤ κ+ and ≥ λ.
(ii) V [R] |= (κ++ = λ & 2κ = λ+ & cf(κ) = ω & κ is strong limit).

(iii) V [R] |= TP(λ).

The proof will be given in a sequence of lemmas, and is divided into two
stages. Stage 1 defines R, verifies some basic properties for (i) and (ii)
of Theorem 2.1 and shows that if R adds an Aronszajn tree on λ, then
already a regular subforcing, which we denote R∗, adds an Aronszajn
tree on λ. The forcing R∗ is designed to be very similar to the forcing
used in [1]. In stage 2, we show that indeed R∗ allows a very similar
analysis to [1] (with correction according to [6]), and therefore cannot
add an Aronszajn tree on λ, which finishes the proof.
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2.1 Stage 1

Definition 2.2 Let P denote the Cohen forcing Add(κ, λ+) and for α <
λ+, let P|α denote Add(κ, α).

The following lemma will be useful.

Lemma 2.3 Let U̇ be a P-name such that

1P  U̇ is a normal measure on κ.

Then there is a set A of unboundedly many α < λ+ containing its limit
points of cofinality > κ such that for every α ∈ A and every P-generic
filter G,

U̇G ∩ V [G|α] ∈ V [G|α].

Proof. Let α0 < λ+ be given, we show how to find α ≥ α0 in A. Let
〈ẋi | i < ν < λ+〉 be some enumeration of all nice P|α0-names for subsets
of κ. Note that there are at most λ-many such names so we can indeed
choose ν < λ+. For every i < ν, let Xi be a maximal antichain in P of
conditions deciding the statement ẋi ∈ U̇ ; by the κ+-cc of P, the size of
Xi is at most κ. Let β0 ≥ α0 be such that the supports of all conditions
in

⋃
i<ν Xi are contained in β0. Repeat this procedure κ+-many times,

building an increasing chain of ordinals and let α = sup{βk | k < κ+},
cf(α) = κ+. Now, if ẋ is a P|α-name for a subset of κ, then there is
some α′ < α such that all coordinates mentioned by ẋ are below α′;
it follows that ẋ was considered in the construction, together with a
maximal antichain X in P of conditions deciding the statement ẋ ∈ U̇ .
Using these ẋ’s and X’s, one can build a P|α-name U̇α such that for
every nice P|α-name ẋ for a subset of κ:

ẋG|α = ẋG ∈ U̇G ⇔ ẋG|α ∈ U̇G|α
α .

It is clear that if A is defined to be the set of α < λ+ constructed as
above and α with cofinality > κ is a limit point of A, then α ∈ A.4 �

4We mention the closure of A because the current proof is directly applicable to
Lemma 2.5 with a set B, where the closure is relevant to ensure B∗ ⊆ B for a certain
set B∗ defined in Section 2.2, 2nd paragraph. The closure will not be used for A,
though.
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Fix temporarily a P-generic filter G. Denote U̇G = U . For any α ∈ A
such that λ < α < λ+ there is a Pα-name, which we denote by U̇α, such
that

(2.10) (U̇α)G|α = U ∩ V [G|α].

Let us write Uα for U ∩V [G|α]. Let us fix β ∈ A, λ < β. This β is going
to be fixed for the remainder of the proof.

For α ≤ λ, let Even(α) denote the set of even ordinals below α. For α ≤
λ, let us write P|Even(α) to denote the Cohen forcing Add(κ,Even(α))
which only mentions coordinates indexed by even ordinals. Let π be a
bijection between β and Even(λ); π naturally generates an isomorphism
between P|β and P|Even(λ) which we also denote π. Let us further
extend the domain of π to all P|β-names, and also to P|β-generic filters,
in the obvious way.

Since 1P|β  U̇β is a measure, we have 1P|Even(λ)  π(U̇β) is a measure.

Remark 2.4 Note that π generates a P|Even(λ)-generic filter π(G|β)
such that V [G|β] = V [π(G|β)], and

(2.11) Uβ = (U̇β)G|β = π(U̇β)π(G|β).

However, it is not true that π(U̇β)G|Even(λ) = Uβ, where G|Even(λ) is
the P|Even(λ)-generic filter composed of the Cohen generics on the even
coordinates of G below λ. The reason is that V [G|Even(λ)] is a proper
submodel of V [π(G|β)] = V [G|β].

The proof of the following lemma is the same as for Lemma 2.3.

Lemma 2.5 There is a set B of unboundedly many α < λ containing
its limit points of cofinality > κ such that for every α ∈ B and every
P|Even(λ)-generic filter H,

π(U̇β)H ∩ V [H|Even(α)] ∈ V [H|Even(α)],

where H|Even(α) is the restriction of H to P|Even(α).

8
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Let us write U̇π
α for the natural (i.e. obtained from the construction in

the proof of Lemma 2.5) P|Even(α)-name for the measure π(U̇β)H ∩
V [H|Even(α)].

For concreteness, let us review the definition of Prikry forcing.

Definition 2.6 Assume κ is measurable and U is a normal measure
at κ. Prikry forcing at κ with the measure U , which we will denote Q
(with indexes to distinguish different κ’s and U ’s), is a collection of pairs
(s, A) where s is a finite subset of κ, A is in U , and A∩max(s) + 1 = ∅.
(s, A) is stronger than (t, B) if s extends t (i.e. t = s ∩ α for some α),
A ⊆ B and s \ t ⊆ B.

We fix the following notation: Denote Â = (A ∩ [β, λ+)) ∪ {λ+}. For
every γ ∈ Â, let P|γ ∗ Qγ denote the Cohen forcing Add(κ, γ) followed
by the Prikry forcing Qγ defined with respect to the measure U̇γ (where
we identify U̇λ+ with U̇ and P|λ+ ∗Qλ+ with P∗Q). For α ∈ B, where B
is as in Lemma 2.5, let Qπ

α be a P|Even(α)-name for the Prikry forcing
defined with the P|Even(α)-name U̇π

α . Let us also define Qπ
λ as the Prikry

forcing with the measure π(U̇β) in P|Even(λ).

The following lemma defines certain projections which will be used later
on.

Lemma 2.7 (i) For every γ < δ in Â, there is a projection

(2.12) σδγ : P|δ ∗Qδ → RO+(P|γ ∗Qγ).

(ii) For every γ in Â and every α ∈ B, there is a projection

(2.13) σγα : P|γ ∗Qγ → RO+(P|Even(α) ∗Qπ
α).

(iii) For γ ∈ A ∩ (β, λ+) and α ∈ B, let σ̂γα be the extension of σγα to
the Boolean completion of P|γ ∗ Qγ obtained according to Lemma
1.2(ii)(b):

(2.14) σ̂γα : RO+(P|γ ∗Qγ)→ RO+(P|Even(α) ∗Qπ
α).

Then the projections commute:

(2.15) σλ
+

α = σ̂γα ◦ σλ
+

γ .
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Proof. (i). Let G ∗ x be a P|δ ∗ Qδ-generic filter,5 where x is an ω-
sequence cofinal in κ. By the geometric condition for Prikry genericity,6

and the fact that U̇γ is the restriction of U̇δ, it is clear that G|γ ∗ x is
P|γ ∗Qγ-generic. The result follows by Lemma 1.1.

(ii). Let G ∗ x be a P|γ ∗ Qγ-generic filter, where x is an ω-sequence
cofinal in κ. By (2.11) and the geometric condition for the generic filters
for Prikry forcings,

π(G|β) ∗ x is P|Even(λ) ∗Qπ
λ-generic.

Substituting H = π(G|β) in Lemma 2.5, for every α ∈ B, Qπ
α is a forcing

in V [H|Even(α)] defined with respect to the restriction of the measure
U ; it follows that H|Even(α) ∗ x is a generic filter for P|Even(α) ∗ Qπ

α

existing in V [G ∗ x]. The result again follows by Lemma 1.1.

(iii). σγα is correctly defined by Lemma 1.2(ii)(b). Let us fix (p, (s, Ȧ))
in P ∗Q and let us denote

bα =
∧
{b ∈ RO+(P|Even(α) ∗Qπ

α) | (p, (s, Ȧ))  b ∈ Ġα},

bγ =
∧
{b ∈ RO+(P|γ ∗Qγ) | (p, (s, Ȧ))  b ∈ Ġγ},

and
bγα =

∧
{b ∈ RO+(P|Even(α) ∗Qπ

α) | bγ  b ∈ Ġα},

where Ġγ and Ġα are the canonical names for the generic filters. The in-
tuition is that the Boolean value bα (and similarly bγ and bγα) corresponds
to a condition (π(p|β)|α, (s, Ċ)) for some Ċ which is the intersection of
all elements in U̇α in V P|Even(α)∗Qπ

α which contain Ȧ; the problem is that
this condition in general may not exist in P|Even(α) ∗ Qπ

α, and it is
necessary to use the more abstract Boolean names.

We show that ba = bγα.

5We abuse notation here and identify G ∗ x with the generic filter which it deter-
mines.

6The geometric condition characterises the genericity for Prikry forcing: a cofinal
ω-sequence in κ determines a generic filter if and only if it is eventually contained in
every element of the measure used to define the forcing.
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To argue for bγα ≤ bα, notice that we can identify every element of
RO+(P|Even(α) ∗ Qπ

α) with an element b of RO+(P|γ ∗ Qγ) by virtue
of the projection σ̂γα; now if (p, (s, Ȧ)) forces b into Ġα, then clearly
(p, (s, Ȧ)) forces b into Ġγ. In particular bγ forces b into Ġα, and so
bγα ≤ bα.

Conversely, bγ can be identified with an element of RO+(P ∗ Q), and
under this identification (p, (s, Ȧ)) ≤ bγ. It follows that if bγ forces
b ∈ RO+(P|Even(α)∗Qπ

α) into Ġα, so does (p, (s, Ȧ)), and hence bα ≤ bγα.
�

We are now ready to define the main forcing R.

Definition 2.8 Conditions in R are triples (p, q, r) which satisfy the
following (where B is as in Lemma 2.5):

(i) (p, q) is a condition in P ∗Q.
(ii) r is a function with dom(r) ⊆ B and |dom(r)| ≤ κ such that for

every α ∈ dom(r), r(α) is a nice P|Even(α) ∗Qπ
α-name and:

P|Even(α) ∗Qπ
α  r(α) ∈ Add(κ+, 1).

The ordering is defined as follows: (p′, q′, r′) ≤ (p, q, r) if the following
hold:

(i) (p′, q′) ≤ (p, q) in P ∗Q.
(ii) dom(r) ⊆ dom(r′) and for every α ∈ dom(r),

σλ
+

α (p′, q′) RO+(P|Even(α)∗Qπ
α) r

′(α) ≤ r(α).

The following lemmas identify the basic properties of R.

Define U to consist of all elements of R of the form (1, 1, r), with
the induced partial ordering. Let ν : (P ∗ Q) × U → R be given by
ν((p, q), (1, 1, r)) = (p, q, r).

Assume µ is a regular uncountable cardinal. We say that a partial order
has the µ-Knaster property if every family of conditions of size µ contains
µ-many pairwise compatible conditions.

Lemma 2.9 The following hold:

11
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(i) P ∗Q has a dense subset which has the κ+-Knaster property.
(ii) U is κ+-closed, i.e. every decreasing sequence of conditions in U of

length less than κ+ has a lower bound.
(iii) ν is a projection which commutes with the natural projections from

R and (P ∗Q)× U to P ∗Q (so that in a natural way V [P ∗Q] ⊆
V [R] ⊆ V [(P ∗Q)× U]).

(iv) V [R] and V [P ∗Q] have the same κ-sequences.

Proof. (i). Let Z contain all conditions of the form (p, (š, Ȧ); then Z
is dense in P∗Q and has the κ+-Knaster property. (ii)–(iii) are obvious.
Regarding (iv), by (i), (ii) and the Easton lemma, U is κ+-distributive
over V [P ∗Q]; then (iv) follows by (iii). �

Lemma 2.10 The following hold:

(i) R has the λ-Knaster property.
(ii) R collapses cardinals in the interval (κ+, λ) (and no other cardi-

nals), making κ++ in V [R] equal to λ. In V [R], 2κ = λ+ = κ+3.

Proof. (i). Let Y = {(pα, qα, rα) |α < λ} be a set of conditions in R of
size λ. We wish to find a subset Y ′ of size λ which consists of pairwise
compatible conditions. By a ∆-system argument there is a cofinal a ⊆ λ
such that {(pα, qα) |α ∈ a} is a family of pairwise compatible conditions
in P ∗ Q. By another ∆-system argument, there is a cofinal a′ ⊆ a,
and a root r ⊆ B of size ≤ κ, such that for all α, β ∈ a′, α 6= β,
dom(rα) ∩ dom(rβ) = r. By the inaccessibility of λ, the number of nice
P|Even(γ) ∗ Qπ

γ -names, γ ∈ r, for conditions in Add(κ+, 1) is less than
λ. Hence there is a cofinal a′′ ⊆ a′ such that if α, β are in a′′, then for
all γ ∈ r, rα(γ) = rβ(γ). It follows Y ′ = {(pα, qα, rα) |α ∈ a′′} is as
required.

(ii). Obvious. �

We will need to consider truncations of R, which we define next.

Definition 2.11 Let γ ∈ A, and λ < β < γ. Conditions in R|γ are
triples (p, q, r) which satisfy the following:

12
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(i) (p, q) is a condition in P|γ ∗ Qγ, where Qγ is the Prikry forcing
defined with respect to the measure U̇γ.

(ii) r is a function with dom(r) ⊆ B and |dom(r)| ≤ κ such that for
every α ∈ dom(r), r(α) is a nice P|Even(α) ∗Qπ

α-name and:

P|Even(α) ∗Qπ
α  r(α) ∈ Add(κ+, 1).

The ordering is defined as for R, but using the projections σγα, α ∈ B.

Lemma 2.12 Let γ be in A and β < γ < λ+. There is a projection
from R to RO+(R|γ).

Proof. First notice that R|γ is densely embeddable in R̂|γ, which is
defined as R|γ but with elements of RO+(P|γ ∗Qγ) instead of P|γ ∗Qγ,
and with the projection σ̂γα. Because of the commutativity σλ

+

α = σ̂γα ◦
σλ

+

γ , see Lemma 2.7(iii), it is easy to check that in V R, we can find a

generic for R̂|γ. �

We now show that if R adds an Aronszajn tree on λ, then a truncation
R|β∗ for a certain β∗ must add an Aronszajn tree on λ.

Before we give the lemma, let us define some terminology. Let (p, q) be
a condition in P ∗ Q; without loss of generality, q is of the form (s, Ė)
for some finite subset s of κ and some nice P-name Ė for a subset of κ.
We say that a coordinate α < λ+ is in the support of (p, q) if α is in the
support of p or in the support of some p′ which occurs in the nice name
Ė.

Lemma 2.13 Suppose R forces that there is an Aronszajn tree on λ.
Then for some β∗ in A, β < β∗, R|β∗ forces there is an Aronszajn tree
on λ.

Proof. Let Ṫ be a nice name for a subset of λ which in some natural
way corresponds to an Aronszajn tree on λ, which we assume exists in
V R. Ṫ is of the form

⋃
{{α} ×Kα |α < λ}, where Kα for α < λ is an

antichain in R. By the λ-Knaster property, |Kα| < λ for every α < λ.
It follows there are at most λ many coordinates α < λ+ which are in

13
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the support of (p, q) such that for some r, (p, q, r) ∈
⋃
α<λKα (we say

that α is in the support of Ṫ ). Hence we can choose β∗ in A such that
β < β∗, and R|β∗ forces that Ṫ ′ is an Aronszajn tree on λ, for some
name Ṫ ′ which is naturally obtained from Ṫ . �

Suppose now that R does force that there is an Aronszajn tree on λ and
let us fix β∗ as above (we will later show that the assumption that R
adds an Aronszajn tree on λ leads to a contradiction).

Let π∗ be an isomorphism between P|β∗ and P|λ; choose π∗ so that it
extends π (the fixed isomorphism between P|β and P|Even(λ)). This
implies π(U̇β) = π∗(U̇β), and therefore the measure π∗(U̇β∗) is forced to
extend the measure π(U̇β). More precisely, if G|β∗ is P|β∗-generic, then
the following hold:

(i) Ḡ = π∗(G|β∗) is P|λ-generic and its restriction to its even co-
ordinates, to be denoted as Ḡ|Even(λ), is equal to π(G|β) (and
Ḡ|Even(λ) is P|Even(λ)-generic).

(ii) The measure π(U̇β)Ḡ|Even(λ) in V [Ḡ|Even(λ)] is extended by the
measure π∗(U̇β∗)

Ḡ in V [Ḡ].

Define Qπ∗

λ as the Prikry forcing in P|λ with the measure π∗(U̇β∗).

Lemma 2.14 (i) π∗ extends to an isomorphism from P|β∗ ∗Qβ∗ onto
P|λ ∗Qπ∗

λ .
(ii) For every α ∈ B, σλα = σβ

∗
α
a(π∗)−1 is a projection

(2.16) σλα : P|λ ∗Qπ∗

λ → RO+(P|Even(α) ∗Qπ
α).

Proof. (i). Let us view Qβ∗ as a collection of conditions (p, (s, Ȧ)),
where Ȧ is a nice name. It is clear that we can naturally extend π∗ so
that π∗(Ȧ) is a nice name in P|λ. Moreover, since π∗ is an isomorphism,
P|β∗ forces that Ȧ is in U̇β∗ if and only if π(Ȧ) is in π∗(U̇β∗).

(ii). This is clear because (π∗)−1 is an isomorphism. �

Let us define the following variant of R, and call it R∗:

Definition 2.15 Conditions in R∗ are triples (p, q, r) which satisfy the
following:

14
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(i) (p, q) is a condition in P|λ ∗Qπ∗

λ .
(ii) r is a function with dom(r) ⊆ B and |dom(r)| ≤ κ such that for

every α ∈ dom(r), r(α) is a nice P|Even(α) ∗Qπ
α-name and:

P|Even(α) ∗Qπ
α  r(α) ∈ Add(κ+, 1).

The ordering is defined by means of the projections σλα, α ∈ B.

Lemma 2.16 R|β∗ and R∗ are isomorphic.

Proof. Define f : R|β∗ → R∗ by assigning to (p, (s, Ȧ), r) the con-
dition (π∗(p), (s, π∗(Ȧ)), r), where (s, Ȧ) is a condition in Qβ∗ . Since
σλα is determined by π∗ and σβ

∗
α (2.16), it is easy to check that f is an

isomorphism. �

By Lemma 2.13, it follows that if R adds an Aronszajn tree on λ, R∗
adds an Aronszajn tree on λ. In Stage 2, we show that this cannot
happen.

2.2 Stage 2

We verify that the method of [1] can be applied in our case to verify
that R∗ does not add an Aronszajn tree at λ. In the argument, we use
ideas from [6] to fill some gaps in [1].

In order to carry out the analysis of R∗, we need to be able to define
truncations R∗|α for a large set B∗ ⊆ B below λ. First we apply the
construction in Lemma 2.5 to the measure π∗(U̇β∗) in P|λ, and obtain an
unbounded set B∗ below λ where the measure π∗(U̇β∗) reflects. Using the
closure at points of cofinality > κ, one can in fact refine to get B∗ ⊆ B.
For α ∈ B∗, define Qπ∗

α as the Prikry forcing defined with respect to the
restriction of the measure π∗(U̇β∗). Denote B̂∗ = B∗ ∪ {λ}. We now
proceed as in Lemma 2.7, and in particular using Lemma 1.1, to obtain
for every α < γ in B̂∗ projections:

(2.17) %γα : P|γ ∗Qπ∗

γ → RO+(P|Even(α) ∗Qπ
α)

15
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and

(2.18) %̂γα : RO+(P|γ ∗Qπ∗

γ )→ RO+(P|Even(α) ∗Qπ
α),

which moreover satisfy:

(2.19) %λα = %̂γα ◦ %λγ .

Recall we used projections σλα, α ∈ B, to define the forcing R∗. We show
that σλα is the same projection as %λα for α ∈ B∗, and therefore we can
view R∗ as being defined with the projections %λα, α ∈ B∗.

Lemma 2.17 For α ∈ B∗, σλα = %λα.

Proof. Let us fix α ∈ B∗ and a condition (p, q) in P|λ ∗ Qπ∗

λ , and let
us temporarily denote RO+(P|Even(α) ∗ Qπ

α) by BEven(α). Let F be a
P|λ∗Qπ∗

λ -generic filter, F ∗ a P|β∗ ∗Qβ∗-generic filter, and let Ḟ |Even(α)
and Ḟ ∗|Even(α) be the canonical names for the BEven(α)-generic filters
existing in V [F ] and V [F ∗], respectively. Since π∗ extends π, it is clear
that for every b ∈ BEven(α),

(p, q)  b ∈ Ḟ |Even(α)⇔ (π∗)−1(p, q)  b ∈ Ḟ ∗|Even(α),

and therefore

%λα(p, q) =
∧
{b ∈ BEven(α) | (p, q)  b ∈ Ḟ |Even(α)} =∧
{b ∈ BEven(α) | (π∗)−1(p, q)  b ∈ Ḟ ∗|Even(α)} = σλα(p, q),

as desired. �

Now we can define truncations R|γ for γ ∈ B∗:

Definition 2.18 For γ ∈ B∗, define R∗|γ as follows. Conditions in
R∗|α are triples (p, q, r):

(i) (p, q) is a condition in P|γ ∗Qπ∗
γ .

(ii) r is a function with dom(r) ⊆ B∗ ∩ γ and |dom(r)| ≤ κ such that
for every α ∈ dom(r), r(α) is a nice P|Even(α) ∗Qπ

α-name and:

P|Even(α) ∗Qπ
α  r(α) ∈ Add(κ+, 1).

16
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The ordering is defined as follows: (p′, q′, r′) ≤ (p, q, r) if the following
hold:

(i) (p′, q′) ≤ (p, q) in P ∗Q.
(ii) dom(r) ⊆ dom(r′) and for every α ∈ dom(r),

%γα(p′, q′) RO+(P|Even(α)∗Qπ
α) r

′(α) ≤ r(α).

Lemma 2.19 For every γ ∈ B∗ there exists a projection from R∗ to
RO+(R∗|γ).

Proof. It follows as in Lemma 2.12, using the fact that σλα = %λα,
α ∈ B∗ (see Lemma 2.17). �

The analysis in Lemma 2.9 can be applied to R∗ straightforwardly. Let
U∗ denote the κ+-closed forcing such that there is a projection from
(P|λ ∗ Qπ∗

λ ) × U∗ to R∗. By arguments similar to Lemma 2.9 and 2.10,
for an inaccessible α ∈ B̂∗, R∗|α preserves all cardinals except in the
interval (κ+, α) and forces 2κ = α. Moreover, V [R∗|α] is a submodel of
V [R∗] and every bounded subset of λ in V [R∗] appears in V [R∗|α], for
some α ∈ B∗.
The existence of U∗ generalizes to the truncations R∗|α, α ∈ B∗.

Lemma 2.20 Let α be in B∗. Then R/(R|α) is in V [R|α] a projection
of (P|λ ∗Qπ∗

λ /P|α ∗Qπ∗
α )× U∗α for some κ+-closed forcing U∗α in R|α.

Proof. Obvious. �

Following [1, Lemma 6.5], and the correction in [6], the proof is finished
by showing that for every α ∈ B∗, the product (P|λ ∗Qπ∗

λ /P|α ∗Qπ∗
α )×

(P|λ ∗ Qπ∗

λ /P|α ∗ Qπ∗
α ) (“the square of (P|λ ∗ Qπ∗

λ /P|α ∗ Qπ∗
α )”) is κ+-cc

in V [R∗|α] (this result is stated as Lemma 2.27). The importance of
the square of the forcing being κ+-cc follows from the following Lemma
due to Spencer [6] which we give with a proof for the convenience of the
reader (our proof is possibly a bit simpler).

Lemma 2.21 Suppose γ is regular and a forcing P adds a subset x of
γ such that x is not in V but x ∩ α is in V for all α < γ. Then P × P
is not γ-cc.

17
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Proof. It suffices to show that if G is P -generic then P is not γ-cc
in V [G]. In V [G] let x = (ẋ)G be a subset of γ as in the hypothesis
and choose a sequence 〈pi | i < γ〉 of conditions in G and an increasing
sequence of ordinals 〈αi | i < γ〉 less than γ such that pi fixes ẋ ∩ αi
(i.e. forces it to equal a specific element of V ) but does not fix ẋ∩ αi+1.
This is possible as x ∩ α is fixed by some condition in G for each α < γ
but x itself is fixed by no condition in G. Now choose qi+1 extending
pi to disagree with pi+1 about ẋ ∩ αi+1. This is possible as pi does not
fix ẋ ∩ αi+1. But then the qi+1’s form an antichain as any condition
extending qi+1 disagrees with pi+1 (and therefore with pj for all j > i)
about ẋ and therefore cannot extend qj+1 for j > i, as qj+1 extends pj.

�

Since the argument in [6] is stated for a different forcing, we provide a
self-contained proof of Lemma 2.27. For the proof of Lemma 2.27, we
need to prove some preliminary facts (Lemma 2.22 – Lemma 2.26).

Lemma 2.22 Assume (p, (s, Ȧ)) ∈ P|α∗Qπ∗
α and (q, (t, Ḃ)) ∈ P|λ∗Qπ∗

λ

are arbitrary conditions. Then (p, (s, Ȧ)) forces that (q, (t, Ḃ)) is not
a condition in P|λ ∗ Qπ∗

λ /P|α ∗ Qπ∗
α if and only if one of the following

conditions holds:

(i) q �α is incompatible with p,

(ii) q �α is compatible with p, s does not extend t and t does not extend
s,

(iii) q �α is compatible with p, s extends t and q ∪ p  s \ t * Ḃ,

(iv) q �α is compatible with p, t extends s and (q �α) ∪ p  t \ s * Ȧ.

Proof. (p, (s, Ȧ))  (q, (t, Ḃ)) /∈ P|λ∗Qπ∗

λ /P|α∗Qπ∗
α if and only if there

is no generic filter G ∗ x such that (q, (t, Ḃ)) ∈ G ∗ x and (p, (s, Ȧ)) ∈
G�α ∗ x.

First, it is easy to see that each of the conditions above rules out the
existence of such a generic filter G ∗ x.

18
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Second, assume that all conditions above fail. Then p is compatible with
q and it has to hold that either s extends t or t extends s. If s extends
t, then q ∪ p 1 s \ t * Ḃ. This means that there is r below q ∪ p such

that r  s \ t ⊆ Ḃ. Consider the condition (r, (s, Ȧ ∩ Ḃ)) and let G ∗ x
be generic filter such that (r, (s, Ȧ ∩ Ḃ)) ∈ G ∗ x. It is easy to verify
that (q, (t, Ḃ)) ∈ G ∗ x and (p, (s, Ȧ)) ∈ G �α ∗ x. The second case, if t
extends s, is similar. �

We have just characterised the case when a condition in P|λ ∗ Qπ∗

λ is
forced out of the quotient. Now, we focus on the case when a condition
is forced into the quotient. First we prove an auxiliary lemma.

Lemma 2.23 Assume (p, (s, Ȧ)) ∈ P|α∗Qπ∗
α and (q, (t, Ḃ)) ∈ P|λ∗Qπ∗

λ

are arbitrary conditions such that p ≤ q �α. Then there is a P|α-name
Ċ such that p forces that Ċ is in U̇π∗

α and for each finite set x in Ċ such

that s ∪ x is a stem,7 q 1V [P|α]
P|λ/P|α x * Ḃ.

Proof. Assume that G is a P|α-generic filter such that p ∈ G. We
define a colouring of [κ]<ω as follows:

f(x) =


0 if s ∪ x is a stem and q 1V [G]

P|λ/P|α x * Ḃ;

1 if s ∪ x is a stem and q V [G]
P|λ/P|α x * Ḃ;

2 if s ∪ x is not a stem.

By Rowbottom’s theorem, there is a set C in Uπ∗
α homogeneous for f .

Let Ċ be a P|α-name for C.

Assume for contradiction that the Lemma does not hold for Ċ. Then
there is some r ≤ p and a finite set x in Ċ such that r forces that
q V [P|α]

P|λ/P|α x * Ḃ. Let n be the size of x. Since Ċ is a homogeneous set

for f , we know that for each set y of size n, f(y) = 1. As we assume
p ≤ q �α, r∪ q is a condition in P|λ. Let H be a P|λ-generic filter which
contains r∪ q. Then ḂV [H] ∩ ĊV [H] = ∅ in V [H]. This is a contradiction
since ḂV [H] and ĊV [H] are sets in (U̇π∗

λ )V [H]. �

7s ∪ x is a stem if s ∪ x extends s.
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Now we provide a sufficient condition for a condition in P|λ ∗Qπ∗
λ to be

forced into the quotient.

Lemma 2.24 Assume (p, (s, Ȧ)) ∈ P|α∗Qπ∗
α and (q, (t, Ḃ)) ∈ P|λ∗Qπ∗

λ

are arbitrary conditions. If they satisfy the following conditions

(i) s extends t,

(ii) p ≤ q �α and

(iii) q ∪ p  s \ t ⊆ Ḃ,

then for the set Ċ from Lemma 2.23, it holds that (p, (s, Ȧ ∩ Ċ)) forces
(q, (t, Ḃ)) into the quotient P|λ ∗Qπ∗

λ /P|α ∗Qπ∗
α .

Proof. For contradiction assume that there is (p′, (s′, Ȧ′)) ≤ (p, (s, Ȧ∩
Ċ)) such that (p′, (s′, Ȧ′))  (q, (t, Ḃ)) /∈ P|λ ∗Qπ∗

λ /P|α ∗Qπ∗
α . It means

that one of the conditions in Lemma 2.22 is true. It is easy to see that
conditions (i), (ii) and (iv) are false, hence the condition (iii) has to
be true. Thus p′ ∪ q  s′ \ t * Ḃ. By the assumptions (i) and (iii)

of the present lemma, s extends t and p ∪ q  s \ t ⊆ Ḃ. Therefore
p′ ∪ q  s′ \ s * Ḃ.

Since (p′, (s′, Ȧ′)) ≤ (p, (s, Ȧ ∩ Ċ)), p′  s′ \ s ⊆ Ȧ ∩ Ċ. Hence p′ 
s′ \ s ⊆ Ċ. By Lemma 2.23, we know that p′ forces q 1V [P|α]

P|λ/P|α s
′ \ s * Ḃ.

Therefore p′ ∪ q 1 s′ \ s * Ḃ. This is in contradiction with the result of
the previous paragraph. �

Lemma 2.25 Assume (p, (s, Ȧ)) is a condition in P|α ∗Qπ∗
α , and ṙi for

i < 2, are conditions forced by the weakest condition of P|α∗Qπ∗
α into the

quotient P|λ ∗ Qπ∗

λ /P|α ∗ Qπ∗
α . Then there are (p′, (s′, Ȧ′)) ≤ (p, (s, Ȧ)),

(qi, (ti, Ḃi)) and q̄i ≤ qi, i < 2, such that for i < 2:

(i) (p, (s, Ȧ)) decides ṙi to be (qi, (ti, Ḃi)),

(ii) (p, (s, Ȧ)) and (q̄i, (ti, Ḃi)) satisfy the assumptions (i)–(iii) of Lemma
2.24.
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Proof. Let (p′, (s′, Ȧ′)) ≤ (p, (s, Ȧ)) be such that it decides the value
of ṙi to be (qi, (ti, Ḃi)) for i < 2. We may assume that s′ extends ti and
p′ ≤ qi �α for i < 2. Since (p′, (s′, Ȧ′)) forces that ṙ0 is in P|α ∗Qπ∗

α , the
condition (iii) in Lemma 2.22 has to fail, hence there is q̄0 ≤ p′∪ q0 such
that q̄0 forces s′ \ t0 ⊆ Ḃ0. Now, if it is necessary we can extend p′ such
that p′ ≤ q̄0 �α.

Now, we need to deal with ṙ1 = (q1, (t1, Ḃ1)). Since (p′, (s′, Ȧ′)) forces
that ṙ1 is in P|α ∗ Qπ∗

α , the condition (iii) in Lemma 2.22 has to fail.
Therefore there is q̄1 ≤ p′ ∪ q1 such that q̄1 forces s′ \ t1 ⊆ Ḃ1. Again, if
it is necessary we can extend p′ so that p′ ≤ q̄1 �α. �

Lemma 2.26 (P|λ ∗Qπ∗

λ )2 × (P|α ∗Qπ∗
α ) is κ+-cc.

Proof. Obvious. �

Finally we can prove the desired lemma which finishes the proof of The-
orem 2.1.

Lemma 2.27 For every α ∈ B∗, the square of P|λ ∗ Qπ∗

λ /P|α ∗ Qπ∗
α is

κ+-cc in V [P|α ∗Qπ∗
α ].

Proof. For contradiction assume that {(ṙ0
β, ṙ

1
β) | β < κ+} is a P|α∗Qπ∗

α -

name for an antichain in P|λ ∗Qπ∗

λ /P|α ∗Qπ∗
α . By Lemma 2.25, we can

find for each β < κ+ and i < 2 conditions (pβ, (sβ, Ȧβ)), (qiβ(tiβ, Ḃ
i
β)) and

extensions q̄iβ ≤ qiβ which satisfy items (i) and (ii) in Lemma 2.25.

By Lemma 2.26, there are β < β′ < κ+ such that pβ is compatible with
pβ′ and q̄iβ is compatible with q̄iβ′ for i < 2. This means that pβ ∪pβ′ and
q̄iβ ∪ q̄iβ′ for i < 2 are conditions in P|λ. Moreover we may assume that
ti = tiβ = tiβ′ and s = sβ = sβ′ for i < 2.

For i < 2, the conditions (pβ∪pβ′ , (s, Ȧβ∩Ȧβ′)) and (q̄iβ∪q̄iβ′ , (ti, Ḃi
β∩Ḃi

β′))
satisfy the assumptions of Lemma 2.24. Therefore, there is an extension
of (pβ ∪ pβ′ , (s, Ȧβ ∩ Ȧβ′)) which forces the compatibility of (ṙ0

β, ṙ
1
β) and

(ṙ0
β′ , ṙ

1
β′) in the quotient. This is a contradiction. �

This finishes the proof of Theorem 2.1.
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3 An arbitrary gap

Theorem 3.1 Assume GCH and let κ be a Laver-indestructible super-
compact cardinal, λ a weakly compact cardinal and µ a cardinal of co-
finality greater than κ such that κ < λ < µ. Then there is a forcing
notion R such that the following hold:

(i) R preserves cardinals ≤ κ+ and ≥ λ.
(ii) V [R] |= (κ++ = λ & 2κ = µ & cf(κ) = ω & κ is strong limit).

(iii) V [R] |= TP(λ).

We will not give a detailed proof, but instead specify what modifications
to the proof of Theorem 2.1 are needed to prove Theorem 3.1. Assume
the notation is the same as in the proof of Theorem 2.1 unless said
otherwise.

Modify the construction in Stage 1 in Section 2.1 as follows:

(1) In analogy with Lemma 2.3, find a set A ⊆ [µ]λ which is unbounded
in [µ]λ and closed under unions of increasing chains of cofinality
larger than κ which satisfies:

• For every x ∈ A, λ+ 1 ⊆ x.

• For every x ∈ A, there is a name U̇x such that in V [P|x], U̇x
interprets as the restriction of the measure U̇ on κ. Let us
denote by P|x ∗ Qx the Cohen forcing restricted to x followed
by the Prikry forcing with the measure U̇x.

(2) Choose an arbitrary x0 ∈ A and an isomorphism π : P|x0 →
P|Even(λ). Thus π(U̇x0) is a measure in P|Even(λ).

(3) Denote Â = {y ∈ A |x0 ⊆ y}. As in Lemma 2.7, and with the
notation naturally modified for the current situation, there is an
unbounded set B ⊆ λ closed under limits of cofinality larger than
κ, and commutative projections

σµy : P ∗Q→ RO+(P|y ∗Qy), for y ∈ Â,
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σ̂yα : RO+(P|y ∗Qy)→ RO+(P|Even(α) ∗Qπ
α), for y ∈ Â, α ∈ B,

and
σµα : P ∗Q→ RO+(P|Even(α) ∗Qπ

α), for α ∈ B
with

σµα = σ̂yα ◦ σµy , for y ∈ Â, α ∈ B.
Note that we denote by Qπ

α the Prikry forcing defined with respect
to the restriction of the measure π(U̇x0) to V [P|Even(α)].

(4) Modify Definition 2.8 of R to use π and σµα, in the sense of the
previous paragraph. As in Definition 2.11, define the truncations
R|y for y ∈ Â.

(5) The key step is to show that if Ṫ is a λ-Aronszajn tree added by
R, then for some y ∈ Â, R|y adds an Aronszajn tree on λ and
importantly, R|y is isomorphic to R∗ (which is the same forcing as
in Definition 2.15). We argue as follows:

By the λ-Knaster property of (a dense subset of) R, there is y ∈ Â
such that the support of Ṫ (see the paragraph after Lemma 2.12) is
included in y. Choose a bijection π∗ extending π, π∗ : P|y → P|λ.
Denote Qπ∗

λ the Prikry forcing in V [P|λ] defined with respect to the
measure π∗(U̇y). As in Lemma 2.14, π∗ extends to an isomorphism
between P|y ∗ Qy and P|λ ∗ Qπ∗

λ . Finally, as in Lemma 2.14, R|y is
isomorphic to R∗.

Stage 2 of the argument is exactly the same as in the proof of Theorem
2.1.

4 Open questions

It is natural to ask the following questions:

(1) Can we add collapses to the Prikry forcing to get κ = ℵω in Theorem
3.1?

(2) Can we prove Theorem 3.1 assuming just the hypermeasurability of
κ?
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