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PROCEEDINGS OF T H E  
A M E R I C A N  MATHEMATICAL SOCIETY 
Volume 88, Number  4 ,  A u g u s t  1983 

TALL 0-RECURSIVE STRUCTURES 

ABSTRACT.The Scott rank of a structure M ,  s r (M),  is a useful measure of 
its model-theoretic complexity. Another useful invariant is o (M) ,  the ordinal 
height of the least admissible set above M ,  defined by Banvise. Nadel showed 
tha t  s r (M)  5 o(M)  and defined M to  be tall if equality holds. For any 
admissible ordinal a there exists a tall structure M such tha t  o ( M )  = a.  We 
show that  if a = 4+, the least admissible ordinal greater than 4 ,  then M can 
be chosen to have a 4-recursive presentation. A natural example of such a 
structure is given when 4 = w f  and then using similar ideas we compute the 
supremum of the levels a t  which I l l ( L w ~ )  singletons appear in L. 
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The results in this paper concern structures which are complicated model-theoreti- 
cally, yet recursion-theoretically simple. Fix a structure M for a language L of 
finite similarity type. The Scott rank of M is defined as follows: Let Z,  g ,  z', g', . . . 
range over jMj<". By induction define a sequence of relations c; on members of 

jMI<" 	 or the same length: 

z 7 ij 	 iff 2, realize the same atomic type in M ,  

iff VZ' 35' (Z  * T' ;g * g') and z -, g 

Vgf32 ' ( s*  z ' - g  * g ' )  


zyy 	iff 577Jf o r a l l p < X , X l i m i t .  

In the above, * denotes concatenation of sequences. Finally, Scott rank ( M )  is the 
least a such tha t  VxVg(z r= 7~ -+ z -7,g).  Scott rank ( M )  is a useful measure of the 
model-theoretic complexity of M .  

Nadel [74] provides a bound on the Scott rank of a structure M in terms of 
admissible set theory: Scott rank ( M )  < o ( M )  where o ( M )  is the ordinal height of 
the  least admissible set above M (see Barwise [69]).M is tall if equality holds. This 
bound is best possible in tha t  for any admissible ordinal 0 there is a tall structure 
M such tha t  Scott rank ( M )  = 0.  

Let  ,D be a limit ordinal. M is ,D-recursive if IMI = @ and all of the relations, 
functions of M, are @-recursive. (For a definition of ,D-recursive, see F'riedman [78]. 
In this paper we need only consider those @ which are either admissible or the limit 
of admissible ordinals, in which case @-recursive coincides with A1(Lq,c).) I t  is 
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shown in Nadel [74] that there is an w-recursive (=recursive) structure of Scott 
rank w:~.  (The example is a recursive linear ordering of ordertype wik +wtk . q l q  = 

ordertype of the rationals.) $1 of the present paper shows that for every limit 
ordinal P there is a P-recursive structure of Scott rank 3+,the least admissible 
ordinal greater than P. Such a structure Mo is tall since it belongs to Lo+ and 
hence o(Mo) = p f .  Define LEU,-rank ( M )  in exactly the same way as Scott rank 

:,( M )  except where y, :',y', . . . now range over IMI<U1. $2 focuses on the special 
,!3case: = wl. Using entirely different methods than in $1 a natural example of 

an wl-recursive structure of L,,,-rank w l  is presented (from this an wl-recursive 
structure of Scott rank w; is easily obtained). Similar techniques are then used to 
show that IIl(L,,)-singletons appear cofinally inside L,, where o is the least stable 
ordinal greater than wl . 

1. Game rank versus Scott rank. The goal of this section is to prove 

THEOREM1. For any limit ordinal 3 there is a P-recursive structure of Scott rank 
pf = least admissible ordinal greater than P. 

It clearly suffices to treat the case where 3 is either admissible or the limit of 
admissible ordinals. It will also be convenient to assume that P is greater than w 
(otherwise the result is known). 

The proof of Theorem 1 can be outlined as follows: We first show that  there is 
a P-recursive open game with a winning strategy for the "closed player", but none 
inside Lo+.  This allows one to build a p-recursive tree T of "game rank" p f .  Then 
a P-recursive structure M of Scott rank ,B+ is obtained by building M so that its 
Scott analysis is very similar to the "game analysis" of T. 

We must first describe the "game rank" of a tree. All trees are subtrees of 
p<" =all finite sequences of ordinals less than P.  Our definition here is rather 
nonstandard but is designed to allow the transition from game rank to Scott rank 
to go smoothly. 

Let T be a tree. If 7 = (q(O),q(l),. . . )  E T has even length we let ( v ) ~ , ~ ,  = 

( ~ ( 0 ) )  {(rj),,,, I 7 E T,  l(7) = length(7) = 2k). For v E Ak let 7(2), . . .). Let Ak = 

B, = (7  E T (q),,,, = v). If 7 E T has even length we define Rk(7) by 
Rk(7) = 0 - there is v > (q),,,, such that 7 has no extension in B,, v E UkAk; 
Rk(7) = a > 0 - 0 # Rk(7) # P for all 3 < a and there is v > (7)even such that  

Rk(7) = co -VaRk(7) # a, Rk(T) = sup{Rk(q) 7 E T and Rk(7) # 00). 

Thus Rk(7) measures how good a position player I is in after 7 has been played 
in the following game: Players I and II alternately choose vo, 70, vl ,  71,.  . . with the 
restrictions that vo C vl C . . ., 70 C 71 C ..., V, E But,v, E U k A k  Player I wins if 
a t  some stage player II can make no legal move. Otherwise player II wins. 

LEMMA 2. There is a P-recursive tree T such that Rk(T)  = P'. 

PROOF. We use some ideas from P-logic. Enlarge the language of set theory 
by adjoining (Henkin) constants co, c l , .  . . and a name 3' for each ordinal P' 5 P. 
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is standard, Rk(4) ,!3has a model where SAs 

S. D. FRIEDM4N AND SAHAHON SHELAH 

Formulas in this language can be easily coded by ordinals less than P. Let S consist 
of the following sentences in this language: 

(a) Axioms for admiss~bility, 
(b) p' is an ordinal, -P1 E -P2 (whenever P1 < 3 2  5 P).  

Then the tree T consists of all sequences of sentences ( 4 0 ,  41 , . . .) such that 
(i) if p2n =-$ then 42n+l= @ or -$, 

(ii) if din = 3 x d ~then dzn+l =Q(ck) some k or -Qan. 
(iii) if d2n = V $2 then cjzn+l = or 7,!~2 or w Q l n 1  
(iv) if ~ $ 2 ~  = "ck = some 8' < 3 or -- 42n1="ck E /311 then Q2n+1 f' 
(v) A 43A 4s AT.. is consistent with S .  

Since 8 > w condition (v) is 3-recursive. 
CLAIM. Rk(T) = 3+. 
PROOFOF CLAIM. AS the inductive definition of Rk can be carried out in LoA 

it is clear that Rk(T) 5 P+. By absoluteness we can assume that B is countable. 
= co. Now suppose Rk(T) = y < P+. 

Let $0, $1,. . . be a listing of the sentences in this language. Define &,  41, . . . by 

4 2 n  = $n, 

CjZn+l= least 4 such that (@o,. . . ,d2n,4)has Rk > y. 
As (17 E T / Rk(7) > y) E LD+the sequence (do, 41, .  . .) E Lo+.But {4zn+1 / n E 
w) describes the complete Henkin theory of an end extension of Lo+.This is a 
contradiction. Q.E.D. 

We can now describe the structure M to satisfy Theorem 1. Let T be as in 
Lemma 2. Define Ak, B, for v E U k A k=A as before. Let P, = all finite subsets of 
B,, for v E A. Endow each P, with a distinct 0, so that vl # v2 -+ Pv,nP,, = @. 
The universe of ,l.I = ]MI = U{P, / v E A). Introduce predicates for each P,. 

We now provide Pvwith an "affine" group structure; that is, a group structure 
without a distinguished identity. Note that Pvis a group under the operation A of 
symmetric difference. For w E P, let S , , ,= {(wl, w2) / wlAw2 = w). 

Not,ice that with these relations, any automorphism of P, is determined by its 
action at a single argument. 

Finally, we introduce funct'ions connecting the different PV1s. If v * (a)EA, then 
f,,(,) is defined by: f,,(,)(w) = {v t 2n - 2 / rl E w) for w E P,,(,); f,,(,)(w) = 

w otherwise. Thus any automorphism of P,,(,) has a unique extension to P, 
preserving the function f,,(,). 

Thus the desired structure is M = ([MI,P, ,S,,,, f,,!,)), v E A, w E P , .  It 
remains to  compute the Scott rank of M .  

For any collection G of partial functions from M to M define G-Rk(g) for g E G 
by 

G-Rk(g) > 0 o g E G; 
G-Rk(g) > a + 1 o Vm E lM/3h  E G(g C h,m E Dom(h), G-Rk(h) > a) and 

Vm E /MI3h E G(g C h, m ERange(h), G-Rk(h) > a) ;  
G-Rk(g) 2 X o V a  < X G-Rk(g) > a for limit A; 
G-Rk(g) = co oG-Rk(g) > a for all a .  

Also let Rk(G) = sup{G-Rk(g) 1 g E G, G-Rk(g) < co). Thus we are interested in 
showing that Rk(Go) = PS where Go =all  finite partial isomorphisms of M .  

For any D 2 1 MI let = closure (D) = U{P, / For some v' > v, D nP,, # 0). 
As remarked earlier any partial isomorphism of M with domain D has a unique 
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extension to  a partial isomorphism with domain (and range) D.Thus i t  suffices to 
show that  Rk(G1) = 8+ where G1 = {g E Go I Dom(g) = Dom(g)). 

Now if g E G1 then g is uniquely determined by g* which is defined by Domain 
(9') = {v P,, Dom(g)), g*(v) = g(0, ) .  Moreover, g* satisfies 

Conversely, any function h with domain a finite t CA closed under initial segments, 
obeying ( r )  must be of the form g* for some g. Let  H = {g* g E G I ) .  Then 
R k ( G l )  = Deg(H) which is defined by 

Deg(h) > 0 ++ h E  H ;  
Deg(h) > cu + 1 ++ Vv E A3h 1 > h(v E Dom(hl) ,  Deg(h1) 2 0 ) ;  
Deg(h) 2 X ++ Vcr < X Deg(h) > cr for limit A ;  
Deg(h)= cc Deg(h) > cr for all a ,  Deg(H)= sup{Deg(h) I Deg(h) < a).++ 

Thus it suffices to show tha t  Deg(H) = 3+. 
Our final claim establishes the theorem by relating Deg (defined on H) to R k  

(defined on q E T, length(q) even). 
(:[,AIM. For h E H ,  Deg(H) = min{Rk(q) q E h(v) for somev).  
PROOF.By induction on cr we show tha t  Deg(h) 2 cr iff Rk(h )  2 cr iff Rk(q )  2 cr 

for all q E U Range(h). This is trivial for cr = 0 or for limit cr (by induction). 
Let  cr = y + 1. Suppose Rk(q)  2 y + 1 for all q E U Range(h) and v E A. We 
show tha t  3h1 > h (v E Dom(h1) and Rk(q)  2 y for all q E U Range(h1)). Let  
vo C v be maximal, vo E Dom(h). For each q E h(vo) choose 7' 2 q ,  7' E B, so 
tha t  Rk(q l )  > y (this is possible since Rk(q)  2 y + 1). Then set h l ( v f )  = h(vl )  for 
v'E Dom(h), h l (v  1 k) = {q' r2k q E h(vo)) for k 5 length(v). 

Conversely suppose Deg(h) 2 y + 1, q E U Range(h). We show tha t  for all v 2 
(q),,,, there is q '  2 q such that  q '  E B,,Rk(q l )  > y. For, given v > (q)even let 
h l  > h,  v E Dom(hl) ,  Deg(hl)  2 y. By induction, Rk(ql )  2 y for all q ' ~  hl(v).  But  
q has an extension q '  E hl(v)  as h l  E H .  Q.E.D. 

Finally as Rk(T)  = 8+ we conclude Deg(H) = 3+ and hence the  theorem. 

2. wl-recursive trees. We use here Godel condensation methods to build an 
wl-recursive tree T of L,,,-rank w: = least admissible ordinal greater than wl. 
For simplicity assume wl = wf.  The general case follows from the fact tha t  the 
proof given below can be easily adapted to any Lcardinal  K such tha t  K is regular 
in L,, cr = least admissible greater than K 

Let S = { a  < wl cr admissible, L, k wl exists and is the largest admissible). 
A typical member of S is cr where L, is the transitive collapse of a countable 
elementary submodel of L,+ . 

We first define the tree T' 
I 

= {(cro,. . . , cr,) 1 For all i, cr, E S, a, < cr,+l and there 
exists n:L,, L,,,, ). Note tha t  II as above must be the identity on w:". and 
every element of L,, is definable over L,, from ordinals 5 wF"1. Thus if II exists 
in the definition of T' then n-' must be the  transitive collapse of H = Skolem hull 
of wfal inside Lax+,  . This proves tha t  T' is wl-recursive. 

The desired tree T is obtained via a minor modification of T'. This modification is 
needed to  eliminate certain inhomogeneities on T :  Define T= {( (aOl  iO) ,  . . . , ( a n l  in))  I 
For all k ,  01,E S, z k  E w, C Y ~5 a k + l  and there e x i s t s n :  L,, 5L,,,,). (Thus a n  
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ordinal a E S can be "repeated" countably often.) As before T is wl-recursive. 
Our goal is to show that T has L,,,-rank w:. (\/We shall in fact show that T is 
isomorphic to the tree 7 in $1of Friedman [all.) 

We begin by analyzing the structure of T. We show that the structure of ?' 
below ((ao,io),. . . ,(a,, i,)) is determined by the S-rank (a,). This is defined by 

S-rk(a) 2 0 t,a E S ;  
S-rk(a) 2 y + 1oFor uncountably many a ' 3 n  : L, 5La ' ,  S-rk(ai) > y; 
S-rk(a) 2 X o S-rk(a) 2 7 for all 7< X ,  for limit A; 
S-rk(a) = co ti S-rk(a) 2 y for all y.  

Also set Rank(S) = sup{S-rk(a) a E S, S-rk(a) < m).  
We can also define rk((ao, io),. . . , (a:,, i,)) = S-rk (a,), when ((ao,io), . . . ,(a,, in)) 

E T. Then a node on T of rk 0 has exactly w-many immediate extensions on T .  
A node on T of rk y > 0 has exactly w-many immediate extensions of rk y and 
wl-many immediate extensions of rk 6 for S < y. A node on T of rk co has wl-many 
immediate extensions of rk m. 

Our main goal is to show that for each a0 E T,  rk a 0  = m or a0 = 82,{a E T 1 
a > a. and rk a = m )  6L,+. From this it follows that L,,,-rank of T =wf: Yote 

1 

that the inductive definition of rk as well as the inductive analysis of the LEU,-rank 
of T can be carried out in L,+. If a0 E T,  rk a 0  = m then a 0  must have immediate 

1 

extensions of rk y for each y < w: as otherwise {a E T a 2 a0 and rk a = m )  = 

{a E T a > a 0  and rk a 2 7)for some y < d: and this latter set is a member of 
L,+. Thus we can conclude that if two nodes on T lie on the same level and have 
the' same rk, they can be mapped to each other by an automorphism of T .  Thus 
determining the L,,,-type of nodes on T is nothing more than determining their 
rk and the level of T on which they lie. If L,,,-rank of T is less than CL-~;then 
{a E T r k a  = co) = {a E T r k a  2 y) for some r < wf and this latter set belongs 
to  L,+. This contradicts our main claim. 

From this claim it is clear that {a E T 1 a 2 00,rk a = co) $ L,? when rk a0 =x 
I 


or a0 = Dl as otherwise {a < w l  3IT : L, 5L,+) ELa- which is impossible 

PROOFOF CLAIM. Clearly if a: < and 3IT : L,ZL,+  then S-rk(a:) = co 
1 

as if X is the set of all such 0 's  then X is uncountable and each eiement of 
X can be elementarily embedded in all larger elements of X. For the converse 
suppose a E S, S-rk(a) = m. Choose 13 > a:, 3IT : L, 5La:. Now inductively 

define L> Lo> L,, 5. .  and LGL ~ ,f L3>. such that S-rk a, = 

S-rk P, = m for each i and P, < a, < (This is possible by the definition of S-  
rk.) If Direct Lim(L,% / i < w )  is well-founded then it is isomorphic to some L o , .  If 
Direct Lim(Laz / i < w )  is well-founded then it is isomorphic to some La ' .  But w f - '  = 

4 ~ .so a '  = 9' since a', P'  E S. )We conclude that 3IT ,: L, 5Lo, ,  IT,: I,, 5Lo,,  

so IT;' o IT, : L, 5Lg (since n,, no is just the inverse of the transitive collapse of 

the Skolem hull of w f e ,  w f 3  in L,,). So 3IT : L, 5LU+. 
It  remains to justify the well-foundedness of the direct limits. This is provided 

by our final subclaim. 
- -

SUBCLAIM.Direct Lim(L,, i < w) is well-founded if L,, L,, f . . . with a:l < 
a2 < . . . in S. 
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PROOF.Let M = Direct Limit(LaZ / i < wj and we identify sp(M) = st'andard 
part of with some L,. Note that w y  = sup{wfal / i < w )  < 2.  But 2 is 
admissible as either L, = M or I;, is the standard part of a model of KP. As 
lblk w l  is the largest admissible, we can conclude t'hat y = (w.;")+. 

Now suppose L,, f M and choose i and IT: L,, 5 M so that Range(IIj L,. 
Let X < a, be so that II(X) $ Ly.  Then wf". < X. Lot  k w l  is t>he largest admissible, 

we may choose q E T such that Rk(7) = X where T is the wf"t-recursive tree 

constructed in Lenlnla 2 (where ,8= w f u % ) .  Note that for arbitrary q '  E T,Rk(vl j< 
co if and only if player I has a winning strategy at  position 17' for the game described 
immediately before Lemma 2.  

If T' = tree obtained from Lemma 2 when D =wiw then IT(T) = T '  and II(q) = q 
has nonstandard Rk' (= Rk for T ' ) .  But then player II has a winning strategy in 
the TI-game. This easily yields a winning strategy for player II in the T-game, 
contradicting Rk(7) < m. Q.E.D. 

Thus we have established 

THEOREM T is an ~l-recursive tree oJ L,,, .3. -rank W: 

Ari wl-recursive structure of Scott rank LIT can now be obtained by considering 
T"= infinite direct product of &-many copies of T. For then the analysis of L,,,-
rank for T reduces to the Scott analysis of T". 

We end with an observation concerning IT1(L,,)-singletons. Assume V = L. A 
function f : L,, -+L,, is a ITl(L,,)-singleton if it is the unique solution to a II1(L,,) 
formula d(f)with a single variable for a total funct'ion. An ul-recursive tree with 
a unique branch of length wl yields a IIl(L,,)-singleton. JVe will show that for 
any 3 < a = least stable > w l  there is an ul-recursive tree with a unique branch of 
length wl which is constructed in I, past P. Note that any IIl(L,,)-singleton must 
be a member of L,. 

Yote that L, = C1 Skolem hull (L,, u {L,,)). Thus we can choose a C1 formula 
Q(Z,y, z )  and p E I,,, such that 3 is the unique solution to 4jz,u l ,p). Let cr be 
the least admissible such that /3 < a, L, t 4(/3,al,p) and a* = C1 projection of 
a =wl. 

)We describe now an wl-recursive tree T whose unique path f consists of an wl- 
sequence of elementary submodels of L,. This will suffice as clearly f @ Lo.  S 
consists of all a< u1 such that 

(a) L, t KP $ dl exists, a*= s L x :  

(b) p E L, where ;7 =w?, L,F :(d, 7,p) for some J < a; 
(c) F There are no admissible 6 > 13 s.t. 6' = wl. 

Then the tree T = {(no,al,. . . )  E 1 3 6  E S for a11 6, = greatest < 
Boil s.t. I n :  L,sL, w F *  = u{wi" 1 6 < A}, h limit, - 3 5  < a O 3 j: i,z 
k,}.
It is not hard to check that II as above is uniquely determined as every 
elenlent of L,is definable over L,from 3 together with ordinals < wp,for a E S. 
So T is wl-recursive. 

Now define an wl-sequence of elementary submodels Mo -: A.11 -: . . .  of L, by: 
Mo = Skolem hull of {p, w l ,  0) in L,, -yo = Mo nwl ; M6+l = Skolem hull of 76 U 
{ p , w ~;,O} inside La,  ? o ~ l= M s r l  nwlr  MA= U{kh / 6 < A}, y~ = U{y6 / 6 < A}  
for limit X. Then (zo.n l ,. . .) forms an al-branch through T where E6 = transitive 
collapse ( M E ) .  
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-
If f is an wl-branch through T then there are elementary embeddings Lf(o)3 

--
Lf ( l )  and we can form the direct limit La,.  Now a' must be the least p such' . * a  

that p is admissible, p* = y', p > P I l  L, != @', yl ,p)  for some P' < a',  y'= wke'. 
But y'= wl. So p' = P since P is the unique solution to @(x,wllp). I t  follows that 
a' = a and hence f (6) = for all 6. Thus T has a unique wl-branch. 

We have shown that IIl(L,,)-singletons are constructed in L cofinally in the least 
stable ordinal o > wl. By way of contrast all II1(L,)-singletons are constructed in 
L before w+ =wfK.The disparity here is due to the fact that well-foundedness is 
easily expressible over L,, . 

FINALNOTE. The second author has found a way to modify the construction in 
$1 to  produce an wl-recursive structure of L,,,-rank w t .  The key to the argument 
is in establishing the existence of an dl-recursive tree of wl-Rkw;, where wl-Rk is 
defined in analogy to our earlier definition of Rk. Then the appropriate structure 
is obtained from such a tree much as the structure M was obtained from T in $1. 
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