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Abstract

In this paper we study the Borel reducibility of Borel equivalence re-
lations on the generalised Baire space κκ for an uncountable κ with the
property κ<κ = κ. The theory looks quite different from its classical coun-
terpart where κ = ω, although some basic theorems do generalise.

We study the generalisations of classical descriptive set theory of Polish
spaces to the setting where instead of the Baire space ωω we look at the gen-
eralised Baire space κκ of all functions from κ to κ where κ is an uncountable
cardinal which satisfies κ<κ = κ. The topology on this space is generated by the
basic open sets

[p] = {η ∈ κκ | η ⊃ p}

where p ∈ κ<κ. The resulting collection of open sets is closed under intersections
of length < κ. The class of κ-Borel sets in this space is the smallest class
containing the basic open sets and which is closed under taking unions and
intersections of length κ.

In this paper we often work with spaces of the form (2α)β for some ordinals
α, β 6 κ. If x ∈ (2α)β, then technically x is a function β → 2α and we denote
by xγ = x(γ) the value at γ < β. Thus xγ is a function α → 2 for each γ and
we denote the value at δ < α by xγ(δ). The lengthier notation for x ∈ (2α)β is
(xγ)γ<β as a β-sequence of functions α→ 2.

We say that a topological space is κ-Baire, if the intersection of κ many
dense open sets is never empty. The generalised Baire space is κ-Baire [MV93].
If X is a topological space, we say that A ⊆ X is κ-meager if its complement
contains an intersection of κ many dense open sets. Thus, X is κ-Baire if and
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only if X is itself not meager (we always drop the prefix “κ-”). The complement
of a meager set is called co-meager. A set A ⊆ X has the Baire property if there
exists an open set U such that the symmetric difference U 4A is meager. When
we write ∀∗x ∈ A(P (x)) we mean that there is a co-meager set such that every
element of that set which belongs to A satisfies P . We write ∃∗x ∈ A(P (x))
to mean that there exists a non-meager set such that every element of that set
which belongs to A satisfies P .

1 Equivalence Relations Induced by a Group Action

Suppose G is a topological group. Let X be a Borel subset of κκ. An action
ρ : G × X → X is Borel if it is Borel as a function i.e. inverse images of open
sets are Borel. This action induces an equivalence relation on X in which two
elements x and y are equivalent if there exists g ∈ G such that ρ(g, x) = y.
For example, if the action is Borel, then it is easy to see that this equivalence
relation is Σ1

1. This equivalence relation is denoted by EXG,ρ, or just EXG if the
action is clear from the context.

Here are some examples of equivalence relations induced by a Borel action:

• id the identity relation.

• id+ the jump of identity. This is an equivalence relation on (2κ)κ where
(xα)α<κ and (yα)α<κ are equivalent if the sets {xα | α < κ} and {yα |
α < κ} are equal (see Definition 5). This is not defined as an equivalence
relation induced by a Borel action, but is easily seen to be bireducible with
id+
∗ which is an equivalence relation on (2κ)κ where (xα)α<κ and (yα)α<κ

are equivalent if there exists a permutation s ∈ Sκ (Sκ is the group of all
permutations of κ) such that xα = ys(α) for all α. The latter is induced by
a Borel action of Sκ.

• E0 an equivalence relation on 2κ where (η, ξ) ∈ E0 if there exists α < κ
such that for all β > α we have η(β) = ξ(β).

• E1 an equivalence relation on (2κ)κ where (xα)α<κ and (yα)α<κ are equiv-
alent if there exists α < κ such that for all β > α we have xβ = yβ.

Since all the topologies in this paper are closed under intersections of length
< κ, we replace “finite” by “less than κ” when referring to product topologies
below.

1 Theorem. Let G be a discrete group of cardinality 6 κ and let it act in a
Borel way on a Borel subset X ⊆ 2κ. Let EXG be the (Borel) equivalence relation
induced by this action. Then EXG 6B E0.
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Proof. The group G acts on P(G)κ coordinatewise by multiplication on the right

g · (Xi)i<κ = (Xig)i<κ. This gives rise to the equivalence relation E
P (G)κ

G .

1.1 Claim. EXG 6B E
P(G)κ

G .

Proof. Let π : κ→ 2<κ be a bijection. Let x ∈ X and for each α < κ let

Zα(x) = {g ∈ G | gx ∈ [π(α)]}.

This defines a reduction: an element x ∈ X is mapped to (Zα(x))α<κ. Suppose
there is g0 ∈ G such that y = g0x for some x, y ∈ X. Then

Zα(x) = {g ∈ G | gx ∈ [π(α)]}
= {gg0 ∈ G | gy ∈ [π(α)]}
= Zα(y)g0.

On the other hand suppose that there exists g ∈ G such that Zα(x) = Zα(y)g for
all α < κ. It is enough to show that g−1y ∈ [p] for all basic open neighbourhoods
[p] of x. So suppose U = [p] is a basic neighbourhood containing x and let
α = π−1(p). Now obviously 1G ∈ Zα(x), so 1G ∈ Zα(y)g and thus g−1 ∈ Zα(y),
i.e. g−1y ∈ [p]. �Claim 1.1

For a set S, FS is the free group generated by elements of S. F∅ = F0 is the
trivial group.

1.2 Claim. E
P(G)κ

G 6B E
P(Fκ)κ
Fκ

.

Proof. Since G has size 6 κ and Fκ is a free group on κ generators, there is
a normal subgroup N ⊆ Fκ such that G ∼= Fκ/N . Assume without loss of
generality that G = Fκ/N . Let pr be the canonical projection map Fκ → Fκ/N .
For (Aα)α<κ ∈ P(G)κ, let

F ((Aα)α<κ) = (pr−1Aα)α<κ.

This is clearly a continuous reduction. �Claim 1.2

1.3 Claim. E
P(Fκ)κ
Fκ

6B E0.

Proof. The space P(Fκ)κ can be canonically thought to be the same as (2κ)Fκ

the bijection being defined by (Aα)α<κ 7→ x where x(g)(α) = 1 if and only
if g ∈ Aα. This space is equipped with the product topology (recall that our
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definition of product topology is non-standard, see page 2): a basic open set is
given by

{x | x(g)�α = p}

for some ordinal α < κ, some g ∈ Fκ and some p ∈ 2<κ and the resulting
collection of open sets is closed under intersections of length < κ. The action
of Fκ on (2κ)Fκ is then defined by g ∗ x = y where y(f)(α) = 1 if and only if
x(fg−1)(α) = 1 for all f ∈ Fκ.

This space is more convenient for us to work with. Additionally we identify
2α with P(α) for all α and write 2α ⊆ 2β, meaning that an element p of 2α is
identified with q in 2β where q is just p with “β − α” zeros at the end.

Let us look at the sets Xα = (2α)Fα for α 6 κ.
If w ∈ Xβ and α < β, denote by w �α the element v of Xα such that v(g) =

w(g) �α for all g ∈ Fα. Thus, by the identifications we made, Xα ⊆ Xβ ⊆ Xκ

for all α < β < κ. For every α < κ fix a well-ordering <α of Xα. Given g ∈ Fα
and w ∈ Xα, let g ∗ w ∈ Xα be the element such that (g ∗ w)(f) = w(fg−1) for
all f ∈ Fα. This is an action of Fα on Xα and for α = κ it coincides with the
original action of Fκ on P(Fκ)κ under the mentioned identifications.

Fix x ∈ Xκ. For each α, let x(α) be the <α-least element of

{g ∗ (x�α) | g ∈ Fα}

and let H(x) = (x(α))α<κ. We claim that for all x, y ∈ Xκ, y = g ∗ x for some
g ∈ Fκ if and only if there exists β < κ such that for all α > β, x(α) = y(α).

Assume first that such g ∈ Fκ exists. Then g ∈ Fβ for some β < κ and for
all α > β, g ∈ Fα. Thus, it is obvious that x(α) = y(α) for α > β, because for
these α

{g ∗ (x�α) | g ∈ Fα} = {g ∗ (y �α) | g ∈ Fα}.

Assume now that there exists β < κ such that for all α > β, x(α) = y(α).
Then for each α > β there exists gα ∈ Fα such that x � α = gα ∗ (y � α). For
each α > β, let γ(α) be the least ordinal such that gα ∈ Fγ(α). If α is a limit
ordinal, then γ(α) < α and so there is γ0 and a stationary S0 ⊆ limκ such that
for all α ∈ S0 we have gα ∈ Fγ0 . Since |Fγ0 | < κ, there is a stationary S ⊆ S0
and g∗ ∈ Fγ0 such that for all α ∈ S we have gα = g∗. Since S is unbounded,
this obviously implies that y = g∗ ∗ x.

Fix bijections fα : Xα → κ and map each x ∈ Xκ to the sequence (fα(x(α)))α<κ
and denote this mapping by G. By the above we have x = g ∗ y for some g ∈ Fκ
if and only if (G(x), G(y)) ∈ E0. It remains to show that G is continuous.

Suppose x ∈ Xκ and take an open neighbourhood U of G(x). Then there is
β such that

{η ∈ κκ | ∀α < β(η(α) = fα(x(α)))} ⊆ U.
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Now, the set {y ∈ Fκ | y � β = x � β} is mapped inside U and contains x, so it
remains to show that this set is open, but this follows from the definition of the
topology on (2κ)Fκ in particular that the collection of open sets is closed under
intersections of length < κ. �Claim 1.3

�Theorem 1

2 Theorem (V = L). There is a Borel equivalence relation E whose classes
have size 2, which is smooth (i.e. Borel reducible to id) yet which is not induced
by a Borel action of a group of size 6 κ.

Proof.

2.1 Claim. There is an open dense set O ⊆ 2κ and a bijection f : O → 2κ \ O
such that the graph of f is Borel, but f is not Borel as a function on any non-
meager Borel set. However the inverse of f is Borel.

Proof. We let O be the complement of a certain closed set of “master codes” for
size κ initial segments of L. This is defined as follows. Let L be the language
of set theory augmented by constant symbols ᾱ for each ordinal α < κ. Also let
T0 denote the theory ZFC− (ZFC minus the power set axiom) plus V = L plus
the statement “there are only boundedly many ordinals β such that Lβ satisfies
ZFC−”. We consider complete, consistent theories T which extend T0 and which
in addition satisfy the following:

1. There is no ω-sequence of formulas ϕn(x) (mentioning constants ᾱ for α < κ)
such that for each n both the sentence “∃!x ϕn(x)” and the sentence “∃x, y(ϕn(x)∧
ϕn+1(y) ∧ y ∈ x)” belong to T .
2. For each β < κ and formula ϕ(x) (mentioning constants ᾱ for α < κ) if the
sentences “∃!xϕ(x)” and “∃x(ϕ(x)∧ x < β̄)” both belong to T then so does the
sentence “∃x(ϕ(x) ∧ x = γ̄)” for some γ < β.

By identifying sentences of L with ordinals less than κ we can regard theories
in L as subsets of κ. Now let C ⊆ 2κ be the set of theories T as above. Then
C is a closed set. And C is nowhere dense as any set of L-sentences of size less
than κ is included in an inconsistent such set.

The theories in C are exactly the first-order theories of structures of the form
Lβ in which the constant symbol ᾱ is interpreted as the ordinal α for each α < κ
and in which the axioms of T0 hold. And for each T in C there is a unique such
model M(T ) in which every element is definable from parameters less than κ.

We are ready to define the function f : O → C where O is the complement
of C in 2κ. List the elements of O in <L-increasing order as x0, x1, . . . and list
the elements of C in <L-increasing order as y0, y1, . . .; then we set f(xi) = yi
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for each i < κ+. The inverse of f is Borel because given y ∈ C we can identify
f−1(y) (viewed as a subset of κ) as the set of γ < κ such that the sentence “γ
belongs to the i-th element in the <L-increasing enumeration of 2κ where i is
the order type of the set of β such that Lβ models T0” belongs to (the theory
associated to) y. Thus the graph of f is Borel. If B is a non-meager Borel set
and g is a Borel function then we claim that g cannot agree with f on B: Indeed,
let β0 be so that Lβ0 models ZFC− and contains Borel codes for both B and g
and let x ∈ B ∩ O be κ-Cohen generic over Lβ0 . Then f(x) = T is the theory
of a model M(T ) = Lβ where β is greater than β0. But g(x) belongs to Lβ0 [x],
which by the genericity of x is a model of ZFC− while Lβ0 [f(x)] does not satisfy
ZFC− as f(x) = T codes the model Lβ.

Define xEy if and only if x = y, y = f(x) or x = f(y). Now E has a Borel
transversal, i.e., there is a Borel function t such that xEt(x) for all x and xEy
if and only if t(x) = t(y) for all x, y: Given x ∈ 2κ, first decide in a Borel way if
x is in O or not. If yes, then let t(x) = x, otherwise, find f−1(x) in a Borel way
(since f−1 is Borel) and let t(x) = f−1(x). This t(x) is a Borel transversal. It
follows that E is smooth.

Finally, suppose E is given by a Borel action of some group G of size at most
κ. Then for each x ∈ O choose gx ∈ G such that f(x) = gx · x; then for some
fixed g ∈ G, f(x) = g · x for non-meager many x ∈ O, contradicting the fact
that f is not Borel on any non-meager Borel set.

3 Question. Is there a Borel equivalence relation with classes of size κ which
is not reducible to E0?

2 E1 and Eclub

Let E1 be the equivalence relation on (2κ)κ where (xα)α<κ and (yα)α<κ are
equivalent if there exists β < κ such that for all γ > β, xγ = yγ .

4 Theorem. E1 and E0 are bireducible.

Proof. It is obvious that E0 6B E1, so let us look at the other direction.
To simplify notation, we think of E0 on κκ: two functions η and ξ are E0-

equivalent if the set {α < κ | η(α) 6= ξ(α)} is bounded. It is easy to see that E0

on 2κ is bireducible with this equivalence relation.
For all limit α < κ, define Eα1 to be the equivalence relation on (2α)α

approximating E1 i.e. (xi)i<αE
α
1 (yi)i<α if for some β < α, xi = yi for all

i > β. Now define the reduction F : (2κ)κ → κκ so that for all (xi)i<κ ∈ (2κ)κ,
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F ((xi)i<κ)(α) = 0 if α is not a limit and otherwise it is a code for the Eα1 -
equivalence class of (xi �α)i<α.

Clearly F is continuous and if (xi)i<κE1(yi)i<κ, then also F ((xi)i<κ) and
F ((yi)i<κ) are E0-equivalent (if β < κ witnesses the first equivalence, it witnesses
also the second).

Also if (xi)i<κ and (yi)i<κ are not E1 equivalent, then for all α < κ there
are γ, β < κ such that β > α and xβ(γ) 6= yβ(γ). Let f(α) be max{β, γ}. Now
if α∗ < κ is such that for all α < α∗, f(α) < α∗, then clearly (xi �α∗)i<α∗ and
(yi �α∗)i<α∗ are not Eα

∗
1 -equivalent, and thus F ((xi)i<κ)(α∗) 6= F ((yi)i<κ)(α∗).

Since the set of such α∗ is unbounded, F ((xi)i<κ) and F ((yi)i<κ) are not E0-
equivalent.

5 Definition. If E is an equivalence relation on 2κ, its jump is the equivalence
relation denoted by E+ on (2κ)κ defined as follows. Two sequences (xα)α<κ and
(yα)α<κ are E+-equivalent, if

{[xα]E | α < κ} = {[yα]E | α < κ}

where [x]E is the equivalence class of x in E. Since (2κ)κ is homeomorphic to
2κ we can assume without loss of generality that E+ is also defined on 2κ.

For an ordinal α < κ+ define Eα+ by transfinite induction. To begin, define
E0+ = E. If Eα+ is defined, then E(α+1)+ = (Eα+)+.

Suppose α is a limit and Eβ+ is defined to be an equivalence relation on 2κ

for β < α. Let X be the disjoint union of α many copies of 2κ. Denote the
β:th copy by Xβ, thus X =

⋃
β<αXβ. Let h be a homeomorphism X → 2κ.

Two functions η and ξ are defined to be Eα+-equivalent, if h−1(η) and h−1(ξ)
belong both to the same Xβ and are Eβ+-equivalent. This is called the join of
the equivalence relations {Eβ+ | β < α} and is denoted

⊕
β<αE

β+.

6 Theorem. E0 <B id+

Proof. The reduction is defined by

E0 6B id+ : η 7→ (p+ η)p∈2<κ .

Suppose f : 2κ → (2κ)κ is a Borel reduction from id+ to E0. There is a
co-meager set D on which f is continuous. Without loss of generality assume
that this D is the intersection

⋂
i<κDi where Di are dense open.

For every i < κ we will define ordinals γi together with sequences xi =
(xiα)α<γi and yi = (yiα)α<γi where each xiα, y

i
α ∈ 2γi and permutations πi ∈ Sγi .

These will satisfy the following requirements for every i < j < κ:
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1. πi ⊆ πj .

2. γi 6 γj ,

3. For all α < γi we have xiα ⊆ x
j
α and yiα ⊆ y

j
α.

4. For all α < γi we have xiα = yiπi(α).

5. Let [(xiα)α<γi ] be the set of all x = (xα)α<κ ∈ (2κ)κ such that xiα ⊆ xα for
all α. There exist β > i, δ < κ and p, q ∈ (2δ)β+1 such that

f [[(xiα)α<γi ] ∩D] ⊆ [p],

f [[(yiα)α<γi ] ∩D] ⊆ [q]

and p(β) 6= q(β).

6. [(xi+1
α )α<γi+1 ] ⊆ Di and [(yi+1

α )α<γi+1 ] ⊆ Di

This will lead to a contradiction as follows. Let x̃ = (x̃α)α<κ be such that
for every α we have x̃α � γi = xiα if γi > α. This is possible by (2) and (3).
Analogously define ỹ. Now by (1) we can define π =

⋃
i<κ πi which by (4)

witnesses that x̃ and ỹ are id+-equivalent. By (6) they are in D and by continuity
in D and by (5) the images f(x̃) and f(ỹ) cannot be E0-equivalent.

Let x∗ = (x∗α)α<κ and y∗ = (y∗α)α<κ be any sequences in D such that x∗

is not id+-equivalent to y∗. Find these for example as follows: We will define
sequences (ξk)k<κ and (ηk)k<κ and ordinals εk such that for all k < κ we have
ξk, ηk ∈ (2εk)εk , for k1 < k2 we have εk1 < εk2 , ξk1 ⊆ ξk2 and ηk1 ⊆ ηk2 , and
the unions

⋃
k<κ ξk and

⋃
k<κ ηk are in D and not id+-equivalent. This is easy:

Let ε0 = 0, ξ0 = ∅ and η0 = ∅. If ξk and ηk are defined, first extend ξk to
an element ξ′k+1 ∈ (2ε

′
k+1)ε

′
k+1 (for suitable ε′k+1 > εk) such that [ξ′k+1] ⊆ Dk.

Then extend the first component of ηk so that it differs in a diagonal way from
every component of ξ′k+1. After that, extend the result into ηk+1 ∈ (2εk+1)εk+1

(for suitable εk+1 > ε′k+1) so that [ηk+1] ⊆ Dk and εk+1 > ε′k+1. Finally extend
ξ′k+1 to an element of (2εk+1)εk+1 so that the first component of ηk+1 is still
diagonally different from every component of ξk+1; technically this means that
ηk+1(0)(α) 6= ξk+1(α)(α). At limit k just take the natural limits of the sequences.
In this way at the κ:th limit we obtain ξκ and ηκ are as required, so we can define
x∗ = ξk and y∗ = ηκ.

Let β and δ be such that f(x∗)(β)(δ) 6= f(y∗)(β)(δ) which exist because f is
assumed to be a reduction and f(x∗) and f(y∗) are not E0-equivalent. Now by
continuity in D there is γ∗0 > 0 such that

f [[(x∗α � γ
∗
0)α<γ∗0 ] ∩D] ⊆ [(f(x∗)�(β + 1)]
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and
f [[(y∗α � γ

∗
0)α<γ∗0 ] ∩D] ⊆ [(f(y∗) � (β + 1)]

Then we glue (x∗α �γ
∗
0)α<γ∗0 to the end of (y∗α �γ

∗
0)α<γ∗0 and vice versa:

Let γ0 = γ∗0 + γ∗0 and for all α < γ∗0 define

x0α = x∗α �γ0
y0α = y∗α �γ0

x0γ∗0+α = y∗α �γ0

y0γ∗0+α = x∗α �γ0

Let π0 be the permutation which takes α to γ0+α when α < γ0 and if α = γ0+ε,
then π(α) = ε. So we have defined π0, γ0, (x0α)α<γ0 and (y0α)α<γ0 such that all
the conditions (1)–(6) are satisfied so far.

Suppose that πi, γi, (xiα)α<γi and (yiα)α<γi are defined for i < j such that
the conditions (1)–(6) are satisfied. If j is a limit, then just define πj =

⋃
i<j πi,

xjα =
⋃
i′<i<j x

i
α and yjα =

⋃
i′<i<j y

i
α for some i′ such that γi′ > α and γj =

supi<j γi and γj = supi<j γi.
Suppose j is a successor, in fact w.l.o.g denote the predecessor by i, i.e.

j = i + 1. Next we want to build elements x∗ = (x∗α)α<κ in [(xi)i<γi ] ∩D and
y∗ = (y∗α)α<κ in [(yi)i<γi ] ∩D such that x∗α = y∗π(α) for all α < γi and which are

not id+-equivalent. To do that, define ε0 = γi, ξ0 = (xiα)α<γi and η0 = (yiα)α<γi .
Suppose we have defined ξk and ηk for some k < κ.

First we extend ξk to ξ′k+1 ∈ (2ε
′
k+1)ε

′
k+1 for some suitable ε′k+1 < κ, ε′k+1 > εk

so that [ξ′k+1] ⊆ Dk. Then we extend ηk first to a η′k+1 ∈ (2ε
′
k+1)ε

′
k+1 such that

η′k+1 �γi equals to the action of πi applied to ξ′k+1 �γi and η′k+1 �{γi} diagonally
differs from every component of ξ′k+1. Then extend η′k+1 to ηk+1 ∈ (2εk+1)εk+1

(for a suitable εk+1 > ε′k+1) so that [ηk+1] ⊆ Dk. Finally extend ξ′k+1 to ξk+1 ∈
(2εk+1)εk+1 in any such way that ηk+1 �{γi} differs from every component of ξk+1

in a diagonal way.
At limit k just take the natural limits of the sequences. In this way at the

κ:th limit we obtain ξκ and ηκ which are as required, so we can define x∗ = ξk
and y∗ = ηκ.

Now by continuity and by the fact that x∗ and y∗ are not id+-equivalent,
find γ∗i+1 and β > i+ 1 so that f(x∗)(β) 6= f(y∗)(β) and

f [[(x∗α � γ
∗
i+1)α<γ∗i+1

] ∩D] ⊆ [(f(x∗) � (β + 1)]

and
f [[(y∗α � γ

∗
i+1)α<γ∗i+1

] ∩D] ⊆ [(f(y∗) � (β + 1)].
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Also we make sure that γ∗i+1 is big enough so that (6) is satisfied. Now we want
to glue a part of (x∗α �γ

∗
i+1)α<γ∗i+1

to the end of (y∗α �γ
∗
i+1)α<γ∗i+1

and vice versa:
Let ε = γi+1 − γi, i.e. the order type of γ∗i+1 \ γi and let γi+1 = γ∗i+1 + ε. Define
xi+1
α and yi+1

α for all α < γi+1 depending on α as follows. If α < γ∗i+1, let xi+1
α

to be x∗α � γi+1 and yi+1
α to be y∗α � γi+1. If α = γ∗i+1 + δ for some δ < ε, then

let xi+1
α to be y∗γi+δ and yi+1

α to be x∗γi+δ. This gives us also πi+1 and we are
done.

7 Definition. For a regular cardinal µ < κ and λ ∈ {2, κ} let Eλµ-cub be the

equivalence relation on λκ such that η and ξ are Eλµ-cub-equivalent if the set
{α | η(α) = ξ(α)} contains a µ-cub, i.e. an unbounded set which is closed under
µ-cofinal limits. If T is a countable complete first-order theory, denote by ∼=T

κ

the isomorphism relation on the models of T .

In the following we show that

1. The α:th jump of identity for α < κ+ is reducible to Eκµ-cub for every
regular µ < κ,

2. Every Borel isomorphism relation is reducible to Eκµ-cub for every regular
µ < κ,

3. If T a countable complete first-order classifiable (superstable with NDOP
and NOTOP) and shallow theory, then ∼=κ

T 6B Eκµ-cub.

8 Definition. Fix a limit ordinal α 6 κ and let t be a subtree of α<ω with no
infinite branches. Let h be a function from the leaves of t to 2<α. Then (t, h)
determines the set B(t,h) as follows: p ∈ 2α belongs to B(t,h) if player II has a
winning strategy in the game G(p, t, h): The players start at the root and then
one after another choose a successor of the node they are in and then move to
that successor. Player I starts. Eventually they reach a leaf l and player II wins
if h(l) ⊂ p. We say that (t, h) is a Borel code for α.

If α = κ, it is easy to see by induction on the rank of the tree that B(t,h) is a
usual Borel set and conversely, if B ⊂ 2κ is any Borel set, then there is a Borel
code (t, h) for κ such that B = B(t,h).

If t is replaced by a more general κ+κ-tree (subtree of κ<κ without branches
of length κ), then the sets that are obtained in this way are the so called Borel∗

sets, see [Bla81, MV93, Hal96, FHK13].
Suppose (t, h) is a Borel code for κ and α < κ. Say that α is good for (t, h),

if for all leaves l ∈ t with ht(l) < α we have h(l) ∈ 2<α. Clearly the set of good
α for a fixed (t, h) is a cub set.
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Define the α:th approximation of (t, h), denoted (t, h) � α to be the pair
(t �α, h �α) where t �α = t ∩ α<ω and for all leaves l of t �α, (h �α) = h � (t �α).
It is obvious that if (t, h) is a Borel code for κ and α < κ is good for (t, h), then
(t, h)�α is a Borel code for α.

By replacing 2<α by (2<α)2 for the range of h and making necessary changes
we can define Borel codes for subsets of (2α)2.

Note that the game G(p, t, h) is determined for all p ∈ 2α (this is not the
case for general Borel∗-sets).

Make a similar definition for codes of Borel subsets of 2κ × 2κ.

9 Lemma. Suppose that B = B(t,h) is a Borel subset of 2κ × 2κ. Then

(η, ξ) ∈ B ⇐⇒ (η �α, ξ �α) ∈ B(t,h)�α

for cub-many α and (η, ξ) /∈ B ⇐⇒ (η �α, ξ �α) /∈ B(t,h)�α for cub-many α.

Proof. Suppose (η, ξ) ∈ B and let σ be a winning strategy of player II in
G((η, ξ), t, h). Let C be the set of those limit α which are good for (t, h) and
that t�α is closed under σ. Clearly (η �α, ξ �α) ∈ B(t,h)�α for all α ∈ C and C is
cub.

Conversely, if (η, ξ) /∈ B, then player I has a winning strategy τ inG((η, ξ), t, h)
and by closing under τ we obtain the needed cub set again.

10 Lemma. Let S be the set of Borel equivalence relations E such that for some
Borel code (t, h), E = B(t,h) and B(t,h)�α is an equivalence relation for cub-many
α < κ. Then S contains id and is closed under jump and the join operation

⊕
as in the definition of iterated jump, Definition 5.

Proof. Enumerate 2<κ = {pα | α < κ}. Let t = κ1 and h(α) = (pα, pα). Clearly
id = B(t,h) and for those α for which {pi | i < α} = 2<α, B(t,h)�α is the identity
on 2α and this is clearly a cub set.

Suppose E is in S and (t, h) is a code for E witnessing that and that C is
a cub set on which E(t,h) is an equivalence relation. It is not difficult to design
a Borel code (t+, h+) for the jump E+ and check that for cub many α ∈ C,
B(t+,h+)�α is the jump of B(t,h)�α.

Similarly suppose that Ei ∈ S are equivalence relations for i < κ and witness-
ing codes (ti, hi) are given with Ci cub sets such that B(ti,hi)�α is an equivalence
relation for each α ∈ Ci. Then it is not difficult to design a code (t, h) so that
B(t,h) is

⊕
i<κEi and for cub many α ∈ ∇i<κCi, B(t,h)�α is

⊕
i<αB(ti,hi)�α

It follows that S contains all iterates of the jump id+β, β < κ+.
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11 Theorem. Let E be an equivalence relation in S. Then E is reducible to
Eκµ-cub for any regular µ < κ (see Definition 7).

Proof. Let E be B(t,h) where (t, h) witnesses that E belongs to S. To each η
assign the function fη where fη(α) is a code for the B(t,h)�α equivalence class of
η �α (if cf(α) = µ andB(t,h)�α is an equivalence relation, 0 otherwise). By Lemma
9, if ηEξ then fη(α) = fξ(α) for µ-cub-many α and if ¬ηEξ then fη(α) 6= fξ(α)
for µ-cub-many α.

12 Corollary. The iterated jumps idα+ of the identity are reducible to Eκµ-cub
for each regular µ < κ.

13 Corollary. If M is a Borel class of models such that ∼=M, the isomorphism
relation on M is Borel, then ∼=M is Borel reducible to Eκµ-cub for all regular
µ < κ.

Proof. Using similar techniques as in classical descriptive set theory (see e.g.
[Gao09, Lemma 12.2.7]) one can show that a Borel isomorphism can be reduced
to an iterated jump of identity.

14 Corollary. Suppose T a countable complete first-order classifiable (super-
stable with NDOP and NOTOP) and shallow theory, then ∼=κ

T 6B Eκµ-cub.

Proof. By [FHK13, Theorem 68] the isomorphism relation of a classifiable shal-
low theory is Borel, so we apply Corollary 13.

We have shown in [FHK13, Theorem 75] that under certain cardinality as-
sumptions on κ, a complete countable first-order theory T is classifiable if and
only if for all regular µ < κ, E2

µ-cub 66B ∼=T , see Definition 7, where ∼=T is the

isomorphism on Mod(T ). Clearly E2
µ-cub 6B Eκµ-cub.

15 Question. Is Eκµ-cub reducible to E2
µ-cub?

If the answer to Question 15 is “yes” then using [FHK13, Theorem 75] we
obtain: Suppose T1 and T2 are complete first-order theories with T1 classifiable
and shallow and T2 non-classifiable. Also suppose that κ = λ+ = 2λ > 2ω where
λ<λ = λ. Then ∼=T1 is Borel reducible to ∼=T2 .
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