On Borel Reducibility in Generalised Baire Space

Sy-David Friedman^{*}, Tapani Hyttinen[†], Vadim Kulikov[‡]

February 14, 2014

Abstract

In this paper we study the Borel reducibility of Borel equivalence relations on the generalised Baire space κ^{κ} for an uncountable κ with the property $\kappa^{<\kappa} = \kappa$. The theory looks quite different from its classical counterpart where $\kappa = \omega$, although some basic theorems do generalise.

We study the generalisations of classical descriptive set theory of Polish spaces to the setting where instead of the Baire space ω^{ω} we look at the generalised Baire space κ^{κ} of all functions from κ to κ where κ is an uncountable cardinal which satisfies $\kappa^{<\kappa} = \kappa$. The topology on this space is generated by the basic open sets

$$[p] = \{\eta \in \kappa^{\kappa} \mid \eta \supset p\}$$

where $p \in \kappa^{<\kappa}$. The resulting collection of open sets is closed under intersections of length $< \kappa$. The class of κ -Borel sets in this space is the smallest class containing the basic open sets and which is closed under taking unions and intersections of length κ .

In this paper we often work with spaces of the form $(2^{\alpha})^{\beta}$ for some ordinals $\alpha, \beta \leq \kappa$. If $x \in (2^{\alpha})^{\beta}$, then technically x is a function $\beta \to 2^{\alpha}$ and we denote by $x_{\gamma} = x(\gamma)$ the value at $\gamma < \beta$. Thus x_{γ} is a function $\alpha \to 2$ for each γ and we denote the value at $\delta < \alpha$ by $x_{\gamma}(\delta)$. The lengthier notation for $x \in (2^{\alpha})^{\beta}$ is $(x_{\gamma})_{\gamma < \beta}$ as a β -sequence of functions $\alpha \to 2$.

We say that a topological space is κ -Baire, if the intersection of κ many dense open sets is never empty. The generalised Baire space is κ -Baire [MV93]. If X is a topological space, we say that $A \subseteq X$ is κ -meager if its complement contains an intersection of κ many dense open sets. Thus, X is κ -Baire if and

^{*}Kurt Gödel Research Center, Vienna. The first and third authors wish to thank the FWF (Austrian Science Fund) for its support through Einzelprojekt P24654-N25.

[†]Mathematics Department, University of Helsinki.

[‡]Kurt Gödel Research Center, Vienna.

only if X is itself not meager (we always drop the prefix " κ -"). The complement of a meager set is called *co-meager*. A set $A \subseteq X$ has the *Baire property* if there exists an open set U such that the symmetric difference $U \bigtriangleup A$ is meager. When we write $\forall^* x \in A(P(x))$ we mean that there is a co-meager set such that every element of that set which belongs to A satisfies P. We write $\exists^* x \in A(P(x))$ to mean that there exists a non-meager set such that every element of that set which belongs to A satisfies P.

1 Equivalence Relations Induced by a Group Action

Suppose G is a topological group. Let X be a Borel subset of κ^{κ} . An action $\rho: G \times X \to X$ is *Borel* if it is Borel as a function i.e. inverse images of open sets are Borel. This action induces an equivalence relation on X in which two elements x and y are equivalent if there exists $g \in G$ such that $\rho(g, x) = y$. For example, if the action is Borel, then it is easy to see that this equivalence relation is Σ_1^1 . This equivalence relation is denoted by $E_{G,\rho}^X$, or just E_G^X if the action is clear from the context.

Here are some examples of equivalence relations induced by a Borel action:

- id the identity relation.
- id⁺ the jump of identity. This is an equivalence relation on $(2^{\kappa})^{\kappa}$ where $(x_{\alpha})_{\alpha < \kappa}$ and $(y_{\alpha})_{\alpha < \kappa}$ are equivalent if the sets $\{x_{\alpha} \mid \alpha < \kappa\}$ and $\{y_{\alpha} \mid \alpha < \kappa\}$ are equal (see Definition 5). This is not defined as an equivalence relation induced by a Borel action, but is easily seen to be bireducible with id^+_* which is an equivalence relation on $(2^{\kappa})^{\kappa}$ where $(x_{\alpha})_{\alpha < \kappa}$ and $(y_{\alpha})_{\alpha < \kappa}$ are equivalent if there exists a permutation $s \in S_{\kappa}$ (S_{κ} is the group of all permutations of κ) such that $x_{\alpha} = y_{s(\alpha)}$ for all α . The latter is induced by a Borel action of S_{κ} .
- E_0 an equivalence relation on 2^{κ} where $(\eta, \xi) \in E_0$ if there exists $\alpha < \kappa$ such that for all $\beta > \alpha$ we have $\eta(\beta) = \xi(\beta)$.
- E_1 an equivalence relation on $(2^{\kappa})^{\kappa}$ where $(x_{\alpha})_{\alpha < \kappa}$ and $(y_{\alpha})_{\alpha < \kappa}$ are equivalent if there exists $\alpha < \kappa$ such that for all $\beta > \alpha$ we have $x_{\beta} = y_{\beta}$.

Since all the topologies in this paper are closed under intersections of length $< \kappa$, we replace "finite" by "less than κ " when referring to product topologies below.

1 Theorem. Let G be a discrete group of cardinality $\leq \kappa$ and let it act in a Borel way on a Borel subset $X \subseteq 2^{\kappa}$. Let E_G^X be the (Borel) equivalence relation induced by this action. Then $E_G^X \leq_B E_0$.

Proof. The group G acts on $\mathcal{P}(G)^{\kappa}$ coordinatewise by multiplication on the right $g \cdot (X_i)_{i < \kappa} = (X_i g)_{i < \kappa}$. This gives rise to the equivalence relation $E_G^{P(G)^{\kappa}}$.

1.1 Claim. $E_G^X \leq_B E_G^{\mathcal{P}(G)^{\kappa}}$.

Proof. Let $\pi \colon \kappa \to 2^{<\kappa}$ be a bijection. Let $x \in X$ and for each $\alpha < \kappa$ let

$$Z_{\alpha}(x) = \{g \in G \mid gx \in [\pi(\alpha)]\}.$$

This defines a reduction: an element $x \in X$ is mapped to $(Z_{\alpha}(x))_{\alpha < \kappa}$. Suppose there is $g_0 \in G$ such that $y = g_0 x$ for some $x, y \in X$. Then

$$Z_{\alpha}(x) = \{g \in G \mid gx \in [\pi(\alpha)]\}$$

= $\{gg_0 \in G \mid gy \in [\pi(\alpha)]\}$
= $Z_{\alpha}(y)g_0.$

On the other hand suppose that there exists $g \in G$ such that $Z_{\alpha}(x) = Z_{\alpha}(y)g$ for all $\alpha < \kappa$. It is enough to show that $g^{-1}y \in [p]$ for all basic open neighbourhoods [p] of x. So suppose U = [p] is a basic neighbourhood containing x and let $\alpha = \pi^{-1}(p)$. Now obviously $1_G \in Z_{\alpha}(x)$, so $1_G \in Z_{\alpha}(y)g$ and thus $g^{-1} \in Z_{\alpha}(y)$, i.e. $g^{-1}y \in [p]$. $\Box_{\text{Claim 1.1}}$

For a set S, F_S is the free group generated by elements of S. $F_{\emptyset} = F_0$ is the trivial group.

1.2 Claim. $E_G^{\mathcal{P}(G)^{\kappa}} \leq_B E_{F_{\kappa}}^{\mathcal{P}(F_{\kappa})^{\kappa}}$.

Proof. Since G has size $\leq \kappa$ and F_{κ} is a free group on κ generators, there is a normal subgroup $N \subseteq F_{\kappa}$ such that $G \cong F_{\kappa}/N$. Assume without loss of generality that $G = F_{\kappa}/N$. Let pr be the canonical projection map $F_{\kappa} \to F_{\kappa}/N$. For $(A_{\alpha})_{\alpha < \kappa} \in \mathcal{P}(G)^{\kappa}$, let

$$F((A_{\alpha})_{\alpha < \kappa}) = (\operatorname{pr}^{-1} A_{\alpha})_{\alpha < \kappa}.$$

This is clearly a continuous reduction.

 $\Box_{\text{Claim 1.2}}$

1.3 Claim.
$$E_{F_{\kappa}}^{\mathcal{P}(F_{\kappa})^{\kappa}} \leq_{B} E_{0}$$
.

Proof. The space $\mathcal{P}(F_{\kappa})^{\kappa}$ can be canonically thought to be the same as $(2^{\kappa})^{F_{\kappa}}$ the bijection being defined by $(A_{\alpha})_{\alpha < \kappa} \mapsto x$ where $x(g)(\alpha) = 1$ if and only if $g \in A_{\alpha}$. This space is equipped with the product topology (recall that our

definition of product topology is non-standard, see page 2): a basic open set is given by

$$\{x \mid x(g) \restriction \alpha = p\}$$

for some ordinal $\alpha < \kappa$, some $g \in F_{\kappa}$ and some $p \in 2^{<\kappa}$ and the resulting collection of open sets is closed under intersections of length $< \kappa$. The action of F_{κ} on $(2^{\kappa})^{F_{\kappa}}$ is then defined by g * x = y where $y(f)(\alpha) = 1$ if and only if $x(fg^{-1})(\alpha) = 1$ for all $f \in F_{\kappa}$.

This space is more convenient for us to work with. Additionally we identify 2^{α} with $\mathcal{P}(\alpha)$ for all α and write $2^{\alpha} \subseteq 2^{\beta}$, meaning that an element p of 2^{α} is identified with q in 2^{β} where q is just p with " $\beta - \alpha$ " zeros at the end.

Let us look at the sets $X_{\alpha} = (2^{\alpha})^{F_{\alpha}}$ for $\alpha \leq \kappa$.

If $w \in X_{\beta}$ and $\alpha < \beta$, denote by $w \upharpoonright \alpha$ the element v of X_{α} such that $v(g) = w(g) \upharpoonright \alpha$ for all $g \in F_{\alpha}$. Thus, by the identifications we made, $X_{\alpha} \subseteq X_{\beta} \subseteq X_{\kappa}$ for all $\alpha < \beta < \kappa$. For every $\alpha < \kappa$ fix a well-ordering $<_{\alpha}$ of X_{α} . Given $g \in F_{\alpha}$ and $w \in X_{\alpha}$, let $g * w \in X_{\alpha}$ be the element such that $(g * w)(f) = w(fg^{-1})$ for all $f \in F_{\alpha}$. This is an action of F_{α} on X_{α} and for $\alpha = \kappa$ it coincides with the original action of F_{κ} on $\mathcal{P}(F_{\kappa})^{\kappa}$ under the mentioned identifications.

Fix $x \in X_{\kappa}$. For each α , let $x(\alpha)$ be the $<_{\alpha}$ -least element of

$$\{g * (x \restriction \alpha) \mid g \in F_{\alpha}\}$$

and let $H(x) = (x(\alpha))_{\alpha < \kappa}$. We claim that for all $x, y \in X_{\kappa}$, y = g * x for some $g \in F_{\kappa}$ if and only if there exists $\beta < \kappa$ such that for all $\alpha > \beta$, $x(\alpha) = y(\alpha)$.

Assume first that such $g \in F_{\kappa}$ exists. Then $g \in F_{\beta}$ for some $\beta < \kappa$ and for all $\alpha > \beta$, $g \in F_{\alpha}$. Thus, it is obvious that $x(\alpha) = y(\alpha)$ for $\alpha > \beta$, because for these α

$$\{g * (x \restriction \alpha) \mid g \in F_{\alpha}\} = \{g * (y \restriction \alpha) \mid g \in F_{\alpha}\}.$$

Assume now that there exists $\beta < \kappa$ such that for all $\alpha > \beta$, $x(\alpha) = y(\alpha)$. Then for each $\alpha > \beta$ there exists $g_{\alpha} \in F_{\alpha}$ such that $x \upharpoonright \alpha = g_{\alpha} * (y \upharpoonright \alpha)$. For each $\alpha > \beta$, let $\gamma(\alpha)$ be the least ordinal such that $g_{\alpha} \in F_{\gamma(\alpha)}$. If α is a limit ordinal, then $\gamma(\alpha) < \alpha$ and so there is γ_0 and a stationary $S_0 \subseteq \lim \kappa$ such that for all $\alpha \in S_0$ we have $g_{\alpha} \in F_{\gamma_0}$. Since $|F_{\gamma_0}| < \kappa$, there is a stationary $S \subseteq S_0$ and $g_* \in F_{\gamma_0}$ such that for all $\alpha \in S$ we have $g_{\alpha} = g_*$. Since S is unbounded, this obviously implies that $y = g_* * x$.

Fix bijections $f_{\alpha}: X_{\alpha} \to \kappa$ and map each $x \in X_{\kappa}$ to the sequence $(f_{\alpha}(x(\alpha)))_{\alpha < \kappa}$ and denote this mapping by G. By the above we have x = g * y for some $g \in F_{\kappa}$ if and only if $(G(x), G(y)) \in E_0$. It remains to show that G is continuous.

Suppose $x \in X_{\kappa}$ and take an open neighbourhood U of G(x). Then there is β such that

$$\{\eta \in \kappa^{\kappa} \mid \forall \alpha < \beta(\eta(\alpha) = f_{\alpha}(x(\alpha)))\} \subseteq U.$$

Now, the set $\{y \in F_{\kappa} \mid y \upharpoonright \beta = x \upharpoonright \beta\}$ is mapped inside U and contains x, so it remains to show that this set is open, but this follows from the definition of the topology on $(2^{\kappa})^{F_{\kappa}}$ in particular that the collection of open sets is closed under intersections of length $< \kappa$.

 $\Box_{\text{Theorem 1}}$

2 Theorem (V = L). There is a Borel equivalence relation E whose classes have size 2, which is smooth (i.e. Borel reducible to id) yet which is not induced by a Borel action of a group of size $\leq \kappa$.

Proof.

2.1 Claim. There is an open dense set $O \subseteq 2^{\kappa}$ and a bijection $f: O \to 2^{\kappa} \setminus O$ such that the graph of f is Borel, but f is not Borel as a function on any non-meager Borel set. However the inverse of f is Borel.

Proof. We let O be the complement of a certain closed set of "master codes" for size κ initial segments of L. This is defined as follows. Let \mathcal{L} be the language of set theory augmented by constant symbols $\bar{\alpha}$ for each ordinal $\alpha < \kappa$. Also let T_0 denote the theory ZFC⁻ (ZFC minus the power set axiom) plus V = L plus the statement "there are only boundedly many ordinals β such that L_{β} satisfies ZFC⁻". We consider complete, consistent theories T which extend T_0 and which in addition satisfy the following:

1. There is no ω -sequence of formulas $\varphi_n(x)$ (mentioning constants $\bar{\alpha}$ for $\alpha < \kappa$) such that for each n both the sentence " $\exists ! x \varphi_n(x)$ " and the sentence " $\exists x, y(\varphi_n(x) \land \varphi_{n+1}(y) \land y \in x)$ " belong to T.

2. For each $\beta < \kappa$ and formula $\varphi(x)$ (mentioning constants $\bar{\alpha}$ for $\alpha < \kappa$) if the sentences " $\exists ! x \varphi(x)$ " and " $\exists x (\varphi(x) \land x < \bar{\beta})$ " both belong to T then so does the sentence " $\exists x (\varphi(x) \land x = \bar{\gamma})$ " for some $\gamma < \beta$.

By identifying sentences of \mathcal{L} with ordinals less than κ we can regard theories in \mathcal{L} as subsets of κ . Now let $C \subseteq 2^{\kappa}$ be the set of theories T as above. Then C is a closed set. And C is nowhere dense as any set of \mathcal{L} -sentences of size less than κ is included in an inconsistent such set.

The theories in C are exactly the first-order theories of structures of the form L_{β} in which the constant symbol $\bar{\alpha}$ is interpreted as the ordinal α for each $\alpha < \kappa$ and in which the axioms of T_0 hold. And for each T in C there is a unique such model M(T) in which every element is definable from parameters less than κ .

We are ready to define the function $f: O \to C$ where O is the complement of C in 2^{κ} . List the elements of O in $<_L$ -increasing order as x_0, x_1, \ldots and list the elements of C in $<_L$ -increasing order as y_0, y_1, \ldots ; then we set $f(x_i) = y_i$ for each $i < \kappa^+$. The inverse of f is Borel because given $y \in C$ we can identify $f^{-1}(y)$ (viewed as a subset of κ) as the set of $\gamma < \kappa$ such that the sentence " γ belongs to the *i*-th element in the $<_L$ -increasing enumeration of 2^{κ} where *i* is the order type of the set of β such that L_{β} models T_0 " belongs to (the theory associated to) y. Thus the graph of f is Borel. If B is a non-meager Borel set and g is a Borel function then we claim that g cannot agree with f on B: Indeed, let β_0 be so that L_{β_0} models ZFC⁻ and contains Borel codes for both B and g and let $x \in B \cap O$ be κ -Cohen generic over L_{β_0} . Then f(x) = T is the theory of a model $M(T) = L_{\beta}$ where β is greater than β_0 . But g(x) belongs to $L_{\beta_0}[x]$, which by the genericity of x is a model of ZFC⁻ while $L_{\beta_0}[f(x)]$ does not satisfy ZFC⁻ as f(x) = T codes the model L_{β} .

Define xEy if and only if x = y, y = f(x) or x = f(y). Now E has a Borel transversal, i.e., there is a Borel function t such that xEt(x) for all x and xEy if and only if t(x) = t(y) for all x, y: Given $x \in 2^{\kappa}$, first decide in a Borel way if x is in O or not. If yes, then let t(x) = x, otherwise, find $f^{-1}(x)$ in a Borel way (since f^{-1} is Borel) and let $t(x) = f^{-1}(x)$. This t(x) is a Borel transversal. It follows that E is smooth.

Finally, suppose E is given by a Borel action of some group G of size at most κ . Then for each $x \in O$ choose $g_x \in G$ such that $f(x) = g_x \cdot x$; then for some fixed $g \in G$, $f(x) = g \cdot x$ for non-meager many $x \in O$, contradicting the fact that f is not Borel on any non-meager Borel set.

3 Question. Is there a Borel equivalence relation with classes of size κ which is not reducible to E_0 ?

2 E_1 and E_{club}

Let E_1 be the equivalence relation on $(2^{\kappa})^{\kappa}$ where $(x_{\alpha})_{\alpha < \kappa}$ and $(y_{\alpha})_{\alpha < \kappa}$ are equivalent if there exists $\beta < \kappa$ such that for all $\gamma > \beta$, $x_{\gamma} = y_{\gamma}$.

4 Theorem. E_1 and E_0 are bireducible.

Proof. It is obvious that $E_0 \leq B E_1$, so let us look at the other direction.

To simplify notation, we think of E_0 on κ^{κ} : two functions η and ξ are E_0 -equivalent if the set $\{\alpha < \kappa \mid \eta(\alpha) \neq \xi(\alpha)\}$ is bounded. It is easy to see that E_0 on 2^{κ} is bireducible with this equivalence relation.

For all limit $\alpha < \kappa$, define E_1^{α} to be the equivalence relation on $(2^{\alpha})^{\alpha}$ approximating E_1 i.e. $(x_i)_{i<\alpha}E_1^{\alpha}(y_i)_{i<\alpha}$ if for some $\beta < \alpha$, $x_i = y_i$ for all $i > \beta$. Now define the reduction $F: (2^{\kappa})^{\kappa} \to \kappa^{\kappa}$ so that for all $(x_i)_{i<\kappa} \in (2^{\kappa})^{\kappa}$, $F((x_i)_{i < \kappa})(\alpha) = 0$ if α is not a limit and otherwise it is a code for the E_1^{α} -equivalence class of $(x_i \upharpoonright \alpha)_{i < \alpha}$.

Clearly F is continuous and if $(x_i)_{i < \kappa} E_1(y_i)_{i < \kappa}$, then also $F((x_i)_{i < \kappa})$ and $F((y_i)_{i < \kappa})$ are E_0 -equivalent (if $\beta < \kappa$ witnesses the first equivalence, it witnesses also the second).

Also if $(x_i)_{i < \kappa}$ and $(y_i)_{i < \kappa}$ are not E_1 equivalent, then for all $\alpha < \kappa$ there are $\gamma, \beta < \kappa$ such that $\beta > \alpha$ and $x_\beta(\gamma) \neq y_\beta(\gamma)$. Let $f(\alpha)$ be $max\{\beta,\gamma\}$. Now if $\alpha^* < \kappa$ is such that for all $\alpha < \alpha^*$, $f(\alpha) < \alpha^*$, then clearly $(x_i \upharpoonright \alpha^*)_{i < \alpha^*}$ and $(y_i \upharpoonright \alpha^*)_{i < \alpha^*}$ are not $E_1^{\alpha^*}$ -equivalent, and thus $F((x_i)_{i < \kappa})(\alpha^*) \neq F((y_i)_{i < \kappa})(\alpha^*)$. Since the set of such α^* is unbounded, $F((x_i)_{i < \kappa})$ and $F((y_i)_{i < \kappa})$ are not E_0 equivalent.

5 Definition. If E is an equivalence relation on 2^{κ} , its *jump* is the equivalence relation denoted by E^+ on $(2^{\kappa})^{\kappa}$ defined as follows. Two sequences $(x_{\alpha})_{\alpha < \kappa}$ and $(y_{\alpha})_{\alpha < \kappa}$ are E^+ -equivalent, if

$$\{[x_{\alpha}]_E \mid \alpha < \kappa\} = \{[y_{\alpha}]_E \mid \alpha < \kappa\}$$

where $[x]_E$ is the equivalence class of x in E. Since $(2^{\kappa})^{\kappa}$ is homeomorphic to 2^{κ} we can assume without loss of generality that E^+ is also defined on 2^{κ} .

For an ordinal $\alpha < \kappa^+$ define $E^{\alpha+}$ by transfinite induction. To begin, define $E^{0+} = E$. If $E^{\alpha+}$ is defined, then $E^{(\alpha+1)+} = (E^{\alpha+})^+$.

Suppose α is a limit and $E^{\beta+}$ is defined to be an equivalence relation on 2^{κ} for $\beta < \alpha$. Let X be the disjoint union of α many copies of 2^{κ} . Denote the β :th copy by X_{β} , thus $X = \bigcup_{\beta < \alpha} X_{\beta}$. Let h be a homeomorphism $X \to 2^{\kappa}$. Two functions η and ξ are defined to be $E^{\alpha+}$ -equivalent, if $h^{-1}(\eta)$ and $h^{-1}(\xi)$ belong both to the same X_{β} and are $E^{\beta+}$ -equivalent. This is called the *join* of the equivalence relations $\{E^{\beta+} \mid \beta < \alpha\}$ and is denoted $\bigoplus_{\beta < \alpha} E^{\beta+}$.

6 Theorem. $E_0 <_B \mathrm{id}^+$

Proof. The reduction is defined by

$$E_0 \leqslant_B \operatorname{id}^+: \eta \mapsto (p+\eta)_{p \in 2^{<\kappa}}.$$

Suppose $f: 2^{\kappa} \to (2^{\kappa})^{\kappa}$ is a Borel reduction from id⁺ to E_0 . There is a co-meager set D on which f is continuous. Without loss of generality assume that this D is the intersection $\bigcap_{i < \kappa} D_i$ where D_i are dense open.

For every $i < \kappa$ we will define ordinals γ_i together with sequences $x^i = (x^i_{\alpha})_{\alpha < \gamma_i}$ and $y^i = (y^i_{\alpha})_{\alpha < \gamma_i}$ where each $x^i_{\alpha}, y^i_{\alpha} \in 2^{\gamma_i}$ and permutations $\pi_i \in S_{\gamma_i}$. These will satisfy the following requirements for every $i < j < \kappa$:

- 1. $\pi_i \subseteq \pi_j$.
- 2. $\gamma_i \leqslant \gamma_j$,
- 3. For all $\alpha < \gamma_i$ we have $x_{\alpha}^i \subseteq x_{\alpha}^j$ and $y_{\alpha}^i \subseteq y_{\alpha}^j$.
- 4. For all $\alpha < \gamma_i$ we have $x^i_{\alpha} = y^i_{\pi_i(\alpha)}$.
- 5. Let $[(x_{\alpha}^{i})_{\alpha < \gamma_{i}}]$ be the set of all $x = (x_{\alpha})_{\alpha < \kappa} \in (2^{\kappa})^{\kappa}$ such that $x_{\alpha}^{i} \subseteq x_{\alpha}$ for all α . There exist $\beta > i, \delta < \kappa$ and $p, q \in (2^{\delta})^{\beta+1}$ such that

$$f[[(x_{\alpha}^{i})_{\alpha < \gamma_{i}}] \cap D] \subseteq [p],$$
$$f[[(y_{\alpha}^{i})_{\alpha < \gamma_{i}}] \cap D] \subseteq [q]$$

and $p(\beta) \neq q(\beta)$.

6. $[(x_{\alpha}^{i+1})_{\alpha < \gamma_{i+1}}] \subseteq D_i$ and $[(y_{\alpha}^{i+1})_{\alpha < \gamma_{i+1}}] \subseteq D_i$

This will lead to a contradiction as follows. Let $\tilde{x} = (\tilde{x}_{\alpha})_{\alpha < \kappa}$ be such that for every α we have $\tilde{x}_{\alpha} \upharpoonright \gamma_i = x_{\alpha}^i$ if $\gamma_i > \alpha$. This is possible by (2) and (3). Analogously define \tilde{y} . Now by (1) we can define $\pi = \bigcup_{i < \kappa} \pi_i$ which by (4) witnesses that \tilde{x} and \tilde{y} are id⁺-equivalent. By (6) they are in D and by continuity in D and by (5) the images $f(\tilde{x})$ and $f(\tilde{y})$ cannot be E_0 -equivalent.

Let $x^* = (x_{\alpha}^*)_{\alpha < \kappa}$ and $y^* = (y_{\alpha}^*)_{\alpha < \kappa}$ be any sequences in D such that x^* is not id⁺-equivalent to y^* . Find these for example as follows: We will define sequences $(\xi_k)_{k < \kappa}$ and $(\eta_k)_{k < \kappa}$ and ordinals ε_k such that for all $k < \kappa$ we have $\xi_k, \eta_k \in (2^{\varepsilon_k})^{\varepsilon_k}$, for $k_1 < k_2$ we have $\varepsilon_{k_1} < \varepsilon_{k_2}$, $\xi_{k_1} \subseteq \xi_{k_2}$ and $\eta_{k_1} \subseteq \eta_{k_2}$, and the unions $\bigcup_{k < \kappa} \xi_k$ and $\bigcup_{k < \kappa} \eta_k$ are in D and not id⁺-equivalent. This is easy: Let $\varepsilon_0 = 0$, $\xi_0 = \emptyset$ and $\eta_0 = \emptyset$. If ξ_k and η_k are defined, first extend ξ_k to an element $\xi'_{k+1} \in (2^{\varepsilon'_{k+1}})^{\varepsilon'_{k+1}}$ (for suitable $\varepsilon'_{k+1} > \varepsilon_k$) such that $[\xi'_{k+1}] \subseteq D_k$. Then extend the first component of η_k so that it differs in a diagonal way from every component of ξ'_{k+1} . After that, extend the result into $\eta_{k+1} \in (2^{\varepsilon_{k+1}})^{\varepsilon_{k+1}}$ (for suitable $\varepsilon_{k+1} > \varepsilon'_{k+1}$) so that $[\eta_{k+1}] \subseteq D_k$ and $\varepsilon_{k+1} > \varepsilon'_{k+1}$. Finally extend ξ'_{k+1} to an element of $(2^{\varepsilon_{k+1}})^{\varepsilon_{k+1}}$ so that the first component of η_{k+1} is still diagonally different from every component of ξ_{k+1} ; technically this means that $\eta_{k+1}(0)(\alpha) \neq \xi_{k+1}(\alpha)(\alpha)$. At limit k just take the natural limits of the sequences. In this way at the κ :th limit we obtain ξ_{κ} and η_{κ} are as required, so we can define $x^* = \xi_k$ and $y^* = \eta_{\kappa}$.

Let β and δ be such that $f(x^*)(\beta)(\delta) \neq f(y^*)(\beta)(\delta)$ which exist because f is assumed to be a reduction and $f(x^*)$ and $f(y^*)$ are not E_0 -equivalent. Now by continuity in D there is $\gamma_0^* > 0$ such that

$$f[[(x_{\alpha}^* \upharpoonright \gamma_0^*)_{\alpha < \gamma_0^*}] \cap D] \subseteq [(f(x^*) \upharpoonright (\beta + 1))]$$

and

$$f[[(y_{\alpha}^* \upharpoonright \gamma_0^*)_{\alpha < \gamma_0^*}] \cap D] \subseteq [(f(y^*) \upharpoonright (\beta + 1)]$$

Then we glue $(x_{\alpha}^* \upharpoonright \gamma_0^*)_{\alpha < \gamma_0^*}$ to the end of $(y_{\alpha}^* \upharpoonright \gamma_0^*)_{\alpha < \gamma_0^*}$ and vice versa: Let $\gamma_0 = \gamma_0^* + \gamma_0^*$ and for all $\alpha < \gamma_0^*$ define

$$\begin{array}{rcl} x^0_{\alpha} &=& x^*_{\alpha} \restriction \gamma_0 \\ y^0_{\alpha} &=& y^*_{\alpha} \restriction \gamma_0 \\ x^0_{\gamma^0_0 + \alpha} &=& y^*_{\alpha} \restriction \gamma_0 \\ y^0_{\gamma^0_0 + \alpha} &=& x^*_{\alpha} \restriction \gamma_0 \end{array}$$

Let π_0 be the permutation which takes α to $\gamma_0 + \alpha$ when $\alpha < \gamma_0$ and if $\alpha = \gamma_0 + \varepsilon$, then $\pi(\alpha) = \varepsilon$. So we have defined π_0 , γ_0 , $(x^0_{\alpha})_{\alpha < \gamma_0}$ and $(y^0_{\alpha})_{\alpha < \gamma_0}$ such that all the conditions (1)–(6) are satisfied so far.

Suppose that π_i , γ_i , $(x^i_{\alpha})_{\alpha < \gamma_i}$ and $(y^i_{\alpha})_{\alpha < \gamma_i}$ are defined for i < j such that the conditions (1)–(6) are satisfied. If j is a limit, then just define $\pi_j = \bigcup_{i < j} \pi_i$, $x^j_{\alpha} = \bigcup_{i' < i < j} x^i_{\alpha}$ and $y^j_{\alpha} = \bigcup_{i' < i < j} y^i_{\alpha}$ for some i' such that $\gamma_{i'} > \alpha$ and $\gamma_j = \sup_{i < j} \gamma_i$ and $\gamma_j = \sup_{i < j} \gamma_i$.

Suppose j is a successor, in fact w.l.o.g denote the predecessor by i, i.e. j = i + 1. Next we want to build elements $x^* = (x^*_{\alpha})_{\alpha < \kappa}$ in $[(x_i)_{i < \gamma_i}] \cap D$ and $y^* = (y^*_{\alpha})_{\alpha < \kappa}$ in $[(y_i)_{i < \gamma_i}] \cap D$ such that $x^*_{\alpha} = y^*_{\pi(\alpha)}$ for all $\alpha < \gamma_i$ and which are not id⁺-equivalent. To do that, define $\varepsilon_0 = \gamma_i$, $\xi_0 = (x^i_{\alpha})_{\alpha < \gamma_i}$ and $\eta_0 = (y^i_{\alpha})_{\alpha < \gamma_i}$. Suppose we have defined ξ_k and η_k for some $k < \kappa$.

First we extend ξ_k to $\xi'_{k+1} \in (2^{\varepsilon'_{k+1}})^{\varepsilon'_{k+1}}$ for some suitable $\varepsilon'_{k+1} < \kappa, \varepsilon'_{k+1} > \varepsilon_k$ so that $[\xi'_{k+1}] \subseteq D_k$. Then we extend η_k first to a $\eta'_{k+1} \in (2^{\varepsilon'_{k+1}})^{\varepsilon'_{k+1}}$ such that $\eta'_{k+1} \upharpoonright \gamma_i$ equals to the action of π_i applied to $\xi'_{k+1} \upharpoonright \gamma_i$ and $\eta'_{k+1} \upharpoonright \{\gamma_i\}$ diagonally differs from every component of ξ'_{k+1} . Then extend η'_{k+1} to $\eta_{k+1} \in (2^{\varepsilon_{k+1}})^{\varepsilon_{k+1}}$ (for a suitable $\varepsilon_{k+1} > \varepsilon'_{k+1}$) so that $[\eta_{k+1}] \subseteq D_k$. Finally extend ξ'_{k+1} to $\xi_{k+1} \in (2^{\varepsilon_{k+1}})^{\varepsilon_{k+1}}$ in a diagonal way.

At limit k just take the natural limits of the sequences. In this way at the κ :th limit we obtain ξ_{κ} and η_{κ} which are as required, so we can define $x^* = \xi_k$ and $y^* = \eta_{\kappa}$.

Now by continuity and by the fact that x^* and y^* are not id⁺-equivalent, find γ_{i+1}^* and $\beta > i+1$ so that $f(x^*)(\beta) \neq f(y^*)(\beta)$ and

$$f[[(x_{\alpha}^* \upharpoonright \gamma_{i+1}^*)_{\alpha < \gamma_{i+1}^*}] \cap D] \subseteq [(f(x^*) \upharpoonright (\beta + 1)]$$

and

$$f[[(y^*_{\alpha} \upharpoonright \gamma^*_{i+1})_{\alpha < \gamma^*_{i+1}}] \cap D] \subseteq [(f(y^*) \upharpoonright (\beta+1)].$$

Also we make sure that γ_{i+1}^* is big enough so that (6) is satisfied. Now we want to glue a part of $(x_{\alpha}^* \upharpoonright \gamma_{i+1}^*)_{\alpha < \gamma_{i+1}^*}$ to the end of $(y_{\alpha}^* \upharpoonright \gamma_{i+1}^*)_{\alpha < \gamma_{i+1}^*}$ and vice versa: Let $\varepsilon = \gamma_{i+1} - \gamma_i$, i.e. the order type of $\gamma_{i+1}^* \setminus \gamma_i$ and let $\gamma_{i+1} = \gamma_{i+1}^* + \varepsilon$. Define x_{α}^{i+1} and y_{α}^{i+1} for all $\alpha < \gamma_{i+1}$ depending on α as follows. If $\alpha < \gamma_{i+1}^*$, let x_{α}^{i+1} to be $x_{\alpha}^* \upharpoonright \gamma_{i+1}$ and y_{α}^{i+1} to be $y_{\alpha}^* \upharpoonright \gamma_{i+1}$. If $\alpha = \gamma_{i+1}^* + \delta$ for some $\delta < \varepsilon$, then let x_{α}^{i+1} to be $y_{\gamma_i+\delta}^*$ and y_{α}^{i+1} to be $x_{\gamma_i+\delta}^*$. This gives us also π_{i+1} and we are done. \Box

7 Definition. For a regular cardinal $\mu < \kappa$ and $\lambda \in \{2, \kappa\}$ let $E_{\mu\text{-cub}}^{\lambda}$ be the equivalence relation on λ^{κ} such that η and ξ are $E_{\mu\text{-cub}}^{\lambda}$ -equivalent if the set $\{\alpha \mid \eta(\alpha) = \xi(\alpha)\}$ contains a $\mu\text{-cub}$, i.e. an unbounded set which is closed under μ -cofinal limits. If T is a countable complete first-order theory, denote by \cong_{κ}^{T} the isomorphism relation on the models of T.

In the following we show that

- 1. The α :th jump of identity for $\alpha < \kappa^+$ is reducible to $E_{\mu\text{-cub}}^{\kappa}$ for every regular $\mu < \kappa$,
- 2. Every Borel isomorphism relation is reducible to $E_{\mu\text{-cub}}^{\kappa}$ for every regular $\mu < \kappa$,
- 3. If T a countable complete first-order classifiable (superstable with NDOP and NOTOP) and shallow theory, then $\cong_T^{\kappa} \leq_B E_{\mu-\text{cub}}^{\kappa}$.

8 Definition. Fix a limit ordinal $\alpha \leq \kappa$ and let t be a subtree of $\alpha^{<\omega}$ with no infinite branches. Let h be a function from the leaves of t to $2^{<\alpha}$. Then (t,h) determines the set $B_{(t,h)}$ as follows: $p \in 2^{\alpha}$ belongs to $B_{(t,h)}$ if player \mathbf{I} has a winning strategy in the game G(p, t, h): The players start at the root and then one after another choose a successor of the node they are in and then move to that successor. Player \mathbf{I} starts. Eventually they reach a leaf l and player \mathbf{I} wins if $h(l) \subset p$. We say that (t, h) is a *Borel code for* α .

If $\alpha = \kappa$, it is easy to see by induction on the rank of the tree that $B_{(t,h)}$ is a usual Borel set and conversely, if $B \subset 2^{\kappa}$ is any Borel set, then there is a Borel code (t,h) for κ such that $B = B_{(t,h)}$.

If t is replaced by a more general $\kappa^+\kappa$ -tree (subtree of $\kappa^{<\kappa}$ without branches of length κ), then the sets that are obtained in this way are the so called Borel^{*} sets, see [Bla81, MV93, Hal96, FHK13].

Suppose (t, h) is a Borel code for κ and $\alpha < \kappa$. Say that α is good for (t, h), if for all leaves $l \in t$ with $\operatorname{ht}(l) < \alpha$ we have $h(l) \in 2^{<\alpha}$. Clearly the set of good α for a fixed (t, h) is a cub set.

Define the α :th approximation of (t, h), denoted $(t, h) \upharpoonright \alpha$ to be the pair $(t \upharpoonright \alpha, h \upharpoonright \alpha)$ where $t \upharpoonright \alpha = t \cap \alpha^{<\omega}$ and for all leaves l of $t \upharpoonright \alpha, (h \upharpoonright \alpha) = h \upharpoonright (t \upharpoonright \alpha)$. It is obvious that if (t, h) is a Borel code for κ and $\alpha < \kappa$ is good for (t, h), then $(t, h) \upharpoonright \alpha$ is a Borel code for α .

By replacing $2^{<\alpha}$ by $(2^{<\alpha})^2$ for the range of h and making necessary changes we can define Borel codes for subsets of $(2^{\alpha})^2$.

Note that the game G(p, t, h) is determined for all $p \in 2^{\alpha}$ (this is not the case for general Borel^{*}-sets).

Make a similar definition for codes of Borel subsets of $2^{\kappa} \times 2^{\kappa}$.

9 Lemma. Suppose that $B = B_{(t,h)}$ is a Borel subset of $2^{\kappa} \times 2^{\kappa}$. Then

$$(\eta,\xi) \in B \iff (\eta \restriction \alpha, \xi \restriction \alpha) \in B_{(t,h)\restriction \alpha}$$

for cub-many α and $(\eta, \xi) \notin B \iff (\eta \restriction \alpha, \xi \restriction \alpha) \notin B_{(t,h)\restriction \alpha}$ for cub-many α .

Proof. Suppose $(\eta, \xi) \in B$ and let σ be a winning strategy of player \mathbf{II} in $G((\eta, \xi), t, h)$. Let C be the set of those limit α which are good for (t, h) and that $t \upharpoonright \alpha$ is closed under σ . Clearly $(\eta \upharpoonright \alpha, \xi \upharpoonright \alpha) \in B_{(t,h) \upharpoonright \alpha}$ for all $\alpha \in C$ and C is cub.

Conversely, if $(\eta, \xi) \notin B$, then player **I** has a winning strategy τ in $G((\eta, \xi), t, h)$ and by closing under τ we obtain the needed cub set again.

10 Lemma. Let S be the set of Borel equivalence relations E such that for some Borel code (t, h), $E = B_{(t,h)}$ and $B_{(t,h)\restriction\alpha}$ is an equivalence relation for cub-many $\alpha < \kappa$. Then S contains id and is closed under jump and the join operation \bigoplus as in the definition of iterated jump, Definition 5.

Proof. Enumerate $2^{<\kappa} = \{p_{\alpha} \mid \alpha < \kappa\}$. Let $t = \kappa^1$ and $h(\alpha) = (p_{\alpha}, p_{\alpha})$. Clearly id $= B_{(t,h)}$ and for those α for which $\{p_i \mid i < \alpha\} = 2^{<\alpha}$, $B_{(t,h)|\alpha}$ is the identity on 2^{α} and this is clearly a cub set.

Suppose E is in S and (t, h) is a code for E witnessing that and that C is a cub set on which $E_{(t,h)}$ is an equivalence relation. It is not difficult to design a Borel code (t^+, h^+) for the jump E^+ and check that for cub many $\alpha \in C$, $B_{(t^+,h^+)|\alpha}$ is the jump of $B_{(t,h)|\alpha}$.

Similarly suppose that $E_i \in S$ are equivalence relations for $i < \kappa$ and witnessing codes (t_i, h_i) are given with C_i cub sets such that $B_{(t_i, h_i)|\alpha}$ is an equivalence relation for each $\alpha \in C_i$. Then it is not difficult to design a code (t, h) so that $B_{(t,h)}$ is $\bigoplus_{i < \kappa} E_i$ and for cub many $\alpha \in \nabla_{i < \kappa} C_i$, $B_{(t,h)|\alpha}$ is $\bigoplus_{i < \alpha} B_{(t_i, h_i)|\alpha}$ \Box

It follows that S contains all iterates of the jump $id^{+\beta}$, $\beta < \kappa^+$.

11 Theorem. Let *E* be an equivalence relation in *S*. Then *E* is reducible to $E_{\mu-cub}^{\kappa}$ for any regular $\mu < \kappa$ (see Definition 7).

Proof. Let E be $B_{(t,h)}$ where (t,h) witnesses that E belongs to S. To each η assign the function f_{η} where $f_{\eta}(\alpha)$ is a code for the $B_{(t,h)\restriction\alpha}$ equivalence class of $\eta \restriction \alpha$ (if $cf(\alpha) = \mu$ and $B_{(t,h)\restriction\alpha}$ is an equivalence relation, 0 otherwise). By Lemma 9, if $\eta E\xi$ then $f_{\eta}(\alpha) = f_{\xi}(\alpha)$ for μ -cub-many α and if $\neg \eta E\xi$ then $f_{\eta}(\alpha) \neq f_{\xi}(\alpha)$ for μ -cub-many α .

12 Corollary. The iterated jumps $id^{\alpha+}$ of the identity are reducible to $E_{\mu-cub}^{\kappa}$ for each regular $\mu < \kappa$.

13 Corollary. If \mathcal{M} is a Borel class of models such that $\cong_{\mathcal{M}}$, the isomorphism relation on \mathcal{M} is Borel, then $\cong_{\mathcal{M}}$ is Borel reducible to $E_{\mu-cub}^{\kappa}$ for all regular $\mu < \kappa$.

Proof. Using similar techniques as in classical descriptive set theory (see e.g. [Gao09, Lemma 12.2.7]) one can show that a Borel isomorphism can be reduced to an iterated jump of identity.

14 Corollary. Suppose T a countable complete first-order classifiable (superstable with NDOP and NOTOP) and shallow theory, then $\cong_T^{\kappa} \leq_B E_{\mu-cub}^{\kappa}$.

Proof. By [FHK13, Theorem 68] the isomorphism relation of a classifiable shallow theory is Borel, so we apply Corollary 13. \Box

We have shown in [FHK13, Theorem 75] that under certain cardinality assumptions on κ , a complete countable first-order theory T is classifiable if and only if for all regular $\mu < \kappa$, $E^2_{\mu\text{-cub}} \not\leq_B \cong_T$, see Definition 7, where \cong_T is the isomorphism on Mod(T). Clearly $E^2_{\mu\text{-cub}} \leqslant_B E^{\kappa}_{\mu\text{-cub}}$.

15 Question. Is $E_{\mu\text{-cub}}^{\kappa}$ reducible to $E_{\mu\text{-cub}}^2$?

If the answer to Question 15 is "yes" then using [FHK13, Theorem 75] we obtain: Suppose T_1 and T_2 are complete first-order theories with T_1 classifiable and shallow and T_2 non-classifiable. Also suppose that $\kappa = \lambda^+ = 2^{\lambda} > 2^{\omega}$ where $\lambda^{<\lambda} = \lambda$. Then \cong_{T_1} is Borel reducible to \cong_{T_2} .

References

[Bla81] D. Blackwell. Borel sets via games. Ann. Probab., 9(2):321–322, 1981.

- [FHK13] S. D. Friedman, T. Hyttinen, and V. Kulikov. Generalized descriptive set theory and classification theory. *Memoirs of the Amer. Math. Soc.*, 2013. to appear.
- [Gao09] Su. Gao. Invariant descriptive set theory. Pure and Applied Mathematics, 2009.
- [Hal96] A. Halko. Negligible subsets of the generalized Baire space $\omega_1^{\omega_1}$. Ann. Acad. Sci. Ser. Diss. Math., 108, 1996.
- [MV93] A. Mekler and J. Väänänen. Trees and Π_1^1 -subsets of $\omega_1 \omega_1$. The Journal of Symbolic Logic, 58(3):1052–1070, September 1993.