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Abstract. We provide a model where u(κ) = κ+ < 2κ for a supercompact
cardinal κ. [9] provides a sketch of how to obtain such a model by modifying

the construction in [5]. We provide here a complete proof using a different
modification of [5] and further study the values of other natural generalisations

of classical cardinal characteristics in our model. For this purpose we generalise

some standard facts that hold in the countable case as well as some classical
forcing notions and their properties.

1. Introduction

Cardinal invariants on the Baire space ωω have been widely studied and under-
stood. Since 1995 with the Cummings-Shelah paper [4], the study of the general-
ization of these cardinal notions to the context of uncountable cardinals and their
interactions started. By now, there is a wide literature on this topic. Some key
references (at least for the purposes of this paper) are [2], [4] and [13].

In [5] Džamonja-Shelah construct a model with a universal graph at the successor
of a strong limit singular cardinal of countable cofinality. A variant of this model, as
pointed out by Garti and Shelah in [9], witnesses the consistency of u(κ) = κ+ < 2κ

(Here u(κ) = min{|B|: B is an base for a uniform ultrafilter on κ}). See also [3].
Here we present a modification of the forcing construction used by Džamonja-

Shelah, which allows us to prove that if κ is a supercompact cardinal and κ < κ∗

with κ∗ regular, then there is a generic extension of the universe in which cardinals
have not been changed and u(κ) = κ∗. The idea of our construction originates in [7]
and states that if after the iteration κ is still supercompact (which can be guaranteed
by using the Laver preparation) and we take a normal measure U on κ in the final
extension, then there is a set of ordinals of order type κ∗ such that the restrictions
of U to the corresponding intermediate extensions coincide with ultrafilters which
have been added generically (see Lemma 10). In addition, to obtain u(κ) = κ∗ we
further ensure that each of these restricted ultrafilters contains a Mathias generic
for its smaller restrictions, yielding then an ultrafilter generated by these κ∗-many
Mathias generics.

Moreover our construction allows us to decide the values of many of the higher
analogues of the known classical cardinal characteristics of the continuum, as we
can interleave arbitrary κ-directed closed posets cofinally in the iteration. The
detailed construction of our model is presented in Section 3, while our applications
appear in Section 4.

Thus our main result, states the following:
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Cardinal characteristics at κ in the small u(κ) model

Theorem 1. Suppose κ is a supercompact cardinal, κ∗ is a regular cardinal with
κ < κ∗ ≤ Γ and Γ satisfies Γκ = Γ. Then there is forcing extension in which
cardinals have not been changed satisfying:

κ∗ = u(κ) = b(κ) = d(κ) = a(κ) = s(κ) = r(κ) = cov(Mκ)

= add(Mκ) = non(Mκ) = cof(Mκ) and 2κ = Γ.

If in addition γ < κ∗ → γ<κ < κ∗, then we can also provide that i(κ) = κ∗. If in
addition (Γ)<κ

∗ ≤ Γ then we can also provide that p(κ) = t(κ) = h(κ) = κ∗.

In addition, we establish some of the natural inequalities between the invariants
(in the countable case these are well known).

2. Preliminaries

Let κ be a supercompact cardinal. Recall that this means that for all λ ≥ κ
there is an elementary embedding j : V → M with critical point κ, j(κ) > λ and
Mλ ⊆M . Take also Γ ≥ 2κ satisfying Γκ = Γ.

One of the main properties of supercompact cardinals that will be used through-
out the paper is the existence of the well-known Laver preparation, which makes
the supercompactness of κ preserved by subsequent forcing with κ-directed-closed
partial orders.

Theorem 2 (Laver, [12]). If κ is supercompact, then there exists a κ-cc partial
ordering Sκ of size κ such that in V Sκ , κ is supercompact and remains supercompact
after forcing with any κ-directed closed partial order.

The main lemma used to obtain this theorem is the statement that for any
supercompact cardinal κ there exists a Laver diamond. That is, there is a function
h : κ → Vκ such that for every set x and every cardinal λ, there is an elementary
embedding j : V →M with critical point κ, j(κ) > λ, Mλ ⊆M and j(h)(κ) = x.
Given such a function, the Laver preparation Sκ is given explicitly as a reverse
Easton iteration (Sα, Ṙβ : α ≤ κ, β < κ), defined alongside a sequence of cardinals
(λα : α < κ) by induction on α < κ as follows.

• If α is a cardinal and h(α) = (Ṗ , λ), where λ is a cardinal, Ṗ is an Sα name

for a < α-directed closed forcing, and for all β < α, λβ < α, we let Ṙα := Ṗ
and λα = λ.
• Otherwise, we let Ṙα be the canonical name for the trivial forcing and
λα = supβ<α λβ .

One of the main forcing notions we will use is the following:

Definition 3 (Generalized Mathias Forcing). Let κ be a measurable cardinal, and
let F be a κ-complete filter on κ. The Generalized Mathias Forcing Mκ

U has, as
its set of conditions, {(s,A) : s ∈ [κ]<κ and A ∈ F} and the ordering given by
(t, B) ≤ (s,A) if and only if t ⊇ s,B ⊆ A and t \ s ⊆ A We denote by 1F the
maximum element of Mκ

F , that is 1F = (∅, κ).

In our main forcing iteration construction we work exclusively with generalized
Mathias posets Mκ

U , where U is a κ-complete ultrafilter. In our applications how-
ever, we will be working with arbitrary κ-complete filters.

Definition 4. A partial order P is:
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• κ-centered if there is a partition {Pα | α < κ} of P such that for each α < κ,
every pair of conditions p, q ∈ Pα has a common extension in Pα;
• κ-directed closed if for every directed set D ⊆ P of size |D|< κ there is a

condition p ∈ P such that p ≤ q for all q ∈ D.

3. The small u(κ) model

Let Γ be such that Γκ = Γ. We will define an iteration 〈Pα, Q̇β : α ≤ Γ+, β < Γ+〉
of length Γ+ recursively as follows:

If α is an even ordinal (abbreviated α ∈ EVEN), let NUF denote the set of
normal ultrafilters on κ in V Pα . Then let Qα be the poset with underlying set of
conditions {1Qα} ∪ {{U} × Mκ

U : U ∈ NUF} and extension relation stating that
q ≤ p if and only if either p = 1Qα , or there is U ∈ NUF such that p = (U , p1),

q = (U , q1) and q1 ≤MκU p1. If α is an odd ordinal (abbreviated α ∈ ODD), let Q̇α
be a Pα-name for a κ-centered, κ-directed closed forcing notion of size at most Γ.

We define three different kinds of support for conditions p ∈ Pα, α < Γ+:
First we have the Ultrafilter Support USupt(p), that corresponds to the set of
ordinals β ∈ dom(p) ∩ EVEN such that p � β Pβ p(β) 6= 1Qβ . Then the Essential
Support SSupt(p), which consists of all β ∈ dom(p)∩EVEN such that ¬(p � β Pβ
p(β) ∈ {1̌Qβ} ∪ {(U ,1U ) : U ∈ NUF}) (for the definition of 1U see Definition 3).
Finally, the Directed Support RSupt(p), consists of all β ∈ dom(p)∩ODD such that
¬(p � β  p(β) = 1Q̇β ).

We require that the conditions in PΓ+ have support bounded below Γ+ and also
that given p ∈ PΓ+ if β ∈ USupt(p) then for all α ∈ β ∩ EVEN, α ∈ USupt(p).
Finally we demand that both SSupt(p) and RSupt(p) have size < κ and are con-
tained in sup(USupt(p)), i.e. Supt(p) (the entire support of p) and USupt(p) have
the same supremum.

Now, we want to ensure that our iteration preserves cardinals. Let P := PΓ+ .

Lemma 5. P is κ-directed closed.

Proof. We know that Mκ
U , as well as all iterands Qα for α ∈ ODD are κ-directed

closed forcings. Take D = {pα : α < δ < κ} a directed set of conditions in
P. We want to define a common extension p for all elements in D. First define
dom(p) =

⋃
α<δ dom(pα). For j ∈ dom(p) define p(j) by induction on j. We work

in V Pj and assume that p � j ∈ Pj .
We have the following cases:

• if j is even and j /∈
⋃
α<δ SSupt(pα), then using compatibility we can find

at most one normal ultrafilter U such that for some α < δ, pα � j  pα(j) =
(U ,1U ). If there is such a U define p(j) = (U ,1U ), otherwise p(j) = 1Qj .
• If j is even and j ∈ SSupt(pα) for some α < δ, then again using directness

it is possible to find a single ultrafilter U such that for α < δ with j ∈
SSupt(pα), pα � j  pα(j) ∈ U ×Mκ

U , and Pj Mκ
U is κ-directed closed.

In the extension V Pj we can find a condition q such that q ≤ pα(j) for all
α < δ. Define p(j) = q.

• If j is odd, use the fact that in the Pj extension Qj is κ-directed closed on
the directed set Xj = {pα(j) : α < δ < κ} to find p(j) a condition stronger
than all the ones in Xj .

�
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For any p ∈ Pβ , β < Γ+ let Pβ ↓ p denote the set {q ∈ Pβ : q ≤ p}.

Lemma 6. Let p ∈ PΓ+ and let i = sup USupt(p) = sup Supt(p). Then Pi ↓ (p � i)
is κ+-cc and has a dense subset of size at most Γ.

Proof. It is enough to observe that Pi ↓ (p � i) is basically a < κ-support iteration
of κ-centered, κ-directed closed forcings of size at most Γ. Then the proof is a
straightforward generalization of Lemma V.4.9- V.4.10 in [11]. �

Lemma 7. Let {Aα}α<Γ be maximal antichains in P below p ∈ P. Let j∗ =
sup Supt(p). Then there is q ∈ P such that q � j∗ = p, Supt(q)\Supt(p) ⊆ USupt(q)
and for all α < Γ, the set Aα ∩ (Pi∗ ↓ q) is a maximal antichain in Pi∗ ↓ q (and
hence in P ↓ q), where i∗ = sup Supt(q).

Proof. Let P̄ := Pj∗ ↓ p and let w ∈ P̄. Then there is a condition r extending both
w and an element of A0 and we can find p1 such that p1 � j∗ = p and r ∈ Pj1 ↓ p1,
where j1 = sup Supt(p1). Since P̄ has a dense subset of size at most Γ, in κ+-steps
we can find q0 such that q0 � j∗ = p and every condition in P̄ is compatible with an
element of A0 ∩ (Pj∗0 ↓ q0), where j∗0 = sup Supt(q0).

Since we have only Γ many antichains {Aα}α<Γ in Γ steps we can obtain the
desired condition q. �

Corollary 8. If p  Ẋ ⊆ κ for some P-name Ẋ, then there are q ≤ p and j < Γ+

such that Ẋ can be seen as a Pj ↓ q-name.

Proof. For each α < κ fix a maximal antichain Aα of conditions below p deciding
if α belongs to Ẋ. Then, let q be the condition given by Lemma 7 and take
j := sup Supt(q). Then q ≤ p and Ẋ can be seen as a Psup Supt(q) ↓ q-name. �

Corollary 9. Let p  ḟ is a P-name for a function from Γ into the ordinals. Then
there is a function g ∈ V and q ≤ p such that q  ḟ(α) ∈ g(α) for α < Γ and
|g(α)|≤ κ for all α. In particular, P preserves cofinalities and so cardinalities.

Proof. Let Aα be a maximal antichain of conditions below p deciding a value for
ḟ(α). Use Lemma 7 to find q ≤ p such that Aα ∩ P ↓ q is a maximal antichain in
P ↓ q for all α < Γ. Finally define the function g ∈ V as follows: g(α) = {β : ∃r ≤ q
such that r  ḟ(α) = β}. �

We now present the key lemmas that will allow us to construct the witness for
u(κ) = κ∗.

Lemma 10. Let κ be a supercompact cardinal and κ∗ be cardinal satisfying κ <
κ∗ ≤ Γ, κ∗ regular. Suppose that p ∈ P is such that p  U̇ is a normal ultrafilter
on κ. 1 Then for some α < Γ+ there is an extension q ≤ p such that q 
(U̇α = U̇ ∩V [Gα]). Moreover this can be done for a set or ordinals S ⊆ Γ+ of order

type κ∗ in such a way that ∀α ∈ S(U̇ ∩Vα ∈ V [Gα]) and U̇ ∩V [GsupS ] ∈ V [GsupS ].

Here U̇α is the canonical name for the ultrafilter generically chosen at stage α.

Proof. Let α0 = sup USupt(p). Then Pα0
↓ p is κ+-cc and has a dense subset of

size at most Γ. Thus there are just Γ-many Pα0
↓ p-names for subsets of κ. Let

X̄ = (Ẋi : i < Γ) be an enumeration of them.

1This is possible because κ is still supercompact in V P.
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Remember that each condition in P has three main parts, first the part corre-
sponding to even coordinates where the forcing chooses just ultrafilters (coordinates
in USupt), we call it the Ultrafilter Part ; the next one corresponds to the coor-
dinates where we have in addition non trivial Mathias conditions (coordinates in
SSupt), we call it the Mathias part and finally the odd coordinates where the forcing
chooses conditions in an arbitrary κ-centered, κ-directed closed forcing (coordinates
in RSupt), we called it Directed Part.

Extend p0 = p to a condition p1 on its ultrafilter part and ask about the decision
taken by p1 about Ẋ0. Meaning whether or not p1  Ẋ0 ∈ U̇ . Then extend p0

again to a condition p2 such that it also makes a decision about Ẋ0 but either its
Mathias or directed parts are incompatible with the ones corresponding to p1.

Continue extending the ultrafilter part deciding whether or not Ẋ0 ∈ U̇ with
an antichain of different Mathias and directed parts until a maximal antichain is
reached. This will happen in less than κ+-many steps. If the resulting condition is
called q1 and has support α1 < Γ+ (without loss of generality it is an odd ordinal),

then the set of conditions in Pα1
↓ q1 which decide whether or not Ẋ0 belongs to U̇

is predense in Pα1 ↓ q1.
Repeat this process Γ-many times for each element in X̄ until reaching a con-

dition q2 with the same property for all such names. Then do it for all Pα1
↓ q2

names for subsets of κ and so on. It follows, that if G is P generic containing q then
U̇G ∩ V [Gα] is determined by Gα and therefore it is a normal ultrafilter Uα on κ

in V [Gα]. Now extend q once more to length α+ 1 by choosing U̇α to be the name

for Uα = U̇G ∩ V [Gα].
This argument gives us the desired property for a single α < Γ. To have it for all

α ∈ S ∪ {supS} we just have to iterate the process κ∗-many times (this is possible
because κ∗ < Γ). �

Remark: Note that we can choose the domains of our conditions such that they
have size Γ.

Take S to be a set with the properties of the lemma above; this set will be fixed
for the rest of the paper.

Now, using our Laver preparation Sκ and Laver function h we choose a super-
compactness embedding j∗ : V → M with critical point κ satisfying j∗(κ) ≥ λ

where λ ≥ |Sκ ∗ P|, Mκ ⊆M and j∗(h)(κ) = (P, λ). Then j∗(Sκ) = Sκ ∗ Ṗ ∗ Ṡ∗ for

an appropriate tail iteration Ṡ∗ in M . Also if we denote P′ = j∗(P) applying j∗ to

Sκ ∗ Ṗ we get j∗(Sκ ∗ Ṗ) = Sκ ∗ P ∗ Ṡ∗ ∗ (P′)M .
Remember that V ∗ = V Sκ is the generic extension obtained after the Laver

preparation. Consider then j0 : V [GSκ ] → M [GSκ ][GP][H] where GSκ ∗ GP ∗H is

generic for j(Sκ ∗ Ṗ).
Now, we want to lift again to j∗ : V [GSκ ][GP] → M [GSκ ][GP][H][GP′ ] where

P′ = j0(P). We will do this by listing the maximal antichains below some master
condition in P′ extending every condition of the form j0(p) for p ∈ GP. The obvious
master condition comes from choosing a lower bound p∗0 of j0[GP] 2.

This condition has support contained in j[Γ+] and for each i < Γ+ odd chooses

the filter name U̇j(i) to be j0(U̇i) as well as a j(κ)-Mathias name with first com-
ponent x̌i, the Mathias generic added by GP at stage i of the iteration. However

2This exists because j0[GP] is directed and the forcing is sufficiently directed-closed
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we will choose a stronger master condition p∗ with support contained in j[Γ+] as
follows.

(∗) If i < Γ+ is an even ordinal and for each A ∈ Ui there is a GPi -name Ẋ such

that A = XGPi and a condition p ∈ GPi such that j0(p)  κ ∈ j0(Ẋ), then p∗(j(i))
is obtained from p∗0(j(i)) by replacing the first component xi of its j(κ)-Mathias
name by xi ∪ {κ}.

Otherwise p∗(j(i)) = p∗0(j(i)).

Lemma 11. The condition p∗ is an extension on p∗0. If GP′ is chosen to contain
p∗, j∗ is the resulting lifting of j0 and U is the resulting normal ultrafilter on κ
derived from j∗, then whenever Ui is contained in U , we have that xi ∈ U
Proof. To show the first claim, it is enough to show that for all i < Γ+ the condition
p∗i defined as p∗ but replacing xj(l) by xj(l) ∪ {κ} for l < i satisfying (∗) extends
p∗0. We do this by induction on i. The base and limit cases are immediate. For the
successor one, suppose we have the result for i and we want to prove it for i+1. Let
GP∗j (i) be any generic containing p∗i � j(i) and extend it to a generic GP∗ containing

p∗i . Hence, using the induction hypothesis GP∗ also contains p∗0 and therefore gives
us a lifting j∗ of j0.

Now, any p ∈ GP can be extended (inside GP) so that the Mathias condition it
specifies at stage i is of the form (s,A) ∈ Mκ

Ui where s ⊆ xi and A ∈ Ui. Then

using (∗) we infer A = XGPi where j0(q)  κ ∈ j0(Ẋ) for some q ∈ GPi .
But then, since p∗0 ∈ GP∗ , j0(q) is an element of GP∗j (i) and therefore

κ ∈ j0(Ẋ)
GP∗
j(i) = j∗(A).

It follows that the j(κ)-Mathias condition specified by p∗i+1(j(i))
GP∗
j(i) with first

component xi ∪ {κ} does extend

(xi, j
∗(A)) = (xi, j0(Ẋ)

GP∗
j(i) ) ≤ (s, j0(Ẋ)

GP∗
j(i) ).

This means that p∗i � j(i)  p∗i+1(j(i)) ≤ (s, j0(Ẋ)) = j0(p)(j(i)) and thus p∗i+1

extends j∗0 (p) for each p ∈ GP and then also extends p∗0.
To see the second claim, note that if Ui ⊆ U , then κ ∈ j∗(A) for all A ∈ Ui which

implies that (∗) is satisfied at i. Then κ ∈ j∗(xi) and so xi ∈ U . �

Theorem 12. Suppose κ is a supercompact cardinal and κ∗ is a regular cardinal
with κ < κ∗ ≤ Γ, Γκ = Γ. There is a forcing notion P∗ preserving cofinalities such
that V P∗ |= u(κ) = κ∗ ∧ 2κ = Γ.

Proof. We will not work with the whole generic extension given by P. In fact we
will chop the iteration in the step α = sup(S) (as in the Lemma 10) this is an
ordinal of cofinality κ∗. Define P∗ = Pα.

Take G to be a P∗-generic filter, the fact that 2κ = Γ is a consequence of the fact
that, the domains of the conditions obtained in Lemma 10 can be chosen in such a
way that they all have size Γ.

To prove u(κ) = κ∗ we consider the ultrafilter U∗ on κ given by the restriction of
U (Lemma 10). Then by the same lemma note that for all i ∈ S the restriction of
U to the model V [Gi] belongs to V [Gi+1] and moreover, this is the ultrafilter UGi
chosen generically at stage i.

Furthermore by our choice of Master Conditions the κ-Mathias generics ẋi belong
to U . Then U∗ is generated by ẋi for i ∈ S.

The other inequality u(κ) ≥ κ∗ is a consequence of b(κ) ≥ κ∗ and Proposition 13.
�
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Proposition 13. b(κ) ≤ r(κ) and r(κ) ≤ u(κ).

Proof. The first is the consequence of the following property that can be directly
generalized from the countable case: There are functions Φ : [κ]κ → κ↑κ and
Ψ : κ↑κ → [κ]κ such that whenever Φ(A) ≤∗ f then Ψ(f) splits A.

For the second one, it is just necessary to notice that if B is a base for a uniform
ultrafilter on κ, then B cannot be split by a single set X. Otherwise neither X nor
κ \X will belong to the ultrafilter. �

4. The generalized cardinal characteristics

In the following subsections 4.1 - 4.6 we systemize those properties of the gener-
alized cardinal characteristics which will be of importance for our main consistency
result.

4.1. Unbounded and Dominating Families in κκ.

Definition 14. For two functions f, g ∈ κκ, we say f ≤∗ g if and only if there
exist α < κ such that for all β > α, f(β) ≤ g(β). A family F functions from κ to
κ is said to be

• dominating, if for all g ∈ κκ, there exists an f ∈ F such that g ≤∗ f .
• unbounded, if for all g ∈ κκ, there exists an f ∈ F such that f �∗ g.

Definition 15. The unbounding and dominating numbers, b(κ) and d(κ) respec-
tively are defined as follows:

• b(κ) = min{|F|: F is an unbounded family of functions from κ to κ}.
• d(κ) = min{|F|: F is a dominating family of functions from κ to κ}.

Definition 16 (Generalized Laver forcing). Let U be a κ-complete non-principal
ultrafilter on κ.

• A U-Laver tree is a κ-closed tree T ⊆ κ<κ of increasing sequences with the
property that ∀s ∈ T (|s|≥ stem(T )→ SuccT (s) ∈ U)}.
• The generalized Laver Forcing LκU consists of all U-Laver trees with order

given by inclusion.

Proposition 17. Generalized Laver forcing LκU generically adds a dominating func-
tion from κ to κ.

Proof. Let G be a LκU -generic filter. The Laver generic function in κκ, lG is defined
as follows: lG = ∩{[T ] : T ∈ G} where [T ] is the set of branches in T .

To show that lG is a dominating function it is enough to notice that, for all f ∈ κκ
the set Tf = {s ∈ T : ∀α(|stem(T )|≤ α < |s|)→ s(α) > f(α)} is also a condition in
LκU and Tf ≤ T . By genericity we conclude that V [G] |= ∀f ∈ V ∩κκ(f ≤∗ lG). �

Lemma 18. If U is a normal ultrafilter on κ, then Mκ
U and LκU are forcing equiv-

alent.

Proof. The main point that we will use in this proof is that, when U is normal we
have the following “Ramsey ”-like property: For all f : [κ]<ω → γ where γ < κ,
there is a set in U homogeneous for f .

Also it is worth to remember that in the countable case if U is a Ramsey Ultra-
filter M(U) ' L(U). Thus, we want to define a dense embedding ϕ : Mκ

U → LκU .
Take (s,A) a condition in Mκ

U and define the tree T = T(s,A) as follows:

7
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• σ = stem(T ) will be the increasing enumeration of s.
• If we already have constructed τ ∈ Tα, with τ ⊇ σ, then τa〈α〉 ∈ Tα+1 if

and only if α ∈ A and α ≥ sup{τ(β) : β < α}.
• In the limit steps just ensure that τ ∈ Tα if and only if τ � β ∈ Tβ .

Note that T is a condition in LκU . For the limit steps note that if τ ∈ Tα for α
limit, then the set SuccT (τ) ⊇

⋂
β<α SuccT (τ � β).

Now, consider the map ϕ : (s,A) → T(s,A). Since this map preserves ≤, it is
enough to prove that the trees of the form T(s,A) are dense in LκU . For that, take
an arbitrary T ∈ LκU and define:

f({α, β}) =

1
if ∀s ∈ T with α ≥ sup{s(γ) : γ < |s|}

(α ≤ β → β ∈ SuccT (s))

0 otherwise

Using the Ramsey-like property we can find a set B ∈ U homogeneous for f . The
color of B cannot be 0 because T is a Laver tree. Now, knowing that f ′′[B]2 = {1},
we can define s = ran(stem(T )) and A = B ∩ SuccT (stem(T )) and conclude that
T(s,A) ≤ T as we wanted. �

Corollary 19. If U is a normal ultrafilter on κ then Mκ
U always adds dominating

functions.

4.2. κ-maximal almost disjoint families.

Definition 20. Two sets A and B ∈ P(κ) are called κ-almost disjoint if A∩B has
size < κ. We say that a family of sets A ⊆ P(κ) is κ-almost disjoint if it has size
at least κ and all its elements are pairwise κ-almost disjoint. A family A ⊆ [κ]κ

is called a κ-maximal almost disjoint (abbreviated κ-mad) if it is κ-almost disjoint
and is not properly included in another such family.

Definition 21. a(κ) = min{|A|: A is a κ-mad family}

Proposition 22. b(κ) ≤ a(κ)

Proof. Suppose a(κ) = λ, let A = {Aα : α < λ} be a κ-almost disjoint family where

λ < b(κ). For each α < κ, let Ãα = Aα \
⋃
δ<α(Aα ∩Aδ). Since A is κ-ad, we have

|Ãα| = κ, also Ãα ∩ Ãβ = ∅ for all α, β < κ. Thus, Ãα =∗ Aα. (Here ∗ means
modulo a set of size < κ).

Whenever g ∈ κκ, define eαg = next(Ãα, g(α)), the least ordinal in Ãα greater

than g(α). Let Eg = {eαg : α < κ}. Then Eg contains one element of each Ãα, so
it is unbounded in κ. Also |Eg ∩Aα|< κ, for all α < κ.

Now when κ ≤ α < λ. Each Aα ∩ Aγ , has size less than κ, so we can fix
fα such that for all γ < κ all elements of Aα ∩ Aγ are less than fα(γ). Where
fα(γ) = sup(Aα ∩Aγ) + 1.

Now consider {fα : α < λ}, which is a family of λ < b(κ) functions, therefore
there exists g ∈ κκ with the property fα <

∗ g, for all α.
As consequence we have that Eg ∩ Aα has size less than κ, for all α because if

eγg ∈ Eg ∩ Aα then eγg ∈ Ãα and eγg > g(α), so fα(γ) > eγg > g(γ) which is only
possible for a set of less than κ values.

Therefore, A is not maximal. Then b(κ) ≤ λ. �

8
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Definition 23. Let A = {Ai}i<δ be a κ-almost disjoint family. Let Q̄(A, κ) be the
poset of all pairs (s, F ) where s ∈ 2<κ and F ∈ [A]<κ and extension relation stating
that (t,H) ≤ (s, F ) if and only if t ⊇ s, H ⊇ F and for all i ∈ dom(t) \ dom(s)
with t(i) = 1 we have i /∈

⋃
{A : A ∈ F}

Note that the poset Q̄(A, κ) is κ-centered and κ-directed closed. If G is Q̄(A, κ)-
generic then χG =

⋃
{t : ∃F (t, F ) ∈ G} is the characteristic function of an un-

bounded subset xG of κ such that ∀A ∈ A(|A ∩ xG|) < κ.

Proposition 24. If Y ∈ [κ]κ \ IA, where IA is the κ-complete ideal generated by
the ad-family A, then Θ(A,κ) |Y ∩ ẋG|= κ.

Proof. Let (s, F ) ∈ Q̄(A, κ) and α < κ be arbitrary. It is sufficient to show that
there are (t,H) ≤ (s, F ) and β > α such that (t,H)  β ∈ Y̌ ∩ ẋG. Since κ \

⋃
F

is unbounded and Y /∈ IA, we have that |Y \
⋃
F |= κ. Take any β > α in Y \

⋃
F

and define t′ = t ∪ {(β, 1)} ∪ {(γ, 0) : sup(dom(t)) < γ < β}. Then (t′, H) is as
desired. �

4.3. The Generalized Splitting, Reaping and Independence Numbers.

Definition 25. For A and B ∈ ℘(κ), say A ⊆∗ B (A is almost contained in B)
if A \ B has size < κ. We also say that A splits B if both A ∩ B and B \ A have
size κ. A family A is called a splitting family if every unbounded (with supremum
κ) subset of κ is split by a member of A. Finally A is unsplit if no single set splits
all members of A.

• s(κ) = min{|A|: A is a splitting family of subsets of κ}.
• r(κ) = min{|A|: A is an unsplit family of subsets of κ}.

Definition 26. A family I = {Iδ : δ < µ} of subsets of κ is called κ-independent
if for all disjoint I0, I1 ⊆ I, both of size < κ,

⋂
δ∈I0 Iδ ∩

⋂
δ∈I0(Iδ)

c is unbounded

in κ. The generalized independence number u(κ) is defined as the minimal size of
a κ-independent family.

Proposition 27. If d(κ) is such that for every γ < d(κ) we have γ<κ < d(κ), then
d(κ) ≤ i(κ)

The proof will be essentially a modification of the one for the countable case
(Theorem 5.3 in [1]). To obtain the above proposition, we will need the following
lemma.

Lemma 28. Suppose C = (Cα : α < κ) is a ⊆∗-decreasing sequence of unbounded
subsets of κ and A is a family of less than d(κ) many subsets of κ such that each
set in A intersects every Cα in a set of size κ. Then C has a pseudointersection B
that also has unbounded intersection with each member of A.

Proof. Without loss of generality assume that the sequence C is ⊆-decreasing. For
any h ∈ κκ define Bh =

⋃
α<κ(Cα ∩ h(α)), clearly Bh is a pseudointersection of C.

Thus, we must find h ∈ κκ such that |Bh ∩A|= κ for each A ∈ A.
For each A ∈ A define the function fA ∈ κκ as follows: fA(β) = the β-th element

of A ∩ Cβ . The set {fA : A ∈ A} has cardinality < d(κ), then we can find h ∈ κκ
such that for all A ∈ A, h �∗ fA (i.e. XA = {δ < κ : fA(δ) < h(δ)} is unbounded).

Then Bh will be the pseudointersection we need. Note that Bh∩A =
⋃
α<κ(Cα∩

A) ∩ h(α) ⊇
⋃
α∈XA(Cα ∩A) ∩ fA(α) which is unbounded. �

9
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Proof of Proposition 27. Suppose that I is an independent family of cardinality <
d(κ), we will show it is not maximal. For this purpose choose D = (Dα : α < κ) ⊆ I
and let I ′ = I \ D.

For each f : κ → 2 consider the set Cα =
⋂
β<αD

f(β)
β where D0 = D and

D1 = Dc, also define A = {
⋂
I0 \

⋃
I1 : I0 and I1 are disjoint subfamilies of I of

size < κ}. Since |I|<κ < d(κ), the family A has size < d(κ).
Then, using the lemma before there exists a pseudointersection Bf of the family

(Cα : α < κ) that intersects in an unbounded set all members of A. Then if f 6= g
we have |Bf ∩Bg|< κ (Moreover, we can suppose they are disjoint).

Now, fix two disjoint dense subsets X and X ′ of 2κ. Take Y =
⋃
f∈X Bf and

Y ′ =
⋃
f∈X′ Bf , note that Y ∩ Y ′ = ∅. Then it is enough to show that both Y and

Y ′ have intersection of size κ with each member of A. We write the argument for
Y (for Y ′ i is analogous).

Take J0, J1 ⊆ I both of size < κ, call J ′0, J
′
1 their intersections with I ′. There

exists α < κ such that if Dβ belongs to J0 or J1, then β < α and using the density
of the sets X fix f ∈ X such that, if Dβ ∈ J0 ∪ J1, then f(β) = 0 or 1 respectively.
Hence:

(1)
⋂
J0 \

⋃
J1 =

⋂
J ′0 \

⋃
J ′1 ∩

⋂
{β:Dβ∈J0∪J1}

D
f(β)
β

⊇
⋂
J ′0 \

⋃
J ′1 ∩

⋂
β<α

D
f(β)
β

∗ ⊇
⋂
J ′0 \

⋃
J ′1 ∩Bf which is unbounded.

�

Lemma 29. Let I be an independent family of size κ. Then there is a κ-centered
forcing notion Q̂(I, κ) that adds a set Y ∈ [κ]κ such that:

(1) in V Q̂(I,κ), I ∪ {Y } is independent;

(2) ∀Z ∈ V ∩ [κ]κ such that Z /∈ I, V Q̂(I,κ) |= I ∪ {Z, Y } is not independent.

Proof. Let BI be the Boolean algebra generated by I. Note that BI is κ-complete.
Since I is not maximal, there is X0 ⊆ κ such that for all B ∈ BI both B ∩X and
B ∩ Xc are of size κ. Thus in particular, I ∪ {X0} is independent. Recursively
construct an increasing chain {Iα}α<δ of independent families and a family X =
{Xα}α<δ ⊆ [κ]κ such that

(1) Iα+1 = Iα ∪ {Xα}; if α is a limit then Iα =
⋃
β<α Iα;

(2) ∀α < δ∀B ∈ BIα we have |Xα ∩B| = |Xc
α ∩B| = κ.

Then in particular X forms a κ-complete filter base. Extend X to a κ-filter G,
which is maximal with respect to the following property:

∀X ∈ G∀B ∈ B(I)(|B ∩X| = |B ∩Xc| = κ).

Thus in particular for all X /∈ G either there is Z ∈ G such that X ∩ Z is of size
< κ, or there is B ∈ BI such that either |Y ∩B| < κ, or |Y c ∩B| < κ.

Let Q̂(I, κ) := Mκ
G and let G be Q-generic. Then Y := xG =

⋃
{s : ∃F (s, F ) ∈

G} is as desired. Indeed. To see (a) note that it is enough to show that for all B ∈
B(I) both xG∩B and xcG∩B are forced to be unbounded in κ. That  |ẋcG∩B̌| = κ

10
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follows from the fact that given B ∈ B(I),  X̌∩B̌ ⊆∗ ẋcG∩B̌ for arbitrarily X ∈ G.
To see that  |xG ∩ B| = κ, proceed by contradiction. That is suppose there is

B ∈ BI , (s,A) ∈ Q̂(I, κ) and α < κ such that (s,A)  ẋG ∩ B̌ ⊆ α̌. Since B ∩ A
is unbounded in κ, we can choose β ∈ B ∩A such that β > max{sup(s), α}. Then
(s ∪ {β}, A \ (β + 1)) ≤ (s,A) and (s ∪ {β}, A \ (β + 1))  β ∈ ẋG ∩ B̌ which is a
contradiction.

To see part (b), take Z ∈ (V ∩ [κ]κ) \ I. If Z ∈ G, then  ẋG ⊆∗ Z and so
 |ẋcG ∩ Z| < κ. If Z /∈ G, then either there is X ∈ G such that |X ∩ Z| < κ and

so  |ẋG ∩ Ž| < κ, or there is B ∈ BI such that |X ∩ B| < κ or |Xc ∩ B| < κ.
Therefore  (I ∪ {Z, ẋG} is not independent). �

4.4. The generalized pseudointersection and tower numbers.

Definition 30. Let F be a family of subsets of κ, we say that F has the strong
intersection property (SIP) if any subfamily F ′ ⊆ F of size < κ has intersection of
size κ, we also say that A ⊆ κ is a pseudointersection of F is A ⊆∗ F , for all F ∈ F .
A tower T is a well ordered family of subsets of κ that has no pseudointersection
of size κ.

• The generalized pseudointersection number p(κ) is defined as the minimal
size of a family F which has the SIP but no pseudointersection of size κ.

• The generalized tower number t(κ) is defined as the minimal size of a tower
T of subsets of κ.

Lemma 31. κ+ ≤ p(κ) ≤ t(κ) ≤ b(κ)

Proof. First we prove κ+ ≤ p(κ): Take a family of subsets of κ, B = (Bα : α < κ)
with the SIP. Then we can construct a new family B′ = (B′α : α < κ) such that
B′α+1 ⊆ B′α and B′α ⊆ Bα for all α < κ. Simply define B′0 = B0, B′α+1 = Bα+1∩B′α
and for limit γ, B′γ =

⋂
α<γ B

′
α. Note that this construction is possible thanks to

the SIP.
Then, without loss of generality we can find κ-many indexes β where it is possible

to choose aβ ∈ B′α \B′α+1. Hence the set X = {aβ : β < κ} is a pseudointersection
of the family B′ and so of B.

p(κ) ≤ t(κ) is immediate from the definition and, t(κ) ≤ b(κ) was proven in
Claim 1.8, [8]. �

4.5. The generalized distributivity number.

Definition 32. The Generalized Distributivity Number h(κ) is defined as the min-
imal λ for which P(κ)

/
< κ is not λ+-distributive. A poset P is λ+-distributive if

any intersection of ≤ λ-many dense open sets of P is open dense.

Proposition 33. t(κ) ≤ h(κ) ≤ s(κ)

Proof.
• t(κ) ≤ h(κ): Let δ < t(κ) and Dα for α < δ open dense sets in P(κ)

/
< κ. Fix

A ∈ [κ]κ and recursively define Aα, α ≤ δ with A0 = A and Aβ ⊆∗ Aα for all β > α
and Aα+1 ∈ Dα. (In the limit steps this is possible because δ < t(κ)). Finally
Aδ ∈

⋂
α<δDα.

• h(κ) ≤ s(κ): Let S be an splitting family of subsets of κ. For each S ∈ S, the
set DS = {X ∈ [κ]κ : X is not split by S} is dense open. Because S is a splitting
family we obtain

⋂
S∈S DS = ∅. �
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4.6. Cardinals from Cichón’s diagram at κ. When κ is uncountable and sat-
isfies κ<κ = κ, it is possible to endow 2κ with the topology generated by the sets
of the form [s] = {f ∈ 2κ : f ⊇ s}, for s ∈ 2<κ. Then it is possible to define
nowhere dense sets and Meager sets as κ-unions of nowhere dense sets. Hence, we
can consider the Meager Ideal Mκ and study the cardinal invariants associated to
this ideal. Specifically we are interested in the cardinals in Cichón’s Diagram.

• add(Mκ) = min{|J |: J ⊆Mκ and ∪J /∈Mκ}
• cov(Mκ) = min{|J |: J ⊆Mκ and ∪J = 2κ}
• cof(Mκ) = min{|J |: J ⊆Mκ and ∀M ∈Mκ∃J ∈ J s.t. M ⊆ J}
• non(Mκ) = min{|X|X ⊂ 2κ and X /∈Mκ}

If in addition κ is strongly inaccessible we have a similar diagram as in the
countable case (For specific details about these properties see [10]):

--

-

--

6

66

6

2κcof(Mκ)

d(κ)

cov(Mκ)add(Mκ)

b(κ)

non(Mκ)

κ+

Figure 1. Generalization of Cichón’s diagram (for κ strongly inaccessible)

Also, the well known relationships between the classical cardinal invariants (See
[1]) hold , namely:

Lemma 34.
add(Mκ) = min{b(κ), cov(Mκ)} and cof(Mκ) = max{d(κ),non(Mκ)}.

5. Applications

Until the end of the paper let κ, κ∗, Γ, α and P∗ be fixed as in Theorem 12.

Theorem 35. Let G be P∗-generic. Then V [G] satisfies add(Mκ) = cof(Mκ) =
non(Mκ) = cov(Mκ) = s(κ) = r(κ) = d(κ) = b(κ) = κ∗.

Proof. Note that b(κ) ≥ κ∗ because any set of functions in κκ of size < κ∗ appears
in some initial part of the iteration (by Lemma 8) and so is dominated by the
Mathias generic functions added at later stages. On the other hand, any cofinal
sequence of length κ∗ of the Mathias generics forms a dominating family. Thus
d(κ) ≤ κ∗ and since clearly b(κ) ≤ d(κ), we obtain V P∗ � b(κ) = d(κ) = κ∗.

To see that s(κ) ≥ κ∗, observe that the Mathias generic subsets of κ are unsplit
and that every family of κ-reals of size < κ is contained in V Pβ for some β < α. On
the other hand any cofinal sequence of length κ∗ of κ-Cohen reals forms a splitting
family and so V P∗ � s(κ) ≤ κ∗. Thus V P∗ � s(κ) = κ∗. That r(κ) = κ∗ follows
from Proposition 13.

To verify the values of the characteristics associated to Mκ, proceed as follows.
Since b(κ) ≤ non(Mκ), V P∗ � κ∗ ≤ non(Mκ). On the other hand any cofinal
sequence of κ-Cohen reals of length κ∗ is a witness to non(Mκ) ≤ κ∗, since this set

12
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of κ-Cohen reals is non-meager. By a similar argument and the fact that d(κ) = κ∗

in V P∗ , we obtain that V P∗ � cov(Mκ) = κ∗. Now, Lemma 34 implies that
add(Mκ) = κ∗ = cof(Mκ). �

Now, we are ready to prove our main theorem.

Theorem 36. Suppose κ is a supercompact cardinal, κ∗ is a regular cardinal with
κ < κ∗ ≤ Γ and Γ satisfies Γκ = Γ. Then there is forcing extension in which
cardinals have not been changed satisfying:

κ∗ = u(κ) = b(κ) = d(κ) = a(κ) = s(κ) = r(κ) = cov(Mκ)

= add(Mκ) = non(Mκ) = cof(Mκ) and 2κ = Γ.

If in addition γ < κ∗ → γ<κ < κ∗, then we can also provide that i(κ) = κ∗. If in
addition (Γ)<κ

∗ ≤ Γ then we can also provide that p(κ) = t(κ) = h(κ) = κ∗.

Proof. We will modify to iteration P∗ to an iteration P̄∗ by specifying the iterands
Q̇j for every odd ordinal j < α. It is easy to verify that those cardinal characteristics
which were evaluated in the model of Theorem 35 will have the same value κ∗ in
V P̄. Let γ̄ = 〈γi〉i<κ∗ be a strictly increasing cofinal in α sequence of odd ordinals.
The stages in γ̄ will be used to add a κ-maximal almost disjoint family of size κ∗,
as well as a κ-maximal independent family of size κ∗.

If Γ<κ
∗ ≤ Γ, then using an appropriate bookkeeping function F with domain the

odd ordinals in α which are not in the cofinal sequence γ̄ we can use the generalized
Mathias poset to add pseudointersections to all filter bases of size < κ∗ with the SIP.
In case Γ<κ

∗ 6≤ Γ, just take for odd stages which are not in γ̄ arbitrary κ-centered,
κ-directed closed forcing notions of size at most Γ.

To complete the definition of P̄∗ it remains to specify the stages in γ̄. For each
i < κ∗, in V P̄∗

γi the poset Q̇γi will be defined to be of the form Qγi = Q0
γi ∗ Q̇

1
γi .

Fix a ground model κ-ad family A0 of size κ and a ground model κ-independent

family I0 of size κ. Let Q0
γ0 = Q̄(A0, κ) (see Definition 23) and in V P̄∗γ0∗Q̇

0
γ0 let

Q1
γ0 = Q̂(I0, κ) (see Lemma 29). Now, fix any i < κ∗ and suppose that ∀j < i,

Q0
γj = Q̄(Aj , κ) adds a generic subset x̄γj of κ where Aj = A0 ∪{x̄γk}k<j and that

the poset Q1
γj = Q̂(Ij , κ) adds a subset x̂γj of κ where Ij = I0 ∪{x̂γk}k<j . In V P̄∗γi

let Q0
γi = Q̄(Ai, κ) where Ai = A0 ∪ {x̄γj}j<i and in V P̄∗γi∗Q̇

0
γi let Q1

γi = Q̂(Ii, κ)
where Ii = I0 ∪ {x̂γj}j<i.

With this the recursive definition of the iteration P̄∗ is defined. In V P̄∗ let
A∗ = A0 ∪ {x̄γj}j<κ∗ and let I∗ = I0 ∪ {x̂γj}j<κ∗ . We will show that A∗ and
I∗ are a κ-mad and a κ-maximal independent families respectively. Clearly A∗ is
κ-ad and I∗ is κ-independent. To show maximality of A∗, consider an arbitrary
P̄∗-name Ẋ for a subset of κ and suppose P̄∗ ({Ẋ} ∪A∗ is κ-ad). By Lemma 8 Ẋ
can be viewed as a P̄∗β-name for some β < α. Then for γj > β, by Lemma 24 we

obtain V P̄∗β |= |x̄γj ∩ Ẋ|= κ, which is a contradiction. Thus A∗ is indeed maximal

and so a(κ) ≤ κ∗. However in V P̄∗ , b(κ) = κ∗ and since b(κ) ≤ a(κ) we obtain

V P̄∗ � a(κ) = κ∗.
To see that I∗ is maximal, argue in a similar way. Consider arbitrary P̄∗-name

Ẋ for a subset of κ such that P̄∗ {Ẋ} ∪ I∗ is independent. Then there is β < α

such that we can see Ẋ as a P̄∗β-name. Let γj > β. Then by Lemma 29, in V
P̄∗γj+1

the family {x̂γj} ∪ Iγj ∪ {X} is not independent, which is a contradiction. Thus
13
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I∗ is maximal and so i(κ) ≤ κ∗. On the other hand if whenever γ < κ∗ we have

γ<κ < κ∗, then d(κ) ≤ i(κ) (by Lemma 27) and since in V P̄∗ , d(κ) = κ∗, we obtain

V P̄∗ � i(κ) = κ∗.
Suppose Γ<κ

∗ ≤ Γ. In this case, every filter of size < κ∗ with the SIP has
a pseudointersection in V P̄∗ . Thus in the final extension p(κ) ≥ κ∗. However

p(κ) ≤ t(κ) ≤ s(κ) and since V P̄∗ � s(κ) = κ∗, we obtain that p(κ) = t(κ) = κ∗.
By Proposition 33, h(κ) ≤ s(κ) = κ∗ and κ∗ = t(κ) ≤ h(κ). Thus h(κ) = κ∗. �

The above iteration can be additionally modified so that in the final extension
the minimal size of a κ-maximal cofinitary group, ag(κ), is κ∗. Indeed, one can use
the stages in γ̄ and [6, Definition 2.2.] to add a κ-maximal cofinitary group of size
κ∗. The fact that κ∗ ≤ ag(κ) follows from b(κ) ≤ ag(κ) (see [2]).
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