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Abstract. We show that the existence of a Π1
1-definable mad family is consistent with the existence

of a ∆1
3-definable well-order of the reals and b = c = ℵ3.

1. Introduction

An almost disjoint (a.d.) family A is a collection of infinite subsets of ω, such that |a ∩ b| < ω

for all a, b ∈ A. A maximal almost disjoint (mad) family is an infinite a.d. family which is maximal

with regard to this property, i.e., ∀a ∃b ∈ A (|a ∩ b| = ω). Mad families have been studied from

a variety of perspectives: for example, the size of the least mad family that can possibly exist is

the cardinal characteristic a, and its value has been shown to be independent of ZFC. Another

perspective is the descriptive set-theoretic one, where one looks at the possible complexity of mad

families (as subsets of [ω]ω). This investigation has been carried out in a number of results, and we

briefly summarize its history.

Theorem 1.1 (Mathias [Mat77]). There are no analytic mad families.

In the constructible universe L, it is easy to construct Σ1
2-definable mad families. Arnold Miller

proved a seemingly stronger result.

Theorem 1.2 (Miller [Mil89]). In L, there is a Π1
1 mad family.

The above result has recently been superceded by Asger Törnquist:

Theorem 1.3 (Törnquist [Tör11]). The following are equivalent:

(1) There is a Σ1
2 mad family, and

(2) There is a Π1
1 mad family.

Combining this theorem with well-known facts about constructing Σ1
2-definable mad families in

L which are preserved by iterations of some standard forcing notions (among which Cohen, random,

Sacks and Miller forcing), one can easily see that the existence of a Π1
1 mad family is consistent with

¬CH. On the other hand, the following was proved in [FZ10] (where b is bounding number, i.e.,

the least size of an unbounded family, and an ω-mad family is a mad family satisfying a stronger

maximality requirement—see e.g. [KSZ08] for a definition).

Theorem 1.4 (Friedman & Zdomskyy). It is consistent that b = c = ℵ2 and there exists a Π1
2

ω-mad family.

This was further extended in [FFZ11b]:
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Theorem 1.5 (Fischer, Friedman & Zdomskyy). It is consistent that b = c = ℵ3, there exists a

Π1
2 ω-mad family and a ∆1

3-definable well-order of the reals.

Methods for obtaining models with large continuum together with a ∆1
3-definable wellorder have

been developed by Jensen and Solovay [JS70], by Harrington [Har77] and by Friedman [Fri00]; it is

an ongoing project to determine to what extent the ∆1
3 wellorder is compatible with certain other

properties of the model (such as a cardinal inequality or the existence of other projective objects,

cf. [FF10, FFZ11b, FFZ11a]).

Dropping the “ω”-requirement, Theorem 1.4 was improved in [BK12]:

Theorem 1.6 (Brendle & Khomskii). For any regular uncountable cardinal κ, it is consistent that

b = c = κ and there exists a Π1
1 mad family.

The present paper is concerned with the following natural question: to what extent can Theorem

1.5 be merged with Theorem 1.6? Note that we have no chance of obtaining a Π1
1 ω-mad family

together with b > ℵ1 (the reason is that an ω-family does not contain a perfect set by [Rag09], so

a Π1
1 ω-mad family must be completely contained in L), so the “ω”-requirement must certainly be

dropped. Taking that into account, we do indeed succeed in proving an optimal result extending

both Theorem 1.5 and Theorem 1.6.

Theorem 1.7 (Main Theorem). It is consistent that b = c = ℵ3, there exists a Π1
1 mad family,

and a ∆1
3-definable well-order of the reals.

For the proof of this theorem, we use a combination of the techniques for constructing ∆1
3 well-

orders, as presented in [FFZ11b], and the techniques from [BK12] for constructing a Π1
1 mad family

in models where b is large. Most of the work involves overcoming two main obstacles:

(1) showing that a version of almost disjoint coding has a nice preservation property, and

(2) dealing with iterations longer than length ℵ1.

The first obstacle will be solved in Lemma 2.4 and the second one will be solved by making use of

the 3-principle, in Lemma 4.1.

This paper is structured as follows: in Section 2, we give the preliminary definitions, review

the main methods of [BK12] and [FFZ11b], and introduce a different version of “almost disjoint

coding”. In Section 3, we review the preparatory forcing construction from [FFZ11b] and prove

that the 3-principle is preserved after the preparation. Finally, in Section 4, we combine these

efforts and obtain a proof of the Main Theorem.

2. Preliminaries

We start by summarizing the main tools behind the result of [BK12]. One of the central concepts

there was considering mad families constructed from perfect a.d. families, and preserving the maxi-

mality of the re-interpreted family by forcing, as opposed to the more classical concept of preserving

a mad family directly.

Definition 2.1. A set A ⊆ [ω]ω is called an ℵ1-perfect mad family if A =
⋃
α<ℵ1 Aα where each

Aα is a perfect a.d. set and A is a mad family. For a forcing P, such a family A is said to be

P-indestructible if in the generic extension V [G] by P, AV [G] :=
⋃
α<ℵ1 A

V [G]
α is a mad family.
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The method of [BK12] involved the construction of an ℵ1-perfect mad family in L, which had a

Σ1
2 definition and moreover was indestructible (in the sense of Definition 2.1) by the κ-iteration of

Hechler forcing with finite support, for κ being any uncountable regular cardinal. We now briefly

review that construction.

For α < ℵ1, let Pα := {Pασ | σ ∈ ω<ω} be an infinite partition of some (unspecified) domain Dα ∈
[ω]ω into infinite sets, indexed by finite sequences σ. For each σ ∈ ω<ω, let {pασ(0), pασ(1), pασ(2), . . . }
be the increasing enumeration of Pασ . For each f ∈ ωω, let Φα(f) := {pαf�n(f(n)) | n ∈ ω} and let

Aα := {Φα(f) | f ∈ ωω}. Then Aα is an almost disjoint subfamily of [Dα]ω of size 2ℵ0 . Furthermore

Aα is a perfect set in the natural topology of [Dα]ω (since Φ is a homeomorphism between ωω and

Aα).

The idea is then to construct, by induction on α < ℵ1, a sequence of such partitions Pα, each of

them giving rise to a perfect a.d. set Aα, and to make sure that the union A :=
⋃
α<ℵ1 Aα becomes

a mad family. If the construction takes place in L, it is easy to make it Σ1
2-definable. To guarantee

preservation by Hechler forcing, the following essential property was used:

Definition 2.2. A forcing P strongly preserves splitting reals (abbreviated by “s.p.s.”), if for every

P-name ȧ for an element of [ω]ω, there is a sequence {an : n ∈ ω} of elements of [ω]ω, such that if

z ∈ [ω]ω splits all an’s, then 
P“ž splits ȧ”.

The Hechler partial order satisfies the s.p.s.-property by [BD85]. Moreover, the s.p.s.-property

is preserved by iterations of ccc forcings with finite support (see [Bre09, Proposition 3.10]).

We now state the Main Lemma from [BK12], involved in the induction step of the construction.

The notations P β, Aβ, Φβ etc. refer to the objects described above.

Lemma 2.3 (Main Lemma, [BK12]). Let M be a countable model of set theory such that P β ∈M
for all β < α. Assume that for all β 6= β′ < α and for all f, g ∈ ωω, the set Φβ(f)∩Φβ′(g) is finite

(i.e.,
⋃
β<αAβ is an a.d. family).

Then there exists a new partition Pα (of some domain Dα), lying outside M , which satisfies the

following properties:

(1) For every f, h ∈ ωω and every β < α, Φβ(f) ∩ Φα(h) is finite (i.e.,
⋃
β≤αAβ is still a.d.)

(2) For every Y ∈ M , if Y is almost disjoint from Φβ(f) for all f ∈ ωω and all β < α, then

there exists an h ∈ ωω such that Φα(h) ⊆ Y .

(3) Suppose V ′ ⊇ V is a model of set theory, M ′ ⊇M is a countable model with M ′ ∈ V ′, and

every real in V which is splitting over M is still splitting over M ′. Then for every Y ∈M ′,
if Y is almost disjoint from Φβ(f) for every f ∈ ωω in V ′ and every β < α, then there

exists an h ∈ ωω in V ′ such that V ′ � Φα(h) ⊆ Y (i.e., condition 2 holds relativized to V ′

and M ′.)

Clearly, the above lemma can be applied with V ′ = V [G], and M ′ = M [G] being generic

extensions via some forcing that satisfies the s.p.s. property. This Lemma will be the crucial tool

in our inductive construction of the mad family in Section 4.

Next, we shift our attention to the ∆1
3-definable well-order of the reals. As a Σ1

2-definable well-

order implies that every real is constructible (see e.g. [Jec03, Theorem 25.39]), a ∆1
3 well-order is

optimal in the presence of ¬CH. A (boldface) ∆1
3 well-order together with ¬CH was first obtained
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by Harrington [Har77], and Sy Friedman improved this result by establishing the consistency of a

(lightface) ∆1
3 well-order of the reals together with c = ℵ2. Different methods of obtaining large

continuum, ∆1
3 well-orders, and the existence of certain combinatorial object on the reals have

recently been developed in [FF10, FFZ11b, FFZ11a] (dealing with cardinal inequalities, ω-mad

families, and MA, respectively).

In this paper we will mostly be using the methods from [FFZ11b]. The final model will be

obtained as a two-step forcing extension of L. In the first stage (the “preliminary stage”) the

universe is prepared in a special way, by adding certain subsets of ℵ1 and ℵ2 but no new reals.

We will denote this intermediate extension by L∗, and the forcing leading up to it by P∗. Note

that since no new reals have been added, L∗ still satisfies many properties of L, such as having a

Σ1
2-good well-ordering of the reals.

In the next stage (the “coding stage”), new reals are added to L∗, by a finite support iteration

of length ℵ3, consisting of σ-centered forcing posets. This iteration simultaneously makes sure that

b = ℵ3 and that a ∆1
3 well-ordering of the reals exists. In [FFZ11b], the Π1

2-definable mad family

was explicitly added by this forcing as well. In our situation, we would like to preserve an ℵ1-perfect

mad family defined in L∗ instead. We would like to simulate the proof in [BK12], but for that we

need two ingredients: the s.p.s.-property of the forcing, and a way to deal with iterations of length

longer than ℵ1. The next theorem deals with the first ingredient.

Recall that one of the central methods in the “coding stage” is almost disjoint coding, a technique

which allows subsets of ω1 to be coded by reals in a generic extension. We show that this can be

done by a forcing having the s.p.s.-property.

Let ~C := {cα : α < ℵ1} be a fixed, definable (e.g. closed) family of a.d. sets, and let A ⊆ ω1 be

an arbitrary set. Let IA be the ideal on ω generated by the a.d. family {cα : α ∈ A}, let I+
A denote

IA-positive sets and FA the corresponding filter. While the standard almost disjoint coding can be

seen as a Mathias partial order with the filter FA, we will use a Laver-like partial order instead.

Precisely, we prove the following:

Lemma 2.4. For any given ~C and A ⊆ ω1, there exists a σ-centered forcing, which we shall denote

by LA(~C), such that

(1) LA(~C) adds a dominating real,

(2) LA(~C) satisfies the s.p.s.-property, and

(3) LA(~C) adds a generic real ẋG with the following property:

(a) if α ∈ A then 
 | ran(ẋG) ∩ cα| < ω, and

(b) if α /∈ A then 
 | ran(ẋG) ∩ cα| = ω.

Consequently, 
 “ẋG encodes A”.

Proof. Let LA(~C) be the Laver partial order with filter FA, i.e., the partial order consisting of all

trees T such that for any t ∈ T longer than stem(T ), we have SuccT (t) := {n | t_〈n〉 ∈ T} ∈ FA;

the ordering is inclusion.

It is clear that this forcing is σ-centered, and to see that it adds a dominating real, simply note

that for any t ∈ T , if SuccT (t) ∈ FA then also SuccT (t) \m ∈ FA for any finite m. To verify that it

has the s.p.s.-property, we use a result of Brendle and Hrušák [BH09]. We need some definitions:
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• An ideal I on ω is countably tall if for all {an | n < ω} there is b ∈ I such that |an ∩ b| = ω

for every n.

• For two ideals I,J , write J ≤K I (J is Katetov-reducible to I) iff there is an f : ω → ω

s.t. ∀a (a ∈ J → f−1[a] ∈ I).

A recent result from [BH09, Proposition 1] then states the following: Let I be an arbitrary ideal

and and F the corresponding filter. Then the following are equivalent:

(1) For all X ∈ I+ and every J ≤K I�X, J is not countably tall.

(2) Laver forcing with the filter F has the s.p.s.-property.

The argument for the proof of this result is quite similar to the one for Hechler forcing—indeed

Hechler forcing can be seen as Laver with the cofinite filter. To prove that LA(~C) satisfies the

s.p.s., it suffices to show that IA satisfies clause 1 from above. The main point is that IA itself is

not countably tall.

Let X ∈ I+
A , and find some {cαn | n < ω}, with αn ∈ A, such that |cαn ∩ X| = ω for all n. Let

J ≤K I�X be arbitrary. Let f : X → ω be the function witnessing the Katetov reduction, and let

an := f“(cαn ∩X). We claim that {an | n < ω} is a witness to the fact that J is not countably tall.

Let b ∈ J be arbitrary. By assumption, b′ := f−1[b] ∈ IA. This means that there are β1, . . . βk ∈ A
such that b′ ⊆∗ cβ1 ∪ · · · ∪ cβk . But then b′ cannot have infinite intersection with infinitely many

of the cαn ’s, since otherwise some cβi and some cαn , with βi 6= αn, would have infinite intersection,

contradicting their mutual almost disjointness. Therefore, for some n, b′ has only finite intesection

with cαn . But then b = f“(b′) has finite intersection with an, and this completes the proof.

It remains to show that LA(~C) can be used for a.d. coding purposes, i.e., condition (3) from the

theorem.

(a) Let α ∈ A and T ∈ LA(~C). Inductively let S ≤ T be obtained by pruning the tree and

removing cα from every splitting node, i.e., making sure that SuccS(t) := SuccT (t) \ cα for

every t ∈ S. Since ω \ SuccT (t) is in IA and α ∈ A, ω \ SuccS(t) is also in IA, so the

tree S is a valid LA(~C)-condition. Moreover, for all n above the stem, S 
 n /∈ cα. Hence

S 
 | ran(ẋG) ∩ cα| < ω.

(b) Let α /∈ A, T ∈ LA(~C) and n ∈ ω be given. Let t := stem(T ) and consider SuccT (t) ∈ FA.

Since α /∈ A and the collection {cβ | β < ℵ1} was a.d., clearly cα /∈ IA. But then SuccT (t)∩cα
is infinite and so we may pick m ≥ n from this set. Then letting S ≤ T be such that

stem(S) = t_〈m〉 we have S 
 m ∈ ran(ẋG).

As a result, ẋG codes A as we wanted. �

3. The preliminary stage, 3 and 3′

In this section we review the preliminary forcing construction leading from L to L∗, and verify

that the 3-principle is valid in L∗. Most of the exposition here follows closely that of [FFZ11b],

although many details are left out. We start by defining the preliminary forcing P∗ = P0 ∗ Ṗ1 ∗ Ṗ2.

A transitive ZF− model M is suitable if ωM3 exists and ωM3 = ωL
M

3 . If M is suitable then also

ωM1 = ωL
M

1 and ωM2 = ωL
M

2 .
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Fix a 3ω2(cof (ω1)) sequence 〈Gξ | ξ ∈ ω2 ∩ cof (ω1)〉 which is Σ1-definable over Lω2 . For α < ω3,

let Wα be the <L-least subset of ω2 coding α, and for 1 < α < ω3 let Sα = {ξ ∈ ω2 ∩ cof (ω1) |
Gξ := Wα∩ξ 6= ∅}. Then ~S = 〈Sα | 1 < α < ω3〉 is a sequence of stationary subsets of ω2∩cof (ω1),

which are mutually almost disjoint. Let S−1 := {ξ ∈ ω2 ∩ cof(ω1) | Gξ = ∅}. Note that S−1 is a

stationary subset of ω2 ∩ cof(ω1) which is disjoint from all Sα’s.

Step 0. For every α such that ω2 ≤ α < ω3 “shoot a club” cα disjoint from Sα via the poset

P0
α, consisting of all closed subsets of ω2 which are disjoint from Sα ordered by end-extension, and

let P0 =
∏
α<ω3

P0
α be the direct product of the P0

α’s with supports of size ω1, where for α ∈ ω2,

P0
α is the trivial poset. Then P0 is countably closed, ω2-distributive (the proof of which uses the

stationarity of S−1) and ω3-c.c.

Step 1. We begin by fixing some notation. Whenever k ∈ ω, X is a set of ordinals and j ∈ k, let

Ikj (X) = {γ | k · γ + j ∈ X}. In particular, let Even(X) = I2
0 (X) = {γ | 2 · γ ∈ X}. For every

α < ω3 let Dα be a subset of ω2 which codes the triple 〈Cα,Wα,Wγ〉 where γ is the largest limit

ordinal ≤ α, precisely: I3
0 (Dα) = Cα, I3

1 (Dα) = Wα and I3
2 (Dα) = Wγ . Let

Eα = {M∩ ω2 | M ≺ Lα+ω2+1[Dα], ω1 ∪ {Dα} ⊆ M}.

Then Eα is a club on ω2. Choose Zα ⊆ ω2 such that Even(Zα) = Dα and if β < ω2 is ωM2 for some

suitable model M such that Zα ∩ β ∈M, then β ∈ Eα. Then we have:

(∗)α: If β < ω2, M is a suitable model such that ω1 ⊂ M, ωM2 = β, and Zα ∩ β ∈ M, then

M � ψ(ω2, Zα ∩ β), where ψ(ω2, X) is the formula “Even(X) codes a triple (C̄, W̄ , ¯̄W ),

where W̄ and ¯̄W are the <L-least codes of ordinals ᾱ, ¯̄α < ω3 such that ¯̄α is the largest

limit ordinal not exceeding ᾱ and C̄ is a club in ω2 disjoint from Sᾱ”.

Similarly to ~S define a sequence ~A = 〈Aξ | ξ < ω2〉 of stationary subsets of ω1 using the

“standard” 3-sequence. Code Zα by a subset Xα of ω1 with the poset P1
α consisting of all pairs

〈s0, s1〉 ∈ [ω1]<ω1 × [Zα]<ω1 where 〈t0, t1〉 ≤ 〈s0, s1〉 iff s0 is an initial segment of t0, s1 ⊆ t1 and

t0\s0 ∩Aξ = ∅ for all ξ ∈ s1 (note that this is closely related to the a.d. coding discussed in Section

2, but deals with coding subsets of ω2 by subsets of ω1). Then Xα satisfies the following condition:

(∗∗)α: If ω1 < β ≤ ω2 and M is a suitable model such that ωM2 = β and {Xα} ∪ ω1 ⊂ M, then

M � φ(ω1, ω2, Xα), where φ(ω1, ω2, X) is the formula: “ Using the sequence ~A, X almost

disjointly codes a subset Z̄ of ω2, such that Even(Z̄) codes a triple (C̄, W̄ , ¯̄W ), where W̄

and ¯̄W are the <L-least codes of ordinals ᾱ, ¯̄α < ω3 such that ¯̄α is the largest limit ordinal

not exceeding ᾱ and C̄ is a club in ω2 disjoint from Sᾱ”.

Let P1 =
∏
α<ω3

P1
α, where P1

α is the trivial poset for all α ∈ ω2, with countable support. Then

P1 is countably closed and has the ω2-c.c.

Step 2. Finally we force a “localization” of the Xα’s. Fix φ as in (∗∗)α and define the poset

Lk(X,X ′) as in [FFZ11b, Definition 1]. That is, let X,X ′ ⊂ ω1 be such that φ(ω1, ω2, X) and

φ(ω1, ω2, X
′) hold in any suitable model M with ωM1 = ωL1 containing X and X ′, respectively.

Then let L(X,X ′) be the poset of all functions r : |r| → 2, where the domain |r| of r is a countable

limit ordinal such that:

(1) if γ < |r| then γ ∈ X iff r(3γ) = 1
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(2) if γ < |r| then γ ∈ X ′ iff r(3γ + 1) = 1

(3) if γ ≤ |r|,M is a countable suitable model containing r�γ as an element and γ = ωM1 , then

M � φ(ω1, ω2, X ∩ γ) ∧ φ(ω1, ω2, X
′ ∩ γ).

The ordering is end-extension.

For every α ∈ Lim(ω3) and m ∈ ω, let P2
α+m = L(Xα+m, Xα). Let

P2 =
∏

α∈Lim(ω3)

∏
m∈ω

P2
α+m

with countable supports. In LP0∗P1
, the poset P2 has the ω2-c.c. Also note that P2

α+m produces a

generic function in the space 2ω1 (of LP0∗P1
), which is the characteristic function of a subset Yα+m

of ω1 with the following property:

(∗ ∗ ∗)α For every β < ω1 and any suitable M such that ωM1 = β and Yα+m ∩ β belongs

to M, we have M � φ(ω1, ω2, Xα+m ∩ β) ∧ φ(ω1, ω2, Xα ∩ β).

Now we let P∗ := P0 ∗ P1 ∗ P2 be the result of combining these three generic extensions, and use

L∗ to denote the intermediary extension LP∗ .

Next, we want to show that 3 holds in L∗. Since we have added new subsets of ω1, this is not

a priori obvious. To prove that this is the case, we use the related 3′-principle, a version of 3 due

to Kunen, in which we allow countably many possibilities at stage α to capture sets.

Definition 3.1. A sequence {Sα | α < ω1} is a 3′-sequence if Sα = {Snα | n < ω} such that Snα ⊆ α
for all n, and if for all S ⊆ ω1, the set {α | ∃n (S ∩ α = Snα)} is stationary.

Lemma 3.2. In L∗, there exists a 3′-sequence which is Σ1 definable over Lω1.

Proof. We define the sequence in L, and show that it is preserved by P∗. For α < ω1(= ωL1 ), let

β(α) be the least ordinal β such that Lβ � ZF−+(α is countable). Let D′α := {A ⊆ α | A ∈ Lβ(α)}.
We claim that {D′α | α < ω1} is a 3′-sequence even after forcing with P∗.

So, let p0 ∈ P∗, let Ẋ be a P∗-name for a subset of ω1 and Ċ a P∗-name for a closed unbounded

subset of ω1. Let N be the least countable elementary submodel of some large LΘ such that p0, Ẋ, Ċ

are elements of N . Let N̄ be the transitive collapse of N .

As in the proof of [FFZ11b, Lemma 1], get an extension p1 of p0 which meets all dense sets in N
by considering a generic filter g over N . Now let ḡ be the image of g under the transitive collapse

that map from N to N̄ .

Then ḡ is definable from an ω-enumeration of N̄ and (as N is the least countable elementary

submodel of some LΘ containing a certain finite set of parameters) there is such an ω-enumeration

in Lβ(α), where α = N ∩ ω1. So p1 
 Ẋ ∈ Lβ(α) and p1 
 α ∈ Ċ. But then p1 forces that the

intersection {α | Ẋ ∩ α ∈ D′α} ∩ Ċ is non-empty, which completes the proof. �

To conclude, note that by [Kun80, Theorem II 7.14], every 3′-sequence gives rise to a 3-sequence

in a natural way. Consequently, there is a 3-sequence in L∗ which is Σ1 definable over Lω1 .
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4. Constructing an s.p.s.-indestructible mad family in L∗.

We are now ready to prove the main theorem, using an inductive construction and Lemma 2.3.

In [BK12], the method was to define a sequence {Mα | α < ℵ1} of countable models covering all

Dℵ1-names for reals (where Dℵ1 stands for the ℵ1-iteration of Hechler forcing), while simultaneously

constructing the perfect a.d. families Aα using Lemma 2.3. Condition 3 of the Lemma then guaran-

teed that the family A :=
⋃
α<ℵ1 Aα thus constructed was not destroyed by Dℵ1 , and an additional

argument (involving the fact that Hechler forcing is Suslin ccc) then showed that the same must

hold for Dκ, where κ is any regular uncountable cardinal. Since we will need to deal with more

complicated iterations, which are ccc but not Suslin, we need a different method for dealing with

longer iterations, and we use the 3-sequence for this purpose.

Lemma 4.1. Let P be any ccc (or even just proper) forcing notion satisfying the s.p.s.-property.

Then there exists a P-indestructible, ℵ1-perfect, Σ1
2-definable mad family in L∗. Moreover, in (L∗)P

this family still has a Σ1
2 definition.

Proof. First of all, note that we may assume, without loss of generality, that in L∗ there exists a

definable 5-dimensional version of 3, namely, a sequence

{(Xα, Eα, <α) | α < ℵ1}

such that Xα ⊆ ω1, Eα, <α ⊆ (ω1 × ω1), and for every triple (X,E,<), the set

{α | X ∩ α = Xα, E ∩ (α× α) = Eα and (< ∩(α× α)) = <α}

is stationary. Fix such a sequence for the rest of the proof.

Definition 4.2. We say that a triple (X,E,<) “codes a ZF− model” iff

(1) E and < are binary relations on X,

(2) (X,E) is well-founded and extensional,

(3) < well-orders X, and

(4) (X,E) |= ZF−.

We proceed by defining the ℵ1-mad family, by induction on α < ℵ1, using the ideas described

in Section 2. At each step, the Lemma 2.3 is applied to produce the next partition Pα (of some

domain Dα), giving rise to a perfect a.d. set Aα. Simultaneously, a sequence of countable transitive

ZF− models {Mα | α < ℵ1} will be defined (note that the transitivity of the models is crucial in

the current argument). Inductively, the following conditions will be guaranteed for all α:

(1) Mβ ∈Mα for all β < α,

(2) P β ∈Mα for all β < α,

(3)
⋃
β<αAβ is a.d.

We proceed with the inductive construction. At stage α, assume Mβ and P β have been defined,

and the three inductive conditions are satisfied. To define Mα, consider two cases:

• Case 1. If (Xα, Eα, <α) codes a countable ZF− model (in the sense of Definition 4.2), let

M ′α be its transitive collapse. If, additionally, it so happens that 〈Mβ | β < α〉 ∈ M ′α and〈
P β | β < α

〉
∈M ′α, let Mα := M ′α.
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• Case 2. If the above fails, then simply let Mα be the countable, transitive ZF− model with

<L-least code, such that 〈Mβ | β < α〉 ∈Mα and
〈
P β | β < α

〉
∈Mα.

After that, we are in the right situation to apply Lemma 2.3 to the model Mα and the collection

of partitions
〈
P β | β < α

〉
, so we use it to construct a new partition Pα, picking the <L-least one

satisfying all the conditions.

This completes the inductive definition. We claim that A :=
⋃
α<ℵ1 Aα thus constructed is a P-

indestructible mad family. By the third inductive condition, it follows immediately that A is a.d.,

so let’s focus on its maximality. Let G be P-generic, and let Y be a new real in L∗[G]. Since P
may have added many reals, by basic cardinality arguments we clearly cannot assume that Y is

contained in some Mα[G]. However, here we will use 3 to get around this difficulty.

Claim. For some α < ω1, Y belongs to a generic extension of Mα via some forcing which has the

s.p.s.-property.

Proof. Let Ẏ be a P-name for Y . Let N be a countably closed, elementary submodel of some

sufficiently large Hθ, with |N | = ℵ1, containing P, Ẏ , the entire sequences 〈Mα | α < ω1〉 and〈
P β | α < ω1

〉
, and all the countable ordinals. Let E and < be binary relations on ω1 so that

(N,∈, <Hθ) ∼= (ω1, E,<) (here <Hθ refers to some natural well-order of N inherited fromHθ). Also,

let 〈Nα | α < ω1〉 be a continuous sequence of countable elementary submodels of Hθ, converging

to N . Note that, if G is P-generic, then, since P is ccc and N is countably closed, N [G] is a generic

extension of N via P ∩ N . Moreover, by elementarity, Nα[G] ≺ N [G] holds for all α, so Nα[G] is

also a generic extension of Nα via P ∩Nα.

Moreover, by continuity of the sequence 〈Nα | α < ω1〉, there are club-many α so that

(Nα,∈, <Hθ) ∼= (α, E ∩ (α× α), < ∩ (α× α)).

Using 3, we can then pick an α such that in fact

(Nα,∈, <Hθ) ∼= (Xα, Eα, <α).

Then clearly (Xα, Eα, <α) codes a model, and by elementarity 〈Mβ | β < ω1〉 ,
〈
P β | β < ω1

〉
∈ Nα.

Moreover, we may assume that Ẏ ∈ Nα.

Let N̄α be the transitive collapse of Nα, via collapsing function πα. As all members of the transitive

closure of Mβ and P β for β < α have rank < α (again, without loss of generality), they are mapped

onto themselves by πα. Also, since Nα contains all the ordinals < α, it follow that the initial

segments 〈Mβ | β < α〉 and
〈
P β | β < α

〉
are contained in the transitive collapse N̄α. But then, we

find ourselves in the situation of Case 1 (from the construction of the models), and it follows that

Mα = N̄α.

As Ẏ ∈ Nα, Y ∈ Nα[G]. Then Y = πα(Y ) is in the transitive collapse of Nα[G] by πα, which equals

to Mα[πα“G], the generic extension of Mα by the forcing πα(P ∩Nα).
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Nα
P∩Nα //

πα

��

Nα[G] 3 Y

πα

��
Mα

πα(P∩Nα)
// Mα[πα“G] 3 πα(Y ) = Y

Since P ∩ Nα has the s.p.s.-property, so does πα(P ∩ Nα). Therefore, Y is indeed in a generic

extension of an Mα via a forcing with the s.p.s.-property. �(Claim.)

Now we may apply condition (3) of Lemma 2.3 with M = Mα and M ′ = Mα[πα“G], and see that

Y has infinite intersection with some member of
⋃
β≤αAβ. Therefore, indeed, A =

⋃
α<ℵ1 Aα is

P-indestructible.

It remains only to argue that A(L∗)P has a Σ1
2 definition. For this, first note that ωω ∩L∗ = ωω ∩L

and that the 3-sequence is Σ1 definable over Lω1 . Since the Mα’s are chosen so that they are either

defined from 3 or chosen to be <L-least, and the Pα’s are also <L-least, we can use a standard

argument to show that the set B of (codes for) {Pα | α < ℵ1} is a Σ1
2 set. Then, in (L∗)P, the mad

family is given by the formula

x ∈ A ⇐⇒ ∃b ∈ B (x ∈ Aα for α s.t. b codes Pα).

Since “x ∈ Aα for α s.t. b codes Pα” is a recurisve computation, the above gives a Σ1
2 definition of

A in (L∗)P. This completes the proof. �

With this we are almost done with the proof of the Main Theorem. All that remains to do is

to force a ∆1
3-definable well-order of the reals, together with b = c = ℵ3, over L∗ (i.e., the “coding

stage”). For that, we will define a forcing iteration Pω3 following [FFZ11b, Step 3], with only two

essential differences:

(1) for a.d. coding purposes, we will use the Laver-like almost disjoint coding from Lemma 2.4

as opposed to the standard a.d. coding, and

(2) at stages where no coding is performed, we will use the trivial poset as opposed to a version

of Hechler forcing.

This way, dominating reals are added cofinally often (by the Laver-like forcing), while the s.p.s.-

property is preserved.

So, in L∗, fix a definable (e.g. closed) sequence ~C = 〈cζ : ζ < ω1〉 of almost disjoint subsets of

ω. This will be used for coding purposes. We will define a finite support iteration 〈Pα, Q̇γ | α ≤
ω3, γ < ω3〉 such that Q̇α is a Pα-name for a σ-centered poset which has the s.p.s.-property. Every

Qα is going to add a generic real whose Pα-name will be denoted u̇α and just as in [FFZ11b] we

will have that L∗[Gα] ∩ ωω = L∗[〈u̇Gαξ | ξ < α〉] ∩ ωω for every Pα-generic filter Gα. This gives

a canonical well-order of the reals in L∗[Gα], which depends only on the sequence 〈u̇Gαξ : ξ < α〉.
The Pα-name for this well-order will be denoted by <̇α. Additionally, we can make sure that for
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all α < β we have that Pβ forces <̇α to be an initial segment of <̇β. Then if G is a Pω3-generic

filter over L∗, <G:=
⋃
{<̇Gα : α < ω3} will be the desired well-order of the reals.

We proceed with the recursive construction of Pω3 . Along the construction we shall also define

a sequence 〈Ȧα | α ∈ Lim(ω3)〉, where Ȧα is a Pα-name for a subset of [α, α+ω). For every ν with

ω2 ≤ ν < ω3, fix a bijection iν : {〈ζ, ξ〉 | ζ < ξ < ν} ∼−→ Lim(ω2). If Gα is Pα-generic over L∗,

<α= <̇Gαα and x, y are reals in L∗[Gα] such that x <α y, let x ∗ y := {2n | n ∈ x}∪ {2n+ 1 | n ∈ y}
and ∆(x ∗ y) := {2n+ 2 | n ∈ x ∗ y} ∪ {2n+ 1 | n /∈ x ∗ y}.

Suppose Pα has been defined and fix a Pα-generic filter Gα.

Suppose α is a limit ordinal. Write it in the form ω2 · α′ + ξ, where ξ < ω2. If α′ > 0, let

i = io.t.(<̇Gα
ω2·α′

)
and 〈ξ0, ξ1〉 = i−1(ξ). Let Aα := ȦGαα be the set α + (ω\∆(xξ0 ∗ xξ1)), where xζ is

the ζ-th real in L[Gω2 · α′] ∩ [ω]ω according to the well-order <̇Gαω2·α′ (here Gω2·α′ = Gα ∩ Pω2·α′).

Then, we define Qα as follows: Qα is the finite support iteration 〈Qm
α | m < ω〉, where

• Case 1: if m ∈ ∆(xξ0 ∗ xξ1) then Qm
α is the Laver-like a.d. coding partial order LYα+m(~C)

from Lemma 2.4, where ~C is the a.d. sequence fixed at the beginning, and Yα+m is the

subset of ω1 whose characteristic function was added by P2
α+m (see Section 2).

• Case 2: if m /∈ ∆(xξ0 ∗ xξ1) then Qm
α is the trivial poset.

Let umα be the generic real added by Qm
α in the first case, and the constant 0 function in the

second case. Let uα be a real encoding the umα ’s for all m ∈ ω.

If α < ω2 or α is a successor, let Qα be the trivial poset as well.

With this the inductive definition of our finite support iteration Pω3 is complete—for more details,

we refer the reader to [FFZ11b]. To complete the proof, first notice that since the sets ∆(x, y) are

always non-empty, Case 1 occurrs cofinally often in the iteration, and therefore dominating reals

are added cofinally often. It follows that in (L∗)Pω3 we have b = c = ℵ3. To show that in (L∗)Pω3

there is a ∆1
3-definable well-order of the reals, we follow the arguments of [FFZ11b]. Notice that

a version of [FFZ11b, Lemma 3] certainly goes through in our context (in fact it is even easier to

prove) since we have not added any reals in the stages where no coding has occurred. Consequently,

Lemmas 4 and 5 from [FFZ11b] hold, and the Σ1
3 formula defining the well-order can be read off

from the statements of these Lemmas.

Finally, note that all the forcing posets in the construction of Pω3 (including the trivial ones)

satisfy the s.p.s.-property, so by [Bre09, Proposition 3.10], the entire finite support iteration does,

as well. Thus we can apply Lemma 4.1 and obtain a Σ1
2-definable mad family in (L∗)Pω3 , and, by

Theorem 1.3, also a Π1
1 mad family.

5. Open Questions

One natural open question is whether our theorem can be extended to include b = c = κ for all

regular uncountable κ. Just as with the analogous question in [FFZ11b], we conjecture that the

answer is positive, i.e., that the methods for obtaining a ∆1
3 well-order can be adapted to allow

iterations of length κ for an arbitrary regular uncountable κ.

Onether question one may ask is whether the existence of a Π1
1 mad family and a ∆1

3 well-order is

consistent with other values of the cardinal characteristics b, a and s. For example, is it consistent
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with b < c, or even b < a? (The existence of a Π1
1 mad family is consistent with b < a by a recent

unpublished result of Brendle and Raghavan).
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