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CICHOŃ’S DIAGRAM AND REGULARITY PROPERTIES

VERA FISCHER, SY DAVID FRIEDMAN, AND YURII KHOMSKII

Abstract. We study regularity properties related to Cohen, random, Laver, Miller

and Sacks forcing, for sets of real numbers on the ∆1
3-, Σ1

3- and higher levels of the pro-

jective hierarchy. For ∆1
2 and Σ1

2 sets, the relationship between these properties follows

the pattern of the well-known Cichoń’s diagram for cardinal characteristics of the contin-

uum. It is known that assuming suitable large cardinals, the same relationships lift to

higher projective levels, but the questions become more interesting without such assump-

tions. Consequently, all our results are proved on the basis of ZFC alone or ZFC with an

inaccessible cardinal.

§1. Introduction. The study of regularity properties in descriptive set the-
ory is closely connected to cardinal characteristics of the continuum. By well-
known results of Solovay, Judah and Shelah, the statement “all Σ1

2 sets of reals
are Lebesgue measurable” is equivalent to “for every r ∈ ωω, the set of ran-
dom reals over L[r] is measure-one”, and the statement “all ∆1

2 sets of reals are
Lebesgue measurable” is equivalent to “for every r ∈ ωω, there is a random real
over L[r]”; analogous results hold for the Baire property and Cohen reals. These
characterizations link the statements about projective regularity with the cover-
ing and additivity numbers of the meager and null ideals on the reals. Likewise,
Brendle and Löwe [8] uncovered a link between the regularity properties natu-
rally connected to Laver-, Miller- and Sacks-forcing for Σ1

2 and ∆1
2 sets, and the

cardinal invariants b (the bounding number), d (the dominating number) and
the size of the continuum.

Thus, if we restrict attention to the second projective level, a very clear picture
emerges, in which the relationship between the various regularity statements
follows the familiar pattern of Cichoń’s diagram (see Figure 1 in Section 2).
Other, more exotic, regularity properties have also been extensively studied on
the second level, with some important contributions being [23, 8, 6, 9, 7]. See
also [32] for a very detailed and self-contained survey. An abstract approach has
been proposed by Ikegami in [24] and developed further in the PhD Theses of
Laguzzi [36] and of the third author [35].

Far less is known concerning sets higher up in the projective hierarchy, even
at the Σ1

3 and ∆1
3 levels. Concerning such questions, there are two, somewhat
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divergent, methods of approach. According to one of them, adopted e.g. by
Ikegami in [24], Judah and Spinas in [31] and a few others, one assumes the ex-
istence of certain large cardinals, which imply that all the essential results from
the second level lift almost verbatim to higher levels (for the third level, this
requires the existence of sharps for sets of ordinals). Although this approach is
interesting and certainly worthy of further investigation, it is not the approach
we will take in this paper, for reasons that shall be explained in the next sec-
tion. Here, all results will be proved on the basis of ZFC alone or ZFC with
an inaccessible; indeed, we will put special emphasis on eliminating the inac-
cessible wherever possible (notice that the statement “all Σ1

3 sets are Lebesgue
measurable” already implies an inaccessible in L by [40]).

Some work in this direction, most of it contained in Chapter 9 of [3], has
been carried out by Judah, Shelah, Bagaria and others in the eighties and early
nineties, and our methods are related to the ones used there. On the other hand,
we have more modern means at our disposal, particularly the theory of “non-
elementary proper forcing” (in our case, “Suslin and Suslin+ proper forcing”)
developed by Judah, Shelah, Goldstern and Kellner, and a result of Rene David
[10] about the existence of a model of set theory in which ω1 is inaccessible in
L[r] for all reals r, but there exists a Σ1

3-good wellorder of the reals. Using these
methods, we will make significant further progress while still leaving plenty of
interesting questions open. Although our emphasis will be on the regularity
properties corresponding to the cardinal invariants appearing in Cichoń’s dia-
gram (i.e., the regularity properties connected to Cohen, random, Laver, Miller
and Sacks forcing), our methods are sufficiently general and certainly have many
more applications regarding questions of a similar nature.

Below follows a short annotated outline of our paper:

1. Introduction.
2. Regularity properties and Cichoń’s diagram. We will introduce the

relevant definitions, summarize known results on the second level and pro-
vide the motivation for the research carried out in the rest of the paper.

3. Suslin and Suslin+ proper forcing. Here we will recall the definition
and basic properties of Suslin and Suslin+ proper forcing, proving several
important technical results.

4. Methods for obtaining regularity. In this section, we develop several
methods for obtaining regularity on the ∆1

3, Σ1
3 and ∆1

4-levels in a “mini-
mal” way, using various iterated forcing techniques.

5. Solving the diagrams. We apply the methods developed in the previous
section to separate a number of statements on higher projective levels. The
section is divided into the following subsections:

5.1: ∆1
3-results.

5.2: Σ1
3- and ∆1

4-results.
5.3: Separating ∆ from Σ.

6. Silver and Mathias. Although these properties do not fit in “Cichoń’s
diagram” as we have presented it, they have received a lot of attention in
set theory and we will mention the implications that our methods have for
these specific properties as well.
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7. Open questions.

§2. Regularity properties and Cichoń’s diagram. We assume that the
reader is familiar with the standard definitions of the Baire property, Lebesgue
measure, the ideal M of meager sets and N of measure-null sets, as well as
the definitions of Cohen, random, Laver, Miller and Sacks forcing. Following
standard practice, we denote these forcing notions with the letters C,B,L,M
and S. If T is a tree on ω<ω or 2<ω then [T ] denotes the set of branches through
T , and [t] denotes basic open sets for t ∈ ω<ω or 2<ω.

Definition 2.1. A set A ⊆ ωω is

• Laver-measurable if ∀T ∈ L ∃S ∈ L s.t. S ≤ T and ([S] ⊆ A or [S] ∩ A =
∅).

• Miller-measurable if ∀T ∈M ∃S ∈M s.t. S ≤ T and ([S] ⊆ A or [S]∩A =
∅).

A set A ⊆ 2ω is
• Sacks-measurable if ∀T ∈ S∃S ∈ S s.t. S ≤ T and ([S] ⊆ A or [S]∩A = ∅).

Sacks-measurability is also known under the term Marczewski-measurability.
Although contemporary interest in properties such as the ones above is often
forcing-related, it is interesting to note that among Polish mathematicians, there
had been a considerable interest in them long before the advent of forcing, see
e.g. [44].

Both Lebesgue measure and the Baire property can be represented in the style
of Definition 2.1, using the following well-known characterizations:

1. A subset A of ωω or 2ω is Lebesgue-measurable iff every closed set C of
positive measure has a closed subset C ′ ⊆ C of positive measure such that
C ′ ⊆ A or C ′ ∩A = ∅.

2. A subset A of ωω or 2ω has the Baire property iff every basic open set
[t] has a basic open subset [s] ⊆ [t] such that [s] \ A is meager or [s] ∩ A
is meager. Moreover, this holds iff every Gδ non-meager set X has a Gδ
non-meager subset Y ⊆ X such that Y ⊆ A or Y ∩A = ∅.

If we choose to represent random forcing by the partial order of closed sets
of positive measure, and Cohen forcing by Gδ (or Borel) non-meager sets, we
obtain an exact equivalence between the two classical properties on one hand,
and B- and C-measurability in the sense analogous to Definition 2.1 on the other
hand. Therefore, we will frequently refer to the Baire property and Lebesgue
measure as “C-” and “B-measurability”, respectively.

Notation 2.2. We will use the letters C,B,L,M and S to represent the corre-
sponding regularity property. If Γ is a class of sets, “Γ(P)” denotes the statement
“all sets of complexity Γ are P-measurable.”

While ZFC proves that analytic sets are P-measurable in all of the above senses,
statements such as Σ1

2(P) and ∆1
2(P) are independent of ZFC. The following

results of Solovay [42], Judah-Shelah [23] and Brendle-Löwe [8] provide an exact
characterization of regularity statements for Σ1

2 and ∆1
2 sets of reals.
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Theorem 2.3 (Solovay, 1970).

1. Σ1
2(B) ⇐⇒ ∀r {x | x is not random over L[r]} ∈ N .

2. Σ1
2(C) ⇐⇒ ∀r {x | x is not Cohen over L[r]} ∈ M.

Theorem 2.4 (Judah-Shelah, 1989).

1. ∆1
2(B) ⇐⇒ ∀r ∃x (x is random over L[r]).

2. ∆1
2(C) ⇐⇒ ∀r ∃x (x is Cohen over L[r]).

Theorem 2.5 (Brendle-Löwe, 1999).

1. Σ1
2(L)⇐⇒∆1

2(L)⇐⇒ ∀r ∃x (x is dominating over L[r]).
2. Σ1

2(M)⇐⇒∆1
2(M)⇐⇒ ∀r ∃x (x is unbounded over L[r]).

3. Σ1
2(S)⇐⇒∆1

2(S)⇐⇒ ∀r ∃x (x /∈ L[r]).

These three theorems make it possible to compare the strength of various
hypotheses of the form Σ1

2(P) and ∆1
2(P) with one another. Notice that the

right-hand-side statements of Theorem 2.3 are naturally related to the cardinal
numbers add(N ) and add(M); the right-hand-side statement of Theorem 2.4 are
related to cov(N ) and cov(M); and those of Theorem 2.5 to b, d and 2ℵ0 . So it
is not surprising that the relationship between the regularity hypotheses follows
a pattern familiar from Cichoń’s diagram—see Figure 1.

∆1
2(B) +3 Σ1

2(S)

∆1
2(S)

Σ1
2(L)

∆1
2(L)

+3 Σ1
2(M)

∆1
2(M)

5=ssssssss

ssssssss

∀r(ωL[r]
1 < ω1) +3 Σ1

2(B) +3

KS

Σ1
2(C)

KS

+3 ∆1
2(C)

KS

Figure 1. Cichoń’s diagram for regularity of Σ1
2 and ∆1

2 sets of reals.

The interpretation of this diagram is as usual: every implication appearing on
it is provable in ZFC, as well as the additional implication ∆1

2(L) + ∆1
2(C) ⇒

Σ1
2(C) (the counterpart to the cardinal equation add(M) = min(b, cov(M))

established by John Truss [45]). Any other implication is not provable, i.e., any
constellation of true/false-assignments to the above statements not contradicting
the diagram, is actually consistent with ZFC. These facts are well-known, and
can be proved by iterating the right type of forcing notions over L and using
the fact that certain types of reals are, or are not, added by the iteration, thus
forcing the right-hand-side statements of Theorems 2.3, 2.4 and 2.5 to be true
or false. This is in complete analogy to the proofs of the corresponding cardinal
inequalities, which can be found e.g. in [3, Chapter 7].
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Notice that the statement ∀r(ωL[r]
1 < ω1) is a little bit special, since it is the

only one that requires the strength of an inaccessible; nevertheless, it is a natural
property in this setting because:

(a) it plays the same role as ℵ1 does in the standard diagram (i.e., it implies all
other properties by a diagonalization argument), and

(b) it is equivalent to a number of projective regularity statements, most notably
“all Σ1

2/Π1
1 sets have the perfect set property”.

The correspondence between regularity hypotheses on the second level, tran-
scendence over L and cardinal characteristics of the continuum is summarized
in Table 1 below.

Reg. hypothesis Transcendence over L[r] Cardinal char.

∀r(ωL[r]
1 < ω1) “making ground model reals countable” ℵ1

Σ1
2(B) measure-one many random reals add(N )

∆1
2(B) random reals cov(N )

Σ1
2(C) co-meager many Cohen reals add(M)

∆1
2(C) Cohen reals cov(M)

∆1
2(L) / Σ1

2(L) dominating reals b

∆1
2(M) / Σ1

2(M) unbounded reals d

∆1
2(S) / Σ1

2(S) new reals 2ℵ0

Table 1. Correspondence between regularity, transcendence
and cardinal characteristic.

∗

When looking higher up in the projective hierarchy and attempting to gener-
alize the theory to statements like Σ1

n(P) and ∆1
n(Q), for n ≥ 3, we are faced

with two distinct methods of approach, as mentioned in the introduction. For
example, if L# denotes the least inner model closed under sharps for sets of or-
dinals, Theorems 2.3, 2.4 and 2.5 can be lifted to the next level, so in set-generic
extensions of L# we obtain characterizations of Σ1

3(P) and ∆1
3(P) in terms of

transcendence properties over L#. An immediate consequence is that all the
properties of the diagram from Figure 1 lift to the third projective level as well.
For more on this approach, see the work of Ikegami [24, Section 5]. Judah and
Spinas [31] also proved results such as: if V is a canonical model with n Woodin
cardinals and a measurable above them, then there is a forcing extension in
which ∆1

n+4(B) holds but ∆1
n+4(C) fails.

In this paper, we do not adopt the “large cardinal approach”, for the following
reasons:

1. As the consistency of “for all P and n < ω, Σ1
n(P) holds” is just an inacces-

sible (it is true in the Solovay model), it seems unnatural to require stronger
hypotheses to prove more subtle statements about Σ1

n(P) or ∆1
n(P) for low
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values of n (this view has been expressed by Bagaria, Judah, Shelah and
others in the past).

2. Assuming too strong large cardinals (for example, enough to yield Projec-
tive Determinacy) may trivialize the question. So, for this approach to
work properly one must assume exactly the right amount of large cardinal
strength, which, again, seems somewhat artificial.

3. Without large cardinal assumptions, the results are more interesting. In [16]
Friedman and Schrittesser recently established the consistency of Proj(B)+
¬∆1

3(C) (“Proj” stands for the class of all projective sets) implying that, in
particular, the counterpart to the classical Bartoszyński-Raisonnier-Stern
implication “Σ1

n(B)⇒ Σ1
n(C)” fails for all n > 2 (notice that the existence

of a measurable implies Σ1
3(B)⇒ Σ1

3(C)). Other “non-liftings” of implica-
tions will follow from our results as well, for example that ∆1

3(L)+∆1
3(C)⇒

Σ1
3(C) (the third-level analogue of the Truss-implication) consistently fails,

see Corollary 5.12; see Corollary 6.10 for another example. In light of this,
it seems more interesting to study such questions in ZFC or at most ZFC
with an inaccessible.

So, if we must forgo large cardinal assumptions beyond an inaccessible, we
must also forgo beautiful characterization theorems like Theorem 2.3, 2.4 and
2.5. But then, is there anything at all we can say about the relationship between
the five regularity properties? Fortunately, a number of simple implications can
be proved by straightforward ZFC-arguments. First, an important observation:

Observation 2.6 (Brendle-Löwe). Let P ∈ {B,L,M,S}. For any tree T ∈ P,
there exists a natural homeomorphism ϕT between [T ] and the entire space (ωω

or 2ω), which preserves the property of “being a P-condition”. From this it
follows that if Γ is a class of sets closed under continuous preimages, and we are
only interested in the statement Γ(P), then we may safely drop the “below any
P-condition”-clause from the definition of P-measurability, and simply say that
a set A is P-measurable if and only if there exists a T ∈ P such that [T ] ⊆ A or
[T ]∩A = ∅. Similarly, A is C-measurable if and only if there is a Gδ non-meager
set X such that X ⊆ A or X ∩A = ∅.

Lemma 2.7 (Brendle-Löwe). Let Γ be a class of sets closed under continuous
pre-images. Then the following implications hold in ZFC:

1. Γ(L)⇒ Γ(M)⇒ Γ(S).
2. Γ(C)⇒ Γ(M).
3. Γ(B)⇒ Γ(S).

Proof. In view of the previous observation, proving Γ(P) ⇒ Γ(Q) amounts
to finding a Q-object below any P-object. For the first implication, note that a
Laver tree is a Miller tree, a Miller tree is a perfect tree in ωω, and the imagine
of this perfect tree under the natural homeomorphism between ωω and a dense
Gδ subset of 2ω, is an uncountable Gδ subset of 2ω which, by the perfect set
theorem, contains the branches of a Sacks tree.

For the second implication, note that a Gδ non-meager set is comeager in a basic
open set. It is not hard to inductively construct a Miller tree whose branches
are completely contained inside a set that is comeager in a basic open set.
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Finally, every closed set of positive measure clearly contains a perfect subset. a

Summarizing the above, we obtain a different version of Cichoń’s diagram
for Σ1

n and ∆1
n sets, see Figure 2. Unlike Figure 1, this is not a “conclusive”

diagram, i.e., it only shows us the implications we know to exist so far, but, as of
yet, we do not know which additional relations do or do not hold. Also, notice

that the analogue of ∀r(ωL[r]
1 < ω1) is missing from the diagram—it is not clear

which hypothesis should take its place.

∆1
n(B) +3 ∆1

n(S)

∆1
n(L) +3 ∆1

n(M)

2:nnnnnnnnnn

nnnnnnnnnn
Σ1
n(S)

KS

Σ1
n(L) +3

KS

Σ1
n(M)

KS 2:nnnnnnnnnn

nnnnnnnnnn

Σ1
n(B)

KS

Σ1
n(C) +3

6>ttttttt

ttttttt
∆1
n(C)

^f

Figure 2. Cichoń’s diagram for regularity of Σ1
n and ∆1

n sets of reals.

The long-term goal is to “solve” the diagram on the third level, and potentially
on all levels n ≥ 3, in the same way as the diagram on the second level has been
completely “solved” (i.e., all the implications are present in the diagram and,
consistently, there are no other ones). We are still far from this goal, although
in Section 5 we will completely “solve” the ∆1

3-diagram under the assumption of
an inaccessible, and “almost solve” it in ZFC (we strongly conjecture that it can
be completely solved in ZFC). We will have partial results for Σ1

3- and ∆1
4 sets,

and say a little bit about higher levels. Many questions, though, are left open for
further research, most notably the equivalence between ∆1

3(P) and Σ1
3(P) when

P ∈ {L,M,S}.
We should mention that results concerning the properties C and B were known

prior to our work. The consistency of ∆1
3(C) + ¬∆1

3(B), for example, follows
from [27], and the consistency of the converse, ∆1

3(B)+¬∆1
3(C), was first proved

by Bagaria in [28] and later (using different methods) by Bagaria and Woodin in
[2]. The consistency of Σ1

3(B)+¬∆1
3(C) had remained open for a long time, until

it became a corollary of the much stronger theorem of Friedman and Schrittesser.
No study of the properties L, M and S on higher levels has been carried out so
far.

On the technical side, our proofs will involve Suslin and Suslin+ proper forc-
ings, a specific case of the general theory of “non-elementary proper forcing”
developed by Shelah, cf. [41].
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§3. Suslin and Suslin+ proper forcing. The theory of Suslin ccc forcings
is well-understood, and a detailed summary can be found in [3, Section 3.6].
In the context of forcing notions that are proper but not ccc, there is a closely
related concept, developed, among others, by Judah and Shelah in [22], Goldstern
in [19, 18], Shelah in [41] and Kellner in [33, 34]. In this section we will give a
brief overview of some essential properties of Suslin and Suslin+ proper forcing,
and prove some results that will be crucial for the techniques in our paper.

The main idea is to replace countable elementary submodels M ≺ Hκ for
sufficiently large κ in the definition of “proper forcing” by countable transitive
(not necessarily collapses of elementary) models of (a sufficient fragment of)
ZFC. For that to make sense, the forcing notions need to be definable.

Definition 3.1. Let P be a forcing partial order whose conditions are (or can
be coded by) reals. Assume that P, ≤P and ⊥P are definable by projective for-
mulas with a parameter a ∈ ωω. Let ZFC∗ denote some (unspecified) sufficiently
large finite fragment of ZFC, and let M be a countable transitive model of ZFC∗

containing the parameter a. Then PM , <MP and ⊥MP refer to the forcing notion
re-interpreted in M . A condition q ∈ P is called (M,P)-generic if (in V ) q 
“Ġ ∩ PM is a PM -generic filter over M”.

Following the terminology introduced by Shelah, countable models of ZFC∗

which contain the defining parameters will be called “candidates”.

Definition 3.2. Let (P,≤P,⊥P) be as above. We say that P is proper-for-
candidates if for all candidates M containing the defining parameter of P, and
every p ∈ PM , there exists a q ≤ p which is (M,P)-generic.

Some authors call this property “strongly proper”, although we will stick to
the above terminology in order to avoid confusion with other interpretations of
the term “strongly proper”.

Note that if M ≺ Hκ is a countable elementary submodel of a sufficiently
large Hκ such that Hκ |= ZFC∗ and contains all relevant parameters, then a
condition q is (M,P)-generic in the above sense if and only if it is (M,P)-generic
in the usual sense (with PM = P∩M). Hence, properness-for-candidates implies
ordinary properness.

Usually, properness-for-candidates is coupled with an absoluteness require-
ment on the definition of the partial order.

Definition 3.3. A forcing P is Suslin proper if P, ≤P and ⊥P are Σ1
1-relations,

and P is proper-for-candidates.

If P is Suslin proper, then PM = P ∩M , ≤MP =≤P ∩M2 and ⊥MP = ⊥P ∩M
by Σ1

1-absoluteness. Moreover, the statement “{pi | i < ω} is predense below q”
is Π1

1 and hence absolute between candidates M and V . Clearly, all Suslin ccc
partial orders (i.e., all Suslin partial orders having the ccc) are Suslin proper, and
there are some well-known examples of non-ccc forcings that are Suslin proper—
most notably Mathias forcing. However, many standard forcing notions (e.g.,
Sacks, Miller and Laver forcing) are not quite Suslin proper, because ⊥P fails to
be a Σ1

1 relation (it is then only Π1
1). To fix this problem, an alternative notion

was proposed by Shelah and Goldstern:
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Definition 3.4. A forcing P is Suslin+ proper if

1. P and ≤P are Σ1
1,

2. there is a Σ1
2, (ω + 1)-place relation epd(p0, p1, . . . , q) (“effectively pre-

dense”) such that if epd(p0, p1, . . . , q) holds for pi, q ∈ P, then {pi | i < ω}
is predense below q, and

3. for every candidate M containing all relevant parameters, and all p ∈ PM ,
there is a q ≤ p such that for every D ∈M which is PM -dense, there exists
an enumeration {di | i < ω} ⊆ D such that epd(d0, d1, . . . , q) holds. In this
case we say that q is an effective (M,P)-generic condition, and we call this
property effective-properness-for-candidates.

So Suslin properness implies Suslin+ properness, which in turn implies proper-
ness. A sufficient condition for a forcing to be Suslin+ proper is an effective
version of Axiom A, where the amalgamation makes sure that epd is defined in a
Σ1

2-way. All standard definable tree-like forcings which are known to be proper
are in fact Suslin+ proper. A good exposition of this phenomenon can be found
in Kellner’s papers [33, 34].

Remark 3.5. In [18, Remark 1.7] it was shown that if d ∈ ωω is a code for
an analytic set, canonically coding (P,≤P,⊥P)), then the statement “d codes a
Suslin proper forcing” is a Π1

3 statement. The same holds for Suslin+ proper
forcing, i.e., if d is a code for a Σ1

2-set canonically coding (P,≤P) as well as the
relation epd, then “d codes a Suslin+ proper forcing” iff

≤P is a partial order, and

∀1M [M countable, transitive, M |= ZFC∗, d ∈M →
∀0p ∈ PM ∃1q ≤P p s.t. ∀0D ∈M(M |= “D is dense”→

∃1{di | i < ω} ⊆ D s.t. epd(d0, d1, . . . , q))]

(where ∀0 and ∃0 refers to natural number quantifiers and ∀1 and ∃1 to real
number quantifiers.) As countable, transitive models M can be coded by well-
founded relations E on ω, the above statement can be verified to be Π1

3. In
particular, if P is a Suslin (Suslin+) proper forcing then N |=“P is a Suslin
(Suslin+) proper forcing” for any inner model N with ω1 ⊆ N , by downwards
Π1

3-aboluteness.

Next, we want to look at the complexity of the forcing relation P. First, let
us fix the following terminology:

Definition 3.6. Let P be a forcing notion. We say that τ is a countable
P-name for a real if it is a countable set of pairs (ň, p), where n ∈ ω and p ∈ P.

In the above definition we think of reals as subsets of ω (or members of 2ω),
and if τ is of the above form and G a generic filter, then we think of τ [G] as the
set {n | ∃p ∈ G ((n, p) ∈ τ)} ⊆ ω (or the corresponding function in 2ω).

Although not every name for a real is countable, if P is proper then for every
P-name for a real σ and p ∈ P there exists q ≤ p and a countable P-name τ for a
real such that q  τ = σ. If conditions of P are reals, each such countable name
can be canonically coded by a real. Moreover, if P is Σ1

1 then the statement “x
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codes a countable name for a real” is Σ1
1. We will frequently identify countable

P-names for reals with the reals coding them.
The following lemma is implicit in [29, Theorem 2.1]. In its formulation,

“p  θ(τ)” is to be understood as a formula with real variables p and τ (actually
the reals coding them).

Theorem 3.7. Let P be Suslin+ proper, p ∈ P and τ a countable P-name for
a real. Then for all n ≥ 2:

1. If θ is Π1
n then “p  θ(τ)” is Π1

n.
2. If θ is Σ1

n then “p  θ(τ)” is Π1
n+1.

Proof. The proof is by induction on the complexity of θ, with Π1
2 being the

base case. So first, assume θ is Π1
2.

Claim. The following are equivalent:

1. p  θ(τ),
2. for all candidates M containing τ, p, and any parameters appearing in the

definition of P or θ, we have M |= p  θ(τ).

As candidates are coded by well-founded relations E on ω, the above equivalence
gives us a Π1

2-definition of “p  θ(τ)”.

Proof of Claim. For (2) ⇒ (1), fix p and let M be the transitive collapse
of an elementary submodel of a sufficiently large Hκ, containing all necessary
parameters. Then by assumption M |= p  θ(τ), but by elementarity and
definability of  in Hκ, this implies p  θ(τ) (note that this direction is trivial
and does not require θ to have any particular complexity).

For (1) ⇒ (2), assume that p  θ(τ) and, towards contradiction, let M be such
that M |= p 6 θ(τ) (note that by absoluteness, M |= p ∈ P and M |= “τ is a
countable name for a real”). Then there is p′ ≤ p in M such that M |= p′ 
¬θ(τ). Let q ≤ p′ be an (M,P)-generic condition, and let G be P-generic over
V with q ∈ G. Then G is also M -generic, and p′ ∈ G, hence M [G] |= ¬θ(τ [G]).
But this is a Σ1

2 formula, so by upwards absoluteness V [G] |= ¬θ(τ [G]). This
contradicts the assumption that p  θ(τ). a(Claim)

The rest follows by induction.

• For n ≥ 2, assume inductively that for Π1
n formulas χ, the relation “p 

χ(τ)” is Π1
n. Let θ be Σ1

n. Then p  θ(τ) iff ∀q (q ∈ P ∧ q ≤ p → q 6
¬θ(τ)), which is easily seen to be Π1

n+1.

• For n ≥ 2, assume inductively that for Σ1
n formulas χ, the relation “p 

χ(τ)” is Π1
n+1. Let θ be Π1

n+1, and write θ(τ) as ∀yχ(τ, y) for a Σ1
n formula

χ. Then the following are equivalent:
(1): p  θ(τ), and
(2): ∀q∀σ ((q ∈ P and q ≤ p and “σ is a countable name for a real”) →
q  χ(τ, σ)).

(1) → (2) is obvious, and for (2) → (1), note that if p 6 θ(τ) then ∃q ≤ p
such that q  ¬θ(τ), so q  ∃y¬χ(τ, y). But then there is a countable name
σ and q′ ≤ q such that q′  ¬χ(τ, σ), which contradicts (2).

As “q  χ(τ, σ)” is Π1
n+1 by induction, the statement in (2) is also Π1

n+1.
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a

∗
Next, we consider iterations of Suslin and Suslin+ proper forcing notions. This

is somewhat tricky, since, in general, even a two-step iteration of Suslin+ forcing
notions is not Suslin+ (see [34, Remark 4.12]), so the definition of the iteration
cannot be absolute between countable models M and V . However, following [22]
and [18], adequate preservation results can still be proved, and that is sufficient
for our purposes. In this paper we will only consider iterations of length at most
ω1 with countable support. Most of our technical results just involve proper
initial segments of the ω1-iteration, which simplifies many things.

Definition 3.8. Let Pγ := 〈Pα, Q̇α | α < γ〉 be a countable (i.e., full) support
iteration of length γ < ω1. We call this a Suslin (Suslin+) proper iteration of

length γ if each iterand is Suslin (Suslin+) proper, i.e., for every α < γ, Pα“Q̇α
is Suslin (Suslin+) proper”.

Since the iteration Pγ is uniquely determined by the sequence 〈Q̇α | α < γ〉
of iterands, any candidate M containing the names for the defining parameters
of all the Q̇α’s, can uniquely reconstruct the iteration (see e.g. [18, p. 350ff] for
details). We will refer to thisM -reconstruction of the iteration as PMγ . In general,

PMγ is not the same as Pγ ∩M . Later we will prove that being a Pγ-condition is

Π1
2, so by downward absoluteness PMγ ⊇ Pγ ∩M does hold. However, PMγ might

contain objects which M believes to be Pγ-conditions but which actually (in V )
are not.

Definition 3.9 (Judah-Shelah; Goldstern; Kellner). If G is a Pγ-generic fil-
ter over V , and M is a candidate, we can define GM = GMγ , the “potential

PMγ -generic filter over M induced by G”, by induction on α ≤ γ, following
[18, Definition 2.6] (see also [34, Definition 4.3.]).

• If α = β + 1 then GMα = {p ∈ PMα | p�β ∈ GMβ and p(β)[GMβ ] ∈ G(β)}.
• If α is limit then GMα = {p ∈ PMα | ∀β < α (p ∈ GMβ )}.

(here G(β) is the β-th component of G). Then GM := GMγ is the result of this
induction.

Remark 3.10.

1. The object GM is not always well-defined: for example, if at some stage
α < γ, GMα is not PMα -generic over M then it does not make sense to
evaluate p(α)[GMα ], so we cannot define GMα+1 either. Therefore, we allow

the possibility that GM is undefined; but when we say “GM is PMγ -generic

over M”, we mean that, inductively, every GMα is PMα -generic over M for
α < γ, and hence every GMα is properly defined (and GM is PMγ -generic
over M).

2. If GM is well-defined then, as a filter on PMγ , it takes the role that “G∩M”
would in the usual situation (i.e., where M is a collapse of an elementary
submodel). In general, GM and G∩M are different. However, their differ-
ence arises only from the difference between PMγ and Pγ ∩M . In particular,
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if p ∈ GM and p is really a Pγ-condition, then in fact p ∈ G. This follows
inductively from the definition of GM (if all initial segments of p are real
Pα-conditions, then, inductively, it follows that the definition of GMα cor-
responds to the standard definition of the iterated generic filter Gα). We
will need this fact several times in our arguments.

See [34] and [41] for a more detailed treatment of these issues.

Definition 3.11. Following [18, Remark 2.13] and [34, Definition 4.4], we
define:

• A condition q ∈ Pγ is (M,Pγ)-generic if q  “ĠM is a PMγ -generic filter
over M”.

• If p ∈ PMγ , then q is (M,Pγ , p)-generic if it is (M,Pγ)-generic and, addi-

tionally, q  p ∈ ĠM .

The purpose of the “(M,Pγ , p)-generic condition” is that we would like to say
“for p ∈ PMγ , there is q ≤ p which is (M,Pγ)-generic”, but we cannot say this
since p might not be in Pγ . Instead, saying that “q is (M,Pγ , p)-generic” is the
desired analogue.

The following theorem, proved by Judah-Shelah and by Goldstern, shows that
a property that is almost “properness-for-candidates” is preserved by countable
support iterations of Suslin and Suslin+ forcings.

Theorem 3.12 (Judah-Shelah; Goldstern). Let Pγ := 〈Pα, Q̇α | α < γ〉 be a
Suslin+ proper iteration of length γ < ω1. Then for every candidate M con-
taining the parameters of all Q̇α and containing γ, and for every p ∈ PMγ , there
exists a q which is (M,Pγ , p)-generic.

Proof. This is a specific instance of a more general preservation theorem,
where the iteration can have length γ ≤ ω2. In that case, we must first make
sense of the way a countable model M reflects the iteration. This general result is
proved in detail for Suslin proper forcings in [22, Lemma 2.8] and in [18, Theorem
2.16, Corollary 2.17], and in [19] it is also mentioned that analogous results hold
for Suslin+. Even stronger results are proved by Shelah in [41], and also by
Kellner in [34, Lemma 4.8]. a

Remark 3.13. As we are only dealing with countable iterations, the following
holds for Pα by induction on α < ω1:

1. Since by Theorem 3.12, each Pα is proper, Pα-names for reals have countable
names (modulo strengthening of the condition).

2. It follows that, inductively, we can assume that all components of p ∈ Pα
are represented by countable names for reals.

3. As countable names are coded by reals and α is countable, an entire con-
dition p ∈ Pα can be coded by a single real. As before, we will identify
Pα-conditions and countable Pα-names for reals with the reals coding them.

Now that we can treat Pα as a forcing with real number conditions, we can
also analyze the complexity of Pα, ≤α and the forcing relation α. We already
mentioned that Pα is not Suslin or Suslin+, i.e., neither Pα nor ≤α are Σ1

1.
However, we can prove the following result, inductively on α < ω1.
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Theorem 3.14. Let Pω1
:= 〈Pα, Q̇α | α < ω1〉 be a Suslin+ proper iteration.

Then the following holds for all α < ω1:

1. Pα is Π1
2,

2. ≤α is Π1
2,

3. being a countable Pα-name for a real is Π1
2, and

4. for any p ∈ Pα and a countable Pα-name for a real τ , we have for all n ≥ 2:
(a) If θ is Π1

n then “p α θ(τ)” is Π1
n.

(b) If θ is Σ1
n then “p α θ(τ)” is Π1

n+1.

Proof. The case α = 1 follows from the definition of Suslin+ properness and
Theorem 3.7. Assume (1)–(4) holds for β < α. Then:

1. If α = β + 1 then p ∈ Pβ+1 iff p�β ∈ Pβ and “p(β) is a countable Pβ-name

for a real” and (p�β) β p(β) ∈ Q̇β . By induction, this is a conjunction

of three Π1
2 sentences, where the last one is so due to point (4) and the

fact that “p(β) ∈ Q̇β” is Σ1
1. If α is limit then (since we are dealing with

countable support iterations and α < ω1) p ∈ Pα iff ∀β < α (p�β ∈ Pβ).

Again, this statement is Π1
2 by the induction hypothesis.

2. If α = β + 1 then p ≤β+1 q iff (p�β) ≤β (q�β) and (p�β) β p(β) ≤Q̇β q(β),

which is again a conjunction of Π1
2 formulas, by induction. If α is limit

then p ≤α q iff ∀β < α (p�β) ≤β (q�β) which is likewise Π1
2.

3. The complexity of the set of countable Pα-names is the same as the com-
plexity of Pα, so this follows from point (1).

4. Similarly to the proof of Theorem 3.7, we prove this by induction on the
complexity of θ, starting with Π1

2. As before:

Claim. The following are equivalent:
(a) p α θ(τ),
(b) for all candidates M containing τ, p and α, and any parameters ap-

pearing in the definition of any Q̇β for β < α or in θ, we have M |=
p α θ(τ).

The proof of this equivalence is as in Theorem 3.7, using the “almost-
properness-for-candidates”-property satisfied by Pα (i.e., Theorem 3.12).
However, since Pα is not absolute between V and M , the argument must
proceed with some more care. Notice that by downward Π1

2-absoluteness,
we now already know that Pα ∩M ⊆ PMα .

The (b)⇒ (a) direction is exactly as before, i.e., we simply take M to be the
collapse of an elementary submodel of Hκ. For (a)⇒ (b), assume p α θ(τ)
and let M be a candidate containing the relevant parameters, and, towards
contradiction, suppose M |= p 6α θ(τ). By downward Π1

2-absoluteness we
know that p ∈ PMα , and also M knows that τ is a countable name for a real.

Then M |= ∃p′ ≤α p (p′ α ¬θ(τ)) (note that p′ may not be in Pα).
Now use Theorem 3.12, and find a condition q ∈ Pα which is (M,Pα, p)-
generic. Then, if G is Pα-generic over V , and q ∈ G, the derived object GM

(see Definition 3.9 (1)) is PMα -generic over M , and p′ ∈ GM . Therefore,
M [GM ] |= ¬θ(τ [G]), and by upward Σ1

2-absoluteness, ¬θ(τ [G]) holds in
V [G]. But also M |= p′ ≤α p and GM ⊆ PMα is a filter, so also p ∈ GM .
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But p was in Pα, so by Remark 3.10 (2) p must in fact be in G. That
contradicts p α θ(τ). a(Claim).

For the rest, proceed inductively as before: if θ is Σ1
n for n ≥ 2 then

p α θ(τ) iff ∀q (q ∈ Pα and q ≤α p → q 6α ¬θ(τ)), which is Π1
n+1, using

the fact that Pα and ≤α are Π1
2, i.e., points (1) and (2) of the theorem.

Likewise, if θ(τ) ≡ ∀yχ(τ, y) is Π1
n+1 for n ≥ 2 and χ is Σ1

n, then, as before,
p α θ(τ) iff ∀q∀σ ((q ∈ Pα and q ≤α p and “σ is a countable Pα-name for
a real”) → q α χ(τ, σ)). Again this is Π1

n+1 using the fact that being a

countable Pα-name for a real is Π1
2, i.e., point (3) of the theorem.

a
From this theorem it follows that Pα, ≤α, being a countable Pα-name for a

real, and the relation “p α θ(τ)” for Π1
2 formulas θ, are all downwards absolute

between V and countable models M (containing the relevant parameters), and
absolute in both directions between V and models W ⊆ V with ω1 ⊆W .

∗
We end this section with two further useful results about Suslin+ proper forc-

ing, under the assumption that ∀r (ω
L[r]
1 < ω1). The first result shows that this

assumption is preserved by Suslin+ iterations of countable length.
First, a preliminary Lemma.

Lemma 3.15. Suppose V |= ∀r (ω
L[r]
1 < ω1), Pγ := 〈Pα, Q̇α | α < γ〉 is a

Suslin+ proper iteration of length γ < ω1, and p is a Pγ-condition. Suppose
further that p and all the defining parameters of Pγ are coded by a real z. Then

there exists q ∈ Pγ such that q γ p ∈ Ġ and q γ “Ġ is L[ž]-generic”.

Proof. As ωV1 is inaccessible in L[z], we can find a candidate M ⊆ L[z]
containing all the reals and dense sets of L[z], and moreover reflecting all the
relevant properties of L[z] (for example, let M := Lλ[z] for some sufficiently
large λ < ωV1 such that Lλ[z] ≺ LωV1 [z]). As p and the parameters of Pγ are

now in M , by Theorem 3.12 we can find an (M,Pγ , p)-generic condition q. Then

q γ “ĠM is PMγ -generic over M” and, since M has the same reals and dense

sets as L[z], also q γ “Ġ is L[ž]-generic”. On the other hand, q γ p ∈ ĠM ,

and since p ∈ Pγ , this implies q γ p ∈ Ġ by Remark 3.10 (2). a

Theorem 3.16. Suppose V |= ∀r (ω
L[r]
1 < ω1) and Pγ := 〈Pα, Q̇α | α < γ〉 is

a Suslin+ proper iteration of length γ < ω1. Then V Pγ |= ∀r (ω
L[r]
1 < ω1).

Proof. Suppose, towards contradiction, that the conclusion is false, and let

ṙ be a countable Pγ-name for a real and p ∈ Pγ such that p γ ω
L[ṙ]
1 = ω1. Let

z be a real in V , coding p, ṙ and all the defining parameters of Pγ . By Lemma

3.15, there is a q ∈ Pγ such that q γ p ∈ Ġ and q γ “Ġ is L[ž]-generic”.

By Remark 3.5, we know that every iterand occurring in Pγ is Suslin+ proper

in L[z] as well, so L[z] |= “Pγ is proper”. Therefore q γ “L[ž][Ġ] is a proper
forcing extension of L[ž]”, so in particular
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q γ ω
L[ž][Ġ]
1 = ω

L[ž]
1 .

Now notice that in any Pγ-extension V [G] of V , since ṙ[G] is constructible from
ṙ and G, and ṙ is coded in z, we know that L[ṙ[G]] ⊆ L[z][G], which implies

ω
L[ṙ[G]]
1 ≤ ω

L[z][G]
1 . On the other hand, ω

L[z]
1 was countable by assumption. It

follows that

q γ ω
L[ṙ]
1 ≤ ωL[ž][Ġ]

1 = ω
L[ž]
1 < ω1

which, together with q γ p ∈ Ġ and p γ ω
L[ṙ]
1 = ω1, leads to a contradiction.

a

Remark 3.17. The definability of the forcing is essential in the preceding

result, since, in general, the assumption ∀r (ω
L[r]
1 < ω1) is not preserved even

by ccc forcings. For example, assuming that ω1 is not Mahlo in L, one can find

A ⊆ ω1 is such that L[A] |= ∀r (ω
L[r]
1 < ω1). Then, using the technique of almost

disjoint coding (see e.g. [25]), one can construct a ccc forcing notion coding A
by the generic real rG. So L[A][rG] = L[rG] will be a generic extension of L[A]

by a ccc forcing notion, while obviously satisfying ω
L[rG]
1 = ω1.

Our second result (which uses the previous result) is a strong absoluteness
property of extensions by Suslin+ iterations.

Definition 3.18. Let P be a forcing notion. Then

1. V is Σ1
n-P-absolute iff for all Σ1

n formulas φ, all P-generic G over V , and
all reals x ∈ V :

V |= φ(x) ⇐⇒ V [G] |= φ(x).

2. V is Σ1
n-P-correct iff for all Σ1

n formulas φ, all P-generic G over V , and all
reals x ∈ V [G]:

V [x] |= φ(x) ⇐⇒ V [G] |= φ(x).

Σ1
n-P-correctness implies Σ1

n-P-absoluteness, but not vice versa. In fact, Σ1
n-

P-correctness is much stronger. The following is clear:

Fact 3.19. If V is Σ1
3-P-correct, then Σ1

3-absoluteness holds between any two
models W and W ′ with V ⊆W ⊆W ′ ⊆ V [G].

Proof. Let φ be Σ1
3 and x ∈ W . If W |= φ(x) then W ′ |= φ(x) by upwards

Σ1
3-absoluteness (i.e., Shoenfield absoluteness). Conversely, if W ′ |= φ(x) then

by upwards Σ1
3-absoluteness V [G] |= φ(x), so by Σ1

3-P-correctness V [x] |= φ(x),
so by upwards-absoluteness again W |= φ(x). a

Σ1
n-P-correctness and Σ1

n-P-absoluteness for all set-forcings P have been inves-
tigated before, by Woodin, Bagaria and Friedman among others. For instance,
in [1] and [13] it is shown that Σ1

3-P-absoluteness for all set-forcings P can be
obtained from a reflecting cardinal, whereas Σ1

3-P-correctness for all set-forcings
P implies the existence of sharps for sets of ordinals by [46]).

If we restrict attention to Suslin+ proper forcing notions, Σ1
3-correctness can

be obtained just from an inaccessible. In fact, in [3, Lemma 9.5.4] it is proved

that if V |= ∀r (ω
L[r]
1 < ω1) and P is Suslin ccc, then V is Σ1

3-P-correct. We now
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extend this result to all Suslin+ proper forcings P (and their iterations of length
ω1), relying on Theorem 3.16.

Theorem 3.20. Suppose V |= ∀r (ω
L[r]
1 < ω1) and Pω1 := 〈Pα, Q̇α | α < ω1〉

is a Suslin+ proper iteration. Then V is Σ1
3-Pω1

-correct.

Proof. Since upwards Σ1
3-absoluteness always holds, it remains to prove the

converse. First we do it for countable iterations Pγ , γ < ω1.

Suppose, towards contradiction, that downwards-Σ1
3-Pγ-correctness fails. Then

there is a Σ1
3 formula φ, a countable Pγ-name for a real τ , and a condition p ∈ Pγ

such that

(∗) p γ (φ(τ) ∧ V [τ ] |= ¬φ(τ)).

Our goal is to contradict (∗). Let θ be a Π1
2 formula and σ a (without loss of

generality countable) Pγ-name for a real, such that

p γ (θ(τ, σ) ∧ V [τ ] |= ¬φ(τ)).

Let z be a real coding τ, σ, p and all the defining parameters appearing in Pγ
and in φ. By Lemma 3.15, there is a q forcing “Ġ is L[ž]-generic” and “p ∈ Ġ”.
Let Gγ be any such generic filter with q ∈ Gγ and let us work in V [Gγ ] for the
time being.

Let x := τ [Gγ ] and y = σ[Gγ ]. Since p ∈ Gγ , by (∗) we know that V [Gγ ] |=
θ(x, y). By Shoenfield absoluteness, we also know that L[z][x][y] |= θ(x, y). As
L[z][Gγ ] is a generic extension of L[z], we know that the intermediary models
L[z] ⊆ L[z][x] ⊆ L[z][x][y] ⊆ L[z][Gγ ] can all be represented by generic exten-
sions. Let Q be the forcing leading from L[z][x] to L[z][x][y] (to find Q, first look
at the quotient of Pγ modulo the sub-forcing generated by τ , and then take the
sub-forcing of that generated by σ). It follows that

L[z][x] |= ∃q ∈ Q (q Q θ(x̌, σ)).

But by Theorem 3.16, V [Gγ ] |= ∀r (ω
L[r]
1 < ω1). Therefore also V [x] |=

∀r (ω
L[r]
1 < ω1). Therefore, in particular, V [x] |= “ω1 is inaccessible in L[z][x]”.

So, in V [x], we can find an internal Q-generic filter H over L[z][x], so V [x] |=
(L[z][x][H] |= θ(x, σ[H])). By upwards-absoluteness, V [x] |= ∃y′θ(x, y′), i.e.,
V [x] |= φ(x). But this is a contradiction with (∗), since we had p  V [τ ] |=
¬φ(τ).

To complete the proof of the theorem, it only remains to verify Σ1
3-correctness

for the entire iteration of length ω1. But obviously, if V [Gω1
] |= φ(x) for some

Σ1
3 formula φ, then actually V [Gω1

] |= ∃yθ(x, y), and since Pω1
is proper, x

and y must both appear at some stage γ < ω1, so by Shoenfield absoluteness
V [Gγ ] |= θ(x, y). Then, by what we have proved above, V [x] |= φ(x). a
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§4. Methods for obtaining regularity. The purpose of this section is to
develop methods for obtaining regularity for ∆1

3, Σ1
3 and ∆1

4 sets of reals, but
doing this with “as little damage as possible”, i.e., using forcing iterations that
preserve certain properties of the ground model.

First of all, we mention the following result of Judah.

Theorem 4.1 (Judah).

1. If V |= Σ1
2(B) and Bω1

is the ω1-product of random forcing, then V Bω1 |=
∆1

3(B).
2. If V |= Σ1

2(C) and Cω1
is the ω1-product of Cohen forcing, then V Cω1 |=

∆1
3(C).

Proof. See [3, Theorem 9.4.6]. a
It is not clear whether the above can be generalized beyond Cohen and random:

the proofs depend on properties of the meager and null ideals (such as the Fubini
property), as well as a strong homogeneity of Cohen- and random-products. The
other methods we will present are, in some sense, based on Shelah’s proof that
∆1

3(B) does not require an inaccessible, see [40, §6].
Although we are primarily interested in the regularity properties mentioned

in Section 2, we would like our proofs to be sufficiently uniform and general, i.e.,
we would like them to be applicable to many forcing notions P at once. We could
require that P has trees as conditions (see e.g. arboreal forcing from [6, 24]), but
in some cases (e.g. Cohen) we prefer to work with Gδ (or Borel) sets instead.
The reason is that, otherwise, we would need to work “modulo an ideal” which
would only complicate the proofs unnecessarily. So we relax the requirement
somewhat and adopt the following:

Convention and Notation 4.2.

• Let us say that P is a real forcing notion if the conditions are closed or Gδ
sets of reals, ordered by inclusion. For conditions p ∈ P, we will generally
use “p” to refer to the real number coding the condition (i.e., closed code,
Gδ code), and “[p]” to refer to the corresponding set of reals—in analogy
to the use of “T” versus “[T ]” to distinguish between trees and the sets of
their branches. This will allow us to use uniform notation and terminology
regardless of whether the conditions of P are trees (as is almost always the
case) or Gδ sets (in our setting, this will only be Cohen forcing).

• We assume that, as usual, P adds a generic real, denoted by ġ, and that for
all p ∈ P we have P (p ∈ Ġ ↔ ġ ∈ [p]) (so the generic filter and real are
mutually reconstructible).

• We will also assume that for projective pointclasses Γ, the statements
– “∀A ∈ Γ ∀p ∈ P ∃q ≤ p ([q] ⊆ A or [q] ∩A = ∅)” and
– “∀A ∈ Γ ∃p ([p] ⊆ A or [p] ∩A = ∅)”

are equivalent, so that, as in Observation 2.7, in order to prove Γ(P) it will
suffice to prove the latter statement (this is achieved by using suitable Borel
bijections between [p] for conditions p ∈ P and the entire space of reals).

This level of generality will certainly take care of everything we are interested
in, and potentially much more. Note that we could be even more lenient in the
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convention and allow the conditions of P to be Borel sets that are large with
respect to an ideal, following the approach of Zapletal [47].

Before stating the next theorem we introduce amoebas and quasi-amoebas for
real forcing notions.

Definition 4.3. Let P be a real forcing notion, and Q another forcing. We
say that

1. Q is a quasi-amoeba for P if for every p ∈ P and every Q-generic G, there
is a q ∈ PV [G] such that q ≤P p and

V [G] |= ∀x ∈ [q] (x is P-generic over V ).

2. Q is an amoeba for P if for every p ∈ P and every Q-generic G, there is a
q ∈ PV [G] such that q ≤P p and for any larger model W ⊇ V [G],

W |= ∀x ∈ [q] (x is P-generic over V ).

There is a subtle difference between amoebas and quasi-amoebas, which is
not visible in the Cohen and random (and, in general, ccc) case, because the
assertion “[q] consists of Cohen/random reals over V ” is upwards absolute (for
Cohen/random-conditions q). For non-ccc forcing this is not always the case:
for example, “T is a perfect tree of Sacks reals over V ” is not upwards absolute,
as shown in the next example.

Example 4.4.

1. A (the standard amoeba for measure) is an amoeba for B (see [3, Section
3.4]).

2. UM (the standard amoeba for category) is an amoeba for C (see [40, §4]).
Also, if D is Hechler forcing, then the two-step iteration (D ∗ D) is an
amoebas for C (see [3, Theorem 3.5.1]).

3. Mathias forcing R is an amoeba for itself ([38, Corollary 2.5]).
4. S is a quasi-amoeba, but not an amoeba, for itself ([4, Theorem 4, Corollary

5]).
5. M is a quasi-amoeba, but not an amoeba, for itself ([4, Proposition 7]).
6. L is not a quasi-amoeba for itself ([4, Theorem 5]).

One might expect quasi-amoebas to be quite useless in iterated forcing con-
structions, since the property of adding large sets of generic reals is only tempo-
rary. Nevertheless, the success of our methods is in part due to the realization
that quasi-amoebas are, in fact, sufficient for the following argument.

Theorem 4.5. Suppose P is a real forcing notion and AP a quasi-amoeba for
P. Furthermore, assume that both P and AP are Suslin+ proper. Let Pω1

:=

〈Pα, Q̇α | α < ω1〉 be a countable support iteration whose iterands are P and AP
interlaced (i.e., for even α, α Q̇α ∼= P and for odd α, α Q̇α ∼= AP). Then
V Pω1 |= ∆1

3(P).

Proof. Let Gω1 be Pω1-generic over V , let A = {x | φ(x)} = {x | ¬ψ(x)} be
a ∆1

3 set in V [Gω1
], defined by Σ1

3-formulas φ and ψ. As our iteration is proper,
we may assume, without loss of generality, that the parameters appearing in φ
and ψ are in the ground model V (otherwise, they are in some V [Gα0 ], and we
repeat the same argument with V [Gα0 ] as the ground model).
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Our goal is to find a P-condition p in V [Gω1
] such that [p] ⊆ A or [p] ∩A = ∅.

Let x0 be the P-generic real over V , added at the first step of the iteration.
In V [Gω1 ], either φ(x0) or ψ(x0) must hold, so without loss of generality we
assume that φ(x0) holds. Then ∃yθ(x0, y) holds for some Π1

2 formula θ such
that φ(x0) ≡ ∃yθ(x0, y). By properness, there is an α < ω1 such that y ∈ V [Gα],
and by Shoenfield absoluteness V [Gα] |= θ(x0, y). In V , let p be a Pα-condition
and τ a countable Pα-name for a real, such that

p α θ(ġ0, τ)

where ġ0 is the name for the first P-generic real.

Let us adopt the following notation: let P1,α be the quotient of the iteration (i.e.,
such that P1 ∗P1,α

∼= Pα), and when x is a P-generic real over V , “p[x]” refers to
the P1,α-condition that remains of p after evaluating it according to x (i.e., the
filter Gx generated by x), and “τ [x]” refers to the P1,α-name that remains of τ
after evaluating it according to x. Here by “P1,α” we are, of course, referring to
the definition of the iteration. It is well-known that, if we consider τ and p as
coded by reals (in some explicit way), then there are Borel functions mapping
τ 7→ τ [x] and p 7→ p[x], in any model that contains x (this is similar to, e.g.,
[47, Proposition 2.3.1]).

Let θ̃(x, p, τ) be a conjunction of the following statements:

• “p[x] is a P1,α-condition”,
• “τ [x] is a countable P1,α-name for a real”, and
• p[x] 1,α θ(x̌, τ [x]).

Since the quotient P1,α is a Suslin+ proper iteration, using Theorem 3.14 (1),

(3) and (4), we conclude that θ̃ is a Π1
2 statement. For convenience, we will

suppress the parameters p and τ from θ̃ (remember that they are in the ground
model V ).

As we have p  θ(ġ0, τ) and x0 is P-generic over V , we have

V [x0] |= θ̃(x0).

Therefore, going back to V , we have

p(0) P θ̃(ġ0).

But by Theorem 3.14 (4), the above statement is again Π1
2, so by Shoenfield

absoluteness, V [x0] |= p(0) P θ̃(ġ0). Let H1 be the next AP-generic over V [x0]
(i.e., V [x0][H1] = V [G2]). By the definition of a quasi-amoeba, in V [x0][H1]
there is a P-condition q, such that q ≤ p(0) and

V [x0][H1] |= ∀x ∈ [q] (x is P-generic over V [x0]).

Then

V [x0][H1] |= ∀x ∈ [q] (V [x0][x] |= θ̃(x)),

and by Π1
2-absoluteness between V [x0][x] and V [x0][H1]:

V [x0][H1] |= ∀x ∈ [q] (θ̃(x)).
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Let Θ(q) abbreviate “∀x ∈ [q] (θ̃(x))”, and notice that, again, it is Π1
2. This is

the key step of our proof, since now, in all larger models V [Gβ ], 2 ≤ β < ω1, we
have

V [Gβ ] |= Θ(q).

It remains to show that V [Gω1
] |= [q] ⊆ A, which will complete the proof. So, in

V [Gω1
], let z be any real in [q]. Let β < ω1 be such that z ∈ V [Gβ ], and assume

β is odd (so that β+1 is even). Since V [Gβ+1] |= Θ(q), in particular, V [Gβ+1] |=
θ̃(z). But looking at the meaning of θ̃, in particular it says “p[z] P1,α θ(ž, τ)”,
which implies “p[z] P1,α

∃y′θ(ž, y′)” and hence “p[z] P1,α
φ(ž)”. Notice that,

by genericity, we may assume that β was chosen to be sufficiently large so that
p[z] in fact belongs to G[β+1,β+α) (the generic filter restricted to stages [β+1, β+
α) of the iteration).

It follows that V [Gβ+α] |= φ(z), and by upwards-absoluteness, V [Gω1 ] |= φ(z).
This completes the proof. a

Corollary 4.6. If P is Suslin+ proper and a quasi-amoeba for itself, then
V Pω1 |= ∆1

3(P). In particular V Sω1 |= ∆1
3(S) and V Mω1 |= ∆1

3(M).

If we want to obtain ∆1
3(P) for several different P at the same time, we can

alter the above construction somewhat, by interlacing more forcing notions. The
only requirement is that the iteration is sufficiently “repetitive”.

Definition 4.7. Suppose Pω1
:= 〈Pα, Q̇α | α < ω1〉 is a Suslin+ proper itera-

tion, where all iterands have parameters in the ground model. Such an iteration
is called repetitive if for any α < β < ω1, there are unboundedly many γ < ω1

such that

〈Q̇ξ | α < ξ ≤ β〉 = 〈Q̇γ+ξ | α < ξ ≤ β〉.

The following theorem is a stronger version of Theorem 4.5:

Theorem 4.8. Suppose P and AP are as in Theorem 4.5, Pω1
:= 〈Pα, Q̇α |

α < ω1〉 is Suslin+ proper with parameters in the ground model and repetitive,
and both P and AP appear cofinally often in the iteration. Then V Pω1 |= ∆1

3(P).

Proof. The proof is exactly the same as that of Theorem 4.5. Instead of
looking at stages 1 and 2 of the iteration, we look at some stages α0 and α1.
Then we find the condition q in V [Gα1

] and Θ(q) holds from that point onwards.
Later we find a sufficiently large γ so that the segment Pα1,α1+α is “copied”
after γ, and rely on the same arguments as before. The details are left to the
reader. a

In our applications, the last theorem will only be used when we have a finite
number of Pi and quasi-amoeabs APi, i ≤ k. After iterating with (P0 ∗ AP0 ∗
· · · ∗ Pk ∗ APk)ω1

we obtain a model where ∆1
3(Pi) holds for all i ≤ k.

∗
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Next, we prove several results starting from the assumption ∀r (ω
L[r]
1 < ω1).

Let us first mention an observation essentially due to Zapletal (cf. [47, Propo-
sition 2.2.2.]), showing that for real forcing notions P, when we have an (M,P)-
generic condition, we can assume, without loss of generality, that all reals in this
condition are M -generic.

Lemma 4.9 (Zapletal). Let P be a proper, real forcing notion, and M a count-
able model. If q is an (M,P)-generic condition, then there is q′ ≤ q such that
(in V ) all x ∈ [q] are M -generic.

Proof. Let B := {x ∈ [q] | x is M -generic}. As M is countable, it is easy
to see that B is Borel. Let ġ be the name for the P-generic real. Since q is
(M,P)-generic, q  ġ ∈ B. But Borel sets are P-measurable (in the sense of
Definition 2.1). So either there exists a q′ ≤ q such that [q′] ⊆ B, in which case
we are done, or, for every q′ ≤ q there exists q′′ ≤ q′ such that [q′′]∩B = ∅. But
the latter case implies that {q′ | [q′]∩B = ∅} is dense below q, hence q  ġ /∈ B,
yielding a contradiction. a

Theorem 4.10. Suppose V |= ∀r (ω
L[r]
1 < ω1), P is a real forcing notion,

and Pω1
:= 〈Pα, Q̇α | α < ω1〉 is a Suslin+ proper iteration in which P appears

cofinally often. Then V Pω1 |= ∆1
3(P).

Proof. Let A = {x | φ(x)} = {x | ¬ψ(x)} be a ∆1
3 set in V [Gω1 ]. As

the defining parameter appears at some initial stage of the iteration, and by

Theorem 3.16 we know that ∀r(ωL[r]
1 < ω1) holds in all V [Gα], let us again

assume, without loss of generality, that the parameters are in the ground model
V . Also, without loss of generality, we may assume that the first step of the
iteration is P.

Let x0 be the P-generic real over V . Again, let us assume V [Gω1
] |= φ(x0)

(without loss of generality). Now by Theorem 3.20 V is Σ1
3-Pω1-correct, therefore

V [x0] |= φ(x0). Then in V , there is a p ∈ P such that p P φ(ġ). Then
also p P θ(ġ, τ) for some countable name τ and a Π1

2 formula θ such that
φ(x) ≡ ∃yθ(x, y). Now let z be a real coding p, τ , and the parameters of P and
θ. By Π1

2-absoluteness, L[z] |= p P θ(ġ, τ).

Since ωV1 is inaccessible in L[z], find a countable model M ⊆ L[z] reflecting
everything about PL[z] and containing all the parameters (as in the proof of
Lemma 3.15). By Lemma 4.9 there is q ≤ p such that all x in [q] are M -generic,
hence L[z]-generic. So (in V ) for all x ∈ [q] we have L[z][x] |= θ(x, τ [x]), and by
Π1

2-absoluteness
V |= ∀x ∈ [q] θ(x, τ [x]).

As this statement is Π1
2, it holds in V [Gω1 ], so also the statement ∀x ∈ [q]∃yθ(x, y)

holds, so [q] ⊆ A. a
Concerning sets of complexity beyond ∆1

3, we have the following generalization
of Solovay’s original result.

Theorem 4.11. Suppose V |= ∀r (ω
L[r]
1 < ω1), P is a real forcing, AP an

amoeba for P, and Pω1
:= 〈Pα, Q̇α | α < ω1〉 a Suslin+-proper iteration in which

AP appears cofinally often. Then V Pω1 |= Σ1
3(P).
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Proof. Let A = {x | φ(x)} be a Σ1
3 set. As before, assume, without loss

of generality, that the parameters are in the ground model V and that the first
step of the iteration is AP. In V , there is a p ∈ P be such that p P φ(ġ) or
p P ¬φ(ġ). Assume the former. Since V [G0] is an AP-extension of V , there
is a q ≤ p such that all x ∈ [q] are P-generic over V , and, by definition of the
amoeba (as opposed to the quasi-amoeba) this property is true in V [Gω1

] as
well. Let x be any real in [q]. Then V [x] |= φ(x), so also V [Gω1

] |= φ(x). Next,
assume p P ¬φ(ġ). Then the same argument shows that, for all x ∈ [q] we have
V [x] |= ¬φ(x). But by Σ1

3-Pω1
-correctness (Theorem 3.20), this holds in V [Gω1

]
as well. a

We will not really need the previous result, because it requires the use of actual
amoebas rather than quasi-amoebas. Instead, we have a much stronger theorem.

Theorem 4.12. Suppose V |= ∀r (ω
L[r]
1 < ω1), P is a real forcing notion and

AP a quasi-amoeba for P, and assume that both P and AP are Suslin+ proper.
Let Pω1 := 〈Pα, Q̇α | α < ω1〉 be a Suslin+ proper iteration whose iterands are
P and AP interlaced (i.e., the same conditions hold as in Theorem 4.5). Then
V Pω1 |= ∆1

4(P).

Proof. The proof is exactly the same as that of Theorem 4.5. The reader
can verify that every step in that proof is valid if we:

1. Replace ∆1
3 by ∆1

4, Σ1
3 by Σ1

4 and Π1
2 by Π1

3 everywhere.
2. Use Σ1

3-Pω1
-correctness instead of Shoenfield absoluteness everywhere. No-

tice that in the proof we only used Shoenfield absoluteness between models
that lay between V and V [Gω1

], so by Fact 3.19 we are safe.

3. Use Theorem 3.14 (4) to conclude that θ̃ is Π1
3.

a
Just as before, we actually have a stronger version which allows us to mix

different partial orders P.

Theorem 4.13. Suppose V |= ∀r (ω
L[r]
1 < ω1), P and AP are as before,

Pω1 := 〈Pα, Q̇α | α < ω1〉 is Suslin+ proper with parameters in the ground
model and repetitive, and both P and AP appear cofinally often in the iteration.
Then V Pω1 |= ∆1

4(P).

§5. Solving the diagrams. We will now apply the methods presented in
the previous section to answer several questions about regularity properties at
higher projective levels. To show that, in certain models, statements of the form
Γ(P) are true, we have the following four methods at our disposal:

• Theorem 4.1,
• Theorem 4.5 (and the stronger 4.8),
• Theorem 4.10, and
• Theorem 4.12 (and the stronger 4.13).

But to separate regularity properties we need another ingredient, namely, a
method for showing that certain statements of the form Γ(P) are false. For
this, we note that one direction in the original characterization theorems 2.3, 2.4
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and 2.5 can easily be generalized (for C and B this was already mentioned and
used in [2]).

Definition 5.1. A wellorder � of a set of reals, of length ω1, is called Σ1
n-good

if

1. � is a Σ1
n-relation, and

2. the statement “x codes the set of �-predecessors of y” is Σ1
n.

We say that � is a Σ1
n-good wellorder of the reals if it is a wellorder of the set

of all reals.

Fact 5.2. Suppose M is a model with a Σ1
n-good wellorder of the reals. Then:

1. Σ1
n(B) =⇒ {x | x is not random over M} ∈ N .

2. Σ1
n(C) =⇒ {x | x is not Cohen over M} ∈ M.

3. ∆1
n(B) =⇒ ∃x (x is random over M).

4. ∆1
n(C) =⇒ ∃x (x is Cohen over M).

5. ∆1
n(L) =⇒ ∃x (x is dominating over M).

6. ∆1
n(M) =⇒ ∃x (x is unbounded over M).

7. ∆1
n(S) =⇒ ∃x (x /∈M).

Proof. Points 1–4 follow from the original proofs of Solovay and Judah-
Shelah; see also [2, Lemmas 2.3, 2.85 and 2.105]. For 5 and 6, use an argument
analogous to the one in [8, Theorems 4.1 and 6.1] replacing Σ1

2 by Σ1
3 and ∆1

2

by ∆1
3 everywhere. 7 is obvious. a

We are going to use the following results about models with Σ1
3-good wellorders:

Theorem 5.3 (Bagaria-Woodin). Assuming just the consistency of ZFC, there
is a model, which we will denote by L∗, such that

1. L∗ |= Σ1
2(B) (and hence also Σ1

2(P) for all P ∈ {C,L,M,S}) and
2. there is a Σ1

3-good wellorder of the reals of L∗.

Proof. This model was first constructed in [2], though using techniques de-
veloped recently by Friedman, Fischer, Zdomskyy and others (e.g. [14, 15]) it
is easy to construct models of this kind. a

Theorem 5.4 (David). Assuming the consistency of ZFC + inaccessible, there
is a model, which we will denote by Ld, such that

1. Ld |= ∀r (ω
L[r]
1 < ω1), and

2. there is a Σ1
3-good wellorder of the reals of Ld.

Proof. This was proved by Rene David in [10]. a
We will be able to separate regularity properties by using the forcing con-

structions from the previous section, starting from the models L, L∗ or Ld, and
using Fact 5.2 together with known preservation results. We should note that
the Σ1

3-good wellorder of the reals of L∗ and Ld from the above results remains a
Σ1

3-good wellorder (of the ground-model reals) in forcing extensions. The idea to
use David’s model Ld to separate regularity properties was first used by Judah
and Spinas in [30].
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5.1. ∆1
3-results. If we restrict attention exclusively to ∆1

3 sets of reals, we
obtain the diagram of ZFC-provable implications seen in Figure 3.

We will use the diagrammatical notation employed by Bartoszyński and Judah
in [3, Sections 7.5, 7.6], with empty circles symbolizing “false” and full circles
“true”. There is a total of eleven possibilities of “true”/“false”-assignments not
contradicting the diagram, which we denote with the letters A–K and represent
in Table 2.

∆1
3(B) +3 ∆1

3(S)

∆1
3(L) +3 ∆1

3(M)

7?wwwwww
wwwwww

∆1
3(C)

KS

Figure 3. Cichoń’s diagram for regularity of ∆1
3 sets of reals.

In the next list we provide models for each situation. Whenever possible, the
models will be constructed in ZFC alone. In three cases, namely G, H and I,
we will have to make do with an inaccessible (although we conjecture that this
hypothesis can be eliminated).

• Situation A, determined by ¬∆1
3(S).

This holds in L, L∗ and Ld.

• Situation B, determined by ∆1
3(S) + ¬∆1

3(B) + ¬∆1
3(M).

The model for this is LSω1 , i.e., the countable support iteration of Sacks
forcing of length ω1 starting from L. Since Sacks forcing is a quasi-amoeba
for itself (see Example 4.4), ∆1

3(S) follows by Corollary 4.6. Moreover, since
Sω1

is ωω-bounding and does not add random reals (by the Sacks property),
it follows that, in this model, even ∆1

2(B) and ∆1
2(M) fail.

• Situation C, determined by ∆1
3(B) + ¬∆1

3(M).

Take the model (L∗)Bω1 . By Theorem 4.1 ∆1
3(B) holds. Because random

forcing is ωω-bounding, and because of Fact 5.2 (6), we have ¬∆1
3(M).

• Situation D, determined by ∆1
3(M) + ¬∆1

3(B) + ¬∆1
3(L) + ¬∆1

3(C).

Here the model is LMω1 . Since Miller forcing is a quasi-amoeba of itself (see
Example 4.4) ∆1

3(M) follows by Corollary 4.6. On the other hand, Miller
forcing does not add Cohen or random reals because of the Laver property
([3, Theorem 7.3.45]), so both ∆1

2(B) and ∆1
2(C) fail. Also, Miller forcing

does not add dominating reals ([3, Theorem 7.3.46]), so ∆1
2(L) fails.

• Situation E, determined by ∆1
3(L) + ¬∆1

3(B) + ¬∆1
3(C).

Here, let us provide two models. Spinas, in [43], constructs a version of
“amoeba for Laver” forcing, which he denotes by A(L), and proves that
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◦ = FALSE • = TRUE

◦ // ◦

◦ // ◦

??~~~~

◦

OO

Situation A

◦ // •

◦ // ◦

??~~~~

◦

OO

Situation B

• // •

◦ // ◦

??~~~~

◦

OO

Situation C
◦ // •

◦ // •

??~~~~

◦

OO

Situation D

◦ // •

• // •

??~~~~

◦

OO

Situation E

◦ // •

◦ // •

??~~~~

•

OO

Situation F
• // •

◦ // •

??~~~~

◦

OO

Situation G

• // •

• // •

??~~~~

◦

OO

Situation H

• // •

◦ // •

??~~~~

•

OO

Situation I
◦ // •

• // •

??~~~~

•

OO

Situation J

• // •

• // •

??~~~~

•

OO

Situation K

Table 2. Situations A–K in the ∆1
3-diagram

it is an amoeba for Laver in the sense of Definition 4.3 and, at the same
time, satisfies the Laver property. It follows that the iteration (L ∗A(L))ω1

(i.e., the countable support iteration of length ω1 where L appears at even
stages and A(L) at odd stages) has the Laver property, hence L(L∗A(L))ω1 |=
¬∆1

2(B) + ¬∆1
2(C). But ∆1

3(L) holds by Theorem 4.5.

Another model is the one given in [29, Theorem 3.1], namely, the ω1-
iteration of Mathias forcing starting from L. Here an even stronger as-
sertion holds, namely “all ∆1

3-sets are Ramsey” which implies ∆1
3(L) (see

Section 6).

• Situation F, determined by ∆1
3(C) + ¬∆1

3(B) + ¬∆1
3(L).

Here we take (L∗)Cω1 . Then ∆1
3(C) holds by Theorem 4.1. On the other

hand, Cohen forcing adds neither dominating nor random reals, so by Fact
5.2 (3) and (5), neither ∆1

3(B) nor ∆1
3(L) holds.

• Situation G, determined by ∆1
3(B) + ∆1

3(M) + ¬∆1
3(L) + ¬∆1

3(C).
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Use the model (Ld)(B∗M)ω1 , i.e., the ω1-iteration, with countable support,
of B and M interlaced starting from David’s model Ld (which requires an
inaccessible). By Theorem 4.10, both ∆1

3(B) and ∆1
3(M) hold. Since B

and M do not add dominating reals, ∆1
3(L) fails by Fact 5.2 (5). To show

that ∆1
3(C) also fails we can use a weaker version of the Laver property,

namely the property of being “(F, g)-preserving” as defined in [3, Definition
7.2.23]. Both random and Miller forcing satisfy this property ([3, Lemma
7.2.25 and Theorem 7.2.26]), it is preserved in countable support iterations
([3, Theorem 7.2.29]), and it implies that no Cohen reals are added ([3,
Theorem 7.2.24]). Therefore ¬∆1

3(C) follows by Fact 5.2 (4).

• Situation H, determined by ∆1
3(B) + ∆1

3(L) + ¬∆1
3(C).

Here we use (Ld)(B∗L)ω1 , an ω1-iteration of random and Laver forcing start-
ing from David’s model. By Theorem 4.10 ∆1

3(B) and ∆1
3(L) hold, and

∆1
3(C) fails for the same reason as above, namely, because both random

and Laver forcing satisfy the “(F, g)-preserving” property.

• Situation I, determined by ∆1
3(B) + ∆1

3(C) + ¬∆1
3(L).

Here we use (Ld)(B∗C)ω1 . Again by Theorem 4.10 we have ∆1
3(B) and

∆1
3(C). But neither random nor Cohen forcing adds dominating reals, so
¬∆1

3(L) fails by Fact 5.2 (5).

• Situation J, determined by ∆1
3(L) + ∆1

3(C) + ¬∆1
3(B).

Using our methods, we can easily see that (Ld)(C∗L)ω1 is a model for this,
where the fact that no random reals are added follows as in [3, Model
7.6.9]. However, in [26, Theorem 3.2] a model was constructed starting
just from ZFC. The method there was similar to an application of our
Theorem 4.5, iterating what was essentially a mixture of C, UM (amoeba
for category) and RF—Mathias forcing with a Ramsey ultrafilter F—with
finite support, starting in L. Since the use of the Ramsey ultrafilters makes
the iteration non-definable, one cannot use the arguments from Section 4
directly. Instead, the iteration was done in such a way that each segment
Pα,β of the iteration would appear again as Q̇δ, for cofinally many δ < ω1

(using a bookkeeping argument like in standard MA-proofs). In [26] it was
shown that such an iteration, starting from L, yields a model in which
∆1

3(R) (the Ramsey property; see Section 6) as well as ∆1
3(C) hold. The

former implies ∆1
3(L). On the other hand, the iteration remains σ-centered

implying that no random reals are added, hence ∆1
2(B) fails.

• Situation K, determined by ∆1
3(B) + ∆1

3(C) + ∆1
3(L).

Of course, the Solovay model satisfies this statement, so our only inter-
est here is in constructing a model in ZFC. But this is easy: since we do
not have to worry about preserving anything, we can freely apply Corol-
lary 4.6. For example, we can use the model L(B∗A∗C∗UM∗L∗A(L))ω1 , or
L(B∗A∗C∗UM∗R)ω1 . In fact, even L(B∗A∗C∗R)ω1 is sufficient, because, by the
Bartoszyński-Raisonnier-Stern argument, A already adds a comeager set of
Cohen reals (cf. [3, Theorem 2.3.1]).
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5.2. Σ1
3- and ∆1

4-results. Consider the analogous Σ1
3-diagram (Figure 4),

and the eleven analogous situations, labelled A–K, as before.

Σ1
3(B) +3 Σ1

3(S)

Σ1
3(L) +3 Σ1

3(M)

7?wwwwww
wwwwww

Σ1
3(C)

KS

Figure 4. Cichoń’s diagram for regularity of Σ1
3 sets of reals.

Our results in this section are far less satisfactory then those in the previ-
ous one. Still, we will summarize what can be said at this point, pointing out
directions for future research and the potential difficulties. In most cases the
models will be constructed starting from an inaccessible. A curious aspect of
our methods is that whenever we are able to obtain a form of Σ1

3-regularity in a
model, we in fact obtain ∆1

4-regularity.

• Situation A, determined by ¬Σ1
3(S).

This holds in L, L∗ and Ld.

• Situation B, determined by Σ1
3(S) + ¬Σ1

3(B) + ¬Σ1
3(M).

Use (Ld)Sω1 . By Theorem 4.12, even ∆1
4(S) holds in this model, but clearly

∆1
3(B) and ∆1

3(M) fail.

• Situation D, determined by Σ1
3(M) + ¬Σ1

3(B) + ¬Σ1
3(L) + ¬Σ1

3(C).

Here we can use (Ld)Mω1 . By Theorem 4.12 we, again, get ∆1
4(M), but

∆1
2(B), ∆1

2(C) and ∆1
2(L) fail.

• Situation E, determined by Σ1
3(L) + ¬Σ1

3(B) + ¬Σ1
3(C).

This holds in (Ld)(L∗A(L))ω1 and in (Ld)Rω1 , the Mathias extension of Ld,
by using Theorem 4.12 again.

• Situation K, determined by Σ1
3(B) + Σ1

3(C) + Σ1
3(L).

Since we cannot eliminate the inaccessible anyway, we might as well use
the Solovay model here. However, (Ld)(B∗A∗C∗R)ω1 would also do.

Currently, we do not have models for Situations C, F, G, H, I or J on the
Σ1

3-level. There are some deeper reasons for the difficulties encountered in the
search for such models:

Remark 5.5.

1. Notice that on the second level we have Σ1
2(B)⇒ Σ1

2(C), and whether the
same is true on the third level had remained open for a long time. The only
known counter-model is the one constructed by Friedman and Schrittesser
in [16]. By a variation of that method, one should be able to construct a
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model for Proj(B) + ¬∆1
3(M) starting from a Mahlo, which would solve

Situation C. Possibly, a similar method could also provide models for Situ-
ations G and H. But it is not clear how to obtain models for either of these
three situations with the methods of the current paper (and without the
Mahlo cardinal).

2. Likewise, on the second level we have the implication Σ1
2(C)⇒ Σ1

2(L). To
our knowledge, it is still open whether this lifts to the third level or not.
So, in fact, we do not know whether Situations F and I are even consistent.

On the other hand, it seems plausible that a model for Situation J can be
constructed along the same lines as in [26, Theorem 3.2], if we start in Ld instead
of L (but some details remain to be checked).

Remark 5.6. All the models given above (except forA) require an inaccessible
to start out with. We know that the inaccessible is necessary whenever we want
Σ1

3(B) to hold; and it is still open whether it is necessary for Σ1
3(L). However,

for some situations we might have ZFC-models:

1. By the well-known result of Shelah, there is a model of Proj(C) in ZFC.
Since Σ1

3(B) clearly fails here, we have a ZFC-model satisfying either Sit-
uation F or Situation J. It would be interesting to determine which one it
is, i.e., whether Σ1

3(L) holds or fails in Shelah’s model.
2. The Cohen model LCω1 satisfies Proj(S) by [6, Proposition 3.7]. Clearly,

∆1
2(B), Σ1

2(C) and ∆1
2(L) fail here, so we have a ZFC-model for Situation

B or Situation D. Again, it would be interesting to determine the status of
Σ1

3(M) in this model.

We briefly consider the ∆1
4-Cichoń’s diagram. Since all the results we obtained

for Σ1
3 above in fact yielded ∆1

4-statements, we immediately have the consistency
of Situations A, B, D, E and K. But, additionally, we can also provide models
for Situations C and F, using the technique of [30]. There, starting from an
inaccessible, Judah and Spinas construct a model N0, which has a Σ1

4-good

wellorder of the reals, and, moreover, such that N
Bω1
0 |= ∆1

4(B) and N
Cω1
0 |=

∆1
4(C). Their method is, in essence, a generalization of the result of Judah and

Shelah we mentioned under Theorem 4.1 (and used twice in the ∆1
3-diagram),

but starting from David’s model Ld instead of L, and using some additional
tricks. It is now clear that

1. N
Bω1
0 |= ∆1

4(B) + ¬∆1
4(M), and

2. N
Cω1
0 |= ∆1

4(C) + ¬∆1
4(B) + ¬∆1

4(L).

5.3. Separating ∆ from Σ. Recall that, in the long-run, we would like to
be able to completely “solve” the diagram involving both ∆1

n and Σ1
n sets (i.e.,

Figure 2). But there are many obstacles, and the most urgent one seems to be
the following:

Question 5.7. Does Σ1
n(P) ⇐⇒ ∆1

n(P) hold for P ∈ {L,M,S} and n ≥ 3?

Further progress in the study of the joint Σ1
n/∆1

n-diagram seems to depend
largely on the solution to the above question.
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Nevertheless, there is one interesting thing we would like to mention in the
context of comparing Σ1

3 with ∆1
3 sets, and ∆1

4 with Σ1
4 sets. Recall that, after

Shelah proved that Σ1
3(B) implies an inaccessible in [40], Raisonnier [39] provided

an alternative and simpler proof, based on the following:

Definition 5.8. Let F be a non-principal filter on ω. F is called a rapid filter
if

∀c ∈ [ω]ω ∃a ∈ F ∀n (|c(n) ∩ a| ≤ n),

or, equivalently, if F considered as a subset of ω↑ω (the space of strictly increasing
functions from ω to ω) is a dominating family in ω↑ω.

Fact 5.9 (Folklore). If F is a rapid filter, then F (considered as a subset of
ω↑ω) is not measurable and does not have the Baire property.

Lemma 5.10 (Raisonnier). Suppose ωL1 = ω1 and Σ1
2(B) holds. Then there

exists a Σ1
3 rapid filter (the Raisonnier filter).

Looking at Raisonnier’s argument, it is straightforward to obtain the following
generalization of the above lemma to higher projective levels:

Lemma 5.11. Suppose M is a model with a Σ1
n-good wellorder of the reals. If

ωM1 = ω1 and for every r there is a measure-one set of random reals over M [r],
then there exists a Σ1

n+1 rapid filter.

Corollary 5.12.

1. It is consistent relative to ZFC that ∆1
3(P) holds for all P ∈ {C,B,L,M,S},

but Σ1
3(B) and Σ1

3(C) fail. In particular, ∆1
3(C) + ∆1

3(L) 6=⇒ Σ1
3(C).

2. It is consistent relative to ZFC + inaccessible that ∆1
4(P) holds for all

P ∈ {C,B,L,M,S}, but Σ1
4(B) and Σ1

4(C) fail. In particular, ∆1
4(C) +

∆1
4(L) 6=⇒Σ1

4(C).

Proof. For 1, take the model from Situation K in Section 5.1, i.e., L(B∗A∗C∗R)ω1 .
Since both antecedents of Lemma 5.10 are satisfied we are done by Fact 5.9. For
2, take the model from Situation K in Section 5.2, i.e., (Ld)(B∗A∗C∗R)ω1 . Again,
the antecedents of Lemma 5.11 are satisfied for M = Ld and n = 3, so again we
are done by Fact 5.9. a

Recall that on the second level, we had the Truss-implication ∆1
2(C)+∆1

2(L)⇒
Σ1

2(C). By the above result this fails to lift to the third and fourth projective
levels. In Section 6 we will mention another application of the Raisonnier filter.

§6. Silver and Mathias. Clearly, the methods we developed in Section 4
are sufficiently general and can be applied to many other regularity properties
related to forcing notions on the reals. As a kind of appendix to the paper, we
show (without too many details) how to apply them to two further regularity
properties that have received a lot of attention.

Definition 6.1.

1. A subset A ⊆ [ω]ω has the Ramsey property if ∃a ∈ [ω]ω ([a]ω ⊆ A or
[a]ω ∩A = ∅).
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2. For a, b ∈ [ω]ω with |b \ a| = ω, let [a, b]ω := {c ∈ [ω]ω | a ⊆ c ⊆ b}. We call
[a, b]ω the (a, b)-doughnut. A subset A ⊆ [ω]ω has the doughnut property if
∃a, b ([a, b]ω ⊆ A or [a, b]ω ∩A = ∅).

The Ramsey property is well-known, and the doughnut property was intro-
duced by DiPrisco and Henle in [11] as a generalization of the Ramsey property.
It is not hard to see that the Ramsey and doughnut properties are equivalent to
Mathias- and Silver-measurability, respectively. Therefore, we will denote them
with the letters R and V, which typically abbreviate the Mathias and the Silver
forcing partial orders. Mathias and Silver forcing are clearly Suslin+ proper.

On the ∆1
2- and Σ1

2-levels, the relationship between these and other properties
has been studied in [23, 20, 6]. The following are particularly interesting:

Fact 6.2 (Judah-Shelah; Halbeisen; Brendle-Halbeisen-Löwe).

1. Σ1
2(R) ⇐⇒ ∆1

2(R).
2. ∆1

2(C) =⇒ Σ1
2(V).

3. Σ1
2(V) =⇒ Σ1

2(M).

Proof. For 1 see [23, Theorem 2.7]. For 2 see [20, Lemma 2.1], and for 3 see
[6, Proposition 3.5]. a

Unlike the original Cichoń’s diagram, there are still open questions on the
second level:

Question 6.3. Does ∆1
2(L) =⇒ Σ1

2(V) hold? Or, at least, does ∆1
2(L) =⇒

∆1
2(V) hold?

As in Lemma 2.7 we have the following:

Lemma 6.4 (Folklore). Let Γ be closed under continuous pre-images. Then:

1. Γ(R)⇒ Γ(V)⇒ Γ(S).
2. Γ(L)⇒ Γ(R).

Proof. For the first implication, note that [a]ω is a (∅, a)-doughnut, and the
set of characteristic functions of x ∈ [a, b]ω is a perfect tree in 2ω. For the second
implication, use the fact that for any a ∈ [ω]ω it is easy to find a Laver tree T
such that ∀x ∈ [T ] (ran(x) ⊆ a). a

In his PhD thesis, Laguzzi proved two additional relationships of this kind.

Lemma 6.5 (Laguzzi). Let Γ be closed under continuous pre-images. Then:

1. Γ(C)⇒ Γ(V).
2. Γ(B)⇒ Γ(V).

Proof. See [36, Fact 39 and Fact 55]. a
As an illustration of the application of our methods, let us repeat what we

did in Section 5.1, i.e., look at the ∆1
3-diagram with the additional properties V

and R (Figure 5). There are now eighteen situations, represented in Table 3 (we
have subdivided the situations from the previous section).

To find models for these situations we need the following additional facts (cf.
Fact 5.2).
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Figure 5. Cichoń’s diagram for ∆1
3 sets, including R and V.

Definition 6.6. Let M be a model. A real c ∈ [ω]ω is

• splitting over M if for all a ∈M ∩ [ω]ω (|a ∩ c| = |a \ c| = ω), and
• unsplit over M if for all a ∈M ∩ [ω]ω (|c ∩ a| < ω or |c \ a| < ω).

Fact 6.7. Suppose M is a model with a Σ1
n-good wellorder of the reals. Then:

1. ∆1
n(V) =⇒ ∃c (c is splitting over M).

2. ∆1
n(R) =⇒ ∃c (c is splitting over M) and ∃c (c is unsplit over M).

Proof. For the first implication, use the argument in [6, Proposition 2.5],
and for the second one, use [21, Theorem 2.2]. a

Splitting and unsplit reals are related to the well-known cardinal characteris-
tics s and r (the splitting and reaping number, respectively), in a way similar to
the relationship shown in Table 1 (although they do not characterize R and V
in any way).

We can now find models for the following situations from Table 3 (we only list
the ones that do not automatically follow from our results in Section 5.1).

• Situation B1, determined by ∆1
3(S) + ¬∆1

3(V) + ¬∆1
3(M).

Here the model is LSω1 . Sacks forcing preserves P-points, which is an iter-
able property (see [17, Lemma 2.9] and [3, Theorem 6.2.6]), so in particular
no splitting reals are added, hence ∆1

2(V) fails by Fact 6.7 (1).

• Situation B2, determined by ∆1
3(V) + ¬∆1

3(B) + ¬∆1
3(M).

Use (Ld)Vω1 . By the Sacks property of Silver forcing neither random nor
unbounded reals are added.

• Situation D1, determined by ∆1
3(M) + ¬∆1

3(V) + ¬∆1
3(L) + ¬∆1

3(C).

Here we use LMω1 . Again ∆1
2(V) fails because Miller forcing preserves

P-points [3, Lemma 7.3.48].

• Situation D2, determined by ∆1
3(V) + ∆1

3(M) + ¬∆1
3(B) + ¬∆1

3(L) +
¬∆1

3(C).

Here we can use (Ld)(V∗M)ω1 . Both V and M have the Laver property, and
both do not add dominating reals.
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◦ = FALSE • = TRUE

◦ // ◦ // ◦

◦ //

??~~~~
◦ // ◦
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◦
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WW////////

Situation A

◦ // ◦ // •

◦ //

??~~~~
◦ // ◦

??~~~~

◦
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WW////////
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◦ // • // •

◦ //
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◦ // ◦

??~~~~

◦
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WW////////

Situation B2
• // • // •
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Situation K2

Table 3. Situations A–K in the ∆1
3-diagram

• Situation E1, determined by ∆1
3(L) + ¬∆1

3(V).

We don’t know if this situation is consistent!

• Situation E2, determined by ∆1
3(L) + ∆1

3(V) + ¬∆1
3(B) + ¬∆1

3(R) +
¬∆1

3(C).

Use (Ld)(L∗V)ω1 . Both L and V have the Laver property, implying that
neither random nor Cohen reals are added. To show that ∆1

3(R) fails,
recall the preservation property called “preservingvrandom” in [3, Definition
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6.3.7]. Both L and V satisfy this property (for L see [3, Theorem 7.3.39] and
for V it follows from an even stronger result, namely [3, Lemma 6.3.39]), it
is preserved by countable support iteration [3, Theorem 6.1.13] and implies
that the ground model reals have positive measure [3, Thorem 6.3.13]. From
this, one can infer that there are no unsplit reals over the ground model,
in a way analogous to the well-known proof of the cardinal inequality s ≤
non(N ) (i.e., for every a ∈ [ω]ω, the set Xa := {b | b does not split a} is
measure zero). Hence, the result follows from Fact 6.7 (2).

• Situation E3, determined by ∆1
3(R) + ¬∆1

3(B) + ¬∆1
3(C).

Clearly LRω1 works here.

• Situation H1, determined by ∆1
3(B) + ∆1

3(L) + ¬∆1
3(R) + ¬∆1

3(C).

Use (Ld)(B∗L)ω1 . Both B and L have the “(F, g)-preserving” property,
implying that no Cohen reals are added. To show that ∆1

3(R) fails use
again the “preserving vrandom”-property. Random forcing satisfies this by
[3, Lemma 6.3.12], so, as before, we are done by Fact 6.7 (2).

• Situation H2, determined by ∆1
3(B) + ∆1

3(R) + ¬∆1
3(C).

Use (Ld)(B∗R)ω1 . Both B and R have the “(F, g)-preserving” property, im-
plying that no Cohen reals are added.

• Situation J1, determined by ∆1
3(C) + ∆1

3(L) + ¬∆1
3(B) + ¬∆1

3(R).

Use (Ld)(C∗L)ω1 . As in [3, Model 7.6.9] we can show that no random reals
are added by the iteration. To show that ∆1

3(R) fails, we note that both
C and L satisfy a strong iterable property implying that no unsplit reals
are added: see e.g. [12, Lemma 8, 9] and [5, Main Lemma 1.11], and apply
Fact 6.7 (2).

• Situation J2, determined by ∆1
3(C) + ∆1

3(R) + ¬∆1
3(B).

Here we can either use (Ld)(C∗R) or the ZFC-model from [26, Theorem 3.2]
which we also used in Situation J in Section 5.1.

• Situation K1, determined by ∆1
3(B) + ∆1

3(L) + ∆1
3(C) + ¬∆1

3(R).

Use (Ld)(B∗L∗C)ω1 . To show that no unsplit reals are added, use the iterable
version for C and L (as in Situation J1) and preservation of vrandom for B.
Again, ∆1

3(R) fails by Fact 6.7 (2).

• Situation K2, determined by ∆1
3(B) + ∆1

3(R) + ¬∆1
3(C).

Here L(B∗A∗R∗C)ω1 clearly suffices.

To conclude: all situations except E1 are consistent. Moreover, we have ZFC-
models for B1, D1, E3, J2 and K2, whereas for the other cases we need an
inaccessible. The difficulty concerning Situation E1 lies in the fact that we do
not know whether ∆1

3(L) ⇒∆1
3(V) holds (cf. Question 6.3). In several cases we

can also obtain results for ∆1
4 sets, as we did in Section 5.2. As this is completely

analogous we leave the details to the reader.
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A more interesting application of our methods, concerning Silver and Mathias,
involves the Raisonnier filter.

Definition 6.8. For a ∈ [ω]ω, let

...
a := [0, a(0)) ∪ [a(1), a(2)) ∪ [a(3), a(4)) ∪ . . .

where {a(n) | n < ω} is the increasing enumeration of a. If F is a filter on ω, let...
F := {a ∈ [ω]ω | ...a ∈ F}.

It is clear that the operation F 7→
...
F does not increase the complexity. In

[37] Mathias proved that if F is a rapid filter then
...
F does not have the Ramsey

property. We will improve this result:

Lemma 6.9. If F is a rapid filter then
...
F does not have the doughnut property.

Proof. Let a, b ∈ [ω]ω be arbitrary and assume |b \ a| = ω. It is easy to see
that [a, b]ω cannot be a subset of

...
F : pick any x, y ∈ [a, b]ω such that x = y \ {n}

for some n. Then, clearly,
...
x and

...
y have finite intersection, so x and y cannot

both be in
...
F (this argument works for any non-principal filter F).

So it remains to show that [a, b]ω cannot be completely disjoint from
...
F . Let f

be an enumeration of b \ a. As F is rapid, there is a y ∈ F be such that for all
n, |f(n) ∩ y| ≤ n. We will find an x ∈ [a, b]ω ∩

...
F . The real x is constructed as

follow: if i ∈ a then i ∈ x; if i /∈ b then i /∈ x; and if i ∈ b \ a, then, whether i
is in x or not will depends on the consideration described below (notice that, in
any case, x will be a member of [a, b]ω). For every n ≥ 1 and every element y(n),
there is always at least one member of b \ a which lies strictly between y(n− 1)
and y(n). Let mn be the largest of them. Now it is easy to see that by making
the right choice of either “mn ∈ x” or “mn /∈ x” we can always make sure that
y(n) is in

...
x = [0, x(0)) ∪ [x(1), x(2)) ∪ . . . (it does not matter what we do with

the other i ∈ b \ a which lie between y(n− 1) and y(n)). If we do this for every
n, we obtain a set x which is in [a, b]ω, and moreover, y \ {y(0)} ⊆ ...

x . Since
y ∈ F holds by assumption, x ∈

...
F follows. a

Corollary 6.10.

1. It is consistent relative to ZFC that ∆1
3(P) holds for all P considered in

this section, but Σ1
3(B), Σ1

3(C), Σ1
3(R) and Σ1

3(V) fail. In particular,
∆1

3(R) 6⇐⇒Σ1
3(R) and ∆1

3(C) 6=⇒ Σ1
3(V).

2. It is consistent relative to ZFC + inaccessible that ∆1
4(P) holds for all P

considered in this section, but Σ1
4(B), Σ1

4(C), Σ1
4(R) and Σ1

4(V) fail. In
particular, ∆1

4(R) 6⇐⇒ Σ1
4(R) and ∆1

4(C) 6=⇒ Σ1
4(V).

Proof. For 1, consider the model from Situation K2 above, i.e., L(B∗A∗R∗C)ω1 .
By Lemma 5.10 there is a Raisonnier filter, i.e., a Σ1

3 rapid filter, so by Lemma
6.9 we are done. For 2, take the model (Ld)(B∗A∗R∗C)ω1 and apply Lemma 5.11
and Lemma 6.9. a

This shows that the implications from Fact 6.2 (1) and (2) which hold on the
second level fail to lift to the third and fourth level of the projective hierarchy.
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§7. Open questions. Although we have made significant progress in this
area of research, many questions are still open. The most urgent question seems
to be:

Question 7.1. Is ∆1
3(P) + ¬Σ1

3(P) consistent for P ∈ {S,M,L}? More gen-
erally, is ∆1

n(P) + ¬Σ1
n(P) consistent for these P?

We conjecture that the answer is positive. Recall that in Corollary 6.10 we
proved the consistency of ∆1

3(R) +¬Σ1
3(R) using the Raisonnier filter. It seems

very plausible that a similar method will work to settle Question 7.1 as well. In
fact, we conjecture the following:

Conjecture 7.2. It is consistent, relative to ZFC, that ∆1
3(P) holds for all

P but Σ1
3(S) fails (and therefore, Σ1

3(P) fails for all P).

The next question concerns the use of inaccessibles in our proofs. Of course,
when proving results about Σ1

3(P) or higher projective sets, such as our Theorem
4.12, inaccessibles cannot be avoided (at least if the proofs are to work uniformly
for all P). However, they are not necessary for ∆1

3-results, and their use in
our proofs seems to arise mostly from a lack of finer methods. Therefore we
conjecture the following:

Conjecture 7.3. All the situations on the ∆1
3-level (specifically G, H, and

I from Section 5.1, as well as B2, D2, E2, H1, H2, J1 and K1 from Section 6)
have models based just in ZFC.

The plan would be to improve Theorem 4.10 by replacing the assumption

∀r (ω
L[r]
1 < ω1) by a weaker assumption (for example, about the existence of

many generics over L[r]) that can be obtained without inaccessibles but is still
sufficiently strong to guarantee similar results. Then we can obtain models using
this method, starting with some other ZFC-model instead of Ld.

Recalling Remarks 5.5 and 5.6, the following questions are interesting and
would solve several open problems:

Question 7.4.

1. Can the method of Friedman and Schrittesser [16] be adapted to other reg-
ularity properties?

2. What is the status of Σ1
3(L) and ∆1

3(L) in Shelah’s model of Proj(C) with-
out inaccessibles?

3. What is the status of Σ1
3(M) and ∆1

3(M) in the Cohen model LCω1 ?

Finally, the following simple questions are well-known, but have, so far, re-
mained unresolved:

Question 7.5. What is the consistency strength of Σ1
3(R) and Σ1

3(L)?
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KURT GÖDEL RESEARCH CENTER FOR MATHEMATICAL LOGIC

UNIVERSITY OF VIENNA, WÄHRINGER STRAßE 25
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