THE TREE PROPERTY AT ω_2 AND BOUNDED FORCING AXIOMS

SY-DAVID FRIEDMAN AND VÍCTOR TORRES-PÉREZ

ABSTRACT. We prove that the Tree Property at ω_2 together with BPFA is equiconsistent with the existence of a weakly compact reflecting cardinal, and if BPFA is replaced by BPFA(ω_1) then it is equiconsistent with the existence of just a weakly compact cardinal. Similarly, we show that the Special Tree Property for ω_2 together with BPFA is equiconsistent with the existence of a reflecting Mahlo cardinal, and if BPFA is replaced by BPFA(ω_1) then it is equiconsistent with the existence of just a Mahlo cardinal.

1. INTRODUCTION

Recall that a cardinal κ is weakly compact if it is uncountable and for every function $F : [\kappa]^2 \to 2$, there is $H \subseteq \kappa$ of cardinality κ such that $F \upharpoonright [H]^2$ is constant. We use a characterization of weak compactness due to Hanf-Scott ([6]). A formula is Π_1^1 if it is of the form $\forall X \psi$, where X is a second-order variable and ψ has only first-order quantifiers. A cardinal κ is Π_1^1 -indescribable if whenever $U \subseteq V_{\kappa}$ and φ is a Π_1^1 -sentence such that $(V_{\kappa}, \in, U) \models \varphi$ then for some $\alpha < \kappa$, $(V_{\alpha}, \in, U \cap V_{\alpha}) \models \varphi$. As shown in [6], a cardinal κ is Π_1^1 -indescribable if and only if it is weakly compact.

We say that a regular κ has the *tree property* (TP(κ)) if every tree T of height κ with levels of size $< \kappa$ has a branch of length κ . Trees of height κ with levels of size $< \kappa$ and no branches of length κ are called κ -Aronszajn, in reference to Aronszajn's construction of a tree of height ω_1 each of whose levels is countable but with no uncountable branch (see [10]). Erdős and Tarski ([4]) showed that if κ is weakly compact, then κ has the tree property. They also proved that if κ is inaccessible and has the tree property, then κ is weakly compact.

We also recall a result of Silver stating that if $TP(\omega_2)$ holds then ω_2 is weakly compact in L ([11, Theorem 5.9]). Mitchell proved that if κ is weakly compact then there is a generic extension where $\kappa = \omega_2 = 2^{\omega}$ and $TP(\omega_2)$ holds (see [11]). So in particular, $TP(\omega_2)$ is equiconsistent with the existence of a weakly compact cardinal.

An ω_2 -Aronszajn tree T is special if there is a function $f: T \to \omega_1$ such that for every $s, t \in T$, if $s <_T t$ then $f(s) \neq f(t)$. We say that ω_2 has the Special Tree Property, SpTP(ω_2), if there are no special ω_2 -Aronszjan trees. Recall that an inaccessible cardinal κ is Mahlo if the set of all regular cardinals below κ is stationary, and so the set of all inaccessible cardinals

Both authors wish to thank the FWF (Austrian Science Fund) for its support through Grant number P 25748. The second author was also partially supported by the grant P 26869-N25.

below κ is also stationary. Also in [11], Mitchell proved that the existence of a Mahlo cardinal is equiconsistent with SpTP(ω_2).

In this paper we study the relationship between some forcing axioms and the tree property for ω_2 .

We recall the following definitions:

Definition 1.1. (Shelah, see [14]) A notion of forcing \mathbb{P} is proper if for every uncountable cardinal κ , all stationary subsets of $[\kappa]^{\omega}$ remain stationary in \mathbb{P} -generic extensions.

Definition 1.2 (PFA). For every proper notion of forcing \mathbb{P} and for every collection $\langle D_{\xi} : \xi < \omega_1 \rangle$ of maximal antichains of \mathbb{P} , there exists a filter $G \subseteq \mathbb{P}$ such that $G \cap D_{\xi} \neq \emptyset$ for all $\xi < \omega_1$.

Definition 1.3 (BPFA). For every proper notion of forcing \mathbb{P} and for every collection $\langle D_{\xi} : \xi < \omega_1 \rangle$ of maximal antichains of \mathbb{P} , each of size at most ω_1 , there exists a filter $G \subseteq \mathbb{P}$ such that $G \cap D_{\xi} \neq \emptyset$ for all $\xi < \omega_1$.

Bagaria and Stavi showed that BPFA is equivalent to the following statement: For every proper forcing \mathbb{P} , every Σ_1 formula with parameters from $H(\omega_2)$ that holds in a \mathbb{P} -generic extensions also holds in V (see Theorem 5 in [1]).

Definition 1.4. An uncountable regular cardinal κ is reflecting if for every $a \in H_{\kappa}$ and any formula $\varphi(x)$, if there is a regular cardinal θ such that $H_{\theta} \models \varphi(a)$, then there is a regular $\theta' < \kappa$ such that $a \in H_{\theta'} \models \varphi(a)$.

In [5], M. Goldstern and S. Shelah proved that BPFA is equiconsistent with the existence of a reflecting cardinal.

BPFA(ω_1) is the statement of BPFA restricted to forcings of size at most ω_1 . BPFA(ω_1) is only slightly stronger than MA(ω_1); it is easy to force it by starting with GCH and in ω_2 steps hitting every proper forcing of size ω_1 via a countable support iteration.

In this paper we prove that the existence of a weakly compact cardinal is equiconsistent with the conjunction of $TP(\omega_2)$ and $BPFA(\omega_1)$. Also we prove that $TP(\omega_2)$ together with BPFA is equiconsistent with the existence of a weakly compact which is also reflecting.

Using similar methods, we establish the same results for $\text{SpTP}(\omega_2)$ with "weakly compact" replaced by "Mahlo".¹

2. Preliminaries and basic definitions

We recall some basic properties of forcing notions used in our constructions. Given two sets I, J, and a cardinal λ , let $\mathbb{P}_{\lambda}(I, J)$ be the set of all partial functions p from I to J such that $|\operatorname{dom}(p)| < \lambda$. The order in $\mathbb{P}_{\lambda}(I, J)$ is given by \supseteq .

¹Sakai and Velickovic showed in [13] that the Weak Reflection Principle (WRP) together with $MA_{\omega_1}(Cohen)$ implies that ω_2 has the Super Tree Property. It is implicit in their proof that $WRP(\omega_2) + MA_{\omega_1}(Cohen)$ implies $TP(\omega_2)$. This leads to an alternative proof of the consistency of $TP(\omega_2) + BPFA(\omega_1)$ from a weakly compact cardinal. Our construction is flexible enough to yield further results, such as the results mentioned regarding the Special Tree Property.

 $\mathbb{P}_{\kappa}(\kappa \times \lambda, 2)$ is usually denoted by $\mathrm{Add}(\kappa, \lambda)$ and $\mathbb{P}_{\kappa}(\kappa, \lambda)$ is usually denoted by $\mathrm{Col}(\kappa, \lambda)$.

We say that a notion of forcing is ω -closed if every countable descending sequence of conditions $p_0 \ge p_1 \ge p_2 \ge \cdots \ge p_n \ge \cdots$ has a lower bound.

We recall that ω -closed and c.c.c. forcings are also proper (see for example [9, Lemma V.7.2]). A two-step iteration of proper forcing is proper ([9, Lemma V.7.4]). Even more, Shelah showed that a countable support iteration of forcing notions is proper (see for example [7, Theorem 31.15]).

We will use in our forcing constructions the following forcing notion due to Baumgartner [2] which specializes any tree of height ω_1 with no uncountable branches (the tree may have uncountable levels).

Definition 2.1. Given a tree T of height ω_1 with no uncountable branches we define the partial order $\mathbb{P}_{sp}(T)$ by $a \in \mathbb{P}_{sp}(T)$ if and only if a is a function from a finite subset of T into ω such that $a(t_0) \neq a(t_1)$ whenever t_0, t_1 are comparable in T.

Baumgartner [2] showed that the forcing $\mathbb{P}_{sp}(T)$ defined above has the countable chain condition. And Silver showed that if T is an ω_2 -Aronszajn tree then T still has no cofinal branch after forcing with $Add(\omega, \omega_2)*Col(\omega_1, \omega_2)$. Therefore Baumgartner's specializing forcing can be applied to the restriction of T to a cofinal set of levels in this model; we still refer to this forcing as $\mathbb{P}_{sp}(T)$.

Given an uncountable cardinal λ , remember that a \Box_{λ} -sequence is a sequence $\langle c_{\alpha} : \alpha \in \operatorname{Lim}(\lambda^+) \rangle$ such that for all $\alpha \in \operatorname{Lim}(\lambda^+)$:

- (1) c_{α} is club in α ,
- (2) $\operatorname{ot}(c_{\alpha}) \leq \lambda$,

(3) $c_{\alpha} \cap \beta = c_{\beta}$ whenever $\beta \in \text{Lim}(c_{\alpha})$.

Let λ be an uncountable cardinal. We define $\mathbb{P}(\Box_{\lambda})$ as follows: $p \in \mathbb{P}$ iff

- dom $(p) = (\beta + 1) \cap \text{Lim}(\lambda^+)$ for some $\beta \in \text{Lim}(\lambda^+)$.
- $p(\alpha)$ is a club set in α and $\operatorname{ot}(p(\alpha)) \leq \lambda$ for all $\alpha \in \operatorname{dom}(p)$.
- If $\alpha \in \text{dom}(p)$, then $p(\alpha) \cap \beta = p(\beta)$ for every $\beta \in \text{Lim}(p(\alpha))$.

We order $\mathbb{P}(\Box_{\lambda})$ by letting $p \leq q$ if and only if $q = p_{\text{dom}(q)}$ for $p, q \in \mathbb{P}(\Box_{\lambda})$. $\mathbb{P}(\Box_{\lambda})$ adds a \Box_{λ} -sequence in the generic extension. It is due to Jensen and does not add λ -sequences (see [3]).

3. The Tree Property and Forcing Axioms

In this section we prove that $TP(\omega_2) + BPFA(\omega_1)$ is equiconsistent with the existence of a weakly compact cardinal. In our proof we use a weakly compact \diamond sequence (Definition 3.2) to code objects during the iteration. We discuss first some of the properties of these weakly compact diamond sequences.

Given a cardinal κ and $S \subseteq \kappa$, remember Jensen's Diamond Principle $\Diamond_{\kappa}(S)$: There is a sequence $\langle D_{\alpha} : \alpha \in S \rangle$ such that for every $X \subseteq \kappa$, the set $\{\alpha \in S : X \cap \alpha = D_{\alpha}\}$ is stationary. We recall the following (see Lemma 6.5 in [8]):

Lemma 3.1. Suppose V = L. Given a regular cardinal κ , $\Diamond_{\kappa}(S)$ holds for every stationary set $S \subseteq \kappa$.

Actually, if κ is a weakly compact cardinal, we can have in L a stronger form of a diamond sequence.

Definition 3.2. A weakly compact \Diamond sequence for a cardinal κ is a sequence $\langle D_{\alpha} : \alpha < \kappa \rangle$ such that

- (1) $D_{\alpha} \subseteq \alpha$,
- (2) for every $A \subseteq V_{\kappa}$ and for every Π_1^1 -formula φ such that $(V_{\kappa}, A) \models \varphi(A)$, and for every $D \subseteq \kappa$, the set

$$S(A,\varphi,D) = \{ \alpha < \kappa : (V_{\alpha}, A \cap V_{\alpha}) \models \varphi (A \cap V_{\alpha}) \text{ and } D \cap \alpha = D_{\alpha} \}$$

is stationary in κ .

Observe that the existence of a weakly compact diamond sequence can hold only if κ is weakly compact, due to the characterization of Hanf-Scott given in the introduction.

Lemma 3.3. In L, there is a weakly compact \Diamond sequence for κ whenever κ is a weakly compact cardinal.

Proof. See [15, Theorem 2.13].

In this paper, in order to code some objects of the universe, we would like to deal with subsets of V_{α} rather than just subsets of α . We have the following:

Lemma 3.4. For a given cardinal κ , suppose there is a weakly compact \diamond sequence $\langle D_{\alpha} : \alpha < \kappa \rangle$ for κ . Then there is a sequence $\langle D_{\alpha}^* : \alpha < \kappa \rangle$ such that

- (1) $D^*_{\alpha} \subseteq V_{\alpha}$,
- (2) for every $D^* \subseteq V_{\kappa}$ and every Π_1^1 -formula φ such that $(V_{\kappa}, D^*) \models \varphi(D^*)$, the set

$$S^*(D^*,\varphi) = \{\alpha < \kappa : (V_\alpha, D^* \cap V_\alpha) \models \varphi(D^* \cap V_\alpha) \text{ and } D^* \cap V_\alpha = D^*_\alpha\}$$

is stationary.

Proof. Fix a weakly compact \diamond -sequence $\langle D_{\alpha} : \alpha < \kappa \rangle$ for κ . As we have mentioned, the existence of a weakly compact \diamond sequence for κ implies that κ is weakly compact due to the characterization of Hanf-Scott mentioned in the introduction. In particular, κ is inaccessible, so there is a bijection $f : \kappa \to V_{\kappa}$ (see for example Lemma I.13.26 and Lemma I.13.31 in [9]). Observe that the set

$$C = \{ \alpha < \kappa : f \mid_{\alpha} : \alpha \to V_{\alpha} \text{ is a bijection} \}$$

is a club set in κ . Define $D_{\alpha}^* = f[D_{\alpha}]$ if $\alpha \in C$ and empty otherwise. Let $D^* \subseteq V_{\kappa}$ and φ be a Π_1^1 -formula such that $(V_{\kappa}, D^*) \models \varphi(D^*)$. We need to show that the set $S^*(D^*, \varphi)$ defined above is stationary. Since $\langle D_{\alpha} : \alpha < \kappa \rangle$ is a weakly compact \diamond -sequence for κ , the set

$$S = S(D^*, \varphi, f^{-1}[D^*]) \cap C$$

is stationary (see Definition 3.2).

Now it is not hard to see that $S \subseteq S^*(D^*, \varphi)$ and therefore $S^*(D^*, \varphi)$ is stationary as desired. \Box

Theorem 3.5. Suppose V = L and let κ be a weakly compact cardinal in L. Then there is a forcing iteration \mathbb{P} of countable support and length κ such that in $L^{\mathbb{P}}$, both $\operatorname{TP}(\omega_2)$ and $\operatorname{BPFA}(\omega_1)$ hold.

Proof. We remark that we can find a Π_1^1 -sentence ψ (with no parameter) such that L_{α} satisfies ψ iff α is inaccessible. For example, let ψ be the Π_1^1 -sentence expressing: "There is no cofinal function from an ordinal into the class of ordinals, ω exists and the power set axiom holds". Then ψ holds in L_{α} iff α is inaccessible.

Therefore, we can fix a weakly compact diamond sequence concentrated on inaccessible cardinals and with the properties of Lemma 3.4. Let

 $\langle D_{\alpha} : \alpha \text{ inaccessible}, \ \alpha < \kappa \rangle$

be such a sequence.

Also observe that our weakly compact sequences can be concentrated on inaccessible cardinals, and in L we have $L_{\alpha} = V_{\alpha}$ whenever α is inaccessible.

We will perform a countable support iteration $\langle \langle \mathbb{P}_{\alpha} : \alpha \leq \kappa \rangle, \langle \mathbb{Q}_{\alpha} : \alpha < \kappa \rangle \rangle$ in which at *L*-inaccessible stages α we will use our weakly compact diamond sequence to ensure that there is no ω_2 -Aronszajn tree and at *L*-accessible stages we will ensure BPFA(ω_1).

Choose an enumeration $\langle \mathbb{R}_{\alpha} : \alpha < \kappa, \alpha$ not inaccessible \rangle of all nice Snames for forcings with universe ω_1 as S ranges over forcings in L_{κ} . Moreover assume that this bookkeeping is redundant in the sense that each such Sname appears cofinally often in this list.

We define our countable support iteration as follows. \mathbb{Q}_0 is the trivial forcing. If α is not inaccessible in L and $\dot{\mathbb{R}}_{\alpha}$ is a \mathbb{P}_{α} -name for a proper forcing in $L[G_{\alpha}]$ (where G_{α} denotes the \mathbb{P}_{α} -generic) then declare $\dot{\mathbb{Q}}_{\alpha}$ to be $\dot{\mathbb{R}}_{\alpha} * \operatorname{Col}(\omega_1, \alpha)$; otherwise take $\dot{\mathbb{Q}}_{\alpha}$ to be the forcing $\operatorname{Col}(\omega_1, \alpha)$.

Now suppose α is inaccessible in L. Then α is the ω_2 of $L[G_\alpha]$. See if D_α is a \mathbb{P}_{α} -name for an Aronszajn tree T_{α} in $L[G_{\alpha}]$. If not, let $\dot{\mathbb{Q}}_{\alpha}$ be the trivial forcing. Otherwise let $\dot{\mathbb{Q}}_{\alpha}$ be

$$\operatorname{Add}(\omega, \alpha) * \operatorname{Col}(\omega_1, \alpha) * \mathbb{P}_{\operatorname{sp}}(T),$$

i.e. add α many Cohen reals followed by a Lévy collapse of α to ω_1 followed by a specialization of T (more precisely, of the restriction of T to cofinally-many levels).

Now after κ steps, κ becomes ω_2 as the forcing is proper, κ -cc and collapses each $\alpha < \kappa$ to ω_1 .

Suppose that σ were a \mathbb{P} -name for an ω_2 -Aronszajn tree in L[G] (where \mathbb{P} is the final iteration and G denotes the \mathbb{P} -generic).

Observe that σ can be regarded as a subset of V_{κ} . The statement " σ is a κ -Aronszajn tree" is a Π_1^1 statement about V_{κ} with σ as a predicate (in addition to basic first-order properties about (V_{κ}, σ) the key second order property is the nonexistence of a cofinal branch). Now if ϕ is a Π_1^1 sentence then the statement "p forces $\phi(\sigma)$ " is a Π_1^1 statement about (V_{κ}, σ) . (The forcing relation for a first-order statement is first-order; from this it follows that the forcing relation for Π_1^1 statements is Π_1^1 .) (Note: \mathbb{P}_{κ} is another predicate in the sentence to be reflected; however \mathbb{P}_{κ} is actually first-order definable over V_{κ} , using the weak compact diamond sequence, which can be chosen to be first-order definable over V_{κ}).

Apply Diamond to get an inaccesible α such that $D_{\alpha} = \sigma \cap L_{\alpha}$ and D_{α} is forced to be a name for an Aronszajn tree in \mathbb{P}_{α} . But then at stage α , T_{α} , the interpretation of D_{α} , is specialized and therefore has no branch of length α (as ω_1 is preserved). This contradicts the fact that T_{α} is an initial segment of T, the interpretation of σ , and therefore must have branches of length α .

Finally observe that in L[G] we also have BPFA(ω_1) since any proper forcing \mathbb{Q} with universe ω_1 in L[G] is proper in $L[G_\alpha]$ at cofinally-many stages α where we forced with \mathbb{Q} , so surely we have a generic filter hitting ω_1 many dense sets for \mathbb{Q} .

Observe that the above yields another proof of the consistency of $TP(\omega_2)$ from a weakly compact cardinal:

Corollary 3.6. The following are equiconsistent:

- (1) There exists a weakly compact cardinal;
- (2) TP(ω_2) holds,
- (3) $TP(\omega_2) + MA_{\omega_1}$ holds,
- (4) $TP(\omega_2) + BPFA(\omega_1)$ holds.

Definition 3.7. We say that a cardinal κ is weakly compact with respect to subsets of ω_1 whenever κ is weakly compact in L[A] for every $A \subseteq \omega_1$.

We also have the following:

Proposition 3.8. If there is a weakly compact cardinal κ , there is a model where BPFA holds, ω_2 is weakly compact relative to subsets of ω_1 , but ω_2 does not have the Tree Property.

Proof. Start with a weakly compact cardinal κ , force BPFA with a forcing \mathbb{P} and then let $\mathbb{P}(\Box_{\omega_1})$ be the forcing which adds a \Box_{ω_1} sequence. Then $\operatorname{TP}(\omega_2)$ fails in the final model as \Box_{ω_1} is sufficient to yield the existence of an ω_2 -Aronszajn tree (see [3]).

Claim 3.9. $\mathbb{P}(\Box_{\omega_1})$ preserves BPFA over $V^{\mathbb{P}}$.

Proof. Observe that all subsets of ω_1 in $V^{\mathbb{P}*\mathbb{P}(\square_{\omega_1})}$ are in $V^{\mathbb{P}}$, and any proper extension of $V^{\mathbb{P}*\mathbb{P}(\square_{\omega_1})}$ is also a proper extension of $V^{\mathbb{P}}$ as $\mathbb{P}(\square_{\omega_1})$ is proper.

Claim 3.10. ω_2 is weakly compact relative to subsets of ω_1 in $V^{\mathbb{P}*\mathbb{P}(\square_{\omega_1})}$.

Proof. Any subset of ω_1 is added by a forcing of size less than κ , and any such forcing preserves the weak compactness of κ .

So BPFA plus ω_2 weak compact relative to subsets of ω_1 is not enough to get $TP(\omega_2)$. Obviously BPFA alone is not enough because its consistency strength, a reflecting cardinal, is less than that of $TP(\omega_2)$, a weakly compact.

However, we have the following:

Theorem 3.11. $TP(\omega_2) + BPFA$ is equiconsistent with the existence of a weakly compact cardinal which is also reflecting.

Proof. Suppose that κ is a weakly compact reflecting cardinal. Repeat the proof above, forcing κ to be ω_2 , $\operatorname{TP}(\omega_2)$ and $\operatorname{BPFA}(\omega_1)$, but instead of hitting proper forcings of size ω_1 , use the consistency proof of BPFA to force with proper forcings of size less than κ which witness Σ_1 sentences with subsets of ω_1 as parameters. The only small change is that α will not necessarily be the ω_2 of $L[G_{\alpha}]$ whenever α is *L*-inaccessible, but this will be the case for all *L*-inaccessible α in a closed unbounded subset of κ . The fact that κ is reflecting implies that the latter forcings may be chosen to have size less than κ . After κ steps, we again have $\operatorname{TP}(\omega_2)$ and the extra forcing we have done ensures that we also have BPFA.

Conversely, suppose that we have $TP(\omega_2) + BPFA$. Then by [5], ω_2 is reflecting in L and by a result of Silver (see [11]), ω_2 is also weakly compact in L.

We have some further open questions:

(1) $\operatorname{Con}(\operatorname{TP}(\omega_2) + \operatorname{MA} + \mathfrak{c} = \omega_3)?$

(2) $\operatorname{Con}(\operatorname{TP}(\omega_3) + \operatorname{MA})?$

Of course $\text{Con}(\text{TP}(\omega_4) + \text{BPFA})$ is no problem because when forcing $\text{TP}(\omega_4)$ one does not need to add subsets of ω_1 . And $\text{TP}(\omega_3) + \text{BPFA}$ is inconsistent as BPFA implies that GCH holds at ω_1 (see [12]) whereas $\text{TP}(\omega_3)$ implies the opposite.

4. The Special Tree Property and Forcing Axioms

The proof is similar to that of our previous theorem. Therefore, we only give a sketch of the proof, just pointing out the differences. This time we use a simple \Diamond sequence to code the names of special Aronszajn trees during the iteration.

Theorem 4.1. Assume V = L and κ is a Mahlo cardinal. Then there is a forcing iteration \mathbb{P} of countable support and length κ such that in $L^{\mathbb{P}}$, both $\operatorname{SpTP}(\omega_2)$ and $\operatorname{BPFA}(\omega_1)$ hold.

Proof. This time we consider a name for an ω_2 tree together with a specializing function (into ω_1) for it. Using a diamond sequence $\langle D_{\alpha} : \alpha \text{ inaccessible} \rangle$, find an inaccessible $\alpha < \kappa$ where the name restricted to α is a name for an α -tree together with a specializing function for it, where α is the ω_2 of $V[G_{\alpha}]$ and where we guessed that name using the Diamond sequence. This α -tree has no cofinal branch because it is specialized (into ω_1). Then in the construction we added α -many Cohen reals followed by an ω -closed Levy collapse of alpha to ω_1 (the tree still has no cofinal branch) and specialized the tree (into ω). But this is a contradiction because any node on level α of the original ω_2 -tree yields a cofinal branch through the α -tree and then an injection of α into ω , contradicting the fact that ω_1 is preserved.

As in the previous section (now using the result if [11] that $\text{SpTP}(\omega_2)$ implies that ω_2 is Mahlo in L), we have:

Theorem 4.2. SpTP(ω_2) + BPFA is equiconsistent with the existence of a Mahlo which is also reflecting.

References

- Joan Bagaria. Bounded forcing axioms as principles of generic absoluteness. Arch. Math. Logic, 39(6):393-401, 2000.
- [2] James E. Baumgartner. Applications of the proper forcing axiom. In Handbook of set-theoretic topology, pages 913–959. North-Holland, Amsterdam, 1984.
- [3] James Cummings, Matthew Foreman, and Menachem Magidor. Scales, squares and reflection. *Journal of Mathematical Logic*, 1:35–98, 2001.
- [4] Paul Erdős and Alfred Tarski. On some problems involving inaccessible cardinals. In Essays on the foundations of mathematics, pages 50–82. Magnes Press, Hebrew Univ., Jerusalem, 1961.
- [5] Martin Goldstern and Saharon Shelah. The bounded proper forcing axiom. J. Symbolic Logic, 60(1):58–73, 1995.
- [6] William Porter Hanf and Dana Scott. Classifying inaccessible cardinals. Notices Amer. Math. Soc., 8:445, 1961. Abstract.
- [7] Thomas Jech. Set theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. The third millennium edition, revised and expanded.
- [8] R. Björn Jensen. The fine structure of the constructible hierarchy. Ann. Math. Logic, 4:229–308; erratum, ibid. 4 (1972), 443, 1972. With a section by Jack Silver.
- [9] Kenneth Kunen. Set theory, volume 34 of Studies in Logic (London). College Publications, London, 2011.
- [10] Dura Kurepa. Ensembles ordonnés et ramifiés. Publ. Math. Univ. Belgrade, 4:1–38, 1935.
- [11] William Mitchell. Aronszajn trees and the independence of the transfer property. Ann. Math. Logic, 5:21–46, 1972/73.
- [12] Justin Moore. Proper forcing, cardinal arithmetic, and uncountable linear orders. Bull. Symbolic Logic, 11:51–60, 2005.
- [13] Hiroshi Sakai and Boban Veličković. Stationary reflection principles and two cardinal tree properties. Journal of the Institute of Mathematics of Jussieu, 14:69–85, 1 2015.
- [14] Saharon Shelah. *Proper forcing*, volume 940 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin, 1982.
- [15] Wen Zhi Sun. Stationary cardinals. Arch. Math. Logic, 32(6):429–442, 1993.

SY-DAVID FRIEDMAN, KURT GÖDEL RESEARCH CENTER, UNIVERSITÄT WIEN, WÄHRINGER STRASSE 25, A-1090 WIEN

E-mail address: sdf@logic.univie.ac.at

Víctor Torres-Pérez, Institut für Diskrete Mathematik und Geometrie, TU Wien, Wiedner Haupstrasse 8/104, 1040 Vienna, Austria

E-mail address: victor.torres@tuwien.ac.at