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Abstract. We prove that the Tree Property at ω2 together with BPFA
is equiconsistent with the existence of a weakly compact reflecting car-
dinal, and if BPFA is replaced by BPFA(ω1) then it is equiconsistent
with the existence of just a weakly compact cardinal. Similarly, we show
that the Special Tree Property for ω2 together with BPFA is equicon-
sistent with the existence of a reflecting Mahlo cardinal, and if BPFA
is replaced by BPFA(ω1) then it is equiconsistent with the existence of
just a Mahlo cardinal.

1. Introduction

Recall that a cardinal κ is weakly compact if it is uncountable and for
every function F : [κ]2 → 2, there is H ⊆ κ of cardinality κ such that
F ↾ [H]2 is constant. We use a characterization of weak compactness due
to Hanf-Scott ([6]). A formula is Π1

1 if it is of the form ∀Xψ, where X is
a second-order variable and ψ has only first-order quantifiers. A cardinal
κ is Π1

1-indescribable if whenever U ⊆ Vκ and ϕ is a Π1
1-sentence such that

(Vκ,∈, U) |= ϕ then for some α < κ, (Vα,∈, U ∩ Vα) |= ϕ. As shown in [6],
a cardinal κ is Π1

1-indescribable if and only if it is weakly compact.
We say that a regular κ has the tree property (TP(κ)) if every tree T of

height κ with levels of size < κ has a branch of length κ. Trees of height κ
with levels of size < κ and no branches of length κ are called κ-Aronszajn,
in reference to Aronszajn’s construction of a tree of height ω1 each of whose
levels is countable but with no uncountable branch (see [10]). Erdős and
Tarski ([4]) showed that if κ is weakly compact, then κ has the tree property.
They also proved that if κ is inaccessible and has the tree property, then κ
is weakly compact.

We also recall a result of Silver stating that if TP(ω2) holds then ω2 is
weakly compact in L ([11, Theorem 5.9]). Mitchell proved that if κ is weakly
compact then there is a generic extension where κ = ω2 = 2ω and TP(ω2)
holds (see [11]). So in particular, TP(ω2) is equiconsistent with the existence
of a weakly compact cardinal.

An ω2-Aronszajn tree T is special if there is a function f : T → ω1 such
that for every s, t ∈ T , if s <T t then f(s) 6= f(t). We say that ω2 has
the Special Tree Property , SpTP(ω2), if there are no special ω2-Aronszjan
trees. Recall that an inaccessible cardinal κ is Mahlo if the set of all regular
cardinals below κ is stationary, and so the set of all inaccessible cardinals
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below κ is also stationary. Also in [11], Mitchell proved that the existence
of a Mahlo cardinal is equiconsistent with SpTP(ω2).

In this paper we study the relationship between some forcing axioms and
the tree property for ω2.

We recall the following definitions:

Definition 1.1. (Shelah, see [14]) A notion of forcing P is proper if for
every uncountable cardinal κ, all stationary subsets of [κ]ω remain stationary
in P-generic extensions.

Definition 1.2 (PFA). For every proper notion of forcing P and for every
collection 〈Dξ : ξ < ω1〉 of maximal antichains of P, there exists a filter
G ⊆ P such that G ∩Dξ 6= ∅ for all ξ < ω1.

Definition 1.3 (BPFA). For every proper notion of forcing P and for every
collection 〈Dξ : ξ < ω1〉 of maximal antichains of P, each of size at most ω1,
there exists a filter G ⊆ P such that G ∩Dξ 6= ∅ for all ξ < ω1.

Bagaria and Stavi showed that BPFA is equivalent to the following state-
ment: For every proper forcing P, every Σ1 formula with parameters from
H(ω2) that holds in a P-generic extensions also holds in V (see Theorem 5
in [1]).

Definition 1.4. An uncountable regular cardinal κ is reflecting if for every
a ∈ Hκ and any formula ϕ(x), if there is a regular cardinal θ such that
Hθ |= ϕ(a), then there is a regular θ′ < κ such that a ∈ Hθ′ |= ϕ(a).

In [5], M. Goldstern and S. Shelah proved that BPFA is equiconsistent
with the existence of a reflecting cardinal.

BPFA(ω1) is the statement of BPFA restricted to forcings of size at most
ω1. BPFA(ω1) is only slightly stronger than MA(ω1); it is easy to force it
by starting with GCH and in ω2 steps hitting every proper forcing of size
ω1 via a countable support iteration.

In this paper we prove that the existence of a weakly compact cardinal
is equiconsistent with the conjunction of TP(ω2) and BPFA(ω1). Also we
prove that TP(ω2) together with BPFA is equiconsistent with the existence
of a weakly compact which is also reflecting.

Using similar methods, we establish the same results for SpTP(ω2) with
“weakly compact” replaced by “Mahlo”. 1

2. Preliminaries and basic definitions

We recall some basic properties of forcing notions used in our construc-
tions. Given two sets I, J , and a cardinal λ, let Pλ(I, J) be the set of all
partial functions p from I to J such that |dom(p)| < λ. The order in Pλ(I, J)
is given by ⊇.

1Sakai and Velickovic showed in [13] that theWeak Reflection Principle (WRP) together
with MAω1

(Cohen) implies that ω2 has the Super Tree Property. It is implicit in their
proof that WRP(ω2)+MAω1

(Cohen) implies TP(ω2). This leads to an alternative proof of
the consistency of TP(ω2)+BPFA(ω1) from a weakly compact cardinal. Our construction
is flexible enough to yield further results, such as the results mentioned regarding the
Special Tree Property.
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Pκ(κ × λ, 2) is usually denoted by Add(κ, λ) and Pκ(κ, λ) is usually de-
noted by Col(κ, λ).

We say that a notion of forcing is ω-closed if every countable descending
sequence of conditions p0 ≥ p1 ≥ p2 ≥ · · · ≥ pn ≥ · · · has a lower bound.

We recall that ω-closed and c.c.c. forcings are also proper (see for ex-
ample [9, Lemma V.7.2]). A two-step iteration of proper forcing is proper
([9, Lemma V.7.4]). Even more, Shelah showed that a countable support
iteration of forcing notions is proper (see for example [7, Theorem 31.15]).

We will use in our forcing constructions the following forcing notion due to
Baumgartner [2] which specializes any tree of height ω1 with no uncountable
branches (the tree may have uncountable levels).

Definition 2.1. Given a tree T of height ω1 with no uncountable branches
we define the partial order Psp(T ) by a ∈ Psp(T ) if and only if a is a function
from a finite subset of T into ω such that a(t0) 6= a(t1) whenever t0, t1 are
comparable in T .

Baumgartner [2] showed that the forcing Psp(T ) defined above has the
countable chain condition. And Silver showed that if T is an ω2-Aronszajn
tree then T still has no cofinal branch after forcing with Add(ω, ω2)∗Col(ω1, ω2).
Therefore Baumgartner’s specializing forcing can be applied to the restric-
tion of T to a cofinal set of levels in this model; we still refer to this forcing
as Psp(T ).

Given an uncountable cardinal λ, remember that a �λ-sequence is a se-
quence 〈cα : α ∈ Lim(λ+)〉 such that for all α ∈ Lim(λ+):

(1) cα is club in α,
(2) ot(cα) ≤ λ,
(3) cα ∩ β = cβ whenever β ∈ Lim(cα).

Let λ be an uncountable cardinal. We define P(�λ) as follows: p ∈ P iff

• dom(p) = (β + 1) ∩ Lim(λ+) for some β ∈ Lim(λ+).
• p(α) is a club set in α and ot(p(α)) ≤ λ for all α ∈ dom(p).
• If α ∈ dom(p), then p(α) ∩ β = p(β) for every β ∈ Lim(p(α)).

We order P(�λ) by letting p ≤ q if and only if q = p↾dom(q) for p, q ∈ P(�λ).
P(�λ) adds a �λ-sequence in the generic extension. It is due to Jensen

and does not add λ-sequences (see [3]).

3. The Tree Property and Forcing Axioms

In this section we prove that TP(ω2) + BPFA(ω1) is equiconsistent with
the existence of a weakly compact cardinal. In our proof we use a weakly
compact ♦ sequence (Definition 3.2) to code objects during the iteration.
We discuss first some of the properties of these weakly compact diamond
sequences.

Given a cardinal κ and S ⊆ κ, remember Jensen’s Diamond Principle
♦κ(S) : There is a sequence 〈Dα : α ∈ S〉 such that for every X ⊆ κ, the set
{α ∈ S : X ∩α = Dα} is stationary. We recall the following (see Lemma 6.5
in [8]):

Lemma 3.1. Suppose V = L. Given a regular cardinal κ, ♦κ(S) holds for
every stationary set S ⊆ κ.
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Actually, if κ is a weakly compact cardinal, we can have in L a stronger
form of a diamond sequence.

Definition 3.2. A weakly compact ♦ sequence for a cardinal κ is a sequence
〈Dα : α < κ〉 such that

(1) Dα ⊆ α,
(2) for every A ⊆ Vκ and for every Π1

1-formula ϕ such that (Vκ, A) |=
ϕ (A), and for every D ⊆ κ, the set

S(A,ϕ,D) = {α < κ : (Vα, A ∩ Vα) |= ϕ (A ∩ Vα) and D ∩ α = Dα}

is stationary in κ.

Observe that the existence of a weakly compact diamond sequence can
hold only if κ is weakly compact, due to the characterization of Hanf-Scott
given in the introduction.

Lemma 3.3. In L, there is a weakly compact ♦ sequence for κ whenever κ
is a weakly compact cardinal.

Proof. See [15, Theorem 2.13]. �

In this paper, in order to code some objects of the universe, we would
like to deal with subsets of Vα rather than just subsets of α. We have the
following:

Lemma 3.4. For a given cardinal κ, suppose there is a weakly compact ♦
sequence 〈Dα : α < κ〉 for κ. Then there is a sequence 〈D∗

α : α < κ〉 such
that

(1) D∗

α ⊆ Vα,
(2) for every D∗ ⊆ Vκ and every Π1

1-formula ϕ such that (Vκ,D
∗) |=

ϕ(D∗), the set

S∗(D∗, ϕ) = {α < κ : (Vα,D
∗ ∩ Vα) |= ϕ(D∗ ∩ Vα) and D

∗ ∩ Vα = D∗

α}

is stationary.

Proof. Fix a weakly compact ♦-sequence 〈Dα : α < κ〉 for κ. As we have
mentioned, the existence of a weakly compact ♦ sequence for κ implies that
κ is weakly compact due to the characterization of Hanf-Scott mentioned
in the introduction. In particular, κ is inaccessible, so there is a bijection
f : κ → Vκ (see for example Lemma I.13.26 and Lemma I.13.31 in [9]).
Observe that the set

C = {α < κ : f↾α: α→ Vα is a bijection}

is a club set in κ. Define D∗

α = f [Dα] if α ∈ C and empty otherwise. Let
D∗ ⊆ Vκ and ϕ be a Π1

1-formula such that (Vκ,D
∗) |= ϕ(D∗). We need to

show that the set S∗(D∗, ϕ) defined above is stationary. Since 〈Dα : α < κ〉
is a weakly compact ♦-sequence for κ, the set

S = S(D∗, ϕ, f−1 [D∗]) ∩ C

is stationary (see Definition 3.2).
Now it is not hard to see that S ⊆ S∗(D∗, ϕ) and therefore S∗(D∗, ϕ) is

stationary as desired. �
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Theorem 3.5. Suppose V = L and let κ be a weakly compact cardinal in L.
Then there is a forcing iteration P of countable support and length κ such
that in LP, both TP (ω2) and BPFA(ω1) hold.

Proof. We remark that we can find a Π1
1-sentence ψ (with no parameter)

such that Lα satisfies ψ iff α is inaccessible. For example, let ψ be the Π1
1-

sentence expressing: ”There is no cofinal function from an ordinal into the
class of ordinals, ω exists and the power set axiom holds”. Then ψ holds in
Lα iff α is inaccessible.

Therefore, we can fix a weakly compact diamond sequence concentrated
on inaccessible cardinals and with the properties of Lemma 3.4. Let

〈Dα : α inaccessible, α < κ〉

be such a sequence.
Also observe that our weakly compact sequences can be concentrated on

inaccessible cardinals, and in L we have Lα = Vα whenever α is inaccessible.
We will perform a countable support iteration 〈〈Pα : α ≤ κ〉, 〈Q̇α : α < κ〉〉

in which at L-inaccessible stages α we will use our weakly compact diamond
sequence to ensure that there is no ω2-Aronszajn tree and at L-accessible
stages we will ensure BPFA(ω1).

Choose an enumeration 〈Ṙα : α < κ, α not inaccessible〉 of all nice S-
names for forcings with universe ω1 as S ranges over forcings in Lκ. Moreover
assume that this bookkeeping is redundant in the sense that each such S-
name appears cofinally often in this list.

We define our countable support iteration as follows. Q̇0 is the trivial
forcing. If α is not inaccessible in L and Ṙα is a Pα-name for a proper
forcing in L[Gα] (where Gα denotes the Pα-generic) then declare Q̇α to be

Ṙα ∗ Col(ω1, α); otherwise take Q̇α to be the forcing Col(ω1, α).
Now suppose α is inaccessible in L. Then α is the ω2 of L[Gα]. See if Dα

is a Pα-name for an Aronszajn tree Tα in L[Gα]. If not, let Q̇α be the trivial

forcing. Otherwise let Q̇α be

Add(ω,α) ∗Col(ω1, α) ∗ Psp(T ),

i.e. add α many Cohen reals followed by a Lévy collapse of α to ω1 followed
by a specialization of T (more precisely, of the restriction of T to cofinally-
many levels).

Now after κ steps, κ becomes ω2 as the forcing is proper, κ-cc and collapses
each α < κ to ω1.

Suppose that σ were a P-name for an ω2-Aronszajn tree in L[G] (where
P is the final iteration and G denotes the P-generic).

Observe that σ can be regarded as a subset of Vκ. The statement “σ is
a κ-Aronszajn tree” is a Π1

1 statement about Vκ with σ as a predicate (in
addition to basic first-order properties about (Vκ, σ) the key second order
property is the nonexistence of a cofinal branch). Now if φ is a Π1

1 sentence
then the statement “p forces φ(σ)” is a Π1

1 statement about (Vκ, σ). (The
forcing relation for a first-order statement is first-order; from this it follows
that the forcing relation for Π1

1 statements is Π1
1.) (Note: Pκ is another

predicate in the sentence to be reflected; however Pκ is actually first-order
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definable over Vκ, using the weak compact diamond sequence, which can be
chosen to be first-order definable over Vκ).

Apply Diamond to get an inaccesible α such that Dα = σ ∩ Lα and Dα

is forced to be a name for an Aronszajn tree in Pα. But then at stage α,
Tα, the interpretation of Dα, is specialized and therefore has no branch of
length α (as ω1 is preserved). This contradicts the fact that Tα is an initial
segment of T , the interpretation of σ, and therefore must have branches of
length α.

Finally observe that in L[G] we also have BPFA(ω1) since any proper
forcing Q with universe ω1 in L[G] is proper in L[Gα] at cofinally-many
stages α where we forced with Q, so surely we have a generic filter hitting
ω1 many dense sets for Q. �

Observe that the above yields another proof of the consistency of TP(ω2)
from a weakly compact cardinal:

Corollary 3.6. The following are equiconsistent:

(1) There exists a weakly compact cardinal;
(2) TP(ω2) holds,
(3) TP(ω2) +MAω1

holds,
(4) TP(ω2) + BPFA(ω1) holds.

Definition 3.7. We say that a cardinal κ is weakly compact with respect
to subsets of ω1 whenever κ is weakly compact in L[A] for every A ⊆ ω1.

We also have the following:

Proposition 3.8. If there is a weakly compact cardinal κ, there is a model
where BPFA holds, ω2 is weakly compact relative to subsets of ω1, but ω2

does not have the Tree Property.

Proof. Start with a weakly compact cardinal κ, force BPFA with a forcing
P and then let P(�ω1

) be the forcing which adds a �ω1
sequence. Then

TP(ω2) fails in the final model as �ω1
is sufficient to yield the existence of

an ω2-Aronszajn tree (see [3]).

Claim 3.9. P(�ω1
) preserves BPFA over V P.

Proof. Observe that all subsets of ω1 in V
P∗P(�ω1

) are in V P, and any proper
extension of V P∗P(�ω1

) is also a proper extension of V P as P(�ω1
) is proper.

�

Claim 3.10. ω2 is weakly compact relative to subsets of ω1 in V P∗P(�ω1
).

Proof. Any subset of ω1 is added by a forcing of size less than κ, and any
such forcing preserves the weak compactness of κ. �

�

So BPFA plus ω2 weak compact relative to subsets of ω1 is not enough to
get TP(ω2). Obviously BPFA alone is not enough because its consistency
strength, a reflecting cardinal, is less than that of TP(ω2), a weakly compact.

However, we have the following:

Theorem 3.11. TP(ω2) + BPFA is equiconsistent with the existence of a
weakly compact cardinal which is also reflecting.



THE TREE PROPERTY AT ω2 AND BOUNDED FORCING AXIOMS 7

Proof. Suppose that κ is a weakly compact reflecting cardinal. Repeat the
proof above, forcing κ to be ω2, TP(ω2) and BPFA(ω1), but instead of hitting
proper forcings of size ω1, use the consistency proof of BPFA to force with
proper forcings of size less than κ which witness Σ1 sentences with subsets
of ω1 as parameters. The only small change is that α will not necessarily
be the ω2 of L[Gα] whenever α is L-inaccessible, but this will be the case
for all L-inaccessible α in a closed unbounded subset of κ. The fact that κ
is reflecting implies that the latter forcings may be chosen to have size less
than κ. After κ steps, we again have TP(ω2) and the extra forcing we have
done ensures that we also have BPFA.

Conversely, suppose that we have TP(ω2) + BPFA. Then by [5], ω2 is
reflecting in L and by a result of Silver (see [11]), ω2 is also weakly compact
in L. �

We have some further open questions:

(1) Con(TP(ω2) +MA+ c = ω3)?
(2) Con(TP(ω3) +MA)?

Of course Con(TP(ω4) + BPFA) is no problem because when forcing
TP(ω4) one does not need to add subsets of ω1. And TP(ω3) + BPFA
is inconsistent as BPFA implies that GCH holds at ω1 (see [12]) whereas
TP(ω3) implies the opposite.

4. The Special Tree Property and Forcing Axioms

The proof is similar to that of our previous theorem. Therefore, we only
give a sketch of the proof, just pointing out the differences. This time we
use a simple ♦ sequence to code the names of special Aronszajn trees during
the iteration.

Theorem 4.1. Assume V = L and κ is a Mahlo cardinal. Then there is a
forcing iteration P of countable support and length κ such that in LP, both
SpTP(ω2) and BPFA(ω1) hold.

Proof. This time we consider a name for an ω2 tree together with a specializ-
ing function (into ω1) for it. Using a diamond sequence 〈Dα : α inaccessible〉,
find an inaccessible α < κ where the name restricted to α is a name for an
α-tree together with a specializing function for it, where α is the ω2 of
V [Gα] and where we guessed that name using the Diamond sequence. This
α-tree has no cofinal branch because it is specialized (into ω1). Then in the
construction we added α-many Cohen reals followed by an ω-closed Levy
collapse of alpha to ω1 (the tree still has no cofinal branch) and specialized
the tree (into ω). But this is a contradiction because any node on level α of
the original ω2-tree yields a cofinal branch through the α-tree and then an
injection of α into ω, contradicting the fact that ω1 is preserved.

�

As in the previous section (now using the result if [11] that SpTP(ω2)
implies that ω2 is Mahlo in L), we have:

Theorem 4.2. SpTP(ω2) + BPFA is equiconsistent with the existence of a
Mahlo which is also reflecting.
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