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1 Introduction

The behaviour of the power function has been under scrutiny since the birth
of set theory. Already in 1878 Cantor proposed the Continuum Hypothe-
sis [1] and years later Hausdorff [8] extended it globally stating for the first
time the Generalized Continuum Hypothesis. Both the local and global ap-
proaches will be developed: as is well known, Gödel defining the constructible
universe provided a model for the Generalized Continuum Hypothesis, while
its negation, a tougher problem, was first proved locally by Cohen and then
globally by Easton, [3], who managed with a class iteration of Cohen forcing
to prove the consistency of the failure of GCH at regulars, leaving open the
problem at singulars. This is called Singular Cardinal Problem, and is in fact
much more difficult.

At the same time, another line of research was thriving. Just before the
advent of forcing, Dana Scott [12] connected the power function with large
cardinals, proving that if a measurable cardinal violates GCH, then GCH
is violated by a set of measure 1 of cardinals below it. After that, Silver
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[13] proved that if the GCH holds below a singular cardinal of uncountable
confinality it must hold at that, and Solovay [14] that all the strong limit
singular cardinals above a strongly compact cardinal satisfy GCH. Therefore
large cardinals have a big impact on the power function, and the investiga-
tion on the possible behaviours of the power functions under large cardinal
hypotheses is now a fundamental subject in the Singular Cardinal Problem
analysis.

This paper is a contribution of such subject in a novel case. After Kunen’s
proof that a Reinhardt cardinal is inconsistent [9], some very large cardinal
hypotheses appeared, at the borders of inconsistency, sometimes called rank-
into-rank hypotheses, e.g. I0-I3. The fundamental difference between this
case and the precedent ones is that for these axioms the relevant cardinal is
singular, and not regular. Therefore, we are not looking at the consequences
of the existence of a large cardinal of the power functions on singular ones,
but at the power function of the large cardinal itself.

In Section 2 all the preliminary facts are collected. In section 3 we present
a proof of the consistency of I0 and the failure of GCH at regular cardinals.
In Section 4 we use deep facts from the study by Woodin of I0 to prove that,
under I0, we can find a model of ZFC where I1 (or larger hypotheses) holds
and also the power function at the relevant singular cardinal violates GCH in
many possible ways.

2 Preliminaries

To avoid confusion or misunderstandings, all notation and standard basic
results are collected here.

The double arrow (e.g. f : a� b) denotes a surjection.
If M and N are sets or classes, j : M ≺ N denotes that j is an elemen-

tary embedding from M to N . We write the case in which the elementary
embedding is the identity, i.e., M is an elementary submodel of N , simply
as M ≺ N , while when j is indicated we always suppose that it is not the
identity.

If j : M ≺ N and either M � AC or N ⊆ M then it moves at least one
ordinal. The critical point, crt(j), is the least ordinal moved by j.

Let j be an elementary embedding and κ = crt(j). Define κ0 = κ and
κn+1 = j(κn). Then 〈κn : n ∈ ω〉 is the critical sequence of j.

Kunen [9] proved under AC that if M = N = Vη for some ordinal η, and λ
is the supremum of the critical sequence, then η cannot be bigger than λ+ 1
(and of course cannot be smaller than λ).
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Kunen’s result leaves room for a new breed of large cardinal hypotheses,
sometimes referred to in the literature as rank-into-rank hypotheses:

I3 iff there exists λ s.t. ∃j : Vλ ≺ Vλ;

I2 iff there exists λ s.t. ∃j : V ≺ M , with Vλ ⊆ M and λ is the supremum
of the critical sequence;

I1 iff there exists λ s.t. ∃j : Vλ+1 ≺ Vλ+1.

The consistency order of the above hypotheses is reversed with respect
to their numbering: I1 is strictly stronger than I2, which in turn is strictly
stronger than I3. All of these hypotheses are strictly stronger than all of the
other large cardinal hypotheses ever considered.

Note that if j witnesses a rank-into-rank hypothesis, then λ is uniquely
determined by j, so in the following λ always denotes the first nontrivial
fixed point of the embedding j under consideration.

An interesting point is that every elementary embedding j : Vλ ≺ Vλ has
a unique extension to Vλ+1: let 〈κi : i ∈ ω〉 be its critical sequence; then
for any X ⊆ Vλ define j(X) =

⋃
n∈ω j(X ∩ Vκn). Then j is a Σ0-elementary

embedding from Vλ+1 to itself. A consequence of this is the possibility to
define finite iterates of j, i.e., j2 = j(j), since j ∈ Vλ+1, and j2 is in fact an
elementary embedding from Vλ to itself. We define also j◦n as the composition
of n copies of j, i.e., j◦0 = j and j◦n+1 = j ◦ j◦n. Note that these are different
from the iterates: for example, j◦n and j have the same critical point, but
crt(j2) = j(crt(j)).

If X is a set, then L(X) denotes the smallest inner model that contains
X; it is defined like L but starting with the transitive closure of {X} as
L0(X).

In 1984 Woodin proposed an axiom even stronger than all the previous
ones:

I0 For some λ there exists a j : L(Vλ+1) ≺ L(Vλ+1), with crt(j) < λ.

Note that if λ witnesses I0, then L(Vλ+1) 2 AC, because otherwise by
Kunen’s result such an elementary embedding could not exist.

The elements of the critical sequence of elementary embeddings that wit-
ness rank-into-rank hypotheses are really large cardinals.

Definition 2.1. Let κ be an uncountable cardinal. We say that κ is:

• strong limit if for any η < κ, 2η < κ;

• measurable if there is a κ-complete ultrafilter over κ;
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• strongly compact if for any η ≥ κ there is a fine measure on Pκ(η),
i.e., a measure U such that for any ξ < η, {A : ξ ∈ A} ∈ U ;

• n-huge if there is a sequence κ = λ0 < λ1 < · · · < λn = λ and a
κ-complete normal ultrafilter U over P(λ) such that for any i < n,

{x ∈ P(λ) : ot(x ∩ λi+1) = λi} ∈ U.

Let j : Vλ ≺ Vλ and let 〈κi : i ∈ ω〉 be its critical sequence. Note that for
any n, κn = crt(jn+1), so any property of κ0 is shared by all of the κn’s. We
have

• “κ0 is measurable” is witnessed by U = {X ⊆ κ0 : κ0 ∈ j(X)};

• “κ0 is n-huge” is witnessed by κ0 < κ1 < · · · < κn and

U = {X ⊆ P(κn) : j′′κn ∈ j(X)};

• “Vλ � κ0 is strongly compact”: let κ0 ≤ η < λ, and suppose η < κn;
then this is witnessed by

U = {X ⊆ Pκ0(η) : j◦n“κ0 ∈ j◦nX}.

The situation is radically different for λ, since it is a singular cardinal, so
it cannot have large cardinal properties. However, since it is a limit of strong
limit cardinals, λ is a strong limit cardinal. Moreover, we trivally have that
Vκ0 ≺ Vκ1 and for any i ∈ ω, Vκi ≺ Vκi+1

. But then the Vκi ’s form a direct
system with limit Vλ and Vκi ≺ Vλ for any i ∈ ω. In particular, Vλ is a model
of ZFC.

For proving results about rank-into-rank elementary embeddings and the
continuum function two forcings will be used: Easton forcing, that will be
explained in the following section, and Prikry forcing. For both forcings we
use the notation ǎ to indicate the canonical name of an element in the ground
model, and Ġ to indicate the canonical name for the generic.

Prikry forcing (a detailed discussion about of it can be found in [6]) is
defined as follows: fix an ultrafilter U over κ measurable; p ∈ P iff p = (s, A),
where s ∈ [κ]<ω, A ∈ U . For p = (s, A), q = (t, B) ∈ P, we say q ≤ p iff
s ⊆ t, B ⊆ A and t \ s ⊆ A.

Theorem 2.2. The Prikry forcing on κ is κ+-c.c. and doesn’t add bounded
subsets of κ.
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3 GCH and its negation at regulars

There are various results already published about the interaction of rank-
into-rank hypotheses with different behaviours of the continuum function.
The following definition captures the concept of ”right behaviour” of the
continuum function at regulars:

Definition 3.1. Let E : Reg→ Card a class function. Then E is an Easton
function iff

• α < β → E(α) ≤ E(β);

• cof(E(α)) > α for all α ∈ Reg.

Then the current knowledge can be summarized:

Theorem 3.2 ([2], [4], [7]). Let I∗ be I3, I2, I1 or I0, and let E be a definable
Easton function. Then

Con(ZFC + I∗)→ Con(ZFC + GCH + I∗)

and given a model of I∗, there is an inner model of ZFC and cofinality pre-
serving forcing extension in which I∗ + 2κ = E(κ) holds for all regular κ.

The proof for I2 is due to Friedman [4], the proof for I1 is due to Hamkins
[7] and the proof for I3 is due to Corazza [2]. I0 has never been considered
before: although the framework of the proof for I0 is the same as in the cases
of I1, I2, I3, there is a new feature, Corollary 3.8, and for this reason we give
the proof.

Definition 3.3. Let Pλ be a forcing iteration of length λ, where λ is either a
strong limit or is equal to ∞, the class of all ordinals, and we indicate with
Qδ its δ-th stage. Then Pλ is

• reverse Easton if nontrivial forcing is done only at infinite cardinal
stages, direct limits are taken at all inaccessible cardinal limit stages,
and inverse limits at all other limit stages; moreover, Pλ is the direct
limit of the 〈Pδ, δ < λ〉 if λ is regular or ∞, the inverse limit of the
〈Pδ, δ < λ〉, otherwise;

• directed closed if for all δ < γ, Qδ is < δ-directed closed;

• λ-bounded if for all δ < λ, Qδ has size < λ. Note that in the case
λ =∞, this just means that each Qδ is a set-forcing;
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• above ω if Qω is the trivial forcing.

Moreover, if j is any elementary embedding and Pγ ⊂ dom(j), we say that
Pγ is j-coherent if for any δ < γ, j(Pδ) = Pj(δ).

Theorem 3.4 (Easton, [3]). Let E be a definable Easton function. Then
there exist definable, directed closed, reverse Easton iterations P of length
the ordinals such that, if G is generic for P, V [G] � GCH, or V [G] �
∀κ(κ regular → 2κ = E(κ)).

We will prove the following:

Theorem 3.5. Let j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < λ and Pλ a j-
coherent, directed closed and λ-bounded reverse Easton iteration. Then for
Pλ-generic G, j lifts to j∗ : L(Vλ+1)[G] ≺ L(Vλ+1)[G] and the restriction of
such a lifting to L(V [G]λ+1) witnesses I0 in V [G].

Lemma 3.6. Let j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < λ and Pλ ve a j-
coherent, directed closed, λ-bounded reverse Easton iteration. Then there
exists q ∈ Pλ such that q  p ∈ Ġ→ j(p) ∈ Ġ.

Proof. We define q piece by piece. Let q � κ1 be the trivial condition. Now,
for any n ∈ ω;

 |{j(p)(κn) : p ∈ Ġ}| ≤ 2κn−1 < κn,

so, since Qκn is < κn-directed closed in V Pκn , there exists a name τ such that
 ∀p ∈ Ġ τ ≤ j(p)(κn), and define q(κn) = τ . As for the definition of q be-
tween elements of the critical sequence, we have that  |j“Ġ � (κn, κn+1)| ≤
κn, and so again there exists a name τ such that

 ∀p ∈ Ġ ∀β ∈ (κn, κn+1) τ ≤ j(p)(β)

and define q � (κn, κn+1) = τ . Now, suppose that p, q ∈ G. Clearly q �
[κ1, λ) ≤ j(p) � [κ1, λ), so j(p) � [κ1, λ) ∈ G � [κ1, λ). But j(p) � κ0 = p, and
j(p) � [κ0, κ1) is trivial, so j(p) ∈ G.

To use the typical lifting lemma, we have to prove that in fact the model
L(Vλ+1) as constructed in the forcing extension is in the domain of the lifting.

Lemma 3.7 ([7]). If Pλ is a simple, directed closed forcing iteration, then
V [G]λ+1 = Vλ+1[G].
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Proof. Let p be a condition forcing that σ is a name for a subset of λ. Then
there is an extension q of p and a sequence 〈σn : n < ω〉 in V such that for
each n, q forces σ ∩ κn = σn and σn is a canonical Pκn-name for a subset of
κn. Then each σn belongs to Vλ and therefore q forces σ = σ∗ for some name
σ∗ in Vλ+1. This proves that V [G]λ+1 is contained in Vλ+1[G∩Vλ] = Vλ+1[G].
The converse is clear, as any element of Vλ+1[G] belongs to L(X,G∩ Vλ) for
some X in Vλ+1 and therefore belongs to V [G]λ+1.

Corollary 3.8. If Pλ is a λ-bounded, directed closed, reverse Easton itera-
tion, and G is Pλ-generic then L(V [G]λ+1) is contained in L(Vλ+1)[G]. If Pλ
is above ω then we have equality.

Proof. The first conclusion follows immediately from Lemma 3.7. For the
second conclusion, note that if Pλ is above ω and X is a subset of λ in V [G]
then X belongs to V iff X ∩ κn belongs to V for each n, and therefore Vλ+1

belongs to L(V [G]λ+1); from this it follows thatG also belongs to L(V [G]λ+1),
as it belongs to L(Vλ+1, G ∩ Vλ). As both Vλ+1 and G belong to L(V [G]λ+1)
we can then conclude that L(Vλ+1)[G] is contained in L(V [G]λ+1).

Corollary 3.9. Suppose I0 and let E be a definable Easton function such
that E � λ is Vλ-definable. Then Con(ZFC+ I0 +GCH) and there is an inner
model of ZFC in which I0 + 2κ = E(κ) holds for all regular κ.

Proof. Fix a j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < λ and let P be the Easton
iteration on all ordinals from Theorem 3.4. First we consider the first λ
steps of the iteration, Pλ. We can suppose that the condition q in Lemma
3.6 is in the generic G. Then by Corollary 3.8 we can extend j to j′ :
L(Vλ+1)[G] ≺ L(Vλ+1)[G], letting j(τG) = j(τ)G for any τ ∈ L(Vλ+1). By the
usual argument, j′ is an elementary embedding. As j′(V [G]λ+1) = V [G]λ+1,
the restriction of j′ to L(V [G]λ+1) witnesses I0 in V [G∩Vλ]. Now, the rest of
the iteration is λ+-closed, so it doesn’t change L(V [G]λ+1), and j′ witnesses
I0 in V [G].

After having proved the consistency of rank-into-rank hypotheses with
the failure of GCH at regulars, the next step is to prove it at some singular.
However, there are some well-known limitations:

Theorem 3.10 (Solovay). Let κ be a strongly compact cardinal. Let λ be a
singular strong limit cardinal greater than κ. Then 2λ = λ+.

Suppose that j : Vλ ≺ Vλ. The critical point of j is strongly compact in
Vλ, so for any crt(j) < η < λ singular strong limit we have 2η = η+, and
this is impossible to kill while preserving the embedding. For the rest of this
article we will focus on the failure of GCH at λ, the first point not covered
by Solovay’s result.
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Theorem 3.11. Suppose there exists j : Vλ ≺ Vλ. Then for any δ < ℵ1 there
exists a generic extension V [G] such that j lifts to V [G]λ and 2λ = λ+δ+1

This is a simple corollary of Gitik’s construction using short extenders
for blowing up a singular cardinal [5]:

Theorem 3.12. Suppose λ is a cardinal of cofinality ω such that Vλ � ZFC
and suppose there exists a sequence 〈κn : n ∈ ω〉 cofinal in λ such that for
any n ∈ ω there exists j : Vλ ≺M � ZFC with crt(j) = κn and Vκn+n ⊆M .
Then there exist a cardinal preserving extension having the same bounded
subsets of λ and satisfying 2λ = λ+δ+1 for any δ < ℵ1.

We use the critical sequence of j as the κn-sequence and Vλ as M . Since
Gitik’s forcing doesn’t add bounded subsets of λ, we have trivially Vλ =
V [G]λ, so there is no need to lift j, and the Theorem is proved.

Unfortunately, the same cannot be said for I1. There are many obstacles
for lifting an I1 elementary embedding to a forcing that kills GCH at λ, like
the fact that the names for elements of V [G]λ+1 live outside Vλ+1, or the
difficulties of finding a master condition for such forcing. This is why we
change strategy, and we reflect the embedding instead of lifting it. For this
we need more information about elementary embeddings that witness I0.

4 Consistency of I1 and the negation of GCH

First, we want to restrict ourselves to special elementary embeddings, i.e.,
those which are the result of an ultrapower construction. This is always
possible, by Lemma 5 in [15]:

Theorem 4.1. Let j : L(Vλ+1) ≺ L(Vλ+1) be such that crt(j) < λ. Let

U = Uj = {X ∈ L(Vλ+1) ∩ Vλ+2 : j � Vλ ∈ j(X)}

Then U is a L(Vλ+1)-ultrafilter such that Ult(L(Vλ+1), U) is well-founded. By
condensation the collapse of Ult(L(Vλ+1), U) is L(Vλ+1), and jU : L(Vλ+1) ≺
L(Vλ+1), the inverse of the collapse, is an elementary embedding. Moreover,
there is an elementary embedding kU : L(Vλ+1) ≺ L(Vλ+1) with crt(kU) >
ΘL(Vλ+1) such that j = kU ◦ jU , where ΘL(Vλ+1) = {α : ∃π : Vλ+1 � α, π ∈
L(Vλ+1)}.

Definition 4.2. Let j : L(Vλ+1) ≺ L(Vλ+1) be such that crt(j) < λ. Then j
is proper iff j = jUj .
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By Theorem 4.1 any elementary embedding j : L(Vλ+1) ≺ L(Vλ+1) can be
substituted with a proper one, that coincides on L

ΘL(Vλ+1)(Vλ+1). This gives
us an important property:

Definition 4.3. Let j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < λ be a proper
elementary embedding, and let U = Uj be the relevant ultrafilter. Define

j(U) =
⋃
{j(ran(π)) : π ∈ L(Vλ+1), π : Vλ+1 → U}

and then define the second iterate of j as the map associated to j(U).
Define the successive iterates in the usual way: let α be an ordinal. Then

• if α = β + 1, Mβ is well-founded and jβ : Mβ ≺ Mβ is the ultrapower
via W , then Mα = Ult(Mβ, jβ(W )) and jα = jβ(jβ).

• if α is a limit, let (Mα, jα) be the direct limit of (Mβ, jβ) with β < α.

We say that j is iterable, if for every α ∈ Ord, Mα is well-founded and
jα : Mα ≺Mα. In this case, we call jα,β the natural embeddings between Mα

and Mβ.

The following is Lemma 21 in [15]:

Theorem 4.4. Let j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < λ be a proper
elementary embedding. Then j is iterable.

Note that for any n ∈ ω, Mn = L(Vλ+1), but Mω is definitively different.
The key point is that j0,ω(crt(j)) = λ, so in Mω, λ is a measurable cardinal.
Moreover, there is a well-ordering of Mω ∩ Vλ+1 in Mω, and in fact Vj0,ω(λ) ∩
Mω � AC.

However, adding again the critical sequence to Mω makes it a little more
similar to the original L(Vλ+1):

Theorem 4.5 (Generic Absoluteness). Let j : L(Vλ+1) ≺ L(Vλ+1) with
crt(j) < λ be a proper elementary embedding. Let 〈κi : i ∈ ω〉 be the critical
sequence of j and let (Mω, jω) be the ω-th iterate of j. Then for all α < λ
there exists an elementary embedding

π : Lα(Mω[〈κi : i ∈ ω〉] ∩ Vλ+1) ≺ Lα(Vλ+1)

such that π � λ is the identity.

The previous theorem can be found in [15] labeled as Theorem 135.

Theorem 4.6 (Main). If I0 is consistent then so is I1 with a failure of GCH
at λ, i.e., the statement that there is j : Vλ+1 ≺ Vλ+1 with 2λ > λ+.
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Proof. Let j : L(Vλ+1) ≺ L(Vλ+1) witness I0. By Theorem 4.1 we can
suppose that j is proper, and by Corollary 3.9 we can suppose that for
all regular cardinals κ, 2κ = κ++. Let 〈κi : i ∈ ω〉 be the critical se-
quence of j. Let (Mω, jω) be the ω-th iterate of j. Then, by elementarity,
Mω � there exists a bijection between P(λ) and λ++.

Let U = {X ⊆ κ0 : κ0 ∈ j(X)} be the measure on κ0 derived from j and
let P be the Prikry forcing on λ with measure j0,ω(U).

Claim 4.7. 〈κi : i ∈ ω〉 is generic for P over Mω.

Proof of Claim. We use the Mathias characterization of genericity for Prikry
forcing, i.e., we prove that for any A ∈ j0,ω(U), the set 〈κi : i ∈ ω〉 \ A is
finite. First, note that if A ∈ j0,n(U), then κn ∈ jn,ω(A): by definition of U
and elementarity A ∈ j0,n(U) iff κn ∈ jn(A); the critical point of jn+1,ω is
κn+1, so by elementarity

κn = jn+1,ω(κn) ∈ jn+1,ω(jn(A)) = jn,ω(A).

Now, let A ∈ j0,ω(U). There exists n ∈ ω and Ā ∈ L(Vλ+1) such that A =
jn,ω(Ā), and by elementarity Ā ∈ j0,n(U) and, more in general, jn,n+1(Ā) ∈
j0,n+1(U). So for any i ∈ ω, κn+i ∈ jn+i,ω(jn,n+1(Ā)) = A.

Because of the claim we can use the usual properties of the Prikry forcing:

Claim 4.8. Mω[〈κi : i ∈ ω〉] � there exists a bijection from 2λ to λ++.

Proof of Claim. Since Prikry forcing does not add bounded subsets of λ,
Vλ ∩Mω = Vλ ∩Mω[〈κi : i ∈ ω〉], therefore for any name τ for a subset of
Vλ ∩Mω, we can suppose that dom(τ) ⊆ {ǎ : a ∈ Vλ ∩Mω}. Prikry forcing
is λ+-c.c., so there are only

(2λ)Mω = (λ++)Mω = (λ++)Mω [〈κi:i∈ω〉]

possible nice names for subsets of Vλ ∩Mω, and this proves the claim.

This proves that λ in Mω[〈κi : i ∈ ω〉] has the desired properties, and
we will use generic absoluteness (Theorem 4.5) to prove the existence of the
I1-elementary embedding.

Consider j � Vλ+1 : Vλ+1 ≺ Vλ+1. We can define it as

(j � Vλ+1)(a) =
⋃
n∈ω

(j � Vλ)(a ∩ Vκn),
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using only j � Vλ and the critical sequence as parameters, both elements in
Vλ+1, so j � Vλ+1 ∈ L1(Vλ+1) and L1(Vλ+1) � ∃k : Vλ+1 ≺ Vλ+1. By generic
absoluteness (Theorem 4.5) then

L1(Mω[〈κi : i ∈ ω〉] ∩ Vλ+1) � ∃k : Vλ+1 ≺ Vλ+1,

and this is enough, since L1(Mω[〈κi : i ∈ ω〉] ∩ Vλ+1) computes correctly the
satisfaction relation of

Mω[〈κi : i ∈ ω〉] ∩ Vλ+1 = (Vλ+1)Mω [〈κi:i∈ω〉]

and
L1(Mω[〈κi : i ∈ ω〉] ∩ Vλ+1) ⊆Mω[〈κi : i ∈ ω〉].

Therefore
Mω[〈κi : i ∈ ω〉] � ∃k : Vλ+1 ≺ Vλ+1.

For the last step, we need a model of ZFC, since Mω[〈κi : i ∈ ω〉] is just
a model of ZF. However, Vκ1 is a model of ZFC, so by the elementarity of
j0,ω, Vj0,ω(κ1) ∩ Mω[〈κi : i ∈ ω〉] is a model of ZFC such that there exists
k : Vλ+1 ≺ Vλ+1 and 2λ = λ++.

The proof can be generalized in two different directions. First, consider
that Theorem 3.4 gives many more choices than 2λ = λ++, and this re-
flects immediately to 4.6. Second, also the Generic Absoluteness gives more
choices: we considered just the case α = 1, but in fact we could have con-
sidered something more than I1, i.e., there exists j : Lα(Vλ+1) ≺ Lα(Vλ+1),
if α < λ. These unnamed hypotheses have been proven by Laver [10], [11]
to be strictly stronger than I1 and strictly weaker than I0. Note that if j
witnesses I0, then j � Lα(Vλ+1) witnesses the corresponding hypotheses iff
α is a fixed point of j, but considering jn with n big enough we can always
assume this. Note also that j � Lα(Vλ+1) ∈ Lα+1(Vλ+1).

Theorem 4.9. Suppose there exists j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) <
λ and let α < λ. Then for every Easton function E such that E � λ is
Vλ definable, there is an inner model of ZFC in which ∃k : Lα(Vλ+1) ≺
Lα(Vλ+1) + 2λ = j0,ω(E)(λ) holds. In particular, for any δ < λ, there is an
inner model of ZFC in which ∃k : Lα(Vλ+1) ≺ Lα(Vλ+1) + 2κ = κ+δ+1 holds
for all regular κ < λ and κ = λ.

We make a short comment regarding the meaning of ”larger“, in the ex-
pression ”one large cardinal is larger than the second one“. During the years
the meaning of this sentence grew more and more ambiguous: it is mostly
used to indicate the consistency strength of a large cardinal hypotheses, but
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it sometimes implies that the least cardinal which is large in the first sense is
larger than the least cardinal which is large in the second sense with respect
to the cardinal order. While at the beginning the two concepts coincided,
during the exploration of the upper part of the large cardinals hierarchy the
two concepts often differed completely. Theorem 4.6, coupled with Solovay’s
Theorem 3.10, gives us another such example.

Theorem 4.10. Suppose there exists j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < λ.
Then it is consistent that there exists j : Vλ+1 ≺ Vλ+1 and that every strongly
compact cardinal is larger than λ.

Finally, we cast a look into the future. Generic absoluteness (Theorem
4.5) has a key role in the proof of Theorem 4.6, yet there is no evidence
that it is optimal. On the contrary, there are hints that it could be possibly
extended, and Woodin outlined such situations (see for example Lemma 130
and Remark 139 in [15]). The study of the structure of the sets Lα(Vλ+1) for
α < ΘL(Vλ+1) made by Laver in [11] gives us the tools to approach Theorem
4.6 under stronger hypotheses.

Definition 4.11. Suppose there exists j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < κ
and let α < ΘL(Vλ+1). We say that generic absoluteness holds at α iff there
exists

π : Lα+1(Mω[〈κi : i ∈ ω〉] ∩ Vλ+1) ≺ Lα+1(Vλ+1)

such that π � λ is the identity.

Definition 4.12 ([11]). Let λ be a cardinal and let α < ΘL(Vλ+1). Then α is
good iff every element of Lα(Vλ+1) is definable in Lα(Vλ+1) from an element
in Vλ+1.

Lemma 4.13 ([11]). Let λ be a strong limit cardinal. Then the good ordinals
are unbounded in ΘL(Vλ+1).

Lemma 4.14 ([11]). Let λ and α be such that α is good and there exists
k : Lα(Vλ+1) ≺ Lα(Vλ+1) with crt(k) < λ. Then k is induced by k � Vλ, and
therefore k ∈ Lα+1(Vλ+1).

Lemma 4.15 (Woodin). Let λ be a cardinal. If there exists j : L
ΘL(Vλ+1)(Vλ+1) ≺

L
ΘL(Vλ+1)(Vλ+1), then for any α < ΘL(Vλ+1) there exists a k : Lα(Vλ+1) ≺

Lα(Vλ+1).

Proof. Suppose it is false. Then L
ΘL(Vλ+1)(Vλ+1) � ∃α (α is a counterexample).

Let α0 be the least counterexample. Then α0 is definable in L
ΘL(Vλ+1)(Vλ+1)

and j(α0) = α0. Therefore j � Lα0(Vλ+1) is as in the lemma, contradic-
tion.
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Suppose now that there exists j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) < λ and
that the generic absoluteness holds at α, with α good. Then by Lemma 4.15
there exists k : Lα(Vλ+1) ≺ Lα(Vλ+1), and by Lemma 4.14, k ∈ Lα+1(Vλ+1). If
π witnesses the generic absoluteness, π−1(k) witnesses the following theorem:

Theorem 4.16. Suppose that there exists j : L(Vλ+1) ≺ L(Vλ+1) with crt(j) <
λ and that the generic absoluteness holds at α, with α good. Then for every
Easton function E such that E � λ is Vλ definable, there exists a model of
ZFC in which ∃k : Lα(Vλ+1) ≺ Lα(Vλ+1) + 2λ = j0,ω(E)(λ) holds

Even if a generalization of generic absoluteness could be proved, there
would still be questions to answer. Let I0(λ) and I1(λ) be the the corre-
sponding hypotheses with fixed λ. While we used I0 for the consistency
strength of ∃λ I1(λ) + the failure of GCH at λ, it is not known whether this
is optimal.

Question 1. Does Con(ZFC+ I1) imply Con(ZFC+ ∃λ (I1(λ)∧ 2λ > λ+))?

Another way to improve the results in this paper would be to approach
the consistency of I0(λ) + the failure of GCH at λ.

Question 2. Is ZFC + ∃λ (I0(λ) ∧ 2λ = λ+) consistent? If so, what is its
consistency strength?

A generic absoluteness theorem for hypotheses stronger than I0 seems
difficult to obtain, therefore the previous question appears to be a compelling
challenge.
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