Some natural equivalence relations in the Solovay model

Sy-David Friedman (KGRC, Vienna)*
Vladimir Kanovei (IITP, Moscow) ${ }^{\dagger}$

April 2, 2008

Abstract

We obtain some non-reducibility results concerning some natural equivalence relations on reals in the Solovay model. The proofs use the existence of reals x which are minimal with respect to the cardinals in $L[x]$, in a certain sense.

1 Introduction

The Borel reducibility of Borel and analytic equivalence relations is one of the key points of interest in modern descriptive set theory. Given a pair of equivalence relations E and F on Borel sets resp. X, Y (sets of reals or sets situated in any Polish space), E is said to be Borel reducible to F , symbolically $\mathrm{E} \leq_{\text {Bor }} \mathrm{F}$, iff there exists a Borel map $\vartheta: X \rightarrow Y$ such that

$$
x \mathrm{E} x^{\prime} \Longleftrightarrow \vartheta(x) \mathrm{F} \vartheta(y)
$$

for all $x, x^{\prime} \in X$. Such a map ϑ obviously induces an injection from the quotient X / E to Y / F. Therefore the inequality $\mathrm{E} \leq_{\text {bов }} \mathrm{F}$ can be understood as the fact that the Borel cardinality of X / E is \leq that of Y / F. We refer to [8] for matters of original motivation and some basic results in this direction, and to [6] for a more modern exposition.

[^0]The structure of Borel cardinalities (that is, Borel equivalence relations under $\left.\leq_{\text {вог }}\right)$ is quite rich: in particular it embeds the structure of $\mathscr{P}(\omega)$ under inclusion modulo finite [10], and therefore embeds any partial order of size \aleph_{1}. Compare this to the structure of Borel cardinalities of pointsets in Polish spaces, which contains only finite cardinalities, \aleph_{0}, and the continuum \mathfrak{c}, and to the structure of true set theoretic cardinalities of pointsets and their quotients, which depends on the basic setup of the set theoretic universe.

This note belongs to a somewhat different branch of descriptive set theory whose broad description is real-ordinal definable (ROD for brevity) pointsets and relations in the Solovay model. (This model served as the background of several outstanding theorems in the early era of forcing. In particular Solovay [11] proved that in this model all ROD (including all projective) sets of reals are Lebesgue measurable and have the Baire property.)

Let $\leq_{\text {rod }}$ be the order of ROD reducibility, similar to $\leq_{\text {Bor }}$ but with ROD maps ϑ. The $\leq_{\text {Rod }}$ structure of ROD equivalence relations in the Solovay model has some striking similarities to the $\leq_{\text {Bor }}$ structure of Borel and analytic equivalence relations. In particular the following dichotomy holds in the Solovay model, see [4]:
if E is a ROD equivalence relation on the reals then either E admits a ROD reduction to equality on the set $2^{<\omega_{1}}$ of all countable transfinite dyadic sequences, or $\mathrm{E}_{0} \leq_{\text {bor }} \mathrm{E}$,
where E_{0} in this context can be identified with the Vitali equivalence relation on the real line. This can be compared with the Ulm-style dichotomy for analytic (that is, $\boldsymbol{\Sigma}_{1}^{1}$) equivalence relations, proved under the hypothesis of sharps in [2] and under the hypothesis that the universe is a set generic extension of the constructible universe L in [5]:
if E is an analytic equivalence relation then either E admits a $\boldsymbol{\Delta}_{2}^{1}$ (in the codes) reduction to the equality on $2^{<\omega_{1}}$, or $\mathrm{E}_{0} \leq_{\text {BOR }} \mathrm{E}$.

Another relevant result of [7] asserts that the $\leq_{\text {rod }}$-interval between E_{0} and E_{1} is empty in the Solovay model, similarly to the emptiness of the $\leq_{\text {Bor }^{-}}$ interval between E_{0} and E_{1} by a classical result of [9].

These initial results lead us to a general problem of the structure of Borel, and, generally speaking, ROD equivalence relations under the ROD reducibility in the Solovay model. We consider, in the Solovay model, a
series of OD (ordinal-definable) equivalence relations ${ }^{1} \Omega_{n}, 1 \leq n<\omega$, where $x \Omega_{n} y$ iff $\omega_{n}^{L[x]}=\omega_{n}^{L[y]}$, and prove that they are pairwise $\leq_{\text {RoD }^{-}}$ incomparable. Quite differently from the known irreducibility proofs in the theory of Borel reducibility, our proof involves some forcing coding systems, most notably a coding by a minimal real earlier developed in [1].

2 The main theorem

Let κ be inaccessible in L and consider $L[G]$, where G is generic for the gentle Lévy collapse P of κ to ω_{1} (i.e., a condition in P is a finite function f from a subset of $\omega \times \kappa$ into κ such that $f(n, \alpha)<\alpha$ for each (n, α) in Dom $(f))$. We refer to $M=L[G]$ as the Solovay model ${ }^{2}$. It was exactly the model where by [11] all ROD (including all projective) sets of reals are Lebesgue measurable. In M we consider the equivalence relations:

$$
x \Omega_{\xi} y \text { iff } \omega_{\xi}^{L[x]}=\omega_{\xi}^{L[y]}-\text { for each } \xi, 0<\xi<\kappa=\omega_{1} .
$$

We make it clear that Ω_{ξ} are considered in this paper as equivalence relations on the reals (that is, on the Baire space ω^{ω}), although in principle they make sense for sets x, y of any kind.

Theorem 1. In M, Ω_{1} is not ROD-reducible to Ω_{2}.
Proof. For the sake of simplicity, we consider only the case of OD-reducibility. The general ROD case (that is, when a real parameter is added) is an easy relativisation. Thus we prove that Ω_{1} is not reducible to Ω_{2} via any OD function.

For the proof of this fact we need a lemma that involves a "cardinalminimality" coding, and this is the key lemma in the proof. The lemma holds under the assumption of the countability of ω_{4}^{L}, therefore is true in the Solovay model.

Lemma 2. Suppose that ω_{4}^{L} is countable. Then there is a real x such that $\omega_{1}^{L[x]}=\omega_{2}^{L}, \omega_{2}^{L[x]}=\omega_{4}^{L}$ but there is no real a in $L[x]$ such that $\omega_{2}^{L[a]}=\omega_{3}^{L}$.

[^1]Proof. Start with L as the ground model. First Lévy collapse ω_{3}^{L} to ω_{2}^{L} in the usual way, using conditions of size ω_{1}^{L}. As this forcing has only ω_{4}^{L} antichains in L by a simple cardinality argument, our hypothesis implies that a generic for this forcing exists in V. In this generic extension let A be a subset of ω_{2}^{L} which codes a wellordering of ω_{2}^{L} of length ω_{3}^{L}.

Now we introduce a forcing P in the new ground model $L[A]$ which adds the desired real x. This forcing bears some similarity to the forcing found in [1], Section 6.1. In $L[A]$, define a tree to be a set T of finite, increasing sequences of countable ordinals closed under initial segments with the property that if σ belongs to T then σ has uncountably many extensions in T. In addition, we require that whenever σ is a splitting node of T, i.e., an element of T such that $\sigma * \alpha$ belongs to T for more than one α, then in fact there are uncountably many such α 's. The nth splitting level of T consists of those splitting nodes σ of T such that exactly n proper initial segments of σ are also splitting nodes of T.

Any such tree in $L[A]$ in fact belongs to L, as L and $L[A]$ have the same subsets of ω_{1}^{L}. The forcing P consists of those trees which code as much of A as possible, in the sense we next describe.

By induction on $i<\omega_{2}^{L}$ define the ordinal μ_{i} as follows: μ_{i} is the least ordinal μ greater than each $\mu_{j}, j<i$, such that $\mathcal{A}=L_{\mu}[A \cap i]$ is admissible and has ω_{1}^{L} as its largest cardinal. We write \mathcal{A}_{i} for $L_{\mu_{i}}[A \cap i]$. For each tree T we define $|T|$ to be the least i such that T belongs to \mathcal{A}_{i} and call it the rank of T.

As ω_{1}^{L} is countable in V, any tree T has branches in V which are cofinal in ω_{1}^{L}, in the sense that the ordinals appearing in the branch are cofinal in ω_{1}^{L}. We say that the tree T codes A at i iff for each branch b through T in V which is cofinal in ω_{1}^{L} :

$$
(*) i \in A \text { iff } L_{\mu_{i}}[b] \text { is admissible. }
$$

Although this notion refers to branches through T in V, it is nonetheless expressible in the model $L[A]$, for the following reason: Suppose that $(*)$ were to fail for some b in V (where b is a branch through T which is cofinal in $\left.\omega_{1}^{L}\right)$. Now let P be a forcing in $L[A]$ which forces that ω_{1}^{L} is countable. If G is P-generic over V, then $(*)$ fails for some b in $V[G]$ and therefore by absoluteness, also for some b in $L[A][G]$ (as T and ω_{1}^{L} are countable in that model). So $(*)$ fails for some b in a set-generic extension of $L[A]$. Conversely, if $(*)$ fails for some b in a set-generic extension of $L[A]$, then
it also fails for some b in a set-generic extension of V and therefore again by absoluteness, for some b in V. Thus instead of referring to branches in V we can equivalently refer to branches in a set-generic extension of $L[A]$, a quantifier expressible in the model $L[A]$.

Now let P consist of all trees T in $L[A]$ such that T codes A at i for each i less than $|T|$. Conditions in P are ordered by $T_{0} \leq T_{1}$ iff T_{0} is a subtree of T_{1}.

Sublemma 3. Suppose that T belongs to P and $i<\omega_{2}^{L}$. Then T has an extension T^{*} such that $i \leq\left|T^{*}\right|$.

Proof. We prove this by induction on i. The case $i=0$ is vacuous. Suppose that $i=j+1$. By induction we may first extend T to have rank at least j and therefore can assume that $|T|$ equals j. Thus T belongs to $\mathcal{A}_{j}=$ $L_{\mu_{j}}[A \cap j]$.

First suppose that j is an element of A. View T as a partial order which belongs to \mathcal{A}_{j} and we will thin T to $T^{*} \in \mathcal{A}_{i}$ so that each branch b through T^{*} which is cofinal in ω_{1}^{L} is generic for the partial order T over \mathcal{A}_{j}. To achieve this, first note that if $D_{n}, n \in \omega$, are dense subsets of T in \mathcal{A}_{j} and σ is any splitting node of T, we can thin $T(\sigma)=(T$ above $\sigma)$ to $T^{*}(\sigma)$ so that any branch through $T^{*}(\sigma)$ meets each D_{n}. The latter is done by thinning T below each $\sigma * \alpha$ to meet D_{0}, then thinning below each $\tau * \alpha$, where τ is an extension of σ on the next splitting level, to meet D_{1}, and so forth. Now using this, thin T to T^{*} as follows: List the dense subsets of T which belong to \mathcal{A}_{j} as $\left\langle D_{\alpha} \mid \alpha<\omega_{1}^{L}\right\rangle$; such a list exists inside \mathcal{A}_{i}, as \mathcal{A}_{j} has cardinality ω_{1}^{L} in \mathcal{A}_{i}. Now thin T below each $\sigma * \alpha$, where σ is on the 0 th splitting level of T, to guarantee that any branch through $\sigma * \alpha$ meets each of the $D_{\beta}, \beta<\alpha$. Then thin below each node $\tau * \alpha$, where τ is on the first splitting level, to guarantee that any branch through $\tau * \alpha$ meets each of the $D_{\beta}, \beta<\alpha$, and so forth. The result is a tree T^{*} with the property that whenever the ordinal α appears on a branch b through T^{*}, b meets each $D_{\beta}, \beta<\alpha$. Thus whenever b is a branch through T^{*} which is cofinal in ω_{1}^{L}, b is generic for the partial order T over the model \mathcal{A}_{j}. As the enumeration of the D_{α} 's was chosen in \mathcal{A}_{i}, it follows that T^{*} can also be chosen in \mathcal{A}_{i}, and therefore has rank i. And as any branch through T^{*} which is cofinal in ω_{1}^{L} is generic over \mathcal{A}_{j} for the partial order $T \in \mathcal{A}_{j}$, it follows that $L_{\mu_{j}}[b]$ is admissible for any such branch b, as admissibility is preserved by set-forcing.

Now suppose that j does not belong to A. We wish to thin T to T^{*} so that any cofinal branch through T^{*} will destroy the admissibility of \mathcal{A}_{j} (i.e., $L_{\mu_{j}}[b]$ will be inadmissible). Choose a subset B of ω_{1}^{L} in \mathcal{A}_{i} such that B codes a wellordering of ω_{1}^{L} of length μ_{j}. This is possible as μ_{j} has cardinality ω_{1}^{L} in the model \mathcal{A}_{i}. Then $L_{\mu_{j}}[B]$ is inadmissible. For each $\alpha<\omega_{1}^{L}$, let $\beta_{\alpha}<\omega_{1}^{L}$ be the position of $B \cap \alpha$ in the canonical wellordering of L, and let C consist of these β_{α} 's. Then C is unbounded in ω_{1}^{L} and $L_{\mu_{j}}[D]$ is inadmissible for any cofinal $D \subseteq C$, as from D we can easily recover B.

Now thin T to T^{*} as follows: Suppose that σ is on the 0 th splitting level of T. List $\operatorname{Succ}_{T}(\sigma)=\{\alpha \mid \sigma * \alpha \in T\}$ in increasing order as $\left\langle\gamma_{\alpha} \mid \alpha<\omega_{1}^{L}\right\rangle$. Thin out T below σ by discarding the $\sigma * \gamma_{\alpha}$ for α not in C. Now repeat this for nodes σ that remain and are on the first splitting level, by saving only those $\sigma * \gamma$ which are "indexed" in C. After ω steps, the resulting tree T^{*} has the property that for any branch b :

If σ is an initial segment of b which is a splitting node of T^{*}, then b extends $\sigma * \gamma$ where γ is "indexed" in C.

In particular, if b is a cofinal branch through T^{*}, then b determines a cofinal subset D of C, which in turn determines B, and therefore $L_{\mu_{j}}[b]$ is inadmissible, as desired.

Finally suppose that i is a limit ordinal. We may assume that $|T|$ is less than i. First suppose that i has L-cofinality ω and choose an ω-sequence $i_{0}<i_{1}<\cdots$ cofinal in i with $|T|<i_{0}$. Note that this sequence can be chosen in \mathcal{A}_{i} as in this model i has cofinality either ω or ω_{1}^{L} and the latter cannot occur. Let σ be on the 0 th splitting level of T. As T above any $\sigma * \alpha$ is a condition of rank at most that of T, we can apply induction to thin out T above each such node to a condition of rank i_{0}. Then for each remaining node σ on the first splitting level, thin out the tree above each $\sigma * \alpha$ to a condition of rank i_{1}. Continue in this way for ω steps and the result is a tree with the property that each cofinal branch b codes A at j for each j less than i. Moreover this construction can be carried out in \mathcal{A}_{i}, and therefore the resulting tree has rank i, as desired.

If i has L-cofinality ω_{1}^{L} then choose an ω_{1}^{L}-sequence $i_{0}<i_{1}<\cdots$ cofinal in i with $|T|<i_{0}$. Again we may assume that this sequence belongs to \mathcal{A}_{i}. Now thin out T in ω steps as in the case where i has L-cofinality ω, except when considering a node whose last component is the ordinal α, thin the tree above this node to have rank i_{α}. The result is a tree with
the property that for any branch b and any ordinal α occurring on b, b codes A at j for each j less than i_{α}. It follows that for any cofinal branch b, b codes A at j for all j less than the supremum of the i_{α} 's, namely i. \square (Sublemma 3)

Sublemma 4. The forcing P collapses ω_{1}^{L} and preserves all other cardinals.
Proof. Clearly P collapses ω_{1}^{L} as the intersection of the trees in a generic produces an ω-sequence cofinal in ω_{1}^{L}. And as P has size ω_{2}^{L} in $L[A]$, it follows that cardinals greater than ω_{2}^{L} are preserved. So we need only check that ω_{2}^{L} is preserved. As ω_{1}^{L} is collapsed, it suffices to show that if T forces \dot{f} to be a function from ω into ω_{2}^{L}, then some extension of T forces a bound on the range of \dot{f}. In $L[A]$ let $\left\langle M_{n} \mid n<\omega\right\rangle$ be a Σ_{1}-elementary chain of submodels of a large $H(\theta)=L_{\theta}[A]$ such that:

1. M_{0} contains A, P, T, the name \dot{f} and all countable ordinals as elements.
2. Each M_{n} has cardinality ω_{1} and contains $\left\langle M_{m} \mid m<n\right\rangle$ as an element.
3. If M_{ω} is the union of the M_{n} 's, then the sequence $\left\langle M_{n} \mid n \in \omega\right\rangle$ is definable over M_{ω}.

It is straightforward to obtain such a sequence, by taking the first ω-many Σ_{1}-elementary submodels of $L_{\theta}[A]$ which contain the parameters mentioned in 1 above. Note that if i_{n} denotes the intersection of M_{n} with ω_{2}^{L}, then the transitive collapse of M_{n} is an initial segment of $\mathcal{A}_{i_{n}}$ (as i_{n} is a cardinal in the former but not in the latter), which is in turn an initial segment of the transitive collapse of M_{n+1}. Also the transitive collapse of M_{ω} is an initial segment of $\mathcal{A}_{i_{\omega}}$, where i_{ω} is the supremum of the i_{n} 's (as i_{ω} is a cardinal in the former but not in the latter).

Now thin T below each $\sigma * \alpha$, where σ is on the 0 th splitting level of T, to a condition forcing a value of $\dot{f}(0)$. This can be done inside M_{0}. Thin T further in $\mathcal{A}_{i_{0}}$ so that the resulting T_{0} is a condition of rank i_{0} below each $\sigma * \alpha$, and therefore T_{0} itself is a condition of rank i_{0}, belonging to the model $\mathcal{A}_{i_{0}}$. Then thin T_{0} below each $\sigma * \alpha$, where σ is on the first splitting level of T_{0}, to a condition forcing a value of $\dot{f}(1)$. This can be done inside M_{1}. Thin further in $\mathcal{A}_{i_{1}}$ so that the resulting T_{1} is a condition of rank i_{1}. The resulting sequence of T_{n} 's can be chosen definably over M_{ω} and therefore belongs to $\mathcal{A}_{i \omega}$. The intersection of the T_{n} 's is therefore a condition forcing the range of f to be contained in the set of possible values of $\dot{f}(n)$ occurring in this construction.

Sublemma 5. Suppose that G is P-generic over $L[A]$. Let $f: \omega \rightarrow \omega_{1}^{L}$ be the unique infinite branch through all of the trees in G. Then the range of f is cofinal in ω_{1}^{L} and $L[A][G]=L[f]$.

Proof. The first conclusion is clear, as given any $\alpha<\omega_{1}^{L}$, any condition can be thinned so that any infinite branch includes an ordinal greater than α. It follows from the definition of the forcing and Sublemma 3 that f codes A at i for every i less than ω_{2}^{L}, and therefore $A \cap i$ can be inductively decoded in $L[f]$. So A belongs to $L[f]$. Finally, note that G consists precisely of those conditions T in $L[A]$ such that f is a branch through T, as if f is a branch through a condition T, then T must have uncountable intersection with each condition in G, else the range of f would be bounded in ω_{1}^{L}.
\square (Sublemma 5)
Sublemma 6. Suppose that a is a real in $L[f]$ and ω_{1}^{L} is countable in $L[a]$. Then f belongs to $L[a]$.

Proof. Suppose that T is a condition forcing \dot{g} to be a cofinal function from ω into ω_{1}^{L} : We show that some extension of T forces that \dot{f} belongs to $L[\dot{g}]$, where \dot{f} is the canonical name for the cofinal function $f: \omega \rightarrow \omega_{1}^{L}$ added by G. Let σ be on the 0 th splitting level of T and for each α such that $\sigma * \alpha$ belongs to T, thin T above $\sigma * \alpha$ to force a value of $\dot{g}(0)$. Then for each σ on the first splitting level of the resulting tree T_{1}, thin out above each $\sigma * \alpha$ in T_{1} to force a value of $\dot{g}(1)$. Using an ω-sequence of Σ_{1}-elementary submodels as in the proof of Sublemma 4, we can ensure that after continuing this for ω steps, the result is a condition T^{*}, and moreover, the function that assigns to each node σ on the nth splitting level of T^{*} the value of $\dot{g}(n)$ forced by T^{*} below σ belongs to $\mathcal{A}_{\left|T^{*}\right|}$.

Now as T forces that \dot{g} has range cofinal in ω_{1}^{L}, so does T^{*}, and therefore there are uncountably many values of \dot{g} forced by T^{*} below its various splitting nodes σ. Therefore for some n_{0}, uncountably many values of $\dot{g}\left(n_{0}\right)$ are forced by T^{*} below nodes on the n_{0} th splitting level of T^{*}. Let X_{0} be an uncountable subset of the n_{0} th splitting level so that if σ, τ are distinct elements of X_{0}, then T^{*} below σ and T^{*} below τ force distinct values of $\dot{g}\left(n_{0}\right)$. Thin out T^{*} by discarding nodes on the n_{0} th splitting level which do not belong to X_{0}. Now for each remaining node σ on the n_{0} th splitting level, we may choose n_{1} and an uncountable X_{1} consisting of nodes extending σ on the n_{1}-st splitting level so that if τ_{0} and τ_{1} are distinct nodes in X_{1}, then T^{*} below τ_{0} and T^{*} below τ_{1} force distinct values of $\dot{g}\left(n_{1}\right)$. Discard
all nodes on the n_{1}-st splitting level that extend σ and do not belong to X_{1}. Continue this for ω steps and note that the resulting tree $T^{* *}$ still belongs to $\mathcal{A}_{\left|T^{*}\right|}$. As each node of $T^{* *}$ has uncountably many extensions in $T^{* *}$, we may further thin $T^{* *}$ to a condition $T^{* * *}$ in $\mathcal{A}_{\left|T^{*}\right|}$.

Now note that if G is P-generic and contains the condition $T^{* * *}$, then $f=\dot{f}^{G}$, the unique infinite branch through all of the conditions in G, can be recovered from $g=\dot{g}^{G}$, as any two distinct branches through $T^{* * *}$ give rise to different versions of \dot{g}. So f belongs to $L[A, g]$. But as A is a subset of $\omega_{2}^{L}=\omega_{1}^{L[A, f]}$ with constructible proper initial segments, it then follows that forces f belongs to $L[g]$, as desired.
\square (Sublemma 6)
Now come back to the proof of Lemma 2. Let f be as in Sublemma 5. First of all, there obviously exists a real x such that $L[x]=L[f]$. Further, all L-cardinals except for ω_{1}^{L} and ω_{3}^{L} are still cardinals in $L[x]=L[f]=$ $L[A][G]$ by Sublemma 4 and the choice of A. It follows that $\omega_{1}^{L[x]}=\omega_{2}^{L}$ and $\omega_{2}^{L[x]}=\omega_{4}^{L}$. Now to finish the proof consider any real $a \in L[x]$ and prove that $\omega_{2}^{L[a]} \neq \omega_{3}^{L}$. There are two cases. If ω_{1}^{L} is countable in $L[a]$ then $f \in L[a]$ by Sublemma 6, hence $\omega_{2}^{L[a]}=\omega_{4}^{L}$. If $\omega_{1}^{L}=\omega_{1}^{L[a]}$ then $\omega_{2}^{L}=\omega_{2}^{L[a]}$ because ω_{2}^{L} remains a cardinal even in the bigger model $L[x]$.
\square (Lemma 2)
Now it does not take much to finish the proof of Theorem 1. (Recall that only the case of OD-reducibility is considered.) Suppose that Ω_{1} were OD-reducible to Ω_{2} via the OD function ϑ. Note that for each real $z, L[z]$ is closed under ϑ, as the fact that we are in the Solovay model implies that any real which is OD relative to z is contructible relative to z. Choose x as in Lemma 2; so $\left(\omega_{1}^{L[x]}, \omega_{2}^{L[x]}\right)=\left(\omega_{2}^{L}, \omega_{4}^{L}\right)$. Choose y a real arising from the usual Lévy collapse of ω_{1}^{L} to ω; then $\left(\omega_{1}^{L[y]}, \omega_{2}^{L[y]}\right)=\left(\omega_{2}^{L}, \omega_{3}^{L}\right)$. As $x \Omega_{1} y$ holds and ϑ reduces Ω_{1} to Ω_{2}, it follows that $\vartheta(x) \Omega_{2} \vartheta(y)$ holds, i.e., that $\omega_{2}^{L[\vartheta(x)]}=\omega_{2}^{L[\vartheta(y)]}$. Now $\omega_{2}^{L[\vartheta(y)]}$ cannot be ω_{2}^{L}, else $\vartheta(y) \Omega_{2} 0 \Omega_{2}$ $\vartheta(0)$ holds, which implies that $y \Omega_{1} 0$ holds, contradicting $\omega_{1}^{L[y]}=\omega_{2}^{L}$. So $\omega_{2}^{L[\vartheta(y)]}$ must be ω_{3}^{L}. But by the choice of x, no real z in $L[x]$ satisfies $\omega_{2}^{L[z]}=\omega_{3}^{L}$, and in particular $\omega_{2}^{L[\vartheta(x)]}$ does not equal ω_{3}^{L}, contradicting $\vartheta(y) \Omega_{2} \vartheta(x)$.
\square (Theorem 1)

3 Generalization

Theorem 1 has the following straightforward generalisation:

Theorem 7. In the Solovay model M, Ω_{m} is not ROD-reducible to Ω_{n} for any $0<m<n<\omega$.

Proof. First suppose that m equals 1 . Let $A \subseteq \omega_{n}^{L}$ code a Lévy collapse of ω_{n+1}^{L} to ω_{n}^{L}, code A by $B \subseteq \omega_{2}^{L}$ without collapsing cardinals, and finally code B by a real x as in the proof of Theorem 1 , collapsing ω_{1}^{L} but preserving all other cardinals. Then for any real z in $L[x]$, either $\omega_{1}^{L[z]}=\omega_{1}^{L}$, in which case $\omega_{n}^{L[z]}=\omega_{n}^{L}$, or x belongs to $L[z]$, in which case $\omega_{n}^{L[z]}=\omega_{n+2}^{L}$. In particular, there is no real z in $L[x]$ such that $\omega_{n}^{L[z]}=\omega_{n+1}^{L}$.

Now let y code a Lévy collapse of ω_{1}^{L} to ω. Then x and y are Ω_{1} equivalent. Suppose that ϑ were an OD-reduction of Ω_{1} to Ω_{n}. Then we have $\omega_{n}^{\vartheta(x)}=\omega_{n}^{\vartheta(y)}$. Now $\omega_{n}^{\vartheta(y)}$ cannot be ω_{n}^{L}, else $\vartheta(y) \Omega_{n} \vartheta(0)$ and therefore $y \Omega_{1} 0$, contradicting $\omega_{1}^{L[y]}=\omega_{2}^{L}$. So $\omega_{n}^{\vartheta(y)}$ equals ω_{n+1}^{L}. But this contradicts the fact that $\omega_{n}^{\vartheta(x)}=\omega_{n}^{\vartheta(y)}$ and no real z in $L[x]$, such as $\vartheta(x)$, can satisfy $\omega_{n}^{L[z]}=\omega_{n+1}^{L}$.

Now suppose that m is greater than 1. Then the proof is easier: Let $A \subseteq \omega_{n}^{L}$ code a Lévy collapse of ω_{n+1}^{L} to ω_{n}^{L}, let $B \subseteq \omega_{m-1}^{L}$ code both A and a Lévy collapse of ω_{m}^{L} to ω_{m-1}^{L} and then let $C \subseteq \omega_{1}^{L}$ code B. Now choose x to be a real coding C using ω-splitting trees, in analogy to the proof of Theorem 1 , which used ω_{1}-splitting trees to code a subset of ω_{2}^{L}. Then $L[C]$ and $L[x]$ have the same cardinals and x has the property that for any real z in $L[x]$, either z belongs to L or x belongs to $L[z]$. In particular, for any real z in $L[x], \omega_{n}^{L[z]}$ is either ω_{n}^{L} or ω_{n+2}^{L}.

Now let y code a Lévy collapse of ω_{m}^{L} to ω_{m-1}^{L}. Then x and y are Ω_{m}-equivalent. Suppose that ϑ were an OD-reduction of Ω_{m} to Ω_{n}. Then we have $\omega_{n}^{\vartheta(x)}=\omega_{n}^{\vartheta(y)}$. Now $\omega_{n}^{\vartheta(y)}$ cannot be ω_{n}^{L}, else $\vartheta(y) \Omega_{n} \vartheta(0)$ and therefore $y \Omega_{m} 0$, contradicting $\omega_{m}^{L[y]}=\omega_{m+1}^{L}$. So $\omega_{n}^{\vartheta(y)}$ equals ω_{n+1}^{L}. But this contradicts the fact that $\omega_{n}^{\vartheta(x)}=\omega_{n}^{\vartheta(y)}$ and no real z in $L[x]$, such as $\vartheta(x)$, can satisfy $\omega_{n}^{L[z]}=\omega_{n+1}^{L}$.

We finish with the easier result establishing irreducibility in the opposite direction:

Proposition 8. In M, Ω_{n} is not $R O D$-reducible to Ω_{m} for $0<m<n$.
Proof. Choose a real x such that $\omega_{n}^{L[x]}>\omega_{n}^{L}$ but $\omega_{m}^{L[x]}=\omega_{m}^{L}$. (Such a real is obtained by coding a collapse of ω_{n+1}^{L} to ω_{n}^{L} using almost disjoint coding; perfect-tree coding is not needed.) Then x is not Ω_{n}-equivalent to

0 . If ϑ were an OD-reduction of Ω_{n} to Ω_{m}, then it follows that $\vartheta(x)$ is not Ω_{m}-equivalent to $\vartheta(0)$, which contradicts $\omega_{m}^{L[\vartheta(x)]}=\omega_{m}^{L}=\omega_{m}^{L[\vartheta(0)]}$.

4 Questions

(1) In M, for any countable ordinal α define $x \Omega_{\alpha} y$ iff $\omega_{\alpha}^{L[x]}=\omega_{\alpha}^{L[y]}$. For which pairs α, β of countable ordinals is Ω_{α} OD-reducible to Ω_{β} in M ? (Note, for example, that for limit ordinals ξ less than the least L inaccessible, Ω_{ξ} and $\Omega_{\xi+1}$ are identical, as by Jensen's Covering Theorem, $\omega_{\xi+1}^{L[x]}$ is the least L-cardinal greater than $\omega_{\xi}^{L[x]}$ for any real x, which is uniquely determined by (and uniquely determines) $\omega_{\xi}^{L[x]}$.)
(2) Is there a real x such that $\left(\omega_{1}^{L[x]}, \omega_{2}^{L[x]}\right)=\left(\omega_{2}^{L}, \omega_{4}^{L}\right)$ and for each real y in $L[x],\left(\omega_{1}^{L[x]}, \omega_{2}^{L[y]}\right)$ is either $\left(\omega_{2}^{L}, \omega_{4}^{L}\right)$ or y preserves cardinals over L ?

References

[1] S. D. Friedman, Fine Structure and Class Forcing, de Gruyter Series in Logic and its Applications, Vol. 3, 2000.
[2] G. Hjorth and A. S. Kechris, Analytic equivalence relations and Ulm-type classification, J. Symbolic Logic, 1995, 60, pp. 1273-1300.
[3] R. B. Jensen and R. M. Solovay, Some applications of almost disjoint sets, Mathematical Logic and Foundations of Set Theory, 1970, pp. 84-104.
[4] V. Kanovei, An Ulm-type classification theorem for equivalence relations in Solovay model, J. Symbolic Logic, 1997, 62, 4, pp. 1333-1351.
[5] V. Kanovei, Ulm classification of analytic equivalence relations in generic universes, Math. Log. Quart., 1998, 44, 3, pp. 287-303.
[6] V. Kanovei, Borel equivalence relations: classification and structure, University Lecture Series of AMS, to appear. Electronic version: http://arxiv.org/abs/math.LO/0610988
[7] V. Kanovei and M. Reeken, A theorem on ROD-hypersmooth equivalence relations in the Solovay model, Math. Logic Quarterly, 2003, 49, 3, pp. 299304.
[8] A. S. Kechris, New directions in descriptive set theory, Bull. Symbolic Logic, 1999, 5, 2, pp. 161-174.
[9] A. S. Kechris and A. Louveau, The classification of hypersmooth Borel equivalence relations, J. Amer. Math. Soc., 1997, 10, 1, pp. 215-242.
[10] A. Louveau and B. Velickovic, A note on Borel equivalence relations, Proc. Am. Math. Soc., 1994, 120, 1, pp. 255-259.
[11] R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. Math., 1970, 92, pp. 1-56.

[^0]: *Supported by Grant P 19375-N18 of the Austrian Science Fund (FWF).
 ${ }^{\dagger}$ Supported by Grants 06-01-00608 and 07-01-00445 of the Russian Foundation for Basic Research (RFBR).

[^1]: ${ }^{1}$ Introduced by P. Kawa, who also conjectured their mutual $\leq_{\text {RoD }}$-incomparability in the Solovay model, in a discussion with the second author of this paper in the course of a meeting at the University of Florida, Gainesville, May 2007.
 ${ }^{2}$ Sometimes the term "Solovay model" is used to refer not to M, but to the $L(\mathbb{R})$ of M. But as M and the $L(\mathbb{R})$ of M have the same notion of ROD-reducibility, this distinction is not relevant for the results of this paper.

