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Abstract

We obtain some non-reducibility results concerning some natural
equivalence relations on reals in the Solovay model. The proofs use the
existence of reals x which are minimal with respect to the cardinals
in L[x] , in a certain sense.

1 Introduction

The Borel reducibility of Borel and analytic equivalence relations is one of
the key points of interest in modern descriptive set theory. Given a pair
of equivalence relations E and F on Borel sets resp. X, Y (sets of reals
or sets situated in any Polish space), E is said to be Borel reducible to F ,
symbolically E ≤bor F , iff there exists a Borel map ϑ : X → Y such that

x E x′ ⇐⇒ ϑ(x) F ϑ(y)

for all x, x′ ∈ X . Such a map ϑ obviously induces an injection from the
quotient X/E to Y/F . Therefore the inequality E ≤bor F can be understood
as the fact that the Borel cardinality of X/E is ≤ that of Y/F . We refer to
[8] for matters of original motivation and some basic results in this direction,
and to [6] for a more modern exposition.
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The structure of Borel cardinalities (that is, Borel equivalence relations
under ≤bor ) is quite rich: in particular it embeds the structure of P(ω)
under inclusion modulo finite [10], and therefore embeds any partial order of
size ℵ1 . Compare this to the structure of Borel cardinalities of pointsets in
Polish spaces, which contains only finite cardinalities, ℵ0 , and the continuum
c , and to the structure of true set theoretic cardinalities of pointsets and their
quotients, which depends on the basic setup of the set theoretic universe.

This note belongs to a somewhat different branch of descriptive set theory
whose broad description is real-ordinal definable (ROD for brevity) pointsets
and relations in the Solovay model. (This model served as the background
of several outstanding theorems in the early era of forcing. In particular
Solovay [11] proved that in this model all ROD (including all projective) sets
of reals are Lebesgue measurable and have the Baire property.)

Let ≤rod be the order of ROD reducibility, similar to ≤bor but with
ROD maps ϑ . The ≤rod structure of ROD equivalence relations in the
Solovay model has some striking similarities to the ≤bor structure of Borel
and analytic equivalence relations. In particular the following dichotomy
holds in the Solovay model, see [4]:

if E is a ROD equivalence relation on the reals then either E ad-
mits a ROD reduction to equality on the set 2<ω1 of all countable
transfinite dyadic sequences, or E0 ≤bor E ,

where E0 in this context can be identified with the Vitali equivalence relation
on the real line. This can be compared with the Ulm-style dichotomy for
analytic (that is, Σ1

1 ) equivalence relations, proved under the hypothesis
of sharps in [2] and under the hypothesis that the universe is a set generic
extension of the constructible universe L in [5]:

if E is an analytic equivalence relation then either E admits a ∆1
2

(in the codes) reduction to the equality on 2<ω1 , or E0 ≤bor E .

Another relevant result of [7] asserts that the ≤rod-interval between E0 and
E1 is empty in the Solovay model, similarly to the emptiness of the ≤bor-
interval between E0 and E1 by a classical result of [9].

These initial results lead us to a general problem of the structure of
Borel, and, generally speaking, ROD equivalence relations under the ROD
reducibility in the Solovay model. We consider, in the Solovay model, a
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series of OD (ordinal-definable) equivalence relations 1
Ωn , 1 ≤ n < ω ,

where x Ωn y iff ω
L[x]
n = ω

L[y]
n , and prove that they are pairwise ≤rod-

incomparable. Quite differently from the known irreducibility proofs in the
theory of Borel reducibility, our proof involves some forcing coding systems,
most notably a coding by a minimal real earlier developed in [1].

2 The main theorem

Let κ be inaccessible in L and consider L[G] , where G is generic for the
gentle Lévy collapse P of κ to ω1 (i.e., a condition in P is a finite function
f from a subset of ω × κ into κ such that f(n, α) < α for each (n, α) in
Dom (f) ). We refer to M = L[G] as the Solovay model 2. It was exactly
the model where by [11] all ROD (including all projective) sets of reals are
Lebesgue measurable. In M we consider the equivalence relations:

x Ωξ y iff ω
L[x]
ξ = ω

L[y]
ξ — for each ξ , 0 < ξ < κ = ω1 .

We make it clear that Ωξ are considered in this paper as equivalence relations
on the reals (that is, on the Baire space ωω ), although in principle they make
sense for sets x, y of any kind.

Theorem 1. In M , Ω1 is not ROD-reducible to Ω2 .

Proof. For the sake of simplicity, we consider only the case of OD-reducibility.
The general ROD case (that is, when a real parameter is added) is an easy
relativisation. Thus we prove that Ω1 is not reducible to Ω2 via any OD
function.

For the proof of this fact we need a lemma that involves a “cardinal-
minimality” coding, and this is the key lemma in the proof. The lemma
holds under the assumption of the countability of ωL

4 , therefore is true in
the Solovay model.

Lemma 2. Suppose that ωL
4 is countable. Then there is a real x such that

ω
L[x]
1 = ωL

2 , ω
L[x]
2 = ωL

4 but there is no real a in L[x] such that ω
L[a]
2 = ωL

3 .

1 Introduced by P. Kawa, who also conjectured their mutual ≤rod-incomparability in
the Solovay model, in a discussion with the second author of this paper in the course of a
meeting at the University of Florida, Gainesville, May 2007.

2Sometimes the term “Solovay model” is used to refer not to M , but to the L(
�
)

of M . But as M and the L(
�
) of M have the same notion of ROD-reducibility, this

distinction is not relevant for the results of this paper.
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Proof. Start with L as the ground model. First Lévy collapse ωL
3 to ωL

2

in the usual way, using conditions of size ωL
1 . As this forcing has only ωL

4

antichains in L by a simple cardinality argument, our hypothesis implies
that a generic for this forcing exists in V . In this generic extension let A be
a subset of ωL

2 which codes a wellordering of ωL
2 of length ωL

3 .

Now we introduce a forcing P in the new ground model L[A] which
adds the desired real x . This forcing bears some similarity to the forcing
found in [1], Section 6.1. In L[A] , define a tree to be a set T of finite,
increasing sequences of countable ordinals closed under initial segments with
the property that if σ belongs to T then σ has uncountably many extensions
in T . In addition, we require that whenever σ is a splitting node of T , i.e.,
an element of T such that σ ∗ α belongs to T for more than one α , then
in fact there are uncountably many such α ’s. The n th splitting level of T
consists of those splitting nodes σ of T such that exactly n proper initial
segments of σ are also splitting nodes of T .

Any such tree in L[A] in fact belongs to L , as L and L[A] have the
same subsets of ωL

1 . The forcing P consists of those trees which code as
much of A as possible, in the sense we next describe.

By induction on i < ωL
2 define the ordinal µi as follows: µi is the least

ordinal µ greater than each µj , j < i , such that A = Lµ[A∩ i] is admissible
and has ωL

1 as its largest cardinal. We write Ai for Lµi
[A ∩ i] . For each

tree T we define |T | to be the least i such that T belongs to Ai and call
it the rank of T .

As ωL
1 is countable in V , any tree T has branches in V which are cofinal

in ωL
1 , in the sense that the ordinals appearing in the branch are cofinal in

ωL
1 . We say that the tree T codes A at i iff for each branch b through T

in V which is cofinal in ωL
1 :

(∗)i ∈ A iff Lµi
[b] is admissible.

Although this notion refers to branches through T in V , it is nonetheless
expressible in the model L[A] , for the following reason: Suppose that (∗)
were to fail for some b in V (where b is a branch through T which is cofinal
in ωL

1 ). Now let P be a forcing in L[A] which forces that ωL
1 is countable.

If G is P -generic over V , then (∗) fails for some b in V [G] and therefore
by absoluteness, also for some b in L[A][G] (as T and ωL

1 are countable
in that model). So (∗) fails for some b in a set-generic extension of L[A] .
Conversely, if (∗) fails for some b in a set-generic extension of L[A] , then
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it also fails for some b in a set-generic extension of V and therefore again
by absoluteness, for some b in V . Thus instead of referring to branches in
V we can equivalently refer to branches in a set-generic extension of L[A] ,
a quantifier expressible in the model L[A] .

Now let P consist of all trees T in L[A] such that T codes A at i for
each i less than |T | . Conditions in P are ordered by T0 ≤ T1 iff T0 is a
subtree of T1 .

Sublemma 3. Suppose that T belongs to P and i < ωL
2 . Then T has an

extension T ∗ such that i ≤ |T ∗| .

Proof. We prove this by induction on i . The case i = 0 is vacuous. Suppose
that i = j + 1. By induction we may first extend T to have rank at least
j and therefore can assume that |T | equals j . Thus T belongs to Aj =
Lµj

[A ∩ j] .

First suppose that j is an element of A . View T as a partial order which
belongs to Aj and we will thin T to T ∗ ∈ Ai so that each branch b through
T ∗ which is cofinal in ωL

1 is generic for the partial order T over Aj . To
achieve this, first note that if Dn , n ∈ ω , are dense subsets of T in Aj and
σ is any splitting node of T , we can thin T (σ) = (T above σ) to T ∗(σ)
so that any branch through T ∗(σ) meets each Dn . The latter is done by
thinning T below each σ ∗ α to meet D0 , then thinning below each τ ∗ α ,
where τ is an extension of σ on the next splitting level, to meet D1 , and
so forth. Now using this, thin T to T ∗ as follows: List the dense subsets
of T which belong to Aj as 〈Dα | α < ωL

1 〉 ; such a list exists inside Ai , as
Aj has cardinality ωL

1 in Ai . Now thin T below each σ ∗ α , where σ is
on the 0 th splitting level of T , to guarantee that any branch through σ ∗ α
meets each of the Dβ , β < α . Then thin below each node τ ∗ α , where
τ is on the first splitting level, to guarantee that any branch through τ ∗ α
meets each of the Dβ , β < α , and so forth. The result is a tree T ∗ with the
property that whenever the ordinal α appears on a branch b through T ∗ ,
b meets each Dβ , β < α . Thus whenever b is a branch through T ∗ which
is cofinal in ωL

1 , b is generic for the partial order T over the model Aj . As
the enumeration of the Dα ’s was chosen in Ai , it follows that T ∗ can also
be chosen in Ai , and therefore has rank i . And as any branch through T ∗

which is cofinal in ωL
1 is generic over Aj for the partial order T ∈ Aj , it

follows that Lµj
[b] is admissible for any such branch b , as admissibility is

preserved by set-forcing.
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Now suppose that j does not belong to A . We wish to thin T to T ∗

so that any cofinal branch through T ∗ will destroy the admissibility of Aj

(i.e., Lµj
[b] will be inadmissible). Choose a subset B of ωL

1 in Ai such
that B codes a wellordering of ωL

1 of length µj . This is possible as µj has
cardinality ωL

1 in the model Ai . Then Lµj
[B] is inadmissible. For each

α < ωL
1 , let βα < ωL

1 be the position of B ∩ α in the canonical wellordering
of L , and let C consist of these βα ’s. Then C is unbounded in ωL

1 and
Lµj

[D] is inadmissible for any cofinal D ⊆ C , as from D we can easily
recover B .

Now thin T to T ∗ as follows: Suppose that σ is on the 0 th splitting level
of T . List SuccT (σ) = {α | σ ∗α ∈ T} in increasing order as 〈γα | α < ωL

1 〉 .
Thin out T below σ by discarding the σ ∗ γα for α not in C . Now repeat
this for nodes σ that remain and are on the first splitting level, by saving
only those σ ∗γ which are “indexed” in C . After ω steps, the resulting tree
T ∗ has the property that for any branch b :

If σ is an initial segment of b which is a splitting node of T ∗ ,
then b extends σ ∗ γ where γ is “indexed” in C .

In particular, if b is a cofinal branch through T ∗ , then b determines a
cofinal subset D of C , which in turn determines B , and therefore Lµj

[b] is
inadmissible, as desired.

Finally suppose that i is a limit ordinal. We may assume that |T | is less
than i . First suppose that i has L -cofinality ω and choose an ω -sequence
i0 < i1 < · · · cofinal in i with |T | < i0 . Note that this sequence can be
chosen in Ai as in this model i has cofinality either ω or ωL

1 and the latter
cannot occur. Let σ be on the 0 th splitting level of T . As T above any
σ ∗ α is a condition of rank at most that of T , we can apply induction to
thin out T above each such node to a condition of rank i0 . Then for each
remaining node σ on the first splitting level, thin out the tree above each
σ ∗ α to a condition of rank i1 . Continue in this way for ω steps and the
result is a tree with the property that each cofinal branch b codes A at j
for each j less than i . Moreover this construction can be carried out in Ai ,
and therefore the resulting tree has rank i , as desired.

If i has L -cofinality ωL
1 then choose an ωL

1 -sequence i0 < i1 < · · ·
cofinal in i with |T | < i0 . Again we may assume that this sequence belongs
to Ai . Now thin out T in ω steps as in the case where i has L -cofinality
ω , except when considering a node whose last component is the ordinal α ,
thin the tree above this node to have rank iα . The result is a tree with
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the property that for any branch b and any ordinal α occurring on b , b
codes A at j for each j less than iα . It follows that for any cofinal branch
b , b codes A at j for all j less than the supremum of the iα ’s, namely
i . (Sublemma 3)

Sublemma 4. The forcing P collapses ωL
1 and preserves all other cardinals.

Proof. Clearly P collapses ωL
1 as the intersection of the trees in a generic

produces an ω -sequence cofinal in ωL
1 . And as P has size ωL

2 in L[A] , it
follows that cardinals greater than ωL

2 are preserved. So we need only check
that ωL

2 is preserved. As ωL
1 is collapsed, it suffices to show that if T forces

ḟ to be a function from ω into ωL
2 , then some extension of T forces a bound

on the range of ḟ . In L[A] let 〈Mn | n < ω〉 be a Σ1 -elementary chain of
submodels of a large H(θ) = Lθ[A] such that:

1. M0 contains A, P, T, the name ḟ and all countable ordinals as elements.

2. Each Mn has cardinality ω1 and contains 〈Mm | m < n〉 as an element.

3. If Mω is the union of the Mn ’s, then the sequence 〈Mn | n ∈ ω〉 is
definable over Mω .

It is straightforward to obtain such a sequence, by taking the first ω -many
Σ1 -elementary submodels of Lθ[A] which contain the parameters mentioned
in 1 above. Note that if in denotes the intersection of Mn with ωL

2 , then
the transitive collapse of Mn is an initial segment of Ain (as in is a cardinal
in the former but not in the latter), which is in turn an initial segment of the
transitive collapse of Mn+1 . Also the transitive collapse of Mω is an initial
segment of Aiω , where iω is the supremum of the in ’s (as iω is a cardinal
in the former but not in the latter).

Now thin T below each σ∗α , where σ is on the 0 th splitting level of T ,
to a condition forcing a value of ḟ(0) . This can be done inside M0 . Thin T
further in Ai0 so that the resulting T0 is a condition of rank i0 below each
σ∗α , and therefore T0 itself is a condition of rank i0 , belonging to the model
Ai0 . Then thin T0 below each σ ∗ α , where σ is on the first splitting level
of T0 , to a condition forcing a value of ḟ(1) . This can be done inside M1 .
Thin further in Ai1 so that the resulting T1 is a condition of rank i1 . The
resulting sequence of Tn ’s can be chosen definably over Mω and therefore
belongs to Aiω . The intersection of the Tn ’s is therefore a condition forcing
the range of ḟ to be contained in the set of possible values of ḟ(n) occurring
in this construction. (Sublemma 4)
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Sublemma 5. Suppose that G is P -generic over L[A] . Let f : ω → ωL
1 be

the unique infinite branch through all of the trees in G . Then the range of

f is cofinal in ωL
1 and L[A][G] = L[f ] .

Proof. The first conclusion is clear, as given any α < ωL
1 , any condition can

be thinned so that any infinite branch includes an ordinal greater than α . It
follows from the definition of the forcing and Sublemma 3 that f codes A at
i for every i less than ωL

2 , and therefore A ∩ i can be inductively decoded
in L[f ] . So A belongs to L[f ] . Finally, note that G consists precisely of
those conditions T in L[A] such that f is a branch through T , as if f is a
branch through a condition T , then T must have uncountable intersection
with each condition in G , else the range of f would be bounded in ωL

1 .
(Sublemma 5)

Sublemma 6. Suppose that a is a real in L[f ] and ωL
1 is countable in L[a] .

Then f belongs to L[a] .

Proof. Suppose that T is a condition forcing ġ to be a cofinal function
from ω into ωL

1 . We show that some extension of T forces that ḟ belongs
to L[ġ] , where ḟ is the canonical name for the cofinal function f : ω → ωL

1

added by G . Let σ be on the 0 th splitting level of T and for each α such
that σ ∗ α belongs to T , thin T above σ ∗ α to force a value of ġ(0) .
Then for each σ on the first splitting level of the resulting tree T1 , thin out
above each σ ∗ α in T1 to force a value of ġ(1) . Using an ω -sequence of
Σ1 -elementary submodels as in the proof of Sublemma 4, we can ensure that
after continuing this for ω steps, the result is a condition T ∗ , and moreover,
the function that assigns to each node σ on the n th splitting level of T ∗

the value of ġ(n) forced by T ∗ below σ belongs to A|T ∗| .
Now as T forces that ġ has range cofinal in ωL

1 , so does T ∗ , and therefore
there are uncountably many values of ġ forced by T ∗ below its various
splitting nodes σ . Therefore for some n0 , uncountably many values of ġ(n0)
are forced by T ∗ below nodes on the n0 th splitting level of T ∗ . Let X0 be
an uncountable subset of the n0 th splitting level so that if σ , τ are distinct
elements of X0 , then T ∗ below σ and T ∗ below τ force distinct values of
ġ(n0) . Thin out T ∗ by discarding nodes on the n0 th splitting level which do
not belong to X0 . Now for each remaining node σ on the n0 th splitting level,
we may choose n1 and an uncountable X1 consisting of nodes extending σ
on the n1 -st splitting level so that if τ0 and τ1 are distinct nodes in X1 ,
then T ∗ below τ0 and T ∗ below τ1 force distinct values of ġ(n1) . Discard
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all nodes on the n1 -st splitting level that extend σ and do not belong to X1 .
Continue this for ω steps and note that the resulting tree T ∗∗ still belongs
to A|T ∗| . As each node of T ∗∗ has uncountably many extensions in T ∗∗ , we
may further thin T ∗∗ to a condition T ∗∗∗ in A|T ∗| .

Now note that if G is P -generic and contains the condition T ∗∗∗ , then
f = ḟG , the unique infinite branch through all of the conditions in G , can
be recovered from g = ġG , as any two distinct branches through T ∗∗∗ give
rise to different versions of ġ . So f belongs to L[A, g] . But as A is a subset

of ωL
2 = ω

L[A,f ]
1 with constructible proper initial segments, it then follows

that forces f belongs to L[g] , as desired. (Sublemma 6)

Now come back to the proof of Lemma 2. Let f be as in Sublemma 5.
First of all, there obviously exists a real x such that L[x] = L[f ] . Further,
all L-cardinals except for ωL

1 and ωL
3 are still cardinals in L[x] = L[f ] =

L[A][G] by Sublemma 4 and the choice of A . It follows that ω
L[x]
1 = ωL

2

and ω
L[x]
2 = ωL

4 . Now to finish the proof consider any real a ∈ L[x] and

prove that ω
L[a]
2 6= ωL

3 . There are two cases. If ωL
1 is countable in L[a] then

f ∈ L[a] by Sublemma 6, hence ω
L[a]
2 = ωL

4 . If ωL
1 = ω

L[a]
1 then ωL

2 = ω
L[a]
2

because ωL
2 remains a cardinal even in the bigger model L[x] .

(Lemma 2)

Now it does not take much to finish the proof of Theorem 1. (Recall
that only the case of OD-reducibility is considered.) Suppose that Ω1 were
OD-reducible to Ω2 via the OD function ϑ . Note that for each real z , L[z]
is closed under ϑ , as the fact that we are in the Solovay model implies that
any real which is OD relative to z is contructible relative to z . Choose x as
in Lemma 2; so (ω

L[x]
1 , ω

L[x]
2 ) = (ωL

2 , ωL
4 ) . Choose y a real arising from the

usual Lévy collapse of ωL
1 to ω ; then (ω

L[y]
1 , ω

L[y]
2 ) = (ωL

2 , ωL
3 ) . As x Ω1 y

holds and ϑ reduces Ω1 to Ω2 , it follows that ϑ(x) Ω2 ϑ(y) holds, i.e.,

that ω
L[ϑ(x)]
2 = ω

L[ϑ(y)]
2 . Now ω

L[ϑ(y)]
2 cannot be ωL

2 , else ϑ(y) Ω2 0 Ω2

ϑ(0) holds, which implies that y Ω1 0 holds, contradicting ω
L[y]
1 = ωL

2 . So

ω
L[ϑ(y)]
2 must be ωL

3 . But by the choice of x , no real z in L[x] satisfies

ω
L[z]
2 = ωL

3 , and in particular ω
L[ϑ(x)]
2 does not equal ωL

3 , contradicting
ϑ(y) Ω2 ϑ(x) . (Theorem 1)

3 Generalization

Theorem 1 has the following straightforward generalisation:
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Theorem 7. In the Solovay model M , Ωm is not ROD-reducible to Ωn for

any 0 < m < n < ω .

Proof. First suppose that m equals 1 . Let A ⊆ ωL
n code a Lévy collapse

of ωL
n+1 to ωL

n , code A by B ⊆ ωL
2 without collapsing cardinals, and finally

code B by a real x as in the proof of Theorem 1, collapsing ωL
1 but pre-

serving all other cardinals. Then for any real z in L[x] , either ω
L[z]
1 = ωL

1 ,

in which case ω
L[z]
n = ωL

n , or x belongs to L[z] , in which case ω
L[z]
n = ωL

n+2 .

In particular, there is no real z in L[x] such that ω
L[z]
n = ωL

n+1 .
Now let y code a Lévy collapse of ωL

1 to ω . Then x and y are Ω1 -
equivalent. Suppose that ϑ were an OD-reduction of Ω1 to Ωn . Then
we have ω

ϑ(x)
n = ω

ϑ(y)
n . Now ω

ϑ(y)
n cannot be ωL

n , else ϑ(y) Ωn ϑ(0) and

therefore y Ω1 0 , contradicting ω
L[y]
1 = ωL

2 . So ω
ϑ(y)
n equals ωL

n+1 . But this

contradicts the fact that ω
ϑ(x)
n = ω

ϑ(y)
n and no real z in L[x] , such as ϑ(x) ,

can satisfy ω
L[z]
n = ωL

n+1 .
Now suppose that m is greater than 1 . Then the proof is easier: Let

A ⊆ ωL
n code a Lévy collapse of ωL

n+1 to ωL
n , let B ⊆ ωL

m−1 code both A
and a Lévy collapse of ωL

m to ωL
m−1 and then let C ⊆ ωL

1 code B . Now
choose x to be a real coding C using ω -splitting trees, in analogy to the
proof of Theorem 1, which used ω1 -splitting trees to code a subset of ωL

2 .
Then L[C] and L[x] have the same cardinals and x has the property that
for any real z in L[x] , either z belongs to L or x belongs to L[z] . In

particular, for any real z in L[x] , ω
L[z]
n is either ωL

n or ωL
n+2 .

Now let y code a Lévy collapse of ωL
m to ωL

m−1 . Then x and y are
Ωm -equivalent. Suppose that ϑ were an OD-reduction of Ωm to Ωn . Then
we have ω

ϑ(x)
n = ω

ϑ(y)
n . Now ω

ϑ(y)
n cannot be ωL

n , else ϑ(y) Ωn ϑ(0) and

therefore y Ωm 0 , contradicting ω
L[y]
m = ωL

m+1 . So ω
ϑ(y)
n equals ωL

n+1 . But

this contradicts the fact that ω
ϑ(x)
n = ω

ϑ(y)
n and no real z in L[x] , such as

ϑ(x) , can satisfy ω
L[z]
n = ωL

n+1 .

We finish with the easier result establishing irreducibility in the opposite
direction:

Proposition 8. In M , Ωn is not ROD-reducible to Ωm for 0 < m < n .

Proof. Choose a real x such that ω
L[x]
n > ωL

n but ω
L[x]
m = ωL

m . (Such a
real is obtained by coding a collapse of ωL

n+1 to ωL
n using almost disjoint

coding; perfect-tree coding is not needed.) Then x is not Ωn -equivalent to
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0 . If ϑ were an OD-reduction of Ωn to Ωm , then it follows that ϑ(x) is not

Ωm-equivalent to ϑ(0) , which contradicts ω
L[ϑ(x)]
m = ωL

m = ω
L[ϑ(0)]
m .

4 Questions

(1) In M , for any countable ordinal α define x Ωα y iff ω
L[x]
α = ω

L[y]
α .

For which pairs α , β of countable ordinals is Ωα OD-reducible to Ωβ in
M ? (Note, for example, that for limit ordinals ξ less than the least L -
inaccessible, Ωξ and Ωξ+1 are identical, as by Jensen’s Covering Theorem,

ω
L[x]
ξ+1 is the least L -cardinal greater than ω

L[x]
ξ for any real x , which is

uniquely determined by (and uniquely determines) ω
L[x]
ξ .)

(2) Is there a real x such that (ω
L[x]
1 , ω

L[x]
2 ) = (ωL

2 , ωL
4 ) and for each real y

in L[x] , (ω
L[x]
1 , ω

L[y]
2 ) is either (ωL

2 , ωL
4 ) or y preserves cardinals over L?
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