Forcing, Combinatorics and Definability

Summary:

- Today: Definable Wellorders Large cardinals
 Forcing axioms
 Cardinal characteristics (new!)
 Other contexts
- Tuesday: Cardinal Characteristics on κ Rather new topic: Many open questions Continuum function 2^κ Dominating, bounding numbers Cofinality of the symmetric group Almost disjointness, splitting numbers
 Wednesday: Models of PFA, BPFA

Definable Wellorders

In ZF, AC is equivalent to: $H(\kappa^+)$ can be wellordered for every κ When can we obtain a *definable* wellorder of $H(\kappa^+)$?

 Σ_n definable wellorder of $H(\kappa^+)$: Wellorder of $H(\kappa^+)$ which is Σ_n definable over $H(\kappa^+)$ with κ as a parameter

Remarks:

1. If *n* is at least 3, then κ can be eliminated, as $\{\kappa\}$ is Π_2 definable 2. If λ is a limit cardinal and $H(\kappa^+)$ has a definable wellorder for cofinally many $\kappa < \lambda$, then $H(\lambda)$ has a definable wellorder

 Σ_n definable wellorder of $H(\kappa^+)$ with parameters: Wellorder of $H(\kappa^+)$ which is Σ_n definable over $H(\kappa^+)$ with arbitrary elements of $H(\kappa^+)$ as parameters

The best situation:

 $V=L
ightarrow {\sf Each}\; {\it H}(\kappa^+)=L_{\kappa^+}$ has a Σ_1 definable wellorder

Definable wellorders and Large Cardinals

 $H(\omega_1)$

 Σ_n definable wellorder of $H(\omega_1)$ (with parameters) $\sim \Sigma_{n+1}^1$ definable wellorder of the reals (with real parameters)

Theorem

(Mansfield) Σ_2^1 wellorder of the reals \rightarrow every real belongs to L. (Martin-Steel) A Σ_{n+2}^1 wellorder of the reals is consistent with n Woodin cardinals but inconsistent with n Woodin cardinals and a measurable cardinal above them.

 $H(\omega_2)$

A forcing is *small* iff it has size less than the least inacessible. Small forcings preserve all large cardinals.

Theorem

(Asperó-F) There is a small forcing which forces CH and a definable wellorder of $H(\omega_2)$.

The above wellorder is not Σ_1 . In fact:

Theorem

(Woodin) Measurable Woodin cardinal + $CH \rightarrow$ there is no wellorder of the reals which is Σ_1 over $H(\omega_2)$.

However:

Theorem

(Avraham-Shelah) There is a small forcing which forces \sim CH and a wellorder of the reals which is Σ_1 over $H(\omega_2)$.

Question 1. Is there a small forcing which forces a Σ_2 wellorder of $H(\omega_2)$?

About the proof of:

Theorem

(Asperó-F) There is a small forcing which forces CH and a definable wellorder of $H(\omega_2)$.

Two ingredients:

- Canonical function coding
- Strongly type-guessing coding (Asperó)

Canonical funtion coding

For each $\alpha < \omega_2$ choose $f_\alpha : \omega_1 \to \alpha$ onto and define $g_\alpha : \omega_1 \to \omega_1$ by:

$$g_{lpha}(\gamma) = ext{ordertype} \ f_{lpha}[\gamma].$$

 g_{α} is a "canonical function" for α .

Now code $A \subseteq \omega_2$ by $B \subseteq \omega_1$ as follows:

 $\alpha \in A$ iff $g_{\alpha}(\gamma) \in B$ for a club of γ

Assuming GCH, the forcing to do this is ω -strategically closed and ω_2 -cc.

Asperó coding

A club-sequence in ω_1 of height τ is a sequence $\vec{C} = (C_{\delta} \mid \delta \in S)$ where $S \subseteq \omega_1$ is stationary and each C_{δ} is club in δ of ordertype τ . \vec{C} is strongly type-guessing iff for every club $C \subseteq \omega_1$ there is a club $D \subseteq \omega_1$ such that for all δ in $D \cap S$, ordertype $(C \cap C_{\delta}^+) = \tau$, where C_{δ}^+ denotes the set of successor elements of C_{δ} .

An ordinal γ is *perfect* iff $\omega^{\gamma} = \gamma$.

Lemma

(Asperó) Assume GCH. Let $B \subseteq \omega_1$. Then there is an ω -strategically closed, ω_2 -cc forcing that forces: $\gamma \in B$ iff the γ -th perfect ordinal is the height of a strongly type-guessing club sequence.

To prove:

Theorem

(Asperó-F) There is a small forcing which forces CH and a definable wellorder of $H(\omega_2)$.

Assume GCH. Write $H(\omega_2)$ as $L_{\omega_2}[A]$, $A \subseteq \omega_2$.

Use Canonical function coding to code A by $B \subseteq \omega_1$.

Use Asperó coding to code B definably over $H(\omega_2)$.

Problem: *B* only codes $H(\omega_2)$ of the ground model, not $H(\omega_2)$ of the extension!

Solution: Perform both codings "simultaneously". The forcing is a hybrid forcing: halfway between iteration and product.

 $H(\kappa)$

Theorem

(Asperó-F) There is a class forcing which forces GCH, preserves all supercompact cardinals (as well as a proper class of n-huge cardinals for each n) and adds a definable wellorder of $H(\kappa^+)$ for all regular $\kappa \geq \omega_1$.

Corollary

There is a class forcing which forces GCH, preserves all supercompact cardinals (as well as a proper class of n-huge cardinals for each n) and adds a parameter-free definable wellorder of $H(\delta)$ for all cardinals $\delta \ge \omega_2$ which are not successors of singulars.

Successors of singulars? Σ_1 definable wellorders?

Successors of singulars:

Theorem

(Asperó-F) Suppose that there is a $j : L(H(\lambda^+)) \to L(H(\lambda^+))$ fixing λ , with critical point $< \lambda$. Then there is no definable wellorder of $H(\lambda^+)$ with parameters.

Question 2. Is there a small forcing that adds a definable wellorder of $H(\aleph_{\omega+1})$ with parameters?

 Σ_1 definable wellorders:

Theorem

There is a class forcing which forces GCH, preserves all supercompact cardinals (as well as a proper class of n-huge cardinals for each n) and adds a Σ_1 definable wellorder of $H(\kappa^+)$ with parameters for all regular $\kappa \geq \omega_1$.

Definable Wellorders and Forcing Axioms

Question 3. Is there a small forcing that adds a Σ_1 definable wellorder of $H(\omega_3)$?

Definable wellorders and Forcing Axioms

 $H(\omega_1)$

Theorem

MA is consistent with a Σ_3^1 wellorder of the reals. (Caicedo-F) BPFA + $\omega_1 = \omega_1^L$ (which is consistent relative to a reflecting cardinal) implies that there is a Σ_3^1 wellorder of the reals.

Theorem

(Hjorth) Assume \sim CH and every real has a #. Then there is no Σ^1_3 wellorder of the reals.

Definable Wellorders and Forcing Axioms

Question 4. Does BPFA + $0^{\#}$ does not exist imply that there is a Σ_3^1 wellorder of the reals?

Question 5. Is BMM consistent with a projective wellorder of the reals? PFA is not.

Question 6. Is MA consistent with the *nonexistence* of a projective wellorder of the reals?

For $H(\omega_2)$:

Theorem

(Caicedo-Velickovic) BPFA + $\omega_1 = \omega_1^L$ implies that there is a Σ_1 definable wellorder of $H(\omega_2)$.

Theorem

(Larson) Relative to enough supercompacts, there is a model of MM with a definable wellorder of $H(\omega_2)$.

Definable Wellorders and Forcing Axioms

For larger $H(\kappa)$:

Theorem

MA is consistent with a definable wellorder of $H(\kappa^+)$ for all κ . (Reflecting cardinal) BSPFA is consistent with a definable wellorder of $H(\kappa^+)$ for all κ . (Enough supercompacts) MM is consistent with a definable wellorder of $H(\kappa^+)$ for all regular $\kappa \ge \omega_1$.

Definable Wellorders and Cardinal Characteristics

New context for definable wellorders: Cardinal Characteristics

Template iteration \mathbb{T} : A countable support, ω_2 -cc iteration which adds a Σ_3^1 wellorder of the reals (and a Σ_1 wellorder of $H(\omega_2)$). It is not proper, but is S-proper for certain stationary $S \subseteq \omega_1$.

Broad project: Mix the template iteration with a variety of iterations for controlling cardinal characteristics.

Theorem

(V.Fischer - F) Each of the following is consistent with a Σ_3^1 wellorder of the reals: $\mathfrak{d} < \mathfrak{c}$, $\mathfrak{b} < \mathfrak{a} = \mathfrak{s}$, $\mathfrak{b} < \mathfrak{g}$.

 $\mathfrak{b}=$ the bounding number, $\mathfrak{a}=$ the almost disjointness number, $\mathfrak{s}=$ the splitting number, $\mathfrak{g}=$ the groupwise density number

Definable Wellorders

The template iteration \mathbb{T} is gentle (ω^{ω} bounding) but also flexible (it can be mixed with any countable support proper iteration of posets of size ω_1)

One can also ask for nicely definable *witnesses* to cardinal characteristics. A sample result:

Theorem

(F-Zdomskyy) It is consistent that $\mathfrak{a} = \omega_2$ and there is a Π_2^1 infinite maximal almost disjoint family.

Question 7. Is it consistent with $a = \omega_2$ that there is a Σ_2^1 infinite maximal almost disjoint family?

Definable Wellorders in other Contexts

Questions.

8. Is it consistent that for all infinite regular κ , GCH fails at κ and there is a definable wellorder of $H(\kappa^+)$?

9. Is the tree property at ω_2 consistent with a projective wellorder of the reals?

10. Is it consistent that the nonstationary ideal on ω_1 is saturated and there is a Σ_4^1 wellorder of the reals?

11. Is it consistent that GCH fails at a measurable cardinal κ and there is a definable wellorder of $H(\kappa^+)$?

Cardinal characteristics on ω is a vast subject.

Examples from Blass' survey:

 $\mathfrak{a}, \mathfrak{b}, \mathfrak{d}, \mathfrak{e}, \mathfrak{g}, \mathfrak{h}, \mathfrak{i}, \mathfrak{m}, \mathfrak{p}, \mathfrak{r}, \mathfrak{s}, \mathfrak{t}, \mathfrak{u}$

These are all at most c, the cardinality of the continuum.

 κ regular, uncountable. We consider analogues of some of the above for κ

 $\mathfrak{a}(\kappa), \mathfrak{b}(\kappa), \mathfrak{d}(\kappa) \dots$

Why?

Four reasons:

- 1. Higher iterated forcing
- Card Chars ω / Countable support iterations \equiv Card Chars κ / Higher support iterations
- 2. Large cardinal context: Card Chars at a measurable
- 3. Global behaviour as κ varies, Internal consistency
- 4. Solve problems at κ that are unsolved at ω

Illustrate with some examples

The Card Char 2 $^{\kappa}$

Global behaviour

Theorem

(Corollary to Easton's Theorem) It is consistent that $2^{\alpha} = \alpha^{++}$ for all regular α .

Forcing used: *Easton product* of α -Cohen forcings Cohen (α, α^{++}) .

Internal consistency

Theorem

(F-Ondrejović) Assuming that $0^{\#}$ exists, there is an inner model in which $2^{\alpha} = \alpha^{++}$ for all regular α .

Forcing used: Reverse Easton iteration of α -Cohen forcings.

Large cardinal context

Theorem

(Woodin) Assume that κ is hypermeasurable. Then in a forcing extension, κ is measurable and $2^{\kappa} = \kappa^{++}$.

Forcing used: Reverse Easton iteration of α -Cohen forcings, $\alpha \leq \kappa$, α inaccessible, followed by Cohen (κ^+, κ^{++}) .

Now look at

The Card Char $\mathfrak{d}(\kappa)$

Global Behaviour

Theorem

(Cummings-Shelah) It is consistent that $\mathfrak{d}(\alpha) = \alpha^+ < 2^{\alpha}$ for all regular α .

Forcings used: α -Cohen product and α -Hechler iteration.

Large cardinal context

Theorem

(F-Thompson) Assume that κ is hypermeasurable. Then in a generic extension, κ is measurable and $\mathfrak{d}(\kappa) = \kappa^+ < 2^{\kappa}$.

Forcing used: Reverse Easton iteration of α -Sacks products, $\alpha \leq \kappa$, α inaccessible. Two interesting points:

i. If you try this with $\kappa\text{-}\mathsf{Cohen}$ and $\kappa\text{-}\mathsf{Hechler}$ then you need some supercompactness

ii. The proof is easier than Woodin's proof, which only gives $\kappa^+ < 2^\kappa$

Large Cardinal context together with Global Behaviour

Theorem

(F-Thompson) Assume that κ is hypermeasurable. Then in a generic extension, κ is measurable and $(\alpha) = \alpha^+ < 2^{\alpha}$ for all regular α .

Forcings used: (Reverse Easton iteration of) α -Sacks at inaccessible $\alpha \leq \kappa$, α -Cohen product followed by α -Hechler iteration at successors of non-inaccessibles, *something new* at α^+ , α inaccessible (α^+ -Cohen product followed by a mixture of α -Sacks product and α^+ -Hechler iteration).

Conclusion: Understanding $\mathfrak{d}(\kappa)$ in the Large cardinal setting requires a careful choice of forcings; mixing it with the Global Behaviour of $\mathfrak{d}(\alpha)$ requires the invention of new forcings

Remark. (F-Honzik) Easton's Theorem for 2^{α} has been worked out in the large cardinal setting. But: *Question 12.* What Global Behaviours for $\mathfrak{d}(\alpha)$ are possible when there is a measurable cardinal?

The Card Char CofSym(α)

Sym (α) = group of permutations of α under composition. CofSym (α) = least λ such that Sym (α) is the union of a strictly increasing λ -chain of subgroups.

Sharp and Thomas: $CofSym(\alpha)$ can be anything reasonable.

But its Global Behaviour is nontrivial!

Theorem

(Sharp-Thomas) (a) Suppose that $\alpha < \beta$ are regular and GCH holds. Then in a cofinality-preserving forcing extension, $CofSym(\alpha) = \beta$. (b) If $CofSym(\alpha) > \alpha^+$ then $CofSym(\alpha^+) \le CofSym(\alpha)$.

Question 13. Is it consistent that $CofSym(\omega) = CofSym(\omega_1) = \omega_3$?

CofSym has been studied in the Large Cardinal setting:

Theorem

(F-Zdomskyy) Suppose that κ is hypermeasurable. Then in a forcing extension, κ is measurable and CofSym $(\kappa) = \kappa^{++}$.

Forcings used: Iteration of $Miller(\kappa)$ (with continuous club-splitting) and a generalisation of $Sacks(\kappa)$. The proof also uses $g_{cl}(\kappa)$ (groupwise density number for *continuous* partitions).

 $\mathfrak{a}(\kappa)$ and $\mathfrak{d}(\kappa)$

 $\mathfrak{a}(\kappa)=$ minimum size of a (size at least κ) maximal almost disjoint family of subsets of κ

An old open problem:

Question 14. Does $\mathfrak{d}(\omega) = \omega_1$ imply $\mathfrak{a}(\omega) = \omega_1$? But this is solved at uncountable cardinals!

Theorem

(Blass-Hyttinen-Zhang) For uncountable α , $\mathfrak{d}(\alpha) = \alpha^+$ implies $\mathfrak{a}(\alpha) = \alpha^+$

Are there other open questions for ω which can be solved for uncountable cardinals? *Question 15.* Can $\mathfrak{p}(\kappa)$ be less than $\mathfrak{t}(\kappa)$? Maybe it will help to assume that κ is a large cardinal. *Question 16.* Can $\mathfrak{s}(\kappa)$ be singular?

More open Questions.

17. (Without large cardinals) Is $\mathfrak{b}(\kappa) < \mathfrak{a}(\kappa)$ consistent for an uncountable κ ?

18. Which Global Behaviours for $\mathfrak{b}(\alpha), \mathfrak{d}(\alpha)$ are internally consistent? Cummings-Shelah answered this for ordinary consistency.

19. (Without supercompactness) Can $\mathfrak{s}(\kappa)$ be greater than κ^+ ? Zapletal: Need (almost) a hypermeasurable.

20. Is it consistent that $CofSym(\kappa) = \kappa^{+++}$ for a measurable κ ?

Let ${\mathcal C}$ be a class of forcings

FA(C) = Forcing Axiom for CFor P in C, can hit ω_1 -many predense sets in P with a filter on P

 $\mathsf{BFA}(\mathcal{C}) = \mathsf{Bounded}$ Forcing Axiom for \mathcal{C} For P in \mathcal{C} , can hit ω_1 -many predense sets of size $\leq \omega_1$ in P with a filter on P

PFA = FA(Proper) = Proper Forcing Axiom BPFA = BFA(Proper) = Bounded Proper Forcing Axiom

Useful Fact. (Bagaria, Stavi-Väänänen) BPFA is equivalent to the Σ_1 elementarity of $H(\omega_2)^V$ in $H(\omega_2)^{V[G]}$ for proper P and P-generic G

Theorem

(a) (Baumgartner) If there is a supercompact then PFA holds in a proper forcing extension. (b) (Goldstern-Shelah) If there is a reflecting cardinal (i.e., a regular κ such that $H(\kappa) \prec_{\Sigma_2} V$) then BPFA holds in a proper

forcing extension.

Cardinal Minimality

V is cardinal minimal iff whenever M is an inner model with the correct cardinals (i.e., $Card^{M} = Card^{V}$) then M = V.

Local version: κ a cardinal. V is κ -minimal iff whenever M is an inner model with the correct cardinals $\leq \kappa$ then $H(\kappa)^M = H(\kappa)$.

Examples L is trivially cardinal minimal.

Let x be κ -Sacks, κ -Miller or κ -Laver over L. Then L[x] is not cardinal minimal.

Let $f : \kappa \to \kappa^+$ be a minimal collapse of κ^+ to κ over L. Then L[f] is cardinal minimal.

More interesting examples: Core models

Theorem

Let K be the core model for a measurable, hypermeasurable, strong or Woodin cardinal. Then K is cardinal minimal. In fact, K is κ -minimal for all $\kappa \geq \omega_2$.

 ω_1 -minimality fails for core models, and in fact whenever 0[#] exists:

Theorem

Suppose that $0^{\#}$ exists. Then V is not ω_1 -minimal. In fact, there is an inner model M with the correct ω_1 which is a forcing extension of L.

Another source of cardinal minimality: Models of forcing axioms

SPFA = FA(Semiproper) = Semiproper Forcing Axiom BSPFA = BFA(Semiproper) = Bounded Semiproper Forcing Axiom

Theorem

(Velickovic) Suppose that SPFA holds. Then V is ω_2 -minimal.

There is a related result for BPFA:

Theorem

(Caicedo-Velickovic) Suppose that BPFA holds. Then V is ω_2 -minimal with respect to inner models satisfying BPFA: If M is an inner model satisfying BPFA with the correct ω_2 then $H(\omega_2)^M = H(\omega_2)$.

Theorem

(a) Suppose that there is a supercompact. Then in some forcing extension, PFA holds and the universe is not ω_2 -minimal. (b) Suppose that there is a reflecting cardinal. Then in some forcing extension, BPFA holds and the universe is not ω_2 -minimal.

The proofs are based on:

Lemma

(Collapsing to ω_2 with "finite conditions") Assume GCH. Suppose that κ is inaccessible and S denotes $[\kappa]^{\omega}$ of V. Then there is a forcing P such that: (a) P forces $\kappa = \omega_2$. (b) P is S-proper, and hence preserves ω_1 , in any extension of V in which S remains stationary.

We sketch the proof of (a):

(a) Suppose that there is a supercompact. Then in some forcing extension, PFA holds and the universe is not ω_2 -minimal.

 κ supercompact.

Collapse κ to ω_2 with finite conditions, producing V[F].

Perform Baumgartner's PFA iteration, but at stage $\alpha < \omega_2$, choose a forcing in $V[F \upharpoonright \alpha, G_{\alpha}]$ which is S-proper there; argue that it is also S-proper in $V[F, G_{\alpha}]$. Important: Only use names from $V[F \upharpoonright \alpha, G_{\alpha}]$, to keep the forcing small! "Diagonal iteration"

Verify that PFA (indeed FA(S – Proper)) holds in V[F, G].

As $\kappa = \omega_2$ both in V[F] and in V[F, G], this shows that V[F, G] is not ω_2 -minimal.

How to collapse an inaccessible κ to ω_2 with finite conditions?

Let $# : [\kappa]^{\omega} \to \kappa$ be injective. *P* consists of all pairs p = (A, S) such that:

1. A is a finite set of disjoint closed intervals $[\alpha, \beta]$, $\alpha \leq \beta < \kappa$, $cof(\alpha) \leq \omega_1$.

2. S is a finite subset of
$$[\kappa]^{\omega}$$
 ("side conditions").

3. Technical.

4. Let F be the set of uncountable cofinality α for $[\alpha, \beta]$ in A, together with κ . The *height* of $x \in S$ is the least element of F greater than sup x. Then:

i. (Closure under truncation) x in S, α in F implies $x \cap \alpha$ in S. ii. (Almost an \in -chain) If $x, y \in S$ have the same height then $\#(x) \in y, \ \#(y) \in x$ or x = y.

The forcing is κ -cc and adds a club in κ consisting only of ordinals of cofinality $\leq \omega_1$. So κ becomes ω_2 .

Questions.

21. Suppose that BSPFA holds. Then is $V \omega_2$ -minimal with respect to inner models satisfying BSPFA? 22. Is there a forcing which collapses an inaccessible to ω_3 "with

finite conditions"?