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Introduction 

The development of compactness and completeness theorems for countable 
fragments of L,, initiated in [l], has had numerous applications throughout logic. 
(See for example, [2], [lo], [5].) I n contrast, the model theory of fragments of 
L oow, is entirely undeveloped. The essential reason for this is that well- 
foundedness is expressible in L,+, providing a serious barrier to any kind of 
general compactness result. 

It is our work in [7] that led us to believe that compactness and completeness 
results do exist for (uncountable) fragments of L_ and that indeed these results 
have useful applications. In that paper we extended a result of Sacks [14] on 
countable admissible ordinals to the uncountable case. Sacks’ result can be proved 
by either forcing or by compactness methods. We have discovered the uncounta- 
ble analogue of the simplest of the forcing proofs, that based on Steel forcing [15]. 
Thus it was natural to search for an uncountable analogue of the compactness 
methods as well. It is by analyzing the essential nature of uncountable Steel 
forcing that we were led to our compactness theorem. 

We begin our study in Section 1 with a discussion of elementary equivalence for 
L _,. The Scott analysis for L, has a natural analogue for L,, and thus leads to 
the notion of w-Scott rank of a structure. Determining a canonical bound on this 
notion of rank leads to the definition of w-HYP(m), the smallest o-admissible set 
above mm, in analogy to Barwise’s HYP(n). Nadel’s theorem [I 31 easily goes 
through in this context: w-Scott rank(9.Q G o-HYP(m) rl ORD. We show that this 
bound is best possible in that for each w-admissible cy there is a structure n such 
that w-Scott rank(m) = w-HYP(m) nORD = CL The proof is based on our 
generalization of Steel’s forcing, though we present here a model-theoretic 
argument. This also gives a new and simpler proof of a result of Friedman [7]: If (Y 
is o-admissible, o1 <a! <w2, then (Y =least X-admissible for some XGW,. 
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Other basic facts concerning HYP(m) carry over naturally to w-HYEQR): The 
relations on I%\ which are w-inductive over HC(m) coincide with those Zi(w- 
HYP(%X)). And, o-HYP(ZN) n ORD = least (Y such that 102 is (~-recursively satu- 
rated for L,, n L,. 

Our compactness result is presented in Section 2. It is obtained by abstracting 
some of the properties held by the theory of the structure used in Section 1 to 
show the optimality of the canonical bound on w-Scott rank. The compactness 
theorem applies to certain Cl(s)-theories over w-admissible L,, where s : L, -+ L, 
is the function s(x)=?. We also restrict ourselves to o-closed structures; 
structures m where the countable limit of types realized in %X is realized in 9R. A 
sort of ‘ordinal preservation’ is obtained in the sense that the model ??X produced 
obeys o-HYP(ZlJ2) tl ORDsa. We also provide in Section 2 generalized versions 
of the Barwise hard core theorem and the Scott isomorphism theorem. 

Section 3 is devoted to applications of the results of Section 2. As an illustration 
we first reprove the main result of Section 1. In a second application we 
characterize those admissible sets of the form pure part (o-HYP(m)) as the 
o-admissible, resolvable ones. This is in analogy with our earlier result in [6] 
characterizing pure part (HYP(XlJ)). Our final applications deal with uncountable 
versions of definability-theoretic results first obtained in [15] in the countable 
case. For example, we show that for some subset TE o1 there are rl((L,,, T))- 
singletons A, B G wi such that A is not definable over (Lwl, T, B) and B is not 
definable over (L,,, T, A). 

Our paper ends with a discussion of some further results and open questions. 

1. o-HYP(rn) 

We fix a structure ZX for a language 2 of finite similarity type. The 5&,,,-theory 
of 9.X can be expressed by a single sentence 4 E JZ’_,. We describe how this is 
done using an analogue of Scott’s analysis of Z--equivalence. 

Let x, y, 2, x’, y’, z’, . . . range over (%Jl(<+. We define a sequence of relations 
-a on members of I%!l’” 1 of the same length by induction: 

x -0 y iff x, y realize the same atomic type in 9J2, 

x -a+1 Y iff Vx’Ely’(x*x’--,y*y’) 

and Vy’ 3x’ (x*x’ --a y *y’), 

x-AY iff x-,y for all p <A, h limit. 

In the above * denotes concatenation of sequences. Let 

w-rk(m) = least QL s.t. Vx Vy (x -oL y +x -a+l y). 

As the -@ define successively finer equivalence relations on I%!\<‘+ it is clear that 
w-rk(m) is a well-defined ordinal less than card(iml<“1)+. 
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The Z_,, -theory of m is captured by a sentence C#J E 6p,,, (K = card(lmlCWl)+) 
which describes the preceding induction. Thus we define formulas b,“(u) for each 
p, each XEIZ%J~(<~~ by 

&(u) = A {4(u) 1 c/t atomic or negatomic, fl b 4(x)}, 

4,““(U) = (A 3w 4,“*,( u, w) A ) ( VW v @:*Ju, w> : 
Y Y 1 

Then the canonical o-Scott sentence of mIT1, 4(m), is defined to be: 

4(n) = 4I; A/J Vu (4,“(u) + c$~“(u)) where (Y = o -rk@X). 

Proposition 1. Suppose Xl=+(%J2)). Then 9X, % are 5?_,,-equivalent. 

Proof. Note that mb&z(y) iff x-~ y so certainly mZI4(Z?JQ. We show that 
!@b+(x) iff %~c#J(x’) whenever %bbz(x’), by induction on 4. This is clear for 
atomic + by definition of 4:. The only interesting case of the induction is 
4 = 3u 4(u). Suppose 6%l= 3u $(u, x) and % ~c$:(x’). Then choose y so that ak 
$(y, x). Now since %? ~VU (b,“(u) + 4:“(u)) and %~c#J~(x’), there must be y’ s.t. 
%Zq5&(x’*y’). Then by induction %b$(y’, x’) and so %l=+(x’). The converse if 
similar. Finally, since % ~c$Z, we have that ‘2X14 iff % k4 for all 9_, sentences 

4. 0 

Note. Proposition 1 and related results can be found in [4]. 

Nadel [13] provides a natural bound on the Scott rank of mZ, rk@JI), in terms of 
admissible set theory: If HYP(ZJ2) is the least admissible set above n, then 
rk(m) < O(!JJ2) = HYP(%!) fl ORD. We provide here the appropriate version of 
Nadel’s result for o-rk(Z1J1). 

We begin by examining the connection between o-rank and saturation. Let us 
assume V = L and that CI 3 w1 is admissible. We say that ,?32 is a-recursively 
saturated for T.fe,,, (= L,, II L,) if for any A,(L,)-set @ of formulas of Z’_,, %! 
obeys: 

30 A @Ju, p) for all Q0 c @, Q0 E L, * 3u A @(u, p) 

whenever p E IVilcwl. The next result is analogous to results of Nadel, Schlipf and 
Ressayre in the case of 6p_ (see Barwise [2, p. 1431): 

Proposition 2. If !!8 is cu-recursively saturated for .Y,,,, then w-rk(m) SLY. 

Proof. Suppose x1 la yr and we are given x2. We show that there exists y2 such 
that x,*x* -oL yI*yz. 
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Notice that in defining z --a y it would have sufficed to deal with sequences 
from \m\ of length o (as any co,-sequence from \9J2\ can be rearranged in 
order-type w). Thus the relations x --@ y for 0 <a are uniformly expressible by 
sentences in 6p_. 

Let @(ut, u2, vl, u) = {ur * u2 - a u1 *t) I/3 <a} and notice that for any Q&r 
@, @“EL,, ZR!=3u /j Q&t, x2, yl, v). Thus by the hypothesis on $!.I& there is 

Y2E WI <-I such that x1 *x2 - ay,*y2 for each ~CCX. So xt*~~--~yt*y~. Cl 

Thus a bound on o-rk(D2) is obtained by considering the least rw such that 5IJ2 is 
cy-recursively saturated for Z_. In case this ordinal is greater than wt, we can 
generate it in a natural way using the theory of admissible sets. The next lemma 
assures us that this is indeed always the case. 

Lemma 3. No infinite structure is w,-recursively saturated for LZ~,~,. 

Proof. There is a formula c$(v,, v2, . . .) of Xe,l,l which asserts that 

W(v1, ‘u2, f . -1 ={(n, m) I V 2n3m+l = v2e3m} is a well-ordering of o. There are also 
formulas &(vl, v2, _ . .), a <co,, which assert that W(vl, vz, . . .) does not have 
ordertype (Y. Then @ ={+(vt, v2, . . .)}U{-&(vl, v2, . .) 1 a <q} is not satisfiable 
but every countable e0 G @ is satisfiable. q 

Now for any structure 9X (of finite similarity type) define a new structure !W’+ 
as follows: The universe of WWl is M’” 1 where M = universe(ZJ2). If P is an n-at-y 
relation of !I& then P’ is a relation of !IkCol where P’cfl, . . , f,,) iff fi # @ for all i 

and p(f,(O), . . , f,,(O)). If F is an n-ary function of 9X, then F’ is a function of 
m <we where: 

F’Cfl, . . . > f,,> = 
(Fcfi(O>, . . . , f,,(O))>, fi # 0 for all i, 

pr, otherwise. 

If c is a constant of %J& then (c) is a constant of ‘%!<“I. Finally, we add the 
relation R(f, g) ti f c g to ZIX?l. 

Definition. o -HYP(‘$l) = HYP(~~‘“I). 0, (%R) = O@J?l) = HYI’(.%‘“l) n ORD. 

Proposition 4. O,(%R) = least Q! s.t. m is cY-recursively saturated for Y,,,. 

Proof. By a result of Schlipf (see [2, p. 143]), O(mZ’“l) =least (Y s.t. ZlJI<‘“l is 
a-recursively saturated (for ,fe,,). Thus it suffices to show that ZlJl is a-recursively 
saturated for 6p,,,,, iff %JI <w1 is cr-recursively saturated (for J&,,). An (~-recursive 
set of 9_ formulas CD is easily converted into an o-recursive set of ga,,, formulas 
CD’ s.t. %!I=@ iff ZJ?lb@‘. To do this, one need only notice that the relation 
Pcf, g) e f(0) = g(p) is definable over !lX<“l by an J&,-formula for each 0 <w,. 
Thus ?I%‘<‘+ EY-recursively saturated implies 5E a-recursively saturated for 5&,, . 
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The converse uses the fact that (Y >w, to convert a<wlk3~4 to ml= 

V u-+ 3~ I P <a> 4* (where 4 * is the conversion of 4). This translates the truth 

of an a-recursive set of J&, formulas over mZ <+ into that of an a-recursive set of 

2$,, formulas over 2R. El 

In a similar way, we can establish a characterizing property of o-HYP())32) by 

appealing to a known result about HYP(%). 

Proposition 5. The relations on (‘2Rhn( which are C,(W-HYP(%R)) are those which are 
defined by an Y&, -positive inductive definition over HC(.!D?) = {x E V, ) x has 
countable transitive closure}. 

Proof. By [3] the relations in question are those which are inductive over 

HF(%!‘“l). But it is routine to convert 2?~10,- positive induction on HC(roZ) into 

2’,_-positive inductions on HF(Zk’“l) and conversely. q 

Our main goal in this section is to show that our bound O,,,(D?) on o-rk(%) is 

optimal. The first step in accomplishing this is to first determine an important 

necessary condition on (Y so that Q! = O,(a) for some ‘2J2. 

Definition. An admissible set Am is w-admissible if Am is countably closed and is 

admissible with respect to the function s(x) = x”‘. The ordinal cy is o-admissible if 

L, is o-admissible. 

Remarks. (a) To say that A, is countably closed is to say that (AsJo c Aw. 

(b) The condition that Am is admissible with respect to s is taken to imply that 

x~A~-+ss(x)~A~. 
(c) In case Am= Lo it is enough that cofinality ((Y) > o, Lo admissible 

and closed under s in order that Lo be o-admissible. This is essentially shown 

in Lemma 4 of [7]. 

Proposijion 6. For any Y.Jl, w-HYP(!lJ2) is o-admissible. 

Proof. For any XE w-HYP(%R), let H(X) = Zr-Skolem hull of X = {y E o- 

HYP(n) 1 y is the unique solution to a C,-formula over w-HYP@R) with parame- 

ters from X}. Then for any XI> ]$&l’wl closed under pairing, H(X) cm, o- 

HYP(%): Suppose 3w +(w, pl,. . . , p,) is true in o-HYP(%!) where pl,. . . , p,, E 

H(X) and 4 is A”. We may also choose A0 formulas +1,. . . , c#+, and sequences 

4, . . , qn from X’” such that each pi is the unique solution xi to 3wi &(wi, qi, xi). 

Any element of o-HYP(D2) is definable over L(I2Jl\““Q, B) from IZJ2<wl together 

with some element of 12J2]‘“1, for some p < 0,(2J2). So, choose m, E ]%Z]+‘l such 

that for some p <O,(%J2) 3w, wl,. . . , w,, x1,. . . ,x,, definable over L(lZRl““l, p) 

from {I2J2l’“l, mO> such that +(w, xi,. . > 4, 4l(Wl, 41, Xl>, . . . > ht,(W”> qn, 4. 

Then H(X) must contain the least such sequence (p, w, wl,. . . , w,,, x1,. . . , x,,) in 
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the canonical well-ordering of those elements of w-HYP(2JI) definable over 

Ul~l’wl, p) from {I%!l’“l, mO} for some 0. Thus H(X) t=3w C/J(W, pl,. . . , p,). 
Now we take X= I_.(J9.2\<“+, oJ. Then H(X) is transitive: Let 

5T : H(X) 7 t(pJtj-, /3) be the transitive collapse of H(X). rr is the identity on X 
since X is transitive. But if y E H(X) is the unique solution in w-HYP(‘92) (and 
hence in H(X)) to some &-formula 4(y, pl,. . . , p,,) where pl, . . . , pn E X, then 
T(Y) = y since n(y) must also be a solution to +(y, pl, . . . , p,,). Now H(X) is also 
admissible above %?“I and hence H(X) = w-HYP(D?). 

We can now prove the proposition. The fact H(X) = o-HYP(%JI) gives a Z1(o- 
HYP(ZR))-surjection f of X onto CIJ-HYP@R). Moreover for any y E o-HYP(.%JI) 
there is some /3, <O,(%‘) such that y E I-f@‘(X) where HP(X) is the x1-Skolem 
hull of X in ~((2RJll’“l, 0). This gives a surjection f, of X onto y, f,, E w-HYP(V2). 
Now X is countably closed. Thus g : o + o-HYP(%JI) implies g = fo S where 
g: w +X belongs to X. Since w-HYP(m) is admissible, ge o-HYP@J2) and we 
have shown that o-HYP(!?JI) is countably closed. Also for y E o-HYP(‘D), yw = 
(f, og I g E Xw} showing yw E w-HYP@R). Moreover the function y eyW is AI(w- 
HYPQJI)) since f, can be found effectively from y. 0 

Proposition 7. If 2.R has cardinaliry q, then for some Xc ol, 0,(9J2) = least (Y s.t. 
L,(X) is admissible. 

Proof. Let 9’ E o-HYP(2R) be the partial-ordering for collapsing I!JJIl to wl. Thus 
a condition is a function f: y 1-I I9Jt\, y <q and conditions are ordered by 
extension. If G is C!?-generic over o-HYP(D2) then there is a unique structure % 
on o1 s.t. G : Y? -+ 92 is an isomorphism. Let X code the relation and functions of 
% as a subset of ol. The admissibility of Luuc&X) follows from that of L,_(m)(G). 
And, smce 9JI = % E L,_,,, (X) we see that O,(mZ) must be the least (Y such that 
L,(X) is admissible. Finally, the existence of G is guaranteed by the countable 
closure of o-HYP(%Q). q 

Corollary 8. For any Yl, O,(m) is o-admissible. 

Proof. It suffices, by absoluteness, to verify this when 23 has cardinality o1 (as the 
statement is unchanged by passing to a countably closed elementary submodel of 
cardinality wJ. By the main result of [7] the result follows in that case from the 
fact that O,(mz> =least CY s.t. L,(X) is admissible, some XcoI. 0 

Thus not every admissible (Y > o1 can be of the form O,(??JI) for some n. The 
remainder of this section is devoted to the proof of the following result. 

Theorem 9. If a is o-admissible, then (Y = O,@J2) for some %I, o-rk(2m) = a. 

Proof. Our argument here is modelled after the construction in Theorem 11 of 
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[6]. The desired structure Zm is a certain tree easily defined from a. A tag is an 

object of the form my or (B, -y) where p <(Y and y < ol. The tree Y is defined by 

.Y = {(to, . . . , t,,)IEach ti is a tag and for all O<i<jsn 

Either (a) ti = my some y, 

(b) C = (P> Y)> tj = (P’, Y’), P’< P, 

or (c) h = 0% 71, tj = (6, Y’), Y’<Ol. 

Definition. Suppose Y1, .Y2 are countable substructures of Y and p <CL Then we 

write Y1 sp & if there is an isomorphism i : Tl -G F2 s.t. for all (to, . . . , l,,) E 1.7,1: 

(i) j((t,,, . . . , t,,)) has length n + 1. 

(ii) If j((t”, . . . , t,)) = (so, . . . , s,), then for all is n 

Cti)O<P e (si)O<P, (ti)O< P + (ti)Cl= tsi)O. 

Proof. We define an isomorphism k : g1 7 F such that k 2 j : F1 s rz, where i 

witnesses F1 sp .Y2. Then 9, will be defined as the substructure of Y with 

universe Range(k). 

First, if t c t E lYll, then let k(t) = j(t) r length(t). Otherwise there is a longest 

initial segment tl of t such that t E t E lY1\ for some t, and we can write f = tl * tz 

(where * denotes concatenation). If t2 = (so, . . . , s,) and s0 = (6, y) where 6 < p2, 

then we let k(t) = k(t,)* t2. Otherwise we can choose a unique 7 <w, for each 

such c such that tl*((&, 7)) belongs to 9 and is not an initial segment of any 

t E lFlj and define k(t) = k(t,)* t2 where t2 is obtained from t2 by replacing all 

components (6, y), 6 2 p2 by (&, 7) and leaving other components unchanged. 

The existence of 7 follows from the fact that each tag of the form (&, y) can be 

followed on Y by uncountably many different tags of the form (&, 7). 

Claim 1. w-rk(F) 3 (Y. 

Proof. Lemma 10 implies that if f, g : o -+ 9 are such that j(f(n)) = g(n) defines a 

witness to Range(f) cp Range(g) (when viewed as substructures of F), then 

f --@ g. But for any /3 <a we can choose f, g such that Range(f) =@ Range(g), 

Range(f) &+I Range(g). Then f -8 g but (3, f) &,,, (9, g), proving w-rk(9) > /3. 

claim 2. 0 0 (Y)sCL 

Proof. We use Proposition 4. Thus it sufficies to show that 9 is a-recursively 

saturated for Z’,,,. Suppose @(v, p) is an a-recursive set of formulas in .Y?_ and 

.V“+F~V @,(u, p) whenever diO G @‘, G+,E L,. We show that Y-‘“I~~v A +(v, p), 
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thus establishing the a-recursive saturation of 5P”l (and hence the a-recursive 
saturation for L.E?_, of S). We assume that @ proves the basic defining properties 
of Y’“l. Note that @ is consistent in the usual logic for Z,,. Thus if PO(n) is any 
set of formulas forming an element of L,, @ can be consistently extended to 
include either + or - 6 for each 4 E ‘u,. Thus we can assume that @ decides the 
length of the element of ]3]“” 1 denoted by 2, as well as all sentences: 

(*) 4%) c 4Y*), length(u(y)) = ~1. 

Now for each y <length(v) and i <length(v(y)) choose p,,i <(Y such that: if @ U 

{“(4Y)(i))O # P” I P < a E is inconsistent, then Q, t Vy‘(u(y)(i))O = 0” 1 /3 < @y,i}. By 
admissibility of L, (and since length(u) <q) we can obtain a bound p <a! such 
that for any y <length(u), i <w : 

@ U{v(y)(i) has tag mg some S} is consistent 

or @l-u(y)(i) has tag (p’, 8) for some p’<p, 6<01. 

The above properties are expressible as to say that v(y)(i) has tag (p’, S) some S 
is to say that u(y) 1 (i + 1) has o-rank p’ in .Y(o-rank(o) = )uI is defined by: )o( = 0 
if (T has only countably many immediate extensions; (cr( = sup(y + 1 1 o has un- 
countably many immediate extensions of o-rank r}, otherwise). 

But now the possible tags of the nodes u(r), y <length(v) form a set in L,. 
Hence we can assume that @ actually specifies the value of v(y)(i) for each y, i as 
either Cf(-y, i), 6) or cog (for some 6 <ai). Now it is clear that these conditions on 
0(-y) can be satisfied by some f in 3’+. But together with the sentences in (*) 
provable from @ this completely characterized the type of f in Y“‘l. Thus 
LP”l b@(J p) and we are done. Cl 

Remarks. (1) An alternate proof of Claim 2 is provided by a generalization of 
Steel forcing [15]. 

In this generalization one forces over L, with countable subtrees of w:O tagged 
with tags of the form m or p, p <(w. The further restriction is that a node tagged 
with a given tag must have infinitely many immediate extensions with the same 
tag. However, when a condition is extended, extensions of old nodes cannot be 
added unless they have smaller tag ( 00 < m, P< 00, Pl<PZ iff Pi<PJ. 

The resulting generic tree is isomorphic to .Y,. A version of Steel’s retagging 
lemma is needed to argue that a generic tree will preserve the admissibility of CL 
The argument is similar to the construction used in proving Claim 1. 

(2) There is a version of Theorem 9 when w1 is replaced by K, K regular. The 
notion w-admissible becomes <K-admissible (defined in [7], page 2). The ordinal 
O,,,(m) is replaced by O,,(h) = the least ordinal not in <K-HYP(n), the least 
<~-admissible set above 686 The ordinal o-rk(n) becomes the ordinal of the 
Scott analysis of Iuz in X_. Finally the tree used in Theorem 9 is replaced by the 
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following tree: 

Y = {(to, . . .,t,)IEach ti=ocv or (0, y, 6) for some 6 < y < K and 

OGi<j<n -+ (a) t, =my, 

or (b) G = (P, Y, S)ti = (P’, Y’, a’), P’ < P, 

or (c) 4 = (P, Y, s)tj = (P, Y, S’)>. 

One argument of Theorem 9 will carry over to the present context. Alterna- 
tively a proof can be given using an appropriate generalization of Steel forcing. 

(3) In case (Y is a successor o-admissible, cx = /3’, then Y as defined in Theorem 
9 is isomorphic to a p-recursive structure. See [9]. 

2. Compactness 

Theorem 9 is suggestive that a reasonable model theory does exist for o- 
admissible fragments of Pz’,~. The difficulty of course when dealing with uncount- 
able languages is that special care is needed to preserve consistency at a limit 
stage is a Henkin construction. The fact that the tree Y of Theorem 9 can be built 
by an w-closed forcing construction (see Remark 1 of the previous section) is 
suggestive that this difficulty can be overcome in special cases. 

The close connection between Henkin constructions and forcing constructions 
was noted in [ll]. The idea is that a Henkin argument can be viewed as the 
selection of a generic object over the canonical consistency property for the 
theory, viewed as a partial ordering. Our compactness theorem is proved by 
showing that for appropriate theories an o-closed consistency property can be 
constructed, thus allowing for the existence of a ‘generic’ model (when consider- 
ing fragments of size wl). The key to this o-closure is the assumption that we are 
dealing with an ‘effectively scattered’ theory (defined below). 

We now proceed to details. Fix an w-admissible ordinal (Y of cardinality ol. 
Our compactness theorem deals with certain C,(s)-theories over the fragment 
2 awl = Ye,,, n L,, where s is the function with domain L, given by s(x) =x0. It 
will be important to consider structures which are closed under the formation of 
‘limit types’, w-closed structures. For the purpose of the next definition recall the 
equivalence relation from Section 1. For p < cx it is definable by an Y’_,-formula. 

Definition. 6% is o-closed (for LX’_) if the following holds: Fix p < CY. Suppose we 
are given for each n a sequence m, from I!lXl of length Y,, < ol. Suppose that for 
i <j, -yi <q and mi - p mj r yi. Then there exists m of length y = Ui yi such that 

mi -p m 1 yi for all i. 

Our model theory for LX?_,, is based on w-closed structures. Fortunately, in 
many cases w-closed models can be found (see Section 3). 
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Definition. Suppose T is a theory in ~37~~~ and p <c-w. A T-consistent P-type is a 
set of formulas p(x) in Yfi, such that: for any a-finite T,r T there is an o-closed 
model YJZ of T,, m from \rnZ\ with p(x) = {4(x) E Zepw, 1 %R1J 4(m)}. We let 
S,(T) = {T-consistent P-types}. 

Notice that our notion of type is defined semantically in terms of o-closed 
structures. For appropriate T a syntactic definition (in terms of proof-theoretic 
consistency) is possible. 

The main hypothesis we impose on T is that S,(T) be small, in an effective 
sense. This hypothesis comes in two parts. First we insist that S,(T) E L, for each 
/3 <(Y and we can effectively determine an a-finite T, c T such that S,(T,) = 

S,(T). In the second part we say that the T-consistent @-types are all eventually 
isolated (in the sense of Cantor derivative) and the way in which this comes about 
coheres over a closed unbounded set of fi’s. The precise definitions follow. 

Definition. Let (Tp J/3 <a) be a Z,(s)-increasing sequence of a-finite subtheories 
of T such that T = Up Tp. Then T is thin if: 

(a) S,(T)gL, for all p<cy and the function P-S@(T) is Cl(s). 
(b) For some Z1(s)-function g : cx -+ Q! we have S,(T) = S,(T,,,,) for all /3 <a. 

Definition. p E S,(T) is isolated if for some +(x)E p, p is the only member of 
S,(T) such that 4 E p. Then inductively define: 

S;(T) = {p E S,(T) 1 p is isolated}, 

S;(T) = {P E S,(T) 1 f or some 4(x> E p(x) if 4(x) E q(x) E S,(T) 

then either q = p or q E S:‘(T) some y’ < r}, y >O. 

Then T is P-scattered if S;(T) = S,(T) for some y. In this case, if p E S,(T), then 
the rank p is /p( = least y s.t. p E S;(T) and the @-rank of T is sup(lp( 1 p E S,(T)}. 

The notion of scattered first appears in [12]. We shall need to assume that T is 
p-scattered in a very uniform way, captured by the next definition. If F is a finite 
set of variables and p E S,(T) then p r F denotes that element of S,(T) consisting 
of those formulas in p all of whose free variables belong to F. 

Detinition. T is effectively scattered if T is thin and for some A,(s)-closed 
unbounded C G Q! : 

(a) /3 EC+ T is p-scattered with p-rank<w,. 
(b) p1 < &, both in C + each p E S,,(T) has a unique extension q E S,(T) with 

the same free variables as p s.t. for all finite F, jp 1 FI = \q 1 FI. 

Theorem 11. Suppose (Y is o-admissible and has cardinal& ml, s : La -+ La is 
defined by s(x) = Y”. Suppose T G Y_,, is an effectively scattered Z,(L,, s)-theory. If 
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every a-finite T,c T has an w-closed model, then T has an o-closed model a such 

that 0,(9X) s (Y. 

[The second clause in the conclusion (O,@X) 6 CX) is important in applications. It 
is our version of ‘ordinal pinning’ in this context (see [2, p. 1051.1 

Proof. As we remarked earlier our proof is a forcing argument. First note that 
there is a A,(l,)-collection of 3’,_-sentences asserting that “the universe is an 
o-closed structure”. That is for each p < a! we can form a sentence & expressing 
the property displayed in the definition given above of an o-closed structure and 
the operation /3*& is A,(L,). By our hypothesis on T we can assume that T 

contains all of these sentences &. Indeed, adding them to T does not disturb the 
existence of an w-closed model for each a-finite T,G T nor does it change the 
sets S,(T). 

Fix an or-sequence do, d,, . . , d,, . . . of new constants and let 2 be the 
language obtained from 6p by adjoining them. 

Let C be as in the definition of effectively scattered for T. We assume that 
or< p2 in C + f&(T) E LPI (see definition of thin, part (a)). For any 0 <a, 
p E S,(T) we let p(d) denote the collection of gtiw, formulas obtained by replacing 
each variable x7 by the constant d, in some formula 4(x) up. Then 9 = 
{p(d) 1 p E S,(T) for some p E C}. Given p E S,(T) let x(p) denote exactly those 
free variables x., appearing in p(x). Then we write q(d)sp(d) if: 

(a) p(d), q(d) E 9, P E &,V), q E S62(T), PI s A. 

(b) q 1 x(p) is the unique extension of p in S,(T) with the same free variables 
as p s.t. for all finite F, 1q 1 (x(p) fl F)] = \p r Fj. 

Thus when a condition is extended more information is given about a possibly 
larger collection of constants, subject to ‘preserving rank’ on any finite set of 
constants. We use S(p) to denote {p(d) E 8 ( p E S,(T)} and 9, = lJp,<p ‘Pa.. 

Lemma 12. If p(d) E S(p), p < 6 E C and d, is a constant, then there is q(d) s 
p(d), q(d) E S(p) such that d, is mentioned in q(d). 

Proof. By (b) in the definition of effectively scattered for T, we can choose 
G(d) <p(d) in S(p). Recall in the definition of thin for T, part (b), that there is an 
ordinal g(p) s.t. S,-(T) = s~(T~(p)). Since 4 E S,-(T) we can pick a model n of TgCpj 

and m from IZEn( s.t. YJIi=b(m) for each 4(x) ~4. If xv is not included in 8 also 
choose an arbitrary m, E \2J2\. Then let q(x) = {G(x) E 6pk,j Yell= $(m, m,)}. Then 
q(d) <p(d), q(d)E9’(p) and d, is mentioned in q(d). q 

Lemma 13. 9? is countably closed. (Hence, there exist P-generic sets over L,.) 

Proof. This is where part (b) in the definition of extension is crucial. Suppose 

p,(d) 2 p*(d) 2. . . and let d,, = those constants in d appearing in p,,(d). Let 
p,,(d) E S,“(T) and /3 = l_l, /3,. then p EC. We show that U, p,,(d)E S,(T). 
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Consider pi(&). By (b) in the definition of effectively scattered for T, pi(d,) has 
a unique extension p,(d,) E S,(T) s.t. jp1 1 FI = 1fi1 1 F\ for all finite F. Consider 

p,, I d,. Again, p,, 1 dl has a unique extension fi,,(d,)E S,(T) s.t. 
Ip,, 1 (x(pi) n F)j = If?,, I FI for all finite F. But since p,, <pi we have 

IP,, r MPJ nFI = IPI r FI. thus i%,(h) = h(h). TINS p(dJ = U, P,, 1 dI is an ek- 

ment of S,(T), p=~p,, r d, for all n. 

For each n > 1 let x,, = x(p,,)-x(p,_J. Then for each n the sentence 

3x,. . * 3x, A PnkL x2>. . . , q,,) must belong to p (as it belongs to pn r d,). But T 

contains axioms which assert that the universe is w-closed. Thus since any a-finite 
T,,E T has a model Y%Q with ml from lroZ\ s.t. YJ2l~/j p(mJ, there is such a model 

also satisfying the Sth instance of w-closure, producing m.,, m3, . . . , from IY.J2I st. 

mbA\, p&4,. . . , m,,). (It is easily checked that m -@ n -+ (YJI, m) =,=+ @R, n).) 

Thus lJ, p,, is an element of S,(T). But as before it follows that for any n, 

Ip,, 1 FI = \p 1 x(p,) fl FI for any finite F. Thus p sp,, for all rt. 0 

It is now clear that if G is g-generic over L,, then lJ G defines a complete, 

Henkinized theory in g_, containing T. Thus U G gives rise in the usual way (by 

taking equivalence classes of constants) to a model Y& of T. 

Let G be P-generic over II,. We conclude the proof of Theorem 11 by showing 
that L,[G] is admissible. (This suffices as %X$‘l E L,[G].) As is typical of class 
forcing constructions, it is important to bound the amount of the partial ordering 
needed to decide sentences of bounded rank. Terms, ranked formulas, formulas, 
forcing are defined in the usual way (an elegant treatment is to be found in [IS]). 

Lemma 14. Suppose p, q E 9 and p n qa+,, = q n Tp,o, where p, = yth element of 
C. If 4,(G) has rank <y, then pll-r$(G)Hqlt-G(G). 

Proof. If y = 1, then +(G) has rank 0. A typical such b, asserts that e(d) E G for 

some 4 E 2,. But p n J??_ = q n 2, so we are done. 

The proof is by induction on rank(&(G)). The only interesting case is 4,(G) = 

-9(G). Suppose pll--4(G) but qlf-e(G). Pick y’<y such that rank($(G))<y’. 
As qlY_-4(G) we can choose r sq, r II-+(G). Let r = r(dl, dJ where d, are the 
constants mentioned in q. Also let r, = r n ~D,,wl. Now q(d,) contains the sentence 

3x2 /\ ro(dl, x2). This sentence belongs to 2Za+1 since S,?,(T) E L.,?. By hypothesis 

p contains this sentence. Then we can choose t <p such that t n 6p,+,, = r,. But by 

induction we must have t It- +9(G), contradicting p Ii- --I/J(G). q 

For simplicity we write p =y q if p n%+, = q n ~??a+,~ (p, = rth element of C). 

An immediate consequence of the preceding lemma is that the relation plt4(G) 

where 4(G) is ranked is Z1(L,, s). For, this relation is given by an induction which 

is X1 with the possible exception of the negation case: 

pit--& ($ Vqsp -(qlM). 



Model theory for L_I 115 

But by Lemma 14, if rank(4)<y, then we can write: 

and the function ~-9’~ is Z,(L,, s). 

Finally we are prepared to show that L,[G] is admissible. It suffices to show 
that if 4 is A, and p ItVx 3y 4(x, y), then p IkVx, 3y, 4(x6, ya) for some 0 <cr. 
Let Ya consist of all terms for naming elements of L,[G]. Choose y0 so that 
y. = p,,, p together with the parameter in 4 belong to L,,, and rank(4) < yo. We 
may define a continuous C,(L,, s) sequence y. < yi <. 1 . < ?/s -=c. . * of length oi 
so that ys = /3,, for 6 20 and: 

(*) 
For all (T E YY,, q <p, q E 9PY6 there are 

r E F%+,> rsq, rE gY,+, s.t. r k4(c, 7). 

The reason for this is that p I!-Vx 3y 4(x, y) and the relation p II-4 for ranked 4 is 
-Xi(s). Let /3 = Us ‘/s < ff. 

claim. pkh, 3Y, 4(x,, Yp>. 

Proof. Choose u E Ya, q sp. Let q = q n 6pso,. It is enough to prove: 
Subclaim. For a closed unbounded set of 6 < ol, q sq fl g__,, s p. 
For, given the subclaim choose 6 < w1 so that q s q. = q n %,+,, s p and u E .Yy,. 
Then by (*) there is rosqo, r. E P_+, such that roll-+(a, T). Choose r< r,, 

r E S,(T). Then r 1 x(q) = 4, as both q and F 1 x(q) are extensions of q. in S,(T) 
with the same free variables as q. and preserving rank on finite subsequences. But 
then if we write ro= ro(xl, x2), n, =x(q), then 3x, A ri(xi, x,)E~ sq, where 

r1==(rn.&6+1) 1 ( xi, x,). So q U rl is contained in some T-consistent type r sq. 
Now r,(d)< r,(d) and 4(a, T) has rank <-ystl. As r =ys+l rl and rI Il_4(a, T) we 
have r ll-4(a, T). We have shown p ItVx, 3y, 4(x0, ya). 

Proof of Subclaim. For any 6 < wi, q fl ~eysol sp. For, p has some extension 
p sp, p E Sys(T) and p has some extension [E S,(T), (where q E S,-(T)). But by 
uniqueness (see part (b) of effectively scattered), P= 1 x(p) = q b x(p) and so 

P 1 x(p)=(q nxYSW,) 1 X(P). so +%&,,,~P. 
To prove the first part of the subclaim it suffices to show that for any finite 

Fc_x(q) there are closed unboundedly many 6 <ol such that (9, 1 F( = 14 1 F(, 

where q6 = q fl _Yz’~,~. (For then if one lets D G wi be the intersection of countably 
many closed unbounded sets, one for each finite FE x(q), then 6 E D * q SC!&.) 

By the definition of effectively scattered, part (a), Iq r Fl < wl, 

We prove by induction on y < wi that if r is a p-type in a finite set of free 
variables of rank y, then r, is a ‘ys-type of rank y for a closed unbounded set of 
6’s. First note that for 6 large enough we must have that r, has ?/S-rank <y. 
Otherwise for unboundedly many 6 we can choose sstl E S,+,(T) of -y,-rank y 
such that sg = r,, s~+~ # ratI. Then ss+i has an extension to a P-type S,,, of rank y. 
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This shows that r is a limit of P-types of rank y, contradicting the hypothesis that 
rank(r) = y. 

So we may assume that y > 0. For each y’ < y and 6 < wI choose a P-type s&t 
of rank y’ such that r, c s;,,. By induction we can choose closed unbounded sets 
C$ such that p E C;’ + IS;,, c-39 ySwl\ = y’. Let C” be the diagonal intersection of 
the sets C$, and C = n,, C”‘. Then if p is a limit point of C we have that Ir,_ls y. 
By taking an appropriate final segment of C we obtain our desired closed 
unbounded set. 

This completes the proof of Theorem 11. 0 

Corollary 15 (to proof). Suppose T is a .X1(s) effectively scattered theory over 6p_ 
with an w-closed model. Suppose x E w-HYP(%R) whenever XV has cardinality wl, 
m is an w-closed model of T, O,(m) s (Y. Then x E L,. 

Proof. Build two mutually generic sets Gt, G2 for the forcing described in the 
proof of Theorem 11. Then L, = L,[G,]tl L,[G,]. But any pure set in o- 
HYP(%!o,) must belong to L=[G,] (as fmzy 1 does); similarly for G,. Since Y.f&, 
YJ&, are o-closed models of T and 0w(9J?2G,), 0,(9J&J <(Y we are done. Cl 

This is our version for 6p_ of the Barwise hard core theorem (see [2, p. 1131). 
It will be of importance in our characterization theorem for pure part (w- 
HYP(YJI)) given in the next section. 

The Scott isomorphism theorem says that the isomorphism type of a countable 
structure is determined by its 9, theory. The analogous result fails for structures 
of size or: There are Z_,- equivalent, non-isomorphic structures of size oI. (The 
first example is due to Morley. A simple example is: take any two non-isomorphic 
normal o,-trees.) 

However this cannot happen for w-local structures. 

Definition. A structure m is o-local if whenever x =(x,, x2, . . .) and y = 
(yt, y2,. . .) are o-sequences from IYXn(: 

(mm,x I~kxo,<~,y !F) f or all finite F -+ (!J& x) =pw1 (I%!, y) 

Proposition 16. If %JI Y._, X,iIJI w-local, YJI and YI have cardinality q, then 
Yl2=%. 

Proof. Let (Y = w-rk(YJI). For m E I!?X\‘“l and n E 1%1’“1 define m -n if (31b4”,(n) 
(where 4”, is defined in Section 1). Then 

m - n +Vm’ Zln’ (m, m’) - (n, n’) and Vn’ 3m’ (m, m’) - (n, n’). 

Note that % is o-local since % -_ m (and the (m, w,)-type of (m, x) is expressi- 
ble by a single Z’_, sentence), Now define sequences m, G m, C. . . c m, G. . . 

and n,~nl~~~ .C n, c. . . of length oI such that m, -n, for all y and IJ, m, = 
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jYJ2l, IJ, n, = I’;nl. This is possible since by w-locality, m, - ny for all y <A -+ 

U Y<k my -U y<h nv, for limit X co,. Then we have defined an isomorphism 

between 2IR and % by corresponding m, to n,. Cl 

The property w-local blends nicely with Theorem 11. Define n to be w-local 

for =%,, if YJ? satisfies the definition of w-local with =_+ replaced by saw1. Then 

Theorem 11 goes through if one replaces ‘o-closed for _Y_,’ everywhere with 

‘o-closed and o-closed for Z’_,‘. Moreover the model produced in the conclu- 

sion is in fact o-local as it has w-rksa. In addition, condition (b) in the definition 

of effectively scattered can be replaced by the simpler: 

(b’) pi <&, both in C + each p E S,,(T) in finitely many free variables has a 

unique extension 4 E S,,(T), with the same free variables as p, of the same rank. 

The only reason for not presenting Theorem 11 in this way is to allow for the 

possibility of applications where o-local models cannot be obtained. 

3. Applications 

There are a number of interesting examples of effectively scattered theories. 

We use Theorem 11 in this section to study them. 

Example 1. Consider the structure 9 used in the proof of Theorem 9. We show 

how 9 can be described by an effectively scattered theory. For any tree Y the 

w-Cantor rank of u E S is defined by 

lalw = 0 if (T has at most countably many immediate 

extensions in .Y, 

lalw =sup{@ + 1 1 CT h as uncountably many immediate 

extensions of w-Cantor rank /3}, otherwise. 

If la]_ is not defined by this definition for cr E ~7, then we write 1~1~ = m. For each 

/3 <cr there is a formula &(x) (in the language of <) such that if 9 is a tree, then 

Y = (S, s) k&(x) if and only if 1x1, = f3. The axioms of the theory ‘Ii are: 

(a) s defines a tree of depth w, with a unique top node 8. 

(b) &p(x) + 3 exactly X,-many s.t. &s(y) and y is an immediate extension of x, 

for each p <(Y. 

(c) -&P(p)), for each /3 <CL 

Tr is effectively scattered: the P-type of a countable sequence (x, I y c-y,,) is 

determined by the formulas “x? is on level n”, n E w; “xv, sxY2”, yi, y2< yO; 

&(x,), P’C 0, y < yO. From this, the thinness of Ti follows easily. The P-type of 

a single element x has rank 0 if y&x) holds for some p’<@; otherwise, the 

P-type of x has rank 1. Given the Pi-type p of (x, / y< yo) and p2>f3i we can 

define the unique &-type 4 of (x, 1 y<yo) satisfying (b) in the definition of 

effectively scattered as follows: q contains p, 4 contains -46(x,), p <&, 
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whenever -4@(x,) belongs to p for all p < &. (In this way if p 1 x, had rank 1 
then so does q 1 x,.) The closed unbounded set C consists of all limit ordinals. 

Of course 9 as defined in Theorem 9 is a model of Tt. But any model Y of I’, 
of cardinality oi such that 00(y) ~a must be isomorphic to 57 Indeed, P, must 
have uncountably many immediate extensions m such that lo), = ~0, as otherwise 
w-HYP(Y) contains (as an element) the set of all nodes u on level one s.t. 
Iulo = a for some /3 <a. The function u++-l~\~ on this set is _X1(~-HYP(3’)) and 
so is bounded. But this contradicts the assumption O,,,(y)<,. An identical 
argument shows that any node c E Y s.t. 1~1~ = CC has uncountably many im- 
mediate extensions with this property. So Y = 3. 

Theorem 11 implies that T, has a model Y such that O,(Y) ~a; so O,(y) so. 
This gives another proof of the first part of Theorem 9. 

Example 2. We define the pure part of w -HYP(!E) to be w -HYP(m) 0 V 
(={x E o-HYP@J2) 1 Transitive Closure of x contains no urelements}). Suppose 
A = pp(w-HYP(%X)). Then A is resolvable; i.e., there is a function f: ORD(A) -+ 
A s.t. (A, E, f) is admissible and A = U Range(f). For example, we can let 
f(P) = Lp@J2)rl V A is also closed under the function s(x) = xw and is in fact 
o-admissible. 

Theorem 17. A = pp(o-HYP(ZJ2)) f or some %J2 if and only if A is w-admissible 
and resovable. 

Proof. We can assume that A has cardinality or. Choose f so that (A, E, f) is 
admissible, f : ORD(A) + A, A = U Range(f). We also assume that f(0) # $3, the 
p(p)‘s, /3 <(Y = ORD(A), are transitive, increasing, closed under s(x) = x”’ and /3 
limit + f(P) = lJ {f(/3’) 1 /3’ < p}. Now Theorem 11 and Corollary 15 apply equally 
well to (A, E, f) as to (L,, E, s). (The o-admissibility of L, together with its 
resolvability sufficed.) So by Corollary 15 (applied to (A, E, f) it suffices to define a 
X:,(A, F, f&theory T2 (over A fl L-J such that: 

(a) T2 is effectively scattered and has an o-closed model. 
(b) Whenever ‘&, ‘23, are models of T2 of cardinality wr O,(m,), O,(!?J&) both 

~a, then !?J$ =!&. 
(c) A c w-HYP(ZlJ2) whenever mk T2. 

For then, let %l? be a model of T2, O,(m) sty. By (c), A cpp(w-HYP(%)). By (a), 
(b) and Corollary 15, pp(o-HYP(Zl2)) E A. 

We now define T2. Let 57 be a tree. For /3 <cy and x of we define lo\= (/3, x) 
and lo\= p by induction on p +rk(x): 

\oj = 0 iff IO\= (O,@) iff u has only countably many 
immediate extensions on 27, 

Io( = /3 iff every immediate extension T of (T has Ir\ = y 
for some y < p, and u has uncountably many 
immediate extensions T s.t. )71= y iff y < p, 
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ICI= (@, x) iff every immediate extension r of u has 171= y (some 

r<P) or Id=@, 1 ( y some y E x), and u has uncountably 
many immediate extensions r s.t. ITI= y iff y < fl and s.t. 

Id = US Y) iff YE x. 

Thus the relations la\=@, /al-(& ) x can be described by formulas &((T), 
4(0,X.(~) in Z_,,,, f3 A. We write IuI = m if u is not defined by the above definition. 
the axioms of T2 are: 

(1) s defines a tree of depth w, with a unique top node $7. 
(2) &(cr) + 3 exactly X,-many immediate extensions T of (T s.t. &(T), for each 

p<a. 
(3) +(p,Xj(cr) -+ (every immediate extension T of fr satisfies &(T) or c$(~,~)(T) for 

some r<P, YEX), each p<cy, x~f(P). 
(4) fl has uncountably many immediate extensions T s.t. &(T) and uncountably 

many immediate extensions T s.t. &p.Xj(r), for each p < (Y, x of. 
(5) If Iglw = 0, then ~@J(T) or 4(p,,XJ((+) holds for some 0’~ p, x of, each 

p<CY. 
A model of T, is described as follows: Define a tug to be something of the form 

(P, a>, mg, (p, x, S) for some 6 <oi, p <cr, x of. Then 

912 = {(to, . . . ) t,,) [For all i, ti is a tag and for O<i<jsn: 

ti =mg for some 6 -+ ti = (p, 6) for some 8, 

ti = (/3,6) -+ ti = (p’, 8’) for some /3’ < fi or (p, 6’) for some 6’ < w, 

ti = (p, X, 6) -+ ti = (p’, 6) for some /3’ < /3 or (p, y, 6’) for some y E x}. 

p-types are defined over Z’_, nf(P). Assume ORDCf(P)) = p. The P-type of a 
countable sequence (x, 1 y < yo) is determined by the formulas “x7 is on level n”, 
n E 0; “xv, c xy2”, 71, Y2<Y& d&J> P'<P> Y<Yoi b.x,(X,), P'<P> X~f(P'), 

y < yo. From this follows the thinness of T2. The P-type of c has rank 0 if &,(a) 
or +(p.,Xj(u) holds for some p’< p; otherwise the P-type of u has rank 1. Assume 

Pl<PZ and ORD(f(@,))= pi, ORDCf(&)) = p2. Let p be the Pi-type of 
(x, / y < y,J. To satisfy (b) in the definition of effectively scattered define a &-type 
q zp as follows: q contains -&(x,), -4 (p,X&) for all P < P2, x E f(P) whenever 
-&(x,), -&,X,(x,) belong to p for all p <pi, x of. The closed unbounded 
set C consists of all limit ordinals 0 such that ORD(f(P)) = /3. 

Thus property (a) is satisfied. Property (c) follows as the E-structure of x is 
coded into y below any node u satisfying $(p,Xj(u), for any y k T2. The decoding 
can be done inside w-HYP(y). 

Lastly we must show that ‘5?& -s whenever V?&, mDz, are models of T2 of 
cardinality w1 satisfying O,(m,), O,,,(%J&JS,. We in fact show that ?l& ~9~. 
Axiom (5) of T2 guarantees that 11)2i, T2 have the same structure on nodes u s.t. 
1~1 #to. Note that in mm,, g must have uncountably many immediate extensions u 
s.t. Iul = x, as otherwise w-HYP(m,) contains (as an element) the set of all nodes 
u on level 1 such that 1~1 = p or (f3, x) for some /3 <(Y, x of. The function 
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U-IV\ on this set is Z,(w-HYP(%,)) and hence bounded. This contradicts the 
assumption 0, @X1) < (Y. Similarly, any node u ~‘$2~ s.t. ((~1 = CQ has uncountably 
many immediate extensions with this property. So 2Rn, = T2. This completes the 
proof of Theorem 17. 

Example 3. In [lS] it is shown: For each h <wl there is Tsw and 17:(T)- 
sipgletons f, g such that f# L,(T, g) and g& L,(T, f). We show now how to obtain 
an analogous result one cardinal higher. Given h <02 we wish to obtain a tree 
Tso;c” and subtrees T,, T1 of T such that T,, T1 are each unique solutions to 
n,(L,l, T&formulas but T,$ L,(T, T,) and T1$ L,(T, To). It seems to be neces- 
sary in this context to work with subtrees T,,, T, rather than single paths fO, f1 (as 
in Steel’s result). 

We pick h to be w-admissible, A <w2. Our tree T in this example will be 
isomorphic to the T of Theorem 9. A tree Y is full if each node of Y has exactly 
o1 immediate extensions. Our desired subtrees TO, T1 will be full subtrees of T. 
However to guarantee that T,, T1 are n,(L,,, T)-singletons we need to introduce 
more structure into our tree. 

Definition. Let - be an equivalence relation on a set S with w1 equivalence 
classes each of size wl: One equivalence class S, for each p <A and one 
equivalence class S,. We define a tree T3 as follows: A tag is something of the 
form (s, n), s ES, 12 E 0. 

T3 = 
I 
(to, . . . ) t,,) 1 each & is a tag and if i <j, then: 

(a) ti=(s,n), SE%, 

or (b) ti = (s, n), s E S, and b = (s, m) or (s’, n’) where s’ E U S,, . 
P’<P I 

Then 9: = (93, s-_, S fi>i<w where fi((So, 4, . . . , (s,, 4) = si. 
Note that we do not put the equivalence relation - into ST. Now let TO E IT31 

be defined by To = {(to, . . . , t,,) E IT31 1 ti = (s, n) for some s E S,, for all i}. 

Claim. TO is the unique subset of (T,( such that: 
(a) TO defines a full subtree of Y3 

(b) u = (to,. . . , &A f,,(o) E Rwdfo 1 To) -+ (+ E To. 

J?roof. (a) implies that we at least are talking about a subset of T,,. But (b) implies 
that all a = (t,,, . . . , t,) with fi((+) s S, for all i must be present (as any such CJ can 
be extended to one obeying the hypothesis of (b).). Cl 

We can also define ST* just like T,* except this time we have cog, *1 each with 
different equivalence classes. Moreover we insist that fi(a) E S, -+ ficl(a) E 

So3,UU pCA S, and fi(U) E S, -+ fi+l(a) E S, U UP<* S,. Then we get T,, T1, each 
uniquely characterized by properties as in the claim. 
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Now the structure (Sz, ?I’,,) can be described by a Z:,(s)-effectively scattered 
theory over Lhw,. This is done in a way similar to our earler examples. Moreover 
any two models rXn,, !?& of this theory of size wi such that O,(%l&), 0,(%&J d h are 
isomorphic. An example of such a model is (ST*, TO)_ 

However notice that for any term T(T) in 2’&,,,,, (Yz, T,)l=“If 7(To) is a full 
subtree of TX, then T(T,J s T,,“. So we may as well have added these sentences to 
our effectively scattered theory; thus these sentences are true in (.7;*, TO) (since 
this new theory has a model m of cardinality w1 s.t. O,(%J2)GA by Theorem 11, 
and since (Yz”, To) is isomorphic to this model). Thus T,b L,((.Y,**, To)). By 
symmetry T,,ff L,(.Yz*, To)). 

Finally collapse Y z* to a structure on oi, generically over L,((Yz*, TO, T,)), as 
in Proposition 7. This produces a tree TG on o;Cw, functions e: TG -+ w1 and full 
subtree T& T&. Pick (TIE pG and u, E T&, CJ~ and u1 of length >O. Then TOG is 
the unique full subtree T of TG s.t. o,,~ T and u = (r,, . . . , t,,) E T,, f(a) E 

Range(f, ] T) -+ (T E T. (Similarly for T&.) This is easily seen to be a I12(L,,, TG)- 

condition on T. Thus T?,, T& are II,(LW1, T,)-singletons. The generic collapse of 
ST* to wi did not damage the properties T,# L,((Yz*:, To)), T,kL,((Y:*, T,)) 

(see the proof of Theorem 12 in [6]). 

To get II,(L,,, T,)-singletons use the fact that any il,(L,,, T,)-singleton X can 
be made into a ZI,(Lml, T,)-singleton by considering (X, f) where f is the natural 
Skolem function for the &-property characterizing X. Thus we have proved: 

Theorem 18. For any h < w2 there are T c w1 and ZI,(L,,, T)-singletons T,, T1 G 

w1 such that TO q! LA (T, T,) and T1 $ L,(T, TO). 

Example 4. We provide only a sketch of how the method of Example 3 can be 
amplified to obtain an analogue for w1 of Steel’s result that Al-CA + Xi-AC. 
A:-CA for subsets of ol, and Z:-AC,+ are the natrual generalizations to w1 of 
these principles. 

Example 3 constructed two independent full subtrees. One could equally well 
construct o,-many full subtrees, one below each node on a full subtree of the 
entire tree T. These subtrees are very independent in that given countably many 
of them TO, T1,. . . , the only full subtrees of T in w-HYP(T, TO, T,, . .) are 
subtrees of Ui Ti. Moreover the only full subtrees of T in o-HYP(T, TO, T1, . . .) 

satisfying a condition (b”) like (b) in Example 3 must contain some Ti. 
Once again we generically collapse T together with its ‘full subtree’ of full 

subtrees to oi, to get TG, Tg, Ty, . . . as subtrees of w;“. (Everything is done so 
as to preserve the w-admissibility of (Y = 0: = least admissible >w, .) If we let 

M=(UW,(T,,Y)IY is a countable collection of trees TyO, TyI, . . .}) 1-19(q), 
then Ml=Vy <o, there exists a function f: y 1-‘(Full Subtrees of TG obeying 
(b”)), but Mb -3f : w1 ‘-I - (Full Subtrees of TG obeying (b”)). So Ml=-J$:-AC&. 

But as in [6] we can use Theorem 11 to show that any X z o1 which is z:(M) in 
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parameters mo, ml,. . . is X:(L,(T,, mo, m,, . . .) n 9(q)) and hence It&A:-CA. 
Thus our result is: 

Theorem 19. There is ME 9(q) which satisfies A:-comprehension for subsets of 
wl and full countable choice (M is closed under countable joins) but Z:-AC,, fails 
in M. 

4. Further results and open questions 

(1) As is shown in [9], the rr,(I+J-singletons (in L) are constructed cofinally 

in the least stable ordinal Q! > q. This suggests that the optimal form for 
Theorem 18 is: If T c w1 and A <first T-stable greater than q, then there exist 
II,(LW1, T&singletons To, T, such that To 6 L,(T, T,), T1 $ L,(T, To). Is this true? 

(2) [9] provides, for each cardinal K, a K-recursive structure m of .%,,-rank 

K + = next admissible after K. 

(3) What is the proper definition of <K-HYP(%R) when K is singular? What is 
the model-theoretic proof based on it of the result of [8] giving a sufficient (and 
necessary) condition for an admissible (Y of cardinality K, to be the first admissi- 
ble relative to some XGX,? 
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