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Introduction

The development of compactness and completeness theorems for countable
fragments of L., initiated in [1], has had numerous applications throughout logic.
{See for example, [2], [10], [5].) In contrast, the model theory of fragments of
L., is entirely undeveloped. The essential reason for this is that well-
foundedness is expressible in L., providing a serious barrier to any kind of
general compactness result.

It is our work in [7] that led us to believe that compactness and completeness
results do exist for (uncountable) fragments of L., and that indeed these results
have useful applications. In that paper we extended a result of Sacks [14] on
countable admissible ordinals to the uncountable case. Sacks’ result can be proved
by either forcing or by compactness methods. We have discovered the uncounta-
ble analogue of the simplest of the forcing proofs, that based on Steel forcing [15].
Thus it was natural to search for an uncountable analogue of the compactness
methods as well. It is by analyzing the essential nature of uncountable Steel
forcing that we were led to our compactness theorem.

We begin our study in Section 1 with a discussion of elementary equivalence for
L..,,. The Scott analysis for L., has a natural analogue for L., and thus leads to
the notion of w-Scott rank of a structure. Determining a canonical bound on this
notion of rank leads to the definition of w-HYP(IR), the smallest w-admissible set
above MM, in analogy to Barwise’s HYP(R). Nadel’s theorem [13] easily goes
through in this context: w-Scott rank(IN) < w-HYP(EIR) NORD. We show that this
bound is best possible in that for each w-admissible « there is a structure IR such
that w-Scott rank(IMM) = w-HYPER) NORD =a. The proof is based on our
generalization of Steel’s forcing, though we present here a model-theoretic
argument. This also gives a new and simpler proof of a result of Friedman [7]: If «
is w-admissible, w; <a <w,, then a =least X-admissible for some X <c w,.
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Other basic facts concerning HYP(IR) carry over naturally to «-HYP(IN): The
relations on [IR| which are w-inductive over HC(IRN) coincide with those X;(w-
HYP@EN)). And, o-HYP(P) NORD =least a such that N is a-recursively satu-
rated for L, NL,.

Our compactness result is presented in Section 2. It is obtained by abstracting
some of the properties held by the theory of the structure used in Section 1 to
show the optimality of the canonical bound on w-Scott rank. The compactness
theorem applies to certain X,(s)-theories over w-admissible L_, where s: L, — L,
is the function s(x}=x“. We also restrict ourselves to w-closed structures;
structures IR where the countable limit of types realized in I is realized in M. A
sort of ‘ordinal preservation’ is obtained in the sense that the model M produced
obeys w-HYP(IN) NORD = «. We also provide in Section 2 generalized versions
of the Barwise hard core theorem and the Scott isomorphism theorem.

Section 3 is devoted to applications of the results of Section 2. As an illustration
we first reprove the main result of Section 1. In a second application we
characterize those admissible sets of the form pure part (w-HYP@ER)) as the
w-admissible, resolvable ones. This is in analogy with our earlier result in [6]
characterizing pure part (HYP(IR)). Our final applications deal with uncountable
versions of definability-theoretic results first obtained in [15] in the countable
case. For example, we show that for some subset T < w, there are m;((L,,, T))-
singletons A, B < w; such that A is not definable over (L, T, B) and B is not
definable over (L, , T, A).

Our paper ends with a discussion of some further results and open questions.

19

1. 0-HYP@N)

We fix a structure 9t for a language £ of finite similarity type. The £, -theory
of I can be expressed by a single sentence ¢ € £..,,,. We describe how this is
done using an analogue of Scott’s analysis of £, ~equivalence.

Let x,y,z, x',y', 2, ... range over |I|<*:. We define a sequence of relations
~g on members of [IM|=*: of the same length by induction:

x~oy iff x, y realize the same atomic type in IR,
X ~gy y iff Vx' Ay (xxx" ~zy*y)
and Yy’ 3x' (x*x' ~5y*y’),
x~,y iff x~gy for all B<<A, A limit.
In the above * denotes concatenation of sequences. Let
w-tk() =least o s.t. VxVy(Xx ~, y =X~ 1 ).

As the ~; define successively finer equivalence relations on [IR]=“1 it is clear that
w-tk(I) is a well-defined ordinal less than card(JIR|=<:)".
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The #.., -theory of M is captured by a sentence ¢ € £,,, (k =card(P[=)")
which describes the preceding induction. Thus we define formulas ¢%(v) for each
B, each x ||~ by

O(v) = A {¢(v) |  atomic or negatomic, IMF Y(x)},
¢ N (v)= (/\ Aw L., (v, w)) A (Vw V @L.(v, w)) ,

orx(v)= A ¢5(v).

B<A

Then the canonical w-Scott sentence of I, ¢(M), is defined to be:

&) = b5 AA VO (3(0) = d37'(v)  where a = w—1k(IR).

Proposition 1. Suppose Itk (IM). Then M, N are £, -equivalent.

Proof. Note that MEPL(y) iff x ~gy so certainly MEH(IN). We show that
MED(x) iff NEP(x) whenever REPI(x"), by induction on ¢. This is clear for
atomic ¢ by definition of ¢2. The only interesting case of the induction is
& =3Jv Y(v). Suppose METv (v, x) and NEPL(x'). Then choose y so that ME
Y(y, x). Now since NEVD ($5(v) — ¢3 7' (v)) and NEG(x'), there must be y’ s.t.
Nk (x"*y"). Then by induction NEY(y’, x') and so NEH(x’). The converse if
similar. Finally, since E¢§G, we have that IMEH iff NEG for all L., sentences
¢. O

Note. Proposition 1 and related results can be found in [4].

Nadel [13] provides a natural bound on the Scott rank of IR, rk(¥R), in terms of
admissible set theory: If HYP(IX) is the least admissible set above IR, then
k(@) < 0P = HYP(IR) NORD. We provide here the appropriate version of
Nadel’s result for w-rk(IN).

We begin by examining the connection between w-rank and saturation. Let us
assume V=L and that @ 2w, is admissible. We say that IR is «a-recursively
saturated for &, (=L., NL,) if for any A,(L,)-set @ of formulas of £, M
obeys:

Jv A &y(v, p) for all @y @, Dye L, — v A\ (v, p)

|<m

whenever p < |IR|=:. The next result is analogous to results of Nadel, Schlipf and
Ressayre in the case of £, (see Barwise [2,p. 143)):

Proposition 2. If I is a-recursively saturated for £,,,,,, then w-rk(P) <a.

Proof. Suppose x; ~, y, and we are given X,. We show that there exists y, such
that x, %X, ~, y1*y,.
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Notice that in defining z ~zy it would have sufficed to deal with sequences
from |IM| of length w (as any <w,-sequence from |IM| can be rearranged in
order-type w). Thus the relations x ~;y for 8 <a are uniformly expressible by
sentences in £, .

Let @(uy, uy, v,,v)={uy*u, ~gv,%v | B<a} and notice that for any P,<
D, byc L,, MEIv A\ Py(xy, x5, 1, v). Thus by the hypothesis on I, there is
y2€ M= such that x;*x, ~5y,*y, for each B<a. SO x;#Xx, ~, y;*y,. O

Thus a bound on -rk(IN) is obtained by considering the least a such that IN is
a-recursively saturated for £, . In case this ordinal is greater than w,, we can
generate it in a natural way using the theory of admissible sets. The next lemma
assures us that this is indeed always the case.

Lemma 3. No infinite structure is w,-recursively saturated for £,,,,, .

Proof. There is a formula ¢(vy,v,,...) of £,, which asserts that
W(vy, vy, .. ) ={(n, m)| Vyngm,  =vyn3m} is a well-ordering of w. There are also
formulas ¢, (v, vy, .. .), a<w;, which assert that W(v,, v,,...) does not have
ordertype a. Then @ ={¢p(vy, v, . . J}U{~,(v1, V2, .. .) | @ <@} is not satisfiable
but every countable &,< ¢ is satisfiable. [J

Now for any structure IR (of finite similarity type) define a new structure =
as follows: The universe of PM=*1 is M=* where M = universe(IR). If P is an n-ary
relation of IR, then P’ is a relation of M= where P'(f,, ..., f.) iff f;#® for all i
and p(f,(0), ..., f.(0). If F is an n-ary function of IN, then F’' is a function of
PL=1 where:

(F(f,(0), ..., £.(0))), f.#0 for all i

2, otherwise.

F,(fl""’fn):{

If ¢ is a constant of M, then (c) is a constant of P=“:. Finally, we add the
relation R({f, g) & fc g to M=,

Definition. o-HYP@E) =HYPER=*Y). 0, (N = 0(PM=) = HYP(IR=*) NORD.
Proposition 4. 0,(IN) = least a s.t. M is a-recursively saturated for £,,,,.

Proof. By a result of Schlipf (see [2, p. 143]), O(IR=*1) =least a s.t. M~ is
a-recursively saturated (for £,,). Thus it suffices to show that ¢ is a-recursively
saturated for £, iff M1 is a-recursively saturated (for £,,,). An a-recursive
set of £, formulas @ is easily converted into an «-recursive set of £, formulas
D' s.t. PMED iff M=EP’. To do this, one need only notice that the relation
P(f, g) © f(0) = g(B) is definable over PM=“: by an £, -formula for each 8 < w,.

Thus M=+ a-recursively saturated implies M «-recursively saturated for £, .
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The converse uses the fact that a>w,; to convert I~ FIved to WMk
Va<o, Hg | B<a) ¢™ (where ¢* is the conversion of ¢). This translates the truth

of an «-recursive set of &, formulas over L™ into that of an «-recursive set of
&.., formulas over M. O

In a similar way, we can establish a characterizing property of w-HYP(IR) by
appealing to a known result about HYP(IR).

Proposition 5. The relations on [IR| which are 3,(w-HYP(IN)) are those which are
defined by an %, -positive inductive definition over HC(IN) ={x e Vgr|x has

Coumume transitive clos ul'C}

Proof. By [3] the relations in question are those which are inductive over
HF=*1). But it is routine to convert £, -positive induction on HC(I) into
£ ...-positive inductions on HF(IR=“1) and conversely. [

Our main goal in this section is to show that our bound 0,(IR) on w-rk(IN) is
optimal. The first step in accompllshmg this is to first determine an important

I v OV N v QO RO N (Y | # AN S,
1

P T an
1ICLOS>»ary LUllulllUll On « SO l iat a =0 w \W t} TOI SUILLIC W,

Definition. An admissible set Agy is w-admissible if Agy is countably closed and is
admissibie with respect to the function s(x) = x“. The ordinal « is w-admissibie if
L, is w-admissible.

Remarks. (a) To say that Agy is countably closed is to say that (Ag)® S Agqp.

(b) The condition that Agy, is admissible with respect to s is taken to imply that
X € Agp—>s{x)e Agp.

(c) In case Agr= L{a)g it is enough that cofinality (a) > w, L(a)g; admissible
and closed under s in order that L(a)gy; be w-admissible. This is essentially shown
in Lemma 4 of [7].

»-HYP(IR

e
7oy v, W-I

~—

is w-admissible,
Proof. For any X< -HYP@R), let H(X)=23,-Skolem hull of X={ycw-
HYP@R) | y is the unique solution to a 3;-formula over w-HYP(IR) with parame-
ters from X}. Then for any X 2[IR[™*: closed under pairing, H(X) <;5, w-
HYP(): Suppose Iw ¢(w, py, . . ., , D) Is true in w-HYP(IR) where py,...,p. €
H(X) and ¢ is 4,. We may also choose A, formulas ¢, ..., ¢, and sequences
q,...,q, from X~ such that each p; is the unique solution x; 10 Iw; ¢;(w, q;, x;).
Any element of w-HYP(R) is definable over L{IR|™", 8) from [IR|~ together
with some element of ||, for some B <0,(IN). So, choose mgye |PM|=+ such
that for some B <0, Iw, wy,..., W, Xx1,...,X%, definable over L=, B)
from {IR[=, mo} such that é(w,x,,..., %), &1(Wi,qy, X)), - .., P(Wy, o, X,).
Then H(X) must contain the least such sequence (8, w, Wy, ..., Wy, X1, ..., X,) In
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the canonical well-ordering of those elements of w-HYP(IM) definable over
L(IR[=, B) from {{M|=*1, m,} for some B. Thus H(X)EIw d(w, py, . . ., p.)-

Now we take X=L(M~“, ;). Then H(X) is transitive: Let
m: H(X) = L(IR[=, B) be the transitive collapse of H(X).  is the identity on X
since X is transitive. But if ye H(X) is the unique solution in w-HYP@ER) (and
hence in H(X)) to some 3;-formula ¢(y, py,...,p,) where p;,...,p,€X, then
w(y) =y since w(y) must also be a solution to ¢(y, p,, . .., p.). Now H(X) is also
admissible above M= and hence H(X) = w-HYP(N).

We can now prove the proposition. The fact H(X) = w-HYPIR) gives a 3 (w-
HYP(ER))-surjection f of X onto w-HYP(IN). Moreover for any y € w-HYP(IR)
there is some B, <0, () such that y < H*(X) where H?(X) is the 3,-Skolem
hull of X in L(IR|=*, B). This gives a surjection f, of X onto y, f, € o-HYP(IR).
Now X is countably closed. Thus g:w— o-HYP(IN) implies g=fog where
g:w — X belongs to X. Since w-HYP(IR) is admissible, g < w-HYP(IMM) and we
have shown that w-HYP(IR) is countably closed. Also for y € o-HYP(), y* =
{f,°g ] g€ X*} showing y* € o-HYP(IR). Moreover the function y—y® is A,(w-
HYP(ER)) since f, can be found effectively from y. O

Proposition 7. If M has cardinality w4, then for some X € w,, 0,(M) = least « s.t.
L, (X) is admissible.

Proof. Let ? € w-HYP(IR) be the partial-ordering for collapsing || to w,. Thus
a condition is a function f:y -5 ||, y<w, and conditions are ordered by
extension. If G is P-generic over o-HYP(IR) then there is a unique structure N
on w; s.t. G: N — M is an isomorphism. Let X code the relation and functions of
9t as a subset of w;. The admissibility of L_ar (X) follows from that of L,_qgr(G).
And, since M=Ne L, g(X) we see that 0,(IN) must be the least a such that
L,(X) is admissible. Finally, the existence of G is guaranteed by the countable
closure of w-HYP(IR). O

Corollary 8. For any M, 0,,(IN) is w-admissible.

Proof. It suffices, by absoluteness, to verify this when I has cardinality w, (as the
statement is unchanged by passing to a countably closed elementary submodel of
cardinality @,). By the main result of [7] the result follows in that case from the

fact that 0,(IR) =least « s.t. L,(X) is admissible, some X cw,. [

Thus not every admissible a > w, can be of the form 0, (IN) for some M. The
remainder of this section is devoted to the proof of the following result.

Theorem 9. If « is w-admissible, then o =0_,(M) for some M, w-rk(IN) = o

Proof. Our argument here is modelled after the construction in Theorem 11 of
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[6]. The desired structure IR is a certain tree easily defined from «. A tag is an
object of the form «, or (B, y) where B <« and y <w,. The tree J is defined by

T ={(ty,...,t,)|Each t, is a tag and for all 0<<i<j<n
Either (a) t, =, some v,
® =B v),4=(B,v) B <B,
or (©) t=(B,v),4=(B7), v <ol

Definition. Suppose 7, 7, are countable substructures of J and 8 <«. Then we

write 7, =g 7, if there is an isomorphism j: 7, = T, s.t. for all (o, . . ., t,) € |T |
(i) j((ty, - .., t)) has length n+1.
(i) If j((ty, ..., t.))=(Sg,...,8,), then for all i<n

(t)o<B & (5)0<B, (t)o<B — (t)o=(s1)o.

Lemma 10. If B. < B, <o .. T.. T, are countable substructures of T, then
J 1 4 e 1 Al 1 J 7
glggl,glzszgz—‘)anggz,Jl‘—& g,

Proof. We define an isomorphism k:J; = J such that k 2j:7, = J,, where j
witnesses I, =5 J,. Then J, will be defined as the substructure of J with
universe Range(k).

First, if t<te|T,|, then let k(t)=j(t) [ length(¢). Otherwise there is a longest
initial segment &, of ¢ such that t = te|J,| for some t, and we can write £ =1t *t,
(where * denotes concatenation). If ¢, =(s,,...,s,) and s, = (8, y) where 8 <f,,
then we let k(t) = k(t,)*t,. Otherwise we can choose a unique ¥y <w, for each
such ¢ such that ild*\\pl, y;/ ueAOHgS to J and is not an initial segmeiit of any
te|7,| and define k(t)=k(t,)*t, where t, is obtained from ¢, by replacing all
components (8,v), 8=8, by (B,,vy) and leaving other components unchanged.
The existence of ¥ follows from the fact that each tag of the form (8,, v) can be
followed on J by uncountably many different tags of the form (B, ¥).

Claim 1. w-1k(9)=a.

Proof. Lemma 10 implies that if f, g:w — J are such that j(f(n)) = g(n) defines a
witness to Range(f) =5 Range(g) (when viewed as substructures of ¥), then
f~ag But for any 8<a we can choose f, g such that Range(f) =; Range(g),

S

Range(f) #5.1 Range(g). Then f ~5 g but (7, f) #..,, (7, g), proving w-rk(J)> .

Proof. We use Proposition 4. Thus it sufficies to show that J is a-recursively
saturated for £,,,. Suppose @(v, p) is an a-recursive set of formulas in £, and
= £3v @y(v, p) whenever @ < D, dy e L,. We show that T E3v A (v, p),
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thus establishing the a-recursive saturation of J=* (and hence the a-recursive
saturation for ¥£,,, of J). We assume that @ proves the basic deﬁning properties

of GT<‘” Ngte that ¢ 3 Thi: ,.
of 7= Note that € is consistent in the usual logic for £,.,. Thus if Py{v) is any

set of formulas forming an element of L,, @ can be consistently extended to
include either ¢ or ~ for each ¢ € ¥,. Thus we can assume that @ decides the
length of the element of |7|“: denoted by v as well as all sentences:

(%) vy co(yy),  length{v(y))=n.

Now for each y <length(v) and i <length(v(y)) choose B,; <a such that: if @U
{“((y)()o# B” | B<a} is inconsistent, then @ F V{“(v(y)(i))o=B"| B <B,.}. By
admissibility of L, (and since length(v) <w,) we can obtain a bound 8 <« such
that for any v <length(v), i <w:

@ U{v(y)(i) has tag =5 some 8} is consistent
or @+v(y)(i) has tag (8, 8) for some B'<f, 6 <w,.

The above properties are expressible as to say that v(y)(i) has tag (8', ) some 8§
is to say that v(y) | (i+1) has w-rank 8’ in J (w-rank(o) =|o| is defined by: |o|=0
if ¢ has only countably many immediate extensions; |o|=sup{y+1|o has un-
countably many immediate extensions of w-rank v}, otherwise).

But now the possible tags of the nodes v{y), vy <length{v) form a set in L,.
Hence we can assume that @ actually specifies the value of v(y)(i) for each v, i as
either (f(v, i), 8) or o5 (for some & <w;). Now it is clear that these conditions on
v(vy) can be satisfied by some f in J=“:. But together with the sentences in (*)
provable from @ this completely characterized the type of f in F~“. Thus
T Ed(f p) and we are done. [

Remarks. (1) An alternate proof of Claim 2 is provided by a generalization of
Steel forcing [15].

In this generalization one forces over L, with countable subtrees of wi® tagged
with tags of the form « or 8, 8 <a. The further restriction is that a node tagged

Ul tags O wual 10 O 5, L Lo § L8 CSUTICLIONN 15 WAl a OGO

with a given tag must have infinitely many immediate extensions with the same
tag. However, when a condition is extended, extensions of old nodes cannot be
added unless they have smaller tag (o << o, B < o, ;< B, iff B, <B>).

The resulting generic tree is isomorphic to J,. A version of Steel’s retagging
lemma is needed to argue that a generic tree will preserve the admissibility of «.
The argument is similar to the construction used in proving Claim 1.

(2) There is a version of Theorem 9 when w; is replaced by k, k regular. The

: PR P USSP Ay | [ PN - PV [P Tl ~edie
notion w- dUIlllbblUlC UCLUIIICD <K -adimissioic uciinca in |_I_|, page L} 1 N¢ Ordainai

0,0 is replaced by O..(A)=the least ordinal not in <k-HYP(IR), the least
<k -admissible set above M. The ordinal w-rk(IN) becomes the ordinal of the
Scott analysis of I in £,,. Finally the tree used in Theorem 9 is replaced by the
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following tree:
T ={(tg, .., t,) | Each t; =<, or (B, v, 8§) for some § <y<«k and
Osi<jsn—(a) t,=0,
or (b) =(B,v.8)4=(B".v,8), B8 <B,
or (¢) t=(B,v,8);=(B,v, 8}

One argument of Theorem 9 will carry over to the present context. Alterna-
tively a proof can be given using an appropriate generalization of Steel forcing.

(3) In case « is a successor w-admissible, « = 8", then I as defined in Theorem
9 is isomorphic to a B-recursive structure. See [9].

2. Compactness

Theorem 9 is suggestive that a reasonable model theory does exist for w-
admissible fragments of Z.,,,. The difficulty of course when dealing with uncount-
able languages is that special care is needed to preserve consistency at a limit
stage is a Henkin construction. The fact that the tree J of Theorem 9 can be built
by an w-closed forcing construction (see Remark 1 of the previous section) is
suggestive that this difficulty can be overcome in special cases.

The close connection between Henkin constructions and forcing constructions
was noted in [11]. The idea is that a Henkin argument can be viewed as the
selection of a generic object over the canonical consistency property for the
theory, viewed as a partial ordering. Our compactness theorem is proved by
showing that for appropriate theories an w-closed consistency property can be
constructed, thus allowing for the existence of a ‘generic’ model (when consider-
ing fragments of size w,). The key to this w-closure is the assumption that we are
dealing with an ‘effectively scattered’ theory (defined below).

We now proceed to details. Fix an w-admissible ordinal « of cardinality w,.
Our compactness theorem deals with certain 3,(s)-theories over the fragment
L ow, = Lo, NL,, where s is the function with domain L, given by s(x)=x®. It
will be important to consider structures which are closed under the formation of
‘limit types’, w-closed structures. For the purpose of the next definition recall the
equivalence relation from Section 1. For 8 <« it is definable by an £, -formula.

Definition. I is w-closed (for £,,,) if the following holds: Fix 8 < a. Suppose we
are given for each n a sequence m,, from || of length v, <w;. Suppose that for
i<j, v; <v; and m; ~gm; | v;. Then there exists m of length y =J; v; such that
m;, ~;m [ v, for all i

Our model theory for £,,, is based on w-closed structures. Fortunately, in
many cases w-closed models can be found (see Section 3).
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Definition. Suppose T is a theory in £,,, and B<<a. A T-consistent B-type is a
set of formulas p(x) in £, such that: for any «-finite To< T there is an w-closed
model M of T,, m from [M| with p(x)={d(x)c Ly, | MES(m)}. We let
Sg(T) ={T-consistent B-types}.

Notice that our notion of type is defined semantically in terms of w-closed
structures. For appropriate T a syntactic definition (in terms of proof-theoretic
consistency) is possible.

The main hypothesis we impose on T is that Sg(T) be small, in an effective
sense. This hypothesis comes in two parts. First we insist that Sg(T) € L, for each
B <a and we can effectively determine an a-finite To= T such that Sg(Ty) =
Sg(T). In the second part we say that the T-consistent B-types are all eventually
isolated (in the sense of Cantor derivative) and the way in which this comes about
coheres over a closed unbounded set of B’s. The precise definitions follow.

Definition. Let (T, |3 <a) be a 3,(s)-increasing sequence of a-finite subtheories
of T such that T=1{Jz Ts. Then T is thin if:

(a) Sg(T)Ye L, for all B<a and the function Br>Ss(T) is X4(s).

(b) For some 3(s)-function g:a — a we have Sg(T) = Sg(Ty)) for all B <a.

Definition. p € S;(T) is isolated if for some ¢(x)ep, p is the only member of
Sg(T) such that ¢ € p. Then inductively define:

a(T)={peSa(T) | p is isolated},
UT)={peSa(T) | for some $(x)<p(x) if d(x)eq(x)eSs(T)
then either q=p or qe S} (T) some y' <y}, v>0.

Then T is B-scattered if S{(T) = Sg(T) for some v. In this case, if p e Sg(T), then
the rank p is |p| =least y s.t. pe S}(T) and the B-rank of T is sup{|p| | p € Sg(T)}.

The notion of scattered first appears in [12]. We shall need to assume that T is
B-scattered in a very uniform way, captured by the next definition. If F is a finite
set of variables and p € Sg(T) then p | F denotes that element of Sgz(T) consisting
of those formulas in p all of whose free variables belong to F.

Definition. T is effectively scattered if T is thin and for some A,(s)-closed
unbounded Cc a:

(a) BeC— T is B-scattered with B-rank<w,.

(b) B1<B,, both in C — each p e Sg (T) has a unique extension q € S (T) with
the same free variables as p s.t. for all finite F, |p } F|=|q | F|.

Theorem 11. Suppose o is w-admissible and has cardinality w;, s:L, — L, is
defined by s(x) = x*. Suppose T < £,,,, is an effectively scattered 3.,(L,,, s)-theory. If
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every a-finite T,< T has an w-closed model, then T has an w-closed model I such
that 0,(N) < «.

[The second ciause in the conciusion (0, (F) < a) is imporiant in applications. i
is our version of ‘ordinal pinning’ in this context (see [2, p. 105].]

Proof. As we remarked earlier our proof is a forcing argument. First note that
there is a A,(L,)-collection of £, -sentences asserting that ‘“‘the universe is an

Alncad ctriiatraen?? That 1o £ A 0
w-closed structure’’. That is for cach § <a we can form a sentence ¢ &g expressmg

the property displayed in the definition given above of an w-closed structure and
the operation 3—¢g is A (L,). By our hypothesis on T we can assume that T
contains all of these sentences ¢g. Indeed, adding them to T does not disturb the

existence of an w-closed model for each a-finite To= T nor does it change the
sets Sg(T).

Fix an w;-sequence dy, d;,...,d,, ... of new constants and let % be the
language obtained from ¥ by adjoining them.

Let C be as in the definition of effectively scattered for T. We assume that
Bi<B, in C—S;(T)eL,, (see definition of thin, part (a)). For any B<aq,
p € S;(T) we let p(d) denote the collection of £, formulas obtained by replacing
each variable x, by the constant d, in some formula ¢(x)ep. Then P =
{p(d)| pe Sg(T) for some B e C}. Given pe Sz(T) let x(p) denote exactly those
free variabies x, appearing in p(x). Then we write q(d) < p{d) if:

(a) p(d), a(d)eP, peSa(T), g Se(T), Bi=<Po.

(b) q | x(p) is the unique extension of p in Sz (T) with the same free variables
as p s.t. for all finite F, |lq | (x(p)NF)|=|p | F|.

Thus when a condition is extended more information is given about a possibly
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constants. We use P(8) to denote {p(d)e P |pec Ss(T)} and Pz = Ug<p Py

Lemma 12. If p(d)e P(B), B<BeC and d, is a constant, then there is q(d)<
p(d), q(d) e P(B) such that d, is mentioned in q(d).

Proof. By (b) in the definition of effectively scattered for T, we can choose
G(d)<p(d) in P(B). Recall in the definition of thin for T, part (b), that there is an
ordinal g(B) s.t. S3(T) = Sz(T,))- Since § € S3(T) we can pick a model I of Tz,
and m from [IN| s.t. MEPH(m) for each H(x)eg. If x, is not included in § also
choose an arbitrary m, €|M|. Then let q(x) ={if(x) e L5, | MEY(m, m,)}. Then
q(d)<p(d), q(d)e P(B) and d, is mentioned in q(d). O

Lemma 13. P is countably closed. (Hence, there exist P-generic sets over L,.)
Proof. This is where part (b) in the definition of extension is crucial. Suppose

pi(d)=p,(d)=--- and let d, =those constants in d appearing in p,(d). Let
pn(d)eSg (T) and B =], B,. then B C. We show that |, p,(d) e Sg(T).
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Consider p,(d,). By (b) in the definition of effectively scattered for T, p,(d,) has
a unique extension p,(d,) € Sg(T) s.t. |p; | F|=|p, ! F| for all finite F. Consider

ot d1. Again, p,ld; has a unique extension pB,{d)eSH{T) st

p. t (x(p)NF)|=|p, | F| for all finite F. But since p,<p; we have
Ipn 1 (x(py) N Fl=|p, | F|. thus p.(d)=p,(d,). Thus p(d) =1, p. | d; is an ele-
ment of Sg(T), p<p, | d; for all n.

For each n>1 let x,=x(p,)—x(p._,). Then for each n the sentence
Ax.---Ax An (d, x, , X, )} must belong to p (as it belongs to j I d, \ But T

==X =R AN Pn\Bi1, 22, ¢ - oy A7 IS DCIVIL 1 OCCIES WO

contains axioms which assert that the universe is w-closed. Thus since any a-finite
To< T has a model IM with m, from |IM| s.t. MEA p(m,), there is such a model
also satisfying the Bth instance of w-closure, producing m,, ms, . . ., from [ s.t.
MEA, pu(my, ..., m,). (It is easily checked that m ~gn — (IR, m) =g, (M, n).)
Thus U, p. is an element of Sg(T). But as before it follows that for any n,
Ip. V Fl=|p ! x(p,) N F| for any finite F. Thus p<p, for all n. O

It is now clear that if G is P-generic over L,, then | J G defines a complete,
Henkinized theory in £,,,,, containing T. Thus | J G gives rise in the usual way (by
taking equivalence classes of constants) to a model Mg of T.

Let G be P-generic over L,. We conclude the proof of Theorem 11 by showing
that L [G] is admissible. (This suffices as M5 e L, [G].) As is typical of class

amlinn e odgerz At e femaimndniat + haniiad tha ganntiat Af tha anetial Ardasing
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needed to decide sentences of bounded rank. Terms, ranked formulas, formulas,
forcing are defined in the usual way (an elegant treatment is to be found in [15]).

Lemma 14. Suppose p,qe P and pN gﬁw‘ =qNJ g, where B, = yth element of

C. If $(G) has rank <+, then pi-${G) & qi+ P(G).

Proof. If v =1, then #(G) has rank 0. A typical such ¢ asserts that di(d) e G

some YL, Bu pNZ,.,=qNZ£,, so we are done.

The proof is by induction on rank(¢(G)). The only interesting case is ¢(G) =
~(G). Suppose p IF~(G) but gl ~Y(G). Pick ¥ <+ such that rank{((G)) <v'.
As qlf ~(G) we can choose r=gq, rl-y(G). Let r=r(d,, d,) where d; are the
constants mentioned in g. Also let r,=rN %y ., . Now q(d,) contains the sentence
3x, A ro(d;, x,). This sentence belongs to £ ., Since Sg (T) e Ly . By hypothesis
p contains this sentence. Then we can choose t <p such that t "%, ,, =7. But by

induction we must have HFq’;(G} Contradmung pl%- "q’l(G} O

For simplicity we write p =, q if pNLg, =qNLp., (B, = vth element of C).
An immediate consequence of the preceding lemma is that the relation pl-¢(G)
where ¢(G) is ranked is X,{L,, s). For, this relation is given by an induction which

is 3, with the possible exception of the negation case:

plt~¢ & Vg=p~(ql-é).



Model theory for L, 115

But by Lemma 14, if rank(¢) <y, then we can write:
plb~d & VqePg (q<p——q )

and the function y+>%; is 3 (L, §).

Finally we are prepared to show that L,[G] is admissible. It suffices to show
that if ¢ is Ay and pl-V¥x 3y ¢ (x, y), then plFVxz Jyg d(xg, ye) for some B <o
Let J, consist of all terms for naming elements of Lg[G] Choose vy, so that
Yo=B,, P together with the parameter in ¢ belong to L, and rank(¢) <y, We
may define a continuous (L, §) sequence y,<vy;<<-:-<vys;<<--- of length w,
so that y; =B,, for 8 =0 and:

) For all ceJ,, q<p,q<c?P,, there are
*
T€d,,. . T=qre?, strirédo ).

The reason for this is that pIFVx 3y ¢(x, y) and the relation pl-¢ for ranked ¢ is
3.(s). Let B=Us vs <a.

Claim. pl-Vx; ys d(xg, yp)-

Proof. Choose 0T, gq<p. Let =g ﬂfZ’Bwl. It is enough to prove:

Subclaim. For a closed unbounded set of 6§ <w,, §=<qg ﬂf_L’VBmISp.

For, given the subclaim choose § <@, so that §=qo=¢ ('Li—f’w,l <pandoed,,.
Then by (¥) there is ro=<qq, roe?,,,, such that ryl-d(o, 7). Choose F=r,,
re Sg(T). Then 7  x(q) =4, as both g and F | x(q) are extensions of q, in Sg(T)
with the same free variables as q, and preserving rank on finite subsequences. But
then if we write ro=ry(x,, X;), X;=x(q), then Ix, A r(x,, x,)eg=q, where
n=FN%,. ) {x,x;). So qUr, is contained in some T-consistent type r<gq.
Now ri(d)<ry(d) and ¢(a, 7) has rank <vys,,. As r=, _ r; and rlr¢(o, 7) we
have rl-¢ (o, 7). We have shown pIFVxg Jyg d(xg, V).

Proof of Subclaim. For any 8 <w,, (iﬂ.f_fm,]s p. For, p has some extension
p<p, peS, (T) and p has some extension p € Sz(T), (where q € Sz(T)). But by
uniqueness (see part (b) of effectively scattered), p | x(p)=q | x(p) and so
p 1 x(p)=(@N L) | X(p). So §NZ,0, <P

To prove the first part of the subclaim it suffices to show that for any finite
Fcx(q) there are closed unboundedly many 8 <, such that |g; | Fl|=1|g | F|,
where g5 = qN 4, (For then if one lets D € w, be the intersection of countably
many closed unbounded sets, one for each finite F<x(q), then d € D — §<4ds.)
By the definition of effectively scattered, part (a), | | F|<o;.

We prove by induction on y <w,; that if r is a B-type in a finite set of free
variables of rank v, then rs is a ys-type of rank vy for a closed unbounded set of
8’s. First note that for § large enough we must have that ry; has ys-rank <+.
Otherwise for unboundedly many 8 we can choose s5,,€S,, (T) of y,-rank vy
such that ss =75, 5.1 7 I's+1. Then s;_; has an extension to a B-type §5,, of rank v.
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This shows that r is a limit of B-types of rank -y, contradicting the hypothesis that
rank(r)=vy.

So we may assume that y > 0. For each ¥’ <+ and & <, choose a B-type s,
of rank v’ such that ry € s¥,,. By induction we can choose closed unbounded sets
C?%' such that p e C¥ —|s7., NZ, ..l =" Let C” be the diagonal intersection of
the sets C¥, and C =, C”". Then if w is a limit point of C we have that |r, |=7.
By taking an appropriate final segment of C we obtain our desired closed
unbounded set.

This completes the proof of Theorem 11. [

Corollary 15 (to proof). Suppose T is a 3.(s) effectively scattered theory over £,,,,
with an w-closed model. Suppose x € w-HYP(IN) whenever M has cardinality o,

amn A wmndel af T O (N <= Th
i 4 maoaér

~ PR 4
Of 1, U\ Wwiyy=0q. 11i€Nn X € L.

is an w-¢
Proof. Build two mutually generic sets G, G, for the forcing described in the
proof of Theorem 11. Then L,=L,[G;]NL,[G,]. But any pure set in -
HYP(@R;,) must belong to L,[G,] (as MG does); similarly for G,. Since Mg,
M, are e-closed models of T and 0, ), 0,(M; ) <o we are done. [

This is our version for £, of the Barwise hard core theorem (see [2, p. 113]).
It will be of importance in our characterization theorem for pure part (w-
HYP(ER)) given in the next section.

The Scott isomorphism theorem says that the isomorphism type of a countable
structure is determined by its £, theory. The analogous result fails for structures
of size w,: There are &, -equivalent, non-isomorphic structures of size w;. (The
first example is due to Morley. A simpie exampie is: take any two non-isomorphic
normal w,-trees.)

However this cannot happen for w-local structures.

Definition. A structure I is w-local if whenever x=(x;,x,,...) and y=

(¥y1, V2, - - .} are w-scquences
M, x M Fy=_, M,y F) for all finite F— M, x) =, M, y)

Propesition 16. If M=, N, M w-local, M and N have cardinality w,, then
M=N.

Proof. Let a = w-tk(IM). For m < [N and n ¢ |N|=* define m ~n if NEHL(n)
(where ¢%, is defined in Section 1). Then
m~n—Vm'3In'(m,m)~m,n) and Vn'Im' (m,m’)~(n,n’).

Note that N is w-local since N =, M (and the (, w,)-type of (IR, x) is expressi-
ble by a single £, sentence). Now define sequences mycm;<---cm,<- -+
and np=m <---<n, - - of length w, such that m, ~n, for all y and U, m, =



Model theory for L., 117

=|RN|. This is possible since by w-locality, m,~mn, for all y<A —
Uy<am, ~U, <, n,, for limit A<w1 Then we have defined an isomorphism

The property w-local blends nicely with Theorem 11. Define IR to be w-local
for £, if M satisfies the definition of w-local with =, replaced by =,,, . Then
Theorem 11 goes through if one replaces ‘w-closed for £, everywhere with
‘w-closed and w-closed for ¥, °. Moreover the model produced in the conclu-
sion is in fact w-local as it has w-rk < «. In addition, condition (b) in the definition
of effectively scattered can be replaced by the simpler:

(b)) B1< B, both in C—each pe Sz (T) in finitely many free variables has a
unique extension q € Sg (T), with the same free variables as p, of the same rank.

The only reason for not presenting Theorem 11 in this way is to allow for the

possibility of applications where w-local models cannot be obtained.

3. Applications

There are a number of interesting examples of effectively scattered theories.
We use Theorem 11 in this section to study them.

Example 1. Consider the structure  used in the proof of Theorem 9. We show
how J can be described by an effectively scattered theory. For any tree & the
w-Cantor rank of o €S is defined by

lo|, =0 if o has at most countably many immediate
extensions in &,

lo], =sup{B+1 ] has uncountably many immediate
extensions of w-Cantor rank Rl otherwise.

If |o|,, is not defined by this definition for o € &, then we write |o|,, = %. For each
B <a there is a formula ¢4 (x) (in the language of <) such that if & is a tree, then
F =(S, <)Edg(x) if and only if |x|, = B. The axioms of the theory T, are:

(a) < defines a tree of depth w, with a unique top node .

(b) @e(x)— T exactly Ry-many s.t. ¢g(y) and y is an immediate extension of x,
for each B <a.

(c) ~dg(@), for each B<a.
T, is effectively scattered: the B-type of a countable sequence (x | v <o) is
determined by the formulas “x, is on level n”, new; “x, \x\,2 , Y1 Y2<Yo;

; The r2 _tvne of
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a single element x has rank 0 if yg(x) holds for some B8'<g; otherwise, the
B-type of x has rank 1. Given the B,-type p of (x, | y<7v,) and B,>B; we can
define the unique B,-type q of (x, |y <1y, satisfying (b) in the definition of
effectively scattered as follows: g contains p, g contains ~dg(x,), B <P,

‘y

$adx,), B’ <8, v <o From this, the thinness ¢
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whenever ~d;(x,) belongs to p for all <. (In this way if p | x, had rank 1
then so does q | x,.) The closed unbounded set C consists of all limit ordinals.
O conirea T ac dafinad 1in Thanrem O ic a2 madal AFf T Rut anu ~dal @ ~AFf T

Of course 9 as defined in Theorem 9 is a model of T,. But any model ¥ of T,
of cardinality w; such that Ow(¥)=<a must be isomorphic to 7. Indeed, § must
have uncountably many immediate extensions o such that ||, =, as otherwise
w-HYP(¥) contains (as an element) the set of all nodes o on level one s.t.
lol, =B for some B <a. The function o+>|o|, on this set is 3;(w-HYP(¥) and
so 18 bounded. But this contradicts the assumption 0 (Py=a. An identical
argument shows that any node o< s.t. lo|, = has uncountably many im-
mediate extensions with this property. So ¥=9

Theorem 11 implies that T, has a model & such that 0_(¥)<a;s00,(T)<a.
This gives another proof of the first part of Theorem 9.

Example 2. We define the pure part of o-HYP(IN) to be w-HYPIHNV
(={x € 0-HYP(IN) | Transitive Closure of x contains no urelements}). Suppose
A =ppl{w-HYP({EN)). Then A is resolvable; i.e., there is a function f: ORD(A) —
A s.t. (A, g f) is admissible and A = ] Range(f). For example, we can let
fB)=L;(MNV. A is also closed under the function s(x)=x* and is in fact

w-admissible.

Theorem 17. A =pp(w-HYP@R)) for some M if and only if A is w-admissible
and resovable.

Proof. We can assume that A has cardmahtv @;. Choose f so that (A, 5,f> is
admissible, f:ORD(A) — A, A = J Range(f). We also assume that f(0) # 0, the
f(B)’s, B<<a=O0ORD(A), are transitive, increasing, closed under s(x)=x* and 8
limit — f(8) = U {f(B") | B’ < B}. Now Theorem 11 and Corollary 15 apply equally
well to (A, &, f) as to (L, &,s). (The w-admissibility of L, together with its
resolvability sufficed.) So by Corollary 15 (applied to {A, &, f) it suffices to define a
2(A, ¢, f)-theory T, (over AN L,,) such that:

(a) T, is effectively scattered and has an w-closed model.

{(b) Whenever IR, 3%, are models of T, of cardinality o, 0,(R%;), 0,(5%,) both
=<q, then N, =IM,.

(c) A< w-HYP@IR) whenever MET>.
For then, let M be a model of T, 0,(N) <a. By (c), A < pplw-HYP(N)). By (a),
(b) and Corollary 15, pp(w-HYP(IN)) < A.

We now define 'T let T be a tree. For B <o ar nd xef (B) we define ,0-’ :(,8

a oo,

and |o]=8 by 1nduct10n on B +rk(x):
lol=0 iff |o|=(0,9) iff & has only countably many
immediate extensions on 7,
lo| =B iff every immediate extension 7 of ¢ has |t|=

for some y=p3, and ¢ has uncountably many
immediate extensions 7 s.t. || =1v iff v<g,
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lol=(B, x) iff every immediate extension 7 of o has |r|=7v (some

v < ) or ITI B,y) (some yex) and ¢ has uncountably
~ iff '\I(R and ¢

Y and s.t.

<
e
[¢]
4]
s
-
(¢}
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w
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Thus the tions | g (0
b (o) in L., NA. We write || = if o is not defined by the above definition.
the axioms of T, are:

(1) < defines a tree of depth w, with a unique top node .

(2) ¢g(o) — 3 exactly X;-many immediate extensions 7 of o s.t. ¢g(7), for each
B<a.

(3) dE.lo) — (every immediate extension 7 of o satisfies ¢, (7) or ¢ () for
some y<f, yex), each B8 <a, xef(B).

(4) 9 has uncountably many immediate extensions 7 s.t. ¢g(7) and uncountably
many immediate extensions 7 s.t. ¢.,(7), for each B <a, x €f(B).

(5) If o, = B, then ¢g(c) or b ) (c) holds for some B'<p, xef(B'), each
B <a.

A model of T, is described as follows: Define a tag
cf(B). T

y
Thus the relations |ol=g8, |o|=(8,x) can be described by formulas ¢g(a),
i

Ffro im0

a Fnrm- lac 15 On lave
Lol IuLaS .'\,,y 11 AT Ve

new; “x, <x,”, v, 2<vo; ¢s(x,), B <B, Y<v0; Py, B'<B, xef(B),
v < yo. From this follows the thinness of T,. The B-type of o has rank 0 if ¢z(0)
or ¢ g (o) holds for some B’ < B; otherwise the B-type of o has rank 1. Assume
B:1<B. and ORD(f(8,))=B;, ORD(f(B))=B,. Let p be the B;-type of

(x, | y <o) To satisfy (b) in the definition of effectively scattered define a 3,-type

RN DAL AL A A “< -2

q 2p as follows: g contains ~dg(x,), ~PE.r(x,) for all B<B,, x € f(B) whenever
~(x,), ~de.r(x,) belong to p for all B<B,;, x € f(B). The closed unbounded
set C consists of all limit ordinals 8 such that ORD(f(B)) = B.

Thus property (a) is satisfied. Property (c) follows as the e-structure of x is
coded into J below any node o satisfying ¢a.\(0), for any T ET,. The decoding
can be done inside w-HYP(J).

Lastly we must show that I, =%, whenever IR,, I, are models of T, of

P aaticfuin 0O MMY N (MY Wa fant chaw that IR
\,cuuulalu_y (.Ul Dallbl_ylllé Um\ll\q}, Um\,v!Q}\u Yyco lll racvie diiuw l.ll(ll Jp’ll—dz

Axiom (5) of T, guarantees that IR,, 9, have the same structure on nodes o s.t.
|| # 0. Note that in I,, ¢ must have uncountably many immediate extensions o
s.t. |o| =, as otherwise w-HYP@R,) contains (as an element) the set of all nodes
o on level 1 such that |ol=8 or (B, x) for some B <a, x<f(B). The function
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o—>|o| on this set is 3 (w-HYPEN,)) and hence bounded. This contradicts the
assumption 0,(,) <a. Similarly, any node o IR, s.t. |¢| = has uncountably
many immediate extensions with this property. So IR, =J,. This completes the
proof of Theorem 17.

Example 3. In [15] it is shown: For each A <, there is Tcw and I(T)-
sipgletons f, g such that f¢ L, (T, g) and g¢ L, (T, f). We show now how to obtain
an analogous result one cardinal higher. Given A <w, we wish to obtain a tree
T < T and subtrees T, Ty of T such that T,, T, are each unique solutions to
(L, T)-formulas but Ty¢ L, (T, T;) and T, ¢ L, (T, T,). It seems to be neces-
sary in this context to work with subtrees T,, T, rather than single paths f,, f; (as
in Steel’s result).

We pick A to be w-admissible, A <w,. Our tree T in this example will be
isomorphic to the I of Theorem 9. A tree & is full if each node of & has exactly
w, immediate extensions. Our desired subtrees T,, T, will be full subtrees of J.
However to guarantee that T,, T, are II,{L , T)-singletons we need to introduce
more structure into our tree.

13

Definition. Let ~ be an equivalence relation on a set S with w; equivalence
classes each of size w;: One equivalence class Sz for each B<<A and one
equivalence class S... We define a tree I as follows: A tag is something of the
form (s, n), s€8S, new.

9'3={(t0, ..., t)|each ¢ is a tag and if i <j, then:
(@) t;=(s,n), seS,,

or (b) t;=(s,n), s€Sz and ;= (s, m) or (s, n’) where s'e | SB,}.
B'<p
Then g.* = (g3’ sa s’ fi)i<w Where fi((SOa n0)9 ) (sms nm)) = Si'
Note that we do not put the equivalence relation ~ into 7. Now let Ty < |T 5]
be defined by To=1{(t,, ..., t.)€|Ts| |t =(s, n) for some s €8S, for all i}.

Claim. T, is the unique subset of |7 4| such that:
(a) T, defines a full subtree of T,
(b) o=(ty,...,t,), f.(d)eRange(fy | Ty) — o T,

Proof. (a) implies that we at least are talking about a subset of T,,. But (b) implies
that all o =(t,, .. ., t,) with f;(o) e S., for all i must be present (as any such o can
be extended to one obeying the hypothesis of (b).). O

We can also define I %* just like I except this time we have o,, 0, each with
different equivalence classes. Moreover we insist that fi(o)€ S.— fis(0)€
S, UUg<r Ss and fi(a) € So, — fira(o) € S, UUp<x Sp. Then we get T, T, each
uniquely characterized by properties as in the claim.
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Now the structure (7%, T,) can be described by a X,(s)-effectively scattered
theory over L,,,,. This is done in a way similar to our earler examples Moreover
any two models wwl, JJ\Q of this luﬁOi’y‘ of size wq such that § \%1), Um\ vz) = A are
isomorphic. An example of such a model is (T%*, T,).

However notice that for any term 7(T) in £y, (T3, To)E“If 7(Ty) is a full
subtree of I, then 7(Ty) < T,”. So we may as well have added these sentences to

our effectively scattered theory; thus these sentences are true in (T3*, T,) (since
this new theory has a model I of r‘ardlnaht\/ @ s.1. 0 (PO =\ by Theorem 11,

................ a MOQCl &% Laliuiilall 3.t W\~ ] NCOIC]

and since (9’_2‘,‘*, To) is isomorphic to this model). Thus TléLA((ﬂg“*, To)). By
symmetry To¢ L, (T5*, Ty)).

Finally collapse J ** to a structure on w;, generically over L, ((T5%, To, T))), as
in Proposition 7. This produces a tree Tg on wt®, functions f{: T — w; and full
subtree T, Tg. Pick ape TS and o€ T§, o, and o, of length >0. Then T is
the unique full subtree T of Tg s.t. ooeT and o=(t,,...,4,)eT, f(o)e
Range(f, | T) — o ¢ T. (Similarly for Tg.) This is easily seen to be a II(L,,,, Tg)-
condition on T. Thus Tg, Tg are IIL,,, Tg)-singletons. The generic collapse of
J** to w,; did not damage the properties T, & L, (TF*, T,)), T, ¢ L,(T5*, T}))
(see the proof of Theorem 12 in [6]).

To get II (L,,, T)-singletons use the fact that any II(L,, , Tg)-singleton X can
made into a II,(L,,, TG) -singleton by considering (X, f) where f is the natural

SkOleu function for the I propert'y characterizi ifig X. Thus we have pluvcu
Theorem 18. For any A <, there are T < w, and II,(L,,, T)-singletons T,, T, =
w, such that To¢ L,(T, T,) and T, ¢ L, (T, Ty).

Exampie 4. We provide oniy a sketch of how the method of Exampie 3 can be
amplified to obtain an analogue for w, of Steel’s result that A}-CA - ¥]-AC.
A}-CA for subsets of w,, and X1-AC,, are the natrual generalizations to w; of
these principles.

Example 3 constructed two independen
construct w,-many full subtrees, one below each node on a full subtree of the
entire tree T. These subtrees are very independent in that given countably many
of them Ty, Ty,..., the only full subtrees of T in w-HYP(T, T,, T,,...) are
subtrees of | J; T;. Moreover the only full subtrees of T in w-HYP(T, Ty, Ty, ...)

satisfying a condition (b¥) like (b) in Example 3 must contain some T,

Ssalixlyllly a4 COnCeiion 9P ;) iUx AU/ R mAagilipic O u LLIta SUNIC

ilatrenng lman A 1A saally ~1
UULCLH, WIdIc cuuia cquauy Wil

Once again we generically collapse T together with its ‘full subtree’ of full
subtrees to @, to get Ty, TS, TT, . .. as subtrees of w*. (Everything is done so
as to preserve the w-admissibility of a = wj =least admissible >w,.) If we let
M=(U{L (Tg, &¥) | & is a countable COllCCthH of trees TS, TS,.. DN P(wy),
then MEVy <w, there ex1sts a function f:vy 2215 (Full Subtrees of Ts obeying
(b*)), but ME~3f: w; —> (Full Subtrees of T obeying (b™)). So ME~3, 1-AC,,.

But as in (6] we can use Theorem 11 to show that any X € w, which is 3 }(M) in
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parameters mq, my, . .. is 21(L,(Tg, mg, My, .. )N P(w,)) and hence MEAI-CA.
Thus our result is:

Theorem 19. There is M = P(w,) which satisfies A}-comprehension for subsets of
o, and full countable choice (M is closed under countable joins) but 31-AC,, fails
in M.

4. Further results and open questions

(1) As is shown in [9], the (L, )-singletons (in L) are constructed cofinally
in the least stable ordinal « > w;. This suggests that the optimal form for
Theorem 18 is: If T<w,; and A <first T-stable greater than w,, then there exist
II,(L,,, T)-singletons Ty, T; such that To¢ L, (T, T,), T1 ¢ L\(T, Tp). Is this true?

(2) [9] provides, for each cardinal k, a k-recursive structure JX of £, -rank
k" =next admissible after «.

(3) What is the proper definition of <x-HYP@R) when « is singular? What is
the model-theoretic proof based on it of the result of [8] giving a sufficient (and
necessary) condition for an admissible « of cardinality X, to be the first admissi-
ble relative to some X =R _?
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