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There are many different ways to extend the axioms of ZFC. One way is
to adjoin the axiom V = L, asserting that every set is constructible. This
axiom has many attractive consequences, such as the generalised continuum
hypothesis (GCH), the existence of a definable wellordering of the class of
all sets, as well as strong combinatorial principles, such as ♦, 2 and the
existence of morasses.

However V = L adds no consistency strength to ZFC. As many inter-
esting set-theoretic statements have consistency strength beyond ZFC, it is
common in set theory to assume at least the existence of inner models of V

which contain large cardinals.

Can we simultaneously have the advantages of both the axiom of con-
structibility and the existence of large cardinals? Unfortunately even rather
modest large cardinal hypotheses, such as the existence of a measurable car-
dinal, refute V = L. We can however hope for the following compromise:

V is an “L-like” model containing large cardinals.

In this article we explore the possibilities for this assertion, for various
notions of “L-like” and for various types of large cardinals.

There are two approaches to this problem. The first approach is via the
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Inner model program. Show that any universe with large cardinals has an
L-like inner model with large cardinals.

The inner model program, through use of fine structure theory and the
theory of iterated ultrapowers, has succeeded in producing very L-like inner
models containing many Woodin cardinals.

An alternative approach is given by the

Outer model program. Show that any universe with large cardinals has an
L-like outer model with large cardinals.

We will show that L-like outer models with extremely large cardinals can
be obtained using the method of iterated forcing.

Large cardinals

A cardinal κ is inaccessible iff it is uncountable, regular and larger than
the power set of any smaller cardinal. It is measurable iff there is a κ-
complete, nonprincipal ultrafilter on κ.

Measurability is equivalent to a property expressed in terms of embed-
dings, and stronger large cardinal properties are also expressed in this way.
As usual, V denotes the universe of all sets. Let M be an inner model, i.e.,
a transitive proper class that satisfies the axioms of ZFC. A class function
j : V → M is an embedding iff it preserves the truth of formulas with pa-
rameters in the language of set theory and is not the identity. If j is an
embedding then there is a least ordinal κ such that j(κ) 6= κ, called the
critical point of j, which is a measurable cardinal.

For an ordinal α, j : V → M is α-strong iff Vα is contained in M . A
cardinal κ is α-strong iff there is an α-strong embedding with critical point
κ. Strong means α-strong for all α.

Kunen ([10]) showed that no embedding is strong. However a cardinal can
be strong, as embeddings witnessing its α-strength can vary with α. Stronger
properties are obtained by requiring j : V → M to have strength depending
on the image under j of its critical point. For example, κ is superstrong iff
there is a nontrivial elementary embedding j : V → M with critical point
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κ which is j(κ)-strong. An important weakening of superstrength is the
property that for each f : κ → κ there is a κ̄ < κ closed under f and a
nontrivial elementary embedding j : V → M with critical point κ̄ which
is j(f)(κ̄)-strong; such κ are known as Woodin cardinals. The consistency
strength of the existence of a Woodin cardinal is strictly between that of a
strong cardinal and a superstrong cardinal.

We can demand more than superstrength. A cardinal κ is hyperstrong
iff it is the critical point of an embedding j : V → M which is j(κ) + 1-
strong. For a finite n > 0, n-superstrength is obtained by requiring j to be
jn(κ)-strong, where j1 = j, jk+1 = j ◦ jk. Finally, κ is ω-superstrong iff it
is the critical point of an embedding j : V → M which is n-superstrong for
all n. Kunen’s result [10] shows that no embedding j with critical point κ is
jω(κ) + 1-strong, where jω(κ) is the supremum of the jn(κ) for finite n.

The inner model program

If κ is inaccessible, then κ is also inaccessible in L, the most L-like model
of all. This is not the case for measurability, however if κ is measurable
then κ is measurable in an inner model L[U ], where U is an ultrafilter on κ,
which has a definable wellordering and in which GCH, ♦, 2 hold and gap
1 morasses exist. For a strong cardinal κ there is a similarly L-like inner
model L[E] in which κ is strong, where E now is not a single ultrafilter, but
rather a sequence of generalised ultrafilters, called extenders. More recent
work yields similar results for Woodin cardinals, and even for Woodin limits
of Woodin cardinals (see [12]).

However, progress beyond that has been impeded by the so-called iter-
ability problem.

The outer model program

How can we obtain L-like outer models with large cardinals? For inac-
cessibles one has the following result of Jensen (see [1]):

Theorem 1 (L-coding) There is a generic extension V [G] of V such that

a. ZFC holds in V [G].
b. V [G] = L[R] for some real R.
c. Every inaccessible cardinal of V remains inaccessible in V [G].
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There are similar L[U ] and L[E] coding theorems (see [6] for the former),
providing outer models of the form L[U ][R] and L[E][R], R a real, which
are just as L-like as L[U ] and L[E], preserving measurability and strength,
respectively.

However the approach via coding is limited in its use. Obtaining L-like
outer models via coding depends on the existence of L-like inner models, such
as L[U ] or L[E], which, as we have observed, are not known to exist beyond
Woodin limits of Woodin cardinals. And there are problems with the coding
method itself which arise already just past a strong cardinal.

A more promising approach is to use iterated forcing. To illustrate this,
consider the problem of making the GCH true in an outer model. Begin with
an arbitrary model V of ZFC. Using forcing, we can add a function from ℵ1

onto 2ℵ0 without adding reals, thereby making CH true. By forcing again,
we add a function from (the possibly new) ℵ2 onto (the possibly new) 2ℵ1

without adding subsets of ℵ1, thereby obtaining 2ℵ1 = ℵ2. Continue this
indefinitely (via a reverse Easton iteration) and the result is a model of the
GCH.

Do we preserve large cardinal properties if we make GCH true in this
way? The answer is Yes.

Theorem 2 (Large cardinals and the GCH) If κ is superstrong then there is
an outer model in which κ is still superstrong and the GCH holds. The same
holds for hyperstrong, n-superstrong for finite n and ω-superstrong.

Proof. First we describe in more detail the above iteration to make GCH
true. By induction on α we define the iteration Pα of length α: P0 is the
trivial forcing. For limit λ, Pλ is the inverse limit of the Pα, α < λ, if λ is
singular and is the direct limit of the Pα, α < λ, if λ is regular. For successor
α + 1, Pα+1 = Pα ∗ Qα, where Qα is the forcing that collapses 2ℵα to ℵα+1

using conditions of size at most ℵα. The desired class forcing P is the direct
limit of the Pα’s. For any cardinal κ of the form iα+1, the entire iteration
P can be factored as Pκ ∗ P κ, where Pκ has a dense subset of size κ and P κ

is κ+-closed. In particular, strongly inaccessible cardinals remain strongly
inaccessible after forcing with P .

4



Now suppose that κ is superstrong, witnessed by the embedding j : V →
M , and that G is P -generic. Let P ∗ denote M ’s version of P . To show that
κ is superstrong in V [G], it suffices to find a P ∗-generic G∗ which satisfies
G∗

j(κ) = Gj(κ)∩Vj(κ) and which contains j[G], the pointwise image of G under

j, as a subclass. For then, we extend j : V → M to j∗ : V [G] → M [G∗]
by sending σG to j(σ)G∗

. The property j[G] ⊆ G∗ implies that j∗ is well-
defined and elementary. And Vj(κ) of V [G] is the same as Vj(κ)[Gj(κ)∩Vj(κ)] =
Vj(κ)[G

∗

j(κ)] and therefore belongs to M [G∗], as Vj(κ) belongs to M .

Now P ∗

α is the same as Pα for α < j(κ), as j is a superstrong embedding.
The first difference between P ∗ and P is at j(κ): P ∗

j(κ) is the direct limit

of the Pα, α < j(κ), as j(κ) is inacessible in M ; but j(κ) is not necessarily
regular in V and therefore it is possible that Pj(κ) is the inverse limit of the
Pα, α < j(κ). So we cannot simply choose G∗

j(κ) to be Gj(κ), as the latter is
generic for the wrong forcing.

But this problem is easily fixed: As j(κ) is in fact Mahlo in M , it follows
that P ∗

j(κ) has the j(κ)-cc in M . So any G∗

j(κ) contained in P ∗

j(κ) whose

intersection with each Pα, α < j(κ), is Pα-generic must also be P ∗

j(κ)-generic.
It follows that we can take G∗

j(κ) to simply be the intersection of Gj(κ) with
P ∗

j(κ). Notice that G∗

j(κ) trivially contains the pointwise image of Gκ under j

as j is the identity below κ.

Finally we must define a generic G∗, j(κ) for the “upper part” P ∗, j(κ) of
the P ∗ iteration, which starts at j(κ) and is defined in the ground model
M [G∗

j(κ)]. In addition, G∗, j(κ) must contain the pointwise image of Gκ under

j∗, where j∗ is the lifting of j to V [Gκ] and Gκ is generic for P κ, the iteration
starting at κ defined over the ground model V [Gκ].

In fact, with a harmless additional assumption about j, this latter re-
quirement completely determines G∗, j(κ): We assume that j : V → M is
given as an extender ultrapower embedding. This means that each element
of M is of the form j(f)(a), where a belongs to V M

j(κ) = Vj(κ) and f is a func-

tion (in V ) with domain Vκ. This assumption is harmless, as if the initial
j : V → M does not satisfy it, we can replace M by the transitive collapse
M̄ of H , the elementary submodel of M consisting of all j(f)(a) of the above
form, and replace j by k ◦ j, where k : H ≃ M̄ .
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Lemma 3 j∗[Gκ] generates a P ∗, j(κ)-generic over M [G∗

j(κ)], i.e., each pre-

dense subclass of P ∗, j(κ) which is definable over M [G∗

j(κ)] has an element

which is extended by a condition in j∗[Gκ].

Proof. We only consider predense subsets D of P ∗, j(κ) in M [G∗

j(κ)]; a similar
argument works for predense subclasses.

As j is given as an extender ultrapower embedding, D is of the form
σ

G∗

j(κ) where the name σ can be written as j(f)(a) with f : Vκ → V in V and
a ∈ Vj(κ). Now using the κ+-closure of P κ, choose a condition p in Gκ which
extends an element of f(ā) whenever ā belongs to Vκ and f(ā)Gκ is predense
on P ∗, κ. Then j∗(p) obviously belongs to j∗[Gκ] and extends an element of

j(f)(a)G∗

j(κ) = σ
G∗

j(κ) = D, as desired. 2 (Lemma 3)

This completes the construction of G∗ and therefore the proof that P

preserves superstrong cardinals.

Now suppose that κ is hyperstrong. Again we need to find a P ∗-generic
G∗ containing j[G] as a subclass. The forcings Pj(κ)+1 = Pj(κ) ∗ Qj(κ) and
P ∗

j(κ)+1 agree as j(κ) is regular in V and M contains Vj(κ)+1. Also, j∗[gκ],

where j∗ is the lifting of j to V [Gκ] and gκ is the Qκ-generic chosen by G

at stage κ of the iteration, is a set of conditions in Qj(κ) which belongs to
M [Gj(κ)] and has size 2κ there; therefore j∗[gκ] has a lower bound in Qj(κ).
By choosing our generic G so that gj(κ) includes this lower bound, we can
succeed in lifting j to V [Gκ+1]. We may assume that j : V → M is given by
a hyperextender ; this means that each element of M is of the form j(f)(a)
where f is a function in V with domain Vκ+1 and a is an element of Vj(κ)+1.
Then we can use the argument of Lemma 3 to generate the entire generic G∗

containing j[G].

The case of n-superstrongs raises a new difficulty. We first treat the case
n = 2. As in the superstrong case, P and P ∗ may take different limits at
j2(κ), as the latter may be singular in V . As in that case, we can obtain a
P ∗

j2(κ)-generic by intersecting Gj2(κ) with P ∗

j2(κ). However we must also ensure

that G∗

j2(κ) contain j[Gj(κ)] as a subset. Write Pj(κ) as Pκ ∗ P κ
j(κ); it suffices

to arrange that G
∗, j(κ)
j2(κ) contain j∗[Gκ

j(κ)] as a subset, where j∗ is the lifting

of j to V [Gκ] and Gκ
j(κ) is P κ

j(κ)-generic over V [Gκ].
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We argue as follows. If j[j(κ)] is bounded in j2(κ) then the set of con-

ditions j∗[Gκ
j(κ)] has a lower bound in P

∗, j(κ)

j2(κ) ⊆ P
j(κ)

j2(κ). (Actually, this first

case can be ruled out by choosing j2(κ) minimally; see Lemma 10 below.)
Otherwise j2(κ) is singular, so Pj2(κ) is an inverse limit and again the set of

conditions j∗[Gκ
j(κ)] has a lower bound in P

j(κ)

j2(κ). We therefore assume that our

generic G has been chosen so that G
j(κ)

j2(κ) contains the greatest lower bound of

j∗[Gκ
j(κ)]. Then we can take G∗

j2(κ) to be the intersection of Gj2(κ) with P ∗

j2(κ)

and thereby obtain j[Gj(κ)] ⊆ G∗

j2(κ). This allows us to lift j to V [Gj(κ)].
Then we can use the argument from Lemma 3 to generate the entire generic
G∗ containing j[G].

For the case n > 2 the argument is similar; we must choose G
jn−1(κ)
jn(κ) to

contain the greatest lower bound of j∗[G
jn−2(κ)

jn−1(κ)], where j∗ is the lifting of j

to the model V [Gjn−2(κ)].

Finally we consider ω-superstrength. Again we must choose G∗ to be
P ∗-generic over M and to contain the pointwise image of G under j. Let
jω(κ) denote the supremum of the jn(κ), n ∈ ω. As before it suffices to find
G∗

jω(κ) which is P ∗

jω(κ)-generic and contains j[Gjω(κ)] as a subset. Note that

j[Gκ] = Gκ is trivially contained in Gjω(κ) and j∗[Gκ
jω(κ)] has a lower bound in

P
j(κ)
jω(κ) (as defined in V [Gj(κ)]); by choosing G

j(κ)
jω(κ) to contain this lower bound

we can take G∗

jω(κ) to be Gjω(κ) and thereby obtain j[Gjω(κ)] ⊆ G∗

jω(κ). And
again we can use the argument of Lemma 3 to generate the entire generic G∗

containing j[G]. So it only remains to show:

Lemma 4 Gjω(κ) ∩ P ∗

jω(κ) is P ∗

jω(κ)-generic over M .

Proof. Suppose that D ∈ M is dense on P ∗

jω(κ) and write D as j(f)(a) where f

has domain Vjω(κ) and a belongs to Vjn+1(κ) for some n. (We may assume that
every element of M is of this form.) Choose p in Gjω(κ) such that p reduces
f(ā) below jn(κ) whenever ā belongs to Vjn(κ) and f(ā) is open dense on
Pjω(κ), in the sense that if q extends p then q can be further extended into
f(ā) without changing q at or above jn(κ). Such a p exists using the jn(κ)+-

closure of P
jn(κ)
jω(κ) in V [Gjn(κ)]. Then j(p) belongs to j[Gjω(κ)] and reduces D

below jn+1(κ). As Gjn+1(κ) is Pjn+1(κ)-generic and P , P ∗ agree below jn+1(κ),
it follows that Gjω(κ) ∩ P ∗

jω(κ) intersects D, as desired. 2 (Lemma 4)
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This completes the proof of Theorem 2. 2

Another important property of L is the existence of a definable wellorder-
ing of the universe.

Theorem 5 (Large cardinals and definable wellorderings) If κ is superstrong
then there is an outer model in which κ is still superstrong and there is a
definable wellordering of the universe. The same holds for hyperstrong, n-
superstrong for finite n and ω-superstrong.

Proof. By Theorem 2 we may assume the GCH. Let κ have one of the large
cardinal properties mentioned in the theorem, as witnessed by the embedding
j : V → M . Choose λ to be a cardinal greater than jω(κ). By the method of
L-coding (see Theorem 1), we can enlarge V without adding subsets of λ to
a universe of the form L[A], A a subset of λ+. By the argument of Lemma
3 the embedding j lifts to L[A] and therefore κ retains its large cardinal
properties.

Now we introduce a definable wellordering. Perform a reverse Easton
iteration of length λ+, indexed by successor cardinals greater than λ+, where
at the i-th successor cardinal, an i+-Cohen set is added iff i belongs to A.
The result is that i belongs to A iff not every subset of the successor of the
i-th successor cardinal is constructible from a subset of the i-th successor
cardinal. Now the result of this iteration is a model of the form L[B] where
B is a subset of λ(λ+), the “λ+-th cardinal greater than λ”. Repeat this
to code B using the next interval of successor cardinals. Continuing this
indefinitely yields a model with a wellordering definable from the parameter
λ.

To eliminate the parameter λ, use a pairing function f : Ord×Ord → Ord
on the ordinals and arrange that the universe is of the form L[C] where C

is a class of ordinals and for any i, i is in C iff some subset of the successor
to the f(i, j)-th successor cardinal is not constructible from a subset of the
f(i, j)-th successor cardinal, for all sufficiently large j. 2

Jensen’s (global) 2 principle asserts the existence of a sequence 〈Cα | α

singular〉 such that Cα has ordertype less than α for each α and Cᾱ = Cα ∩ ᾱ

whenever ᾱ ∈ Lim Cα. The following strengthens a result of Doug Burke [2]:
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Theorem 6 (Superstrong cardinals and 2) If κ is superstrong then there is
an outer model in which κ is still superstrong and 2 holds.

Proof. By Theorem 2, we may assume the GCH. Consider now the reverse
Easton iteration P where at the regular stage α, Qα is a Pα-name for the
forcing which adds a 2-sequence on the singular limit ordinals less than α.
A condition in Qα is a sequence 〈Cβ | β ≤ γ, β singular〉, γ < α, such that
Cβ has ordertype less than β for each β and Cβ̄ = Cβ ∩ β̄ whenever β̄ belongs
to Lim Cβ.

Using the fact that Pα forces 2-sequences of any regular length less than
α, it is easy to verify by induction that any condition in Qα can be extended
to have arbitrarily large length less than α. Also Qα, and indeed the entire
iteration from stage α on, is α-distributive.

Let P ∗ denote M ’s version of P . We want to construct G∗ to be P ∗-
generic over M , to agree with G strictly below j(κ) and to contain j[G] as a
subclass. As in earlier arguments, P and P ∗ agree strictly below j(κ) but not
necessarily at j(κ), which is regular in M but may be singular in V ; as before
we take G∗

j(κ) to be Gj(κ) ∩ P ∗

j(κ). Our new task is to define a Q∗

j(κ)-generic g

over M [G∗

j(κ)].

Lemma 7 Assume GCH and let j : V → M witness the superstrength of κ

with j(κ) minimal. Then j(κ) has cofinality κ+.

Proof. Let 〈fi | i < κ+〉 be a list of all functions from κ to κ. Then the
sequence 〈j(fi) | i < κ〉 belongs to M , as it equals j(〈fi | i < κ+〉) ↾ κ.
For any ordinal α < κ+ we can use a bijection between α and κ to similarly
conclude that 〈j(fi) | i < α〉 belongs to M .

Now for each α < κ+ let κα be least so that κα is closed under each j(fi),
i < α. Then κα is less than j(κ), as j(κ) is regular in M . Let κ∗ be the
supremum of the κα’s. It suffices to show that there is a superstrong embed-
ding j∗ with critical point κ such that j∗(κ) = κ∗; then by the minimality
of j(κ), we must have j(κ) = κ∗ and therefore j(κ) is the supremum of a
non-decreasing κ+-sequence of ordinals strictly less than j(κ). It follows that
j(κ) has cofinality κ+.

9



To obtain j∗ define H = {j(f)(a) | f : Vκ → V , a ∈ Vκ∗}. Then H

is an elementary submodel of M and H ∩ j(κ) = κ∗. Let π : H ≃ M∗;
then j∗ = π ◦ j : V → M∗ satisfies j∗(κ) = π(j(κ)) = κ∗ and witnesses the
superstrength of κ, as desired. 2

We can assume that j is given by an ultrapower, and therefore that j is
continuous at κ+. It follows that (j(κ)+)M has cofinality κ+ and H(j(κ)+)M

is closed under κ-sequences. Therefore we can write the collection of (j(κ)+)M -
many open dense subsets of Q∗

j(κ) as the union of κ+ subcollections, each of

which belongs to M [G∗

j(κ)] and has size less than j(κ) there. Now we can build

g in κ+ steps, using j(κ)-distributivity to meet fewer than j(κ) open dense
sets at each step (and defining the 2-sequence coherently at limit stages).
We must also ensure that g extend gκ; but this is easy to arrange as the
latter is a condition in the forcing Q∗

j(κ).

Finally the rest of G∗ can be generated from j[G] as before. 2

The proof of the previous theorem does not work for hyperstrong κ, and
there is a good reason for this. κ is subcompact iff for any B ⊆ Hκ+ there
are µ < κ, A ⊆ Hµ+ and an elementary embedding j : (Hµ+ , A) → (Hκ+, B)
with critical point µ. (Note that by elementarity, j must send µ to κ.)

Proposition 8 (a) If κ is hyperstrong then κ is subcompact. (b) (Jensen)
If there is a subcompact cardinal then 2 (even when restricted to ordinals
between κ and κ+) fails.

Proof. (a) Suppose that j : V → M witnesses hyperstrength. Then for
all subsets B of j(κ)+ in the range of j, j gives an elementary embedding of
(Hκ+, A) into (Hj(κ)+, B), where j(A) = B; moreover this embedding belongs
to M as j is hyperstrong and j ↾ Hκ+ belongs to Hj(κ)+ . As the range of j is an
elementary submodel of M , it follows that there is an elementary embedding
of some (Hµ+ , A) into (Hj(κ)+ , B) (sending µ to j(κ)) which belongs to the
range of j. So j(κ) is subcompact in Range j and therefore by elementarity
subcompact in M . As j is elementary, κ is subcompact in V .
(b) Suppose that κ is subcompact and ~C = 〈Cα | κ < α < κ+, α singular〉
has the properties of a 2-sequence. By thinning out the Cα’s we can ensure

that each has ordertype at most κ. Let j be an embedding from (Hµ+ , ~̄C)
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to (Hκ+ , ~C), sending µ to κ. Let α be the supremum of the ordinals in the
range of j. Then α has cofinality µ+. The ordinals in the range of j form a
< µ-closed and therefore ω-closed unbounded subset of α. And Lim Cα is a
closed unbounded subset of α. Therefore the intersection D of these two sets
is unbounded in α. By the coherence property of ~C, the ordertype of Cβ for
sufficiently large β in D is at least µ. But as the ordertype of Cα is at most
κ (in fact less than κ), the ordertype of Cβ for all β in D is strictly less than
κ. Thus there are β in D ⊆ Range j with Cβ of ordertype not in Range j,
contradicting the elementarity of j. 2

Remark. Cummings-Schimmerling [4] establish the optimality of Jensen’s
result above by proving the consistency of 2 with 1-extendibility, a notion
whose strength lies between that of superstrength and hyperstrength. (κ is
1-extendible iff there is an elementary embedding j with critical point κ from
Vκ+1 into Vj(κ)+1). For their result, they perform the reverse Easton iteration
of Theorem 6 and check that j lifts to Vκ+1[Gκ], using the fact that j is the
identity below κ.

For uncountable, regular κ, ♦κ says that there exists 〈Dα | α < κ〉 such
that Dα is a subset of α for each α and for every subset D of κ, {α < κ | Dα =
D ∩ α} is stationary in κ. ♦ asserts that ♦κ holds for every uncountable,
regular κ.

Theorem 9 (Large cardinals and ♦) If κ is superstrong then there is an
outer model in which κ is still superstrong and ♦ holds. The same holds for
hyperstrong, n-superstrong for finite n and ω-superstrong.

Proof. The proof combines the proofs of Theorems 2 and 6. As in the latter
proof, we use a reverse Easton iteration P where at each regular stage α, Qα

is α-distributive (in fact, in the present context the entire iteration starting
with α is α-closed). A condition in Qα is a sequence 〈Dβ | β < γ〉, γ < α,
such that Dβ is a subset of β for each β < γ. It is easy to show that a
Qα-generic yields a ♦α-sequence, using the α-closure of Qα.

The proof in the superstrong case is just as in Theorem 6, where we take
G∗

j(κ) to be the intersection of Gj(κ) with P ∗

j(κ) and then build a Q∗

j(κ)-generic

containing the condition gκ. For hyperstrong κ (witnessed by j : V → M),
we need only observe that j[gκ+ ] has a lower bound in the forcing Qj(κ)+
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and choose g∗

j(κ)+ = gj(κ)+ to contain this lower bound. (This is where the

argument with 2 breaks down.)

For n-superstrongs, 1 < n finite, we can take G∗

jn(κ) to be the intersection

of Gjn(κ) with P ∗

jn(κ) (requiring the latter to contain the greatest lower bound

of j[Gjn−1(κ)]), but face the problem of defining a Q∗

jn(κ)-generic containing

the image of gjn−1(κ) under (the lifting to V [Gjn−1(κ)] of) j. We use the
following.

Lemma 10 Suppose that n is greater than 1 and j : V → M witnesses the
n-superstrength of κ, with jn(κ) chosen minimally. Then j is continuous at
jn−1(κ) (i.e., the range of j is cofinal in jn(κ)).

Proof. Let κ∗ be the supremum of the range of j intersect jn(κ). It suffices
to show that there is an n-superstrong embedding j∗ with critical point κ

such that j∗ ↾ jn−1(κ) = j ↾ jn−1(κ) and (j∗)n(κ) = κ∗.

Let H consist of all elements of M of the form j(f)(a), where f : Vκ →
V and a belongs to Vκ∗ . Then H is an elementary submodel of M : If
M � ϕ(y, j(f1)(a1), . . . , j(fn)(an)) for some y in M , where fi : Vκ → V ,
ai ∈ Vκ∗ for each i, then choose g : Vκ → V so that g(〈x1, . . . , xn〉) = y is
a solution to ϕ(y, f1(x1), . . . , fn(an)) in V (if there is such a solution y in
V ). Then by elementarity, M � ϕ(y, j(f1)(a1), . . . , j(fn)(an)) where y equals
j(g)(〈a1, . . . , an〉). The latter is an element of H .

Note that H ∩ jn(κ) = κ∗: If j(f)(a) is less than jn(κ), where f : Vκ → V

and a ∈ Vκ∗ , then j(f)(a) is less than the supremum of j(f)[Vα] ∩ jn(κ)
where α ∈ Range (j)∩κ∗ is large enough so that Vα contains a; as the latter
supremum belongs to Range (j), it follows that j(f)(a) is less than κ∗.

Now let π : H ≃ M∗ be the transitive collapse of H and define j∗ = πj.
Then j∗ : V → M∗ is elementary and has critical point κ. As π sends jn(κ)
to κ∗ and is the identity on κ∗, it follows that (j∗)m(κ) = jm(κ) for m < n

and (j∗)n(κ) = κ∗. And j∗ is n-superstrong as Vκ∗ = V M
κ∗ = V M∗

κ∗ . 2

We may assume that every element of M is of the form j(f)(a) where
f : Vjn−1(κ) → V and a belongs to Vjn(κ). Now we claim that the image of
gjn−1(κ) under (the lifting to V [Gjn−1(κ)] of) j generates a generic for Q∗

jn(κ),
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in the sense that every dense subset of Q∗

jn(κ) which belongs to M [G∗

jn(κ)] is

met by a condition in j[gjn−1(κ)]. For, if D is such a dense set, then D has a
name of the form j(f)(a) where a belongs to Vj(α) for some α < jn−1(κ). By
the jn−1(κ)-distributivity of Qjn−1(κ), there is a condition p̄ ∈ gjn−1(κ) which
meets all dense sets with names of the form f(ā), ā ∈ Vα; then j(p̄) = p

meets D.

Finally, ω-superstrength is handled just as in Theorem 2. 2

Remark. The proof of Lemma 10 shows a bit more: Any n-superstrong em-
bedding j with critical point κ has an “approximating” n-superstrong embed-
ding j∗ which agrees with j below jn−1(κ) and is continuous at (j∗)n−1(κ) =
jn−1(κ). A similar remark applies to the proof of Lemma 7.

The technique of the previous proof can also be used to force a weakened
form of 2, preserving very large cardinals. 2 holds at small cofinalities iff the
2 principle holds when restricted to singular ordinals of cofinality at most
the least superstrong cardinal.

Theorem 11 (Large cardinals and 2 at small cofinalities) If κ is hyperstrong
then there is an outer model in which κ is still hyperstrong and 2 holds
at small cofinalities. The same holds for n-superstrong for finite n and ω-
superstrong.

Proof. Perform a reverse Easton iteration where at each regular stage α, Qα

adds a 2-sequence on the singular ordinals less than κ which have cofinality
at most the least superstrong cardinal. If j : V → M witnesses that κ is
hyperstrong, then we take G∗

j(κ)+ to be Gj(κ+) and observe that j[gκ+] does
have a greatest lower bound in Qj(κ)+ , because its supremum is an ordinal of
cofinality κ+, greater than the least superstrong cardinal of M . By choosing
g∗

j(κ)+ = gj(κ)+ to contain this greatest lower bound, we can lift j to V [Gκ++1],

and then to all of V [G]. If j : V → M witnesses the 2-superstrength of κ

then similarly we get a greatest lower bound for j[Gj(κ)] in Pj2(κ) as for each
regular α ∈ (κ, j(κ)), the supremum of j[α] is an ordinal of cofinality greater
than κ, which is superstrong (and more) in M . Then we use the argument
of the preceding proof to lift j to all of V [G]. A similar argument handles
ω-superstrength. 2

13



Remark. I mention some previous work on preserving weakened forms of 2 in
the presence of very large cardinals. If κ is supercompact then Solovay proved
that 2λ fails at all singular λ > κ. However Baumgartner showed that there
is a forcing extension in which κ remains supercompact and 2λ does hold for
all λ greater than κ, provided we restrict the square sequences to ordinals
of cofinality less than some fixed µ < κ. And Cummings-Foreman-Magidor
[3] show that κ remains supercompact in some forcing extension in which for
each singular cardinal λ of cofinality at least κ, the Weak Square principle
2

∗

λ holds (allowing λ-many clubs in each limit ordinal α < λ+ instead of just
one).

Theorem 12 (Large cardinals and Gap 1 morasses) If κ is superstrong then
there is an outer model in which κ is still superstrong and gap 1 morasses
exist at each regular cardinal. The same holds for hyperstrong, n-superstrong
for finite n and ω-superstrong.

Proof. For the definition of a gap 1 morass we refer the reader to [5]. Assume
GCH and let κ be superstrong. We apply the reverse Easton iteration P

where at each regular stage α, Qα adds a gap 1 morass at α. A condition in
Qα is a size < α initial segment of a morass up to some top level, together
with a map of an initial segment of this top level into α+ which obeys the
requirements of a morass map. To extend a condition, we end-extend the
morass up to its top level and require that the map from the given initial
segment of its top level into α+ factor as the composition of a map into
the top level of the stronger condition followed by the map given by the
stronger condition into α+. The forcing Qα is α-closed and, using a ∆-system
argument, is α+-cc.

To obtain the desired G∗, we must build a Q∗

j(κ)-generic which extends

the image under (the lifting to V [Gκ] of) j of the Qκ-generic gκ. As in the
case of 2 we use minimisation of j(κ) to ensure that it has cofinality κ+ and
then build a Q∗

j(κ)-generic in κ+ steps. Note that any condition in j[gκ] is
extended by one which has top level κ and maps an initial segment of the
top level into j(κ)+ using j. Now given fewer than j(κ) maximal antichains
in M [G∗

j(κ)], we can choose α < j(κ)+ of cofinality j(κ) in M so that these
maximal antichains are maximal when restricted to conditions which are
“below α” in the sense that they map an initial segment of their top level

14



into α. Moreover, there is a condition which serves as a lower bound to all
conditions in j[gκ] which are below α in this sense. Therefore we can choose
a condition below α meeting all of the given maximal antichains compatibly
with the conditions in j[gκ] which are below α, and therefore compatibly
with all conditions in j[gκ]. Repeating this in κ+ steps for increasingly large
α < j(κ)+ of M-cofinality j(κ) (taking unions at limit stages) yields the
desired Q∗

j(κ)-generic. The remainder of the generic G∗ can be generated
using Lemma 3.

Now suppose that κ is hyperstrong. We must define a suitable Q∗

j(κ)+-
generic. We may assume that j is given by a hyperextender and therefore j

is cofinal from κ++ into j(κ)++ of M . Let S consist of those morass points
at the top level (i.e., level κ+) of gκ+ which have cofinality κ+. For each σ

in S let gκ+ ↾ σ denote the set of conditions in gκ+ which are below σ. Then
j[gκ+ ↾ σ] has a greatest lower bound pσ in Q∗

j(κ)+ .

The collection of maximal antichains of Q∗

j(κ)+ which belong to M [G∗

j(κ)+ ]

can be written as a union
⋃

i<j(κ)+ Xi where for each i and each σ in S,

Xi ↾ j(σ) (the subset of Xi consisting of those maximal antichains all of
whose elements are below j(σ)) is a set of size at most j(κ) in M . By
induction on σ ∈ S choose a condition qσ extending pσ and all qτ , τ ∈ S ∩ σ,
which meets all antichains in X0 ↾ j(σ). By hyperstrength, the sequence of
qτ ↾ j(σ), τ ∈ S, has a greatest lower bound p1

σ for each σ ∈ S. Now repeat
this construction for X1, X2, . . . for j(κ)+ steps, resulting in a set of conditions
which generates a generic gj(κ)+ for Q∗

j(κ)+ . As before, the remainder of the
generic G∗ can be generated using Lemma 3.

The cases of n-superstrength, 2 ≤ n finite, are handled as in the proof of
Theorem 9. ω-superstrength is handled as in the proof of Theorem 2. 2

Questions. 1. It is possible to force a definable wellordering of the universe
over a model of GCH preserving the superstrength of all superstrong cardi-
nals, at the cost of some cardinal collapsing. Is it possible to do this without
cardinal collapsing? Is it possible to preserve the superstrength of all su-
perstrong cardinals while forcing not only the universe but also each H(κ),
κ > ω1, to have a definable wellordering?
2. Is it consistent with a superstrong cardinal to have a gap 2 morass at
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every regular cardinal?
3. To what extent are the condensation and hyperfine structural proper-
ties of L (see [9]) consistent with large cardinals? For the former, see the
forthcoming [8].
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