ESI Workshop

ESI = Erwin Schrödinger Institut, Vienna

ESI WORKSHOP ON LARGE CARDINALS AND DESCRIPTIVE SET THEORY June 14-25, 2009

1st week: June 14–18 Emphasis on Large Cardinals 2nd week: June 21–25 Emphasis on Descriptive Set Theory

All are welcome; no registration fee

For further information:

KGRC Webpage: http://www.logic.univie.ac.at/

Contact person: Jakob Kellner email: esi2009@logic.univie.ac.at

Internal Consistency

- φ is *internally consistent* iff φ is true in some inner model Assumption: There are inner models of V with large cardinals A new type of (relative) consistency result.
- $Con(ZFC + \varphi) = ZFC + \varphi$ is consistent

 $\mathsf{ICon}(\mathsf{ZFC}+arphi) = \mathsf{ZFC}+arphi$ holds in some inner model

Internal Consistency

Consistency result: $Con(ZFC + LC) \rightarrow Con(ZFC + \varphi)$, where LC is a large cardinal axiom

Internal consistency result: $ICon(ZFC + LC) \rightarrow ICon(ZFC + \varphi)$ Internal consistency is stronger than consistency

Example

 $Con(ZFC) \rightarrow Con(ZFC + GCH \text{ fails at all regular cardinals})$ (Force with an Easton product over L)

 $ICon(ZFC + 0^{\#} exists) \rightarrow$ ICon(ZFC + GCH fails at all regular cardinals)(Force with a reverse Easton iteration over *L*, build a generic using the Silver indiscernibles)

Proving Internal Consistency demands new techniques

2 Types of Internal Consistency Results

Two types of internal consistency results:

Type 1. $ICon(ZFC + 0^{\#} \text{ exists}) \rightarrow ICon(ZFC + \varphi)$

Build generics by cohering partial generics along Silver indiscernibles.

Two techniques:

Easier cases: *Generic modification* (F-Ondrejović) Harder cases: *Partial master conditions* (F-Thompson)

Key to Type 2 results: Show that the relevant forcings preserve measurability

2 Types of Internal Consistency Results

Type 2. First show:

(*) ZFC+ LC \rightarrow In some set-forcing extension, φ holds in V_{κ} for some measurable κ

Then we have:

 $ICon(ZFC + LC) \rightarrow ICon(ZFC + \varphi \text{ holds in } V_{\kappa}, \kappa \text{ measurable})$ (Force with a countable p.o. over an inner model)

and also:

ICon(ZFC + φ holds in V_{κ} , κ measurable) \rightarrow ICon(ZFC + φ) (Iterate the measure to ∞)

So we conclude:

 $\mathsf{ICon}(\mathsf{ZFC} + \mathsf{LC}) \rightarrow \mathsf{ICon}(\mathsf{ZFC} + \varphi)$

2 Types of Internal Consistency Results

How do we show (*)?

(*) ZFC+ LC \rightarrow In some set-forcing extension, φ holds in V_{κ} for some measurable κ

In easier cases: Master conditions (Silver), Partial master conditions (Magidor, F-Honzík) or Generic modification (Woodin) In harder cases: κ -Tree forcings (F-Thompson for κ -Sacks products, Dobrinen-F for κ -Sacks iterations, F-Zdomskyy for κ -Miller iterations)

Examples of Internal Consistency

Some Internal Consistency Results

Cardinal Exponentiation: F-Ondrejović, F-Honzík

Costationarity of the Ground Model: Dobrinen-F

Global Domination: F-Thompson

Tree Property: Dobrinen-F

Embedding Complexity: F-Thompson

Cofinality of the Symmetric Group: F-Zdomskyy

Internal Consistency: Cardinal Exponentiation

Cardinal Exponentiation

Easton function: $F : \operatorname{Reg} \to \operatorname{Card}, F$ nondecreasing, $\operatorname{cof}(F(\kappa)) > \kappa$ for all $\kappa \in \operatorname{Reg}$

Easton: F a provably definable Easton function. Then $Con(ZFC) \rightarrow Con(ZFC + 2^{\kappa} = F(\kappa) \text{ for all regular } \kappa)$

Easton used an Easton product

This gives *no* internal consistency result

Internal Consistency: Cardinal Exponentiation

F-Ondrejović: Instead use Easton iteration of Easton products and *generic modification*

Theorem

F a provably definable Easton function. Then $ICon(ZFC + 0^{\#} \text{ exists}) \rightarrow ICon(ZFC + 2^{\kappa} = F(\kappa) \text{ for all regular } \kappa)$

Type 2 result (F-Honzík): F a provably definable Easton function, κ is $H(F(\kappa))$ -hypermeasurable witnessed by j with $j(F)(\kappa) \ge F(\kappa)$. Then in a set-generic extension, κ is measurable and F is realised below κ (in fact, everywhere). Sample corollary:

Theorem

ICon(ZFC+ There is a $P_2\kappa$ hypermeasurable) \rightarrow ICon(ZFC+ $2^{\kappa} = \kappa^{++}$ for all regular κ + There is a proper class of Ramsey cardinals)

Internal Consistency: Global Domination

Global Domination

 κ an infinite regular cardinal Suppose $f, g : \kappa \to \kappa$ f dominates g iff $f(\alpha) > g(\alpha)$ for sufficiently large $\alpha < \kappa$ \mathcal{F} is a dominating family iff every $g : \kappa \to \kappa$ is dominated by some f in \mathcal{F} $d(\kappa) =$ the smallest cardinality of a dominating family

Fact: $\kappa < d(\kappa) \leq 2^{\kappa}$ for all infinite regular κ

Global Domination: $d(\kappa) < 2^{\kappa}$ for all infinite regular κ

Internal Consistency: Global Domination

Cummings-Shelah: Global Domination is consistent Proof uses κ -Cohen and κ -Hechler forcings Corollary to their proof: ICon(ZFC+ a supercompact cardinal) \rightarrow ICon(ZFC+ Global Domination)

F-Thompson: Instead use κ -Sacks product (and *tuning forks*)

Theorem

 $ICon(ZFC + 0^{\#} exists) \rightarrow ICon(ZFC + Global Domination)$

Theorem

If κ is $P_2\kappa$ hypermeasurable then in a set-generic extension, κ is measurable and global domination holds below κ (in fact, everywhere).

Internal Consistency: Global Domination

In the previous two theorems, $(d(\kappa),2^{\kappa})=(\kappa^+,\kappa^{++})$

What about other possibilities for $(d(\kappa), 2^{\kappa})$?

Global Domination Pair (d, F): For regular κ , $\kappa < d(\kappa) \leq F(\kappa)$, $d(\kappa)$ regular, F an Easton function

Realising arbitrary global domination pairs seem to require very large cardinals:

Definition. ∞ is super-Woodin iff for any class $A \subseteq$ Ord there is κ such that for any λ , some j witnessing that κ is λ -supercompact satisfies $j(A) \cap \lambda = A \cap \lambda$ (Follows from a stationary class of almost-huge cardinals)

Internal Consistency

Theorem

Assume GCH and ∞ super-Woodin. Then if φ defines a global domination pair there are inner models $W_0 \subseteq W_1$ such that φ defines in W_0 the global domination pair realised in W_1 .

Uses $\kappa\text{-Cohen}$ and $\kappa\text{-Hechler}$ forcing, as in Cummings-Shelah, but preserving the measurability of κ

Internal Consistency: The Tree Property

The Tree Property

 κ regular

A κ -Aronszajn tree is a tree of height κ with no κ -branch κ has the tree property iff there is no κ -Aronszajn tree

Mitchell: Con(ZFC+ Proper class of weakly compact cardinals) \rightarrow Con(ZFC + α^{++} has the tree property for all inaccessible α)

Proof uses "Mitchell forcing"

Corollary to proof: ICon(ZFC+ a supercompact cardinal) \rightarrow ICon(ZFC + α^{++} has the tree property for all inaccessible α)

Internal Consistency The Tree Property

Dobrinen-F: Instead use iterated κ -Sacks forcing

Theorem

 $ICon(ZFC + 0^{\#} exists) \rightarrow$ $ICon(ZFC + \alpha^{++} has the tree property for all inaccessible \alpha)$

Theorem

If κ is weakly compact hypermeasurable then in a set-generic extension, κ remains measurable and the tree property holds at $\kappa^{++}.$

Theorem

ICon(ZFC+ There is a weakly compact hypermeasurable) \rightarrow ICon(ZFC+ The tree property holds at α^{++} for inaccessible α and there is a proper class of Ramsey cardinals)

Internal Consistency. The Tree Property

A related consistency result:

Foreman: Con(ZFC+ supercompact + a larger weak compact) \rightarrow Con(ZFC+ Tree Property at λ^{++} for a singular λ)

Theorem

(F-Halilović-Magidor) $Con(ZFC + \kappa \text{ weakly compact})$ hypermeasurable) $\rightarrow Con(Tree \text{ property at } \aleph_{\omega+2})$

Internal Consistency: Embedding Complexity

Embedding Complexity

 $\alpha \leq \kappa$ infinite and regular

 $G(\alpha, \kappa) =$ Set of graphs of size κ which omit α -cliques

Embedding complexity of $G(\alpha, \kappa) = \text{ECG}(\alpha, \kappa)$: Smallest size of a $U \subseteq G(\alpha, \kappa)$ such that every graph in $G(\alpha, \kappa)$ embeds into some element of U (as a subgraph)

What are the possibilities for ECG(α, κ) as a function of α and κ ?

Internal Consistency: Embedding Complexity

Complexity triple (a, c, F): a, c, F : Reg \rightarrow Card F is an Easton function $a(\kappa) \leq \kappa < c(\kappa) \leq F(\kappa)$ for all κ

Theorem

(Džamonja-F-Thompson) Suppose that (a, c, F) is a provably definable complexity triple. Then $Con(ZFC) \rightarrow$ $Con(ZFC + ECG(a(\kappa), \kappa) = c(\kappa) \text{ and } 2^{\kappa} = F(\kappa) \text{ for all } \kappa \in \text{Reg})$

Internal Consistency: Embedding Complexity

Theorem

(F-Thompson) Suppose that (a, c, F) is a provably definable complexity triple. Then $ICon(ZFC + 0^{\#} \text{ exists}) \rightarrow ICon(ZFC + ECG(a(\kappa), \kappa) = c(\kappa) \text{ and } 2^{\kappa} = F(\kappa) \text{ for all } \kappa \in \text{Reg})$

The generic is built using partial master conditions

Consistency with measurability: Looks difficult. Need a "tree-like" forcing to control embedding complexity

Internal Consistency: Cofinality of the Symmetric Group

Cofinality of the Symmetric Group

 κ regular. Sym (κ) = the symmetric group on κ

 $cof(Sym(\kappa)) = the length of the shortest chain of proper subgroups of Sym(\kappa) whose union is all of Sym(\kappa)$

Internal Consistency: Cofinality of the Symmetric Group

Theorem

(F-Zdomskyy) $Con(ZFC + \kappa \text{ is } P_2\kappa \text{ hypermeasurable}) \rightarrow Con(ZFC + cof(Sym(\kappa)) = \kappa^{++} \text{ for a measurable } \kappa)$

Uses an iteration of a special version of κ -Miller forcing

Theorem

(F-Zdomskyy)
$$ICon(ZFC + 0^{\#} \text{ exists}) \rightarrow ICon(ZFC + cof(Sym(\alpha)) = \alpha^{++} \text{ for all inaccessible } \alpha)$$

Uses the partial master conditions of F-Thompson.

Internal Consistency: Open Problems

Type 1 results

What global patterns can be realised in inner models of $L[0^{\#}]$ for the following characteristics? Easton functions with parameters Dominating pairs (d, F)Sym (κ) Tree Property (κ) Stationary reflection at κ \Box_{κ}

Type 2 results

General open problem: How can one preserve measurability with *iteration* of " κ -Cohen like" forcings? Is there a general method for converting these into " κ -Tree like" forcings?