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The purpose of the present paper is to establish the following strengthening of 

Jensen’s Coding Theorem. 

Theorem. Suppose V = L[A] where A c_ ORD and GCH holds. Then there is a 
cofinality and cardinal preserving forcing for producing a real R such that 

V[R] = L[R] and A is L[R]-definable from R. Moreover we can require R to be 

minimal over V: if x E ORD belongs to V[R], then either x E V or R E V[x]. 

The first part of the Theorem is Jensen’s Coding Theorem (see Beller-Jensen- 

Welch [ 11). Thus our goal is to establish the Coding Theorem using branching 

conditions, which are suitable for showing minimality. Minimal reals were first 

constructed by Sacks [6] using forcing with perfect trees. Our forcing conditions 

are obtained by replacing the building blocks R” of Jensen’s forcing by forcings 

constructed out of perfect trees. A peculiarity is that our notion of ‘path’ p 
through such a tree of height K does not require that p 1 y belong to V for y < K. 

This is necessary as it is easily shown that if R is minimal over V, p: K - 2 belongs 

to V[R] - V and K > X0, then p 1 y $ V for some y < K. 

Our Theorem has some corollaries concerning reals which are minimal over L. 

Corollary. There is an L-definable forcing for producing a real R which is minimal 
over L but not set-generic over L. 

Proof. Let Q be the forcing that adds a Cohen subclass of ORD using 

constructible conditions p: y+ 2, y E ORD. Consider Q * P where P arises from 

the Theorem applied to (L, A), A = the generic class added by Q. Note that A is 

not L-definable. We now show that if R denotes the generic real added by Q *P, 

then R is not set-generic over L: Suppose 4(x, R) is a formula such that p c A iff 

L[R] k @(p, R) and that L[R] = L[G] where G is generic for a set of conditions 

% E L. By the Truth Lemma p GA iff 3r E G r Ib#(p, R) and thus for some 

fixed roe G, roIb$(p, R) for class-manyp. Thusp cA_Yp’ r,,Ib<p(p’, R) and 

p cp’ and we have contradicted the fact that A is not L-definable. 0 
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It was shown by Jensen [5] that if OS exists, then there exists a real R E L[O*] 
which is not set-generic over L. By imitating that construction we can obtain the 

following. 

Corollary (to proof of Theorem). If O* exkts, then there is a real R which is 
minimal over L but not set-generic over L. 

Our proof will be presented in stages. Initially we shall assume that A s wl. 
then we consider the cases where o1 is replaced by w2 and w,+i before turning to 

the general case, where A c ORD is a class. 

Some Notation. (a) We use * to denote concatenation of sequences. Thus 

cr * r(i) = a(i) for i < length(a) and = z(i - length(a)) for length(u) G i < 
length(a)+length(r). Also, a*O, a*1 denote a*(O), u*(l). 

(b) We confuse sets with their characteristic functions. Thus B(i) = 1 if i E B, 

= 0 if i $ B. 
(c) For R c o, (R)n denotes {m I2”3” E R}. 

1. Minimally coding a subset of o1 

Assume that A E ol. In this section, we shall establish the theorem in this 

special case. (This was done independently by Groszek under the extra 

hypothesis that 2” E L.) 
For this purpose we use a technique called ‘canonical coding’: To each real R 

we will define a canonical sequence of perfect trees TE for an initial segment of 

ordinals 1~. R will be a path through TE whenever it is defined, and in fact TE will 

be defined for all (Y < o1 for the desired real R. Then we code A by: a! E At, R 

‘goes right’ at large enough even levels of T”, (this is defined precisely below). 

This strategy does lead to success if we make an extra assumption about A. We 

say that A is efficient if p < w, -+ 6 is countable in L[A n p]. Our assumptions do 

not imply that an efficient A exists. If A is efficient, then we can use conditions 

which are perfect trees T such that for some CY (called the rank of T), 
R E [T] = {paths through T} +T=TE and (/3<cu+p~A iff R ‘goes right’ at 

large enough even levels of TF). The efficiency of A is used to show that for 

(Y’ > cu, T can be extended to a condition T’ of rank a’; we need that (Y’ is 

countable in L[A f~ a’] to inductively fuse countably many extensions of T to 

conditions of ranks unbounded in CY’ (for limit (u’). 

If we cannot assume that A is efficient, then the coding must be modified. The 

idea now is to arrange that our generic real code not A but instead an efficient 

BR E o1 such that A = even(B,) = {(Y 12~ E BR}. Thus a condition should be a 

perfect tree T on o such that if R is a branch through T, then R codes some 

BR fl JTJ which is efficient through ITI and such that {(Y ) 2c~ E BR fl IT)} is an 

initial segment of A. 
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Note that our forcing is very ‘thin’ in the sense that if R is a branch through 

some condition T, rank(T) = LX, then T = TE is uniquely determined. The way in 

which this is done is to use the L[B, fl al-least counting of (Y to construct Tz as a 

fusion of finite unions of ‘canonical’ conditions Ti, p < (Y. We also use a O-like 

construction to anticipate fusion sequences that must be considered to show that 

our forcing preserves o1 and produces a minimal real. 

We are ready to begin the definition of the forcing R* for minimally coding A. 
Perfect trees on w are defined to be collections T of finite functions s : 1s I+ 2 with 

the properties that 

s~T+3t~,t~~T(s c cl fl t,, t,(n) Z t,(n) for some n) 

and 

sET,tGs+tET. 

A real R 5 o is a brunch through T if 

R E [T] = {S 1 cs 1 n E T for all n) 

where cs = the characteristic function of S. If T is a perfect tree and s E T, then 

(T)S is the perfect tree {t E T 1 t ES or s G t} and llsll denotes the cardinality of 

{t(tssandt*O,t*lET}. 

We define R& the collection of conditions of rank <L-Z, by induction on 

(Y < wl. We then define the desired forcing R* as the union of the Rt, LY < wl, 
and for T E R* we write JTI = (Y if T E R; - R&. The notion of extension for R* 
is defined to be inclusion: Tl is stronger than T2 if T, G T2 (in which case we write 

Tl 6 T,). Also define T, 6, T2 if Tl d T2 and s E T,, llsll 6 k+s E T,. 

Simultaneously with the Rt we shall define for certain reals R a canonical 

condition TE E Rt. The condition Tz is defined whenever R E [T] for some 

TERA,-R&. We say that T is canonical if T = TE for all R E [T]. 
We also want certain closure properties for the R& cx < wl. In fact, RA, is 

obtained by closing R* <,U Z?“, under the operations (*), (**) where RI!,= 
IJ {Rj: ( p < a} and fi”, = the canonical conditions in Rt - R&. ( * ), ( * * ) are 

defined by: 

(*) TeRA,, s E T-, (T)s ERA,, 

(* *) T ,,..., T,ERA,+T&J.~JT,ERA,. 

We will also need to make use of a O(E)-sequence where E E EO = {LX < o1 1 (Y 

is countable in L[A fl cr]} is defined below. 

Lemma 1.1. EO is stationary. 

Proof. If C is closed unbounded, let M be the least elementary submodel of 

L,,[A] containing A and C as elements. If (Y = M n o,, then cr E C and (Y E EO 
since there is a counting of (Y in &,+*[A fl a] where ,!+[A fl (u] -L M. 0 
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A ordinal (Y is A-locally countable if /3 < (Y+= /l is countable in &[A]. Now let 
E = E0 n { LY 1 cx is p.r. closed and A-locally countable}. Then E is stationary and 
we let (S, 1 a E E) be the canonical O(E)-sequence from [2]. Thus S, c a for 
creE and if Xcoi, then X n IX = S, for stationary-many (Y E E. We also have 
good definability properties for (S, 1 (Y E E) : If a! E E, then (S, ( j3 E E rl a) is 
definable over &[A] and S, E &[A f~ (u] where y is the least p.r. closed ordinal 
greater than LY which is A n a-locally countable. 

We can now begin the inductive definition of the Rt, (Y < ol. 

Case 1: a, = 0. If si, . . . , s, are finite strings, then (2’“),, u . . . u (2<“),n 

belongs to Rt and these are the only elements of Rt. For any real R, Tz = 2’“, 
so l?; = (2’“). 

Case 2: a=/3 + 1. Let T EZ?$. We describe the extensions of T in R& Let 

Split(T) = {a E T 1 a*O,a.*lET} and letf:2<” + Split(T) be bijective so that 

f(a * 0) zf(a) * 0 f or all a (f is unique). Define 7;,, TI to be q = {a I a of for 

some b E 2’“, b(2i) =j for 2i < lb]}. We now define Tf for k E w, i <2’*, by 
induction: To define T$, i < 2** first list all subsets x of {a E 2<“’ I length(a) = k} 

as x0, xi, . . . for each xi choose subtrees T(i) sk T so that no T(i) shares a path 
with any Tf’, k’ < k, nor with any other T(i’), and so that 

a ~n~-(T(i))f(,) c &, a E 2k - xi* ( T(i))f(aj c To. 

Then add all the T(i) to I?; if /? is not even and if p = 2y, then add T(i) to Rt iff 
(xi = 2k, y EA or xi = 0, y $ A). Set Tf = T(i). To obtain R”, close l&U l?“, 

under (*), (* *). 

Case 3: (Y limit, (Y $ E. Our goal here is to extend each canonical T E R:, = 

IJ {R$ I /? < a} to a canonical condition in Rc - R$,. (It then follows easily that 
every condition in R:, can be extended to a condition in R$ - R$,.) Thus it is 
important to arrange that if T* is added to R& then T* can be recovered 
canonically from each path R E [T*] (so that T* will be canonical). We achieve 
this by insisting that a final segment of BR fl (Y is constant for R E [T*] and that 
BR fl (Y codes the construction of T*, where BR fl (Y is the predicate coded by R: 

/3 E BR fl (Y f, /3 < (Y and R goes right at large enough even levels of Ti, where R 

goesrightatlevelion TifaET, asR, Ilall=i+a*lER. 

Given a real R we first define what it means for BR fl a to code an o-sequence 
C$<C$<*** cofinal in LY. Define R* = {n I 2(A + 2”3i) + 1 E BR for unboundedly 
many 2(A + 2”3’) + 1 < a, A limit or O}. Note that R* depends only on a final 
segment of BR n (2p + 1 I fi < a}. If LY is countable in L[R *] and 0 4 R* say that 
RR n (y codes the w-sequence C# < (~7 < - - . defined by: (c$ I i < o) is the 
L[R*]-least increasing o-sequence cofinal in Q such that CY a limit of limit ordinals 
+ (ul” a limit ordinal for all i. This extra condition on the C$‘S will be useful in the 
proof of extendibility. 
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Now pick an ordinal fi < Q and an integer k E o. Let II be least so that fi < (Y: 

and define T02T13*** as follows: To = ,!,[A 17 a, R*]-least canonical T < T# in 

R$ such that T&i Tj and S E [T]-+ Bs and BR agree on [B, (uf). If T, is defined, 

then Tk+, = L[A f7 a, R*]-least canonical T G Tk in R$,R+~+, such that TGL+~+, Tk 

and S E [TJ-+ Bs and BR agree on [LY~+~, (Y:+~+,). Let TR@, k”) = f-I {Tk 1 k < 

o>* 
Now include in l?“, all perfect trees T such that T E &[A] where /3 is least so 

that p > a! and /3 is both p.r. closed and A-locally countable, and for some ,8 < a; 
f E w and all R E [T], T = T”@, k) as built above. If R E [T] for such a T, then 
1”: = T. Note that Tg is uniquely determined as n { Tz” 1 no6 n E w} for 
sufficiently large no. Then R; is obtained from R$, U I?1 by closing under ( * ), 

(* *). 

Case 4: @ limit, a E E. We treat this case as in Case 3 but with one change. 
First see if S,, obtained from the O(E)-sequence (S, 1 ty E E), is of the form 
U {{i} x Di 1 i E w } U {To} where T, E R$,, Di is open dense on R& and in fact 
IT/ < ctr--+ 3T’ ci T, IT’1 < CY such that T’ e 4. (We identify L,[A] with (Y so that 
the previous set can be viewed as a subset of m.) If not, proceed exactly as in 
Case 3. If so, proceed as in Case 3 except add to RA, an additional condition T, 

described as follows: Let a0 < LYE < + * + be the L[A i3 &]-least o-sequence cofinal 
in LY and inductively define Tk+r to be the L[A CI &]-least Tc~ Tk such that 

111”1 3 ak,, T E Z& and for some limit ilZ ak, 2(2 + 3”) + 1 E RR for all R E [T], for 
all II G k. The purpose of the last clause is to guarantee that if T = n { Tk 1 k < 
w), then R ~r:[T]-+oc R* (R* as defined in Case 3). Now add T to R< and 
obtain RA, by closing R$, UR; under (*), (**). For RE[T], TE=T. This 
completes the construction of the Ii”,, a< w1 and hence that of RA = 

UPA,) a<~). 

Remark. We claim that the tree Tz (and hence A CI a) can be recovered 
uniformly from R in L[R], for all R such that R E [T] for some T E Rt - R$,. Of 
course T$’ is just 2<“. If & = /3 + 1, then given TE it is easy to compute 

T;+, = TR,. 
If QI is a limit ordinal, then first test LY E E using A fl LY. If (Y $ E, then TE is 

easily determined from RR n a!, as described in Case 3. If cy E E, then compute 
R* from BR fl cr as in Case 3 and see if 0 E R*. If not, then TE is computable from 
R as in the case a: & E. If so, then TE can be computed if we know S,, BR n a and 
A il a. But all three of these can be determined from BR rl (Y in L[B, n a] due to 
the facts that 5,~L[Ana], An a=even part(& n cu). As B,na can be 
computed in L[R] we are done. 

The main things to show about R* are Extendibility and Fusion. 

Lemma 1.2 (Extendibility). Suppose T E R* and 1 Tj G (Y < q. Then for any 1 E o 
there exists T’s, T, IT’1 = a. 



Proof. By induction on a: Obviously we can assume that a #O. We can also 
assume that T is canonical, as otherwise write T = (T&, U . - - U (T,),_ where 
si E K and 7; is canonical; then choose I’ = max(f, &so]], . . . , IIs, 11) and let Ti + I; 
for each i, 1 TI / = cr. Then T’ = (T&, U - . - U (TA), is as desired. 

To successfully carry out our induction we must prove somewhat more than 
what is stated in the lemma. We inductively define the notion “b G [IT], LX) is 
T-s~~~i~l at a” and prove by induction on CY that T canonical, f TI s LY < o,, 

b s [ITI, ~1 T- P s ecial at LY--, there exists a canonical T’ sI T, IT’1 = r~ such that 
R E [T’] + BR n [I TI, a) = b. (We shall also have to prove the existence of such 

b.) 
If LY = 1 TI, then Q, is T-special at fy. 
Suppose E = p + 1. Then b 5 [I TI, (u) is T-special at ty iff b-{/3} is T-special at 

p and j3 = 2y+ (j3 E b iff y E A). By induction we can extend T to a canonical 

T*s,T such that IT*1 =@ and R E[T*]--,& fl[ITI, @)= b n/3_ So we can 
assume that ITI = /I? and we must show that 

(a) j? odd implies there are canonical T& T; E I?~+, such that TJ sr T, R E [Th] 
(R E [T;], respectively) + R goes right at large enough even levels of T (R goes 
left at infinitely many even levels of T, respectively), and 

(b) /3 =2y implies that if y EA (if y $A, respectively), then there exists 
T; cl T (T,f, sr T, respectively) in R&i such that R E [Ti]+ R goes right at large 
enough even levels of T (R E [ Th] --, R goes left at infinitely many even levels of 
T, respectively). But an inspection of the construction of Case 2 reveals that 
conditions To, TX cl T were added to R$+, so as to meet the above requirements 

on T& T;. 
Suppose ‘T-special at p’ is defined for all fl< cy where ff is a limit ordinal <oi 

and for /3 < a, j3 > [ T 1 and b c [I TI, B) T-special at p, T canonical + there is a 
canonical T’sl T, IT’] =fl and R E [T’]*& n[ITl, /3) = b. Define R* as in 
Case 3 with BR replaced by b c [ITI, a). W e require for b to be T-special at (Y 
that IX is countable in L[R*] and 0 4 R*. We also require that b n c-t,, is T-special 
at tu, where 12 is least so that fi = I TI < ru, and a, < CYY~ -=z . - - is defined as was 
&$<iY:<-.. in Case 3. Let To = L[A fl LY, R*]-least canonical ‘I;$ Tin Rt_ such 
that R E [f’]+ BR rl [ITI, a,J = b n an. Then we also require that b fl [an,, an+J 

is T,-special at CU,+~. Continue in this way to define (q 1 k E w} and require that 

b n [%+/0 an+k+l) is T,-special at (Y,+~+~. Finally we insist that b E LB[A] where 
/? > a is least so that /3 is p.r. closed and A-locally countable. This completes the 
definition of ‘T-special at (Y’. 

We must show that T can be <,-extended to a canonical T’ E Re such that 

R E [T’]+& n [ITI, (Y) = b, whenever b is T-special at cy. But define To 3 T, Z= 
. . . as in the preceding paragraph using b and let T’ = f-l {T, 1 k < CO}. If 
R E [T’], then BR fl [ITI, a) = b by construction. And clearly TR = T’ where TR 
is defined as in Case 3; T’ E Z+[A] when p > a is p.r. closed and L@[A] is locally 
countable, since b E &[A] for such j3. Thus by definition T’ E Rt and T’ is 
canonical. 
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Extendibility this holds for all a < wi. We can now define A fl a, T? by a 
simultaneous induction inside L[R,] and hence A E L[R,]. 

Fusion can be used to show that oi is preserved by RG and that RG is minimal. 
For the former suppose Tkf:w+wl and let Dn={T’-(T/s~T’, IIsII=n+ 

(T’)s kf(n)= f (Y or some (Y}. Clearly D,, is open and n-dense below T for each rz 
so by Fusion there exists T’ G T, T’ E D, for all n. But then T’ It-f is bounded. 
For the latter suppose T Itx E ORD, x B: L[A] and let D,, = {T’s T 1 sl, s2 E T’, 

llslll = lIszJI = n, s, #sz+for some (Y, ((T’),, It a EX, (T’),,It (Y $x) or ((T’),, It 

Q $_r and (T’),, II a EX)}. Then D, is open and n-dense below T for each n so 
there exists T’ 6 T, T’ E D, for each n. But then T’ It R, E L[x]. 

As cardinals >o, are clearly preserved, this completes the proof of our 
Theorem when V = L[A], A _c q. 

2. Miniially coding a subset of o2 

Assume that A c w2, V = L[A] and 2” G &,[A]. In this section we show how 
to minimally code A by a real. This construction reveals the main ideas in the 
proof of the full theorem. 

The basic approach is analogous to Jensen’s in that we will code A by a subset x 
of oi, which in turn is coded by a real. Coding A by x could be accomplished 
using a forcing analogous to the forcing of Section 1; however, the need to make 
R minimal requires us to mix this with the forcing for coding x into R. 

It is now clear that x cannot result from a forcing with w,-trees in the usual 
sense, for such a forcing would produce an amenable y c oi; i.e., a y with the 
property that y rl p E V for all p < or. Instead we must simultaneously define the 
‘generalized trees’ T for coding A into x, a ‘path through T’ and the canonical 
trees t E l?z of ‘rank a’ for coding A fl a and a ‘T 1 o-path xR 1 IX into R. Then T 

assigns to each condition t E kz two ‘terms’ for strings a,, oi. The idea is that if R 

is generic, then R canonically recovers t E I?% such that R E [t] and then R codes 
either (x” r a) * q,(R) or (x” 1 a) * a,(R). So in a sense T dictates possible ways 
of extending a branch through T 1 a, but where that branch may possibly fail to 
belong to V; the condition t in Z?z completely describes a branch through T 1 (Y 

for each R E [t]. 
The trees that comprise RT come from the ‘universal’ collection of trees R*, 

used to code branches through any of the various ‘generalized trees’ T. The 
inductive construction of R* = lJ {Rz ( a< w,} is similar in outline to the 
construction of Section 1, but there are several major differences. We must 
abandon the idea of using a ‘thin’ set of conditions, in the sense that we now have 
that RE is uncountable for (Y 3 o. We also handle fusions quite differently, due to 
the lack of 0. Instead we make a more explicit guess at the collapse of an 
elementary submodel that could arise in a fusion argument. The Recursion 
Theorem is necessary both for guessing at the collapse of the final forcing LZ@ and 
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for coding an index for a fusion sequence into each path through the tree 

resulting from that fusion. 
The inductive construction of RA = IJ {Rt 1 a < w2} is also close in outline to 

that of Section 1, the major differences arising from the necessity of dealing with 
ordinals of uncountable cofinality. For this purpose we use 0. In addition we 
must anticipate fusions as outlined in the preceding paragraph. There are two 
types of fusion here, the usual kind as well as those obtained by successively 
thinning the extensions of nodes on a fixed level of a given generalized tree. 

Now for the construction of R*. Let i,, be an index for both the desired forcing 
@ as a _Z,( L,,[A], A)-set with parameter wl, together with a description of how 
A is coded by a p-generic real. The ‘canonical’ trees in Rz - R:, form Rz, 

which yields Rz when added to RZ-, = U {RE I/3 < a} and closed under the 

operations: 

(*) tER:, a~t+(t),~Rz, and 

(**) to,..., tnER~=U{R;;Ip~a}~toU...Ut,ER~. 

In Case 3 we will refer to ‘acceptable terms’. This notion will be defined at the 
end of the construction. 

Case 1: a = 0. R,* consists of all trees of the form (2’“),, U . . . LJ (2<“)_ where 

a, * * - a,, are finite strings. For any real R, tt = 2<” so I?,* = (2’“). 

Case 2: a=j3+ 1. Let t El?;. We describe the extensions of t in Rz. Let 
Split(t)={a~t(a*O,a*1~t} and let f:2<0 *Split(t) be bijective so that 
f(a *O) zf(a) *0 for all a (f is unique). Define to, t, to be tj = {a 1 a cf(b) for 
some b E 2’“, b(2i) = j for 2i < jbl}. Suppose the tf’ have been defined for all 
0 < k’ < k, i < 22*‘. To define the tf, i < 2*“, first list all subsets x of {a E 
2’” ) length(a) = k} as x0, x1, . . . and for each xi choose subtrees t(i) ant so that 
no t(i), shares a path with any tf’, k’ < k, j < 22*‘, nor with any other t(i’), and so 
that a EX;+ (t(i))fca, c tI, a E 2k -xi+ (t(i))fcn, c to. Then add all the t(i) to Rz 
if 6 is not even and if /? = 2y, then add t(i) to i?z iff (xi = 2k, y E A or xi = 0, 
y $ A). Set tf = t(i). 

To obtain Rz close R&U Rz under (*), (* *). 

Case 3: (Y limit, L,[A] is not locally countable. In this case we are not 
concerned with fusions, only with guaranteeing extendibility to level (Y. 

Given a real R define R* = {n 140, + 2”3’) + 3 E BR for unboundedly many 
such ordinals <(Y, A limit or 0} where BR is defined as follows. If t is an o-tree, 
R E [t], then we say that R goes right at level i on t if a et, [lull =i, 

a E R + a * 1 c R ; otherwise R goes left at level i on t. Our new coding is given 
by: 6 E BR iff R goes right at sufficiently large even levels of t$. (We are reserving 
the ordinals 4/3 + 1 < a for coding an x E o1 which can be used to code A fl w2.) 

If (Y is countable in L[R*] and O$R*, we define (~t<ti<... to be the 
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L[R*]-least w-sequence cofinal in (Y such that a a limit of limit ordinals+ each 

d is a limit ordinal. 

Now pick fl< a, k E o, an acceptable term b and an ordinal h < 8, & limit or 

0. Let ak denote a$. Choose IZ to be least so that B < cu, and define to > t, z= - - - 

as follows: to = L[A f~ a, R *]-least canonical t <f t$ in l?z” such that S E [t] + BS, 
BR agree on [fi, (u,) - (4y + 1 1 y E ORD} and Bs(& + 4y + 1) = a(s)(y) for 

4y + 1< min(]b], cu, - &) (if it exists). If tk is defined, then tk+i = L[A fl a; R*]- 

least canonical t~~+~+i tk in l?:“,,,, such that S E [t]+ BS, BR agree on 

1%+/U %+k+l )-{4y+lI ~EORD} and BS(& + 4y + 1) = 6(S)(y) for 4y + 1 < 

min(lbl, a;l+k+l - &). Let t”(fl, f, 6, &) = f-l {fk 1 k E w} when all the tk exist. 

Include in Rz all perfect trees t such that for some 6, fi, 3, & and all R E [t], 
t = t”@, k, 6, &) as built above. Then Rz is obtained from R:, U Rz by closing 

under the operations ( * ) and ( * * ). 

Case 4: (Y limit, L,[A] is locally countable. Two kinds of conditions are added 

to I?: in this case. First add conditions exactly as in Case 3. We now describe the 

conditions of the second kind, needed to anticipate fusions. 

Given a real R we first define what it means for R to code a fusion index i E o. 
In order for this to be defined the following conditions must be met. Let n 2 a, be 

least so that a is not regular in J,+JR]; we must have that n exists and k 3 2 

where k = least k such that a: is &(J,[R])-projectible. Now using the index iO 
fixed at the start, we must be able to decode from R_a predicate A E (cQ’~lR1 so 

that R is @-generic over J,[A]. (Here we use p to denote the forcing for 

coding A into a real over ./,[A]. Also we only require genericity for predense 

D E ],[A].) We also require that &-,-projectum(J,,[A]) = (c#~l~~ = (cQJ~lR1 and 

so we can form the &-,-Master code structure & for J,[A]. Thus X E ti fl ORD 

is Z,(a) iff X-is &-,(J,[A]). N ow let p be the least parameter for ,Y1 projecting 

& into (O+lA1 andletpO<P1<**. be the first w ordinals p < (eQ’qtA1 such that 

p r$ H&= E’,-Skolem hull of (Y U p U {p} in &. We require that lJ {pi 1 i < w} = 
(o#~[~]. Let HI = &Skolem hull of p U {q, p} in J& and define cu, < (or < . . . 

by (Yg=EiOflno,, aE+l=Hg+lno,. We assume that U{(yi~i<w}=cv. Let 

&’ = &,-Master Code structure for J,[A] and let h : (co2)-‘qLA1+ w be a canonical 

_Z,(&‘)-injection. 

For R to code a fusion index l when the conditions of the previous paragraph 

are met consider the sequence iO, i,, . . . defined by ik = least i < w such that 

LY~~~,+~ E BR; we require that 0 E R* and that the ik are defined and equal to i^ 

for sufficiently large k. Then the key requirement is that the Z:,(d’)-set defined 

by the &-formula with index h-‘(i) is a fusion sequence to 2 t1 a1 t2 a2 . . . of 

(not necessarily canonical) conditions in R:,. 
This completes the definition of “R codes the fusion index ?. If the above 

conditions are met then we set tR = 0 {ti I i < w }. 

We want to add the results of such fusions to Rz but must be careful to arrange 

that an index for each such fusion tR can be canonically recovered from R. We 
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will be able to show with help from the recursion theorem that the addition of 
these fusions does suffice to establish the fusion lemma for @. 

We can now describe the second type of condition that must be added to I?:. 
Add t if for all R E [t] all of the above conditions hold and t = tR, where tR is 
defined as above. Finally obtain Rz by closing Rz U I?:, under the ( * ), ( * * ) 
operations. 

This completes the construction of R * = U {Rz 1 a < co,}. For t E R* let 
a(t) = unique (Y such that t E Rz - R:,. 

As in Section 1 we can check that t E R * + t = (t&, U . . - U (t”),, where the ti’s 
are canonical and ai E ti. Also a real can belong to at most one canonical t E Rz, 
so t: is well-defined (for any a < w,). 

We now clarify the above construction by discussing acceptability. 

Acceptable terms 

A term o = a(R) is an L[R, R,]-name for a string in 2<@“, where R denotes a 
real and R(, is a real parameter. We also assume that there is a fixed ordinal 

( c7( -=z w f’Ro’ such that length(a(R)) = ( ( f o or all reals R. The class of acceptable 

terms is defined inductively as follows: 
(a) Any constant term a(R) = S, (S, a fixed element of 2<“‘) is acceptable, 

provided length(&) is a limit ordinal. 

(b) If (~1, a, are acceptable, Io~(= 1~~1 and a E 2’“, then u is acceptable where 
u(R) = u,(R) if a G R, = u,(R) if a &R. 

(c) If u, is acceptable and uz is acceptable, then u, * u2 is acceptable where 

ui* u,(R) = a,(R) * u,(R) and * denotes concatenation. 

(d) If 01, 02, . . . are acceptable and a,, E a,,, for all n (i.e., u,(R) E u,+,(R) 

for all R), then u is acceptable where u(R) = U {u,(R) 1 n < w }. 

We can establish extendibility for R * like we did for RA in Section 1, using the 
notion ‘t-special at cy’ for b c [ItI, a). We will need, however, a version of 
extendibility that is stronger than what is established there, in order to facilitate 
our study of the forcings RT, T a generalized tree. 

First we need to define the notion of a type 1 extension t 2 t* in R*. These are 
extensions which arise by applying any of the cases in the construction of R* with 
the exception of the second half of Case 4 (where fusions were added). For t E R* 
recall that a(t) denotes the unique IX such that t E R;C - R:,. We define “t 2 t* is 
type 1” by induction on aft*) as follows. The trivial extension t = t* is type 1. If 
aft*) = /3 + 1, then t s t* is type 1 if there is a sequence t 2 t’a t* where t 2 t’ is 
type 1 and c.u(t’) = /3. Finally, if n(t*) > a(t) is a limit ordinal, then t 3 t* is type 1 
if t’ 3 t 3 t* where t* arises from t’ as in Case 3 or as in the first part of Case 4 
(the nonfusion case), but also where the conditions tk arising there have the 
property that t = t# 3 to 2 t, 2 . * . are all type 1 extensions. An examination of 
the proof of Lemma 1.2 yields the following. 

Lemma 2.1. Suppose t E t?*, k E w, u is acceptable and & 6 (y(t) is 0 or a limit 
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ordinal. Abo suppose that R E [t]+ BR(& + 4y + 1) = u(R)(y) for 4y + l< 
min(]a], a(t) - &). Then if (Y > LX(C), there exists t* = Z?z such that t* =s~ t, t 2 t* is 
a fype 1 extension and R E [t*]+BR(& + 4y + 1) = u(R)(y) for 4y + 1< 
min(]a], LY - &). 

Proof. We follow the outline of the proof of Lemma 1.2. First suppose that (Y is a 
successor ordinal. Then the result is clear by induction unless u falls under (b) in 
the inductive definition of acceptable term. In that case the following Sublemma 
shows that Case 2 of the construction of R* was designed so as to allow the 
desired extendibility. 

Sublemma. Zf u is an acceptable term, then for each (Y < (~1 the function 
RI+ u(R)(a) is a continuous function from 2” to 2 and hence {R 1 u(R)(a) = 0} 
can be written [(2’“),, U - . . U (2’“),“] for some aO, . . . , a, E 2’“. 

Proof of Sublemma. Clear, by induction on the formation of u. •i 

Finally, if a is a limit ordinal, then the existence of t* follows as in Lemma 1.2 
using a ‘t-special at cy’ set b E [a(t), (Y) to obtain t* so that R E [t*]+ BR, b agree 
on [a(t), (u) - (4~ + 1 1 y E ORD}, BR(& + 4y + 1) = u(R)(y) for 4y + 1< 
min(]u], a - &). Also as no reference is needed to Case 4 of the construction of 
R *, all extensions as above are in fact type 1. 0 

Also the following can be checked by a simple induction. 

Lemma 2.2. Suppose t 3 t* is a type 1 extension in Z?*. then for each (Y E 
[a(t), cu(t*)] there is a unique t’ E Z?i such that t 2 t’ 2 t*. 

The preceding lemma is needed to define an important equivalence relation on 
elements of R*. 

The equivalence relation -. If ti, f2 E R*, then t, - t, provided cu(ti) = a(&) and 
either t1 = t2 or there are ii, & E Z?* such that: 

(a) I,3 ri, I, S r2 are type 1 extensions, 

(b) fl -G, 
(c) R, S E [tI] U [t2]+ BR, BS agree on [cr(f,), &(t,)) - (4~ + 1 1 y E ORD}. 

Note. The previous is an inductive definition. 

Lemma 2.3. - is an equivalence relation. 

proof. If fi > tl, I, 3 t2 are type 1 extensions, 1; 2 fZ, I3 2 t3 are type 1 extensions 

and 5i -i,, i;- i3, then by Lemma 2.2 we must have i2 2 ii or ii 2 i2. Without 
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loss of generality assume the former. Choose S; so that cu(f;) = a@) and 

f, >Z; 3 t,, again by Lemma 2.2. Then S; -Z;, as witnessed by fi, j,. So S; -1, 

witnesses ti - t3. Cl 

The relation - is needed to give the proper definition of generalized tree. T is a 

generalized tree if T = ((A, gi) 1 i < ml) where: 
(a) fi, gi : I?,?+- Acceptable Terms, where i?,r = canonical elements of R,? - R$. 

(b) If;(t)1 = igi( . 1s a limit ordinal for all t E I?,? and all i. In addition 
fo(27 = g”(2’“) and for i > 0, t E l?T:J(t)(R)(O) = 0, g,(t)(R)(O) = 1, for all reals 

R. 

(c) If tl - t2 belong to l?T, then &(tJ =J(tJ, gi(tl) = gi(tz). 

To complete the above definition we must define RT, I?:. We define RT, l?F by 
induction on i. If R is a real and R E [t] for some t E l?:, (Y limit, then define 
BR n cx as we did earlier and set xR fl (Y = {y 14~ + 1 E BR fl a}. Now Z?c = (2’“) 
and RT is the ( * ), ( * * ) closure of Z?T. If Z?T is defined, then t’ E RiT,, if for some 

fERT, t 2 t’ E R*,(,,+o where n = I&(t)\ and moreover we have that either 

R E [t’]+xR(cr(t) + 11’) =J(t)(R)(q’) for n’< n or R E [t’]+xR(cU(t) + q’) = 

g,(t)(R)(q’) for n’< n. (Note that 17 is a limit ordinal so xR fl (a(t) + r]) is 
defined for R E [t’].) To obtain RiT,,, close RT+, U RT under the operations ( * ), 
( * * ). Finally to define Z?T for a limit ordinal A take all t E R* which can be 
written t=n{tili<O} where to>tl>...,a(t)=U{a(ti)Ii<o}, tiERTk= 

U{RT(i<A} and h=U{cu(ti~RE--R& for some i}. And RT is the (*), 
(* *) closure of RrU RT,. For t E RT let ItI denote the unique i such that 

tERT-Rzi. 
Finally set RT = IJ {RT ( i < ml}_ 

Lemma 2.4 (Extendibility for RT). Suppose t E RT, k E w and i c j < ml. Then 

there exists t’ ck t such that It’1 = j. 

Proof. As in the proof of Lemma 1.2 it suffices to consider t E RF. We show that 
there is a type 1 extension t’ dk t with t’ E aIT, by induction on j. 

If j = i, there is nothing to show. If j > i is a successor ordinal, then the result is 
clear by induction and Lemma 2.1. 

If j > i is a limit ordinal, then choose a cofinal w-sequence i < j0 < j, <. - - 

below j and select a corresponding sequence t sk t,Sk tl >a * * of type 1 
extensions so that t, E Z?:. Let bi = (4y + 3 E BR I y E [a(t), a(Q)} for R E [tn] 

and R*(n) = {m ) 4(A + 2m3i) + 3 E bz for unboundedly many such ordinals < 
a-(&), il limit or O}. We can also arrange the choice of tn’s so that for IZ G n’, 
4(A + 2”3’) + 3 E [aft,), a(&,)), we have (m E (R*(n)),, *4(A + 2m3i) + 3 E bi.) 

and (R*(n)), codes the ordinal a(&). The net effect is that & = lJ {(u(t”) ( II E o} 

is countable in L[R*(o)J where R*(w) is defined from b: = U {b: ) n E co}, (Y as 
was R*(n) from bi, a(&). Also choose acceptable terms a,, so that R E [t,J-+ 

BR(cr(t) + 4y + 1) = o,(R)(y) for 4y + 1 < lo,1 = a$&) - a(t). 
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Now we see that b = 63_{2y < (Y 1 y E A} is f-special at cr. The latter implies 

that we can choose a type 1 extension t’ sk t, aft’) = (Y so that R E [t’]+ 
BR(a(t) + 4y + 1) = u,(R)(y) for y < (Y - aft), a, = IJ {a,, 1 n E w} and BR, b 

agree on [a(t), a) - (4y + 1 I y E ORD}. 

We claim that t’ E I?:. To see this, by Lemma 2.2 define t: so that t 2 tl, > t’, 

a(&) = a(&). Then it suffices to show that tl, E R,T for each n. As t: - r, our proof 

reduces to the following lemma. 0 

Lemma 2.5. Suppose t 3 tI, t 2 tz are type 1 extensions, tI - t2 and t, tI E RT. Then 
tz E RtI, where It,1 = the unique j such that tI E RT. 

Proof. By induction on Itll. 

If ItI1 = Itl, then t = tl = t2 so there is nothing to show. 

If ItI(=j+l>ltl, then choose ii, t2 so that tsilatl, tzZ22tt2 and 

a@,) = @J where I1 E t?,? Then as I1 - iZ we have that I2 E l?:. As R E [t2], 

S E [tJ+ BR, BS a g ee r on [cu(f,), a(h)) - (4y + 1 I y E ORD} we see that R E 

[tz]+ BR(a(f,) + 4y + 1) = o(R)(y) f or y < cu(t2) - a(&) where o = (&(I,) or 

gj(I,)) = (fi(&) or gj(&)) since I1 - &.. So t2 l RiT,,. If ItI1 = A is a limit ordinal >Itl, 

then the result is clear by induction and the definition of RT. 0 

A useful fact is the ‘countable closure’ of the collection of generalized trees. If 

T,, T2 are generalized trees, then we define T, G T2 if RT’ c RT2. 

Lemma 2.6. Suppose TO 2 TI 2 * . . are generalized trees. Then there is a general- 
ized tree T so that T = greatest lower bound of ( T 1 i < w). 

Proof. If T 1 y = ((t;, gi) 1 i < y) has been defined and hence so has l?;, define 

fy(t) = u E”(f) I IIEO}, g,(t)=LJ{g”,(t)InEm}, where tel?z and T,= 
((fl, gy) I i < ox). If T’ s T, for all n, then f C(t’) 2 fy(t’) follows for any t’ E I?;,’ 

where t’ E Z?$‘; using this it is clear that T’ G T. Cl 

Coding A into x _c wI : the forcing RA 

We turn now to a dicusssion of how generalized trees can be used to code A 
into a subset of ol. Analogously to the construction of R* we will inductively 

define collections Rt of generalized trees for cx < r.~~, as well as Rt = the 

canonical elements of Rt - R$,. If x : ol* Z?* is a ‘path through T’ for some 

TERN-RA,,, then x canonically defines the unique T”, E Rt such that x is a 

‘path through T”,. ’ 
Define [T 1 y] = the collection of paths through T r y as follows. Write 

T=((f;:,g,)Ii<o,) andT ry=((f;:,gi)li<y). IfOGy<o,, thenxisapath 

through T r y if there exists t E i?F and R E [t] such that Dam(x) = aft) and 

x(i) = t” for i < a(t). And x: ml+= R -* is a path through T, x E [T], if x 1 cx E 



Minimal coding 247 

lJ {[T 1 y] ) y< oi} for unboundedly many cy< oi. Note that & c T2+ [T,] E 

Kl. 
Now suppose T”, is defined for all a < oz. Fix (Y < o2 and let T = T”,. For each 

p < o, let $ be the unique element of Range(x) fl I?;. We say that x goes left at /3 

on T”, if R E [~(a($) + 2)]4 (Y(G) + 1$ BR, n goes right at /3 on T”, otherwise. 
Note that in the latter case, LY($) + 1 E BR for all R E [~(a($) + 2)], as in general: 

teZ?*, a(t)=j?+l-+BR, Bs agree at p for R, S E [t]. 

Then x codes B” c w2 defined by: (Y E B” iff x goes right at p + 1 on T”, for 

sufficiently large /3 < 04. We code A into x G o1 by requiring that A = 

even(B”) = {y ( 2y E B”}. 
We should comment on the fact that some of our definitions will appear to not 

take place in V, due to the need to refer to paths R E [t], x E [T] which may not 
belong to V. If t is an o-tree and $(R) is a formula of countable rank, then 
VR E [t] G(R) holds in V iff it holds in all extensions of V, by Levy-Shoenfield 
absoluteness. The analogous property for generalized trees T is false. However, 
we can talk about ‘truth in all extensions of V’ using the forcing Ih for 
collapsing o, to o with finite conditions. Thus if G(X) has rank < o2 and T is a 
generalized tree, then when we say ‘G(X) for all paths x through T’ we actually 
mean th G(X) for all paths x through T. 

We are almost ready to begin the inductive definition of Rt, a < w2. We shall 
need a form of Cl: let (CY, 1 a limit, w1 d (Y < (w#tyl, y c a) be a sequence so 
that CY, is a closed subset of (Y of ordertype SW,, j3 E CY,+ CY, fl/3 = CY, n/3 and 
CY, is uniformly definable as an element of L sca,[y] where P((Y) = least p such 
that LB[y] kcard(cu) = wl, lJ CY,< a-,cof(cu) = w in L,,,,[y]. 

And we must introduce the operation ( * * * ) that generates Rt from 
RI’& U I?;. First define T(t), for T a generalized tree and t E Z?’ by: a(t) d a(t’), 
[t] f-7 [t’] # 0 + t’ E T(t); tI - to, t,, E T(t)+ t, E T(t). Note that t’ E RT+ t’ E T(t) 

for at most countably many t, as an induction on cu(t’) shows that t’ shares a path 
with at most countably many t E R’ fl Z?z for each (Y s a(t’). 

Now suppose T,, TI S T are generalized trees, t E I?% n rTfi and a E 2’“. Define 
T* = T(a, t, T,, T,) = ((f:, g:) 1 i < ml) as follows. Suppose (f’, g:) is defined 
for i < y so we have defined R,“. Pick t* E T(t), t* E l?F’ and canonically choose 
type 1 extensions to, tl of t* in R%, ET1 so that cu(tJ = a(t,), with corresponding 
acceptable terms a,, u, so that a,,(R)(O) =O, a,(R’)(O) =0 (for R E [to], 

R’ E [tJ). (If t* $ ET” fl l?q or t* $ T(t), then ignore the previous.) Then f c(t*) is 
defined to be u where a(R) = a,(R) if a E R, =al(R) if a&R. Define g: 
similarly, but with a,(R)(O) = 1, o,(R’)(O) = 1. (If t* E T(t), t* $R7;, then 
f:(t*) = f t;_i,(t*) where t* E l?z:; and 7; = ((fj, gj) 1 j < q). If t* $ T(t), then 
(f G(t*), g,*(t*)) = (f?(t*), g,(t*)) where t* E RF and T = ((5, gi) I i < ml).) 

(* * *) is the operation that produces T* from a, t, T,, T,, T. 

Now for the construction of the Z?$(Y < w2. 

Case 1: a~Sdw,. Re contains only one generalized tree T defined by TB = 
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((&, gj) 1 i < ol) where f;:(t)(R) = (0, 0, . . . ), gi(t)(R) = (1, 0, . . . ) for i > 0 and 
f E RiTg, fo(2-7 = go(2--) = 0. 

Case2: cu=/3+1>w,. Let T E I?$. We shall describe the extensions of T in 
Z?“,. We first define two generalized trees T,, TI =Z T so that x E [&1+=x goes left 
at i + 1 on T for all i < ol, x E [TJ-x goes right at i + 1 on T for all i < ol. 
Write T = ((f;., gi) ( i < oI) and suppose To 1 y = ((fy, gp) 1 i < y) is defined so 
that RF G I?:.,. To define f”,, for each t E a: choose a sequence t = to a tl a t2 2 

. - . of type 1 extensions with the following properties: t,, E Z?&,+,, R E [t,,+,]+ 

xR(a(tn) + 6) = fo.,,+n(tn)(R)(6) for 6 < lfw.,,+Jtn)l, for IZ 2 0. Then f:(t) is 
characterized by 

If!(t)1 = c Ifw.y+n(tn)L 
n 

f~(t)(R)(&) + 6) =f,.,+&J(R)(W for 6 < Ifw.,+,k)l and n 2 0. 

To define g”y, for each t E l?? choose a sequence t = to 2 tl > - . . of type 1 
extensions as above, except that ‘n 3 0’ should be ‘n > 0’ and R E [t,]+xR(cv(t) + 

6) = gw(t)(R)W f or 6 < Ifw.v(t)17 &W)(4) + 6) = g,.,(W)(W for 6 < 
Ifo.v(t)(. The existence of the tn’s as well as the fact that the definitions of fy, g”, 
do not depend on the choice of tn’s follow from Lemma 2.4 and the definition of 
generalized tree. 

Let T,= ((fP,gY) ( . I < col) and define T, analogously, with the roles off and g 
switched. Thus T,, TI have the property stated earlier (paths through To go left, 
paths through T, go right on T at successor ordinals). If /3 is not even, we put 
both To and & into Rt. If p = 2 y, we put To into l?“, iff y $ A, TI into I?; iff 
y E A. Now repeat the above procedure as in Section 1, defining T$, T: ck T by 
induction on k < w1 (T’ ck T if T’ c T and I?:’ = t?r for is k. Equivalently: 
T’rk+l=T rk+l, T’cT): T;=T,, T: = T, are already defined. To obtain 

k T,,, T: first choose T’ sk T so that [T’] is disjoint from lJ {[T:‘] ( k’ < k, i = 0 or 
l}. This is easily accomplished by arranging that x E [T’]+x goes left at i + 1, x 

goes right at i + 2 for some large i -=c wl. Then apply the above procedure to T’ 

instead of T, but this time only modifying f I, gj (where T’ = ((f], gI) ( i < a)) 
for i > k. We thereby obtain T& Tf and x E [T$]-+x goes left at i + 1 for 
k6i<01,xe[T~]+=xgoesrightati+1forkCi<o,. 

If /3 is not even, we put T& T: into Rt f or all k. If /I = 2y, then we put Tt into 
R$ iff y $ A, Tp into R; iff y E A. Then Rt is obtained from R$, by including all 
Tf as above, i = 0 or 1, k < w1 for all trees T E I?$, and closing under the ( * * * ) 
operation described just before the start of the construction. 

Case 3: IX limit, (Y > w1 but LY is not of the form w, *A, A limit. Write (Y = p + 6 
where 0 < 6 G w1 and w, divides /3. Our goal is to extend each T E I?$, = 
U {R”,. I (Y’ < a} to a condition T’ E I?“,, arranging that T’ is canonically 
recoverable from each x E [T’]. We are only concerned with T such that 

ITI E IP, a). 
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Pick 6,<6 and &<oi. For any x define a sequence (T, ( &, s y s S) as 

follows. T,, = T;+Go. If TY is defined as an element of t$+,,, then let T,,,, be the 

L[T,,, A rl al-least fs6,+u T, in R$+,+, so that y E [T]+ BY, B” agree on the 

ordinal 6 + y. If TY is defined for all y < Iz where )L < 6 is a limit ordinal, then 

q = n { TY 1 y < A} is the generalized tree characterized by [T,] = n {[T,] 1 y < 

A}. (See Lemma 2.6.) If the above inductive definition breaks down somewhere, 

then we say that TX(&, 6,) is undefined. Otherwise TX(&,, 6,) is defined to be 

T 6. 
We include in R”, all trees T such that for some 6, < 6, 6, < w1 : T”(&, 6,) = T 

for all x E [T]. Then Rt is obtained by taking the ( * * * )-closure of I?; U R&. 

Case 4: a = w, . A, A limit and L,[A] # co, is the largest cardinal. In this case we 

are not concerned with fusions, only with guaranteeing extendibility using the 

form of 0 mentioned above. 

Given x E [T], T E I?“,, wefirstdefinex*={6<a:(4.(6,6’)+3EBX(where 

6’ < a) for unboundedly many such ordinals car} where (0, *) is an a-recursive 

pairing on cx x a: Then cub < cu; <. . . is defined if 0 $x* and (Y < w;[~*]. Then Cz* 

is defined as a closed subset of a. If Ci* is unbounded in cry, then let a;, < (Y; < . . - 

be the increasing enumeration of CL*. Otherwise let cu; < a; <. . . be the 

increasing enumeration of CL* followed by the L[x *]-least o-sequence PO < p, < 

. - . cofinal in (Y such that lJ Cz* < /I,, and each pi is divisible by ol. Let y0 be the 

order-type of the sequence of ordinals LY,!. 

Now pick fi<& and 8<w,. Set ?=Tz and define cu,<ai<... to be the 

final segment of LyI, < cu; < * f f defined by cu, = least (Y; greater than 8. Define a 

sequence ( TY ( 0 s y s yo) as follows, where y0 = ordertype of the cu,‘s. 

To = L[A n (Y, x*]-least T’ Gs ? in at, so that y E [T’]+ BY and B” agree on 

[fi, Q). If TY is defined as an element of l?& then let T,,,, be the L[A n LY, x*1- 

least T’ s~+~T~ in Z?tY+, so that y E [T’]+ BY, B” agree on [(y,, my+,). If TY is 

defined for all y < A. s y0 where A is a limit ordinal, then q = n { TY ( y < A} is the 

generalized tree characterized by [T] = n {[T,] 1 y < A}. If the above inductive 

definition breaks down, then TX@, 8) . IS undefined. Otherwise we set TX@, p) = 

Tw 
We include in R”, all trees T such that for some fi < (Y, 8 < w,, TX@, 8) = T 

for all x E [T]. Obtain Rt by closing R$, U Z?“, under (* * * ). 

Case 5: (Y = w1 * A, A limit and L,[A] b w1 is the largest cardinal. Two kinds of 

conditions are added to R”, in this case. First add conditions exactly as in Case 4. 

We now describe the conditions of the second kind, needed to anticipate fusions. 

Given x E o, we first define what it means for B” fl (Y to code a fusion index 

c, 8). Let (77, k) be least so that (Y is &(J,,[A n cu])-projectible; we suppose that 

(71, k) exists and k 3 2. Let d = &_,-Master Code structure for ./,[A n (u] and we 

suppose that Xi-projecturn = IX, ,Y$-cofinality(cu) = y0 s w,. Actually we 

suppose that the increasing enumeration of C is a &(&)-continuous sequence 

cy,,<cy,<*** cofinal in LY of ordertype Goi where C consists of all (Y’ < cx such 
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that a’ $ H,, = XI-Skolem hull of (Y’ U { wl, p} in d, p = least p such that & is 
Z,-projectible to a with parameter p. Also let f : a’+ o, be a canonical 
Z,(&‘)-injection, where .&’ = &,-Master Code structure for _$[A FI (u]. 

Now consider the sequence 6,, < 6, < * * * defined by 6i = least 6 < wi such that 
4((t; + S) + 3 E B”; we have a fusion index if 6; eventually equals (0, (j, 6) ). 
(Note that this implies 0 EX* and therefore these conditions are distinguished 
from those of Case 4.) The idea is that c, 8) codes a fusion T, ~6,~ T, ~6,~ G 2 

6.3’ . . of length y,, = ordertype{ a0 < aI < . . -}. For 1, 1’ < w1 we write Tc,,,. T’ if 
T<, T’ and in addition t E I?;‘+ t E RT or t E T’(t() for some i, w . i 3 l’, where 
( ti 1 j < q) is a canonical enumeration of R*. We assume that ti-tj, i~i+j--i 

is finite. (Note that there exists a generalized tree which is a greatest lower bound 
to this type of fusion sequence as t E T(ti) for at most countably many i.) We add 
the results of such fusions to I?; but are careful to arrange that an index for each 
such resulting T can be canonically recovered from every x E [T]. We can show 
with the aid of the recursion theorem that the addition of these fusions suffices to 
establish the Fusion Lemma for p. 

We can now describe the second type of condition that must be added to @. 
For any j < o1 let S$) = the Z,(d’)-set with defining parameter f-l@. Add T to 
Z?A, if T is the result of a fusion TO 2b,l Tl 26,2 T2 b~,~. . . of length y0 where 

IZ+rls ai, x E [T] + B” n a codes a fusion index G, 8) and S(i^) = (z 1 i < yO). 

We do not require that the trees r are canonical. Finally obtain Rt by closing 
R‘.$, U l?t under the operation ( * * * ). 

This completes the construction of RA = IJ {Rt ) a < w2}. As in Section 1 we 

can show that if n E [T] for some T E I?;, then T = T”, is uniquely determined 
and can be defined uniformly from X. Also any T E Rt can be recovered from 

elements of R& U l?“, via finitely many applications of the operation ( * * * ). The 
main thing that we wish to show now is extendibility for RA. For T l RA, ITI 

denotes the unique (Y such that T E Rt - R$,. 

Lemma 2.7 (Extendibility for RA, A c CO*). Suppose T E RA and ITI =G (Y < oz. 
Then for any 1 E w1 there exists T’ G, T, IT’1 = cy. 

Proof. This is very much like the proof of Lemma 1.2, the major difference being 
the use of q to handle cases where (Y has uncountable cofinality. We can assume 
that T is canonical; for example if T = T,(a, t, T,, T,) where TO, T,, T2 are 
canonical, then TaI T’ E RA where T’ = TA(a, t, T;, T;) and TI z=,. 7;, k’ = 

ma44 ItI). 
We define the notion “b E [ITI, cx) is T-special at a” as follows. For any 

ordinal PE (ITI, a] d ivisible by o1 define 6P={6</3(4*(6,6’)+3~b for 
unboundedly many such ordinals < p}. We require that 0 $ hP and /3 < (w$[‘#] 
for all such /3, that 2y E b iff y EA for 2y E [ITI, a) and that whenever 
6<6,~6,, ITl~4.(6,6,)+3~4.(6,6,)+3<a then 4*(6,6,)+3~b iff 
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4 . (6, S,) + 3 E 6. The net effect is that if PO, /3r E (IT], a) are divisible by 

ol, PO<&, then &=&,nPO. Clearly for any T E RA and (Y > (7’1 there exists 

b E [ITI, LX) which is T-special at a. (We assume for this purpose that 
y < ol-, (6, y) < 6 + w, .) In that case we show that there exists a canonical 
T’ cI T, (T’( = LY such that x E [T’]+ B” n [IT], a) = b. 

If a = ml, then there is nothing to show. 4 is T-special at 0,. 
Suppose LY = p + 1. Then b E [I TI, a) is T-special at (Y iff b-(p) is T-special at 

fl and /3 = 2y+ (/3 E b ++ y E A). By induction we can extend T to a canonical 

T*+T such that IT*1 =/I and x E [T*] +B”n[ITI,P)=bn@ So we can 

assume that ITI = p in which case, Case 2 of the construction of RA makes it clear 
that the desired T’ exists. 

Suppose (Y = wi . y + 6 where 0 < 6 C o, is a limit ordinal. To see that T can 
be I-extended to T’ E /?A, so that x E [T’]+ B” fl [ITI, (u) = 6, first choose f<, T 
in l?A,,., such that x E [f] + Bx n [(T(, o1 1 y) = b n 0,. y if (T( < ml. y; f = T 

otherwise. Then successively choose f = IT;, 2, T, s,+, . . * such that T,,, is the 
Z,[T,, A fl al-least T* s,+?T? in &v+V+, so that x E [T*]-, B” agrees with b at 
the ordinal o,y + $7. Then Tt = glb{T,. ( 7’ < u} belongs to Rtlyfy for limit 7 by 
the definition of Rt in Case 3. 

Suppose a: = w, . A, A limit. Define x* as we did in Case 4 but with B” replaced 
by b. Then note that 0 4x*, a < (o#‘t**]. Define qj< (Y, <a . . as in Case 4, 
where fl= JTI. Let y,,=ordertype{cu,,<a,<. . .}. 

We note that for each i < yn, x* has the same value if in its definition B”, (Y are 
replaced by b n a;, a;. Now define ( TY ( 0 c y c yo) exactly as in Case 4 but with 
f, 8, B” replaced by T, I, b. We have that b n [a;, CX,,,~) is T,-special at c~r+~. 
Now notice that for limit y, T, does in fact belong to R”,, as Cz* fl a; = C$, and 
x* has the same definition ‘at cu,’ as it does ‘at cy’. Thus we have proved that 
there exists T' s,T in Z?t such that x E [T’]+ B” fl [ITI, a) = 6, for such b. q 

The forcing p 

Finally we can describe the desired forcing for minimally coding A by a real. A 
condition in~P’ is a pair (t, T) where t E RT and T ERR. We write (t, T) c (5, T) 
if t 6 i in RT and T C 7 in RA. We clearly have extendibility for p in the form 

(t, T)EP’, a<~,, p < 02+ 3(i, 7) s (t, T) such that (51~ (Y, ITI 20. Our 
main goal now is to establish enough fusion for ?Y’ so that we may show that P 

preserves cardinals and produces a minimal real. It is clear from extendibility that 
a p-generic real codes A. 

We begin with fusion for RA. Fix a canonical enumeration ( ti 1 j < co, ) of R*, 
as in Case 5 of the construction of RA. Recall that T’ s,,,, T means that T’ s, T 

and tEl?T-,tel?T’ unless t E T(ti) for some i, o . i al’. A subset D of RA is 
open if T E D, T’ c T+ T’ E D and is 1, I’-dense below T, T E RA if T’ =G, T+ 
3 T” sl,,’ T’ such that T” E D. 

Lemma 2.8 (Fusion for RA). Suppose T eRA, I< wI and D,,,, is I, l’-dense below 
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T and open for every I’ < q. Then there exists T’ 6 T such that T’ E D,,,. for every 
1’ < 0,. 

Proof. It is here that we show that the fusions added in Case 5 of the 
construction suffice. Suppose the lemma fails and let 0 < o3 be least so that there 
is a least counterexample T, 1< ol, (Dt,t, 11’ < q) definable over J,[A]. Let 
k 2 2 be chosen so that this counterexample is Zk_,(JB[A]) with parameter o, and 
let 8 = &-,-Master Code structure for Je[A]. Note that &projectum(P) equals 
w2 and let p be the least parameter such that S3 is Z,-projectible to o2 with 
parameter p. Let cu, < a1 < * . - be the first o1 ordinals LY’ < o2 such that 
(u’$ H,, =ZC,-Skolem hull of CU’U w1 U {p} in 3 and let a= l_l {ai 1 i< co,}, 

d = transitive collapse of H,. Then & = _&,-Master Code structure for &,[A n 

a] for some n. 
Now notice that we are exactly in the situation of Case 5 of the construction of 

R*. Let ~4’ = &,-Master Code structure for J,,[A n a]; note that &’ n ORD = 
cu, _Z,-projectum(.&‘) = ol. Now pick any 7 < w,. Form the sequence To a,,, TI 

~1,2 T2 31.3 . . . as follows: Let To = T. If Y& has been chosen then let T+, be 

L[A]-least SO that T+i sr,i T, ]7;+il a ai, T+r E Dt,i and 6i = (0, (j, f)) where ai 
is least SO that 4(~i + o + Si) + 3 E B”, for all x E [?r.+,]. For limit A let 

q = glb{ T ( i < ;1}. We assumed that (D,,,. ( 1’ < ml) is &-,-definable over t!+[A] 
with parameter wi and therefore IT+,1 < (Yi+l. 

We claim that j can be chosen so that the above sequence (T 1 i < ml) is 
well-defined. Indeed let hc) be a .Z,(.&‘)-index for (z 1 i < aI). By the recursion 
theorem we may choose ? so that y, h(il) define the same sequence (K ( i < ml). 
Now clearly if ‘J is defined then so is r+, as D,,; is l,i-dense and we have the 
freedom to 1+ 1 + i-extend z to TI,, such that x E [T]+,]-, (0, (j, 1) ) is the least 
6 so that 4(Lui + w + S) + 3 E B” before &i-extending Ti+l to the desired T-,,. But 
notice that Tn E R$ for limit J., precisely because of the definition of R”, in Case 5 
of the construction of R* and because 7, h(j) define (T 1 i < A) ‘at ai’ just as they 
define (T[iimwl) ‘at cy’. Finally, let T’ =glb( 7] 1 i < ml) and we obtain a 
contradiction to the fact that T, I, (D,,lP ( I’ < co,) is a counterexample. This 
proves the lemma. 0 

Corollary 2.9 (Horizontal Fusion for RA). Suppose T E R*, a < w, and for each 
tEl?z, D, is open and t-dense below T; i.e., T’G,T+~T”s,T’ (T”E D, and 
fERT,_RT” 

+ t’ E T’(t)). Then there exists T’ s,T such that T’ E D, for all 

tER;. 

Proof. Let D,,,. = {T’ s,T 1 T’ E DI,,} and apply Lemma 2.8. Cl 

Corollary 2.10 (Vertical Fusion for R*). Suppose T E R* and for each a < w,, 
D, is open and a-dense below T; i.e., T’G T*~T”s,T’ such that T”E 0,. 
Then there exists T’ s T such that T’ E D, for all cy. 
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Proof. Let Do,[, = DI, and apply Lemma 2.8. Cl 

Corollary 2.11 (Countable Distributivity for RA). Suppose T E RA, cy < o, and Di 

is a-dense below T and open for each i E w. Then there exists T’ 4, T such that 
T’ E Di for each i. 

Proof. Let D,,,, = Dt, for 1’ < w, = RA for I’ > w. Then apply Lemma 2.8. Cl 

We now apply these results to the study of density reduction for p. A set 
D E p is local if (t’, T’) ED, (t’, T”) E p, T’(t’) = T”(t’)+ (t’, T”) E D. If 

TeRA and DE@, then D’={tERT((t,T)ED}. If DECP’is dense below 
(t, T), then T’ < T reduces D if t E RT’ and DT’ is dense below t on RT’. 

Lemma 2.12 (Countable Density Reduction). Suppose (t, T) E 9, a < w, and 
Di is local and dense below (t, T) for each i < o. Then there exists T’ 6, T in RA 
such that (t, T’) E ?F’ and T’ reduces Di for each i < o. 

Proof. It suffices to consider just one Di = D, by Corollary 2.11. Fix /3 < o,, /3 
greater than a and It(. For any t’ in Rifl T(t) the set D,. = {T’ <B T 1 for some 
t” s t’, (t”, T’) extends an element of D} is P-dense below T as D is local and 
dense below (t, T) (we also use closure under (* * *)). So by Horizontal Fusion 
for R* there exists T’ cB T such that DT’ is dense below t on R& Now apply 
Vertical Fusion to the (P-dense below T) set of such T’ for p < w,, a U ItI < /3 to 
obtain the desired T’ ca T. 0 

Corollary 2.13 (Density Reduction). Suppose (t, T) E 9@, a < wl, and Di is 

local, dense below (t, T) for each i < ml. Then there exists T’ srn T in RA such that 
(t, T’) E p and T’ reduces Di for each i < 0,. 

Proof. For each /3 > (Y it is p-dense for T’ to reduce Di for i < f3. Now apply 
Vertical Fusion for RA to obtain T’ <m T reducing all of the Di. 0 

We now consider fusion for p. A subset D of .?P is n-dense below (t, T) if 
whenever (t’, T’) 6 (t, T) there exists (t”, T”) c (t’, T’) such that (t”, T”) E D and 
t” cn t’. 

Lemma 2.14 (Fusion for @). Suppose (t, T) E v and Di is open and i-dense 
below (t, T) for each i E w. Then there exists (t’, T’) < (t, T) such that (t’, T’) E Di 
for each i. 

Proof. Suppose the lemma fails and as in the proof of Lemma 2.8 let /? < o3 be 
least so that there is a counterexample (t, T), (Di ) i < 0) definable over J,[A]. 
We choose the least such counterexample and let k 2 2 be chosen so that this 
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counterexample is &-l(JBIA]) with parameter ol. Set 5% = &_,-Master Code 
structure for Js[A]. Then Z,-projecturn = o2 and we let p be the least 
parameter such that 9 is .Z,-projectible to u2 with parameter p. Let &, < 8, < . . . 

be the first o ordinals p < o2 such that /3 4 Hb = .Y,-Skolem hull of o, U /3 U {p} 

in 3 and define fi = lJ {fii ( . z < o}. Let H4, = Z,-Skolem hull of (Y U {q, p} in 9J 
and define ~<a~<..- by a,=HEnw,, %I+1 =&+,no,. We set (Y= 
lJ {ai 1 i < w} and let d = transitive collapse of lJ {Hi;?, 1 n E w}. Then ~2 is the 
&,-Master Code structure for JV [A] for some 17 and A such that (Y = (w,)‘Q[~], 
/incu=Ancr. 

We are in the situation of Case 4 of the construction of R*. Let &’ = &k--l- 
Master Code structure for J,[A] and pick any pair (i, 3 E o x w,. Form the 
sequence (to, TO) 3 (ti, &) 2 * . . as follows. Let (to, TO) = (t, T). If (ci, TJ has 
been chosen, then let (ti+l, T+i) be L[A]-least SO that ti+l ~iti, (ti+i, r+i) E Di, 

IT+11 3 fii, a(ri+i) 2 ai, hi = (0, (i, 0) > w h ere 6i is least so that 4(fii + Si) + 3 E 
B” (for all x E [K+J) and, if k, j are such that i = 2k3j, so that azuY + 1 E BR (for 
all R E [ti+l]) iff j = L 

In addition we require that T+, reduces D’ whenever D’ E Ht:+l is local and 
dense below (ti, K) on @ and that s EC~+~, ll.sll =i+(ti+l)s belongs to the first i 
open dense sets d’ on Rq belonging to Hf!,,, in a canonical u-listing of Ht,, 

(for each j < i). (It is clear that ( (ti, TJ 1 i < co) is well-defined using the i-density 
of Di and the definitions of aiui, Bi.) 

We claim that (i, i) can be chosen so that (t’, T’) = (fl {ti 1 i < w}, glb{ 7; ) i < 

co}) belongs to 5@. 
Notice that the sequence ((ti, TJ 1 i < co) is Z1(9Y) where 3 = _Zk_l-Master 

Code structure for J,[A]. Therefore by the recursion theorem we can assume that 
i is chosen so that f-‘(T) is an index <B for (K I i < w) as a Z’,(%‘)-sequence 
where f : SW+ co1 is a canonical Z,(%‘)-injection, and fi-‘(i^) is an index <fi for 
(ti 1 i < w) as a Z,(%‘)-sequence where 6 :lJ {Hi;+1 I n E w} n 02- o is a 

canonical Z,(%‘)-injection. But then h-‘_(l) is an index <(w~)~~‘~I for (ti ( i < a) 

as a Z’,(&‘)-sequence where h : (~0~)‘~‘~~ + co is a canonical Z,(&‘)-injection. 
Thus we see that the conditions for T E Rjj, t E RE are met with the possible 
exception of the requirement that R E [t]+ R decodes A c (eQ’~lR1 and R is 

PA-generic over J,[A], (oJ#~[~] = (02)‘~tA1. (The requirement & aO,i T, z=~,~ T2 a 
. . . is equivalent to To 3 Tl 2 T2 2 . * . .) Inside J,,[R] decode from R as A is 

decoded from a PA-generic real. It is easily seen that k is the resulting subset of 
(w#~lA‘l. If D E &[A] is predense (i.e., o* = {p E 9”” Ip Ssome q ED} is 

dense), then for some i, T+l reduces D* where D = n-l(L)) and 

n7d:l-J V&+, ( II E o} 2 J,[A]. But then by construction for some j, (t,+& meets 
(D*)z+l for each s E ti+1, llsll = j and so ((ti+l)s, K+l) 2 ((t)s, T) meets o* where 

s is an initial segment of CR. This proves the genericity of R. The fact that 

( WZ)‘JA = (02) ‘JR1 follows from this and the fact that, by the leastness of our 

counterexample, the fusion lemmas all hold for 9’“. Cardinal preservation is a 

consequence of fusion, as lemmas below demonstrate. This proves that (t, T) E 
PA, contradicting our choice of counterexample. 0 
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We are now ready to establish cardinal preservation and minimality for PA. 

Corollary 2.15. PA preserves cardinals and cofnalities. 

Proof. Suppose (t, T) Ikf: CO,-+ ORD. For each i < w1 let Di = {(t’, T’) c 

(t, 7’) 1 for some LX, (t’, T’) Itf(i) = CY}. then Di is open dense below (t, T) and 

local. 

So by Density Reduction there exists (t, T’) 6 (t, T) such that T’ reduces each 

Di. But then (t, T’) It Range(f) L U {Ei 1 i < CO,}, where Ei = {CY 1 for some 

t’, (t’, T’) Itf(i) = a}. So (t, T’) It Rangedf) is contained in some x E V, 

card”(x) = wl. 

Now suppose (t, T) Itf : w -+ORD. Then for each i E cc), D, = {(t’, T’) c 

(t, T) 1 for some finite y, (t’, T’) Ikf(i) E y} is open and i-dense below (t, T); this 

uses closure under ( * ), ( * *). So by Fusion there exists (t’, T’) 6 (t, T) such that 

(t’, T’) E Di for all i. So (t’, T’) It- Rangedf) EX, for some x E V, card”(x) = 

0. q 

Corollary 2.16 (Minimality). Zf R is PA-generic, then R is minimal over V. 

Proof. Suppose (t, T) Itx G ORD, x $ V, and let RG denote the generic real. 

Claim. For all (t’, T’) c (t, T) there exist (t,‘,, T”), (t;, T”) c (t’, T’) so that for 

some a, (t& T”) II (Y E x, (ti, T”) It a 4x. 

Given the Claim, let Di = {(t’, T’) 6 (t, T) 1 s,,#sl in t’, llsoll = lls,ll =i-+for 

some (Y, ((t’k,, T’)Itcuer iff ((t’)s,, T’)Itaex}. Di is i-dense below (t, T) for 

each i, where e varies over { E, $}, { Ci} = { E , 4) - {e} . So by Fusion for PA there 

exists (t’, T’) c (t, T) in n {Di 1 i E w}. But then clearly (t’, T’) It R, E V[x]. 

Proof of Claim. Choose (t;, TG), (ti, T;) =S (t’, T’) so that for some (Y, (t:,, T;;) 11 

(Y EX, (t;, T;) It a $x. We assume that t; = (t&,, tl = (t&, where to# tl are 

elements of some Z?T’ and that sO, s, are incompatible. Now let T” = T’ 

(so, 2’“, Tg, T’[). Clearly (t& T”) II (Y EX, (t;, T”) It a $x so we are done. 0 

3. Minimally coding a subset of o,+~ 

It is fairly straightforward to generalize the technique of Section 2 to obtain a 

minimal coding for a given subset of mn+r, n finite. The notion of generalized 

tree becomes generalized w,-tree, consisting of an w,-sequence T = 
((A, gi) ( i < CO,,) where f;, gi : RET + ‘acceptable n-terms’ and I?,? is a collection of 

w,-r trees. We use 0,” to build RA E {generalized w,-trees}, where we use 

collapses of elementary submodels of &[A], p < CYO~+~ to anticipate fusions of 

length QW,. The major difference is that for i <n we must also consider such 

models to anticipate fusions of wj-trees, these fusions of length <wi. So even the 
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definition of R* c {w-trees} must be modified when carrying out this 
generalization. 

Rather than discuss the minimal coding of subsets of w,+i for finite n, we 
proceed directly to a discussion of the case of subsets of w,+.,. Of course the 
above ideas need to be considered in this case as well; in addition we must now 
discuss the way in which we code at the limit cardinal w,. This coding is basically 
like Jensen’s, where a ‘scale’ of functions through w, is used to effect an almost 
disjoint coding of A into 0,. However as in [3] we greatly modify Jensen’s proof 
of extendibility to cope with the fact that our forcings are so ‘thin’ (this alternate 
approach also eliminates a split into cases according to whether or not O* belongs 
to V). As before we have two types of extensions at limit levels: extensions of 
type 1 needed for extendibility, and of type 2 to anticipate fusions. In this case 
the fusions have any possible length o,, 0 s n < w. Conditions are of the form 
(T, 1 0 s n < w) where T, is a generalized w,-tree. We require that the first n 
components of the conditions in an @,-long fusion sequence remain constant. 
Guaranteeing that we have a condition at limit stages is like the main 
distributivity argument for Jensen Coding; we must take advantage of built-in 
‘predensity reduction’ as in [3] to get genericity over the collapse. The remaining 
details of the construction are natural generalizations of the corresponding ones 
in Section 2. 

We begin with the definition of R”, the appropriate generalization of the R* of 
Section 2 to the present context. Then R’ can be defined from R0 much as was RA 
from R* in Section 2. Continuing in this way we will have R2, R3, . . . and we 

then can finally discuss 9@, whose conditions are sequences of elements of the 
different R”. 

We assume of course that V = L[A], A G mm+1 and in addition that 2”n L 
L,“+,[A] for 0 <n < o. As in Section 2 we will use the Recursion Theorem (in 

two different ways). Fix io, an index both for the desired forcing PA and for a 

description of how BR (where A =even(BR), BR G o,,,) is coded by a 

PA-generic real R, as Z,(L,m+, [A], A)-sets with parameter (w, 1 n E w) E 

Lo+,]4 Th e f arcing R” is the union lJ {Rz ) (Y < co,}; Rz is obtained from 
Z?“,= the canonical elements of RO, - R:, by closing R’:, U l?z under: (* ) t E 

RO,, a~t+(t),~Ri and (**) to,...,t,~ROa=U{R~Ip~cu}~toU...U 
t, E Rt. We define l?“, by induction on (Y. 

Case 1: (Y = 0. Ri consists of all trees of the form (2<O),, U. . . U (2’7,, where 

a,, . . . , a, are finite strings. For any real R, tt = 2<” so @ = {2<“}. 

Case 2: a = j3 + 1. Define Rz from R: exactly as we defined Rz from Rg in 
Section 2. 

Case 3: LY limit, but (Y is not a limit of limit ordinals. Write (Y = p + o where p 
is 0 or a limit ordinal. Given a real R, BR is defined by: y E BR iff R goes right at 
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all sufficiently large even levels of the tree t:. Choose ordinals & c fi < (Y (& limit 

or 0), an acceptable term 6 and an integer R. Also assume that p 4 8. 

Let to cd t# be canonical and least in L[A fl a, $1 such that S E [to]+ BS, RR 

agree on @, a(&)) - (4y + 1 1 y E ORD} and BS(& + 4y + 1) = 6(S)(y) for 4y + 

1 < min(]81, m(to) - &), where a(&) = max@, /I). If t,, is defined, then let 

t n+l CL+~+~ t,, be canonical and least in L[A II a, R*] such that S E [&+,I+ BS, BR 

agree at a(&,) + n (if a(&) + n is not of the form & + 4y + 1) or BS(& + 4y + 1) = 

b(S)(y) (if a(&) + n = & + 4y + 1, y < IS]). Define t”(fi, k, 6, &) = n {tn ( n E 

w} if all the t, are defined. 

We include in R% all trees t such that for some (8, R, 6, &) as above, 

t”@, f, 6, ii!) = t f or all R E [t]. Then RO, is the ( * ),( * * )-closure of R:, U l?“,. 

Case 4: (Y is a limit of limit ordinals and L,[A] is not locally countable. In this 

case we are concerned with extendibility, not fusion. Given a real R let 

RL={n(h+4n+3~BR for unboundedly many such ordinals <cu, A limit}. 

Then (~,“<aY;<..a is defined if 0 $ R * and R* codes an ordinal a(~. Set 

(Y;,<(Y;<.*. equal to the L[R*]-least w-sequence cofinal in (Y so that each cz] is 

a limit ordinal. Pick 6, i, &, 8, li consisting of &s fi < (Y (& limit or 0), an 

acceptable term 6 and the integer 2. Also set P = tf and let LY” < (Ye < . . . be the 

final segment of aI1 < Ly; <. * . defined by LYE = least cui greater than 8. 

Now define (tn 1 0 c n < o) as follows: to = L[A f! a, R*]-least t’ c,P in l?O, 

such that S E [t’]+ BS, BR agree on [fl, (u,,) - (4~ + 1 ) y E ORD} and BS(& + 

4y + 1) = 6(S)(y) for 4y + l< min()6], cu,, - &). If t,, is defined, then let t,+, be 

the least t’ sri+n t,, in I?:,,, so that S E [t’]-+ BS, BR agree on [LY,, (Y,+~) - (4~ + 

1 ( y E ORD} and BS(& + 4y + 1) = b(S)(y) for 4y + 1 <min((6], an+, - &). Set 

tys, &, 8, 2) = f-l {tn ( 0 c n 4 0). 

Include in I?% all trees t such that for some (6, &, 8, ri) as above 

tR(&, &, 8, A) = t for all R E [t]. Obtain RO, by closing R’:, U i?E under (*), (* *). 

Case 5: (Y is a limit of limit ordinals, L,[A] is locally countable. First add 

conditions to ki as in Case 4. We now describe the other conditions to be added, 

which are needed to anticipate fusions. 

Given a real R we define what it means for R to code a type A fusion. For this 

to be defined the following conditions must be met. Let ~3 (Y be ieast so that LY is 

not regular in J,+,[R]; we assume that 71 exists and that R codes a predicate 

BR c (o,+JJ@ via the index i,, for decoding BR E w,+~ from p-generic reals 

R, using the parameter (ti_ ( n E w), W, = (w,)~v[~]. Let p = (~,+,)~“l~ls 71 and 

A =even(BR). We assume that LY is projectible in JV+l[BR - (wo)‘qlR1] and 

therefore let kR denote the least k so that (Y is projectible in 

2,~ (J~[BR _ (W,)J,[R1], c”“-‘“.,““‘“‘)). 

We require that J,+,[R] k “gR - (w,)‘~‘~~, (q, kR) gives rise to a canonical 

w-sequence of quasiconditions pO 2 p, 2 . . . in @ and R satisfies J&.” The 
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preceding will be defined later when we specify which sequences p = 

(P(O)? P(W)> P(W), . . . ) of generalized trees are to be put into 9@. 
For R to code a type A fusion we require that 7, RR, kR as above are defined 

and that 0 E R* (as defined in Case 4). In this case set tR = n tin(O) 1 n < o}. 
We also consider type B fusions. For R to code a type B fusion the following 

conditions must be met. Let q be least so that (Y is not regular in J,+,[R]. Now 
decode from R the canonical sequence of o-trees (tf ( b < a) = xR. We require 
that J,[R] L for some /I0 < w+‘~‘, x R is a path through the generalized tree 
TR = TiI and R is RTR-generic over L[A II a, TR]. (Do is uniquely determined.) 

We assume that a is singular in J,,, [A II (Y, TR] and that k 2 2 where k is least so 
that a is &(J,[A n C-X, TR])-projectible. Let & = _&-,-Master Code structure for 
./,[A n (Y, TR] and we suppose that C has ordertype o, where C consists of all 
(Y’ < a such that (Y’ $ H,, = Z,-Skolem hull of (Y’ U {p} in &, p = least p such 
that SB is ,Z,-projectible to p;” = a with parameter p. Let &’ = &,-Master Code 
structure for J,[A n a, TR] and h : a + 0 a canonical _Z,(&‘)-injection. 

For R to code a type B fusion we consider the sequence ik defined by ik = least 
i<o such that (Y~Q~+~EB~ where C={CE,<LY~<~~Y;?<...}. We insist that ik 
is defined and equal to a fixed i for k sufficiently large. The key requirement then 
is that the Z’,(&‘)-set defined by the &-formula with index h-‘(9 is a fusion 
sequence to aI tl a2 t2 a3 t3. . - of conditions in R!$,. If in addition 0 E R* (as 
defined in Case 4), then we set tR = 0 {ti 1 i < o}. 

Add t to l?t if t = tR for every R E [t] where tR is defined as above. Obtain Rz 

by closing R:, U Z?z under ( * ), ( * * ). 
This completes the construction of R” = IJ {R”, ( cx < ml}. R” has properties 

analogous to those held by R* in Section 2. In particular define y% inductively by: 
y$ = least p.r. closed ordinal greater than o, y: = least y > sup{ $1 p < a} such 
that y is p.r. closed and L,[R] kcard(c~) < o (for a > 0). Then t: is uniformly 
definable as an element of &,R[R] (whenever t: is defined). 

Type 1 extension is defined just as in Section 2; these are the extensions which 
arise from any of the cases in the construction of R” with the exception of the 
latter parts of Case 5 (the fusion cases). We then have the following. 

Lemma 3.1. Suppose t E l?‘, k E o, o is acceptable and & 6 a(t) is 0 or a limit 
ordinal. Also suppose that R E [t] + BR(h + 4y + 1) = u(R)(y) for 4y + 1 < 
min((a), cu(t) - 6). Then if CY > a(t), there exists t* E l?%such that t* skt, t* s t is a 
type 1 extension and 

R E [t*]+ BR(& + 4y + 1) = o(R)(y) for 4y + l< min((a], LY - kc), 

Proof. Much like the proof of Lemma 2.1. As some of the details are different 
we give a complete proof. By induction on (Y we define the notion “b E [a(t), (Y) 
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is t-special at (Y” and prove not only the existence of such b but also that for such 

b there exists t* as desired so that R E [t*]+ BR, b agree on [o(f), (Y) - (4~ + 

1 ) y E ORD}, BR(& + 4y + 1) = a(R)(y) for 4y + 1 < min(]a], (Y - &). 

Suppose a = /3 + 1. Then b is t-special at cx iff b n/3 is t-special at /I and 

b=2y+(p~ B iff y E A). The existence of t * is clear by induction unless 

/3 = 4y + 1. In that case the Sublemma to Lemma 2.1 shows that the desired t* 

exists, using Case 2 of the construction of RO. 
If a = p + w, 6 limit or 0, then b E [m(t), a) is t-special at (Y if a(t) < /3+ b fl 

/3 is t-special at /3_ Now it is clear that the desired t* <,t exists, using Case 2 of 

the construction of R”. 
Finally suppose (Y is a limit of limit ordinals. Given b c_ [a(t), LY) define R * as 

in Case 4 with BR replaced by b; for b to be t-special at (Y we first require that 

0 $ R* and R* codes an ordinal S(Y. Set & < (Y~ < . . * equal to the L[R*]-least 

o-sequence of limit ordinals cofinal in (Y. Let (Ye < (Y~ < . . - be the final segment 

of &)<a;<.*. defined by a0 = least cul greater than a(t). We also require that 

b fl a0 is t-special at (Ye. Let to = L[A fl a-, R*]-least t’ <,t in fit,, such that 

S 6 [t’] + Bs, b agree on [a(t), LYE) - (4~ + 1 ) y E ORD} and B’(& + 4y + 1) = 

a(s)(y) for 4y + 1 < min(]a], a, - &). We require that b fl [CQ, ml) is to-special at 

al. Then define t, ck+, to to be least so that cu(tJ = (Y~ and S E [ti]+ BS, b agree 

on [~~o,(Y~)-{~Y+I)YEORD}, Bs(iu + 4y + 1) = a(S)(y) for 4y + 1< 

min(]a], (Y, - 6). Continue in this way for w steps. This completes the definition 

of ‘t-special at (Y’ as well as the proof that the desired t* exists, using Case 4 of 

the construction of R”. 
We must show that a t-special at LY set exists when t E R”, (J is acceptable, & is 

limit or 0, & 4 cu(t) < (Y. The argument is as in the proof of Lemma 1.2: The 

result is clear inductively except when (Y is a limit of limit ordinals. In that case 

first correctly define b fl(2y ] y E ORD} and define b n {A + 4n + 3 1 A limit, 

n E w} so as to yield an R* as in Case 4. Note that the latter positive 

commitments on b can be restricted to an w-sequence. Thus it is easy to fill in 

b fl a;, successively as in the preceding paragraph (where a,) < (Ye <. . . arises 

from R*, a(t) as in Case 4) so as to guarantee that b fl mm+, is &-special at am+,, 

while honoring earlier commitments to b fl {A + 4n + 3 1 A limit, n E w}. As in the 

proof of Lemma 1.2 it is important to not include any new ordinals of the form 

4(A + ti) + 3 in b n mm+, for fi G m, so as to not alter the definition of R* from 

6. Cl 

And as in Section 2 we also have: 

Lemma 3.2. Suppose t 2 t* is type 1 and (Y E [m(t), a(t*)]. Then there is a unique 
t’ E l?O, such that t 3 t’ 2 t*. 

This enables us to define an equivalence relation - just as in Section 2. 
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Generalized w, -trees 

Our goal now is to extend the notions o-tree, RO, type 1 extension in l?“, - on 
R” to generalized on-tree, R”, type 1 extension in k”, - on l?” for 0 <n < w. 
The case n = 1 will be treated very similarly to the way we handled the definition 
of RA in Section 2. We begin with that case. 

A generalized WI-tree is a sequence T = ((&, gi) 1 i < wI) obeying the definition 
of generalized tree in Section 2. And as in Section 2 we have: 

Lemma 3.3 (Extendibility for RT). Suppose t E RT, k E w and i c j < wl. Then 

there exists t’ ck t, t’ E R,? 

Define To s TI iff RTo G RF, for generalized w,-trees Z& TI. As in Section 2 we 

have: 

Lemma 3.4. Any w-sequence To 3 TI Z= . . . of generalized w,-trees has a greatest 

lower bound. 

And paths through generalized w,-trees are defined as in Section 2. What is 
different now is the definition of R’, which is obtained from that of RA in Section 
2 by introducing some new fusion sequences. We shall again need the O- 
sequences (CY, 1 a limit, w1 s cr < ( w2)L’Y1, y G a) as we did there and also the 

operation (* * *) which introduces T(a, t, To, T,) when To, TI c T are general- 
ized w,-trees, tel?TDnl?T’ andaE2<*. 

In addition we must generalize the notion of acceptable term to acceptable 

WI-term. An w,-path is a function x: wl+fio such that for some real R, 

x(a) = t”, for all a< WI. Acceptable w,-terms are certain functions u : w,- 

paths + 2’“’ such that for some fixed limit [u[< w2, length(a(x)) = loI for all 
w,-paths x. They are defined inductively by: 

(a) Any constant w,-term a(x) = so, so a fixed element of 2”“’ of limit length, 
is acceptable. 

(b) If or, u2 are acceptable, lo11 = lo21 and r is an acceptable w-term, then o is 
acceptable where a(x) = al(x) if t E Range(x), R E [t]+ BR(4y + 1) = z(R)(y) for 
4~ + 1 < min(lrl, aft)); u(x) = u2(x) otherwise. 

(c) If u1 is acceptable and a, is acceptable, then u1 * a, is acceptable where 
u1 * u2(x) = ui(x) * u*(x) and * denotes concatenation. 

(d) If u,, a,, . . . are acceptable and a, c uj for all i <j < w, (i.e., u,(x) E uj(x) 
for all x), then u is acceptable where u(x) = U {q(x) 1 i < w,}. 

As in the proof of Lemma 2.1 we have the following. 
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Lemma 3.5. Let PPW, denote the collection of o,-paths and for any acceptable 

o-term t let 9,,(t) denote the collection of all o,-paths x such that t E Range(x), 

R E [t]+ BR(4y + 1) = z(R)(y) for 4y + 1 < min((r1, a(t)). If CJ is an acceptable 

o,-term, a < 1~1, then {x E Pm, 1 u(x)(o) = O} can be written as an finite Boolean 

combination of sets of the form P)w,(r), r an acceptable w-term. 

Proof, Clear, by induction on o. q 

Now we give the construction of R’. 

Case 1: CyS q. RL contains only the generalized w,-tree & defined by 

TB = ((5, gi) 1 i < oI) where f0(2<O) = g0(2’“) = B and J(t)(R) = (0, 0, . . . ), 

gl(t)(R) = (1, 0, 0, . . . ) for i > 0, t E RF. 

Case2: cr=p+l>w,. Let T = I?;. First define generalized w,-trees T,, T, G 
T exactly as in Case 2 of the construction of R* in Section 2. Now we define T: 
for k < ol, i <k by induction on k. ‘To define (Tf ( i < q) first fix a list of all 

finite or cofinite subsets F of the set of acceptable o-terms in the sequence 

(E;j ( i < ml). For each i < k choose T(i) Q~ T so that no T(i) shares a path with 

any T(j), j fi nor with any T:‘, k’ <k and so that (a) CJ E Z’$, t E l?:, 

R E [t]+ BR(4y + 1) = o(R)(y) for y < a(t), x E [T(i)], t E Range(x)+x E [T& 

(b) a~tj;, t d?,T, R E [t]+ BR(4y + 1) # o(R)(y) for some y < a(t), x E [T(i)], 
t E Range(x)+x E [T,]. If p is not even, then add all the T(i), i <k, to Z?‘, and if 

/3 = 2y, then add T(i) to R’, iff (E = 0, y EA or 4 = all acceptable w-terms, 

y $ A). Set T” = T(i). 
Then RL is obtained from R>, by including all T;k as above for all trees T E l?t( 

and closing under ( * * * ). 

Case 3: (Y limit, (Y > w1 but not of the form wi * A, A limit. Write (Y = /3 + 6 where 

0 < 6 c oi and w, divides p. Given an wi-path choose countable ordinals 

h c fi < 6 (5 limit or 0), the acceptable w,-term 6 of countable length 161 and the 

countable ordinal k In that case we set & = p + h, fi = j3 + /?. Let To = T;. If TY 

is defined, then let T,,, d~+~ y T be canonical and least in L[A fl a, T,] such that 

y E [T,+,]+ BY, B” agree at fl + y (if j!? + y is not of the form & + 4y’ + 1) or 

By(& + 4y’ + 1) = &(y)(y’) (if fi + y = & + 4y’ + 1, y’ < ISI), and such that 

a(T,+,)=fi+y+l. If TY is defined for all y<A where A=scu-/! is a limit 

ordinal, then let Tn = greatest lower bound to ( TY 1 y <A). Define 

T”(&,b,6,k)=n{T,Iy<a-b}ifalltheT,, y<cu--fi, aredefined. 

Include in Z?k all generalized q-trees T such that for some (&, fi, 6, &), 

T”(&, fi, o, k) = T for all x E [T]. Then Rk= (* * *)-closure of R&U I?& 

Case 4: a = w, . A, A limit and L,[A] # o, is the largest cardinal. In this case we 

guarantee extendibility using 0. Given an o,-path x define X* = { 6 < 
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(Y ) 4 . (6, 6’) + 3 E B” for unboundedly many such ordinals <a}. Then (~;l< 
a;<*** is defined if 0 $ x* and LY < ( w2) L[x*1 Thus Cz* is defined as a closed . 
subset of cu; if it is unbounded in cu, then let aA < cr; < . . . enumerate C:*. If Cz* 
is bounded in (Y, then let aA < a; <. - * be the increasing enumeration of Cz* 
followed by the L[n*]-least o-sequence /I0 < /3i < . . . cofinal in (Y such that 
lJ C;* < /3,, and each pi is divisible by oi. 

Choose &, fi so that & S fi < (Y (& limit, & 3 wl), an acceptable o,-term 6 and 
a countable ordinal k. In this case set f = T3. Also let cu, < ~yi <. . - be the final 
segment of cub < WU; < * * - defined by an = least cul greater than 8. Let y0 = 
ordertype{ a0 < (Y] < . * -}. 

Now define ( T, 1 0 s y < yo) as follows. To = L[A fl a; x*]-least T SL p in l?& 
so that y E [T] + BY, B” agree on [fi, aO) - (4y + 1 ] y E ORD} and By(& + 4y + 
1) = b(y)(y) for 4y + 1 < min(cu,, - &, ]&_I). If TY is defined as an element of RkY, 

then let T,,, be the L[A rl (Y, x*]-least TG~+~T~ in Z?by+, such that y E [T]-, BY, 

B” agree on [a;, (1;+1 )-{4y’+lI ~‘EORD} and By(& + 4y’ + 1) = b(y)(y’) 
for y’ < min( a,+i - 2, IS]). For limit y S y. let TY = greatest lower bound to 
( TY. 1 y’ < y). If all the TY, y S yo, are defined then let T”( &, 8, 6, k) = T,,“. 

Include in Z?b all trees T such that for some (&, 8, 3, k), Tx(&, 8, i3, k) = T for 
all x E [T]. Obtain Rf, by closing R>,U I?; under (* * *). 

Case 5: (Y = co, . A, il limit and L,[A] k co1 is the largest cardinal. First add 
conditions to dk exactly as in Case 4. We now describe the other canonical 
conditions to be added, needed for fusion. 

Given an o,-path x we define what it means for x to code a type A fusion. For 
this to be defined we require the following. Let 9 s LY be least so that (Y is not 

regular in J,+Jx]; we assume that r,~ exists and that x codes a predicate 
B” E [a, (oo+J+‘) via the index i. for decoding BR from p-generic reals R, 
using the parameter ( tin 1 n E w ) , W, = (co,)‘~‘“‘. 

Let & = (~~)‘q[~l, p = (oo+l)J~[xl C 7 and A = even(B”). We assume that (Y is 
not regular in J,+i [B” - &] and then let k” denote the least k so that a: is 
projectible in &( (Js[B” - &I, Cr-“)). We require that J,+&] k “B” - &! 
(n, k”) gives rise to a canonical y-sequence of quasiconditions (pi 1 i < y) in V 
where y is a limit ordinal ~(wi)~~l~‘, and x satisfies Do.” This will be defined later 
when we complete the definition of p. 

For x to code a type A fusion we require that r], B”, k” as above are defined 
and 0 E x* (as defined in Case 4). In this case set T” = n Gi(w) 1 i < y}. 

We also consider type B fusions. For x to code a type B fusion we must have 
the following. Let rl be least so that LY is not regular in J,+i[x]. Now decode from 
x the canonical cr-sequence of generalized o,-trees (T; 1 p < a) = S”. We require 
that J,[x] i= for some PO, S” is a path through the generalized (o,)“@l-tree 
T” = Tg and x is RT-generic over L[A fl (Y, T], T = Tz. 

We assume that (Y is singular in J,+,[A n (Y, TX] and that k 2 2 where k is least 
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so that (Y is &(J,[A fl (Y, TX])-projectible. Let & = &,-Master Code structure 
for J,[A fl LY, T”] and we suppose that p;” = (Y and C has ordertype co1 where C 
consists of all o’ < LY such that (Y’ 4 H,, = Z,-Skolem hull of (Y’ U {p} in d, 
p = least p such that & is E,-projectible to a with parameter p. Let &’ = &_,- 
Master Code structure for ./,[A fI a, T”] and h : a--, co, a canonical Z,(&‘)- 
injection. 

For x to code a type B fusion we consider the sequence & defined by bi = least 
6<w, such that ~(cx~++)+~EB* where C={(Y~,<(Y~<.*.}. We insist that Si 
equals a fixed 6 for i sufficiently large. The key requirement then is that the 
.Z:,(.&‘)-set defined by the &formula with index h-‘(8) is a fusion sequence 

& +J q si,z & 3f.3 * ’ . of length y. = ordertype( where z E R:,. If in addi- 
tionOeX*(asdefinedinCase4),wesetT”=n{7j\~iyo}. 

Add T to Z?L if T = T” for each x E [T] where T” is defined as above. Obtain 
RL by closing R:, U I?: under (***). 

This completes the construction of R ’ = IJ {RL 1 LY < 02}. For T E R’ let a(T) 
denote the unique (Y such that T E RL- R:,. As in Section 2 if x E [T] for some 
T E l?L, then T = T”, is uniquely determined and can be recovered uniformly 
from x. 

Type 1 extensions are defined for elements of R’ just as they were for R”; we 
give now the precise inductive definition. The trivial extension T 6 T is type 1. If 
lu(T)=B+l, then TGT* is type 1 if there is a sequence T s T’ s T* where 
a(T’) = p and T’ G T* is type 1. Finally, if a(T) is a limit ordinal, then T < T* is 
type 1 if T’ > T* where T arises from T’ as in Cases 3, 4 or the first part of Case 
5 (not involving fusion), but also where the extensions T’ 3 To G= TI 2. . . arising 
there are all type 1. We then have the following. 

Lemma 3.6. Suppose T E I?‘, k E w,, o is an acceptable w,-term and & < a(T) is 
a limit ordinal 2~~. Also suppose that x E [T]+ B”(& + 4y + 1) = a(x)(y) for 

4y + 1 < min(lal, a(T) - &). Then if (Y > (u(T) there exists T* E I?: such that 
T* ck T, T* c T is a type 1 extension and x E [T*]+ B”(h + 47 + 1) = u(x)(y) for 

4y + 1 < min(lal, Ly - &). 

Proof. Similar to the proof of Lemma 2.7, using ideas from the proof of Lemma 
3.1. We define the notion “b G [a(T), a) is T-special at cr” exactly as in Lemma 
2.7 and prove that for such b there exists T* as desired so that x E [T*]+ B”, b 
agree on [a(T), a) - (4~ + 1 ) y E ORD} . 

If (Y 6 wl, then the result is trivial. 
Suppose a=/!?+l>>w,. Then b c [(U(T), CX) is T-special at (Y iff b n /3 is 

T-special at p and fi = 2y+ (/3 E b iff y E A). The existence of T* now follows 
from induction, Lemma 3.5 and the construction in Case 2 of the definition of R’. 

Supposecr=o,.y+6whereO<o s q is a limit ordinal. Choose some T6, T 

in l?&., (if a(T) < w1 . y; f = T otherwise) such that x E [f]+ B”, b agree on 

[a(T), ~1. Y) - 14~ + 1) Y E ORD), B”(& + 4y + 1) = a(x)(y) for y< 
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min(lal, oi * y - ri). It is now clear that the desired T* ski?’ in RL exists in this 

case, using Case 3 of the construction of R’. 
Finally suppose a = w1 . A, A limit. Define x* as in Case 4 with B” replaced by 

b. Note that 0 $x* and a< (~#‘l~*~. Define a$< a; <. . . as in Case 4. Let 

aou,<a1<.* . be the final segment of ah < a; <. . . determined by a,, = least a1! 

greater than a(T). Let y. = ordertype{ab < (Y~ < - * *}. 

We note that for i < yo, x* has the same value if in its definition B”, a are 

replaced by b n ai, Cui. Now define ( TY IO G y s yo) as in Case 4 with B”, 8, f, f 
replaced by b, a(T), k, T. We have that b 17 [ai, CY~+~) is T-special at CK;+~ for 

each i < yo. Note that for i limit, 7; = greatest lower bound to (q 1 j <i) does 

belong to RL, as Cz* tl a; = Ciy, and x* has the same value ‘at ai’ as it does ‘at (Y’. 

Thus we have proved the existence of the desired T* sk T. 0 

As in Section 2 we also have: 

Lemma 3.7. Suppose T 3 T* is a type 1 extension in 8’ and a E [ LY( T), (u( T*)]. 
ThenthereisauniqueT’ERLsuchthatTsT’sT*. 

This enables us to define an analogue (for elements of R’) of the equivalence 

relation - of Section 2. If T,, T2 E I?’ then Tl -o, T2 provided a(T,) = a(T,) and 

either Tl = T2 or there are Ti, TZ E R’ such that: 

(a) r1 z T,, i$ > T2 are type 1 extensions, 

(b) T; -0, T;, 
(c) X, y E [T,] U [7’J+ B”, BY agree on [(u(z), cu(T,)) - (4y + 1 ) y E ORD}. 

Before going on to the case of generalized w,-trees for arbitrary finite n we 
discuss the notion of generalized w,-tree and establish extendibility for l?’ when 

T is a generalized o,-tree. Then the generalization of all of the above for 

arbitrary finite n will indeed be straightforward. 

We now will use lower case letters t,,, tl, . . for generalized o,-trees and upper 

case letters To, T,, . . . for generalized o,-trees. A generalized o,-tree is an 

o,-sequence T = ((A, gi) ) i < w2) where: 

(a) J, g; : l?,T+ Acceptable w,-Terms, where R,r= the canonical elements of 

RT - R$ (defined below). 

(b) I.Mr)l = Igi( is divisible by o, for all t E I?: and all i. In addition 

J&J = so(te) (where t0 _- >t for all t ER’) and for i >O, t ~I?~T:fi(t)(x)(O) = 0, 
g,(t)(x)(O) = 1 for all @,-paths X. 

(c) If t1-0, 2 t belong to RT, then J(tl) =fi(t*), gi(tl) = gi(t2). 
We define RF, l?T by induction on i < o2 for a given generalized w,-tree T. If x 

is an o,-path, define S” fl (Y = {y ) 4y + 1 E B”} fl (Y provided t$ is defined for all 

/3 <the limit ordinal LY. Now I??= {tO} = RT for i c ml. If RT, I?7 are defined, 

then t’ E Z?iT,, if for some t l l?,?, t 2 t’ E Z?&,,+, where 9 = If;(t)1 and either 

x E [t’]+S*(a(t) + y) =h(t)(x)(y) for y< n or x E [t’]+Y(a.(t) + y) = 
gi(t)(x)(y) for y < n. To obtain RT+, close RTU RT+, under (***). Finally Rr for 
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limit A consists of all t* E l?’ which can be written t* = glb{t, 1 i < A} where 

t”o&>---, IJ {a(ti) 1 i < A} = (Y, ti E R$, for all i < A and il = U {j 1 ti E RT - 
RT, for some i < A}. RT= (* * *)-closure of RT, U l?:. For t E RT let ItI = the 

unique i such that t E R,T- Rzi. 

Lemma 3.8 (Extendibility for RT, T a generalized o,-tree). Suppose t E RT, 
m E w1 and i s j < oz. Then there exists t’ s,,, t such that It’1 = j. 

Proof. It suffices to consider t E Z?,? We show that there is a type 1 extension 

t’ sk t with t’ E l?,i, by induction on j. If j = i, there is nothing to show. If j > i is a 

successor ordinal, then the result is clear by induction and Lemma 3.6. 

Suppose j > i is a limit ordinal and choose j0 < j1 < . - * cofinal in j of length 

y0 c 0,. Now by induction we can choose to, tl, . . . so that tk+l c tk 6m t for each 

k and Ik E Rl (we do not insist that tl c fk when I- k is infinite). In fact we claim 

that we can choose the ti’s so that in addition k < I+= B”‘, I?“* agree on 

[aft), a(&)) - (4~ + 1 1 y E ORD} for xk E [&I, x1 E [t!]. To see this proceed as 

follows. Let to = any t’ Grn tin~~sothat(1,y)E60={6(4*(6,6’)+3EBXfor 

unboundedly many such ordinals <a(&), for all x E [to]} iff y = a-(t). If tk is 

defined, then choose fk+, Cm tk in RL+, so that (1, y) E 6k+, iff y E 

{a(t), @o, al? . . . , akyk) (where 6k+l is defined like 6, with to replaced by tk+,). 

For limit k < y. note that U {Gk, 1 k’ <k} = 6k has the property that 

u {a(fk.) 1 k’ <k} = ak has cardinaltiy o1 in L[Gk]. Thus we can choose a 

t-special at (Yk Set bk so that k’ < k+ bk, B” agree on [a(t), w(tkf)) - (4y + 1 ) y E 

ORD} for x E [tk’]. By Lemma 3.6 choose tk so that tk 6, t and x E [fk] + B”, bk 

agree on [a(t), ak) - (4y + 1 1 y l ORD} and B*(a(t) + 4y + I) = ok(x)(y) for 

y < ixk - a(t) (where ok = U {ok, 1 k’ <k} and x E [fk’]+ B”(a(t) + 4y + 1) = 

u,.(x)(y) for y < a(&,) - aft)). Thus tk E A,: as desired. 

Finally, note that the last part of the preceding paragraph applied to k = yO as 

well and so we have proved that there exists t’ = t,,,, s,,, t as desired. 0 

We can now proceed to the general case of finite n 3 2. Generalized w,-trees 

are defined just like generalized w,-trees with 02, Acceptable WI-Terms, divisible 

by ol, w,-paths, --ml replaced by o,, Acceptable o,_,-Terms, divisible by 

o”-~, w,-,-paths, --o,_~ respectively. The collection of generalized w,-trees is 

cw,-closed. An w,-path is a function x: q,-l?- such that x(a) = tY, for all 

ff<%, where y is an w,_,-path. An o,-path x is a path through a generalized 

o,-tree T is x(a) E RT for unboundedly many (Y < w,. [T] = collection of all 

paths through T. And B” for an w,-path x is defined as follows. Suppose T*, is 

defined (this makes sense after the construction of R” is given). For /3 < o,, 

choose $ E Range(x) n RF. Then x goes left at /3 on TX, if y E [x((u($ + 2))] + 

a($) + 1 $ BY, x goes right at /? on T”, otherwise. Then (Y E B” iff x goes right at p 

on TX, for sufficiently large /3 < 0,. 

We define a version of the operation ( * * *) for generalized w,-trees. We 
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use capital letters To, T,, . . . for generalized o,-trees and small letters to, t,, . . . 

for w,_,-trees. If 1 E l?= define T(t) by: a(t) c a(t), [t] rl [t’] # 0+ t’ E T(t); 

to - on-, tl, to E T(t) + tl E T(t). Now if To, Tl s T, t E ET” fl RF, z an acceptable 
w,_,-term define T” = T(z, t, T,, Tl) = ((f’, g’) ) i < 02) as follows. Suppose 
(f;“, g’) is defined for i < y. Pick t* E T(t), t* E RF” fl Z?%II RF and canonically 
choose type 1 extensions to, tl of t* in i?%, RG so that a(to) = aftI), with 
corresponding acceptable o,_,-terms a,, u1 so that oo(x)(0) = 0, al@‘)(O) = 0 for 
x E [to], x’ E [tl]. (That is, n E [to] + B”(cu(t*) + 4y + 1) = o&)(y) for y < @(to) - 
a(t*); similarly for tl.) Then fy*(t*) is defined to be o where o(x) = oo(x) if 
x E 9)o._,(t), =a,@) otherwise. (s,“-,(t) = all w,_,-paths x such that z E 

Range(x), 4 E [z]+ Bq(4y + 1) = r(q)(y) for 4y + 1< min(lr), a(x)).) Define gy* 
similarly. If t* 4 kz but t* E T(t), define (fy*(t*), g,*(t*)) to agree with Tl-i and if 
t* $ T(t), then define it so as to agree with T. 

Acceptable w,-terms are defined inductively just as in the definition of 
acceptable w,-term, with 2<wz, w-term, l_l {ai 1 i < q} replaced 2cw*+‘, 
w,_,-term, l_l {O,(X) ) i < CO,}. 

The construction of R”, R” is perfectly analogous to that of R’, I?’ using 
O-sequences (CY, 1 a limit, o, s (Y < (o,+,)~‘~‘, y z a). The cases are: (Y G w,; 
a=p+l>o,; alimit, a>@,, anotoftheformo;il(illimit); ~=w;A, L 
limit and L,[A] t# w, is the largest cardinal; otherwise. In the part of Case 5 
discussing type A fusions we insist that the sequence (pi ( i < y) have limit length 

Ye . ‘&I In the type B fusions the set C should have ordertype 60,. As 
before we can define type 1 extension, prove extendibility and define an 
equivalence relation on elements of B”. Then extendibility for RT”, 2 a 
generalized o, +1 -tree can be carried out just as in the case it = 1. This completes 
our definition of R”, 8” for finite n. 

The forcing p 

Now we build the desired forcing for minimally coding A by a real. Conditions 
are of the form p = (p(w,) ) n < co) where p(w,J is a generalized w,,-tree and 
p(w,) E RPCwntl) (these are called quasiconditions). Set p s q if p(mn) s q(mn) for 
all n. A path through p is a sequence (x, ) n < to) such that each x, is a path 
through p(m,J and for all it, x,+r( a) = e for LY < w,+, . An w,-path is a path 
through pO, the weakest quasicondition. 

The construction 9@ requires the use of both 0 and 0. We assume for 
convenience that w, divides LY+ L,(A) .t w, is the largest cardinal. As in Section 
2 we have a natural system of O-sequences (CY, ) LY limit, w,,, < (Y < (~,+~)~tYl, 
y s LY) and it will be useful below to define E = {((Y, y ) 1 CY, is defined and 
bounded in a; LY is p.r. closed}. Also select a system of O(E)-sequences 
(DY, I (a, y ) E E). This system has the following property: For (Y p.r. closed let 
Y( (Y, y ) = largest ordinal Y such that (Y is regular in f+,[y]. Then X c (Y, 
XEL +,y,[yl+Xn P = D, ynS for some (/3, y n p) E E, p < a. This is possible to 
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arrange because E is stationary in the sense that ((Y, y) as above, C E a closed 

unbounded in a, C E Lvca,yj y [ ]-,(/J,ytl/3)EEforsome/3EC. 

We are now almost ready to define p = U {pa ) a < o,,~}. To each p E p 

will be assigned a pair (A(p), B(p)) such that B(p) G A(p), L+JB(p)I b w, is 
the largest cardinal. Also set B*(p) = (6 <A(p) ( 4 - (6, 6’) + 3 E B(p) for 

unboundedly many such ordinals d(p)}. The condition p will then be 

Z;((L,c,,[B(p)], Cf&$“)), when C(p) = Cf’,‘p’ is unbounded in A(p). If k(p) = 
A’ + 1, then C(p) = 0. When C,“;dj’) is bounded in A(p), A(p) limit, we let 

C(P) = {% . ,%’ + y’ 1 y’ < y} if A(p) is of the form w, . A’ + y, y G w, and 

otherwise C(p) = an w-sequence cofinal in k(p) such that lJ C$j” < min C(p) 
and Lemma 6.41 of Beller-Jensen-Welsch [l] holds for (A(p), B*(p)). If x is an 

w,-path, then x satisfies p, x E [p], if x(n) E [p(wn)] for each n. The generic 

o,-path x will canonically give rise to conditions p”, for cr < o,+~. We define B” 
as follows. For each IZ E w, Q < w,+~ let XE = ,Y,-Skolem hull of o,, U {co,} in 

(LncpJB(p)], C(p)) where p =p”,, and let y:= X;fl o,+,. Then (Y E B” iff 

4~” + 3 E B”‘“’ for sufficiently large n < w. Of course we will require that 2a E B” 
iff (Y E A for all (Y < mwfl. 

If p, q are quasiconditions, then p s,, q if p G q and p(mm) = q(com) for m G n. 

Case 2: cxS 0,. GF’* contains only the weakest quasicondition pO. 

Case 2: cx = p + 1 > 0,. Let p E 90 - ??++. We assume inductively that for 

sufficiently large IZ < o, Ip(w,)l =X,, fl W~+~ where X,, = Z,-Skolem hull of 

w, U {co,} in (L+,[B(p)], C(p)). We begin by defining pi up to be the least 

quasicondition so that x E pi] + B”‘“‘(4yfl+ 3) = i for all n such that 1 p(con)l = 

xl f-l c&l+1 = y: (for i = 0, 1). Clearly j?i is &( L,(,,[B(p)], C(p)). 
Now we build a sequence of quasiconditions fii = p. >p, 3 . . . such that p,, is 

&+,((Lncp,[B(p), C(p))), uniformly in n. To define pI first let A(p) be a 

Z,-Master Code for ( Lncp,[B(p)], C(p)) and for each pair m <n let Xfl;,‘n = XI- 

Skolem hull of o, U @} in (L,JA], A(p) fl co,,), p = standard parameter for 

(L,,[A], A(p) n co,). Now define pi = py apf 3 . * . successively as follows: 

pf” = L[A]-least quasicondition q up’; such that q(o,) =p’;(or) for I> k + 1 and 

for E c k: q(w,+i)(q(w,)) = q’(q(wI)) where q ’ is canonical and q( 0,) reduces all 

predense 9 E R9(w’+l) which belong to X@+, n L a(g(~~u,+,~~[4(~~+~)(s(ol))l- (See 
Corollary 3.11 for a discussion of reduction of predense sets.) We also require 

that p;““(w) dk p:(w). Then set p L,. = glb{pf 1 k E o}. The type A fusion part of 

Case 5 in the construction of the forcings R”, n E w, will guarantee that pl,,) is a 

quasicondition, as we now specify that B(p), (v(jl(p), B(p)), 2) gives rise to the 

canonical o-sequence p:’ zp t ?p: 2 . . . of quasiconditions. 

Having defined pl,o we now describe how to obtain p,,, spl,“. Choose a 

canonical listing (Di 1 i < w,) of all predense D 5 ~(P,.~J, D E 

-%w*(,,[~(PN7 C(P))) where ?J”(P,,~) = {quasiconditions q ~p~,~) q(wn) = 
pl,,j(~n) for sufficiently large n}. Also list all finite q 1 co, for q E 9’(pl,,J as 



268 S. D. Friedman 

(qi 1 i<w,). Then pl,, is built from pl,() exactly as was pl,o built from po, with 
the exception that A(p) is replaced by a Z,-Master code for 
(~&,jB(p)], C(p), P,,~) and we require that pl,l c some element of Do. More 
generally define pi,j+i from Pi,i by using (Lc,,[B(P)I, C(P), pl,i) and requiring 
Pl,i+l to obey the following: Suppose i = (io, i,) where qjcr has domain 

{ ~,~~,...,4,i<w,+~ and qj,( On) E lPs(“‘~+‘). Also suppose that there exists 
q G some element of Di, such that q cpl,i and q(wj) = qj,(wj) for j < 12. Then let 

Pl,i+l ~p~,~ be least so that pi,;+, agrees with such a 4 above w, and ~,,~+i sn pl,i. 
For limit 4 pl,A = glb{pi,j ( i -=c A} and we specify that B(p), (~(Iz(p), B(p)), 2) 
gives rise to the sequence (P~,~ 1 i < A), for il< w,. For A = w, we have the 

sequence (pl, w, 1 n < w). Finally definep, = glb(p,,j ) i < 0,). Note that we have 
arranged that p2 reduces all predense D E Z1( (L,(,,[B(p)], C(p))). 

Having defined p1 we now describe how to obtain p2 <pl. The construction is 
perfectly analogous to that of p,. Define Xk’, = El-Skolem hull of w, U @} in 

&&4, A2(p) n wn > w h ere a’(p) is a Z,-Master Code for (LAc,,[B(p)], C(p)) 
and p is the standard parameter. Then pi = pl and p:+l= L[A]-least quasicondi- 
tion q ~p:k such that q(w,) =pg(w[) for 1 <k + 1 and for 1 =S k: q(w,+,)(q(w,)) = 

q’(q(w,)) where q’ is canonical and q(w,) reduces all predense sets for RQ(or+l) in 
xfs+l l-l L a~,~w,+,~~[~(~~+~)(~(ol))~~ Also require that P$“(w) ck p;(W) and set 

pz,i = glb{p$ 1 k E w}. We specify that B(p), (v(A(p), B(p)), 3) gives rise to the 
canonical w-sequence p1 = pfjJ 2 pi 3 * - - of quasiconditions. Then obtain p2,02 

p2,1**** as before, but using &( ( Lncpj[B(p)], C(p)))-predense sets. 
Let pi* =glb{p, ) n E w}. We specify that B(p) *i, (~(k(p), B(p)) + 1, 1) 

gives rise to pj 3pl BP2 2. . - ; note that jpzT(w,)l = yf for sufficiently large n 
where y:=x,“n wn+1, Xr = E,-Skolem hull of wnU{wo} in 

(L v(*(p),~(p))+l[B(~)I, C>, C = 0. N ow we put pz, p: into p, if 0 is not even and 
if /I = 2y, then pz E pE iff y $A, p; E pa iff y EA. Clearly p’ is 

&(L,w,[WPX C(P”)) h w ere Iz(p,*) = ~(;l(p), B(p)) + 1, B(p,*) = B(p) * i 

and C(p’) = C. 
To complete the description of pm, repeat the above construction for each 

n E 0, where all the extensions pk <pi (and Do, fil as well) are required to obey 
pk(w,) =p(e&) for m s n. Also take care to arrange that the resulting extensions 
have no paths in common, for the purpose of guaranteeing that each w,-path 
goes through at most one of them. This completes the definition of e in this 
case. 

Case 3: (Y > w, is a limit ordinal not divisible by w, . w. Write (Y = t?I + 6 
where 0 < 6 < w, and w, divides /I. Given an w,-path x and ordinal /? E [fi, a), 
L E w proceed as follows. Let pO = p;. If pv is defined, then let pu+I spu be 
L[A II a, p,]-least in @+,+, such that pu+l s~+~p~, w, = card(y), and y E 
[p,,+J+ BY, B” agree at fi + y. If p,, is defined for y < 3, limit, then let 
pv = greatest lower bound of (p, 1 y < A). We specify that B(pJ (= 
U {B(p,) I y < A}), ( v(A(pO), B(po)) + II, 1) gives rise to the A-sequence p. 3 
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p1~“‘z=pv2”‘, y < A. Define p”@, &) = g.l.b{p, ( y < S}. If 6 < w,, then 

specify that B(p”@, k)), (v(Iz(p& B(p,J) + 6, 1) gives rise to (p, 1 y < 6). If 
6 = o,, then the former gives rise to (pm. ( n < w). 

Now include in 9$ all p”@, k) as above. For such a condition p we have 

B(P) = u WP,) I Y < 61, VP) = WPOh WPCJ) + 6. 

Case 4: (Y = 0, . A, A limit and a is not p. r. closed. We are not concerned here 
with E or with building in any special fusions; only with guaranteeing extend- 
ibility. Given an o,-path x define x* = (6 < (Y 1 4. (6, 6’) + 3 E B” for un- 
boundedly many such ordinals < cu}. then (Y& ==z (Y; < * . . is defined if 0 4 x* and 

a< (%J+1) * L[x’] If C”* is unbounded in a, then let ah < a; < . . . enumerate C:*. 
If not, then let Cu;, < z; < * - * enumerate C, where C is defined from cu, x* as was 

C(p) defined from A(p), B*(p). 
Choose fi < LY and R E o. Also define cu, < al < . . * to be the final segment of 

cu;,<cu;<.** determined by lyo = least cui greater than 8. Now define (p, 10~ 
y < yo) as follows where y. = ordertype of { LU, < (Y~ < . . -}. pa = L[A II (Y, x*1- 

least p s~p$ in 9$,, so that y E [p]+ B y, B” agree on [?, ao). If pu is defined in 

5!?$ then let P,,+~ be the L[A n (Y, x*]-least p s~+~p~, w, = card(y), such that 

P E sty+, and y E [p]-, BY, B” agree on [my, a,,+r). If p,, is defined for y < A s 
yo, Iz limit, then let p* = greatest lower bound of (p, 1 y <A). We specify that 

B(PA), (Y(~A, B(PA)), 1) g ives rise to the A-sequence (p, 1 y < A). Define 

P”(A Q = Pw 
Include in P’“, all p”@, k) as above. For such a condition p we have 

B(P) = U NP,) ( Y < YO), A(P) = a- 

Case 5: (Y is p.r. closed. First add conditions as in Case 4 but with an important 
restriction: If p is added to P?‘“, and (cu, B(p)) E E, DE(p) is a dense subset of 

9(./T B(P)) = (4 E p”,,) 4 SP, B(q) and B(p) agree on [A@), A(q))}, for some 

p a’p, p E ~‘“,,, then insist that p s q 6 p for some q such that r s q + 3’ s r 

(r’ E DEcP), r’(u[) = r(w,) for 1 2 n), for some n. It will be easy to verify that this 
restriction will not injure extendibility. 

Now we also add conditions for the sake of anticipating certain fusions. Given 
an o,-path x define what it means for x to code a fusion sequence pa 2 p1 1. . . 

of length co,. Let (q, k) be least so that (Y is &(L,[A fl cu])-projectible. We 
suppose that (9, k) exists and k 3 2. Let ti = &-,-Master Code structure for 
L,[A II (u]; we suppose that pf = (Y and C has ordertype <o, where C consists of 
all a’ < (Y such that (Y’ F$ H,, = Z,-Skolem hull of a’ U {q,,, jj} in d, p = least 
parameter p such that ~2 is Z,-projectible to (Y with parameter p. Also let 
&’ = &+,-Master Code structure for L,[A fl (u] and choose a canonical El(&)- 
injection f : ~22’ --, w,. 

Now enumerate C as a0 < (or < * . . and consider the sequence 6, < 6, <. . . 

defined by 6i = least 6 < o, such that 4((u, + 6) + 3 E B”. We require that & has a 
constant value (0, 8) for i sufficiently large. (Note that this implies 0 E x*). For x 
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to code a fusion sequence p,, z=pl 2 . . . we must have that the Z,(&‘)-set with 
defining parameter f-‘(8) is a sequence of conditions p02p1 2. . . where 
pA = glb{p, ( i <A} for limit J., I (= least a’ such that pi E 9$+,) is at least a; 
and i > W, + pi G,, pm,. Now add the greatest lower bound p for all such fusion 
sequences p. 2 p1 3 * . . to 9’2 provided x E [p]+x codes this fusion sequence as 
above and provided for all i <ordertype( pi+I reduces all D E Hz= ,Yi- 
Skolem hull of ai U @} in di, where (&!i ) i < ordertype C) is a &(a)- 
approximation to & and D is predense on PAnu. = S”,, fl L,[A]. We also specify 
for limit h that B(pJ =A rl CQ, (~(a~, B(p,)), 1) gives rise to (pi 1 i < A) and 

that B(p) =A n a, +(a, B(p)), I> g ives rise to (pi ( i < ordertype C). This 
completes Case 5. 

Finally close each 9’6 under: p E P”,, q(Wn) =p(mn) for all sufficiently large 
IZ--, q E S”,. This completes the construction of p = lJ (95 ) a < w,+~}. We 
now prove a series of lemmas which ultimately will show that a P-generic real 
minimally codes A. First we establish fusion for the forcings RT, T E l?‘+l. If t, t’ 
are generalized n-trees for n 3 1, then we write t’ =+ t (I, 1’ < o,) provided 
t’$t and UE~~.+UE@: unless u E t(ui) for some i, w,-~ * i 21’ (where 
( uj 1 j < co,) is a fixed canonical enumeration of Rfl-‘). And 9 c RT is 1, l’-dense 
below t E RT if t’ S[ t--, 3” 6,,,. t’ such that t” E 9. 

Lemma 3.9 (Fusion for RT, T E I?‘). Suppose t E RT, T E l?‘+l, I < CO,, and D,,I. 

is l, l’-dense below t for each I’ < w,. Also suppose that for some y < (w,+J~[~J, 

9,,,8 E L,[T] for each 1’ < CO,. Then there exists t’ s, t such that t’ E D,,,, for each 

1’ < 0,. 

Proof. Here we use the type B fusions from Case 5 of the construction of R”. 

The hypothesis implies that ( Dl,[, 11’ < CO,,) belongs to L[T], as A n w,+~ E L[T]. 

Suppose the lemma fails and choose 4 < (o,+~)~‘~’ to be least so that there is a 
counterexample t, ( DI,Iv 1 1’ < w,) definable over Le[ T] where D,,,, E Lfi[ T] for all 
1’ < 0,. Choose k 2 2 so that this counterexample is &_,(L6[T]) with parameter 
o, and let d = &_,-Master Code structure for L4[T]. 

Note that pf = u,,+~ and let p be the standard parameter for & Let C consist 
of the first o,, ordinals CV’ > w, such that (Y’ r# H,, = _X,-Skolem hull of (Y’ u 

IO,+1 }U{p} in b and write C={~ob<crl<~~~}. Now let a=lJC, &= 
transitive collapse of H, and &’ = &-Master Code structure for Se = ,Zi_l-Master 
Code structure for L,[T 1 a] (for an appropriate r]), h : IX+ CO, a canonical 
,YZ’,(.vZ’)-injection. 

We are precisely in the type B situation of Case 5 of the construction of R”. 

Now pick any 8 < w,. Attempt to build the sequence t,, s!,~ tl >1,2 t2 s1,3 - . . as 

follows. Let to = t. If ti has been chosen, then let ti+r +i+l ti be least in L[A] so 

that ti+i E D,,i and 6i = 8 where hi is least SO that 4(cUi + Si) + 3 E B” for all 
x E [ti+l]n Also insist that ai + 4( (0, S,)) + 3 E B” for all x E [ti+r] (to guarantee 
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that 0 EX*). As (DI,i ( i < o,) is Z;_,(&,[T]) it follows that ti+i E RT4+,. For 

limit A let th = glb{t, ) i < h}. 
We claim that 8 can be chosen so that ( ti ( i < o, ) is well-defined and 

glb{r, 1 i < w,} = t’ is a condition in RT. To see this let h’ : a--, (Y be Z’:,(&‘) and 
so that h’(6) is an index for the above sequence (t, 1 i < o, ) where 8 = h(6). By 
the recursion theorem we can choose 6 = h(6) so that 6, h’(6) define the same 

sequence (ti ) i < CO,), in which case by Case 5 of the definition of R”, 
(ti ( i < o,) is totally defined. For the latter claim we need to arrange that a: is 

regular in L,[x] for x E [t’]. 
Due to the leastness of 4 it suffices to arrange that x E [“1+x is RT1”-generic 

over L, [T ]a]. To do so it would suffice to arrange that x E [ti+l] + x is 

R T la,+l-generic over Lv,+, [T]cri+,] (for the appropriate vi+,). For simplicity 

suppose I; = 2 and let pi+1 be the standard parameter for &‘;+i = L,,+,[T ra;+J. 

Approximate vi+1 by a _Z:,(.&+,)-sequence (q,* 1 j <j,) and let aj = L,[T l&j] be 
the transitive collapse of Hi = X1-Skolem hull of a; U { ai} U {P,+~} in 
L,.[T ]cu,+,]. Thus the ZJj’s approximate &+,. If we can successively extend t, to 
lj such that x E [Zj]+X is RT’q- generic over dj, then after j0 steps we have the 

desired ti+ 1. Thus assuming ti+l as desired does not exist, some $ as desired does 
not exist. We can repeat this argument now for Sj, leading ultimately to an infinite 
descending sequence of ordinals. Thus ti+l can be found as desired and thus t’ can 
be constructed as desired, contradicting our choice of counterexample. •i 

As in Section 2 we can now infer the following. 

Corollary 3.10 (co,-Distributivity for RT, T E Rn+‘). Suppose t E RT, T E I?+’ 

and Di is open, dense below t for each i < o,,_~. Also suppose ( Di ) i < o,_~) E 
L[T]. Then there exists t’ Gtsuchthatt’EDiforeachi<w,_,. 

Corollary 3.11 (Density Reduction for RT, T E R”+‘). Suppose t E RT, T E R”” 

and Di is open, dense below t for i < 0,. Also suppose that ( Di ) i < w,) E L[ T]. 
Then there exists t’ c t such that t’ reduces each Diy i < w, (i.e., for each i < o,, 

w-1 * i <j+ t’(z+) = t”(uj) for some t” E Di, where ( uj I i < 0,) is a fixed canoni- 
cal enumeration of P-l). 

We can now attack the proof of extendibility for 9@. 

Lemma 3.12 (Extendibility for 9@). Suppose p E ?P’ and o(p) < (Y < w,+~. 
Then there exists q up, cu(q) 2 (Y. 

Proof. By induction on (Y we show that there exists a type 1 extension (no fusion 
involved) q G,, p such that a(q) = o and x E [q]-, B”, b agree on [o(p), a), for a 
given b E [a(p), (w) which is ‘p-special at (Y’. We can assume (Y > 0,. 

Suppose Q = /3 + 1. We can assume that o(p) = p. For simplicity assume that 
n = 0. Now consider the quasiconditions pO ~=p, 2 - . . built in Case 2 of the 
construction of p. We must show the pi’s as defined are in fact quasiconditions; 
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the main thing to check is that p;(o,) E R”. (Given the existence of pi-r as a 
quasicondition, each p” can be constructed using Corollary 3.11 finitely many 
times.) Now the verification that p,(o,) E R” follows from the fact that type A 
fusions were added in Case 5 of the construction of R” together with the fact we 
specified that B(p), (v(A(p), B(p)), i + 2) givees rise to the sequence P?+~ a 
1 

Pi+1 
0 

2"',pi+1 =pi. (Similarly for (P~+~,~ ) j < co, ) .) The only thing to check is 

that x E [P~+~,~(~JI-+ s = ~P~+~,o(wJ) is regular in L,[x] where the transitive 
collapse of Hi+’ = Zi+,-Skolem hull of ~U{(%&n<~)) in 
(L,(,,[B(p)], C(p)) is equal to (Ls[i?], c) and n is least so that a is singular in 
L,+,[B]. We assume that p reduces all predense D E Se, B(p)), D E 

L,,clcp),Bcp)JB(p)] (if p arises as in the first part of Case 5) or all predense 
D c 9@nA(p), D E L - v~~~p~,~n~dA n A(P)I (if P arises as in the second part of 
Case 5). (These assumptions are justified by Lemmas 3.13,3.14.) But now we see 

that x E [Pi+r,o(W,)J +x is generic over L,[B] using the above density reductions 
and the density reduction built into the definition of (~f+~ 1 k E o). Moreover, 
the forcings S@, B(p)), i?i@“‘(p) are cardinal preserving and hence so are their 
transitive collapses. It follows that x preserves cardinals over L,[B] and hence & 
is regular in L, [x], as desired. A similar argument applies to (P~+~,~ 1, j < o, ). 

Suppose (Y < o, is a limit ordinal not divisible by w, * co. We can assume that 
a(p) = fi > p where a = /l + 6, 0 < 6 =z w,, o, divides /3. Now define the 
sequence (p,, 1 y < S) as in Case 3 where p. =p, l= n. By induction we need 
only show that pn is well-defined at limit stages J, s 6. As in the previous case the 
fact that we specified that B(pA), (v(A(p), B(p)) + A, 1) gives rise to (p, I y < A) 

guarantees this provided we check that x E [ph(w,)]+ ii! = (~(p~(w,)) is regular in 
L,[x] where in the present case (L,[l?], c) = transitive collapse of the _Z1- 
Skolem hull of & U @} in (Llo,l) [B(p,J], C(pA)), p = standard parameter for 
(LAc,,,[B(pn)], C(pA)). But by induction it is clear that x is generic for the 
collapse of 9(p, II(p Thus the desired cardinal preservation follows from 
fusion for 9(p, B(pl)), w tc is established in Lemma 3.13. h’ h 

Next suppose (Y = o, . A, A limit, but (Y is not p.r. closed. Then the argument is 
identical to the one used in the proceding paragraph. Note that we can assume 
that a(p) a /3 = greatest p.r. closed ordinal less than a, and hence 

WP,), WP,)) = k(P,) f or all pu considered. Also one needs the fact that 
C(p,) = C(p,,) fl A(p,) for limit y < y. to verify that pv is a condition. 

Finally, suppose (Y is p.r. closed. Then build (p, ( y s yo) as in Case 4, obeying 
the proviso set forth at the start of Case 5. The only difference between this case 
and the previous is that for limit A s y. we need to know that x E [pl(on)]+ ii = 
a(pA(wn)) is regular in L,[x] but now possibly n > p where (Lb[i?], c) is the 
transitive collapse of the &Skolem hull of 5 U @} in ( LAc,,,[B(pA)], C(pA)), 
,6 = standard parameter for ( Llcpi) [B(pl)], C(p,)). In this case we need (as in the 
successor case a = B + 1) the reduction by pA of all predense D c Y(p, II(p 

DEL v(l(pl),B(pl))[B(ph)]. This follows from Lemma 3.13. 0 
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In the preceding proof we have made extensive use of the next two lemmas, 
which in fact are established by a simultaneous induction with Lemma 3.12. 

Lemma 3.13 (Chain Condition and Density Reduction for .??(p, B)). Suppose 

p E p, q is a type 1 extension of p and B = B(q). Then P(p, B) = {p’ c 

P 1 B(P’), B agree on [a(p), 4~‘))) obeys the ~,+~-cc in L~l~q~,B~q~~[B(q)l and 
q reduces all predense D c P(p, B), D E Lv~L~q~,B~q~~[B(q)]. (I.e., for some 
n, rGq+3r’ c r (r’ c some element of D, r’(o,) = r(w,) for all m > n).) 

Proof. The fact that .CP(p, B) obeys the chain condition follows from the use of 
O(E) in the first part of Case 5 of the construction of 9. Indeed, if 

DEL vw,w[B(q)] is P d re ense, then {a<il(q) ( D fl L,[B(q)] is predense on 

P(P, B) n L[B(q)l), is CUB in A(q), belongs to Lv~~~q~,B~q~~[B] and hence 
contains an (Y such that ((Y, B n (Y) E E. Then Case 5 reveals that D c L,[B]. 

To show that q reduces all predense D E LvCICqj,Bj[B] it therefore suffices to 
consider D E L nCgJB(q)]. But then we can assume that a(q) is a successor ordinal 
in which case predensity reduction follows from Case 2 of the construction of 
9+. 0 

Lemma 3.14 (Density Reduction for pna). Suppose p E pm is not of type 1 
(i.e., p arises from the second part of Case 5). Then p reduces all predense 

D c P”, = 9@ r-I L,[A], D E L,+y,/,na)[A n a]. 

Proof. First note that we can assume ~(a; A fl a) > (Y as otherwise we can 

choose fi < LY so that D E LB+1 [A] and choose q >p, A(q) = 6 + 1; then the result 

follows from Lemma 3.13. 
Now we can apply induction, using the second part of Case 5 of the 

construction of @. Clearly p was constructed there so as to reduce all predense 

DEL .(,,an,JA n 4. Th e only question is whether or not ph is well-defined at 
limit stages A. But this is clear using the distributivity of pna (see the next 

lemma) and the fact that we specified that B(p,), (~(a*, B(p*)), 1) gives rise to 
(pili<A). Cl 

Lemma 3.15 (Distributivity and Cardinal Preservation). (a) Suppose (D, / i < 

w,) are n-predense on P?‘(p, B) (i.e., Vp’ 39’ s,, p’ (q’ c some element of Di)) 

ad (Di 1 i < w, > E Lw),B(~)) [B(q)] (using the notation of Lemma 3.13). Then 

P’ E P’(P> B)-, 39’ sn P’ (4 ’ S some element of Di for all i < w,). 
(b) Suppose (Di / i < w,) are n-predense on PP”‘lr, (Di ] i < w,) E 

L vCol.Anaj[A n 4. Then VP 3q % P (q s some element of Di for all i < w,). 

(c) The forcings p(p, B), pnw are cardinal-preserving over 

L~A~,~,B~q~JNq)lI LGWW[A n 4, respectively- 



274 S. D. Friedman 

Proof. (a) By the Chain Condition we are reduced to the case where a(q) is a 
successor ordinal. But then the result is clear using the construction of Case 2. 

(b) By induction on a. We use Case 5 of the construction o @. Suppose the 

property fails and choose rl to be least so that there is a counterexample 
(Q ) i < w,), p definable over L,[A fl a]. Choose k 2 2 so that this coun- 
terexample is &_-l(Lh[A fl a]) with parameter (Y and let d = &__,-Master Code 
structure for L,[A f~ a]. Then p;” = a and we let a0 < ai <. . . be the first o, 
ordinals (Y’ such that a’ $ H,, = Z:,-Skolem hull of LY’ U @} in d, ~7 = standard 
parameter for 5& Let & = lJ {a; 1 i < o,} and choose a canonical 2 i(&)- 

injection f : a+ to,, d’ = &-,-Master Code structure for L,[A rl a]. 

Now build the sequence p0 2 p1 2 . . . as follows, for any given 8 < 0,. Let 

p0 =p. If pi is defined, let pi-c1 co. pi be least so that pi+I c some element of Q, 
pi+I reduces all D E H$ = E,-Skolem hull of ai U @} in &, where ( tii 1 i E o,) 
is a &(&-approximation to a = transitive collapse (H&) and D is predense on 

Po$ and so that x E [pi+J + 8 = least 6 such that 4(ai + (0, 6)) + 3 E B”. For 
limit A. let pI = g.l.b(pi 1 i < A). By the recursion theorem we can choose 8 so that 

(pi 1 i < o,) has index f-‘(8) as a &(d’)-sequence, contradicting the choice of 

counterexample. 
(c) This is an immediate consequence of (a), (b) and Corollary 3.11. 0 

Corollary 3.16. Suppose R is p-generic. Then R preserves cardinals and 

A E L[R]. 

Proof. Clear from Lemma 3.15(c) and Lemma 3.14. q 

Finally we must establish: 

Lemma 3.17. Zf R is p-generic, the R is V-minimal. 

Proof. Suppose p Itx E ORD, x $ V. Suppose q <p. It suffices to show the 
following. 

Claim. These exists (Y, qo, q1 such that qo(wn) = ql(wn) for all n > 0, qo, q1 c q 
andq,Ita$x, qIItcuEx. 

Given the Claim we can build a fusion sequence q. 2 q1 3 q2>‘. - - so that 
( qi 1 i < o) has a greatest lower bound q* and s, t incompatible elements of 

q*(o)+(q*(w),, q*(o,), . . .) and (q*(o),, q*(o,), . . .) force different facts 
about X. So q* IF R E V[x]. 

Proof of Claim. Choose qo, q1 c q and LY such that q. II CY 4 x, q1 It a E x. Replace 

qo(wl), ql(wl) by q(wd (a, 2’“, qo(d, ql(d), where we assume a E qo(w) - 

qdo). Then replace qo(d, q1(w2) by q(a)(v b qo(wl), qde)) where t0 = 
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weakest element of R’, t is an acceptable u-term such that [qO(ol)] E P@,(r), 
[c~i(o,)] n P&t) = 8. If we continue for ~nitely many steps, we still have a pair 
qo, q1 6 q such that q0 IF ty $x, q1 It a E x. By ~-dist~butivity there in fact exists 
a pair of conditions qa, q1 sq such that qOIl-a$x, qlIt~~x but ~o(~~)=q~(#~) 
for all n > 0. Cl 

This completes the proof of Minimal Coding when A s w,,i. 

4. The general ease 

In this section we extend the ideas of Section 3 to establish the full result. 
There are some new ideas here involving coding at inaccessible cardinals but 
most of the ideas required for the proof are implicit in Section 3. 

We assume that V = L[A] where A E ORD, 2”s L,+[A] for every infinite 
cardinal K and in addition for convenience that K - o divides A E (K, K+]-+ 

&[A] k K is the largest cardinal. Conditions in the desired forcing p for 
minimizing coding A are certain functions p : Dam(p)--, V bf the form p(y) = 
(p,, p,) where Dam(p) is an initial segment of CARD = (0) U Infinite Cardinals. 
Each pu is a (generalized) y+-tree (O+ = o) and & effects a restraint on 
B” r-l Even Ordinals, for x E [(p,, 1 y’ E y)]. We shall define RY = the appropriate 
candidates for pY as well as the notion of y+-tree by induction on y. In addition, 
we define [p,] = the yf-paths through p,, as well as B” for x E [p,]. The need for 
&, is to deal with coding A at inaccessibles, as in Beller-Jensen-Welch [l]. A 
forcing RPy+ will be defined as well, for coding y’+-paths through pu+ by a subset 
of y+ (using yf-trees p,). For limit cardinals K > w a forcing P” will also be 
considered; K+-trees are built from elements of 9”. To each x E [p,] will be 
associated a canonical sequence of y+-trees (pf,, 1 y+ s LY s afp,)) where x E [p:] 
and a(~,) < y++. Similarly elements of 9” are certain functions pK: CARD 17 
K+- V and a path through pc is a function x : CARD n K+ V such that (among 
other things) x(y) E [p”(y)] and x(y+) = (p”,“‘) 1 yf s LY < y”) for y < K. To each 
path x through p K (x E [pK]) will also be associated a canonical sequence 
(p: 1 K s cx < a(pK)) of conditions of 9” such that x E [p:]. The final generic will 
yield a sequence (G(y) 1 y E CARD) of y+-paths so that G(y+) = (pi”’ 1 y+ < 
a < y”) and for limit cardinals y < w, (G(y’) I y’ < y) codes G(y). Moreover 
we have BGcy’n [y+, ye+) codes A n [y+, y++) by: (Y EA iff 2( (Y, /3) E BG(y) for 
unboundedly many /3 < y++. 

We now begin the inductive definition of RY, y E CARD, and the related 
notions. We also define Py when y > o is a limit cardinal. We have RY = 

U {R1; 1 a <.Y++), 9” = U {g”a 1 LY -=c y’}. In all cases we make use of an index i, 
describing how A fl y+ is decoded (uniformly in y) from the general real R using 
the parameter CARD n y+, as a Z:,(L,+[R])-procedure. Also we define a:, 
@“, = the ‘canonical’ elements of RY, - R:,, C!?L - SZ-, respectively. Then RY,, SG is 
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obtained from RI&U I?:, P’:, U 5?‘“, using the operation (+) to be described 
below. 

Definition of R ’ 

First define (+) to be the operation that takes w-trees to, tl 6 t, a E 2’” and 

produces t(a, to, tl) = (tl - (G).) U (to)O, where it is understood that if a $ ti, then 
(tJ, = 0. We will only define R”, for a< w1 as then Rt= [(+)-closure of 
RO,, U i?“,]. 

Case 1: a = 0. RO, = (2’“). 

Case 2: LY = /3 + 1. Let C E I?$. We define the canonical extensions of r in R”,. 
First fix a listing ( (ki, ai) 1 i < w) of all pairs (k, a) such that k E w, a E 2’” and 
k > length(a). Also define t; = {a 1 a sf (b) for some b E 2’“, b(2i) = j for 
k < 2i < length(b)} where f : 2’” += Split(t) is bijective and f (b * 0) 2 f(b) * 0 for 
all b E 2’“. Now inductively define to, t’, . . . as follows: t2’ is chosen so that 
t” sk, t(ai, tok,, t’;‘) and t2’ shares no path with any t”, i’ < 2i; tz+’ is chosen so that 
f2i+l sk, t(a,, t:‘, tok,) and t2’+’ shares no path with any t”, i’ s 2i. Then we add all 
resulting t’ to I?:, for each t E Z?:. 

Case 3: a limit, IX not divisible by w * co. Write a = b + w where p is 0 or a 
limit ordinal. Choose t E I?1 for some fl E [/?, a) as well as an acceptable term 3, 
an ordinal bi G fi (& limit or 0) and an integer k. We now describe a canonical 
extension I <i t in R”, which ‘follows the term 6, starting at 2’. 

Let to = t and if t,, is defined as an element of @+,, then define tn+l E I$+,+, to 

be L[t]-least so that tn+l SR+” n t andR, Se[tn+l]--,BR, BSagreeon[fi,fi+n]- 

{4y+l) ~EORD} and BR(iU + 4y + 1) = b(R)(y) for 4y + l< min()bl, fi + n + 
1 - &). Define 2 = glb{t, 1 n E co}. 

Include all ? as above in Rz. 

Case 4: a! divisible by o . w. In this case we add conditions both for 
extendibility and for (two types of) fusion. 

We consider extendibility first. To do so we define what it means for b G a to 
be special at (Y. For any ordinal p G (Y divisible by w . w define 6; = (6 < 
/I 14. (6, S’) + 3 E b for unboundedly many such ordinals </3}, where (e, .) is a 
fixed pairing function on the ordinals such that n < w--, (n, 6) < 6 + w. For 
b c a to be special at LY we insist that O@ b$, /3 is countable in L[bg] and 
bg = bz f~ /3 for all ordinals p < (Y divisible by o . co. Clearly, if b G (Y is special at 
a, and /3 G a is divisible by w . w, then b fl /? is special at /3. Also there exists 
b c /3 which is special at (Y. 

Now pick C E I?$, ji? < a as well as an acceptable term a, an ordinal & G B (iu 
limit or 0), an integer k and 6 c (Y which is special at (Y. We now define a 
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canonical extension 1 SC t in l?“, which ‘follows 6, & and 6’. We let aA < (Y; < * * * 

be the L[6:]-least o-sequence cofinal in a and let a0 < al < . - - be the final 

segment of crh < a; < * * - determined by cu, = least crI greater than 8. 

Now define (tn IO s n < W) as follows: to = the L[6:]-least to SL t in l?$ such 

that R E [to]+ BR, 6 agree on [fi, ao) - (4y + 1 1 y E ORD} and BR(& + 4y + 
1) = S(R)(y) for 4y + 1 <min(]b], (Ye- ~2). If t, is defined, then 1,+, is L[6:]- 

least in I?:_+, such that t,,+, pi+,, t,, and R E [tn+J+= BR, 6 agree on [a,, a”+,] - 
(4y + 1 1 y E ORD}, BR(& + 4y + 1) = 6(R)(y) for 4y + 1 < min(]a_l, an+1 - ko). 

Set f=glb{t,, 1 n E o}. 
Include in R”, all 2 as above, for some choice of t, 6, ~2, k, 6. 

Next we turn to type A fusions. We put those t into Z?“, which can be written 
t = glb{t, 1 n E o} where to 3, tl s2 t2 z3 t3 a 4. . * has the property that each 
R E [t] codes (t,, I n E 0). The latter is defined as follows. Let q 3 (Y be least so 

that (Y is not regular in L,+l[R]. W e re q uire that rl exists and that R codes a 

predicate GR c L,+[R], K+ = (K+)~~‘~‘, via the index i. for decoding p-generics 
from reals R, using the parameter (CARD fl K+)~v[~], where L,[R] k K is the 
largest limit cardinal. Let A be decoded in L,[R] from R as A is decoded from 
P-generic reals and let P@ denote the L,[R] version of 5Z@, with A playing the 

role of A. We require that L,+,[R] k G’ 1 K, (q, k, y) give rise to the canonical 
w-sequence of @ quasiconditions PO>@, 2. . . for some k, y and LY = 
lJ {l&(O)] I n E w}. If in addition 0 E (BR fl au):, then we say that R codes the 
type A fusion &(O) ) n E co). 

Finally we consider the type B fusions. As in the type A case we put those t 

into t?“, which can be written t = glb{& I n E w} where to 2, tl s2 t2 +. . . has the 
property that each R E [t] codes (t, I n E o). The latter is defined as follows. Let 
q be least so that 1y is not regular in L,,, [RI. We require that rl is defined and 
L,[R] b o1 is the largest cardinal. Now let xR = (t; I /3 < a) and we then require 
that L,[R] F for some PO, x R is a path through the o,-tree T = Tit and R is 

R*-generic over L[A fl a, T]. 
We also require that & is &(Lq[A II a, T])-projectible for some least k s.t. 

k s 2. Now let .&? = &-,-Master Code structure for L, [A rl a, T] and we require 
that C has ordertype o where C consists of all (Y’ < & such that a! $ H,. = Z,- 
Skolem hull of (Y’ U {p} in &, p = standard parameter for &. Let &’ = _I?,- 
Master Code structure for ti and h : cy+ w a canonical Z,(&‘)-injection. 

For R to code the type B fusion sequence (t,, I n E w) we require that 
OE (BR fl a): and h-l@ is a E,(&‘)-index for (tn I n E o), tn+l cn+l t,, for all it 
where i^ is defined as follows: List C = {cu, < (Ye < . . *} and let ik = least i < o 
such that 4(cuk + i) + 3 E BR. We require that ik is defined and equal to i^ for k 
large enough. 

This completes Case 4 and also the construction of R” = U {R”, ( CL < q}. For 
t E R” we set a(t) = least Q such that t E R% - R!?-,, where R:, = IJ {ROB I /3 < a}. 

For any real R, t: denotes the unique t E Z?t such that R E [t]; t: is defined 
provided R E (t] for some t E I?%. Also BR is defined as follows. For any o-tree t, 
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Split(t) = {s l t ( s *O, s * 1 E: t}. For s E t, llsll denotes the cardinality of {s’ c 
s 1 s’ E Split(t)}. If R E [t], then R goes right at the nth level of t if s * 1 E R where 
s E split(t), llsll = 12. Finally, a E BR iff R goes right at the sufficiently large even 
levels of tR,. 

Terms are L[R, R,]-nemes for functions from 2” into 2<“‘, for some real RO. 
The class of acceptable terms is defined inductively by: 

(a) Any constant term o(R) = so, so a fixed element of 2’“’ of limit ordinal 
length, is acceptable. We set JoI = Is,,I. 

(b) If oi, a2 are acceptable, I ql = lu,J and a E 2<“, then o is acceptable where 
a(R) = a,(R) if a c R, =02(R) if a $ R. We set 1~1 = Iuil= 1~~1. 

(c) If ui, q are acceptable, then so is u1 * a2 where ur * u,(R) = u,(R) * u,(R) 
and * denotes concatenation. Set Iul * a,[ = Iu, I + 1~~1. 

(d) If ui G 0, E . * * are acceptable (a G t if u(R) c t(R) for all R), then 
u = lJ {a, 1 n E co} is acceptable, where u(R) = LJ {u,(R) 1 II E co}. 

If t’ s t belong to R” = U {R”, ) cx < toI}, then t’ s t is a type 1 extension if for 
some (Y > a(t’), b E (Y which is special at (Y, bz does not contain 0 as an element 
and R E [t’]+ BR, b agree on [a(t), cu(t’)) - (4y + 1 1 y E ORD}. This means that 
t’ is an extension oft which arises as in the construction of R” but without the use 
of the fusions of Case 4. An equivalence relation - on elements of Z?’ is defined 
inductively by: t, - t2 if aft,) = a(t2) and either tl = t2, or there are type 1 
extensions tl s &, t2 s I2 where 5, -S2 and R E [t,], S E [t2]+ BR, BS agree on 

[a(&)> a@*)) - {4Y + 1 I y E ORD}, BR(4y + 1) = u(R)(y) and BS(4y + 1) = 
u(S)(y) for some fixed term u and all 4y + 1 E [a(&), cx(tJ). 

This completes our present discussion of R”. The remaining notions from the 
construction of R” which are yet to be defined will be clarified by our upcoming 
definitions of R y, SP’ for y > w. We also note here that in future reference to 
o-tree, acceptable w-term, -w we are referring to the notions tree, acceptable 

term, - discussed above. 

Dejinition of R y, y 2 w 

If y is a limit cardinal >o, then 9” has been defined by induction. If y = K+, 
K E CARD, then define ?P’y = R”. In any event we have inductively defined B” for 
x E [p], p E $?P’ as well as the equivalence relation -,, on elements of $7 

T is a y+-tree if T = ((J, gi) ) i < y’) where: 
(a) J, gi : l?T+ Acceptable y-Terms, where l?T is defined below. 
(b) [J(t)1 = Igi( for all t E l?T and all i < y+. In addition fo(te) = go(ta) where 

tfl = weakest element of gy and for i > O:h(t)(x)(O) = 0, g,(t)(x)(O) = 1 for all 
x E [t], t E &. 

(c) If t1 - y t, belong to $, then i(tl) =A(&), gi(tl) = gi(t2). 
We define @, RF by induction on i. First we have @= & = {te} where 

te = weakest element of Py. If I?:, i?,r have been defined, then t’ E I?:+, if for 
some t ERT, t’s t in Sy, a(t’) = m(t) + q where q = If(t)1 and either for all 
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x E [t’], B”(a(t) + 4~’ + 1) =fi(t)(x)(n’) for q’ < rl or for all x E [tj, B”(cu(t) + 
411’ + 1) = g$)(x)(~‘) for q’ < rl. Then fi2, is the (+,)-closure of RL, U @. To 
define 8: for limit h we take all t E @” which can be written t = glb( ti ( i < S), 6 

limit where to2 t1 2 - *. belong to k$, and a(t) =U {a(ti) ( i< a>,, A= 

u {A’ 1 tj E II; -II:,. for some i < S}. And kif= (+,)-closure of &T,, U RT. For 
r E fiT, (t( denotes the unique i such that t E I?:- fiTi. Also set Z? = U {RT ( i < 

y+>. 
The reason we use the symbol * above is that we want to define RT slightly 

differently. For any 6 < y+ let u(6) = {2( 6, 6’) 1 6’ < y’}. A condition in RT is a 
pair (p, jj) where p E fi’ and jj is a subset of y+ -A of cardinality <y. Then 
(po,po)~(pI,p,) iff po6pl in 9’, pOcjj, and x~[p~]+B”(~)=0 for all 
q E [a(~~), my which belong to u(6) for some 6 E p,. We also write 
x E [(p, p)] if x E [p] and B”(q) = 0 for all q E [a(p), y+) which belong to u(6) 
for some 6 EP. Of course the idea is that generically 6 E A iff u(6) n BG 1 y is 

unbounded in y+. 
If to, tl are y+-trees (we now use lower case letters), then we write to s tl if 

Rfo s R”. A useful fact is the (Cy)-closure of the collection of y+-trees. 

Lemma 3.1. SuppOSe (ti 1 i < A) are y+-trees, i < j < A+ ti G ti and A G y. Then 

( ti ( i < A) has a greatest lower bound. 

Proof. This is clear, given extendibility for R’, t a y+-tree. The latter is 
established later. 0 

We define the operation (+Y+) on y+-trees. First inductively define, for t E riT 

and T a y+-tree, the set T(t): a(t) 6 cu(t’), [t] rl [t’] # 0, t’ E fiT+t’ E T(t); 

to E T(t), tl - y to+ t, E T(t). It is easily verified that t’ E iT+ t’ E T(t) for at most 
y-many t. Now, if To, T, s T, t E kTo fl l?q and t is an acceptable K-term for some 
K < y, then define T* = T(t, t, To, Tl) = ((fr, g:) ( i < y’) as follows. Suppose 
(f:, g”) is defined for i < 6. Pick t* E T(t), t* E kg’ II kTo fl kTl and canonically 
choose type 1 extensions to, t, of t* in RF), fiTI so that a(&) = a(t,), with 
corresponding acceptable y-terms a,, o1 so that so(x)(O) = al(x’)(0) = 0 for 
n E [to], x’ E [tl] (that is, x E [t;] --, B”(cu(t*) + 4y + 1) = o@)(y) for 4y + 1~ 
aft,) - aft*)). Then define fg(t*) = oo(x) if x E p,,(r), =a,(~) otherwise. Here 
we are using p,,(t) = {y-paths x ) x is coded by some Kf-path x such that 
z E Range(f), q E [z] + Bq(4y + 1) = z(q)(y) for 4y + 1 < min(lrl, (u(z))}. Define 
gg similarly. If t* $ kT, but t* E T(t), then define (fT;(t*), gz(t*)) to agree with 
T,_i and if t* $ T(t), then define (fg(t*), gg(t*)) so as to agree with T. 

Acceptable y+-terms are defined as follows. A y+-path is a function x : y++ $7 
such that for some y-path y, x( CY) = tY, for all (Y < y+. Acceptable y+-terms are 
certain (names for) functions o : y+-paths+ 2<yt+, defined inductively as follows: 

(a) Any constant y+-term a(x) = s,,, so a fixed element of 2<y++ of limit length, 
is acceptable. 
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(b) If ol, a2 are acceptable, Jo11 = lo21 and r is an acceptable K-term for some 
KS y, then o is acceptable where a(x) = al(x) if x is coded by some K+-path X 
such that t E Range(x), y E [t]-, BY(4y + 1) = r(y)(y) for 4y + l< min(lrl, a(t)); 

a(x) = c&) otherwise. 
(c) ol, 0, acceptable-, q * a2 is acceptable. 
(d) o,,~q~...~u,~... acceptable for i < 6 (where 6 s y+)+= lJi ai is 

acceptable. 
If x is a y+-path, then x E [t], t a y+-tree, if x((t) E i? for unboundedly many 

D < y+. In this case we say that x goes right at #I on t (p < y’) if y E [x(a(t$ + 
2))]+ a($) + 1 E BY, where G E Range(x) fl &. Below we shall define canonical 
y+-trees t’, for an initial segment of cx < y++, for any y+-path x. We then define 
B” by; (Y E B” iff x goes right at /3 + 1 on r’, for sufficiently large 6 < y++. 

And we shall need the tree form of Cl,+. We fix a canonical system (CY, 1 a 

limit, y+ S (Y < (~++)~[~l, y c a) with the properties that CY, is closed and 
uniformly definable in L,[y] whenever L,[y] k card(&) 6 y+ and p E CY,+ 
C$“@ = CY, n/3, ordertype (CL) G y+ and lJ CY, = (Y unless L[y] k cof(a) = o. 

We now give the construction of R “. We will only define l?Y, for (Y < y++ as 
then RL is obtained by taking the (+,+)-closure of &U R:,. 

Case 1: LY = 0. R,Y = {te} where t0 is the y+-tree defined by t0 = ((fi, gi) ) i < 
y’), fo(tJ) = g,(tJ) = 0 (tg = weakest element of g”), J(t)(x) = (0) and g(t)(x) = 

(1) for all t E & and y-paths x. 

Case 2: LY = p + 1. Let t E I?& We describe the extensions of t in & First we 
define two special extensions t& t: s t, for each k < yf : tf is characterized by the 
properties that tf so.k t and x E [$1--,x goes (right if i = 1, left if i =0) on t at 
p + 1, for all /3 2 w - k. NOW fix a listing ( (ki, Zi) 1 i < y’) of all pairs (k, z) such 
that k < y+ and r is an acceptable y-term of length ItI < k. Now inductively 
define to, t’, . . . as follows: t2’ is chosen SO that t2’ ck, t(zi, 0, t$, tt) and tz shares 
no path with t”, i’<2i; t2’+’ is chosen so that t2’+’ dk, t(zi, 0, t:‘, t$) and t2’+’ 

shares no path with t”, i’ s 2i. Then add all resulting t’ to l?Tu,, for each t E l?;. 

Case 3: (Y limit, a not divisible by y+ - co. Write a=@+6 where 0<6Sy’ 
and y+ divides p. Choose t E I?$ for some BE [p, a) as well as an acceptable 
y+-term ?J, an ordinal &G fi (& limit or 0) and an ordinal & < y+. We now 
describe a canonical extension t^<i t in WY, which ‘obeys 8, &‘. 

Let to = t and if ti is defined in R$+i, then define &+I E Z?a+i+l to be L[t]-least so 
that ti+l SR+~ ti and X, y E [ti+l] +BX,BY agree on [b,fl+i]-{4j+lljEORD} 
and B”(h + 4j + 1) = a(x)(j) for 4j + 1 < min(lb(, fi + i + 1 - &). Define tA = 

glb(t,Ii<A)forlimitil<a-_. Andf=t,_j. 
Include all P as above in RL. 

Case 4: (Y divisible by y+ . o. In this case we add conditions both for 
extendibility and for two types of fusion. 
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First consider extendibility. We define what it means for b c_ t_x to be special at 

a. For any /I c (Y, p divisible by y+ . odefinebz={6</3]4.(S,6’)+3ebfor 

unboundedly many such ordinals </I}, where (e, .) is a fixed paring on ORD 

such that 6 < y++ (6, S’) < 6’ + y+. For b to be special at a we insist that 

0 $ bi, /3 has cardinality y+ in L[bE] and b; = bz n /3, for all /I 6 a which are 

divisible by y+ . w. 

Now pick t E I?;, fi < (Y as well as an acceptable y+-term 6, an ordinal & 6 fi 

(& limit or 0), an ordinal f < y+ and 6 E a! which is special at (Y. We define a 

canonical extension a 6~ t in l?Y, which ‘obeys 6, & and 6’. 

If Cc is unbounded in LY, then let a; < (r; < * * . enumerate it (where 6* = 62). 

Otherwise a{, < (Y; < . * - is the increasing enumeration of Cc followed by the 

L[6*]-least o-sequence cofinal in (Y such that lJ Cc < PO. And a0 < a, < * . . is 

the final segment of cub < cul< * * - defined by cr, = least (Y: greater than ?. 

Now define to = t and if t, is defined, then let ti+l SL+~ ti be L[6*]-least in I?:,+, 

such that x E [ti+J + B”, 6 agree on [fi, ai+,) - (4i + 1 1 j E ORD} and B”(& + 

4i + 1) = S(X)(~) for 4i + 1 < min(l81, a;+1 - &). Set th = glb( ti 1 i < A) for limit A. 

and ? = t5 where A0 = ordertype( a0 < my1 < * * a). 

Include all i as above in l?Z;. 

We now turn to type A fusions. We put those t into RY, which can be written 

t=glb(t,Ii<)L)whereto~,t,~2t2~3t3~4... has the property that each x E [t] 

codes ( ti 1 i < A). The latter is defined as follows. Let 11 be least so that (Y is not 

regular in L,+,[x]. W e require that rl exists and that x codes a predicate 

G” G ,!,,+[x], K+ = (K+)Lq’R’, via the index i. for decoding G from xc = G(y) for 

v-generic G, using the parameter (CARD tl K+)~v’~’ where L,[x] b (Y = yc+ 

and K = largest limit cardinal. Let A be decoded in L,[x] from x as A is decoded 

from xo = G(y) for p-generic G and let @ denote the L,[x] version of PP’, 

with A playing the role of A. We require that L, +i[x] b G” 1 K, ( q, k, 6 ) give 

rise to the canonical h-sequence of PA-quasiconditions PO 2 PI 2 * . . for some k, 

6, limit h and (Y = l_J { lpi(y)1 I i < A}. If in addition 0 E (B” rl (u):, then we say 

that x codes the type A fusion (p;(y) 1 i < A). 
Finally we consider type B fusions. As in the type A case we put those t into 211 

which can be written t = glb( tj ) i < A) where to aI t, a2 t2 s3 * - * has the property 

that each x E [t] codes ( tj I i < A). The latter is defined as follows. Let 17 be least 

so that a is not regular in L,+,[x]. We require that rl is defined and L,[x] k y++ is 

the largest cardinal. Now let S” = ($1 /3 < a) and we then require that 

L,[x] k for some PO, S” is a path through the ytC-tree T = Tgcl and x is 

RT-generic over L[A fl a, T]. 

We also require that (Y is &(Lq[A rl a, T])-projectible for some least k and 

k 2 2. Now let d = &,-Master Code structure for L, [A fl a, T] and we require 

that C has ordertype c yf where C consists of all N’ < (Y such that a’ I$ H,. = Z,- 

Skolem hull of (Y’ U {p} in ,rQ, p = standard parameter for &. Let &’ = ,Yi-Master 

Code structure for d and h : LY+ y+ a canonical Z’,(&‘)-injection. 

For x to code the type B fusion to + t, ~1,~ t2 Zi.3. . . we require that 

0 E (B” n (u): and /z-i@ is a Z,(&‘)-index for to, tl, . . . , where l is defined as 
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follows; List C = {a0 < LYE < . . -} and let ik = least i < y+ such that 4( ak + i) + 
3 E B”. We require that ik is defined and equal to i for sufficiently large 
k < ordertype( 

This completes the construction of R y = IJ {RY, 1 (Y < y”}. For t E R y we set 
aft) = least (Y such that t E RL - RY,,, where R& = LJ {R’, 1 p < a}. 

If t’ G t belong to Ry, then t’ G t is a type 1 extension if for some a > a(t’) 

there exists 6 E (Y which is special at LY, 0 4 bz such that x E [t’]+ B”, b agree on 
[a(t), a(t’)) - (4j + 1 1 j E ORD}. The equivalence relation -Y+ on elements of 
8” is defined inductively by: tl - t2 if a(t,) = a(&) and either t1 = t2 or there are 
type 1 extensions tl s fl, t2 S Z2 where 5, - I, and for some acceptable y+-term a, 

x E [t117 Y E [tzl + B”, BY agree on [a(&), a(tJ) - (4j + 1 1 j E ORD}, B”(4j + 
1) = o(x)(j) and BY(4j + 1) = a(y)(j) for all 4j + 1 E [a(ii), cu(t,)). 

This completes our present discussion of R “, y G w. 

Definition of 97, y an uncountable limit cardinal 

A quasicondition is a sequence p = (p(Y) 1 7 E CARD n y) where p(Y) = 
(p?, p,) E RPi+ for y not a limit cardinal and p(y) = (p?, pv, F,) where (p,, pv) E 
RPY+ and (p 1 7, ~7~) E RPi for 7 a limit cardinal (we have w = O+ is a successor 
cardinal for these purposes). In the latter case we write (p,, pv, F,) < (qt, qp, 4,) 
if (p,, qu) s (qu, qu) and h,z qV Then p s q if p(T) s q(y) for all 7. And x is a 
path through p, x E [p], if x = (x(y) 1 7 E CARD tl y) where x(y) E [(pi., p,)] for 
all y E CARD fl y, x 1 y E [(p 1 7, p?)] for limit y E CARD fl y and in addition 
x(?+)(m) = 6,) for a < y++ and all y E CARD fl y, x( y)( (u) = t”, r u for a < 7’ 
and all limit p E CARD fl y. A y-path is a path through pO, the weakest 

quasicondition. 
Acceptable y-terms are certain (names for) functions u: y-paths-, 2iyf and are 

defined inductively as follows: 
(a) Any constant term o(x) = s,,, s0 a fixed element of 2<y+, is acceptable. 

(b) If ol, a, are acceptable, Iull = 1u21 and t is an acceptable y-term for some 
y E CARD n y, then u is acceptable where u is defined by: u(x) = u,(x) if 
t E Range(x(y)), y E [t]+ BY(4j + 1) = r(y)(j) for 4j + 1 < min(lrl, a(t)); u(x) = 

uz(x) otherwise. 
(c) ul, u2 acceptable-, u1 * a, is acceptable. 
(d) a, E u, 5 u. . . E ui G . . . acceptable for i < y’ (where y’ < y)+ 

U {ui ) i < y} is acceptable. 
To each condition p E 5Yy will be assigned a pair (A(p), D(p)) such that 

D(P) c J&Q and LAW [D(p)] F y is the largest cardinal. The condition p will then 
be UNP)) where &B(P) = (~+$‘(P)I, D(P)). Moreover _Zi- 
projectum(&(p)) = y and Z,-cofinality(sP(p)) G y. Each x E [p] will canonically 
give rise to a sequence of conditions (p”, I (Y s m(p)) where p&) = p. We define 
B” as follows: For each condition q, n s w, and p E CARD fl y let X:(y) = &- 
Skolem hull of y U {y} in d(q) and let 6:(y) =X:(y) n.7’. Then a E B” iff 
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4&$(7+) + 3 E B I(?) for sufficiently large y < y (if y is &(&(p”,))-singular for 

some n) and (Y E B” iff 46zs(y+) + 3 E B x(F) for sufficiently large y < y, for 

sufficiently large 12 (if y is &(&(p”,))-regular for all n). 

Write p Suq for yeCARDny ifp=Sq andp(T)=q(T) for 7~7. We shall 

define Yy = U (92 ( (Y < y’} in y+ stages where 9: = (+),-closure( .@“, U ?E,) 
and where (+)y is the closure operation: Given p, q and y E CARD rl y form r by 

r(p) = p(T) for 7 > y and r(T) = q(F) for 7 < y (provided r is a quasicondition). 

Thus it will only be necessary to define @“, for a! < y+. 

As before conditions will be added both for extendibility and fusion. In the 

former case we will make use of the tree forms of Cl and 0. Thus as in Chapter 6 

of Beller-Jensen-Welch [l] we have a system (CY, ) y s LY < (y+f”“, y . o 

divides (Y, y E a and L,[y] k y is the largest cardinal) where CL is a closed subset 

of o of ordertype c y, /3 E CL+ CsnB is defined and equal to CL n/3, CL is 

uniformly .Zn+,(L,[y]) h w ere (Y, n) is least so that & is &(L,,[y])-projectible, CL 

bounded in (Y+ &+i (L,[y])-cofinality(cu) = w and if 

then Ci is defined (where y above is replaced by y = largest L&]-cardinal) and 

equal to C. We can also define CY, (for the same pairs ( LY, y)) to have the same 

properties with the exception that p E CL+ CyS”” = CY, tip only for /3 a limit of 

elements of CY,, but now CY, is also unbounded in (Y (and CY, = CL when the latter 

is unbounded in LY). It will be convenient to also define CY, = the interval 

(y . /3, a) when (Y = y . p + 6, 0 < 6 s y for all y E (Y, L,[y] k y is the largest 

cardinal. 

Let E = {(a, y) ) C?L is defined and bounded in (Y}. Then E is stationary in the 

sense that if CY, is defined, Y((u, y) = least Y such that (Y is &(,,,,(L,,[y])- 

projectible for some least n(a, y) < o and Y((Y, y) > (Y, then whenever C E 

L V(cTY,[Yl is c ose ’ d b un ounded in LY there exists /3 E C such that (/3, y n p) belongs 

to E. Using this we can define a O(E) system (D’, 1 (a, y) E E) with the properties 

that Y(LY, y) > a, X E L vca,yJy], X E a* X n p = Di for some (p, y fl p) E E and 
that D’, is uniformly definable as an element of L,,,, ,,,[y]. 

We shall also make an implicit use of ‘singularizing’ sequences, like the C,* of 

Theorem 6.46 of Beller-Jensen-Welch [l]. However we will define these 

explicitly during the construction, rather than specify them in advance. 

Now we turn to the construction of 81;, (Y < y+. 

Case 1: a, = 0. @g = {pe} where p0 is the weakest quasicondition. A(pO) = y 

and D(pO) = 0. 

Case 2: LY = /3 + 1. Let p E @j. We describe the extensions of p in @‘II. We 

assume inductively that for sufficiently large y < y, cu(p?) = Sp(jj’) and for limit 

7, cu((Pi, I 7 < 7)) = NY). 
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Case 24 : y iv 2T2(d(p))- sin u ar. g I Choose canonically a continuous cofinal 
sequence ( yi 1 i < S} of cardinals less than y such that 6 < yO, x E &,[A] where x 
is the least parameter defining p and (yi 1 i < 6) as 2,(&(p)*)-sequences, 
I(p)* = &-Master Code structure for d(p). We assume as well that ( yi 1 i < 2) 
is &(38*(p) r AA.) for limit A G 6. Also let sJ(p, q)n+l denote the &-Master Code 
structure for (d(p)*, q) where q (= ZJA]. 

We will now build an w-sequence of quasiconditions p =pO a pt >p2 3 - - - 
such that pn is &+.,(d(p)). Assuming that p,, has been defined we turn to the 
definition of P,,+~ = glb (P/,,~ ( j < y). Define pE+, =p,,. To define p’nl;i from 
p’,+*, proceed as follows. Set @r?r’” =p$+,. For p C yk let x:52 equal the 
2,-Skolem hull of ,U + 1 in d(p, pi+$+’ 1 yk. Then @i,+:ji+’ is the least 
quasicondition q 6 pi,“:i’ such that (q),,i+ = (Ij$yiii),,,+ (where (r),, = r - r r p) and 
for Iz < ,U E CARD, p Q yl:q,,+(qp) = q’(qJ where q’ is canonical and q(p) 
reduces all predense D c Rqr+ which belong to X$l, fi L,cq,+,[q,,+(q,)]. Also 
require that for limit cardinals p as above, qr(q 1 p) = q’(q r p) where q’ is 
canonical and q 1 p reduces all predense D E 9” which belong to X;:z, rl 
L,cq+,[q,(q r p)]. For limit i G h we let b$!!;i = glb($?+‘i” 1 i’ <i>. Also specify 
that y, (v(A(p), D(p)), n + 1, A. * j + i) gives rise to (p’n”:;i’ 1 i’ <i) for each 
y-path y E &yi’]. Set &,yr =&:‘ii”. 

We define pi++‘r from @‘n’+i as follows. For any quasicondition 1; 9(r) = 
{quasiconditions 4 C r 1 (q)p = (r)? f or some 7 < y}. Choose a canonical listing 
((Q, c&i) 1 j < y) of all pairs (D, a) where D E X,(&p)“) is predense on s)(p,), 
4 = 4 r p for some q E 9D(pn), p E CARD n y. Now suppose qj has domain 
[0, 71 n CARD and Gj(y) E R’y+ where r =p’,‘:l. Also suppose that there exists 
4 <some element of Dj such that q ~~~~~ and 4 1 7’ = ~j. Then let piyI <S’n’+i 
be least so that p’,‘:1 agrees with such a q above 7 and with @$: below yf. 

Otherwise pi?, = Fi?r. For limit j < y we set P;+~ = glb($,‘+r 1 j’ <j) and specify 
that y, (v@(p), D(p)), n + 1, A * j) gives rise to (p’i+, 1 j’ <j) for each y-path 

y E [$n+r]. Then pn+l =K+P 
This completes the definition of the o-sequence of quasiconditions p =po 2 

P1z=“’ and we set @ = glb(p, 1 n E co). Also let p(i), i = 0 or 1, denote the least 
quasicondition <@ such that 4Pm(7’) + 3 Ei BY when jr E [p(i)d, for sufficiently 
large p E CARD n y, where oo= $, ct = E. Then we specify that 

Y, (WP), D(P)), w, 1) gives rise to the (o + o)-sequence consisting ofpo>p, 2 
. . . followed by the constant o-sequence p(i) s@(i) 2 - - - for each y E [j?(i)], 
i=Oor 1. 

To complete the description of @‘, in this subcase we repeat the above 
aonstruction (given p E $5) for each p E CARD fI y to obtain p(i, y), where we 

r'+l,i+l require that all extensions pii, pin are Spp; thus for example in de&ring p’,+r 
from &yi’ we only consider p > 7, in defining p’nl;i from &?!r we only consider & 
with domain [0, 71 for some 7 3 7 and in defining o(i) from /j we only consider 
4sPo(p+) + 3 ~~ B N)r for p > p. Also we choose p. not to be p but some p’ sup 
such that (p’), = (p), form some p C y and p’ is incompatible with p(i, 7) for all 
7 < 7. This is easily arranged through a judicious choice of pi+. 
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To define the extensions of p in @Y, we fix a listing ( (ri, ri) 1 i < y) of all pairs 
(7, r) where y E CARD fl y and r is an acceptable F-term for some 7 < 7. Now 
inductively define q,,, ql, . . . as follows: q2’ is chosen SO that q2’ sV 
p(t, $3, @(O, r), P(1, 7)) and q2’ shares no path with qi’, i’ < 2i; q2’+’ is chosen so 

that q2’+’ svp (z, 0, P(1, y), @(O, 7)) and q2’+’ shares no path with q”, i’ s 2i. To 
complete this definition we must define p * =p(t, 0, @‘, 4’) when p 3 go, d’ are 
quasiconditions and t is an acceptable y-term, y < y: we have p* 1 7 = p r 7 and 
p$ =pF(~, $3, (i$, Qk), p; = @U $b, 6; = @ U g7 (for 7 limit), for 7 E CARD n 

]YJ Y). 
Finally add all the qi to @ z, for each choice of p E !?$ and set n(q’) = A(p) + 1, 

D(q’) = D(P). 

Case 2B: y is &(d(p))- re uar or each neo. For any rzEm let C,={‘y< g 1 f 
y ( y = y fl H(y) where H(y) = &-Skolem hull of r U {y} in d(p)““} where 
d(py+l= &+,-Master Code stucture for d(p). Then C, is closed, unbounded 
in y and we assume inductively that for sufficiently large 7 E Co, ~7~ = 0. 

Pick i = 0 or 1. We build an w-sequence of quasiconditions p =po apl 3. . - 

such that pn is &+,(d(p)), with the property that @(i) = glb(p, 1 n E o), 

x E ~(i)]+B”@) = i. As before let d(p, q)n+l denote the &-Master Code 
structure for (d(p)*, q) h w ere q E &,[A] and d(p)* =&-Master Code struc- 
ture for d(p). Let C,(q) be defined like C,, but using d(p, q)n+l instead of 
d(py+? 

Assuming that pn has been defined we now define P,,+~. First we define a 
sequence (P;+~ 1 j < y ) . Set PE+~ = p,, and to define p’,“:1 from pi+1 proceed as 
follows. Set Pin+:iO = PL+~. For j < ,u < 7 let X”,>2 equal the .Z’,-Skolem hull of 
P + 1 in d(p, P’,+~)~+’ r 7. Then P~~‘iyy+ . 1s the least quasicondition q G&I1i’ 
such that (q)?+ = @‘n’:iy)p+ and for p < 7, qr+(qr) = q’(qr) where q’ is canonical 
and q(p) reduces all predense D E R”+ which belong to Xi>% fl L,(qr+j[qr+(qp)]. 
Also require that for limit cardinals p, P G 7, P $ Ci’(pi+,) (= the set defined 

like C,(p’,+J but using d(p, ~in+~)~+’ 1 y+): qr(q r p) = q’(q 1 p) where q’ is 
canonical and q 1 p reduces all predense D s LZ@p which belong to X:2% n 
L,(,,[q,(q r p)]. For limit 7 C y we let P’n”:;‘= glb(P’,+:;’ 1 7 E CARD tl 7) and 
specify that y, (v(A(p), D(p)), n + 1, y *j + 7) gives rise to (P’n”+‘i’ 1 7 E 

CARD tl F> for each y-path y E &:‘i’]. Set P’n’:l = P$$‘. 
Define p’,‘r:1 from P$ll as follows. For any quasicondition r, 9(r) = 

{quasiconditions q s r ( (q)? = (r)? f or some 7 < y]. Choose a canonical listing 
( (Dj, qj) ) j < y) of all pairs (D, 4) where D E Zl(d(p)“) is predense on P(p,J, 
tj = q 17 for some q E 9(pn), 7 E CARD rl y. Suppose 4j has domain [0, 71 n 
CARD and qj(y) E R++ where r =piyl. Also suppose that there exists q E some 
element of Dj such that q s@$ll and q 1 y+ = qj. Then let (4, C) be least so that 
4 ~P’n”+i, 4 agrees with such a q above 7, 4 agrees with P’n”:l below y’ and C is 
closed unbounded in y, e! E C+ @a = 0. Otherwise let 4 = P’n’;i. We define 

j+l _ 1 
Pn+1- 4. 

For limit jG y we set p’,+l = glb(pin’+l 1 j’<j) and specify that 
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y, (v(jl(p), D(p)), n + 1, y .j) gives rise to (p’,‘+i ( j’<j) for each y-path 

Y e bin+J. Set A+1 =S+V 
Now we describe how to obtain P~+~. First define a sequence (pi+i ) y E y tl 

CARD) starting with p”,,, =~5,,+~ just like we defined (j?‘n”:;’ 1 y E y tl CARD) 
starting with @‘n”:;“=pi+l but using d(p)“+’ in place of &(p, pi+J+’ and 
specifying that y, ((A(p), D(p)), II + 1, y2 + v) gives rise to (pi,, 1 7 < 7) for 
each y-path y E F,Y+J when y < y is an uncountable limit cardinal. Put 

Pz; =,g;;;~+$VIC~; Y! =“I;” fffiaw~+;;;’ ;g+1&yy; ayd ';;f 

suffi%ntly large y E CARD A+$ 48$+3(y+) + 3 Ei By when jj E [p,,+i,] (where 
eO= 4, e1 = E). We specify that y, (~(h(p), D(p)), n + 2,0) gives rise to the 
(y + o)-sequence consisting of (pi+1 1 y E y n CARD) followed by the constant 
w-sequence P”+~ a~,,+~ 2. . . for each y E [p,+J. 

This completes the definition of the sequence (pn ) n E co). Now let p(i) = 

glb(p, 1 n E co) and specify that y, (y(A(p), D(p), o, 0) gives rise to (pn ( II E co) 

for each y E [p(i)]. Repeat this construction for each y E CARD r! y to obtain 
p(i, 7) sVp and arrange that jj # y -‘+p(i, 7) and p(i, 7’) have no common path. 
Finally proceed as in Case 2A to define ( qi I i < y) using ~(0, y), ~(1, 7) in place 

of B(O, Y), B(l7 7) and add all qi to 9 II, for each choice of p E $5, and define 
n(qi) = A(p) + 1, D(q’) = D(p). 

Case 2C: y is 2,(&(p))-regular but Zn(&(p))-singular for some n. Let m be 
largest so that y is Z,+i (d(p))-regular. Then given i E (0, l} and p E @i build 
pozpl 3 ’ . . 2 pm as in Case 2B. The only difference may be that when building 

pm the closed unbounded set C,,_, may have ordertype < y, which however 
causes no difficulty in the construction. Now build pm 2pm+I 2 . . * a@(i) as in 
Case 2A, observing that y is Zm+2 (d(p))-singular. If we repeat this for each 
p E y II CARD to obtain @(i, 7) SVp, we can then define as before all the 
extensions of p in @Y, in this case. 

Case 3: (Y a limit ordinal not divisible by y - w. Write (Y = p + 6 where 
0 < 6 6 y and y divides /3. Choose p E P?‘$ for some fi E [/3, a) as well as an 
acceptable y-term a, a set 6 c cr, an ordinal & s fi (& limit or 0) and 
f E CARD tl y. We describe a canonical extension fi <?p in @“,. 

Let p. =p and if pi has been defined, then let pi+I ~~~~~~ (6 = card(i)) be 
L[A n y, p,]-least in @$+i+l such that x E [pi+r]+ B”, 6 agree at fi + i (if fi + i is 
not of the form & + 4j + 1) and B”(& + 4j + 1) = S(x)(j) (if fi + i = & + 4j + 1). 
Define pn = glb(p, I i < A) if A is a limit ordinal in which case we specify that 
y, (v(A(p), B(p)) + A, 0, 0) gives rise to (pi I i < A) for y E [pJ. Define p = pa_6 

and let A($) = A(p) + (a-&, B@) = B(p)*D and O@) =D(p)*D where 

D E [J.(p), A@)) codes 6, 6. Include all resulting p in 8:. 

Case 4: o divisible by y . w. We add conditions both for extendibility and for 
fusion. 
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First consider extendibility. We define what it means for b 5 (Y to be special at 
cr. For /Isa,/3 divisible by yew define bE={6</314*(6,6’)+3~b for 
unboundedly many such ordinals c/3}. For b to be special at a we require that 
0 $ b& p has cardinality y in L[bE], (b& codes an acceptable y-term b(b;S) and 
b; = bz n /3, for all p s a, which are divisible by Y . o. 

Now pick p E i!$, fi < a as well as an acceptable Y-term 6, an ordinal & S b (& 
limit or 0), B E CARD rl y and 6 c & which is special at (Y where b = 6(bz). We 

define an extension @ cpp in @“,. 
Let &<a;<.** be the increasing enumeration of Cc (where 6* = 6:) and 

define c~~<n,<.*. to be its final segment determined by cyO = least & greater 

than 8. 
Now define p. = p and if pi is defined, then let pi+l sq+api (6 = card(i)) be 

L[G]-least in @Lz+, such that x E [pi+J+ B”, 6 agree on [fi, a;+l) - {4i + 1 Ii e 
ORD} and B”(& + 4j + 1) = b(x)(j) for 4j + 1 < min(]&], cUi+l - kc). Set pA = 
glb(p, ( i < A) for limit I and specify that y, ( Y(A(P~), B(P~)), 0, 0) gives rise to 
(pi ( i < A) for each y E [p*]. Define @ = pAo where & = ordertype and define 
A(‘@) = A(p) + (a - &, B(j) = lJ {B(pi) 1 i < no} and D(@) = D(p) * D where 
D E [A(p), n(j)) codes 6, Cc. 

If (a, B@)) $ E, then add p to @‘II. Otherwise see if Dz@’ is a dense subset of 

s(J% HP)) = (4 CP I B(q), WI a ree g on [A@), n(q)), a(q) < a} for some 
p 28. If not, then add @ to @ ‘,. If so, then add p to $1: provided p 2 q 2~5 for 
some q which reduces DE@); i.e., q >r E SP@, B@))+ 3’ <r (r’ E Dt@) and 
(r)? = (r’)? for some Y E y tl CARD). 

Now we turn to type A fusions. We put those p into 921 which can be written 
p=glb(piIi<A) wherep,sp,s*.. has the property that each x E [p] codes 

(p&4). Th e a 1 tt er is defined as follows. Let n be least so that (Y is not regular 

in &+&I. W e re q uire that n exists and that x codes a predicate G” E L,+[x], 
K+ = (K+)wl via the index i0 for decoding G from xc = G 1 y for @-generic G, 
using the parameter (CARD n K+)~v’~’ where L,[x] k (Y = y+ and K = the largest 
limit cardinal. Let A be decoded in L,[x] from x as A is decoded from xc = G 1 y 
for P-generic G and let @ denote the L,[x]-version of P, with A playing the 
role of A. We require that L,+l[x] k G” 1 K, (q, 7, 6) give rise to the canonical 
k-sequence of @-quasiconditions &, 3 pi 2 * . . for some 7, 6, limit A. and 

cu=U{&% 1 Y) I i < A}. If in addition 0 E (B* fl a):, then we say that x codes 
the type A fusion (Di 1 y ) i < A). Also let 8 = a@) be defined for p = 

glb(Pi 1 i<A) ( as in Cases 2, 3 or Extendibility, Type B Fusion parts of Case 4) 
and forp=glb(pi lYli<n) we define D(p) to be a subset of (Y= h(p) that 
codes (3, I it < a} where 3, = transitive collapse (.X1-Skolem hull of E U {K} in 
.&. (We require that Z,-projectum(d) = K.) We also let B(p) equal D(p). 

Finally we consider type B fusions. We put those p into @‘2; which can be 
written p = glb(p, 1 i < A) where po2pl 3 * . . is coded by each x E [p]. To define 
this notion of coding let n be least so that a, is not regular in L,+l[x]. We require 
that n is defined and L,[x] k a = y+ is the largest cardinal. Now let S” = (p$ ) j3 < 
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a) and then we require that L,[x] b S” is a path through the y+-tree t = tro where 

x is P-generic over L[A f~ a, t]. 

We also require that (Y is Xt(L,[A fl a, t])-projectible for some least k and 
k 3 2. Now let .& = &,-Master Code structure for L,[A n a, t] and we require 
that C has ordertype sy where C consists of all a’ < LY such that a’ r$ H,. = Z:,- 
Skolem hull of (Y’ U {q} in &, q = standard parameter for &. Let &’ = El-Master 
Code structure for & and h : o+ y a canonical Z,(&‘)-injection. 

For x to code the type B fusion p0 2p1 > * . . we require that 0 E (B” II (u):, 
p = glb(p, 1 i < ordertype( reduces all predense D c R:,, D E s$ and h-‘(l) is 
a &(&‘) index for pO?=pI 2 * * . where i^ is defined as follows: List C = {a0 < 
(Ye < . - -} and 1 e t ik = least i < y such that 4(cuk + i) + 3 E B”. We require that i, 

is defined and equal to 2 for sufficiently large k < ordertype( 
Finally define d(p) = ~4’ for p as above (thus D(p) is a Z,-Master Code for 

~4) and set B(p) = D(p). 

This completes the construction of Py = U (9’; ( (Y < y’}. For p E PPy we set 
&(p)=leastcrsuchthatpEP’Y,-9?& wherePP$,=U{P~I/3<~}. 

If p’ <p belong to 58’ y, then p’ up is a type 1 extension if for some (Y Z= a(~‘) 

there exists b G a which is special at a, 0 $ bz such that x E [p’] + BX, b agree on 
[a(p), a(~‘)) - (4j + 1 1 j E ORD}. The equivalence relation -,, on elements of gy 
is defined inductively by: p1 -y p2 if a(pI) = a(p2) and either p1 =p2 or there are 
type 1 extensions p1 sp,, p2<D2 where pi -yp2 and for some y-term u, 

(x~[pi],y E [p21)-+Bx, BY agree on [~PI), a(~,))- {4j+ I (~EORDI, 
B”(4j + 1) = a(x)(j) and By(4j + 1) = a(y)(j) for all 4j + 1 E [a($,), a(~,)). 

This completes our definition of P = U {9Py ( y an uncountable limit cardinal} 
(where p < q if p r Dam(q) G q). We now prove a series of lemmas which show 
that a p-generic real minimally codes A. These lemmas concern fusion, chain 
conditions, extendibility and are established by a simultaneous induction. 

We first consider distributivity and fusion for the forcings RT, T E RY’. If t, t’ 

are y+-trees for y > 0, then we write f c,,~, t’ (1, 1’ < y’) provided t =s, t’ (i.e., 
i?f = I?:‘) and u E I?::+ u E Rf, unless u E t’(u,) for some i, y . i 2 1’. Here we are 
using a fixed canonical enumeration of Py of length y+. If t = (to, f,), t’ = 

(t& Sl) E R T (T E RY 
+ 
), then t + t’, t SI t’ iff to Cr.,. t& to sr t& And D c RT (for 

T E RY’) is 1, l’-dense below t E RT if t’ C, t-+ 3” sI,,’ t’ (t” E D). 

Lemma 4.1 (Fusion for RT, T E Ry’). Suppose t E RT, T E RYt, 1 -C y+ and D,,tP is 

open and 1, I’-dense below t for all I’ < y+. Also suppose that (D,.,. ) 1’ < y’) E 

L[T, A fl y++]. Then there exists t’ <t t such that t’ E D,,,, for all 1’ < y+. 

Proof. We use the type B fusions of Case 4 of the construction of R y. Suppose 
the lemma fails and choose 4 < y+++ (in the sense of L[T, A n y”]) to be least 
so that there is a counterexample t, (D,,,, I 1’ < y’) definable over L4[T, A n 
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y++]. Choose k 3 2 so that this counterexample is &_,(.&,[T, A n y”]) with 

parameter y++ and let B = &,-Master Code structure for Lfi[T, A fl y++]. We 

also assume that cr(T) is minimized among T E RY’ for which the lemma fails. 

Note that pf = y++ and let p be the standard parameter for .& Let 

c= {Lye, a,, . . .} consist of the first y+ ordinals a’ such that y+ < (Y’ $ H,, = Zi- 

Skolem hull of (Y’ U {y++} U {p} in 2. Now let (Y = U C, & = transitive collapse 

of H, and &’ = Z,-Master Code structure for &, h : a+ y+ a canonical 

X,(&‘)-injection. 

Now we are precisely in the type B situation of Case 4 of the construction of 

R y’. Pick any j < y+. We attempt to build the sequence to a,,(, cl a!,, t2 >r,z . . . as 

follows. Let to = t. If tj has been chosen, then let t,+i +i ti be least so that 

t,+i E Dl,; and Tj =j where ji is least so that 4(a; +;i) + 3 E BX for all x E [ti+J. 

Also insist that Cui + 4((0, yi)) + 3 E B” for all x E [ti+i] (to guarantee that 

0 E (B” fl a):). As (D1.i ] i < y’) is &_,(L+JT, A fI y”]) it follows that t,+r E 

R&t,. For limit h. let t~=glb(tiIi<A). 

We claim that E< yf can be chosen so that (tj ] i < y’) is well-defined and 

glb(t, ) i < y’) = t’ is a well-defined condition in RT. To see this let h’ : a+ (Y be 

,Y,(d’) and so that h’(j) is a Z,( &‘)-index for the above sequence ( tj ] i < y’) 

where we have chosen j = h(j). By the Recursion Theorem we can choose 

i = h(j) so that j and h’(j) define the same sequence ( ti ( i < y’). But then Case 4 

of the construction of RY+ shows that (ti ) i < y’), t’ are well-defined, provided 

we can verify: x E [t,J, A limit- (Y h is regular in L,,[x] where Q = ORD n 
(transitive collapse of H,,). 

To arrange this last property, by the leastness of ij it suffices to arrange that 

_KE[~,J+x is RTtaA -generic over L,,[T r cu,, A n a*]. But this can be arranged 

just as in the proof of Lemma 3.9. 

Now the condition t’ l n {DI,i ) i < y’} provides a counterexample to the 

choice oft, (D,.; ] i < y’). q 

Corollary 4.1A (cy-Distributivity for RT, T E RY’). Suppose t E RT, T E Ry’ and 
Di is open, dense below t for each i < y. Also suppose that (Di I i < y) E L[T, A n 
y++]. Then there exists t’ ~tsuchthatt’EDiforalli<y. 

Corollary 4.1B (Density Reduction for RT, T E Ry+). Suppose t E RT, T E Ry’ 

and Di is open, dense below t for each i < yf, (D; 1 i < y’) E L[ T, A fl y++]. Then 
there exists t’ c t which reduces each Di (i.e., for y . i< j < y+, t’(uj) = t”(u,) for 
some t” E D,, where (u, 1 j < y’) enumerates gy). In particular, if D,* is open 
dense on {(t, u) ( t E RT, u E R’} and (DT I i < y’) E L[T, A n y”], then there 
exists t’ G t such that {u E R” I (t’, u) E D;} is dense on R” for all i < y+. 

An entirely similar argument establishes the following. 
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Lemma 4.2 (Fusion for RT, T E R y, y > o a limit cardinal). Suppose p E RT, 
T E R y, y an uncountable limit cardinal and for y0 G i < y, Di E R T is open and 

card(i)-dense below p (i.e., q cYp + 3r~,q (I E Di) where 7 = card(i)). Also 

suppose that ( Di 1 y. c i < y) E L[T, A n y+]. Then there exists p’ svOp such that 

p’ E Di for all i E [yo, y). 

Proof. Use the type B fusion part of Case 4 of the construction of Py, y an 
uncountable limit cardinal. We need the form of density reduction stated in 
Corollary 4.2B below to guarantee that x E [tJ--,x is RT ’ “*-generic and hence q 
is regular in L,,[x]. q 

Corollary 4.2A (Distributivity for RT, T E RY, y an uncountable limit 
cardinal). Suppose p E R ‘, T E R y, y an uncountable limit cardinal and Di E RT is 

open and y-dense below p for i < 7. Also suppose that (Di ) i < 7) E L[T, A f~ y+]. 
Then there exists q <p such that q E n { Di ( i < 7). 

Corollary 4.2B (Density Reduction for RT, T E R “, y an uncountable limit 
cardinal). Suppose p E R ‘, T E R y, y an uncountable limit cardinal and Di E R T is 
open and dense below p for each i < y. Also suppose that ( Di ) i < y) E L[ T, A n 
y+]. Then there exists q up which reduces each Di (i.e., for each i < y there exists 
y E CARD n y such that r c q * 3 s r ((r’ r 7) U (q)? E Di). 

The proof of Lemma 4.1 implicity used the following. 

Lemma 4.3 (Extendibility for R T, T E Ry’). Suppose t E RT, T E Ry+, I< yc and 
i < j < y++. Then there exists t’ G, t, t’ E R,r. 

The proof of Lemma 4.3 depends on the next lemma. 

Lemma 4.4 (Extendibility for l? ‘). Suppose t E R ‘, k < y+, 6 is an acceptable 
y+-term and & < a(t) is 0 or a limit ordinal. Also suppose that x E [t]+ B”( & + 
4j + 1) = a(x)(j) for 4j + l< min((a(, a(t) - ~2). Then if CY > a(t), (Y < y++ there 

exists t’ sk t, t’ E l?Y, such that t’ G t is a type 1 extension and x E [t’]+ B”(& + 
4j + 1) = o(x)(j) for 4j + 1 < min((al, cu(t’) - &). 

Proof. First we note that if (Y is divisible by y+ - w, then there exists a special 
b s cr such that (bz), codes the term u. To see this we need only choose X E a 
such that 0 4 X, L](X), n y+] k card(&) = y+ and (X), rl /3 codes u r/3 for /I < cr 
divisible by y+ . o;thendefinebsothat4.(6,6’)+3Ebiff 6EX. Weseethat 
/3 < (.y, p divisible by y+ . IN + bi = X fl 6 and hence b is special at (Y. 

The lemma is established by induction on a. We show that if (Y is divisible by 

Yf. w, then for any b G a which is special at & such that o = ?r(bE) there exists t’ 
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as in the lemma where in addition x E [t’]-, B”, b agree on [a(t), a) - (4j + 
1 ) j E ORD}. If a is not divisible by yc * w, we show the same for any b E (Y. 

If (Y = 0, there is nothing to show. 
Suppose cy = p + 1. By induction first extend t to t”, cu(t”) = /3 obeying the 

above for b fl p. The extension of t” to the desired t’ E l?1; is clear if /3 is not of the 
form Cu + 4j + 1 by Case 2 of the construction of R Y If /3 = & + 4j + 1, then we 
induct on the formation of the term a, the important case being (b) in the 
definition of yC-term. But then the construction of the t’ in Case 2 shows that the 
desired extension exists. 

Suppose (Y is a limit ordinal not divisible by y+ . w so we can write cy = fl + 6, 
0 < 6 c y+ and y+ divides p. By induction we can extend to t” E l?if obeying the 
above, where p’ = max(/3, a(t)). But then make successive extensions t” ak 

t” z t” > 
l’k 2-k” . as in Case 3 of the construction of RY where a$t:I) = p’ -t i. Finally 

t’ = tL+. is as desired, as the sequence (t,!’ ) 0 G i c (Y - p’) is clearly well-defined 

at limit stages. 
Finally suppose (Y is divisible by y+ * o. Consider C”,. If it is bounded in LY, 

then let C consist of C”, U {PO, PI, . . . } as in Case 4 of the construction of RY; if 
it is unbounded in (Y, then let C = Cz. We also let a0 < my1 <. - . enumerate the 
final segment of C determined by cro = least element of C greater than a(t). Now 

definet=tO~kt,~k.*. as in Case 4 where f = k, 6 = b, 6 = CJ. The desired t’ is 
T as defined there. The only thing to check is that (t, 1 i < ho) is well-defined at 
limit stages, A0 = ordertype({ CX~, al, . . .}). But this is clear as 0 a limit point of 
c+y+* w divides /3, bz = bz n/3 and hence ($3 = C fl p. Cl 

Proof of Lemma 4.3. We first consider the case t = (to, i,) where f, = 0. Thus we 
want to show that t E A,?+ 3 Sr t (t’ E I?,?. It suffices to consider t E I?,‘. By 
Lemma 4.4 we can assume that j is a limit ordinal. Choose i = j. < ji < . - . cofinal 
in j of ordertype A 6 y+. We inductively build a sequence t = tO, t,, . . . of length 3c 
so that tk G, t for each k < A, tk E /?,T and k,< kl-, B”“, B”’ agree on 

[a(t), dtk,,)) - t4i + 1 ( i E ORD) for x0 E [tkd x1 E [tk,]. 

Define tk+l from tk So that tk+l ., k < t and tk+, E I?,:+, by induction. Also we 
assume indictively that x E [tk]’ B”, bk agree on [aft), a(&)) - (4j + 1 1 j E 

ORD} where bk 5 a(&) iS SpeCki at a(&), (b,$ = {(Y(tk’)l 1 k’ <k} and in 
choosing t, + , we can then also require the existence of a similar b,,, such that 
(b;,,), = { a(tk#) ( k’ s k}, b; = b ;+1 17 a(&) and in addition 6 < a(&), 6 $ b:+ 

4. ((4 6’)) + 3 $ b:+, for all 6’ E [a(&), (Y(tk+l)). 

Now for limit k S 1 note that bk = IJ {bkr ) k’ < k} is special at U { a(&,) 1 k’ < 

k} = cu,. so by Lemma 4.4 We CaIl choose tk =$ t such that a(&) = a,‘ and 
x E [&I’ B”, bk agree on [a(t), &) - (4j + 1 ) j E ORD). We claim that tk E R%. 
Indeed if for k’ < k we choose t;. 3 tk’, cu(tk,) = a(t,,), then we see that t;, -,,+ tkr 

and thus fi,,(t;,) =fjk,(tk,), gj,,(t;*) = gjkc.(tk’) and SO t;, E Z?,:. for k’ C k. Thus th is 

the desired extension of t in &‘. 
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Finally note that we can choose the above extensions so that bk n Even 
Ordinals = 0 and therefore the case t, # 0 also follows. q 

We now attack the proof of extendibility for $P’. 

Lemma 4.5 (Extendibility for @‘, y a limit cardinal). Suppose y is a limit 

cardinal, p E @)y and u(p) < (Y < y+. Then there exists q <p, cu(q) = (Y. 

Proof. For any p in @” we show by induction on a E (a(p), y’) which are 
divisible by y . w that for any P E CARD II y, any b s (Y which is special at (y and 
any & < a(p), & limit or 0 there exists q svp, a(q) = cy such that x E [q]+ B”, b 
agree on [a(p), (Y) - (4j + 1 1 j E ORD} and B”(& + 4j + 1) = o(x)(j) for 4j + 
1< min(lal, (Y - &) where o = 8(bz). Also, if m E (e(p), a(p) + y. w), we show 
the same without the restrictipns that b is special or u = b(b*). We also verify 
that each such q E @’ reduces all predense D c P(p, b) which belong to 

s&,(q) = (Lv(h(s),B(e))[B(q)], B(q)) when y * o divides (Y, as well as other 
properties assumed inductively during the construction of !Yy. 

If a = 0, there is nothing to show. 
Suppose (Y = p + 1. First we can extend p to 4 E $5 as above by induction. So 

we can assume that a(p) = p. First suppose that y is &(&(p))-singular. We must 
verify that the sequences of quasiconditions built in Case 2A of the construction 
are well-defined. The existence of &zliii+’ follows by induction on y: when 
y = oth cardinal after 0 or the limit cardinal 7 we use Density Reduction for RT 

finitely many times together with the easily verified fact that I E RP+ 3’ E tip, r 
and r’ are compatible. (The latter is needed to justify the condition qr+(qr) = 
q’(qr), q’ canonical.) For limit i we must also show that @i>‘ii = glb(@‘,+:i” 1 i’ < 

i) is a well-defined quasicondition. This follows from the fact that type A fusions 
were added (in Case 4 of the construction of R”, RY, CF’) and the fact that we 
specify that y, (v(h(p), B(p)), n + 1, A . j + 1) gives rise to (/?i>‘i” 1 i’ <i) for 
y E wi:‘ii]. The important thing to check however is that aQYP) is regular in &[x] 
where 2 = the transitive collapse of Xi:,:, Q =@‘n”+‘ii and x E @VI (also we need 
that o@ r p) is regular in a[x] where d = transitive collapse of Xi:‘, /3 =@in+:i 
and x E v 1 p], for limit cardinals ,u < yJ. But we have (see Lemma 4.8 below) 
that p reduces all predense D G CPQ, B(p)) (if p is of type 1) or all predense 
D G @ (if p arises from a type A fusion) or all predense D G R’ r a(p) = 

(4 E ~L(P, I 4 E R’} (if p arises from a type B fusion), for any D E do(p), 
d,(p), &(p) respectively. Thus we see that x as above is generic for (the image 
in the transitive collapse (X;ll:,:) of) one of the above forcings, using the above 
reductions together with those built into the definition of {piyiii’ 1 i’ < i). 
Moreover, these forcings are cardinal preserving by Corollary 4.10A. So we are 
done: @i+$I is well-defined. Exactly the same argument applies to verify that 

P~+~ = glb(pi,+I 1 i< Y> is well-defined, using the built-in density reductions. We 

also get that (pn 1 n E W) is well-defined and the existence of j?(i) follows by 
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showing inductively that p(i) 1 7 is a quasicondition for 7 E CARD fl y. The 

remaining part of Case 2A where qi, i < y, are defined, presents no problems and 

justifies the assertion that there exists q cup, a(q) = (Y, x E [q]+ B”(P) = i (if 

/!l$ (4j + 1 1 j E ORD}), B”(& + 4j + 1) = a(x)(j) (if p = & + 4j + 1). Also note 

that qi clearly reduces all predense D G P(p, B(q’)) belonging to &(q’) and that 

p E CARD fl y+ cu(q;) = @‘(jj’), ‘Y(q’ r y) = Sf(y) for 7 a sufficiently large 

limit cardinal < y. 

Suppose that y is &(&(p))-regular for all n E w. We must verify that the 

quasiconditions defined in Case 2B of the construction of Py are well-defined. 

The existence of pnfl Ai+lsu’ follows by induction on y as in the previous subcase. For 

limit 7 6 y we must also verify that a’n”:i’ = glb(p’,+:;’ 1 7 E CARD O 7) is 

well-defined. This follows as in the previus subcase from the fact that type A 

fusions were added (in Case 4 of the R”, R “, py constructions). The only new 

point to observe is that for p E Cx(p’,+J = n {C~‘(p’,+,) 1 7 E CARD fl v} we 

have that j?F:i’ r p has the same definition at p as does ~~~‘iy 1 7 at 7. Thus 

P ̂‘,!i’ 1 p does belong to Rq where q = @‘n”:;’ = P;+~,. We must again check 

however that for p G 7, a@.,) is regular in &[x] where b = transitive collapse of 
X~:,~+, B =Bj,+:i’ and x E BP] (similarly for limit p s 7, p $ Cx(pin+,), as in the 

previous subcase). Again by Lemma 4.8 we have that x is generic for the 

appropriate cardinal-preserving forcing (collapse of S&j, B(p)), pa or 9’) so we 

are done. The fact that pi:‘, is well-defined follows, given the existence of the 

closed unbounded set C. But notice that we can choose 4 to belong to P(@$‘,) so 

we can let C = a final segment of C,(p’,+,). 

The fact that fin+, is well-defined follows as before using density reduction and 

closure under type A fusions. The construction of P”+~ s p,*+, = glb(@,Y+, 1 7 E 

CARD fl y) presents no new problems; again we must inductively verify that 

pn+L 1 jj is a quasicondition for r E CARD fl y. Then we can define the p(i, y) 
and qi. Notice that the verification that qi up requires us to know that 

p E C, = n {C,, ( n E OI}+~~ = 0, p,, = t0 as we have specified B”(a(qi r p)) = 

W4P r P)) f or x E [p r ,u]. And for sufficiently large 7 E C, we have q\ = tO, 
& = 0 and a(qi r 7) = Sf(y) thereby preserving our induction hypotheses. 

When y is &(&(p))-regular but &(2(p))-singular for some n, then we can 

combine the above two arguments to obtain the desired q. 

Now suppose a is a limit ordinal not divisible by y . w. We can assume that 

fl= a(p) 2 p where cz = p + 6, 0 < 6 G y and y divides j3. The desired q arises 

from Case 3 of the construction of PY. The condition ph in that construction is 

well-defined as before using type A fusions provided we check that pA reduces all 

predense D E .LP(p, B(p*)) in &(pA), for A 6 a - 8. Induction proves this for 

J. < y and for A. = y note that even though B(p,) # B(p,-,$ n A(pi) for i < a - fi 
we can still verify the desired reduction by choosing i least so that D E &(P~+~) 
and using Case 2 of the construction. Also note that if 7 E Ci+pi, = tO, ui, = 0 for 

i < LY - 8, then jj E C-B, = 0, pV = t0 where C = diagonal intersection of the Ci’s 

(or just the ordinary intersection if (Y - fi < y). 
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Finally suppose that (Y is divisible by y * w. Then we must verify that the 
sequence (pi 1 i < A,) f rom Case 4 of the construction of 5P’ is well-defined. But 
this follows from CgnaA)* = Cg fl ak provided we have that pA reduces all 

predense D G P(P, B(PA)) in Lw~~),E(~~)) [B(p*)]. The latter follows from 
Lemma 4.7 below. also note that the final restriction on when to add p to $“, does 
not interfere with the desired extendibility. And in case y is inaccessible in &(pn) 
we should note that pA r jj is a quasicondition for 7 E { 7 < y ) 7 = y tl (2,-Skolem 

hull of jjU{y} in &(pA))} thanks to the special collapsing properties of the 
Cl-sequences (CY, 1 y G a, (Y divisible by y. w and L,[t] k y is the largest 
cardinal). 0 

Lemma 4.6 (Extendibility for RT, TEZ@, Y an uncountable limit 
cardinal). Suppose p E RT, T E RV, y an uncountable limit cardinal, y E CARD n 
y and i <j < y+. Then there exists q spp, q E RT. 

Proof. Exactly like the proof of Lemma 4.3, using Lemma 4.5 now instead of 
Lemma 4.4. 0 

We have made extensive use of the following lemmas, which in fact are 
established via a simultaneous induction with our earlier lemmas. 

Lemma 4.7 (Chain Condition for P(p, B)). Suppose p E @‘, y an uncountable 
limit cardinal and q <p k a type 1 extension, B = B(q). Then 9(p, B) = {p ’ s 

PIP ’ E @Y,(q), B(p’) and B agree on [o(p), a(~‘))} obeys the y+-cc in 

Lw,,,dBl~ 

Proof. This follows from the use of the O-sequence in Case 4 of the construction 
of P?‘y. 0 

Lemma 4.8 (Density Reduction for ?P(j, B(p)), LP’, R’ r @)). Suppose p E gy 
where y is an uncountable limit cardinal. 

(a) Zfp GZ? is a type 1 extension (jj #p), let d,(p) = Lv~l~p~,B~p~~[B(p)]. Then 
p reduces all predense D G P(j, B(p)), D E k&(p). 

(b) Zf p arises from a type A fusion, let d,(p) = 3 where b and 9’ arise from 
Case 4 of the construction of 9 y. Then p reduces all predense D c 9?‘, D E dz,(p). 

(c) Zf p arises from a type B fusion, let &(p) = s4 where ti and R’ r a(P) arise 
from Case 4 of the construction of 9 y. Then p reduces all predense D E R’ r ncp), 

D E J%(P). 

Proof. (a) is clear from the proof of Lemma 4.5. And (c) is clear from Case 4 of 
the construction of Py. Lastly (b) follows from the definition of the canonical 
sequences in the construction of .Yy. Cl 
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Lemma 4.9 (Distributivity for 9). Suppose (Di 1 i < y) is a definable sequence 
of open classes which are y-dense below p E 2@. Then there exists q cvp, 

q E fl {Oi ) i < Y>. 

Proof. Choose 8 E CARD so that p E &[A] <=” L[A]. Then each 0” = Oi fl 
,!,,[A] is open dense below p* on 9(p*) for some p* E ?J$ (i.e., (P*)Q agrees with 
the weakest element of ??a for some 6 E CARD n 6). Then by definition, if 

4 “P*, a(q) = 1, then q reduces each 0”. Thus we see that DF is predense on 
9’. So we can apply Corollary 4.2A to T = the weakest element of d” to obtain 
the desired q. q 

Lemma 4.10 (Density Reduction for p). Suppose p E S@ and (Di 1 i < y) is a 
definable sequence of open classes which are dense below p. Then there exists q up 

which reduces each Di below y. 

Proof. As in the proof of Lemma 4.9 it suffices to prove this with @ replaced by 
R’, T E Z?’ for some limit cardinal 6 > y+ and ( Di ) i < y) E Z,[T, A n a+]. Now 

apply Corollary 4.2A to reduce the Di’S below y+ and then Corollary 4.1B to 
reduce them below y. q 

Corollary 4.10A (Cardinal Preservation). If R is a p-generic, then R preserves 

cardinals. 

Proof. Immediate from Lemma 4.10, which also is needed to establish the 
definability of forcing. Cl 

Lemma 4.11 (Minimal Coding). Zf R is p-generic, then A is L[R]-deftnable and 

R is V-Minimal. 

Proof. Extendibility for p follows from extendibility for By, Lemma 4.5. From 
this we can infer that A is L[R]-definable. 

Now suppose p Itx c ORD, x 4 L[A]. It suffices to prove: 

Claim. There exist (Y, pot p1 such that po, p1 e p and p. IF a $ x, p1 It- (Y E x and 

(POL = (P&W 

Given the Claim we can use Density Reduction for p to build a sequence 
po2p1z=“’ such that p* = glb(p, 1 i < co) exists and s, t incompatible elements 

of 2’“-, ((PO*(S), j-G)> p*(l), * . .) and ((po*(t),pG), p*(l), . . .) force incom- 
patible facts about X. So p* It R E V[x]. 

Proof of Claim. Choose po, p 1 up and (Y as in the Claim but without the 
requirement (po)@ = (p&. 0 ur operation (+) allows us to modify po, p1 so as to 
satisfy the Claim. By induction on y E CARD define p& p{ so as to satisfy the 
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Claim with (p&, = (p& replaced by pz r [w, y) =p: 1 [w, y). For successor y+ 

we can use the operation (+)y+ to define 9’:+ to be pc(t, tO, pay+, pI,+) where r is 

a F-term for some 7 < y such that [po,] G 9’y(z), [p,,] n P,,(t) = 0. Limit cardinals 

y can be handled using y-distributivity. 0 

This completes the proof of the Minimal Coding Theorem. 

5. Further results 

Theorem 5.1. There exists a real R E L[O#] which is L-minimal but not set-generic 

over L. 

Proof. We need to produce a real R in L[O’] which is weakly BO-generic over L, 

where by weakly generic we mean that CR need only meet all predense D E BO, 

D E L. 
We proceed just as in Section 4.4 of Beller-Jensen-Welch [l]. Let I denote the 

Silver indiscernibles for L and for i E I, n E w let i(n) denote i’ n Skolem hull of 

(i + 1) U {iI, . . . , i,} in L, where i+ = (i’)” and i <i, <. . . <i, belong to I. 

Clearly this definition is independent of the choice of iI, . . . , i,. 

Now define, for each n E o, sequences (p”’ ( i E Z), (t”’ ) i E Z) and ( rPi 1 i E Z) 
Where Uni E Ri+, tni E Run’, PRi E R’” and uni = p$ for i <j in I. We define poi, to’, 

uoi to be the weakest conditions obeying the preceding requirements. Then let 

P (n+l)i~p”i be least in R’(“+‘)’ such that a(~(“+‘)‘) = i(n) where t(“+‘)’ is the least 

t E R”“, t < t”’ which reduces all predense D E Skolem hull of ic U {iI, . . . , i,} in 

L, i<i,<..* <i, from I. We also insist that p(n+l)io meets the first n predense 

sets in Skolem hull of {io, i,, . . . , i,} in L, where i(, = min(Z) and i. < iI < . . . < 

i, belong to 1. 
Clearly we have n c m +p”” spai, Pi s t”’ and umi < uni for i E Z and 

i <j-p ni =pni 1 i for n E w. Now let G consist of all conditions p E !YO such that 

for some finite F c Z and i E I, n E w we have that F c i and p 1 (i - F) = 

p”’ 1 (i-F), p(j) = (pi, pj, pj) where (pi, p,) = t”’ for j E F. Let G = {p E 

p0 ) p Z$ for some $ E G}. Then G is a compatible class of conditions and by 

construction any predense D E L is reduced below 4, by G. But then the 

requirement on pCn+‘jiO implies that in fact G meets D. So G is weakly 

?PO-generic. 0 

Theorem 5.2. There exists an L-definable forcing 9’ for producing an L-minimal 

real which is not set-generic over L such that if R #S are p-generic over L, then 

(R, S) is 9 x P-generic over L. In addition, LIOfL] = 39-generic real. 

Proof sketch. We only deal with weak genericity; the modifications required for 

full genericity are as in Beller-Jensen-Welch [l, Lemma 5.31. 
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Modify the forcing 9’ as follows: In the definitions of Py and RY restrict the 

type A, B fusions to a stationary set of (Y < yf, avoiding a stationary set E E y+ 
on which lies a O(E)-sequence. Then when adding conditions to PPL, R1: for (Y E E 
(for the sake of extendibility) make sure that any distinct pair (p, 4) E 9’21 x S;, 

RY, x RY, reduces a dense set on 9’2, x S:,, R:,x R$, specified by the 

O(E)-sequence. This is possible provided CP?& R:, are subsets of L,; we can 

arrange this by requiring (as in Section 1) that CP”,, RY, c Ls where L% = least 0 > (Y 

such that p is admissible and Lo k y is the largest cardinal. Then any two distinct 

P-generics will reduce any given predense D E 9 x B, D E L. 0 

Open Questions. (1) Does there exist an L-minimal &singleton? 

(2) Define S c R if R is set-generic over L[S] and S<, R. Assume Oft exists. 

What are the finite initial segments of the resulting partial ordering of degrees 

(R - S if R s S, S G R) below O”? Theorem 5.1 implies that there is a minimal 

such degree. 

(3) Is there a K-minimal real which is not set-generic over K = the core model? 
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