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1.-2.Vorlesungen

Introduction

These lectures relate two approaches to classifying countable �rst-order
theories.

The �standard� way of doing this is through Shelah's stability theory,
which divides theories into the classi�able ones, for which a structure theory
exists for the uncountable models, and the unclassi�able ones, for which
chaos takes over. Roughly speaking, the classi�able theories are the ones for
which there are fewer than the maximum number 2κ of models of size κ for
some uncountable κ. (This is not quite true; the classi�able deep theories still
have the maximum number of models in all uncountable cardinals.) Shelah's
�Main Gap� analysis shows that classi�ability is equivalent to a conjunction
of very absolute model-theoretic conditions: superstable without the DOP
(dimensional order property) and without the OTOP (omitting types order
property).

An alternative classi�cation arises from Higher Descriptive Set Theory.
Assume GCH and suppose that κ is uncountable and regular. Then the Baire
space ωω generalises nicely to κκ, where points are functions f : κ → κ and
basic open sets are of the form Np = {f | p ⊆ f} for some p in κ<κ. The
(generalised) Borel sets are obtained from the basic open sets by closing
under unions of size κ and complements. A function f : X0 → X1 between
Borel sets is Borel i� the pre-image under f of each Borel set is Borel. As
in the classical case, one can also introduce a Borel-reducibility ≤B between
equivalence relations E0, E1 on κκ:

E0 ≤B E1 i� for some Borel f , xE0y i� f(x)E1f(y) for all x, y

For a �rst-order theory T let ModκT denote the set of models of T with
universe κ; this can be viewed as a Borel set. Also let Isomκ

T denote the
isomorphism relation on ModκT ; this is a Σ1

1 equivalence relation. Our second
way of classifying theories T is to look at the complexity of the equivalence
relation Isomκ

T under Borel reducibility ≤B.
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Our main goal is to establish the following result, which relates the model-
theoretic and set-theoretic methods of classi�cation to each other. Missing
de�nitions will be supplied later.

Theorem 1 (F-Hyttinen-Kulikov) Assume GCH and let κ be uncountable
and regular.
1. T is classi�able and shallow (in Shelah's sense) i� Isomκ

T is Borel.
2. In L, T is classi�able i� Isomκ

T is ∆1
1.

3. T is classi�able i� for all regular λ < κ, Eκ
λ �B Isomκ

T , where E
κ
λ is the

equivalence relation of equality modulo λ-nonstationarity.

It is important that κ be uncountable in this theorem. For example, the
theory DLO (dense linear orders without endpoints) is unclassi�able, but
the equivalence relation Isomω

T has only one equivalence class and therefore
is trivially Borel! Martin Koerwien found an example in the other direction:
There is a theory which is very nice model-theoretically (ω-stable of �depth�
2, and therefore very classi�able) such that Isomω

T is not Borel. So from now
on, κ is always assumed to denote an uncountable regular cardinal.

Higher Descriptive Set Theory

Before bringing in the model theory, we'll �rst take a look at descrip-
tive set theory on the generalised Baire space κκ for an uncountable regular
cardinal κ. There are strong di�erences between this theory and classical de-
scriptive set theory on the classical Baire space ωω. Also a number of simple
questions are undecidable in ZFC and there remain many open problems. We
assume GCH throughout.

We have de�ned the basic open sets in κκ to be the sets of the form
Np = {f ∈ κκ | p ⊆ f}, where p ∈ κ<κ. The Borel sets are obtained by
closing the class of basic open sets under complements and unions of size κ.

A nice way to think of Borel sets is as follows: By a tree we mean a partial
order in which the predecessors of any point are wellordered. Let T be a tree
of size κ which is wellfounded (i.e., has no in�nite branch) and let l be a
function which assigns a basic open set to each terminal node of T . Now for
any x ∈ κκ consider the game G(T, l, x) with two players I and II, in which
player I begins by choosing a minimal node of T and then the players take
turns choosing immediate successors of the nodes previously chosen until a
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terminal node s is reached. Then Player II wins i� x belongs to the basic
open set l(s). A set B is Borel i� for some wellfounded tree T of size κ, we
have: x ∈ B i� II has a winning strategy in the game G(T, l, x). Indeed, if
B is of this form then B is Borel, as is shown by induction on the rank of
the tree T . Conversely, the collection of sets B of this form contains all basic
open sets, is closed under complementation (add a new bottom node, replace
each basic open set by its complement, an open set, and switch players) and
is closed under intersections of size κ.

The product spaces (κκ)n are de�ned in the usual way, using the corre-
sponding product topologies. The (�boldface�) Σ1

1 sets are the projections of
closed sets, i.e., the sets of the form {f ∈ κκ | (f, g) ∈ C for some g} where
C is a closed subset of (κκ)2. A set is Π1

1 i� its complement is Σ1
1 and is ∆1

1

i� it is both Σ1
1 and Π1

1.

Proposition 2 Borel sets are ∆1
1, but not conversely.

Proof. If B is Borel then for some wellfounded tree T of size κ and labelling
l of its terminal nodes by basic open sets, x belongs to B i� there exists a
winning strategy for Player II in the game G(T, l, x). It is not di�cult to
write the latter condition on x as the projection of a closed set. This shows
that Borel sets are Σ1

1 and therefore also ∆1
1.

The converse fails because there is a ∆1
1 set D ⊆ (κκ)2 which is universal

for the Borel subsets of κκ, i.e., the Borel sets are exactly the sets of the form

Dξ = {η | (η, ξ) ∈ D}

for ξ ranging over κκ. Given such a universal set, we obtain a ∆1
1 non-Borel

set D0 through diagonalisation: D0 = {η | (η, η) /∈ D}.

To obtain D, we choose a coding ((Tξ, lξ) | ξ ∈ C), where C ⊆ κκ is a
Borel set of �codes�, of all pairs (T, l) where T is a wellfounded tree of size
κ and l is a labelling of its terminal nodes by basic open sets. Without the
requirement of wellfoundedness this is easy to do, even for κ = ω. The fact
that κ is uncountable is needed to know that the set of ξ ∈ κκ which code
a wellfounded binary relation on κ forms the set of branches of length κ
through a subtree of κκ and is therefore a closed set. Then we de�ne:
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(η, ξ) ∈ D i�
ξ ∈ C and η belongs to the Borel set determined by the pair (Tξ, lξ) i�
ξ ∈ C and Player II has a winning strategy in G(Tξ, lξ, η) i�
ξ ∈ C and Player I does not have a winning strategy in G(Tξ, lξ, η).

As the set of (codes for) winning strategies is a closed set, D is the desired
∆1

1 set which is universal for Borel sets. 2

Proposition 3 For A ⊆ κκ the following are equivalent:
1. A is Σ1

1, i.e. the projection of a closed set in (κκ)2.
2. A is the projection of a Borel set.
3. A is the projection of a Σ1

1 set.
4. A is the continuous image of a closed set.

Proof. As Closed ⊆ Borel ⊆ Σ1
1 and the projection map is continuous, we

need only check 4 → 1. But the image of a continuous map f on a closed set
is the projection of the graph of f and the graph of f is closed. 2

The collection of Σ1
1 sets is very rich, as is illustrated by the next propo-

sition. Again the key fact is that wellfoundedness is a Borel and hence ∆1
1

property for uncountable κ.

Proposition 4 A subset of κκ is Σ1
1 i� it is de�nable over H(κ+) by a Σ1

formula (with parameters).

Proof. The direction from left to right is clear. Conversely, suppose that
ϕ(ξ) is a Σ1 formula with parameters in H(κ+) and let ξ0 ∈ κκ code the
parameters. Then ϕ(ξ) holds i� there exists η ∈ κκ which codes a wellfounded
transitive model M of ZF− containing ξ, ξ0 such that M satis�es ϕ(ξ). The
latter condition on ξ is the projection of a Borel set and therefore is Σ1

1. 2

Remark. It can also be shown that B is Borel i� for some �xed transitive ZF−

model M containing κ and formula ϕ(ξ) with parameters from M , ξ ∈ B i�
M [ξ] � ϕ(ξ).

3.-4.Vorlesungen

Regularity Properties
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The three classical regularity properties are the BP (Baire Property), the
PSP (Perfect Set Property) and LM (Lebesgue Measurability). As we know
of no good analogue of LM, we consider just BP and PSP.

The Baire Property

A set is nowhere dense i� its closure has no interior (i.e., has no nonempty
open subset). A set is meager i� it is the union of κ-many nowhere dense
sets. A comeager set is the complement of a meager set.

Proposition 5 (Baire Category Theorem) Comeager sets are dense.

Proof. Chasing the de�nitions, this says that the intersection of κ-many open
dense sets is dense. This is easy to prove: List the open dense sets as (Ui |
i < κ) and below a given p ∈ κ<κ successively extend to pi ∈ κ<κ so that Npi

is contained in Ui and the pi's converge to an x ∈ κκ. Then x belongs to all
of the Ui's. 2

A set X has the BP i� its symmetric di�erence with some open set is
meager.

Proposition 6 Borel sets have the BP.

Proof. The collection of sets with the BP contains all basic open sets, is closed
under complement and is closed under unions of size κ. 2

Theorem 7 (Halko-Shelah) There are Σ1
1 sets without the BP.

Proof. Let CUB denote the �lter of closed unbounded sets, which can be
viewed as a subset of κκ by considering the set of ξ such that Xξ = {α < κ |
ξ(α) = 0} contains a closed unbounded set. Clearly CUB is Σ1

1. If CUB had
the BP then it would be either meager or comeager on some basic open set
Np. But consider any κ-intersection

⋂
i<κDi of dense open subset Di of Np.

Extend p κ times to (pi | i < κ) of lengths (αi | i < κ) where p0 = p, Npi+1
is

contained in Di and pi+1 extends pi, and for limit λ < κ, pλ extends the pi,
i < λ and pλ(αλ) = 1. Then ξ = the union of the pi's belongs to each Di yet
Xξ is nonstationary. This shows that CUB is not comeager on Np. Similarly,
by replacing 1 by 0 we have that CUB is not meager on Np. 2
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The above argument also shows that for any regular λ < κ, CUBλ does
not have the BP where the latter denotes all subsets of κ which contain
λ-closed unbounded subsets.

Do ∆1
1 sets have the BP?

Theorem 8 (a) In L, there is a ∆1
1 set without the BP.

(b) It is consistent that all ∆1
1 sets have the BP.

Proof. (a) In L there is a ∆1
1 wellorder of κ

κ: ξ <L η i� ξ appears before η in
the L-hierarchy i� there exists a transitive modelM of ZF− of with ξ, η ∈M
such that M � ξ <L η. Now using this wellorder it is easy by diagonalisation
to construct in κ+ steps a ∆1

1 set A such that for each p and comeager subset
C of Np, both C ∩ A and C \ A are nonempty. It follows that A does not
have the BP.
(b) Add κ+-many κ-Cohen's to L with a size < κ supported product. Then
in this model BP holds for ∆1

1: Let the extension be L[G]. Now suppose that
ϕ0, ϕ1 are Σ1

1 formulas with parameters in L[G(< i)] which in L[G] de�ne a
partition of κκ into two disjoint pieces, i < κ+. Note that G factors as G(<
i)×G[i, κ+). Let x be G(i), which is κ-Cohen over L[G(< i)]. Then for some
j < κ+, either ϕ0(x) or ϕ1(x) holds in L[G(< i)][x][y] where y = G[i+1, j) is
equivalent to a κ-Cohen over L[G(< i)][x]. Assume that it is ϕ0(x) that holds.
But L[G(< i)][x] is Σ1

1 elementary in L[G(< i)][x][y]: if p forces σ to name a
witness to a Σ1

1 formula ϕ(x) in L[G(< i)][x][y] then L[G(< i)][x] contains a
y′ extending p which is κ-Cohen over an Lα[G(< i)][x] which is large enough
to contain the name σ. So ϕ(x) holds in L[G(< i)][x]. By the same argument,
ϕ0(x′) holds in L[G(< i)][x′] for all x′ extending some condition p which are
su�ciently κ-Cohen generic over L[G(< i)], and this forms a comeager set
below p in L[G]. By the persistence of Σ1

1 formulas, ϕ0(x′) holds in L[G] for
all such x′. So the original ∆1

1 set de�ned by ϕ0, ϕ1 is comeager on some open
set and therefore has the BP. 2

Remark. In L, CUBλ is not ∆1
1 for any regular λ < κ. But it is consistent

that CUBλ is ∆1
1 for all regular λ < κ, giving another proof of (b) above.

The Perfect Set Property

T is a perfect subtree of 2<κ i� each node of T splits and T is closed under
increasing sequences of length < κ. Equivalently: T is the downward closure
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of the range of an injective, order-preserving and continuous function from
the full tree 2<κ into itself.

Lemma 9 Suppose T is perfect. Then for CUB-many α < κ, T has card(2α)
nodes of length α.

Proof. Let T be the downward closure of the range of f : 2<κ → 2<κ where
f is injective, order-preserving and continuous. If κ is inaccessible then for
CUB-many α < κ, f(σ) has length less than α whenever σ has length less
than α and therefore by continuity f(σ) has length α whenever σ has length
α. This gives card(2α) many nodes in T of length α.

If κ = λ+ then we must show that there are 2λ = κ nodes of T of some
�xed length α < κ. If not, then let α0 < α1 < · · · be a λ-sequence such that
every node of T of length αi has incompatible extensions of length αi+1. If α
is the supremum of the αi's then T has 2λ nodes of length α. 2

For any subtree T of 2<κ we let [T ] denote the set of κ-branches of T , a
closed subset of 2κ (where 2κ is viewed as a subpace of κκ). A subset of 2κ is
perfect i� it is of the form [T ] for some perfect subtree T of 2<κ.

Perfect sets are nonempty, closed and contain no isolated points. However,
as we see below, the converse can fail.

X ⊆ 2κ has the perfect set property (PSP) i� it either has size at most κ
or contains a perfect set, i.e. a set of the form [T ] for some perfect tree T .
Trivially, open sets have the PSP, as they are either empty or contain a basic
open set, and basic open sets are perfect.

The PSP can fail for closed sets. A quasi Kurepa tree on κ is a subtree T
of 2<κ with the following properties:

1. Every node of T splits and can be extended to a κ-branch.
2. T has more than κ many κ-branches.
3. For stationary many α < κ, T has at most α-many nodes of length α.

If T is quasi Kurepa then [T ] does not have the PSP by Lemma 9.

Theorem 10 In L, there is a quasi Kurepa tree on κ for every regular un-
countable κ.

7



Proof. Assume V = L. For each singular ordinal α < κ let β(α) denote the
least limit ordinal β > α such that α is singular in Lβ. Then β(α) is de�ned
and less than α+ for singular α. Now let T be the tree of all s ∈ 2<κ such
that:

1. C(s) = {α < |s| | s(α) = 1} is closed in |s|.
2. If α < |s| is a singular limit point of C(s) then s � α belongs to Lβ(α).
3. If κ = λ+ for some cardinal λ, then s(α) = 0 for all α < λ.

Then [T ] consists of all (characteristic functions of) closed subsets C of κ
such that C ∩ α belongs to Lβ(α) for all singular limit points α of C and if
κ = λ+ for some cardinal λ, then C ∩ λ = ∅.

Clearly each node of T splits and can be extended to a κ-branch. If κ
is inaccessible then for all singular cardinals α < κ, T has at most card(α)
nodes of length α, as each of these nodes belongs to Lβ(α). If κ = λ+ for some
cardinal λ then for all α < κ, T has at most card(α) nodes of length α, as
for α ≤ λ there is at most one such node and for α in (λ, κ) all such nodes
belong to Lβ(α) by induction.

So to verify that T is a quasi Kurepa tree we need only show that T has
κ+ many branches.

For any α in (κ, κ+) let Cα be the CUB set of κ̄ < κ such that κ̄ =
H(κ̄) ∩ κ, where H(κ̄) is the Σ1 Skolem hull of κ̄ ∪ {κ, α} in Lβ(α). If κ̄ is a
singular limit point of Cα then κ̄ is regular in the transitive collapse of H(κ̄)
and Cα ∩ κ̄ is de�nable over that transitive collapse; it follows that Cα ∩ κ̄
belongs to Lβ(κ̄). So Cα is a branch through T . As each CUB set in Lβ(α)

almost contains Cα, it follows that Cα does not belong to Lβ(α) and therefore
there are κ+ many distinct such Cα's. 2

5.Vorlesung

Kurepa trees are de�ned just like quasi Kurepa trees but with the stronger
requirement that {α < κ | T has at most α-many nodes of length α} contain
all in�nite ordinals less than κ. Silver showed long ago that to kill Kurepa
trees on κ one needs an inaccessible, so to get the PSP for closed sets one
needs an inaccessible.
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Theorem 11 Starting with an inaccessible above κ , one can force the PSP
to hold for all Σ1

1 subsets of 2κ.

Proof. We use the same model that Silver used to kill Kurepa trees. Start
with L where κ < λ is inaccessible and let P = Coll (κ,< λ) denote the
forcing that makes λ into κ+ with conditions of size < κ. Thus a condition
is a function p : Dom (p) → λ where Dom (p) is a size < κ subset of λ × κ
and p(α, γ) < α for each (α, γ) in Dom (p).

Suppose now that X ⊆ 2κ in the resulting model L[G] is Σ1
1 with parame-

ters coming from the inner model L[G|α], α < λ, α regular in L. Factor L[G]
as L[G|α][G[α, λ)] where G|α is generic for P |α and G[α, λ) is generic over
L[G|α] for P [α, λ). We may assume that X has more than κ many elements
and therefore can choose an element a of X in L[G] \L[G|α]. Also choose an
L-regular β between α and λ so that the membership of a in X is witnessed
inside L[G|β]. Let ȧ be a P [α, β)-name for a in the ground model L[G|α] and
p a condition in P [α, β) which forces that ȧ is an element of X not in L[G|α].

Now in L[G] build a perfect tree U of conditions below p in the κ-closed
forcing P [α, β) such that each κ-branch of U hits each maximal antichain
of P [α, β) which belongs to L[G|α] (there are only κ-many) and distinct
branches of U force di�erent interpretations of the name ȧ. Thus each κ-
branch x through U yields a pair (gx, ax) where gx is P [α, β)-generic over
L[G|α], ax is the interpretation of ȧ given by gx and the membership of ax
in X is witnessed in L[Gα][gx]. The set of such ax's forms a perfect subset of
X. 2

Can the PSP hold for all Π1
1 sets? The answer is not known.

Borel Reducibility

As mentioned earlier, to obtain a provable characterisation of classi�able
theories in terms of the complexity of their isomorphism relations on uncount-
able models we must use a generalisation of the theory of Borel reducibility.
I'll introduce now such a generalisation and prove some basic facts about it.

Suppose that X0, X1 are Borel subsets of κ
κ. Then f : X0 → X1 is a Borel

function i� f−1[Y ] is Borel whenever Y is Borel. This implies that the graph
of f is Borel, as (x, y) belongs to the graph of f i� for all s ∈ κ<κ, either y
does not belong to Ns or x belongs to f−1[Ns].
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If E0, E1 are equivalence relations on Borel sets X0, X1 respectively then
we say that E0 is Borel reducible to E1, written E0 ≤B E1, i� for some Borel
f : X0 → X1:

x0E0y0 i� f(x0)E1f(x1).

Now recall the following picture from the classical case:

1 <B 2 <B · · · <B ω <B id <B E0

forms an initial segment of the Borel equivalence relations under ≤B where n
denotes an equivalence relation with n classes for n ≤ ω, id denotes equality
on ωω and E0 denotes equality modulo �nite on ωω.

At κ we easily get the initial segment

1 <B 2 <B · · · <B ω <B ω1 <B · · · <B κ

where for each nonzero cardinal λ ≤ κ we identify λ with the ≡B class of
Borel equivalence relations with exactly λ-many classes. What happens above
these equivalence relations? We might hope for:

Silver Dichotomy The equivalence relation id (equality on κκ) is the strong
successor of κ under ≤B, i.e., if a Borel equivalence relation E has more than
κ classes then id is Borel-reducible to E.

6.Vorlesung

Theorem 12 (a) The Silver Dichotomy implies the PSP for Borel sets.
Therefore it fails in L and its consistency requires at least an inaccessible
cardinal.
(b) The Silver Dichotomy is false with Borel replaced by ∆1

1.

Proof. (a) Assume the Silver Dichotomy and suppose that B is Borel with
more than κ elements. Consider the equivalence relation xEy i� x = y or
x, y /∈ B. Applying the Silver Dichotomy we get a Borel reduction of id to
E; as all but one point in the range of this reduction belongs to B, we get
a Borel, injective map from κκ into B and therefore also a Borel, injective
map from 2κ into B. If this map were continuous then its range would be a
perfect subset of B, verifying the PSP for B. We �nish the proof as follows:
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Lemma 13 (a) Any Borel function f : κκ → κκ is continuous on a comeager
set.
(b) Any comeager set contains a perfect subset.

Proof. (a) Recall that each Borel set has a Borel code (T, l), where T is a
wellfounded tree of size κ and l is a labelling of the terminal nodes of T by
basic open sets. As f is Borel it has a Borel graph and so there is a Borel
code for its graph. Now let M be a transitive ZF− model of size κ containing
H(κ) and this Borel code. Let X be the set of x ∈ κκ which are generic over
M for the forcing κ<κ (equivalent to κ-Cohen forcing). Then X is comeager
as it is the intersection of the κ-many open dense sets coded in M . And
the function f is continuous on X as for any s ∈ κ<κ, any true statement
�s ⊆ f(x)� is forced by a condition t ⊆ x and therefore s ⊆ f(y) holds for all
y ∈ X extending t, as such y are generic over M .
(b) This is just like the proof that comeager sets are dense. Let (Di | i < κ)
be open dense and build a perfect tree T so that if σ is on the i-th splitting
level of T then Nσ is contained in Dj for all j < i. This is possible using
the density of the Di's. Then every co�nal branch through T belongs to the
intersection of the Di's. 2

This completes the proof of (a) of the Theorem.

(b) Consider the equivalence relation xEy i� x, y code the same ordinal or
x, y do not code ordinals. Then E has κ+ many equivalence classes. Also E
is ∆1

1: We have seen (using κ > ω) that wellfoundedness is Borel; for x, y
coding ordinals we have xEy i� there exists order-preserving maps between
the ordinals coded by x, y i� there is no order-preserving map from the ordinal
coded by x into a proper initial segment of the ordinal coded by y (or vice-
versa).

If id Borel-reduces to E then as above we get a perfect set [T ] such that
distinct elements of [T ] code distinct ordinals. Let M be a transitive ZF−

model of size κ containing H(κ) and the perfect tree T and suppose that
x is a branch through T which is generic over M (for the forcing whose
conditions are the nodes of T ). Then the ordinal coded by x belongs to M
as M [x] satis�es ZF−. But there are 2κ many such x's, contradicting the fact
that di�erent such x's must code di�erent ordinals. 2
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Is the Silver Dichotomy consistent? This question remains open.

We can also consider what happens above id. In the case κ = ω we have:

Classical Glimm-E�ros Dichotomy E0 = (equality mod �nite) is the strong
successor of id, i.e., if a Borel equivalence relation E is not Borel-reducible
to id (i.e., E is not smooth) then E0 Borel-reduces to E.

At κ, what shall we take E0 to be? For in�nite regular λ ≤ κ, de�ne
E<λ

0 = equality for subsets of κ modulo sets of size < λ.

Proposition 14 For λ < κ, E<λ
0 is Borel bireducible with id.

So we can forget about E<λ
0 for λ < κ and set E0 = Eκ

0 , equality modulo
bounded sets.

Proof. For each ordinal α < κ consider the equivalence relation on subsets
of α given by: x ≡α y i� x4y has size < λ (where 4 denotes symmetric
di�erence). For each α < κ choose a selector fα for ≡α, i.e. a (none�ective)
function reducing ≡α to equality on 2α. So for x, y subsets of α, fα(x) equals
fα(y) i� x ≡α y. This is possible by the axiom of choice. The sequence
(fα | α < κ) is just one big parameter, i.e. can be coded by a �xed subset of
κ.

Now de�ne a reduction of E<λ
0 to id (= equality on 2κ) by sending x to a

subset of κ coding the sequence f(x) = (fα(x ∩ α) | α < κ). If x4y has size
< λ then f(x) = f(y). If x4y has size at least λ then there is α < κ such
that (x∩α)4(y ∩α) has size at least λ and hence f(x) does not equal f(y).
The reduction is clearly continuous.

Conversely, id is continuously reducible to E<λ
0 : Choose an injection i :

2<κ → κ and reduce id to E<λ
0 by: f(x) = {i(x ∩ α) | α < κ}. 2

7.-8.Vorlesungen

As in the classical case we have:

Proposition 15 E0 = E<κ
0 is not Borel-reducible to id.
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Proof. Suppose that f were a Borel reduction of E0 to equality. Let M be
a transitive ZF− model of size κ containing H(κ) and a Borel-code for f .
Consider κ-Cohen forcing over M and let Ġ denote the κ-Cohen generic.
Choose a condition p forcing that f(Ġ) is de�ned. Then for each α < κ, any
two κ-Cohen conditions extending p must force the same value for f(Ġ)(α):
Otherwise, choose two conditions p0, p1 of equal length extending p and forc-
ing di�erent values of f(Ġ)(α). Let x be κ-Cohen generic over M extending
p0 and let y be obtained from x by replacing p0 by p1. Then xE0y but
f(x)(α) 6= f(y)(α), contradicting the assumption that f is a reduction. So
f(x) is constant on all x which are κ-Cohen generic and extend p. But that
is impossible, because there are κ-Cohen generics x, y extending p which
disagree on an unbounded subset of κ. 2

Other versions of E0: For regular λ < κ de�ne Eκ
λ = equality modulo the

ideal of λ-nonstationary sets.

These equivalence relations are key for connecting Shelah Classi�cation
with Higher Descriptive Set Theory.

How do the relations Eκ
λ compare to each other under Borel reducibility

for di�erent λ? For simplicity, consider the special case κ = ω2.

Theorem 16 (SDF-Hyttinen-Kulikov) (a) It is consistent that Eω2
ω and Eω2

ω1

are incomparable under Borel reducibility. (b) Relative to a weak compact it
is consistent that Eω2

ω is Borel-reducible to Eω2
ω1
.

It is not known if it is consistent for Eω2
ω1

to be Borel-reducible to Eω2
ω .

Proof of (a). We begin with the following general result. As always assume
GCH. Fix κ uncountable and regular, not the successor of a singular cardinal
(to handle this case we would need Shelah's approachability property on κ).
For regular λ < κ, Sκλ denotes the set of ordinals less than κ of co�nality λ.
For arbitrary stationary X ⊆ κ, EX denotes the equivalence relation de�ned
by A EX B i� (A4B) ∩X is nonstationary.

Lemma 17 Suppose that µ1, µ2 < κ are regular, X ⊆ Sκµ1 is stationary,
Y ⊆ Sκµ2 is stationary and X ∩α is not stationary in α for α ∈ Y (automatic
if µ1 ≥ µ2). Also suppose that X, Y are disjoint (automatic if µ1 6= µ2).
Suppose that (T, l) is a code for a Borel reduction from EX to EY . Then
(T, l) is not such a code in some generic extension by a κ-closed forcing of
size κ.
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Proof of Lemma. First add a κ-Cohen set G. If (T, l) does not code a Borel
reduction from EX to EY in V [G] then we are done. Otherwise let f be the
Borel reduction coded by (T, l) in V [G]. Note that G∩X is stationary, as κ-
Cohen sets have stationary intersection with all ground model stationary sets
(this already uses the hypothesis that κ is not the successor of a singular, or
alternatively the approachability property on κ). So (f(G∩X)4f(∅))∩Y = Z
is stationary. Now consider the forcing Q for killing the stationarity of G∩X:
A condition is a closed, bounded subset c of κ such that c∩ (G∩X) is empty.

Claim. Q preserves the stationarity of Z.

Proof. First we need:

Subclaim. Choose a large H(θ), θ regular and also a parameter x in H(θ).
Then there is a club C in κ such that for all α ∈ C of co�nality µ2 there
exists an elementary submodel M of H(θ) containing the parameter x which
has size µ2, is µ2-closed and satis�es sup(M ∩ κ) = α.

Proof of Subclaim. First choose a continuous increasing chain (Mi | i < κ)
of elementary submodels of H(θ) such that x belongs to M0 and for each
i < κ, Mi+1 is µ2-closed (this is possible as we have assumed GCH and κ is
not the successor of a singular cardinal). Let C consist of all Mλ∩κ for limit
λ < κ, a club in κ. Then if λ has co�nality µ2 the model Mλ is µ2-closed and
therefore it is easy to build an increasing chain (Nj | j < µ2) of elementary
submodels of Mλ where x belongs to N0, each Nj has size less than µ2 and
the unionM of the Nj's is µ2-closed and has co�nal intersection withMλ∩κ.
2 (Subclaim)

Now suppose that the condition q ∈ Q forces that the Q name Ċ is a club
in κ and choose a large H(θ). containing q, Ċ, κ,G∩X as elements. Using the
Subclaim choose an elementary submodel M of H(θ) which has size µ2 and
is µ2-closed, and is such that α = sup(M ∩ κ) belongs to Z. This is possible
because Z is stationary and the set of possibilities for sup(M ∩ κ) contains
all ordinals of co�nality µ2 in some closed unbounded set. As α belongs to
Z ⊆ Y , X∩α is not stationary in α and therefore G∩X∩α is not stationary
in α. Let D be closed unbounded in α and disjoint from G ∩ X. Now we
can build a continuous sequence of conditions q = q0 ≥ q1 ≥ · · · of length
µ2 + 1 so that for i < µ2, qi belongs to M , qi+1 forces an ordinal greater than
max(qi) to belong to Ċ and there is an element of D between max(qi) and
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max(qi+1). As α does not belong to X it follows that q∗ = qµ2 ∪ {α} is a
condition extending q with max(q∗) = α ∈ Z and q∗ forces α to belong to Ċ.
So Z remains stationary. 2 (Claim)

9.-10.Vorlesungen

Now to �nish the proof of the Lemma, note that we have shown that C∗Q
forces that the Borel reduction f coded by (T, l) does not reduce EX to EY
because it forces G ∩ X to be nonstationary on X and its image f(G ∩ X)
to be stationary on Y . It remains to show that Z = C ∗ Q is equivalent to
a κ-closed forcing of size κ. But this forcing is equivalent to forcing with
pairs (p, q) where p is a κ-Cohen condition and q is a κ-Cohen condition
of the same length α such that {β | q(β) = 1} is closed in α and disjoint
from {β | p(β) = 1}. This forcing is κ-closed because if (pi, qi), i < λ, is a
descending sequence for some limit λ < κ we obtain a lower bound by taking
p, q to be the unions of the pi, qi and setting p(α) = 0, q(α) = 1 where α is
the sup of the lengths of the pi, qi's. 2

Now to prove (a) of the Theorem, choose a model in which some stationary
subset X of Sω2

ω has nonstationary intersection with each ordinal in Sω2
ω1
. For

example, take a model in which 2ω1 holds. Then by the Lemma applied to
the pair X,Sω2

ω1
, we can force with a κ-closed forcing of size κ to kill any code

for a Borel reduction of EX to Eω2
ω1
. The same holds for the pair Sω2

ω1
, Sω2

ω .
Now perform a κ-closed iteration of length κ+, successively killing codes for
Borel reductions of EX to Eω2

ω1
and of Eω2

ω1
to Eω2

ω . The result is a model in
which EX is not Borel reducible to Eω2

ω1
and Eω2

ω1
is not Borel reducible to

Eω2
ω . So the proof of (a) ends with the following

Fact. Suppose X ⊆ Y . Then EX is Borel reducible to EY .

Proof of Fact. Send A to A ∩ X. If (A4B) ∩ X is nonstationary then so
is ((A ∩ X)4(B ∩ X)) ∩ Y because it equals (A4B) ∩ X . Conversely, if
(A4B) ∩ X is stationary then so is ((A ∩ X)4(B ∩ X)) ∩ Y for the same
reason. 2

Now we begin the proof of (b), which says that relative to a weak compact,
it is consistent that Eω2

ω is Borel reducible to Eω2
ω1
.

We obtain Borel reductions using �♦ re�ection�. Suppose that X, Y are
subsets of a regular κ and Y consists of ordinals of uncountable co�nality.
We say that X ♦-re�ects to Y i� there is a sequence (Dα | α ∈ Y ) such that:
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1. Dα is a stationary subset of α for each α ∈ Y .
2. If Z ⊆ X is stationary then {α ∈ Y | Dα = Z ∩ α} is stationary.

Lemma 18 Suppose that X ♦-re�ects to Y . Then EX is Borel reducible to
EY .

Proof. Let (Dα | α ∈ Y ) witness the hypothesis. For A ⊆ κ set f(A) = {α ∈
Y | A∩X ∩Dα is stationary in α}. Note that f is continuous. We claim that
f is the desired reduction.

Suppose that (A4B) ∩X is nonstationary and choose a club C disjoint
from it. Then for α in Y ∩Lim C, C∩α is club in α and so A∩X ∩Dα∩C is
stationary in α i� B∩X ∩Dα∩C is stationary in α. Thus (f(A)4f(B))∩Y
is nonstationary, as desired.

Conversely, suppose that (A4B) ∩ X is stationary and without loss of
generality assume that (A \ B) ∩X is stationary. By hypothesis, S = {α ∈
Y | (A\B)∩X ∩α = Dα} is stationary. For α in S we have that A∩X ∩Dα

is stationary in α and and B ∩ X ∩ Dα is empty. So (f(A)4f(B)) ∩ Y is
stationary, as desired. 2

Suppose that κ is weak compact. Then κ satis�es Π1
1 re�ection: If (H(κ), A)

satis�es the Π1
1 sentence ϕ(A) then (H(α), A ∩H(α)) satis�es ϕ(A ∩H(α))

for some α < κ.

Lemma 19 Suppose that κ is weak compact and X ⊆ κ is stationary. Then
for stationary many regular α < κ, X ∩ α is stationary in α.

Proof. If C is a club in κ then (H(κ), X, C) satis�es the Π1
1 sentence saying

that κ is regular (there is no co�nal function from an ordinal into the ordi-
nals), X is stationary and C is club. By re�ection there is a regular α so that
C ∩α is club in α and X ∩α is stationary in α. As C is closed, α belongs to
C. 2

Lemma 20 Suppose that κ is weak compact and V = L. Then all stationary
subsets of κ ♦ re�ect to Reg∩κ = the set of regular cardinals less than κ. In
particular, EX is Borel reducible to EReg∩κ for all stationary X ⊆ κ.
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Proof. Let Y denote Reg∩κ. We de�ne the desiredDα's inductively as follows.
Given α in Y , let (Z,C) be the L-least pair of subsets of α such that Z is a
stationary subset of X ∩ α, C is club in α and Dβ does not equal Z ∩ β for
β in Y ∩ C (if there is no such pair then set Dα = ∅). Then take Dα to be
Z. For future use also de�ne Cα to be C.

If the above sequence of Dα's does not work then let (Z,C) be the L-least
pair of subsets of κ such that Z is a stationary subset of X, C is club in κ and
Dβ does not equal Z ∩ β for β in Y ∩C. Let M be an elementary submodel
of some large H(θ) which contains X as an element such that α = M ∩ κ is
an element of Y and Z ∩ α is stationary in α. Such an M exists by Lemma
19. Let M̄ be the transitive collapse of M . Then (Z ∩α,C ∩α) is the L-least
pair (z, c) in M̄ such that z is a subset of X ∩ α which is stationary in M̄ ,
c is club in α and Dβ does not equal z ∩ β for β in Y ∩ c. As Z ∩ α really
is stationary in α (and not just stationary with respect to clubs in M̄), the
pair (Z ∩ α,C ∩ α) is in fact equal to the pair (Dα, Cα) de�ned above. But
this contradicts the choice of the pair (Z,C), as α belongs to Y ∩C and Dα

does equal Z ∩ α. 2

Finally, to get a consistent Borel reducibility from Eω2
ω to Eω2

ω1
, we start

with a weak compact κ in L and force with an ω-closed Lévy collapse to
make κ into ω2. We show that in the extension L[G], Sω2

ω ♦-re�ects to Y =
the L-regular cardinals less than κ. Note that Y is stationary in L[G] as it is
stationary in L and any club in κ in L[G] contains a club in κ in L, by the
κ-cc of the forcing. As Y is a stationary subset of Sω2

ω1
in L[G] it follows that

Sω2
ω also ♦ re�ects to Sω2

ω1
in L[G].

In L[G] we de�ne the sequence (Dµ | µ ∈ Y ) as follows. Let fG : κ×ω1 →
κ be the generic function added by G; i.e., fG maps {µ}×ω1 onto µ for each
µ < κ and is forced with countable conditions. For each L-regular µ ∈ [ωL2 , κ)
let (σµi | i < (µ+)L) enumerate the nice P (< µ)-names for subsets of µ. Then
we take Dµ to be the interpretation of the P (< µ)-name σµ

fG((µ+)L,0)
via

the P (< µ)-generic G ∩ P (< µ) (provided this is stationary in µ; Dµ = µ
otherwise).

We claim that the sequence (Dmu | µ ∈ Y ) works. Indeed, suppose that
the condition p forces Ṡ to be a nice P -name for a stationary subset of Sω2

ω

and C is a club in κ; we show that p has an extension q forcing Ṡ ∩ µ = Dµ

for some µ in Y ∩ C. This su�ces, as any club subset of κ = ω2 in L[G]
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contains a club subset in L. Apply Π1
1 re�ection to get µ ∈ Y ∩ C so that p

belongs to P (< µ) and p forces that Ṡ ∩ µ is stationary in µ. Now extend p
to q by choosing q((µ+)L, 0) to be i where Ṡ ∩ µ is the P (< µ)-name σµi . 2

11.-12.Vorlesungen

Clinton's Question

I'll give a partial answer to a question of Clinton Conley: What is the
relationship between E0 and Eκ

λ?

Theorem 21 It is consistent that under Borel reducibility, Eω2
ω1

and Eω2
ω are

incomparable and neither reduces to E0.

Theorem 22 In L, E0 reduces to both Eω2
ω and Eω2

ω1
.

Proof of Theorem 21. First recall the basic technical lemma that we used to
get the incomparability of Eω2

ω1
and Eω2

ω :

Lemma 23 Suppose that X ⊆ Sω2
ω is stationary but has nonstationary in-

tersection with α for all α ∈ Sω2
ω1
. Suppose that (T, l) is a code for a Borel

reduction from EX to Eω2
ω1
. Then (T, l) is not such a code in some generic

extension by an ω2-closed forcing of size ω2.

This was proved as follows: First add an ω2-Cohen set G. If (T, l) does not
code a Borel reduction from EX to Eω2

ω1
in V [G] then we are done. Otherwise

let f be the Borel reduction coded by (T, l) in V [G] and note that G ∩
X is stationary. As f is a reduction it follows that (f(G ∩ X)4f(∅)) ∩
Sω2
ω1

= Z is stationary. Now force to kill the stationarity of G∩X. Using the
hypothesis that X is a �nonre�ecting� stationary set, this forcing preserves
the stationarity of Z and therefore �kills� the reduction (T, l). Finally, the
two-step iteration ω2-Cohen ∗ (Kill stationarity of G ∩X) is ω2-closed.

The existence of X as in the Lemma follows from 2ω1 and therefore holds
in L. By an ω3-iteration one can use the Lemma to kill all Borel codes for
reductions of EX to Eω2

ω1
. As EX is Borel reducible to Eω2

ω , it follows that in
the resulting model, Eω2

ω is not Borel-reducible to Eω2
ω1
.

There is a similar lemma for killing reductions from Eω2
ω1

to Eω2
ω , using the

fact that the entire Sω2
ω1

trivially has �nonstationary� intersection with each
α ∈ Sω2

ω .
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Now the point is that the same technique shows how to kill reductions
from Eω2

ω or Eω2
ω1

to E0.

Lemma 24 Suppose that (T, l) is a code for a Borel reduction from either
Eω2
ω or Eω2

ω1
to E0. Then in an ω2-closed forcing extension, (T, l) is no longer

such a code.

Proof. Suppose that (T, l) codes a Borel reduction from Eω2
λ to E0 (λ = ω or

ω1) and add an ω2-Cohen set G. If this kills the code (T, l) then we are done.
Otherwise, let f be the reduction coded by (T, l) in V [G]. As G ∩ Sω2

ω = Z
is stationary and f is a reduction, we have that f(G)4f(∅) is unbounded.
Now force to kill the stationarity of Z. As before, the two-step iteration ω2-
Cohen ∗ (Kill the stationarity of Z) is equivalent to an ω2-closed forcing.
As f(G)4f(∅) trivially remains unbounded, (T, l) no longer codes a Borel
reduction in the extension. 2

Proof of Theorem 22. Let (Dα | α < ω2) be the canonical ♦ sequence in L at
ω2. Then for each X ⊆ ω2, both of the following sets are stationary:

{α ∈ Sω2
ω | Dα = X ∩ α}

{α ∈ Sω2
ω1
| Dα = X ∩ α}

Now to reduce E0 to E
ω1
λ (λ = ω or ω1) sendX to f(X) = {α ∈ Sω2

λ | Dα\ᾱ =
(X ∩α) \ ᾱ for some ᾱ < α}. If X4Y is bounded by α it follows that f(X),
f(Y ) agree on all ordinals in Sω2

λ greater than α. If X4Y is unbounded it
follows that f(X), f(Y ) disagree on all co�nality λ limit points α of X4Y
where Dα = X ∩ α. So we get the desired reductions. 2

Remark. It follows by work of Shelah that assuming GCH, E0 is Borel re-
ducible to Eκ

λ except for the case κ = µ+, λ = the co�nality of µ. What
happens in this case remains open.

Another application of �code-killing�

Another special case of our general lemma for killing codes for Borel
reductions is the following.

Lemma 25 Suppose that S, T are disjoint stationary subsets of Sκλ and (T, l)
is a code for a Borel reduction from ES to ET . Then in a forcing extension
by a κ-closed forcing of size κ, (T, l) is no longer such a code.
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Again, the key point in the proof is that S ∩ α is �nonstationary� for all
α ∈ T , simply because the ordinals in S and T all have the same co�nality.

Now we use this to prove:

Theorem 26 Consistently: There is an injective, order-preserving embed-
ding from (P(κ),⊆) into the partial order of Σ1

1 equivalence relations under
Borel reducibility.

It won't be proved here, but one can in fact get the embedding to have
range included in the ∆1

1 equivalence relations. The case of Borel equivalence
relations is open:

Question.Are there Borel equivalence relations which are incomparable under
Borel reducibility (κ uncountable)? Is this at least consistent?

Proof of Theorem 26. Let (Si | i < κ) be a partition of Sκλ into κ-many
pairwise disjoint stationary sets. For any A ⊆ κ let E(A) be the equivalence
relation EX(A) where X(A) =

⋃
i∈A Si. If A is a subset of B then E(A) is

Borel reducible to E(B) because X(A) is a subset of X(B). Now suppose
that A is not a subset of B and choose α ∈ A \B. Of course E({α}) is Borel
reducible to E(A) and E(B) is Borel reducible to E(κ \ {α}). So to get the
desired conclusion that E(A) is not Borel reducible to E(B) it would su�ce
to know that that E({α}) is not Borel reducible to E(κ \ {α}).

By Lemma 25 there is for each α a κ-closed forcing of size κ which kills
a code for a Borel reduction of E({α}) to E(κ \ {α}). By iteration, we can
kill all such codes for all α and thereby obtain the desired embedding. 2

Shelah Classi�cation and Higher Descriptive Set Theory

Let T be countable, complete and �rst-order. Then T is classi�able i�
there is a �structure theory� for its models. Example: Algebraically closed
�elds (transcendence degree).

T is unclassi�able otherwise. Example: Dense linear orderings.

Shelah's Characterisation (Main Gap): T is classi�able i� T is superstable
without the OTOP and without the DOP.
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A classi�able T is deep i� it has the maximum number of models in all
uncountable powers. Example: Acyclic undirected graphs, every node has
in�nitely many neighbours.

Another way of classifying theories uses the higher descriptive set theory
that we have developed. For simplicity assume GCH and κ = λ+ where λ is
uncountable and regular. Isomκ

T is the isomorphism relation on the models
of T of size κ.

Theorem 27 (SDF-Hyttinen-Kulikov)
(a) T is classi�able and shallow i� Isomκ

T is Borel.
(b) T is classi�able i� for all regular µ < κ, ESκµ is not Borel reducible to
Isomκ

T .
(c) In L, T is classi�able i� Isomκ

T is ∆1
1.

The proof uses Ehrenfeucht-Fraissé games:

The Game EFκt (A,B)

A, B are structures of size κ, t is a tree. Player I chooses size < κ subsets
of A∪B and nodes along an initial segment of a branch through t; player II
builds a partial isomorphism between A and B which includes the sets that
player I has chosen. Player II wins i� he survives until a co�nal branch is
reached.

The tree t captures Isomκ
T i� for all size κ models A, B of T , A ' B i�

Player II has a winning strategy in EFκt (A,B).

Now there are 4 cases:

Case 1: T is classi�able and shallow.

Then Shelah's work shows that some well-founded tree captures Isomκ
T .

We use this to show that Isomκ
T is Borel.

Case 2: T it classi�able and deep.

Then Shelah's work shows that no �xed well-founded tree captures Isomκ
T .

We use this to show that Isomκ
T is not Borel.
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Shelah's work also shows that L∞κ equivalent models of T of size κ are
isomorphic. This means that the tree t = ω (with a single in�nite branch)
captures Isomκ

T . As the games EFκω(A,B) are determined, this shows that
Isomκ

T is ∆1
1.

We must also show: ESκµ (equality modulo the µ-nonstationary ideal) is
not Borel reducible to Isomκ

T for any regular µ < κ. This is because (in this
case) Isomκ

T is absolutely ∆1
1, whereas µ-stationarity is not.

Now we look at the unclassi�able cases. Recall: Classi�able means super-
stable without DOP and without OTOP.

Case 3: T is unstable, superstable with DOP or superstable with OTOP.

Work of Hyttinen-Shelah and Hyttinen-Tuuri shows that in this case no
tree of size κ without branches of length κ captures Isomκ

T . This can be used
to show Isomκ

T is not ∆1
1.

But ESκλ ≤B Isomκ
T is harder. Following Shelah, there is a Borel map

S 7→ A(S) from subsets of κ to Ehrenfeucht-Mostowski models of T built on
linear orders so that A(S0) ' A(S1) i� S0 = S1 modulo the λ-nonstationary
ideal.

Case 4: T is stable but not superstable.

This is the hardest case and requires some new model theory. Hyttinen
replaces Ehrenfeucht-Mostowski models built on linear orders with primary
models built on trees of height ω+1 to show ESκω ≤B Isomκ

T . (We don't know
if ESκλ ≤B Isomκ

T or if Isomκ
T could be ∆1

1 in this case.)

Now we have all we need to prove the Theorem mentioned earlier:

(a) T is classi�able and shallow i� Isomκ
T is Borel.

We showed that if T is classi�able and shallow then Isomκ
T is Borel and

if it is classi�able and deep it is not. If T is not classi�able then some ESκµ
Borel reduces to Isomκ

T , so the latter cannot be Borel.

(b) T is classi�able i� for all regular µ < κ, ESκµ is not Borel reducible to
Isomκ

T .
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We showed that if T is not classi�able then ESκµ is Borel reducible to
Isomκ

T where µ is either λ or ω. We also showed that if T is classi�able and
deep then no ESκµ is Borel reducible to Isomκ

T , by an absoluteness argument.
When T is classi�able and shallow there is no such reduction as Isomκ

T is
Borel.

(c) In L, T is classi�able i� Isomκ
T is ∆1

1.

We showed that if T is classi�able then Isomκ
T is ∆1

1, in ZFC. If T is not
classi�able then ESκµ Borel reduces to Isomκ

T for some µ, and in L, ESκµ is not
∆1

1.

13.-14.Vorlesungen

De�nability of Isomorphism relations

We assume GCH and �x κ to be the successor of a regular and at least
ω2. Then the de�nability of Isomκ

T for a countable, complete �rst-order the-
ory T is closely related to the stability-theoretic properties of T . To estab-
lish this we �rst have to understand the de�nability of Isomκ

T in terms of
Ehrenfeucht-Fraissé games. In what follows we refer to the relation Isomκ

T

simply as �isomorphism for T �. Recall that the tree t captures isomorphism
for T i� for any models A,B of T of size κ, A and B are isomorphic i� II
has a winning strategy in the game EFκt (A,B).

Theorem 28 Isomorphism for T is Borel i� some well-founded, rooted tree
t of size κ captures isomorphism for T .

Theorem 29 (a) If isomorphism for T is ∆1
1 then some rooted tree t of size

κ without branches of length κ captures isomorphism for T .
(b) Let t∗ω be the ill-founded tree consisting of a single branch of ordertype ω.
Then t∗ω captures isomorphism for T i� any two L∞κ equivalent models of T
of size κ are isomorphic, and in this case isomorphism for T is ∆1

1.

Proof of Theorem 28. First suppose that some well-founded, rooted tree t
of size κ captures isomorphism for T ; we show that isomorphism for T is
Borel. This means that for some well-founded, rooted tree u of size κ and
labelling h of the terminal nodes of u by open subsets of κκ× κκ, Aη,Aξ are
isomorphic i� player II has a winning strategy in the game G(u, h, (η, ξ)),
where η, ξ ∈ κκ are codes for the models Aη,Aξ of T with universe κ.
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We take u to be the tree of all sequences ((p0, A0), f0, · · · , (pn, An), fn)
which are valid positions in a game EFκt (A,B) where A,B have universe κ.
I.e., we require:

1. pi ∈ t and Ai ⊆ κ, card(Ai) < κ.
2. fi is a partial function of size < κ from κ to κ whose domain and range
includes Ai.
3. The pi's form an initial segment of a branch through t, the Ai's and fi's
are increasing.

Then for the labelling h we take the value of h on the terminal node ((p0, A0), f0, · · · , (pn, An), fn)
of u to be the set of pairs (η, ξ) such that fn is a partial isomorphism from Aη
to Aξ. This is an open set because it uses only boundedly much information
about the structures Aη, Aξ.

It is easy to convert a winning strategy for II in the game EFκt (Aη,Aξ)
into a winning strategy for II in the game G(u, h, (η, ξ)) and vice-versa. By
hypothesis isomorphism for T is captured by the tree t and therefore we
conclude that isomorphism for T is Borel.

For the converse we need a theorem of Lopez-Escobar. We say thatB ⊆ κκ

is closed under permutations i� whenever Aη is isomorphic Aξ, η belongs to
B i� ξ belongs to B.

Theorem 30 A subset B of κκ is Borel and closed under permutations i�
for some sentence ϕ of Lκ+κ, B = {η | Aη � ϕ}.

Given this, argue as follows. A basic connection between Ehrenfeucht-
Fraissé games and in�nitary languages is the following.

Lemma 31 Let A, B be models of size κ. Then A and B are Lκ+κ equivalent
i� II has a winning strategy in EFκt (A,B) for each wellfounded tree t of size
κ. More exactly, A, B satisfy the same sentences of quanti�er-rank < α i� II
has a winning strategy in the game EFκtα(A,B) where tα is the tree of �nite
descending sequences through the ordinal α.

Now suppose that isomorphism for T is Borel. Then by the (2-dimensional
version of the) Lopez-Escobar Theorem there is a sentence ϕ of Lκ+κ such that
Aη, Aξ are isomorphic i� the model (Aη,Aξ) satis�es ϕ. If we let α be greater
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than the quanti�er rank of ϕ then we claim that tα captures isomorphism for
models of T (of size κ): Suppose that II has a winning strategy in EFκtα(A,B).
Then clearly II also has a winning strategy in EFκtα((A,B), (A,A)). It follows
by the choice of α that (A,B) and (A,A) are isomorphic and therefore A is
isomorphic to B.

Proof of Theorem 30. The direction from right to left is immediate, as one
shows by induction on the rank of ϕ that for any parameter choice ~a = (ai |
i < α) from κ, the set of η such that Aη � ϕ(~a) is Borel.

Now we turn to the harder direction, using �Vaught transforms�. Note
that the set Sκ of permutations of κ is Borel. For any u ∈ κ<κ we let ū
denote the set of permutations p ∈ κκ such that u ⊆ p. Then for any A ⊆ 2κ

and u ∈ κ<κ de�ne

A∗u = {η | {p ∈ ū | η ◦ p ∈ A} is comeager in ū}.

We let Z denote the set of Borel A ⊆ 2κ such that A∗u is Lκ+κ de�nable for
all u ∈ κ<κ. We show that all Borel sets belong to Z. The desired result then
follows by setting u = ∅, as A∗∅ = A for sets A closed under permutations.

It is straightforward to show that basic open sets belong to Z. For inter-
sections of size κ use the formula⋂

i<κ(A
∗u
i ) = (

⋂
i<κAi)

∗u.

For complements we use:

(∗) η ∈ (∼ A)∗u i� for all v ⊇ u, η /∈ A∗v.

Proof of (∗): Here we use the property of Baire for Borel sets. Suppose η /∈
(∼ A)∗u. Then
B = {p ∈ ū | η ◦ p ∈ A} is not meager in ū→
There is a v̄ ⊆ ū such that B is comeager in v̄ →
There exists v ⊇ u, η ∈ A∗v.

Conversely, if η ∈ (∼ A)∗u then

{p ∈ ū | η ◦ p ∈ A} is meager →
For all v ⊇ u, {p ∈ v̄ | η ◦ p ∈ A} is meager →
For all v ⊇ u, η /∈ A∗v.
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This completes the proof of Theorem 30 and therefore also of Theorem
28.

Proof of Theorem 32 (b) Note that the games EFκt∗ω(A,B) are closed games
for player II and therefore determined. If t∗ω captures isomorphism for T and
A,B are not isomorphic then I must have a winning strategy in EFκt∗ω(A,B)
and therefore for some α, I will have a winning strategy in the game EFκtα(A,B);
it follows that A, B cannot be Lκ+κ equivalent. And again, as the games
EFκt∗ω(A,B) are determined, it follows that isomorphism for T is ∆1

1.

15.-16.Vorlesungen

Theorem 32 (a) If isomorphism for T is ∆1
1 then some tree t of size κ

without branches of length κ captures isomorphism for T .
(b) Let t∗ω be the ill-founded tree consisting of a single branch of ordertype ω.
Then t∗ω captures isomorphism for T i� any two L∞κ equivalent models of T
of size κ are isomorphic, and in this case isomorphism for T is ∆1

1.

We proved (b); we now turn to (a). First we need a lemma.

Lemma 33 Let Z be Σ1
1 and write

ξ ∈ Z i� t(ξ) has a κ-branch

where t is a tree on κ<κ × κ<κ and t(ξ) = {p ∈ κ<κ | (ξ � |p|, p) ∈ t}. If Z is
∆1

1 then there is a tree t′ of size κ with no κ-branch such that

ξ ∈ Z i� t(ξ) � t′

(where for trees u and v, u ≤ v means that u embeds into v, i.e., there is a
strictly order-preserving map from u to v).

Proof. If Z is ∆1
1 then choose t̄ to be a tree of size κ such that

ξ /∈ Z i� t̄(ξ) has a κ-branch.

Now form the tree t′ consisting of triples (p, q, r) where p, q, r have the same
length, (p, q) belongs to t and (p, r) belongs to t̄. Clearly t′ has no κ-branch,
else the �rst components of that branch would yield an element of both Z
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and its complement. If ξ does not belong to Z then choose a branch η through
t̄(ξ) and embed t(ξ) into t′ by sending q to (ξ � |q|, q, η � |q|). 2 (Lemma 33)

Proof of Theorem 32 (a). Suppose that isomorphism is ∆1
1. We want to pro-

duce a tree u of size κ with no κ-branch that captures isomorphism for T .

Let t be the tree of partial isomorphisms from Aη to Aξ. (Recall that Aξ is
the model coded by ξ.) As isomorphism is ∆1

1 we can apply Lemma 33 to get
a tree u of size κ without κ-branches such that Aη ' Aξ i� t(η, ξ) � u. We
show that u captures isomorphism for T . Suppose not and choose ξ1, ξ2 such
that Aξ1 and Aξ2 are not isomorphic yet II wins the game EFκu(Aξ1 ,Aξ2).

Claim 1. Let v be a tree and let σv denote the tree of downward-closed linear
subsets of v. Then there is no embedding of σv into v.

Proof. Suppose that g were such an embedding and de�ne

x0 = g(∅)
xα = g({y ∈ v | y ≤v xβ for some β < α})

Then the xα's yield a branch of length the ordinals through v, contradiction.
2

Claim 2. There is an embedding of σu into t(ξ1, ξ2).

It follows from the Claims that t(ξ1, ξ2) does not embed into u, contra-
dicting the fact that Aξ1 is not isomorphic to Aξ2 and the choice of u.

Proof of Claim 2. Let τ be a winning strategy for II in EFκu(Aξ1 ,Aξ2). We
de�ne an embedding g of σu into t(ξ1, ξ2) inductively. If s belongs to σu and
g is de�ned for s′ <σu s, then play EFκu up to sup(s) ∈ u. If s does not
contain its sup then put g(s) = ∪s′<σusg(s′). Otherwise apply II's strategy
to produce a partial isomorphism να of length α extending ∪s′<σusg(s′) and
set g(s) = να. 2

Theorem 32 (b) is used to show that isomorphism is ∆1
1 for classi�able

theories. Theorem 32 (a) shows that it is not ∆1
1 for most unclassi�able

theories; the exceptional case is that of �strictly stable� theories, i.e., theories
which are stable but not superstable.
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It is open whether isomorphism is provably not ∆1
1 for strictly stable

theories. However, for all unclassi�able theories there is some λ < κ such that
Eκ
λ is Borel reducible to isomorphism, so we get a provable characterisation

of classi�ability via the next result.

Theorem 34 If T is classi�able then Eκ
λ is not Borel reducible to isomor-

phism for λ < κ.

What we use about classi�ability in the following proof is the following
characterisation due to Shelah: T is classi�able i� the tree t∗ω captures iso-
morphism for T , i.e., models A, B of T of size κ are isomorphic i� II wins
the game EFκt∗ω(A,B). Note that the latter is equivalent to I not having a
winning strategy in EFκt∗ω(A,B), as this game is closed for II.

Proof. Suppose that r : 2κ → 2κ were a Borel reduction of Eκ
λ to Isomκ

T . So
for each η ∈ 2κ, r(η) is a model of T and ηEκ

λξ i� Ar(η) is isomorphic to Ar(ξ).
Let M be a transitive, κ-closed model of ZF− containing a code for r and
consider P = κ-Cohen forcing overM . Choose a condition p ∈ P which either
forces the models Ar(~0) and Ar(ġ) to be isomorphic or forces them to not be

isomorphic, where ~0 is the constant sequence with value 0 and ġ denotes the
κ-Cohen generic. Note that since T is classi�able, II has a winning strategy
in EFκt∗ω(Ar(~0),Ar(ġ)) when they are isomorphic, and otherwise I does.

But we can choose γ0, γ1 below p to be κ-Cohen generic over M such
that, identifying them with subsets of κ, γ0 is nonstationary and γ1 contains
a club in the real world. If p forces Ar(~0) and Ar(ġ) to be isomorphic then
we get a contradiction using γ1, as then Ar(~0) and Ar(γ1) are isomorphic in

M [γ1] and therefore in the real world, whereas ~0 and γ1 are clearly not Eκ
λ

equivalent. If p forces Ar(~0) and Ar(ġ) to not be isomorphic then we get a
contradiction using γ0, as then Ar(~0) and Ar(γ0) are not isomorphic in M [γ1],
hence I wins EFκt∗ω(Ar(~0),Ar(γ0)) in M [γ0], hence I wins EFκt∗ω(Ar(~0),Ar(γ0)) in
the real world (as M is closed under < κ sequences) and hence Ar(~0) and

Ar(γ0) are not isomorphic in the real world, contradicting the fact that ~0 and
γ0 are Eκ

λ equivalent. 2
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