J.E. Fenstad, R.O. Gandy, G.E. Sacks (Eds.) GENERALIZED RECURSION THEORY II © North-Holland Publishing Company (1978)

Negative Solutions to Post's Problem, I

Sy D. Friedman Department of Mathematics University of Chicago Chicago, Illinois 60637

§0. Introduction

For background in β -Recursion Theory, see [2] and our earlier paper in this volume. In [2], [3] the following version of Post's Problem is solved for a large class of ordinals β :

(*) There are β -r.e. sets A, B s.t. A $\not\leq_{w\beta}$ B, B $\not\leq_{w\beta}$ A.

It was conjectured in [2] that (*) holds for arbitrary limit ordinals β . It is the purpose of this note to exhibit a failure of (*) for some primitive-recursively closed β . The results of [2], [3] imply that such a β must be strongly inadmissible and for such a β , $\beta^* = \Sigma_1$ projectum of β must be singular with respect to β -recursive functions.

Thus the priority method can be applied to many but not all limit ordinals. We are not at present able to determine exactly for which ordinals (*) holds, but make the

Conjecture (*) holds if and only if either β is weakly admissible or β^* is regular with respect to β -recursive functions.

Thus, we feel that the positive results of [2],[3] are best possible. A conceptual explanation for our Conjecture is as follows: Define $K \subseteq \beta$ to be $\frac{\beta^* - \text{finite}}{\beta^* - \text{finite}}$ if K is β -finite of β -cardinality less than β^* . Then our Conjecture says that (*) holds if and only if β cannot be written as the β -recursive union of β^* -finitely many β^* -finite sets.

SY D. FRIEDMAN

A key ingredient in our proof is a use of stationary sets and Fodor's Theorem much in the way Silver used them in his work ([7]) on the Generalized Continuum Hypothesis at singular cardinals of uncountable cofinality. We have found Prikry's proof ([5]) of Silver's Theorem extremely useful.

§1. Statement of Theorem and Preliminaries

Fix $\beta = \omega^{\text{th}}$ primitive-recursively closed ordinal greater than $\chi_{\omega_1}^{\text{L}}$. Let $f: \omega \neq \beta$ be defined by $f(n) = n^{\text{th}}$ primitive-recursively closed ordinal greater than $\chi_{\omega_1}^{\text{L}}$. Then f is β -recursive, so β is strongly inadmissible and $\Sigma_1 \text{ cf } \beta = \omega$. It now follows that $\beta^* = \chi_{\omega_1}^{\text{L}}$ and thus β^* is singular with respect respect to the β -finite function d: $\omega_1^{\text{L}} \neq \beta^*$ given by $d(\alpha) = \chi_{\alpha}^{\text{L}}$. Fix $C = \{\langle e, x \rangle \mid \{e\}(x) \downarrow\}$, a complete β -r.e. set.

<u>Theorem</u>. If A is β -r.e. then either A = $\beta \phi$ or C $\leq_{w\beta} A$.

As B β -r.e. implies that $B \leq_{f\beta} C$, the Theorem shows that (*) fails for β . Moreover, any β -recursive set is β -reducible to Cusing only finite neighborhood conditions on C and thus β -reducible to any set A s.t. $C \leq_{w\beta} A$. So if \underline{d} is a β -r.e. degree then $\underline{0} < \underline{d} \longrightarrow \underline{0}^{1/2} \leq \underline{d}$. In a future paper we shall exhibit a primitive-recursively closed ordinal where $\underline{0}, \underline{0}^{1/2}$ and $\underline{0}'$ are the only β -r.e. degrees.

We end this section by reducing our Theorem to a lemma. This lemma has as its forerunner a theorem of Simpson ([8], page 71) who established it when $\beta = (\mathcal{K}_{\omega}^{L})^{+}$, the first admissible greater than \mathcal{K}_{ω}^{L} :

Main Lemma. If $A \subseteq \beta^*$ is β -r.e. then either A is β -finite or $C \leq {}_{w\beta}A$.

<u>Proof of Theorem from Lemma.</u> Let $A \subseteq \beta$ be β -r.e. If $A \cap f(n)$ is not β -finite for some n, then an application of the Lemma shows that $C \leq_{w\beta} A \cap f(n) \leq_{\beta} A$ so we are done. Otherwise, let $K: L_{\beta} \xrightarrow{1-1} \beta^*$ be β -recursive and define $l(n) = K(A \cap f(n))$. Then $l: \omega \rightarrow \chi_{\omega_1}^L$ and as l is constructible, l is β -finite. But then $K^{-1} l$ is a β -recursive function listing $A \cap f(0), A \cap f(1), \ldots$. From this it is easily seen that $A = {}_{\beta} \emptyset$. \neg

§2. Proof of Main Lemma.

Let $A \subseteq \beta^*$ be β -r. e. There is an injection $L_{\beta} \xrightarrow{1-1} \beta^*$ which is Σ_1 over L_{β} with parameter $\mathcal{X}_{\omega_1}^L$. This implies that there is a complete β -r. e. set $C^* \subseteq \beta^*$ which is Σ_1 over L_{β} with parameter $\mathcal{X}_{\omega_1}^L$ and that A is Σ_1 definable over L_{β} with parameter of the form $p = \langle \mathcal{X}_{\omega_1}^L, p_0 \rangle$, $p_0 \in L_{\mathcal{X}_{\omega_1}^L}$. We will show that either A is β -finite or $C^* \leq_{w\beta} A$.

Let h(i, x) be a Σ_{1}^{p} Skolem Function for $L_{\beta^{i}}$ i.e., h is a partial function from $\omega \times L_{\beta}$ into L_{β} , h is Σ_{1} over L_{β} with parameter p and if $\varphi(x, y)$ is a Σ_{1} formula with parameter p, then for some i and all $x \in L_{\beta}$,

$$L_{\beta} \models \exists y \, \varphi(x, y) \longrightarrow h(i, x) \text{ is defined and } L_{\beta} \models \varphi(x, h(i, x)) \text{ .}$$

Now fix $\lambda_0 < \omega_1^L$ such that $P_0 \in L_{\lambda_0}$. If $\lambda_0 \leq \lambda < \omega_1^L$ then $h[\omega \times \chi_{\lambda}^L]$ is a Σ_1^p -elementary substructure of L_β and so $C^* \cap h[\omega \times \chi_{\lambda}^L]$ is Σ_1^p Definable over $h[\omega \times \chi_{\lambda}^L]$. The function h has a natural approximation $h_n = (h)^{L_f(n)}$ and then h_n is a Σ_1^p Skolem Function for $L_{f(n)}$.

Now for each $\lambda \geq \lambda_0$, $n < \omega$, $h_n [\omega \times \chi_{\lambda}^L] \cap \chi_{\lambda+1}^L$ is an ordinal. Call it S_{λ}^n . Then $\mathcal{X}_{\lambda}^L < S_{\lambda}^1 < S_{\lambda}^2 < \dots$ and if $S_{\lambda} = \bigcup_n S_{\lambda}^n$ then $S_{\lambda} = h [\omega \times \mathcal{X}_{\lambda}^L] \cap \mathcal{X}_{\lambda+1}^L$. <u>Lemma 1.</u> Let $X \subseteq \omega_1^L$ be unbounded, $Y = \{S_{\lambda} | \lambda \in X\}$. Then $C^* \leq_{f\beta} Y$.

The idea of the proof is to compare the "growth rate" of A with that of the sequence $\{S_{\lambda} | \lambda \ge \lambda_0\}$. The "growth rate" of A is measured by $f_A: \omega_1 \rightarrow \sum_{\omega_1}^{L} defined by:$ $f_A(\lambda) = \mu \gamma [A \cap \sum_{\lambda}^{L} is definable over L_{\gamma}].$

<u>Lemma 2.</u> $f_A(\lambda) \leq \hat{S}_{\lambda}$ for all $\lambda \geq \lambda_0$.

<u>Proof.</u> It is enough to show that $A \cap \mathfrak{K}^{L}_{\lambda}$ is definable over $L_{\mathfrak{K}_{\lambda}}$. But as in the proof of Lemma 1, if $A = \{x \mid L_{\beta} \models \varphi(x, p)\}, \varphi \Sigma_{1}$, then:

$$A \cap \mathfrak{S}_{\lambda}^{L} = \{ \mathbf{x} < \mathfrak{S}_{\lambda}^{L} \mid L_{\mathfrak{S}_{\lambda}} \models \varphi(\mathbf{x}, \mathbf{p}_{\lambda}) \}, \ \lambda \geq \lambda_{0} . \quad -$$

Now there are two cases. Either $f_A(\lambda) \geq S_{\lambda}$ for unboundedly many $\lambda < \omega_1^L$, or $f_A(\lambda) < S_{\lambda}$ for sufficiently large $\lambda < \omega_1^L$. In the first case we show that $C^* \leq_{w\beta} A$. In the second case, A is β -finite.

 $\underline{\text{Lemma 3.}} \quad \text{If } f_{A}(\lambda) \geq S_{\lambda} \text{ for unboundedly many } \lambda < \omega_{1}^{L} \text{ then } C^{*} \leq_{w\beta} A. \\ \underline{\text{Proof.}} \quad \text{Let } X = \{\lambda \mid f_{A}(\lambda) \geq S_{\lambda}\} \subseteq \omega_{1}^{L}. \text{ For } \lambda \in X, \\ L_{f_{A}}(\lambda) \models S_{\lambda} = \bigotimes_{\lambda+1}^{k}. \text{ Since } X \text{ is } \beta \text{-finite, this shows that} \\ Y = \{S_{\lambda} \mid \lambda \in X\} \leq_{w\beta} A \text{ and so we are done by Lemma 1. } - 1$

130

Lemma 4. If $f_A(\lambda) < S_{\lambda}$ for sufficiently large $\lambda < \omega_1^L$, then A is β -finite.

<u>Proof.</u> Suppose $f_A(\lambda) < S_{\lambda}$ for $\lambda \ge \lambda_1 \ge \lambda_0$. Define: $g(\lambda) = \mu n [f_A(\lambda) < S_{\lambda}^n]$, for $\lambda \ge \lambda_1$.

Then for some fixed n_0 ,

$$X = \{ \lambda \mid f_A(\lambda) < S_{\lambda}^{n_0} \}$$

is stationary in ω_1^L (with respect to constructible closed, unbounded sets).

At this point, the proof proceeds much as in [5].

For $\lambda \in X$, let $j_{\lambda} \colon \underset{\lambda}{L}_{n_0} \xrightarrow{1-1} \underset{\lambda}{\overset{\mu}{\longrightarrow}} be the <_L$ -least injection. We assume that $\lambda \in X \to \lambda$ a limit ordinal. Then

$$\lambda \in X \to j_{\lambda}(A \cap \overset{\bullet}{\mathfrak{Z}}_{\lambda}^{L}) < \overset{\bullet}{\mathfrak{Z}}_{\lambda}^{L} \to j_{\lambda}(A \cap \overset{\bullet}{\mathfrak{Z}}_{\lambda}^{L}) < \overset{\bullet}{\mathfrak{Z}}_{\lambda^{1}}^{L} \quad \text{some } \lambda^{1} < \lambda.$$

We therefore have a regressive function j on the stationary set X defined by:

$$j(\lambda) = \mu \lambda^{\dagger} [j_{\lambda}(A \cap \mathcal{B}_{\lambda}^{L}) < \mathcal{B}_{\lambda^{\dagger}}^{L}].$$

By Fodor's Theorem, there is an unbounded $X_0 \subseteq X$ and $\lambda_2 < \omega_1^L$ such that

$$\lambda \in X_0 + j(\lambda) < \lambda_2 + j_{\lambda}(A \cap \overset{L}{\mathfrak{b}}_{\lambda}^{L}) < \overset{L}{\mathfrak{b}}_{\lambda_2}^{L}$$

Now the function $f:X_0 \rightarrow \Re_{\lambda_2}^{L}$ defined by:

$$f(\lambda) = j_{\lambda}(A \cap \mathbf{\tilde{S}}_{\lambda}^{L}), \quad \lambda \in X_{0}$$

is β -finite. Moreover, the sequence $\{j_{\lambda}\}_{\lambda \in X}$ is definable over $L_{f(n_0)}$ and hence β -finite. But we have:

$$x \in A \iff \exists \lambda \in X_0[x \in j_{\lambda}^{-1}(f(\lambda))]$$

so A itself is β -finite. -

§3. Extensions

The techniques used here can be used to obtain further information about the α - and β -degrees. The following results will appear in future papers:

- 1) Assume V = L and let $\alpha = \Re_{\omega_1}$. Then the α -degrees $\geq 0'$ are well-ordered by \leq_{α} with successor given by α -jump. The α -jump operation on α -degrees is definable in terms of \leq_{α} .
- 2) Assume V = L and let $\beta = \omega_1^{\underline{st}}$ p.r. closed ordinal greater than \aleph_{ω_1} . Then the β -degrees are well-ordered with successor given by the 1/2- β -jump. The only β -r.e. degrees are $0, 0^{1/2}, 0^{1}$.
- 3) Let α = first stable ordinal greater than \Re_{ω_1} and $\beta = \aleph_{\omega_1}^{\text{st}}$ p.r. closed ordinal greater than α . Then there are incomparable β -r.e. degrees if and only if there are incomparable α -degrees α -r.e. in and above 0' if and only if 0[#] exists.
- 4) If 0^{\dagger} does not exist, then the Turing Degrees and the \Box_{ω_1} -degrees are not elementarily equivalent as partial-orderings. If κ is a Strongly Compact Cardinal, then the Turing Degrees and the $\Box_{\omega_1}(\kappa)$ -degrees are not elementarily equivalent as partial-orderings.

NEGATIVE SOLUTIONS TO POST'S PROBLEM, I

References

- 1. Friedman, Sy D., An Introduction to β -Recursion Theory, this volume.
- β-Recursion Theory, to appear.
- 3. _____, Post's Problem without Admissibility, to appear.
- 4. _____, Negative Solutions to Post's Problem, II, in preparation.
- 5. Prikry, Karel, On a Theorem of Silver, handwritten notes
- 6. Sacks, Gerald E. and Simpson, Stephen G., The α -Finite Injury Method, Annals of Mathematical Logic <u>4</u>, 1972
- Silver, Jack, On the Singular Cardinals Problem, Proceedings of the International Congress of Mathematicians in Vancouver, 1974.
- 8. Simpson, Stephen G., Thesis, M.I.T., 1971