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0 0. Introduction 

F o r  background in p-Recursion Theory, see [2] and our  ear l ier  paper in 

this volume. 

large class  of ordinals p:  

In [2], [3] the following version of Post 's  Problem i s  solved for  a 

(*) There a r e  p-r.e. sets  A , B  s.t. A i w p B .  B f w p A .  

It was conjectured in [2] that (*) holds for  arbi t rary limit ordinals p. 

purpose of this note to exhibit a failure of (*) for some primjtive-recursively 

closed p. The results of [2], [ 3 ]  imply that such a p must be strongly 

inadmissible and for  such a p, p* = Ci projectum of p must be singular with 

respect to p-recursive functions. 

It is the 

Thus the priority method can be applied to many but not all  limit ordinals. 

We a r e  not a t  present able to determine exactly for  which ordinals (*) holds, but 

make the 

Conjecture (*) holds if  and only i f  ei ther p i s  weakly admissible o r  p* is 

regular with respect to p-recursive functions. 

Thus. we feel that the positive results of [2], [3] a r e  best  possible. 

explanation for  our Conjecture i s  a s  follows: Define K C p to be j3 -finite if 

K i s  p-finite of p-cardinality l e s s  than p*. Then our  Conjecture says that (*) 

holds i f  and only i f  p cannot be written as the p-recursive union of @ -finitely 

many p -finite sets.  

A conceptual 
* 

* 
* 
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A key ingredient in our  proof i s  a use of stationary se t s  and Fodor 's  

Theorem much in the way Silver used them in his work ([7]) on the Generalized 

Continuum Hypothesis a t  singular cardinals of uncountable cofinality. We have 

found Prikry 's  proof ([5]) of Silver 's  Theorem extremely useful. 

$1. Statement of Theorem and Prel iminaries  
t h  

F ix  p = w primitive-recursively closed ordinal greater  than xL . 
w1 

Let f :  w + p be defined by f(n) = nth primitive-recursively closed ordinal 

greater  than x' 
Z cf p = w. 

respect to the p-finite function d :  wL -c p* given by d(a) = x t  . 
c = { < e , x >  1 {e)(x) 1 1, a complete p-r .e .  set. 

L . Then f is p-recursive,  so p i s  strongly inadmissible and 
O1 

It  now follows that p* = x and thus p* is singular with respect 
1 1 0 

Fix  
1 

Theorem. If A is p- r .  e. then either A = @ o r  C S A. 
B WB 

A s  B p-r .  e. implies that B < C ,  the Theorem shows that (*) fails  f a  
for  p. Moreover, any p-recursive set  i s  p-reducible to C using only finite 

neighborhood conditions on C and thus p-reducible to any se t  A s. t. 

C WpA . So if 

paper we shall exhibit a primitive-recursively closed ordinal where g, i '2  and 

9 

i s  a p-r.  e. degree then 2 < &--3 0" Sd. In a future 

1 
a r e  the only p-r .  e. degrees. 

We end this section by reducing our Theorem to  a lemma. This lemma 

has as i ts  forerunner a theorem of Simpson ([El, page 71) who established it when 

p = (xi )', the first admissible greater  than x : 
w 

* 
Main Lemma. If A E p i s  p-r. e. then either A is p-finite o r  

c 5,pA - 
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Proof of Theorem from Lemma. Let A E f3 be p- r .  e. If A A f(n) is 

not p-finite for some n, then an application of the Lemma shows that 

C < 

p-recursive and define f(n) = K(A n f(n)). 

structible, I is p-finite. But then K I i s  a P-recursive function listing 

A A f(O), A f(1),. . . . From this it is easily seen that A = $ . -1 

A n  f(n) < A so we a r e  done. Otherwise, let K:L % P* be 
-wP P P 

Then I : w -t xL and as f i s  con- 

-1 

B 

$2. Proof of Main Lemma. 

* 1-1 * 
1 Let A E P be P-r .  e. There is an injection L + P which is 2 

over L with parameter x . This implies that there is a complete p-r. e. 

set C p which is  Z1 over L with parameter xL and that A is Z 

definable over L with parameter of the form p = < , P o > ,  p 0 c  L . 
We will show that either A i s  p-finite or  C < A . 

P 

B wi * *  
1 B w1 

B 1 XL 
r L  

* O1 

- w P  
Let h(i,x) be a Z: Skolem Function for L 1 i.e., h is a partial 

B 
function from w X L into L h is Z over L with parameter p and i f  

q(x, y) i s  a 2 formula with parameter p. then for some i and all x E L 
P P '  i P 

B '  1 

LB k 3  yq(x, y) 4 h(i, x) is defined and L kq(x,  h(i,x)) . 
P 

L L 
1 A NOW fix A < W: such that P E L 

2;-elementary substructure of L and so C n h  [&xL] is  2' Definable over 

h [ w d A ] .  The function h has a natural approximation hn = (h) f(n) and then 

hn i s  a Zp  Skolem Function for L 

. If A. 5 A < w then h[wXX 1 is a 
O A0 * 0 

L P A 1 L  

f(n)' 1 
L L  Now for  each A 2 Ao, n < w, hn [wXxx  ]nK, +1 is an ordinal. Call it 

S:. Then xk < S: < S: < , . . and i f  sA = 2 sA n then Sx = h [ w X  x L L  I d A +  1. 
A 

L 
Lemma 1. Let X t w  be unbounded, Y ={s I A  6 X}. Then C* < Y. 

1 A -f0 
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rL  
A Proof. Let L be the transitive collapse of h[w X ] fo r  A L A o .  

L 

Let P , = < ( s  ) " , P o > .  - I f  C * =  { x t L  B B  I L  b q ( x , p ) }  where q is  Z: 1' 
w1 

then C * n x t  = {x < x," 1 LB, 1 q ( x ,  pA )}. So it  suffices to show that 
L A  

{ f  I A e X. A ,Ao} r f p Y .  But SA = ( xA+l) so L 4  k SA i s  regular, 
S A 

A 

while (S )* = s: so LA k S i s  singular. Thus S can be found 

@-recursively from S 

A S A t l  A A 

A '  -I 

The idea of the proof is  to compare the "growth rate" of A with that of 

the sequence {SAIA > A o } .  
L 

fA: w - x defined by: 

The "growth rate" of A i s  measured by 

w1 1 

I L  f A ( A )  = py[A n h, is  definable over L 1. 
Y 

h 
Lemma 2. f A ( A )  5 SA for  a l l  A > A o  . 
Proof. 

L 
It i s  enough to show that A n s, is definable over L . But 

2, - 
a s  in the proof of Lemma 1, i f  A = {x I LB q(x, p)}, qC1,  then: 

L L 
A n S, = { x <  S, I L, I = ~ ( P ( x , P ~ ) I .  k 0 .  i 

SA 

Now there a r e  two cases.  Either f (A) 2 SA fo r  unboundedly many A 
L A < w 1  , o r  f A ( A )  < SA for  sufficiently large A < wL 

show that C* < A. In the second case,  A is @-finite. 

In the first case we 
1 '  

-wP 

Lemma 3. If f A ( A )  1 SA fo r  unboundedly many A < wL then C* 5 A. 
1 WB 

L 
Proof. Let X = { A  [ fA(A) 2 SA} C wi . F o r  A t X, 

Since x i s  @-finite, this shows that 

- 
L 

Y = {SA(A e X} 5 w w , A  and so we a r e  done by Lemma 1. 

SA= x,,, . f A  (A) 

-I 
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L 
Lemma 4. If f ( h )  < S for sufficiently large A < w1 , then A is  

A X 

p-finite. 

Proof. Suppose f (A) < S for X LAi ? L o .  Define: - A A 

g(X) = pn[fA(h) < S:] , f o r  A LA1.  

0' 
Then for some fixed n 

X = { A  I f A ( X )  <Po) 
A 

i s  stationary in wL (with respect to constructible closed, unbounded sets). i 

A t  this point, the proof proceeds much as in [ 5 ] .  

F o r  X t X, le t  j,: LsnO 
1-1 x'; be the <L-least injection. We 

h 
assume that A 6 X - X a limit ordinal. Then 

L L 
X t X - jX(A n 8,) < 8; - jX(A fl x,) < %:, some XI < h. 

We therefore have a regressive function j on the stationary set X defined by: 

By Fodor's Theorem, there is an unbounded X C X and h < w: such that 0 -  2 

A exo - j(X) < X2 - jX(A n ) < BL . 
X2 

Now the function f:X - xk defined by: 

L 
2 

0 

f(X) = jX(A nBA), x exo 

i s  p-finite. Moreover, the sequence { j  } is  definable over L and 

hence p-finite. But we have: 

h X t X  f b 0 )  

so A itself is  p-finite. -/ 
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$ 3 .  Extensions 

The techniques used-here can be used to obtain fur ther  information about 

the a- and p-degrees. The following resul ts  will appear in future papers: 

Assume V = L and let a = 3 . Then the a-degrees  2 0' a r e  

well-ordered by I with successor  given by a-jump. The a-jump 

operation on a-degrees i s  definable in t e rms  of < . -a 

s t  Assume V = L and let  p = w - p. r. closed ordinal greater  than . 
Then the p-degrees a r e  well-ordered with successor  given by the 1 / 2 -  

w1 
1 

p-jump. The only p-r .  e. degrees  a r e  P, 1/2 , . 

Let a = f i r s t  stable ordinal g rea t e r  than xwl and p = x, 
closed ordinal greater  than a. 

degrees if  and only i f  there  a r e  incomparable a-degrees a-r. e. in and 

above 0'  if and only if  0' exists.  

p. r. 
1 

Then there a r e  incomparable p- r .  e .  

t If 0 does not exist ,  then the Turing Degrees and the 3 -degrees 

a r e  not elementarily equivalent as partial-orderings.  If K i s  a Strongly 
wi 

Compact Cardinal, then the Turing Degrees and the 7 

a r e  not elementarily equivalent a s  partial-orderings.  
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