Annals of Mathematics

Negative Solutions to Post's Problem, II
Author(s): Sy D. Friedman
Reviewed work(s):
Source: The Annals of Mathematics, Second Series, Vol. 113, No. 1 (Jan., 1981), pp. 25-43
Published by: Annals of Mathematics
Stable URL: http://www.jstor.org/stable/1971132
Accessed: 08/11/2011 07:51

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of Mathematics.

Negative solutions to Post's problem, II^{*}

By Sy D. Friedman

This paper is an application of the techniques of modern set theory to problems in ordinal recursion theory. We concentrate on the global structure of the β-degrees for both admissible and inadmissible β and we show:

Theorem $4(V=L)$. Let $\beta=\boldsymbol{\aleph}_{w_{1}}$ and $0^{\prime}=$ the β-degree of the complete β-r.e. set. Then the β-degrees greater than or equal to 0^{\prime} are well-ordered by \leqq_{β} with successor given by the β-jump.

Theorem $10(V=L)$. Let $\beta=\boldsymbol{X}_{\omega_{1}} \cdot \omega$. There is a well-ordered sequence $e_{0}<e_{1}<\cdots$ of β-degrees such that if e is an arbitrary β-degree then for some $\gamma, e_{\gamma} \leqq e<e_{i+1}$.

Moreover, if we assume the Generalized Continuum Hypothesis, the $\boldsymbol{\zeta}_{\omega,}$-degrees and the Turing degrees are not elementarily equivalent as partial orderings. If $V=L$ then the $\boldsymbol{\zeta}_{w_{1}}$-jump is definable just in terms of th ϵ ordering of $\boldsymbol{\aleph}_{\omega_{1}-}$-degrees.

These results are in sharp contrast with earlier ones in ordinal recursior theory (see [9|), which tend to show that the β-degrees have a very ricl structure. Thus our work here shows that the broader point of view ob tained by considering inadmissible β has led to a structure theory of impor tance even for the admissible case.

In [8], Sacks and Simpson first established a connection between Gödel techniques in the study of L and ordinal recursion theory. This paper fu thers this idea by relating deep results of Jensen on the fine structure of to the structure of the β-degrees. The application of methods of combin torial set theory, initiated in [1], is also greatly extended as we make kt use of techniques developed by Silver in [11] where he settles the singul cardinal problem at uncountable cofinalities.

Our earlier paper [2] is not a prerequisite for understanding the wo

[^0]reported here, though we do presume a familiarity with the basic notions of β-recursion theory (as described in [1]). In [2], we applied Fodor's Theorem and the theory of stationary sets to establish the $\leqq_{r \beta^{\beta}}$-comparability of any two β-r.e. sets when $\beta=\boldsymbol{K}_{\omega_{1}} \cdot \omega$. In Section 1 of this paper similar methods are applied to establish Theorem 4.

However, the deeper results require an excursion into the fine structure of L, where the theory of master codes enables us to identify explicitly the degrees appearing in Theorems 4 and 10. This is carried out for Theorem 4 in Section 2. Theorem 10 requires the introduction of some further recur-sion-theoretic ideas and is dealt with in Section 3.

There are natural versions of the above results when $\boldsymbol{K}_{w_{1}}$ is replaced by any singular cardinal of uncountable cofinality. However these results do not hold when $\boldsymbol{K}_{\omega_{1}}$ is replaced by a singular cardinal of countable cofinality, as we will discuss in [3]. We end our paper by listing some further results and open questions concerning both the countable cofinality case and the finer structure of the β-degrees.

1. Stationary sets and the $\boldsymbol{X}_{\omega_{1}}$-degrees

We assume $V=L$. Our first goal is to prove that if $\alpha=\boldsymbol{\aleph}_{w_{1}}$ then the α-degrees $\geqq 0^{\prime}$ are well-ordered by \leqq_{n}, where $0^{\prime}=\alpha$-degree of the complete α-r.e. set. This provides an example of a first-order difference between the partial-orderings of $\boldsymbol{\kappa}_{\omega_{1}}$-degrees and Turing degrees; indeed, the following sentence holds in the latter but not the former:

$$
\forall d \exists e \exists f(e \not \equiv d \cup f \text { and } f \not \equiv d \cup e)
$$

First-order differences in the language with jump were already discovered by Richard Shore (see [9]).

The proof technique used here is in fact imbedded in our earlier paper [2]. We continue to let α denote $\boldsymbol{K}_{w_{1}}$ (and to assume $V=L$).

Lemma 1. $C=\left\{\boldsymbol{K}_{\beta} \mid \beta<\omega_{1}\right\}$ has α-degree 0^{\prime}.
Proof. Note that C is II_{1} over

$$
L_{\alpha}: \gamma \in C \longleftrightarrow \gamma \geqq \omega \wedge \sim \exists \gamma^{\prime}<\gamma \exists f\left(f: \gamma \xrightarrow{1-1} \gamma^{\prime}\right) .
$$

So $C \leqq{ }_{\gamma} 0^{\prime}$. But every element of C is α-stable; i.e., $\gamma \in C \rightarrow L_{\gamma}$ is a Σ_{1-} elementary substructure of L_{α}. (This is proved in [8].). Thus, if $\phi(x)$ is a Σ_{1} formula defining (over L_{α}) a complete α-r.e. set A then for $K, H \in L_{\alpha}$:

$$
\begin{aligned}
& K \subseteq A \leftrightarrows \exists \gamma \in C\left(K \subseteq L_{\gamma} \wedge \forall \delta \in K, L_{\gamma} \models \phi(\delta)\right) \\
& H \leqq L_{\alpha}-A \leftrightarrows \exists \gamma \in C\left(H \leqq L_{\gamma} \wedge \forall \delta \in H, L_{r} \vDash \sim \phi(\delta)\right)
\end{aligned}
$$

So $A \leqq{ }_{r} C$.

Every $A \cong \alpha$ of α-degree $\geqq_{\alpha} 0^{\prime}$ has the same α-degree as an apparently much simpler set, its "cutoff" function.

Definition. For $A \subseteq \alpha$ define $f_{A}: \omega_{\bar{i}} \rightarrow \alpha$, the cutoff function for A, by $f_{A}(\delta)=\beta$ if $A \cap \boldsymbol{K}_{i}$ is the β th element in the canonical well-ordering $<_{L_{\alpha}}$ of L_{α}.

Thus we see that for all $\delta, f_{A}(\delta)<\boldsymbol{K}_{i+1}$. Note that $f_{A} X$ for X unbounded in ω_{1} determines f_{A} completely. The idea of comparing two sets A, B by comparing the growth-rates of f_{A}, f_{B} has its beginnings in Jack Silver's work on the Singular Cardinal Problem [11| and is made very explicit in Karel Prikry's proof [7] of Silver's theorem. It is this idea which we use here.

Lemma 2. Suppose $0^{\prime} \leqq{ }_{\alpha} A, 0^{\prime} \leqq{ }_{\alpha} B$. Then either $A \leqq{ }_{\alpha} B$ or $B \leqq_{\alpha} A$.
Proof. One of the sets $\left\{\delta \mid f_{A}(\delta) \leqq f_{B}(\delta)\right\},\left\{\delta \mid f_{A}(\delta) \geqq f_{B}(\delta)\right\}$ must be a stationary subset of ω_{1}. We assume that the former set is and proceed to show that $A \leqq{ }_{\alpha} B$.

It is enough to show that $f_{A} \mid X$ can be computed from B for some unbounded $X \subseteq \omega_{1}$.

For any $\alpha<\beta$, let c_{β} be the $<_{L}$-least injection of β into cardinality (β). Define functions g, h on $\left\{\delta \mid f_{A}(\delta) \leqq f_{B}(\delta)\right\}$ by

$$
\begin{aligned}
& g(\delta)=c_{f_{B^{(\delta)+1}}}\left(f_{A}(\delta)\right) \\
& h(\delta)=\text { least } \delta^{\prime} \text { such that } \quad g(\delta)<\boldsymbol{K}_{\dot{o}^{\prime}} .
\end{aligned}
$$

Then $g(\delta)<\boldsymbol{K}_{i}$ for all δ, so δ limit $\rightarrow h(\delta)<\delta$. By Fodor's Theorem, choose a stationary $X \subseteq \omega_{1}$ and δ_{0} such that $\delta \in X \rightarrow h(\delta)<\delta_{0}$.

But then $\delta \in X \rightarrow g(\delta)<\boldsymbol{K}_{\delta_{0}}$ so $g \upharpoonright X$ is α-finite (since any bounded subset of α is a α-finite). We can now compute $f_{A} \upharpoonright X$ from B by

$$
f_{A}(\delta)=c_{f_{B}(\delta)+1}^{-1}(g(\delta)), \quad \delta \in X .
$$

Note the heavy use of uncountable cofinality here (in order to apply Fodor's Theorem). It is known that Lemma 2 fails when α is replaced by \boldsymbol{K}_{ω}. (This is due to Leo Harrington and Bob Solovay independently and will be shown in [3].)

Our proof in fact shows:
Lemma 3. The α-degrees $\geqq_{\alpha} 0^{\prime}$ are well-ordered by \leqq_{N}.
Proof. The proof of Lemma 2 shows that if $0^{\prime} \leqq{ }_{N} A<_{\alpha} B$ then $\left\{\delta \mid f_{A}(\delta)<\right.$ $\left.f_{B}(\delta)\right\}$ contains a closed unbounded subset. Now if $A_{0}>_{\alpha} A>_{\alpha} \cdots$, each $A_{i} \geqq{ }_{\alpha} 0^{\prime}$, then $\left\{\delta \mid f_{A_{i+1}}(\delta)<f_{A_{i}}(\delta)\right\}$ contains a closed unbounded set for each so there must be δ such that $f_{A_{i+1}}(\delta)<f_{A_{i}}(\delta)$ for every i, as the countable intersection of closed unbounded sets is nonempty. Of course we have now
contradicted the well-foundedness of the ordinals.
It will be shown in $|3|$ that the $\boldsymbol{\aleph}_{\omega}$-degrees $\geqq 0^{\prime}$ are not well-founded.
We next establish that the successor of each α-degree $\geqq_{\alpha} 0^{\prime}$ is its α-jump. Our original proof of this fact made heavy use of the fine structure theory. Tony Martin later found a combinatorial proof. Subsequently we discovered a simpler combinatorial argument which we present here.

Theorem 4. The α-degrees $\geqq_{\kappa} 0^{\prime}$ are well-ordered by $\leqq_{\text {" }}$ with successor given by the α-jump.

Proof. We have only to show that $0^{\prime} \leqq{ }_{N} A{ }_{\alpha} B$ implies $A^{\prime} \leqq{ }_{N} B$ where $A^{\prime}=\alpha$-jump of A. Let $\varphi(x)$ be a Σ_{1} formula which defines A^{\prime} over $\left\langle L_{\alpha}, A\right\rangle$; i.e., $A^{\prime}=\left\{x \mid\left\langle L_{x}, A\right\rangle \vDash \varphi(x)\right\}$. For any $\gamma\left\langle\omega_{1}\right.$ we let $A_{\gamma}=\left\{x \mid\left\langle L_{\aleph_{\gamma}}, A \cap \boldsymbol{\zeta}_{r}\right\rangle \vDash\right.$ $\varphi(x)\}$ and $f_{\gamma}=f_{i_{i}}$, the cutoff function for A_{γ}. Then the sequence $\left\langle A_{\nabla} \mid \gamma<\omega_{1}\right\rangle$ is α-recursive in A. Thus for any $g: \omega_{1} \rightarrow \omega_{1}$, the function f_{g} defined by $f_{g}(\delta)=f_{g(\delta)}(\delta)$ is also α-recursive in A (as any such g is α-finite).

We compare f_{B} to $\sup _{y} f_{F}:$ If $\left\{\delta \mid f_{B}(\delta)<\sup _{\gamma} f_{\gamma}(\delta)\right\}$ is stationary then for some $g: \omega_{1} \rightarrow \omega_{1}$ the set $\left\{\delta \mid f_{B}(\delta)<f_{g}(\delta)\right\}$ is stationary. The proof of Lemma 2 actually shows: If $\left\{\delta \mid f_{B}(\delta) \leqq h(\delta)\right\}$ is stationary and $h \leqq{ }_{N} A$ then $B \leqq{ }_{N} A$. Thus as we have assumed that $A<{ }_{\alpha} B$ it must be the case that $\left\{\delta \mid \sup _{r} f(\delta) \leqq\right.$ $\left.f_{B}(\delta)\right\}$ contains a closed, unbounded set.

As in the proof of Lemma 2, for any $\beta<\alpha$ let c_{β} denote the $<_{L}$-least injection of β into cardinality (β). Now for limit $\delta<\omega_{1}, \boldsymbol{\aleph}_{i}$ has countable cofinality. Thus for stationary many δ we may choose an uncountable $X_{\delta} \subseteq \omega_{1}$ and $h(\delta)<\delta$ such that:

$$
\gamma \in X_{\delta} \longrightarrow c_{f_{B^{(\delta)}+1}}\left(f_{\gamma}(\delta)\right)<\boldsymbol{K}_{h^{(\delta)}} .
$$

Thus by Fodor's Theorem we may choose $\delta_{0}<\omega_{1}$ such that for stationary many δ :

$$
\begin{equation*}
\gamma \in X_{\dot{\delta}} \longrightarrow c_{f_{\beta^{(\delta)}+1}}\left(f_{\gamma}(\delta)\right)<\boldsymbol{\aleph}_{h\left(\delta_{0}\right)} . \tag{}
\end{equation*}
$$

We let $g(\delta, \gamma)=c_{f_{\beta^{(\delta)+1}}}\left(f_{r}(\delta)\right)$ and $S=\left\{\delta \mid\left({ }^{*}\right)\right.$ holds $\}$. For each $\beta<\alpha$ write $K(\beta)=y$ if y is the β th set in $<_{1}$. Then we see that for $\delta \in S$:

$$
A^{\prime} \cap \boldsymbol{K}_{i}=\bigcup_{i \in I_{\delta}} K\left(c_{f_{B^{(j)+1}}^{-1}}^{-1}(g(\delta, \gamma))\right) .
$$

As g, S and $\left\langle X_{\dot{\delta}} \mid \delta \in S\right\rangle$ are α-finite and K is α-recursive this shows that $A^{\prime} \leqq_{N} B$.

We note that there is an appropriate version of Theorem 4 if only the generalized continuum hypothesis (GCH) is assumed. In this case choose $A \subseteq \alpha$ such that $\left\{\boldsymbol{K}_{\dot{j}} \mid \delta<\omega_{1}\right\} \leqq{ }_{\alpha} A$ and $2^{\aleph_{j}} \subseteq L_{\aleph_{i+1}}[A]$ for each $\delta<\omega_{1}$. Then Theorem 4 holds when 0^{\prime} is replaced by α-degree (A). Thus the GCH alone
implies that there is a first-order difference between the $\boldsymbol{\zeta}_{\omega_{1}}$-degrees and the Turing degrees as partial orderings.

Next we derive some information concerning the α-jump, assuming $V=L$. Following Carl Jockusch and David Posner, define an α-degree d to be generalized low if $d^{\prime}=d \vee 0^{\prime}$. If $0^{\prime} \leqq d$ then d is not generalized low. However this is the only exception.

Theorem 5. For all deither $0^{\prime} \leqq d$ or d is generalized low.
Proof. Define $A \subseteq \alpha$ to be hyper-regular if $\left\langle L_{\kappa}, A\right\rangle$ is admissible. If A is hyper-regular then B is A-hyper-regular if $A \vee B$ is hyper-regular. The following claim generalizes a result of Richard Shore:

Claim. If A is hyper-regular and B is not A-hyper-regular then $A^{\prime} \leqq{ }_{\alpha} B \vee A$.

Proof of Claim. Choose a function $f: \gamma_{0} \rightarrow \alpha, \gamma_{0}<\alpha$, such that f is weakly α-recursive in $A \vee B$ and f has unbounded range. Also let $\varphi(x)$ be a Σ_{1} formula such that $A^{\prime}=\left\{x \mid\left\langle L_{x}, A\right\rangle \vDash \varphi(x)\right\}$. As A is hyper-regular we can choose a function $h: \gamma_{0} \rightarrow \gamma_{0}$ such that for all $\gamma<\gamma_{0}$,

$$
A^{\prime} \cap f(\gamma)=\left\{x \mid\left\langle L_{f(h(\gamma)}, A \cap f(h(\gamma))\right\rangle \vDash \varphi(x)\right\} .
$$

As h is α-finite this shows that $A^{\prime} \leqq{ }_{N} A \vee B$. This proves the claim.
Now choose a set A in the α-degree d. If A is not hyper-regular then $0^{\prime} \leqq{ }_{\alpha} A$ by the claim. Otherwise $A^{\prime} \leqq{ }_{\alpha} 0^{\prime} \vee A$ by the claim since 0^{\prime} is not A-hyper-regular (Lemma 1).

Stephen Simpson's work in [13] completes the picture by showing that every $d \geqq 0^{\prime}$ is the α-jump of some generalized low degree. Now a theorem of Richard Shore in [10] shows that if A is hyper-regular then there are sets B, C which are α-r.e. in A such that $B \not \not_{\alpha} A \vee C, C \not \neq 木 A \vee B$. These facts enable us to prove the following theorem:

Theorem 6. The α-jump operation on the α-degrees is first-order definable over the structure $\left\langle\alpha\right.$-degrees, $\left.\leqq_{\alpha}\right\rangle$.

Proof. By our above remarks and Lemma 2 we have:

$$
0^{\prime}=\text { least } d \text { such that } \forall e \forall f\left(d \vee e \leqq_{x} d \vee f \text { or } d \vee f \leqq_{x} d \vee e\right) .
$$

Thus $\left\{0^{\prime}\right\}$ is first-order definable over $\left\langle\alpha\right.$-degrees, $\left.\leqq_{\alpha}\right\rangle$. But then by Theorem 5:

$$
\begin{aligned}
e=d^{\prime} \leftrightarrow & {\left[0^{\prime} \not \leqq_{\alpha} d \text { and } e=d \vee 0^{\prime} \mid\right. \text { or }} \\
& {\left[0^{\prime} \leqq_{\alpha} d \text { and } e=\text { least degree }>d\right] . }
\end{aligned}
$$

We end this section by briefly mentioning how the above results extend
to other singular cardinals of uncountable cofinality. Let β be such a cardinal. Then there is a least β-degree d such that the β-degrees $\geqq d$ are wellordered by \leqq_{β} (the least non-hyper-regular β-degree). Moreover for $A \leqq \beta$ one can make an appropriate definition of $A^{(\nu)}$, the ν th iterate of the β-jump applied to A, and then $d=0^{(\nu)}$ for some $\nu<\beta^{+}=$next cardinal after β. If $d \not \equiv_{\beta} A$ then A is generalized low $\left(\right.$ i.e., $A^{(\nu)}={ }_{\beta} A \vee 0^{(\nu)}$) and hyper-regular. $\{d\}$ is definable over $\left\langle\beta\right.$-degrees, $\left.\leqq_{\beta}\right\rangle$.

2. Master codes

Let β be a limit ordinal. We define the Σ_{n} projectum of β, ρ_{n}^{β}, and the Δ_{n} projectum of β, δ_{n}^{β}, by

$$
\begin{aligned}
\rho_{n}^{\beta}= & \text { least } \gamma \text { such that there is a 1-1 function from } \beta \text { into } \gamma \\
& \text { which is } \Sigma_{n} \text { over } S_{\beta} \\
\delta_{n}^{\beta}= & \text { least } \gamma \text { such that there is a 1-1 function from } \beta \text { onto } \gamma \\
& \text { which is } \Sigma_{n} \text { over } S_{\beta} .
\end{aligned}
$$

We also let $\rho_{0}^{\beta}=\delta_{0}^{\beta}=\beta$.
The S-hierarchy for L is defined in Devlin's book [1], page 82. It is often easier to work with this hierarchy as $S_{\beta} \cap$ On $=\beta$ for limit β. (For all β, $S_{w \cdot \beta}=J_{\beta}$ so the S-hierarchy is merely a "ramification" of the J-hierarchy.) Our definition of the projecta differs from Jensen's but is easily related to his definition and allows one to state cleanly the following characterization, which follows from Jensen's work:

TheOrem 7. (a) $\rho_{n}^{\beta}=$ least γ such that there is a subset of γ which is Σ_{n} over S_{β} but not a member of S_{β}.
(b) $\delta_{n}^{\beta}=$ least γ such that there is a subset of γ which is Δ_{n} over S_{β} but not a member of S_{β}.
(c) For $\delta \leqq \beta$ let $\Sigma_{n}^{\beta} c f(\delta)=$ least γ such that there is a function from γ onto an unbounded subset of δ which is Σ_{n} over S_{β}. Then $\delta_{n}^{\beta}=$ $\max \left(\rho_{n}^{\beta}, \Sigma_{n}^{\beta} c f\left(\rho_{n-1}^{\beta}\right)\right)$.

The notion of a Σ_{n} master code is the key in Jensen's fine structure theory. $A \subseteq \beta$ is a Σ_{n} master code for β if:
(a) $A \subseteq \rho_{n}^{3}$; (b) A is Σ_{n} over S_{β}; (c) Let $\mathfrak{Z}=\left\langle S_{\rho_{n}^{\beta}}, A\right\rangle$. Then $B \cong \rho_{n}^{\beta}$ is Σ_{1} over \mathfrak{H} if and only if B is Σ_{n+1} over S_{β}.

Jensen showed that Σ_{n} master codes always exist. As in [4], choose a canonical Σ_{n} master code for β, C_{n}^{β}, and let $\mathfrak{U}_{n}^{\beta}=\left\langle S_{\rho_{n}^{\beta}}, C_{n}^{\beta}\right\rangle$. It follows from (c) that $B \subseteq \rho_{n}^{\beta}$ is Σ_{m} over \mathfrak{Y}_{n}^{β} if and only if B is Σ_{n+m} over S_{β}.

The notion of a Δ_{n} master code occurs more rarely (though it was
considered by Jockusch and Simpson [5] in case $\rho_{n}^{\beta}=\omega$). $A \subseteq \beta$ is a Δ_{n} master code for β if:
(a) $A \subseteq \delta_{n}^{f}$,
(b) A is Δ_{n} over S_{β}.
(c) If $\mathfrak{U}=\left\langle S_{\delta_{n}^{f}}, A\right\rangle$ then $B \subseteq \delta_{n}^{\beta}$ is Σ_{1} over \mathfrak{V} if and only if B is Σ_{n} over S_{β}.
Again, (c) implies that $B \cong \delta_{n}^{\beta}$ is Σ_{m} over \mathfrak{N} if and only if B is Σ_{m+n-1} over S_{β}. Δ_{n} master codes do not always exist. They do if $\delta_{n}^{\beta}=\omega$ or if $\rho_{n-1}^{\beta}=\delta_{n}^{\beta}$ (in this case C_{n-1}^{β} is a Δ_{n} master code for β). The case that concerns us here is when $\delta_{n}^{\beta}=\boldsymbol{K}_{\omega_{1}}$ and the results below show that a Δ_{n} master code exists for β if and only if $\Sigma_{n}^{\beta} c f\left(\rho_{n-1}^{\beta}\right)=\omega_{1}$. In general a Δ_{n} master code exists for β if and only if $\Sigma_{n}^{\beta} c f\left(\rho_{n-1}^{\beta}\right)=\Sigma_{n}^{\beta} c f\left(\delta_{n}^{\beta}\right)$.

As in the previous section let α denote $\boldsymbol{\aleph}_{\omega_{1}}$ and assume $V=L$. We will describe a procedure for dissecting the α-degrees $\geqq 0^{\prime}$. We first establish some basic facts about master codes which are subsets of α, α-master codes. Define A to be an α-master code for β if A is a Σ_{n} or Δ_{n} master code for β for some n and $A \subseteq \alpha$.

Proposition 8. (a) If $\rho_{n}^{\beta}=\alpha$ then all Σ_{n} master codes for β have the same α-degree.
(b) If $\delta_{n}^{\beta}=\alpha$ then all Δ_{n} master codes for β have the same α-degree.
(c) If $\beta_{1}<\beta_{2}$ then all α-master codes for β_{1} are α-recursive in all α master codes for β_{2}.
(d) If $\rho_{n-1}^{\beta}=\alpha$ then the Σ_{n-1} master codes for β and the Δ_{n} master codes for β have the same α-degree.
(e) If $\alpha=\delta_{n}^{\beta}$ and if D is a Δ_{n} master code for β, C a Σ_{n} master code for β, then $C={ }_{\alpha} \alpha-j u m p(D)$.
(f) If $\rho_{n}^{\beta}=\alpha$ and C_{1} is a Σ_{n} master code for β, C_{2} a Σ_{n+1} master code for β, then $C_{2}={ }_{r} \alpha$-jump $\left(C_{1}\right)$.

Proposition 8 gives us the following picture: Say that a limit ordinal $\beta \geqq \alpha$ is projectible into α if $\rho_{n}^{\beta}=\alpha$ for some n. List the limit ordinals $\beta \geqq \alpha$ which are projectible into α in order: $\alpha=\beta_{0}<\beta_{1}<\cdots$ and list the α-degrees of α-master codes in \leqq_{n}-increasing order $0=d_{1}<d_{2}<\cdots$. If β is projectible into α let $n(\beta)=$ least n such that $\rho_{n}^{3}=\alpha$. Now let $\beta=\beta_{v}$, $n=n(\beta)$ and $\lambda=\omega \cdot \nu$. Then if $\delta_{n}^{\beta}=\alpha$ and there is a Δ_{n} master code for β, we have $d_{i}=\alpha$-degree (any Δ_{n} master code for β) and $d_{i+m}=\alpha$-degree (any Δ_{n+m} master code for β). This occurs exactly when $\sum_{n}^{\beta} c f\left(\rho_{n-1}^{\beta}\right)=\omega_{1}$. Otherwise $d_{i+m}=\alpha$-degree (any Σ_{n+m} master code for β). Finally, for all ν, $d_{\nu+1}=\alpha$-jump $\left(d_{\nu}\right)$.

Our ultimate aim is to show that the d_{ν} 's, $\nu \geqq 2$, exhaust the α-degrees $\geqq_{n} 0^{\prime}=d_{2}$. We show how this is done after proving Proposition 8.

Proof of Proposition 8. (a) If $A \subseteq L_{\alpha}$ then $\left\{x \in L_{\alpha} \mid x \subseteq A\right\}$ and $\left\{x \in L_{\alpha} \mid x \cap A=\varnothing\right\}$ are both Σ_{1} over $\left\langle L_{\alpha}, A\right\rangle$. Therefore if C_{1}, C_{2} are Σ_{n} master codes for $\beta, \rho_{n}^{\beta}=\alpha$ then $\left\{x \in L_{\alpha} \mid x \subseteq C_{1}\right\}$ and $\left\{x \in L_{\alpha} \mid x \cap C_{1}=\varnothing\right\}$ are Σ_{1} over $\left\langle L_{\alpha}, C_{1}\right\rangle$, hence Σ_{n+1} over β, hence Σ_{1} over $\left\langle L_{\alpha}, C_{2}\right\rangle$. So $C_{1} \leqq_{n} C_{2}$.
(b) Similar to (a).
(c) If $\beta_{1}<\beta_{2}$ then any α-master code C_{1} for β_{1} is β_{2}-finite; therefore $\left\{x \in L_{\alpha} \mid x \subseteq C_{1}\right\}$ and $\left\{x \in L_{\alpha} \mid x \cap C_{1}=\varnothing\right\}$ are β_{2}-finite, hence Δ_{1} over $S_{\beta_{2}}$ and therefore Δ_{1} over $\left\langle L_{\alpha}, C\right\rangle$ for any α-master code C for β_{2}.
(d) As we have noted, if $\rho_{n-1}^{\beta}=\alpha$ then any Σ_{n-1} master code for β is also a Δ_{n} master code for β. The result now follows from (b).
(e) We have $C \leqq{ }_{\alpha} \alpha$-jump (D) as C is Σ_{1} over $\left\langle L_{\alpha}, D\right\rangle$ and α-jump (D) has the largest α-degree of any set Σ_{1} over $\left\langle L_{\alpha}, D\right\rangle$. For the converse (α-jump $(D) \leqq{ }_{\alpha} C$), it suffices to show that both of the sets $\left\{x \in L_{\alpha} \mid x \subseteq \alpha\right.$-jump $\left.(D)\right\}$ and $\left\{x \in L_{\alpha} \mid x \cap \alpha-\operatorname{jump}(D)=\varnothing\right\}$ are Σ_{n+1} over S_{β}. The latter set is actually Π_{1} over $\left\langle L_{\alpha}, D\right\rangle$, hence Π_{n} over S_{β}. To complete the proof it suffices to show that $\left\{x \in L_{\alpha} \mid x \subseteq \alpha-\operatorname{jump}(D)\right\}$ is Σ_{2} over $\left\langle L_{\alpha}, D\right\rangle$.

Claim. If $B \subseteq \alpha, B$ is Σ_{1} over $\left\langle L_{\alpha}, D\right\rangle$, then $B^{*}=\left\{x \in L_{\alpha} \mid x \subseteq B\right\}$ is Σ_{2} over $\left\langle L_{\alpha}, D\right\rangle$.

Proof of Claim. If $\left\langle L_{\alpha}, D\right\rangle$ is admissible then B^{*} is actually Σ_{1} over $\left\langle L_{\alpha}, D\right\rangle$. Otherwise choose $\gamma<\alpha, f: \gamma \rightarrow \alpha$ unbounded such that f is Σ_{1} over $\left\langle L_{\alpha}, D\right\rangle$. Let $\varphi(x)$ be a Σ_{1} formula such that $y \in B \leftrightarrow\left\langle L_{\alpha}, D\right\rangle \vDash \varphi(y)$. Then

$$
\begin{gathered}
x \subseteq B \mapsto \exists \text { sequence }\left\langle x_{\beta} \mid \beta<\gamma\right\rangle \in L_{\alpha} \text { such that } x=\bigcup_{\beta} x_{\beta} \text { and } \\
\forall \beta<\gamma \forall y \in x_{\beta}\left\langle L_{f(\beta)}, D \cap f(\beta)\right\rangle \vDash \varphi(y) .
\end{gathered}
$$

This is true since any bounded subset of α is a member of L_{α}. This gives a Σ_{2} over $\left\langle L_{\alpha}, D\right\rangle$ definition of B^{*}.
(f) Follows from (d) and (e).

Our method of showing that every α-degree $\geqq{ }_{\alpha} 0^{\prime}$ is one of the d_{ν} 's, $\nu \geqq 2$ is to prove for each ν that for all $d \geqq 0^{\prime}$:

$$
\begin{equation*}
d>d_{\nu^{\prime}} \text { for all } \nu^{\prime}<\nu \rightarrow d \geqq d_{\nu} . \tag{}
\end{equation*}
$$

Given this, argue that for all $d \geqq 0^{\prime}$ there is ν such that $d=d_{\nu}$ as follows: Let ν be least so that $d \not \equiv d_{\nu}$. If $d \neq d_{\nu}$, for all $\nu^{\prime}<\nu$ then $d>d_{\nu}$, for all $\nu^{\prime}<\nu$ so by $\left({ }^{*}\right)_{\nu}, d \geqq d_{\nu}$, a contradiction.

The proof of $\left({ }^{*}\right)_{\nu}$ breaks into cases. The case $\nu=2$ is trivial. The successor case is handled by Theorem 4 and Proposition 8 as for any $\nu, d_{\nu+1}=$ α-jump $\left(d_{\nu}\right)$. Our next result handles the limit case.

Theorem 9. Suppose $\rho_{n-1}^{s}>\rho_{n}^{s}=\alpha$ and let C be a Σ_{n} master code for β.
(a) If $\sum_{n}^{\beta} c f\left(\rho_{n-1}^{\dot{\beta}}\right)=\omega_{1}$ then $\hat{o}_{n}^{\beta}=\alpha$, there is a Δ_{n} master code D for β and for all $A \subseteq \alpha$:

$$
A \text { is } \beta \text {-finite or } D \leqq{ }_{\alpha} A \vee 0^{\prime}
$$

(b) If $\Sigma_{n}^{\beta} c f\left(\rho_{n-1}^{\beta}\right) \neq \omega_{1}$ then for all $A \subseteq \alpha$:

$$
A \text { is } \beta \text {-finite or } C \leqq{ }_{\alpha} A \vee 0^{\prime}
$$

For then suppose λ is a limit ordinal, $\lambda=\omega \cdot \nu$. Then if (a) above holds with $\beta=\beta_{2}, n=n\left(\beta_{2}\right)$, we have $d_{\lambda}=\alpha$-degree of a Δ_{n} master code for β_{2}; if (b) holds then $d_{2}=\alpha$-degree of a Σ_{n} master code for β_{ν}. In either case for all $A \subseteq \alpha, A$ is β-finite or $d_{\lambda} \leqq{ }_{\alpha} A \vee 0^{\prime}$. But $A \beta_{\nu}$-finite implies A is α recursive in some α-master code for some $\beta^{\prime}<\beta_{\nu}$ and hence $A \leqq_{\alpha} d_{\nu}$, for some $\nu^{\prime}<\lambda$. This demonstrates $\left({ }^{*}\right)_{\lambda}$.

The proof of Theorem 9 necessitates the introduction of some technical notions associated with Skolem functions. Let $\mathfrak{Z}=\left\langle S_{\beta}, A\right\rangle$ be an amenable structure (i.e., $A \cap S_{\gamma} \in S_{\beta}$ for all $\gamma<\beta$). If $p \in S_{\beta}$ then a Σ_{1}^{p} Skolem function for \mathfrak{H} is a partial function $h(i, x)$ which is Σ_{1} over $\mathfrak{A l}$ with parameter p with the property that whenever $\varphi(x, y, z)$ is $\Sigma_{1}(\mathfrak{H})$ then

$$
\mathfrak{Y} \vDash \forall x(\exists y \varphi(x, y, p) \longrightarrow \exists i \varphi(x, h(i, x), p)) .
$$

If $p=0$ then we say that h is a Σ_{1} Skolem function for $\mathfrak{A l}$. Σ_{1}^{p} Skolem functions are easily constructed (see [0], p. 88). Also we define $\mathfrak{A l}^{*}=(\beta, A)^{*}=$ least γ such that there is a $\Sigma_{1}(\mathfrak{H})$ function $f: \beta \xrightarrow{1-1} \gamma$ and $p(\mathfrak{H})=p(\beta, A)=$ least p such that there is such an f which is Σ_{1} over \mathfrak{A} with parameter p.

We are interested in using a $\Sigma_{1}^{p(\beta, A)}$ Skolem function h to take Skolem hulls and then to analyze the nature of these Skolem hulls after they are transitively collapsed. If $\gamma<(\beta, A)^{*}$ then let $H_{\gamma}=h[\omega \times \gamma]$ and $\pi:\left\langle H_{\gamma}, \varepsilon\right\rangle \underset{ }{\sim}$ $\left\langle S_{\gamma^{\prime}}, \varepsilon\right\rangle$. Then γ is (β, A)-pseudostable (or $\mathfrak{A}-$ pseudostable) if $\gamma \notin H_{\gamma}$. It can be easily checked that $\gamma(\beta, A)$-pseudostable implies γ is a γ^{\prime}-cardinal. We also let $\gamma_{A}=$ least δ such that $\pi\left[A \cap H_{r}\right]$ is definable over S_{δ}.

In many contexts it is desirable to have a bound on γ_{A} (in terms of γ). The reason for this is that if γ is (β, A)-pseudostable and $B \subseteq(\beta, A)^{*}$ is Σ_{1} over \mathfrak{A} in some parameter in $\gamma \cup\{p(\beta, A)\}$, then $B \cap \gamma$ is Σ_{1}-definable over $\left\langle S_{\gamma^{\prime}}, \pi\left[A \cap H_{r}\right]\right\rangle$ and thus a bound on γ_{A} gives a bound on where $B \cap \gamma$ is constructed. In case $(\beta, A)^{*}=\alpha$ this allows us to estimate the growth rate of f_{B}, which is useful in view of Lemma 2.

We describe now an important possible bound on γ_{A}. For $\gamma<(\beta, A)^{*}$, let $\hat{\gamma}=$ greatest δ such that $S_{\dot{\delta}} \vDash \gamma$ is a cardinal $(\hat{\gamma}=\gamma$ if there is no such δ). Then A is collapsible on β (or \mathfrak{A} is collapsible) if $\gamma_{A} \leqq \hat{\gamma}$ for all sufficiently large (β, A)-pseudostable $\gamma<(\beta, A)^{*}$.

Examples. (a) If A is Σ_{1} over S_{β} then A is collapsible. For, choose $\gamma_{0}<(\beta, A)^{*}$ such that A is Σ_{1} over S_{β} with parameter $q \in h\left[\omega \times \gamma_{0}\right]$. Then $\left(\gamma \geqq \gamma_{0}, \gamma\right.$ is β, A-pseudostable $) \rightarrow A \cap h[\omega \times \gamma]$ is definable over $h[\omega \times \gamma] \rightarrow$ $\gamma^{\prime} \geqq \gamma_{A}$. But $S_{i^{\prime}} \vDash \gamma$ is a cardinal.
(b) If A is a $\Delta_{n}\left(\Sigma_{n-1}\right)$ master code for μ and $\beta=\delta_{n}^{\mu}\left(\beta=\rho_{n-1}^{\mu}\right)$ then A is a collapsible predicate on β.

Proof. Choose $q \in S_{\mu}$ so that both $A, \beta-A$ are \sum_{n} over S_{μ} with parameter q. Let k be Σ_{n}^{q} Skolem function for S_{μ} and choose $\gamma_{0}<\beta$ so that $k \cap(\omega \times \beta) \times \beta$ is Σ_{1} over $\left\langle S_{\beta}, A\right\rangle$ with some parameter $r \in S_{\gamma_{0}}$. Then for $\gamma \geqq \gamma_{0}, h[\omega \times \gamma]$ is closed under $k \cap(\omega \times \beta) \times \beta$ and so $k[\omega \times \gamma] \cap \beta=h[\omega \times \gamma]=H_{\gamma}$. Now if γ is β, A-pseudostable let $K_{r}=k[\omega \times \gamma]$ and $\tau:\left\langle K_{r}, \varepsilon\right\rangle \cong\left\langle S_{\gamma^{\prime}}, \varepsilon\right\rangle$. Then $\tau \supseteqq \pi:\left\langle H_{\gamma}, \varepsilon\right\rangle \cong\left\langle S_{\gamma^{\prime}}, \varepsilon\right\rangle, \gamma^{\prime \prime} \geqq \gamma^{\prime}$ and $S_{\gamma^{\prime \prime}} \vDash \gamma$ is a cardinal. But $A \cap K_{\gamma}$ is Δ_{n} over K_{γ} so $\pi\left[A \cap H_{\gamma}\right]$ is Δ_{n} over $S_{\gamma^{\prime \prime}}$.

Proof of Theorem 9. Let $\mathfrak{l l}=\left\langle S_{\rho_{n-1}^{\beta}}, C_{n-1}^{\beta}\right\rangle$ and $\gamma_{0}=\Sigma_{1} c f(\mathfrak{2 l})$. Choose an \mathfrak{N}-recursive order-preserving function f from γ_{0} onto an unbounded subset of ρ_{n-1}^{β} such that $\gamma<\gamma_{0}, \gamma$ limit $\rightarrow \mathfrak{H}_{\gamma}=\left\langle S_{f(\gamma)}, C_{n-1}^{\beta} \cap f(\gamma)\right\rangle$ is amenable. Let s_{δ}^{γ} be the first $\mathscr{l l}_{\gamma}$-pseudostable greater than $\boldsymbol{K}_{\dot{j}}$ (for all $\gamma<\gamma_{0}$) and let s_{δ} be the first $\mathfrak{\vartheta}$-pseudostable greater than $\boldsymbol{\aleph}_{\dot{\delta}}$. Then $s_{\delta}=\bigcup\left\{s_{\dot{\delta}}^{\gamma} \mid \gamma<\gamma_{0}\right\}$.

First assume that $\gamma_{0}<\alpha$.
Recall that the proof of Lemma 2 shows: If $\left\{\delta \mid f_{A}(\delta) \leqq g(\delta)\right\}$ is stationary and $g \leqq_{\alpha} B$ then $A \leqq{ }_{\alpha} B$. As $\mathfrak{A l}$ is collapsible, whenever $C \subseteq \alpha$ is Σ_{1} over \mathfrak{A} then $C \cap \boldsymbol{K}_{\delta}$ is definable over $S_{\hat{\delta}_{\delta}}$ for δ sufficiently large. Thus if $A \subseteq \alpha$ and $f_{A}(\delta) \geqq s_{\dot{\delta}}$ for stationary many δ then $C_{n}^{\beta} \leqq{ }_{\alpha} A$. Otherwise $f_{A}(\delta)<s_{\delta}$ for stationary many δ and A is 9l-recursive.
(a) Assume $\gamma_{0}=\omega_{1}$. Let $D=\left\langle s_{\dot{\partial}}^{\delta} \mid \delta<\omega_{1}\right\rangle$.

Then $A \Sigma_{1}$ over $\left\langle S_{\alpha}, D\right\rangle \rightarrow A \Sigma_{1}$ over \mathfrak{A}. Conversely: By Jensen's extension of embeddings lemma ([1], page 100) $C_{n-1}^{\beta} \cap f(\gamma)$ is a Σ_{n-1} master code for some ordinal η such that $\rho_{n-1}^{\eta}=f(\gamma)$, and hence is a collapsible predicate on $f(\gamma)$. It follows that if $\phi(x)$ is Σ_{1} then $\left\{x<\boldsymbol{K}_{\delta} \mid \mathfrak{H}_{\dot{\delta}} \vDash \phi(x)\right\}$ is definable over $S_{\eta_{\delta}}$ where $\eta_{\dot{o}}=\hat{\boldsymbol{s}}_{\dot{j}}^{\delta}$. Therefore the equivalence:

$$
\mathfrak{H} \vDash \phi(x) \leftrightarrow \exists \delta\left[x<\boldsymbol{\bigotimes}_{\partial} \wedge \mathfrak{H}_{\delta} \vDash \phi(x)\right]
$$

shows that any subset of α which is Σ_{1} over \mathfrak{A} is Σ_{1} over $\left\langle S_{\alpha}, D\right\rangle$. So D is a Δ_{1} master code for $\mathfrak{A l}$ and hence a Δ_{n} master code for β.

Now if $A \subseteq \alpha$ and $f_{A}(\delta)<s_{\delta}$ for stationary many δ then either $f_{A}(\delta)<s_{\delta}^{\delta}$ for stationary many δ or $f_{A}(\delta) \geqq s_{\delta}^{\delta}$ for stationary many δ. In the former case Fodor's Theorem implies that for some fixed $\delta_{0}<\omega_{1}, f_{A}(\delta)<s_{\delta}^{\delta_{0}}$ for stationary many δ so A is ρ_{n-1}^{β}-finite since the sequence $\left\langle s_{\delta}^{\delta} \mid \delta<\omega_{1}\right\rangle$ is. In the latter case $D \leqq_{\alpha} A \vee 0^{\prime}$. Case (a) is complete.
(b) If $\gamma_{0} \neq \omega_{1}$ then $f_{A}(\delta)<s_{\delta}$ for stationary many o implies that there is a fixed $\delta_{0}<\omega_{1}$ such that $f_{A}(\delta)<s_{\dot{\delta}}^{\delta_{0}}$ for stationary many δ. Again A is ρ_{n-1}^{β}-finite.

To complete the proof of Theorem 9 we must treat the case $\gamma_{0}>\alpha$. Then it is still true that $f_{A}(\delta) \geqq s_{i}$ for stationary many δ implies $C_{n}^{\beta} \leqq{ }_{n} A \vee 0^{\prime}$. So assume that $f_{A}(\delta)<s_{\bar{j}}$ for stationary many δ. Let $p=p^{\left(\rho_{n-1}^{\beta} \cdot C_{n-1}^{\beta}\right)}$ and let h be a Σ_{1}^{p} Skolem function for $\mathfrak{N l}$. For each δ such that $f_{A}(\delta)<s_{\dot{i}}$ choose $g(\delta)<\delta$ so that $f_{A}(\delta) \in h\left|w \times \boldsymbol{\aleph}_{g(\delta)}\right|$ and $n_{\dot{\delta}}<\omega, y_{\dot{\delta}}<\boldsymbol{\aleph}_{g(\delta)}$ so that if $x_{\delta}=$ $\left(n_{\dot{\delta}}, y_{\dot{\delta}}\right)$ then $h\left(x_{\dot{\delta}}\right)=f_{A}(\delta)$. Then by Fodor's Theorem there is $\delta_{0}<\omega_{1}$ such that $X=\left\{\delta \mid g(\delta)<\hat{\delta}_{0}\right\}$ is stationary. Then $\left\{x_{\dot{o}} \mid \hat{\delta} \in X\right\}$ is α-finite and as $\gamma_{0}>\alpha$, $h \mid\left\{x_{\delta} \mid \delta \in X\right\}$ and hence A is ρ_{n-1}^{δ}-finite.

Thus we have established:
Theorem. For any $A \cong \alpha, 0^{\prime} \leqq{ }_{N} A$ has the same α-degree as an α-master code.

3. The structure of the β-degrees

We continue to assume $V=L$ and let α denote $\boldsymbol{K}_{\omega_{1}}$. Now also let β denote a limit ordinal such that:
(i) $\beta>\alpha$, (ii) $\beta^{*}=\alpha$, (iii) $\Sigma_{1} c f \beta<\beta^{*}$.

Typical such β 's are $\alpha \cdot \omega, \alpha \cdot \omega_{1}, \alpha \cdot \omega_{2}$.
We develop a method of deducing structural properties of the β-degrees from the results of Section 2. If e, f are β-degrees, define $e \leqq_{w \beta} f$ if $E \leqq_{w \beta} f$ for some $E \in e$. Our main result is:

Theorem 10. There is a well-ordered sequence $e_{0}<_{\beta} e_{1}<_{\beta} \cdots$ of β degrees of order type $\boldsymbol{\aleph}_{\omega_{1}+1}$ such that:
(i) For all $\gamma, e_{\gamma+1} \leqq{ }_{w \beta} e_{\gamma}$.
(ii) If e is an arbitrary β-degree then there is a unique γ such that $e_{r} \leqq{ }_{\beta} e<_{\beta} e_{\gamma+1}$. Also $E \leqq{ }_{w \beta} e_{\gamma}$ for every $E \in e$.

Thus the β-degrees are "nearly" well-ordered. It follows from the second part of (ii) that there do not exist subsets of β which are incomparable with respect to $\leqq_{w^{\beta}}$.

Our proof of Theorem 10 depends upon choosing special representatives of the α-degrees. In case $\Sigma_{1} c f \beta=\omega_{1}$, all the degrees of Theorem 10 arise as the β-degrees of specially chosen subsets of α. Moreover this method is of use to us in the case $\Sigma_{1} c f \beta \neq \omega_{1}$. For now we only assume that β satisfies conditions (i), (ii), (iii) listed above.

Definition. For $B, C \subseteq \beta$ we say that $B \leqq{ }_{f \beta} C$ if for some β-r.e. sets
W_{0}, W_{1} :

$$
\begin{gathered}
x \subseteq B \leftrightarrows \exists z, w\left[\langle x, z, w\rangle \in W_{0} \wedge z \subseteq C \wedge w \subseteq \beta-C\right], \\
y \subseteq \beta-B \leftrightarrows \exists z, w\left[\langle y, z, w\rangle \in W_{1} \wedge z \subseteq C \wedge w \subseteq \beta-C\right]
\end{gathered}
$$

where x, y, z, w vary over finite subsets of β.
Definition. If $A \subseteq \alpha$ then

$$
N_{\beta}(A)=\left\{(x, y) \mid x, y \in S_{\beta}, x \cong A, y \cong \alpha-A\right\}
$$

and

$$
N_{\alpha}(A)=\left\{(x, y) \mid x, y \in S_{\alpha}, x \subseteq A, y \subseteq \alpha-A\right\} .
$$

Lemma 11. For every $A \subseteq \alpha$ there is $A^{*} \cong \alpha$ such that $A={ }_{\alpha} A^{*}$ and $N_{\beta}\left(A^{*}\right) \leqq{ }_{\beta f} N_{\alpha}\left(A^{*}\right)$.

Proof. Let $p \in S_{\beta}$ be a parameter such that there are $f: \beta \xrightarrow{1-1} \alpha$ and $g: \Sigma_{1} c f \beta \rightarrow \beta$ unbounded which are Σ_{1} over S_{β} with parameter p. Let $\gamma_{0}=$ $\Sigma_{1} c f \beta$ and choose a Σ_{1}^{p} Skolem function $h(i, x)$ for S_{β} and approximation $h^{\gamma}(i, x)$ such that for $\gamma<\gamma_{0}, h^{\gamma}$ is a Σ_{1}^{p} Skolem function for $S_{g(\gamma)}$. Finally define $s_{\delta}^{\gamma}=h^{\gamma}\left[\omega \times \boldsymbol{K}_{\delta}\right] \cap \boldsymbol{K}_{i+1}$ and $s_{\dot{\sigma}}=\bigcup_{r<r_{0}} s_{\delta}^{\gamma}=$ the first β, $\dot{\phi}$-pseudostable greater than \boldsymbol{K}_{j}. Note that $h[\omega \times \alpha]=S_{\beta}$.

Key Fact. If $x \in h^{\top}\left[\omega \times \boldsymbol{K}_{0}\right]$ and $x \cong \alpha$ then $f_{x}\left(\delta^{\prime}\right)<s_{\delta^{\gamma}+1}$ for all $\delta^{\prime} \geqq \delta$, where $f_{x}=$ cutoff function for x. (Proof: $x \cap \boldsymbol{\aleph}_{i^{\prime}} \in h^{i}\left[\omega \times \boldsymbol{K}_{i^{\prime}}\right]$ and so $\left.f_{x}\left(\delta^{\prime}\right) \leqq s_{s^{\prime}}^{\gamma}<s_{\delta^{\prime}}^{\gamma+1}.\right)$

We assume that A is not β-finite.
Case 1. $\Sigma_{1} c f \beta=\gamma_{0}=\omega_{1}$. Then the proof of Theorem 9 shows that $X=\left\{\delta \mid f_{A}(\delta) \geqq s_{\theta}^{\delta}\right\}$ is stationary. Define:

$$
A^{*}=\left\{\gamma \mid \aleph_{0} \leqq \gamma \leqq f_{A}(\delta) \text { for some } \delta \in X\right\} .
$$

Case 2. $\Sigma_{1} c f \beta=\gamma_{0} \neq \omega_{1}$. Then the proof of Theorem 9 shows that $X=\left\{\delta \mid f_{A}(\delta) \geqq s_{o}\right\}$ is stationary. Define:

$$
A^{*}=\left\{\gamma \mid \boldsymbol{K}_{\delta} \leqq \gamma \leqq f_{A}(\delta) \text { some } \delta \in X\right\} .
$$

We show now that A^{*} works. Clearly $A^{*}={ }_{\alpha} f_{A}={ }_{\alpha} A$. Note that for $y \cong \alpha, y \in h^{\top}\left[\omega \times \boldsymbol{\aleph}_{0}\right]:$

$$
y \cap\left(\boldsymbol{\aleph}_{i}, \boldsymbol{\aleph}_{i+1}\right) \neq \varnothing \longrightarrow y \cap\left(\boldsymbol{\aleph}_{i}, s_{i}^{r}\right) \neq \varnothing .
$$

Therefore $y \subseteq \alpha-A^{*} \rightarrow y=y_{1} \cup y_{2}$ where y_{1}, y_{2} are β-finite and $y_{1} \subseteq$ $\mathrm{U}_{i \in, X}\left[\boldsymbol{K}_{i}, \boldsymbol{K}_{i+1}\right), y_{2}$ bounded in α. Also for $x \cong \alpha, x \in h^{\prime}\left[\omega \times \boldsymbol{K}_{i}\right]$:

$$
\left.x \text { bounded in } \mid \boldsymbol{\aleph}_{i}, \boldsymbol{\aleph}_{i+1}\right) \longrightarrow x \cong\left(\boldsymbol{\aleph}_{i}, s_{d}^{r}\right) .
$$

Therefore $x \subseteq A^{*} \rightarrow x=x_{1} \cup x_{2}$ where x_{1}, x_{2} are β-finite, for some γ $x \in h^{\gamma}[\omega \times \alpha]$ and

$$
x_{1} \subseteq \bigcup_{\delta \in X}\left[\boldsymbol{\zeta}_{i}, s_{\delta}^{\tau}\right), \quad x_{2} \text { bounded in } \alpha
$$

Thus $N_{\beta}\left(A^{*}\right) \leqq{ }_{f \beta} N_{\alpha}\left(A^{*}\right)$.
Note that for $A, B \leqq \alpha, A \leqq{ }_{\alpha} B \rightarrow A^{*} \leqq_{\beta} B$.
We now apply Lemma 11 to the master code degrees $d_{1}, d_{2}, \cdots, d_{r}, \cdots$ which we defined in Section 2. Let $d_{r_{1}}$ be the α-degree of a Σ_{1} master code for β. Choose canonical representatives $D_{r_{1}}, D_{r_{1}+1}, \cdots$ of $d_{r_{1}}, d_{r_{1}+1}, \cdots$ respectively and define:

$$
\begin{aligned}
\hat{e}_{0} & =0, \\
\hat{e}_{1+r} & =\beta \text {-degree }\left(D_{r_{1}+r}^{*}\right) .
\end{aligned}
$$

Also let $E_{0}=\varnothing$ and $E_{1+\gamma}=D_{r_{1}+\gamma}^{*}$. Then $E_{\gamma} \in \hat{e}_{\gamma}$ for all γ and $E_{\gamma+1}={ }_{\alpha} \alpha$-jump $\left(E_{\gamma}\right)$ for $\gamma \geqq 1$.

To understand the relationship between \hat{e}_{r} and \hat{e}_{r+1} we must discuss the weak β-jump.

Definition. Let e, f be β-degrees. Then f is the weak β-jump of e if f is the largest β-degree which is $\leqq{ }_{w \beta} e$.

Lemma 12. (a) fis the weak β-jump of e if $f \leqq_{\beta} g$ for some $g \leqq_{w_{\beta}}$ e and $e^{\prime}=\beta-j u m p(e) \leqq_{w \beta} f$.
(b) $\hat{e}_{r+1}=$ the weak β-jump of \hat{e}_{γ} for all γ.

Proof. (a) Choose representatives E, F of e, f, respectively. It suffices to show that $E^{\prime} \leqq_{w_{\beta}} F, G \leqq_{w \beta} E \rightarrow G \leqq_{\beta} F$. Choose e_{1}, e_{2} so that

$$
\begin{array}{ll}
x \in G \leftrightarrow\left\{e_{1}\right\}_{\beta}^{E}(x) & \text { diverges }, \\
x \notin G \leftrightarrow\left\{e_{2}\right\}_{\beta}^{E}(x) & \text { diverges . }
\end{array}
$$

Also choose a β-recursive $f(K, e)$ such that $\{f(K, e)\}_{\beta}^{E}(0)$ diverges $\leftrightarrow \forall x \in K$, $\{e\}_{\beta}^{E}(x)$ diverges. Then

$$
\begin{aligned}
K \subseteq G \hookrightarrow\left\{f\left(K, e_{1}\right)\right\}^{E}(0) & \text { diverges , } \\
H \subseteq \beta-G \hookleftarrow\left\{f\left(H, e_{2}\right)\right\}_{\beta}^{E}(0) & \text { diverges },
\end{aligned}
$$

so β-finite neighborhood questions about G can be answered using finite neighborhood information on E^{\prime}. But $E^{\prime} \leqq{ }_{w \beta} F$ so $G \leqq{ }_{\beta} F$.
(b) Recall that $N_{\beta}\left(E_{\gamma}\right) \leqq{ }_{f \beta} N_{\alpha}\left(E_{\gamma}\right)$. We claim that β-jump $\left(E_{\gamma}\right) \leqq{ }_{w \beta} E_{i+1}$. In case $\gamma=0$ this is clear as E_{1} is a Σ_{1} master code for β. Otherwise note that any subset of α which is Σ_{1} over S_{β} is Σ_{1} over $\left\langle S_{\alpha}, E_{\gamma}\right\rangle$ so we can write:

$$
\begin{aligned}
(e, x) \subseteq \beta-\operatorname{jump}\left(E_{r}\right) & \mapsto \exists z, w \in S_{\beta}\left[\langle x, z, w\rangle \in W_{e} \wedge z \subseteq E_{r} \wedge w \subseteq \beta-E_{i}\right] \\
& \hookleftarrow \exists z, w \in S_{\kappa}\left[\langle x, z, w\rangle \in W_{f(e)} \wedge z \subseteq E_{r} \wedge w \subseteq \alpha-E_{r}\right]
\end{aligned}
$$

where f is β-recursive. This last predicate is Σ_{1} over $\left\langle S_{\kappa}, E_{r}\right\rangle$. Thus β $\operatorname{jump}\left(E_{r}\right) \leqq{ }_{f \beta} \alpha$-jump $\left(E_{i}\right)={ }_{\kappa} E_{\gamma+1}$. So β-jump $\left(E_{i}\right) \leqq{ }_{w \beta} E_{r+1}$.

Now define: $\hat{E}_{\gamma}=\left\{\langle\delta, e, x\rangle \mid\{e\}_{\alpha}^{E_{r}}(x)\right.$ converges by stage $\left.\boldsymbol{X}_{s}\right\} \subseteq \omega_{1} \times \alpha \times \alpha$. (Here, $\{e\}_{\alpha}^{E}$ denotes the e th function partial α-recursive in E.) Then $\hat{E}_{\gamma} \leqq w_{\alpha} E_{\gamma}$ so $\hat{E}_{\gamma} \leqq_{\alpha} \alpha$-jump $\left(E_{\gamma}\right)$. Also α-jump $\left(E_{\gamma}\right) \leqq{ }_{\alpha} \hat{E}_{\gamma}$. For $K \in S_{\alpha}$,

$$
\begin{aligned}
& K \subseteq \alpha-\operatorname{jump}\left(E_{r}\right) \leftrightarrow \forall x \in K, \quad\left(x=\left\langle x_{0}, x_{1}\right\rangle \text { and }\left\{x_{0}\right\rangle_{\gamma_{\gamma}}^{E_{r}}\left(x_{1}\right) \text { converges }\right) \\
& \leftrightarrow \exists f \in S_{\alpha}, \quad\left(f: \omega_{1} \longrightarrow \alpha \wedge \text { U Range } f=K \wedge \forall x \in f(\delta),\right. \\
& \left\{x_{0}\right\}_{\alpha}^{E_{\alpha}}\left(x_{1}\right) \text { converges by stage } \boldsymbol{\gamma}_{i} \text {, } \\
& \text { for every } \delta<\omega_{1} \text {) } \\
& \leftrightarrow \exists f \in S_{\alpha}, \quad\left(f: \omega_{1} \longrightarrow \alpha \wedge K=\text { U Range } f \wedge \forall \delta<\omega_{1},\right. \\
& \left.\forall x \in f(\delta),\left\langle\delta, x_{0}, x_{1}\right\rangle \in \hat{E}_{i}\right) \text {. }
\end{aligned}
$$

And, for $H \in S_{\alpha}$,

$$
\begin{aligned}
H \subseteq \alpha-\left(\alpha-\operatorname{jump}\left(E_{i}\right)\right) & \leftrightarrow \forall x \in H, \quad\left(\left\{x_{\gamma^{\prime}}^{E_{\gamma}}\left(x_{1}\right) \text { diverges }\right)\right. \\
& \leftrightarrow \forall x \in H, \quad\left(\omega_{1} \times\left\{x_{0}\right\} \times\left\{x_{1}\right\} \subseteq \alpha-\hat{E}_{r}\right) .
\end{aligned}
$$

So α-jump $\left(E_{\gamma}\right)={ }_{\alpha} \hat{E}_{\gamma}$.
Now we have $E_{\gamma+1}={ }_{\alpha} \alpha-\operatorname{jump}\left(E_{\gamma}\right)={ }_{\alpha} \hat{E}_{\gamma}$ so $E_{\gamma+1} \leqq{ }_{\beta} \hat{E}_{\gamma}$ (since for any $\left.B \subseteq \alpha, E_{\gamma+1} \leqq_{\alpha} B \rightarrow E_{i+1} \leqq_{\beta} B\right)$. But β-jump $\left(E_{i}\right) \leqq_{w \beta} E_{i+1}$ so the hypotheses of part (a) are now satisfied and $\hat{e}_{i+1}=\beta$-degree $\left(E_{\gamma+1}\right)=$ weak β-jump $\left(\hat{e}_{r}\right)$.

For all inadmissible β and all β-degrees e, weak β-jump (weak β-jump $(e))=\beta$-jump (e). Thus in this case it is appropriate to refer to weak β-jump as the " β-half-jump."

We now have all the ingredients needed to provide a proof of Theorem 10 in the case $\Sigma_{1} c f \beta=\omega_{1}$. For such a β let $e_{\gamma}=\hat{e}_{\gamma}$ for each $\gamma \geqq 0$. As $\Sigma_{1} c f \beta=\omega_{1}$ there is a tame $\Sigma_{1}\left(S_{\beta}\right)$ bijection $f: \beta \rightarrow \alpha$; i.e., for each $\delta<\alpha$, $f^{-1}[\delta]$ is β-finite and the sequence $\left\langle f^{-1}[\hat{\delta}]\right| \delta\langle\alpha\rangle$ is Σ_{1} over S_{β}.

Now let $B \subseteq \beta$ and consider $f[B] \subseteq \alpha$. Then by the proof of Theorem 9 either $f[B]$ is β-recursive or $E_{1} \leqq_{\kappa} f|B|$. In the former case, B is β-recursive and so $0=e_{0} \leqq \beta$-degree $(B) \leqq e_{1}$ and $B \leqq{ }_{w \beta} e_{0}$. In the latter case choose γ so that $E_{\gamma}={ }_{\alpha} f[B]$. Then $N_{\alpha}(f|B|) \leqq{ }_{\mu \beta} B$ as f is tame and so we have

$$
N_{\beta}\left(E_{i}\right) \leqq_{f \beta} N_{\gamma}\left(E_{i}\right) \leqq \leqq_{f \beta} N_{\mu}(f|B|) \leqq \varliminf_{\mu \beta} B ;
$$

therefore $E_{i j} \leqq_{\beta} B$. Also $B \leqq_{f \beta} f|B| \leqq_{\mu ; \beta} E_{i}$ so $B \leqq{ }_{\omega, \beta} E_{i}$. This proves Theorem 10 in this case.

Note. There is an easier proof of Theorem 10 in case $\Sigma_{1} c f \beta=\omega_{1}$: Define a β-degree d to be regular if $\left\langle S_{\beta}, D\right\rangle$ is amenable for some $D \in d$. One can show that in case $\Sigma_{1} c f \beta=\omega_{1}$, the regular β-degrees are well-ordered and for any $A \subseteq \beta$ there is a regular β-degree d such that $A \leqq_{\ldots, \beta} d$ and $d \leqq{ }_{\beta} \beta$ $\operatorname{degree}(A)$. Moreover if d is regular, then weak β-jump (d) is the least regular β-degree greater than d. However the proof that we have given shows that
the degrees e_{γ} have representatives contained in α and also provides us with the objects needed to analyze the β-degrees when $\Sigma_{1} c f \beta \neq \omega_{1}$.

Finally we establish Theorem 10 in the case $\Sigma_{1} c f \beta \neq \omega_{1}$. Recall the degrees \hat{e}_{r}, obtained by taking the β-degrees of specially chosen representatives of the α-degrees $\geqq \alpha$-degree (Σ_{1} master code for β). In our present case $\left(\Sigma_{1} c f \beta \neq \omega_{1}\right)$, the conclusion of Theorem 10 does not hold if we simply take $e_{i}=\hat{e}_{\gamma}$; other natural β-degrees arise. For any limit ordinal γ define λ so that $E_{r} \in \hat{e}_{\gamma}$ is an α-master code for λ and let $\mathfrak{q}_{\gamma}=\left\langle S_{\rho_{n-1}^{\lambda}}, C_{n-1}^{\lambda}\right\rangle$ where $n=$ $n(\lambda)=$ least m such that ρ_{m}^{i} equals $\alpha, C_{n-1}^{\lambda}=\Sigma_{n-1}$ master code for λ. Then γ is masterful if $\Sigma_{1} c f \mathfrak{\Re l}_{i}=\gamma_{0}=\Sigma_{1} c f \beta$. We shall define a certain β-degree \hat{f}_{i} for masterful γ.

Lemma 13. γ masterful $\rightarrow \sum_{1}^{\alpha_{\gamma}}$-cofinality $(\gamma)=\gamma_{0}$.
Proof. Note that $\gamma=\omega$-ordertype $\left\{\beta^{\prime}<\rho_{n-1}^{\lambda} \mid \beta^{\prime}\right.$ is projectible into $\left.\alpha\right\}$.
(a) If $\alpha=$ largest ρ_{n-1}^{λ}-cardinal then $P=\left\{\beta^{\prime}<\rho_{n-1}^{\lambda} \mid \beta^{\prime}\right.$ is projectible into $\left.\alpha\right\}$ is unbounded in ρ_{n-1}^{i} unless ρ_{n-1}^{i} is of the form $\beta^{\prime}+\omega$. In the former case

$$
\begin{aligned}
& =\sum_{1}^{\alpha_{\gamma}-\operatorname{cofinality}\left(\rho_{n-1}^{i}\right)=\gamma_{0}, ~}
\end{aligned}
$$

and in the latter case

$$
\Sigma_{1}^{\alpha} \gamma-\operatorname{cofinality}(\gamma)=\omega=\Sigma_{1}^{\alpha} \gamma-\operatorname{cofinality}\left(\rho_{n-1}^{2}\right)=\gamma_{0} .
$$

(b) If $\kappa=$ next $\rho_{n-1}^{\hat{\lambda}}$-cardinal after α then $\gamma=\kappa$. There exists a parameter $p \in S_{\rho_{n-1}^{\lambda}}$ such that if h is a Σ_{1}^{p} Skolem function for $9 l_{\gamma}$ then $h[\omega \times \alpha]=$ $S_{\rho_{n-1}^{\lambda}}$. Let $f: \gamma_{0} \rightarrow \rho_{n-1}^{\lambda}$ be unbounded and Σ_{1} over \mathscr{H}_{γ}. Then define $g: \gamma_{0} \rightarrow \kappa$ by $g(\delta)=\sup \left(h^{f(\delta)}[\omega \times \alpha] \cap \kappa\right)$, where $h^{f^{(\delta)}}$ is the interpretation of a Σ_{1}^{p} definition of h inside $\left\langle S_{f(\hat{\delta})}, C_{n-1} \cap f(\delta)\right\rangle$ (if this structure is amenable then $h^{f(j)}$ is a Σ_{1}^{p} Skolem function for it). The function g is Σ_{1} over \mathfrak{A}_{r} and unbounded since $\bigcup_{\delta} h^{f(\delta)}=h$ and $\kappa \leqq h[\omega \times \alpha]$.

Now let $f_{\gamma}: \gamma_{0} \rightarrow \gamma$ be cofinal, continuous, increasing and $\Sigma_{1}\left(9 \gamma_{\gamma}\right)$. Also choose $f: \gamma_{0} \rightarrow \beta$ cofinal, continuous, increasing and $\Sigma_{1}\left(S_{\beta}\right)$. Define:

$$
F_{\gamma}=\left\{\left\langle f\left(\gamma^{\prime}\right), \delta\right\rangle \mid \gamma^{\prime}<\gamma_{0} \wedge \delta \in E_{f_{\gamma^{\prime}}\left(\gamma^{\prime}\right)}\right\} \cong S_{\beta}
$$

(Thus F_{γ} is obtained by "spreading out" the sequence $\left\langle E_{f_{\gamma^{\prime}}\left(\gamma^{\prime}\right)} \mid \gamma^{\prime}<\gamma_{0}\right\rangle$ cofinally in S_{β}.) F_{γ} is the $\Sigma_{1}\left(S_{\beta}\right)$ union of:

$$
F_{r}^{\gamma^{\prime}}=\left\{\left\langle f\left(\gamma^{\prime}\right), \delta\right\rangle \mid \delta \in E_{f_{\gamma^{\left(\gamma^{\prime}\right)}}}\right\}, \quad \gamma^{\prime}<\gamma_{0}
$$

and for $\beta^{\prime}<\beta, S_{\beta^{\prime}} \cap \boldsymbol{F}_{\gamma^{\prime}}^{\gamma^{\prime}}=\varnothing$ for sufficiently large $\gamma^{\prime}<\gamma_{0}$.
Lemma 14. For all masterful γ,

$$
\begin{aligned}
& N_{\beta}\left(F_{r}\right)=\left\{(x, y) \mid x, y \in S_{\beta} \wedge x \leqq F_{\gamma} \wedge y \subseteq S_{\beta}-F_{r}\right\} \\
& \leqq{ }_{w \beta} N_{\beta}\left(F_{\gamma}\right) \cap\left\{(x, y) \mid x \text { and } y \text { are contained in } f\left[\gamma_{0}\right] \times \delta,\right. \\
&\quad \text { for some } \delta<\alpha\} .
\end{aligned}
$$

Proof. We employ the Skolem function h introduced in the proof of Lemma 11. Then for all $\gamma^{\prime}<\gamma_{0}$ there is a stationary set $X_{\gamma^{\prime}} \subseteq \omega_{1}$ such that if $y \cong \alpha-E_{f_{\gamma^{\left(\gamma^{\prime}\right)}}}, y \in h\left[\omega \times \boldsymbol{K}_{2}\right]$ then $y=y_{1} \cup y_{2}$ where y_{1}, y_{2} are β-finite, $y_{1} \subseteq \bigcup_{\nu^{\prime} \in x_{\gamma^{\prime}}}\left[\boldsymbol{K}_{\nu^{\prime}}, \boldsymbol{X}_{\nu^{\prime}+1}\right)$ and $y_{2} \subseteq \boldsymbol{K}_{\nu}$. It follows that if $H \subseteq S_{\beta}-F_{\gamma}, H \in$ $h\left[\omega \times \forall_{2}\right]$ then $H=H_{1} \cup H_{2}$ where H_{1}, H_{2} are β-finite,

Also if $x \subseteq \alpha, \quad x \in h\left[\omega \times \boldsymbol{H}_{\nu}\right]$, then $x \leqq E_{f_{\gamma^{\left(i^{\prime}\right)}}}$ if and only if $x \leqq$ $\bigcup_{\nu^{\prime} \in X_{\gamma^{\prime}}}\left[\boldsymbol{K}_{\nu^{\prime}}, \boldsymbol{K}_{\nu^{\prime}+1}\right),\left|x \cap \boldsymbol{X}_{\nu^{\prime}+1}\right| \leqq \boldsymbol{K}_{\nu^{\prime}}$ for each $\nu^{\prime}<\omega_{1}$ and $x \cap \boldsymbol{K}_{\nu} \subseteq E_{f_{\gamma^{\prime}}\left(\gamma^{\prime}\right)}$. It follows that if $K \subseteq \boldsymbol{S}_{\beta}, K \in h\left[\omega \times \boldsymbol{K}_{\nu}\right]$ then $K \subseteq F_{r}$ if and only if $K \subseteq$ $\bigcup_{\gamma^{\prime}<r_{0}}\left(\left\{f\left(\gamma^{\prime}\right)\right\} \times \bigcup_{\nu^{\prime} \in X_{\gamma^{\prime}}}\left[\boldsymbol{K}_{\nu^{\prime}}, \boldsymbol{K}_{\nu^{\prime}+1}\right)\right),\left|K \cap\left\{f\left(\gamma^{\prime}\right)\right\} \times \boldsymbol{K}_{\nu^{\prime}+1}\right| \leqq \boldsymbol{K}_{\nu^{\prime}}$ for $\nu^{\prime}<\omega_{1}$, $\gamma^{\prime}<\gamma_{0}$ and $K \cap f\left[\gamma_{0}\right] \times \boldsymbol{K}_{\nu} \subseteq F_{\gamma}$. These two facts suffice to prove the lemma.

We are ready to define the e_{γ} 's in this case. For γ masterful let $\hat{f}_{\gamma}=\beta$ degree $\left(F_{\gamma}\right)$. Then we set, for $\gamma=0$ or a limit, $n \in \omega$:

$$
\begin{array}{rlrl}
e_{\gamma+n} & =\hat{e}_{\gamma+n}, & & \gamma \text { not masterful } \\
e_{\gamma} & =\hat{f}_{\gamma}, \quad e_{\gamma+n+1}=\hat{e}_{\gamma+n} & \gamma \text { masterful } .
\end{array}
$$

Our next lemma is the key lemma toward understanding the degrees e_{r}, γ masterful. Let $g_{\gamma}: \gamma_{0} \rightarrow \rho_{n-1}^{\lambda}$ be cofinal, continuous, increasing and $\Sigma_{1}\left(\mathfrak{H}_{\gamma}\right)$. In case $\gamma_{0}>\omega$ we also assume that $C_{n-1}^{\lambda} \cap g_{r}\left(\gamma^{\prime}\right)$ is a regular subset of $g_{r}\left(\gamma^{\prime}\right)$ for each $\gamma^{\prime}<\gamma_{0}$. If $\gamma_{0}=\omega$ then there is a Σ_{n-1} master code D_{n-1}^{λ} for λ such that $g_{r}\left(\gamma^{\prime}\right) \cap D_{n-1}^{\lambda}$ is finite (and hence collapsible) for each $\gamma^{\prime}<\omega$. Finally let $\bar{C}=C_{n-1}^{\lambda}$ if $\gamma_{0}>\omega, \bar{C}=D_{n-1}^{\lambda}$ if $\gamma_{0}=\omega$ and set $s\left(\nu, \gamma^{\prime}\right)=$ least $g_{\gamma}\left(\gamma^{\prime}\right), \bar{C} \cap g_{r}\left(\gamma^{\prime}\right)$ pseudostable greater than \boldsymbol{K}_{ν}, for each $\nu<\omega_{1}, \gamma^{\prime}<\gamma_{0}$.

Uniformity Lemma. (a) If $s \leqq{ }_{w^{\beta}} B$ then $F_{\gamma} \leqq{ }_{\beta} B$.
(b) If $t: \omega_{1} \times \gamma_{0} \rightarrow \alpha, t \leqq{ }_{w \beta} B$ and for each $\gamma^{\prime}<\gamma_{0},\left\{\nu \mid s\left(\nu, \gamma^{\prime}\right)<t\left(\nu, \gamma^{\prime}\right)\right\}$ is stationary then $s \leqq_{w \beta} B$.

Proof. (a) If $A \subseteq \alpha$ let $f_{A}: \omega_{1} \rightarrow \alpha$ denote the cutoff function for A (as defined in Section 1). For $\gamma^{\prime}<\gamma_{0}$, let $G_{\gamma^{\prime}}=\bigcup_{r^{\prime \prime}<\gamma^{\prime}}\left\{\gamma^{\prime \prime}\right\} \times E_{f_{\gamma^{\prime}}\left(\gamma^{\prime \prime}\right)} \subseteq \alpha$ and let $g_{\gamma^{\prime}}=f_{G_{\gamma^{\prime}}}$. Then $g_{\gamma^{\prime}}$ is ρ_{n-1}^{λ}-finite so there is an ordinal $h\left(\gamma^{\prime}\right)<\gamma_{0}$ such that $g_{\gamma^{\prime}}(\nu)<s\left(\nu, h\left(\gamma^{\prime}\right)\right)$ for sufficiently large $\nu<\omega_{1}$. By Lemma 14 it suffices to show that $g \leqq{ }_{w \beta} B$ where $g\left(\nu, \gamma^{\prime}\right)=g_{\gamma^{\prime}}(\nu)$. But by the way we have defined $G_{\gamma^{\prime}}$, it actually suffices to show that $g \mid X \leqq{ }_{w \beta} B$ where for unboundedly many $\gamma^{\prime}<\gamma_{0},\left\{\nu \mid\left\langle\nu, \gamma^{\prime}\right\rangle \in X\right\}$ is unbounded.

We repeat now the argument of Lemma 2. For each $\gamma^{\prime}<\gamma_{0}$ and $\nu<\omega_{1}$ let $m_{\nu}^{\prime \prime}$ be the $<_{J}$-least injection of $s\left(\nu, h\left(\gamma^{\prime}\right)\right)$ into \boldsymbol{K}_{ν} and choose a stationary set $X_{r^{\prime}} \cong \omega_{1}$ such that $Y_{r^{\prime}}=\left\{m_{\nu}^{r^{\prime}}\left(g_{\gamma^{\prime}}(\nu)\right) \mid \nu \in X_{r^{\prime}}\right\}$ is a bounded subset of α. As $\gamma_{0} \neq \omega_{1}$ there is an unbounded $Y \subseteq \gamma_{0}$ such that $\bigcup_{r^{\prime} \in Y} Y_{r^{\prime}}$ is bounded in α. But then $g \mid X \leqq{ }_{f_{\alpha}} s$ where $X=\left\{\left\langle\nu, \gamma^{\prime}\right\rangle \mid \nu \in X_{r^{\prime}} \wedge \gamma^{\prime} \in Y\right\}$. Since $s \leqq_{w \beta} B$ we get $g \mid X \leqq{ }_{w \beta} B$.
(b) Note that for all $\nu<\omega_{1}, \gamma^{\prime}<\gamma_{0}, s \mid \nu \times \gamma^{\prime} \in S_{\eta}$ where $\eta=$ largest η^{\prime} such that $S_{n^{\prime}} \vDash s\left(\nu, \gamma^{\prime}\right)$ is a cardinal (use the fact that $\bar{C} \cap g_{r}\left(\gamma^{\prime}\right)$ is a collapsible predicate on $g_{\gamma}\left(\gamma^{\prime}\right)$). Now define $\widetilde{s}\left(\nu, \gamma^{\prime}\right)=\eta$ if $s \upharpoonright \nu \times \gamma^{\prime}$ is the η th set in the canonical well-ordering $<_{J}$. Thus we can assume that for each $\gamma^{\prime}<\gamma_{0}$, $\left\{\nu \mid \widetilde{s}\left(\nu, \gamma^{\prime}\right)<t\left(\nu, \gamma^{\prime}\right)\right\}$ is stationary and it suffices to produce $X \subseteq \omega_{1} \times \gamma_{0}$ such that $\widetilde{s} \upharpoonright X \leqq_{w \beta} B$, and for unboundedly many $\gamma^{\prime}<\gamma_{0},\left\{\nu \mid\left\langle\nu, \gamma^{\prime}\right\rangle \in X\right\}$ is unbounded in ω_{1}. Now simply repeat the argument in the second paragraph of part (a) to get such an X.

Corollary to Proof. Suppose $t: \omega_{1} \times \gamma_{0} \rightarrow \alpha, u: \omega_{1} \times \gamma_{0} \rightarrow \alpha$ and for each $\gamma^{\prime}<\gamma_{0},\left\{\nu \mid t\left(\nu, \gamma^{\prime}\right)<u\left(\nu, \gamma^{\prime}\right)\right\}$ is stationary. Then $t \upharpoonright X \leqq{ }_{f_{\alpha}} u$ for some X such that for unboundedly many $\gamma^{\prime}<\gamma_{0},\left\{\nu \mid\left(\nu, \gamma^{\prime}\right) \in X\right\}$ is stationary.

The Uniformity Lemma and its corollary are key steps in completing our proof. We first establish the relationship between \hat{e}_{r} and \hat{f}_{r} for masterful γ.

Lemma 15. If γ is masterful then $\hat{e}_{r}=$ weak β-jump \hat{f}_{r}.
Proof. We use Lemma 12(a). Let E_{r} and F_{r} be as defined earker. If $k: \beta \leftrightarrow \alpha$ is a β-recursive bijection then $E_{r} \leqq{ }_{\beta} k\left[F_{r}\right]$ since F_{r} (and hence $\left.k\left[F_{r}\right]\right)$ is not ρ_{n-1}^{2}-finite. As $k\left[F_{\gamma}\right] \leqq{ }_{w \beta} F_{\gamma}$ it only remains to show β-jump $\left(F_{\gamma}\right) \leqq \varliminf_{w \beta} E_{\gamma}$ in order to establish our lemma.

Note that the sequence $\left\langle E_{f_{\gamma}\left(\gamma^{\prime}\right)} \mid \gamma^{\prime}<\gamma_{0}\right\rangle$ is $\Sigma_{1}\left(\mathscr{A}_{r}\right)$ and therefore so is the sequence $\left\langle F_{\gamma} \cap f\left(\gamma^{\prime}\right) \mid \gamma^{\prime}<\gamma_{0}\right\rangle$. It follows that $N_{\beta}\left(F_{\gamma}\right)$ is Σ_{1} over \mathfrak{A}_{γ} and since

$$
\langle e, x\rangle \in \beta-\operatorname{jump}\left(F_{\gamma}\right) \leftrightarrow \exists\langle z, w\rangle \in N_{\beta}\left(F_{\gamma}\right) \quad\left[\langle x, z, w\rangle \in W_{e}^{\beta}\right]
$$

we see that β-jump $\left(F_{r}\right)$ is Σ_{1} over \mathfrak{A}_{r}. But E_{γ} is a Σ_{n} master code for λ (a Σ_{1} master code for $\left.\mathfrak{A l}_{r}\right)$ and therefore β-jump $\left(F_{r}\right) \leqq_{{ }_{\beta} \beta} k\left[\beta\right.$-jump $\left.\left(F_{r}\right)\right] \leqq{ }_{\alpha} E_{\gamma}$. Thus β-jump $\left(F_{\gamma}\right) \leqq_{w \beta} E_{\gamma}$.

We now complete our proof. First choose an increasing β-recursive sequence $\left\langle K_{r} \mid \gamma^{\prime}<\gamma_{0}\right\rangle$ of β-finite sets such that β-cardinality ($K_{r^{\prime}}$) = α for all γ^{\prime} and $S_{\beta}=\bigcup_{r} K_{r^{\prime}}$ (using the facts that $\beta^{*}=\alpha$ and $\gamma_{0}=\Sigma_{1} c f \beta$). For each $\gamma^{\prime}<\gamma_{0}$ let $k_{r^{\prime}}$ be the $<_{J}$-least bijection from $K_{r^{\prime}}$ onto α.

Now choose $B \subseteq S_{\beta}$ and let $B_{r^{\prime}}=k_{r^{r}}\left[B \cap K_{r^{\prime}}\right]$. Define $g: \gamma_{0} \rightarrow \boldsymbol{\zeta}_{\omega_{1}+1}$ by the property: $B_{\gamma^{\prime}}={ }_{\alpha} E_{g\left(\gamma^{\prime}\right)}$. Let $\gamma=\sup g\left[\gamma_{0}\right]$.

Case 1. $\gamma=g\left(\gamma^{\prime}\right)$ for some γ^{\prime}. If $\gamma=0$ let $\lambda=\beta$ and $n=1$. Otherwise, let E_{γ} be a Δ_{n} master code for λ. Let $\delta=\Sigma_{1} c f 9 \overbrace{n-1}^{\lambda}$ and choose $s: \omega_{1} \times \hat{o} \rightarrow \alpha$ to be Σ_{n} over S_{λ} and such that $\lim _{\dot{j}^{\prime} \rightarrow \grave{o}} s\left(\nu, \delta^{\prime}\right)=$ least $\rho_{n-1}^{\lambda}, C_{n-1}^{\lambda}$-pseudostable
\boldsymbol{K}_{ν} for each $\nu<\omega_{1}$. For each $\gamma^{\prime}<\gamma_{0}$, if $j_{\gamma^{\prime}}=$ cutoff function for B_{γ} then $\left\{\nu \mid j_{\gamma^{\prime}}(\nu)<s\left(\nu, \delta^{\prime}\right)\right\}$ is stationary for some $\delta^{\prime}<\delta$. It follows from the corollary to the Uniformity Lemma that if we let $j\left(\nu, \gamma^{\prime}\right)=j_{\gamma^{\prime}}(\nu)$ then $j \upharpoonright X \leqq w^{\beta} E_{\gamma}$ for some $X \subseteq \omega_{1} \times \gamma_{0}$ such that for unboundedly many $\gamma^{\prime}<\gamma_{0},\left\{\nu \mid\left(\nu, \gamma^{\prime}\right) \in X\right\}$ is stationary. Thus since $\left\langle K_{\gamma} \cdot \mid \gamma^{\prime}<\gamma_{0}\right\rangle$ is increasing, $j \leqq w_{w^{\beta}} E_{\gamma}$ and so $B \leqq{ }_{w^{\beta}} E_{\gamma}$. Also $E_{\zeta} \leqq{ }_{\beta} B$ since for some $\gamma^{\prime}<\gamma_{0}, E_{\gamma} \leqq{ }_{\mu} B_{\gamma}$ (so $N_{\beta}\left(E_{\gamma}\right) \leqq{ }_{f \beta} N_{\gamma}\left(E_{\gamma}\right) \leqq_{f \beta}$ $\left.N_{\alpha}\left(B_{\gamma^{\prime}}\right) \leqq{ }_{w \beta} B\right)$.

Case 2. Otherwise. Choose λ so that E_{γ} is a master code for λ and let n be least so that $\rho_{n}^{\lambda}=\alpha$. Let $j_{r^{\prime}}=$ the cutoff function for $B_{r^{\prime}}$ and $j\left(\nu, \gamma^{\prime}\right)=j_{r^{\prime}}(\nu)$. Also define $\delta=\Sigma_{1} c f\left(2 \eta_{n-1}^{2}\right)$ and choose $s: \omega_{1} \times \delta \rightarrow \alpha$ to be $\Sigma_{1}\left(\mathfrak{O}_{n-1}^{\lambda}\right)$ and such that $\lim _{\bar{o}^{\prime} \rightarrow \boldsymbol{j}} s\left(\nu, \delta^{\prime}\right)=$ the least $\rho_{n-1}^{\lambda}, C_{n-1}^{\lambda}$-pseudostable greater than \boldsymbol{K}_{2}. As each B_{r}, is ρ_{n-1}^{λ}-finite, for each $\gamma^{\prime}<\gamma_{0}$ there is $\delta^{\prime}<\delta_{0}$ such that $\left\{\nu \mid j\left(\nu, \gamma^{\prime}\right)<s\left(\nu, \delta^{\prime}\right)\right\}$ is stationary. But it cannot be the case that for a fixed $\delta^{\prime}<\delta,\left\{\nu \mid j\left(\nu, \gamma^{\prime}\right)<s\left(\nu, \delta^{\prime}\right)\right\}$ is stationary for unboundedly many $\gamma^{\prime}<\gamma_{0}$. Thus if $\delta<\alpha$ we must have $\delta=\gamma_{0}$. And, the argument at the end of the proof of Theorem 9 shows that $\delta<\alpha$. Thus γ is masterful.

As $\gamma_{0} \neq \omega_{1}$ there is no Δ_{n} master code for λ and thus E_{γ} is a Σ_{n} master code for λ. Now for each $\gamma^{\prime}<\gamma_{0}$ choose $h_{1}\left(\gamma^{\prime}\right)$ so that $\left\{\nu \mid s\left(\nu, \gamma^{\prime}\right)<j\left(\nu, h_{1}\left(\gamma^{\prime}\right)\right)\right\}$ contains a closed unbounded set (by the preceding paragraph). The Uniformity Lemma (b) is satisfied by $t\left(\nu, \gamma^{\prime}\right)=j\left(\nu, h_{1}\left(\gamma^{\prime}\right)\right)$ and thus $F_{\gamma} \leqq{ }_{\beta} B$. But the above argument applies equally well to F_{γ} as to B, so for each $\gamma^{\prime}<\gamma_{0}$ choose $h_{2}\left(\gamma^{\prime}\right)$ so that $\left\{\nu \mid s\left(\nu, \gamma^{\prime}\right)<l\left(\nu, h_{2}\left(\gamma^{\prime}\right)\right)\right\}$ contains a closed, unbounded set where $l\left(\nu, \gamma^{\prime}\right)=l_{\gamma^{\prime}}(\nu)$ and $l_{\gamma^{\prime}}$ is the cutoff function for $k_{\gamma^{\prime}}\left[F_{\gamma} \cap K_{\gamma^{\prime}}\right]$. Then for each $\gamma^{\prime}<\gamma_{0}$ there is $h_{3}\left(\gamma^{\prime}\right)$ such that $\left\{\nu \mid j\left(\nu, \gamma^{\prime}\right)<l\left(\nu, h_{3}\left(\gamma^{\prime}\right)\right)\right\}$ is stationary so the corollary to the Uniformity Lemma applies to show that for some "large" $X, j \upharpoonright X \leqq f_{\alpha} l$. But $j \leqq{ }_{f \beta} j \upharpoonright X$ and $l \leqq{ }_{w \beta} F_{\gamma}$ so $j \leqq{ }_{w \beta} F_{\gamma}$. Thus $B \leqq_{w_{\beta}} F_{\gamma}$.

We have established the conclusion of Theorem 10 when $\Sigma_{1} c f \beta \neq \omega_{1}$.

4. Further results and open questions

As we have earlier mentioned, there are incomparable $\boldsymbol{*}_{\omega}$-degrees above 0^{\prime} as well as infinite descending sequences of $\boldsymbol{\aleph}_{\omega}$-degrees. However the degrees in these examples are of sets Δ_{2} over $L_{\aleph_{\omega}^{+}}$where $\boldsymbol{\gamma}_{\omega}^{+}=$next admissible after \boldsymbol{K}_{ω}. Thus we propose:

Problem 1. Show that there are incomparable $\boldsymbol{\aleph}_{\omega}$-degrees above 0^{\prime} and
infinite descending sequences of $\boldsymbol{\aleph}_{\omega \prime}$-degrees above 0^{\prime} constructed (in L) before $\boldsymbol{S H}_{\omega}^{+}$.

Harrington has shown that if $\Sigma_{1} c f \beta=\Sigma_{1}^{\beta} c f\left(\beta^{*}\right)<\beta^{*}$ then incomparable β-r.e. degrees exist. We have extended this to show that for any such β there are incomparable β-degrees between e_{r} and e_{r+1} for all γ (where e_{r} is as in Theorem 10). These results will be presented in [3|. However the case $\Sigma_{1} c f \beta \neq \Sigma_{1}^{\beta} c f\left(\beta^{*}\right)$ remains unsettled.

Problem 2. Show that if $\Sigma_{1} c f \beta, \Sigma_{1}^{\beta} c f\left(\beta^{*}\right)<\beta^{*}, \Sigma_{1} c f \beta \neq \Sigma_{i}^{\beta} c f\left(\beta^{*}\right)$ then there exist incomparable β-r.e. degrees.

Our last problem concerns the optimality of Theorem 10. A positive solution shows that $\left\{e_{r} \mid \gamma<\mathcal{H}_{\omega_{1}+1}\right\}$ is definable over the β-degrees as a partial β ordering. For then this collection consists of all β-degrees e such that for all β-degrees f, either $f \leqq e$ or $e \leqq f$.

Problem 3. Let $\left\langle e_{r} \mid \gamma<\boldsymbol{\aleph}_{\omega_{1}+1}\right\rangle$ be defined as in Theorem 10. Show that if $e_{r}<f<e_{r+1}$, then there is a g incomparable $f, e_{r}<g<e_{r+1}$.

Massachusetts Institute of Technology, Cambridge, Mass.

References

[0] Keith J. Devlin, Aspects of Constructibility, Springer Lecture Notes, No. 354, 1973.
[1] Sy D. Friedman, β-recursion theory, Trans. Am. Math. Soc. 255 (1979), 173-200.
[2] -, Negative solutions to Post's problem, I, in Proc. Second Oslo Conf. on Generalized Recursion Theory, North-Holland, 1978.
[3] ——, Negative Solutions to Post's Problem III, in preparation.
[4] Ronald B. Jensen, The fine structure of the constructible hierarchy, Ann. of Math. Logic 4 (1972), 229-308.
[5] Carl G. Jockusch and Stephen G. Simpson, A degree-theoretic definition of the ramified analytical hierarchy, Ann. of Math. Logic 10 (1976), 1-32.
[6] Menachem Magidor, On the singular cardinals problem, I, Israel J. Math. 28 (1977), 1-31.
[7] Karel Prikry, On a theorem of Silver, handwritten notes.
[8] Gerald E. Sacks and Stephen G. Simpson, The α-finite injury method, Ann. of Math. Logic 4 (1972), 343-368.
[9] Richard A. Shore, α-recursion theory, in Handbook of Math. Logic, North-Holland, 1977.
[10] ——, Σ_{n} sets which are Δ_{n} incomparable, J. Symb. Logic 39 (1974), 295-304.
[11] Jack Silver, On the singular cardinals problem, in Proc. Int. Cong. Math., Vancouver, 1974.
[12] Stephen G. Simpson, Thesis, M.I.T., 1971.
[13] ——, Degree theory on admissible ordinals, in Proc. 1972 Oslo Symp. on Generalized Recursion Theory, North-Holland, 1974.
(Received January 29, 1979)
(Revised May 5, 1980)

[^0]: 0003-486X/81/0113-1/0025/019 \$ 00.95/1
 C 1981 by Princeton University (Mathematics Department)
 For copying information, see inside back cover.

 * The presentation of this paper was supported by an NSF Fellowship, and by NSF Gr \# MCS 7906084.

