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Annals of Mathematics, 113 (1981), 25-43 

Negative solutions to Post's problem, II* 

By Sy D. FRIEDMAN 

This paper is an application of the techniques of modern set theory to 
problems in ordinal recursion theory. We concentrate on the global structure 
of the 73-degrees for both admissible and inadmissible , and we show: 

THEOREM 4 (V = L). Let 13 = 80), and 0' = the ,3-degr ee of the complete 
/3-r.e. set. Then the 73-degr-ees greater than or equal to 0' are well-ordered 
by <?3 with successor given by the 73-jump. 

THEOREM 10 (V -L). Let 13 = -)1*. There is a well-order-ed sequence 
en < e, <... of 73-degrees such that if e is an ar-bitraray ,3-degr-ee then for some 
ae; < e < e+. 

Moreover, if we assume the Generalized Continuum Hypothesis, the 
,-degrees and the Turing degrees are not elementarily equivalent as par- 

tial orderings. If V = L then the k$,V1-jump is definable just in terms of the 
ordering of $,-degrees. 

These results are in sharp contrast with earlier ones in ordinal recursion 
theory (see [91), which tend to show that the 73-degrees have a very ricd 
structure. Thus our work here shows that the broader point of view ob 
tained by considering inadmissible 13 has led to a structure theory of impor 
tance even for the admissible case. 

In [81, Sacks and Simpson first established a connection between Gbdel 
techniques in the study of L and ordinal recursion theory. This paper fu 
thers this idea by relating deep results of Jensen on the fine structure of 
to the structure of the 73-degrees. The application of methods of combin 
torial set theory, initiated in [11, is also greatly extended as we make ke 
use of techniques developed by Silver in [111 where he settles the singul 
cardinal problem at uncountable cofinalities. 

Our earlier paper 121 is not a prerequisite for understanding the wo 
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reported here, though we do presume a familiarity with the basic notions of 
,3-recursion theory (as described in [11). In 121, we applied Fodor's Theorem 
and the theory of stationary sets to establish the ? 3comparability of any 
two g?-r.e. sets when A3 = wk, 1 A. In Section 1 of this paper similar methods 
are applied to establish Theorem 4. 

However, the deeper results require an excursion into the fine structure 
of L, where the theory of master codes enables us to identify explicitly the 
degrees appearing in Theorems 4 and 10. This is carried out for Theorem 4 
in Section 2. Theorem 10 requires the introduction of some further recur- 
sion-theoretic ideas and is dealt with in Section 3. 

There are natural versions of the above results when 8t,, is replaced by 
any singular cardinal of uncountable cofinality. However these results do 
not hold when t,,, is replaced by a singular cardinal of countable cofinality, 
as we will discuss in 131. We end our paper by listing some further results 
and open questions concerning both the countable cofinality case and the finer 
structure of the g3-degrees. 

1. Stationary sets and the 8,),,-degrees 

We assume V = L. Our first goal is to prove that if azr ' then the 
a-degrees > O' are well-ordered by _,, where O' a a-degree of the complete 
a-r.e. set. This provides an example of a first-order difference between the 
partial-orderings of E$,,-degrees and Turing degrees; indeed, the following 
sentence holds in the latter but not the former: 

Vd 3e Jf(e g dUf and f : dUe) . 
First-order differences in the language with jump were already discovered 
by Richard Shore (see 191). 

The proof technique used here is in fact imbedded in our earlier paper 
[21. We continue to let a denote t,,i (and to assume V L). 

LEMMA 1. C = < a)} has a-degr-ee 0'. 

Pr oof. Note that C is I l, over 

L,: y E C - > ? > V A 3 <' <7 3 f(f: v 7 ) 

So C <, O'. But every element of C is a-stable; i.e., V E C-> L, is a 2?- 
elementary substructure of L,. (This is proved in [81.). Thus, if v(x) is a 
?2, formula defining (over La) a complete a-r.e. set A then for K, H c L,: 

K C A - Y 7 C C(K2Lr A V 6 E K, L, t (6)), 
H C- L, -AA fG C(H C L, A V a G H, LK t (a)) . 

So A < ,C. L 
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Every A I ca of a-degree >?, 0' has the same a-degree as an apparently 
much simpler set, its "cutoff" function. 

Definition. For A c' a define fA: ws -> a, the cutoff function for A, by 

fA(0) -3 if A n a is the P3th element in the canonical well-ordering <La 

of L.. 
Thus we see that for all 3, fA(6) < ?,. Note thatfA X for X unbounded 

in (0, determines fA completely. The idea of comparing two sets A, B by com- 
paring the growth-rates of fA, f1; has its beginnings in Jack Silver's work on 
the Singular Cardinal Problem 11I 1 and is made very explicit in Karel Prikry's 
proof [71 of Silver's theorem. It is this idea which we use here. 

LEMMA 2. Suppose O' < O Ay O' < O B. Then either A _ B or B <ac A. 

Proof. One of the sets ((! fA(8) < fR(()}, ((3 f 1(b) ? fB3(6)} must be a sta- 
tionary subset of w,. We assume that the former set is and proceed to show 
that A< B. 

It is enough to show that f l 1 X can be computed from B for some un- 
bounded X C wo, 

For any a < i3, let cp be the < ,-least injection of A3 into cardinality (i3). 
Define functions g, h on {16 fA(6) fB(6)} by 

g(a) - Cf,(3)+l(fA(6)), 
h() -least (' such that g(6) < 8 . 

Then g(6) < f$ for all a3, so ( limit -)> h(Q) < (. By Fodor's Theorem, choose 
a stationary X C o, and a3, such that ( e X - -> h(() < i,,. 

But then 3 E X--+ g(6) < Flu,0 so g r X is a-finite (since any bounded subset 
of a is a a-finite). We can now compute fib r X from B by 

fA(L) - cfY(63+1(g(3)) , a3cX. Lz 
Note the heavy use of uncountable cofinality here (in order to apply 

Fodor's Theorem). It is known that Lemma 2 fails when a is replaced by 
G,. (This is due to Leo Harrington and Bob Solovay independently and will 
be shown in [31.) 

Our proof in fact shows: 

LEMMA 3. The a-degrees > O' are well-ordered by <,. 

Proof. The proof of Lemma 2 shows that if 0' <, A <a B then {f i f4(Q) < 
fB(6)} contains a closed unbounded subset. Now if A, >H A >a ** * each 
Ai >-a 0', then {6 i fA, ,(6) < fAj(6)} contains a closed unbounded set for each 
so there must be ( such that fA,,j(6) < fA,((3) for every i, as the countable 
intersection of closed unbounded sets is nonempty. Of course we have now 
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contradicted the well-foundedness of the ordinals. L1 

It will be shown in 131 that the A,,-degrees > 0' are not well-founded. 
We next establish that the successor of each a-degree >, 0' is its a-jump. 

Our original proof of this fact made heavy use of the fine structure theory. 
Tony Martin later found a combinatorial proof. Subsequently we discovered 
a simpler combinatorial argument which we present here. 

THEOREM 4. The a-degr ees >(, O' ar e well-or der ed by <(, with successor 
given by the a-jump. 

Proof. We have only to show that 0' <, A <,, B implies A' <, B where 
A' = a1-jump of A. Let p(x) be a E, formula which defines A' over <L,, A>; 
i.e., A' ={x I KL, A> t c(x)}. For any ̂/ < wl we letA= {xA = Lkt, A n f > > 
p(x)} and fz fa, the cutoff function for A,.. Then the sequence <A, r < o01> 
is a-recursive in A. Thus for any g: ol - co,, the function fag defined by 
f,(6) = fq(,)(6) is also a-recursive in A (as any such g is a-finite). 

We compare f, to sup, f;- If {16 f,(6) < sup, f,(6)} is stationary then for 
some g: (A, w ,l the set {6 I f,(6) < fg(6)} is stationary. The proof of Lemma 
2 actually shows: If {1 3 fB(6) < h(6)} is stationary and h <, A then B <, A. 
Thus as we have assumed that A <, B it must be the case that {a I supr f(a) < 

ff(6)} contains a closed, unbounded set. 
As in the proof of Lemma 2, for any ,3 < a let cA denote the <1,-least 

injection of /3 into cardinality (/3). Now for limit ( < el, Sk has countable 
cofinality. Thus for stationary many a we may choose an uncountable 
X, C sol and h(6) < ( such that: 

7y e XC > 
CfB(3)+l(f7(a)) < kh()- 

Thus by Fodor's Theorem we may choose (3 < a), such that for stationary 
many 6: 
(*) by 

7 XC C fB(a)+l(farQ)) < th(8,0) 

We let g(a, a) c ,B('+l(fr(6)) and S = {16 (*) holds}. For each /3 < a write 
K(3) y y if y is the /3th set in <,,. Then we see that for a e S: 

A' n 8 -t = u,, K(c4 M+?1(gQ6, v))) 
As g, S and <X, a e S> are a-finite and K is a-recursive this shows that 
A' <, B. D 

We note that there is an appropriate version of Theorem 4 if only the 
generalized continuum hypothesis (GCH) is assumed. In this case choose 
A a a such that {8a 16 < ?old <, A and 21a C Lj+,[A1 for each ( < cwe. Then 
Theorem 4 holds when 0' is replaced by a-degree (A). Thus the GCH alone 
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implies that there is a first-order difference between the 8t,,,-degrees and 
the Turing degrees as partial orderings. 

Next we derive some information concerning the a-jump, assuming 
V = L. Following Carl Jockusch and David Posner, define an a-degree d to 
be generalized low if d' -d V 0'. If 0' < d then d is not generalized low. 
However this is the only exception. 

THEOREM 5. For all d either O' ? d or d is generalized low. 

Proof. Define A C- a to be hyper-regular if <L,, A> is admissible. If A 
is hyper-regular then B is A-hyper-regular if A V B is hyper-regular. The 
following claim generalizes a result of Richard Shore: 

CLAIM. If A is hyper-regular and B is not A-hy per-regular then 
A' <,BV A. 

Proof of Claim. Choose a function f: '0 -a a, v0 < a, such that f is 
weakly a-recursive in A V B and f has unbounded range. Also let q'(x) be a 
Y, formula such that A' = {x I <La, A> = qp(x)}. As A is hyper-regular we can 
choose a function h: '0 --- '0 such that for all ^r < ^r,, 

A' n f() ={x I <Lf(hT,, A n f(h(-))> t %p(x)}. 

As h is a-finite this shows that A' <? A V B. This proves the claim. 
Now choose a set A in the a-degree d. If A is not hyper-regular then 

0' ?a A by the claim. Otherwise A' < O' V A by the claim since 0' is not 
A-hyper-regular (Lemma 1). C] 

Stephen Simpson's work in [131 completes the picture by showing that 
every d > O' is the a-jump of some generalized low degree. Now a theorem 
of Richard Shore in [101 shows that if A is hyper-regular then there are sets 
B, C which are a-r.e. in A such that B $, A V C, C %, A V B. These facts 
enable us to prove the following theorem: 

THEOREM 6. The a-jump operation on the a-degrees is first-order defin- 
able over the structure <a-degrees, < 

Proof. By our above remarks and Lemma 2 we have: 

0' = least d such that feV f(d Ve <, d V f or d V f <,ad Ve). 

Thus {0'} is first-order definable over <a-degrees, ?,> But then by Theo- 
rem 5: 

e = d' a-+ IO' $, d and e = d V O'l or 
[0' -< d and e = least degree > d] . [1 

We end this section by briefly mentioning how the above results extend 
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to other singular cardinals of uncountable cofinality. Let (3 be such a cardi- 
nal. Then there is a least 1-degree d such that the 1-degrees > d are well- 
ordered by <?p (the least non-hyper-regular ,8-degree). Moreover for A C /3 
one can make an appropriate definition of A'", the vth iterate of the /3-jump 
applied to A, and then d - 0'" for some v < A+-next cardinal after /3. If 
d As A then A is generalized low, (i.e., A"' = , A V 0'') and hyper-regular. 
{d} is definable over </3-degrees, i 

2. Master codes 

Let /3 be a limit ordinal. We define the ?, projectum of /3, pP, and the 
A. pro jectum of /3, 6P, by 

P'n =least ' such that there is a 1-1 function from ,3 into or 
which is ?, over Sp 

a3 least ̂ y such that there is a 1-1 function from i3 onto Pr 
which is ?, over Sp. 

We also let Pe = 3M /3. 
The S-hierarchy for L is defined in Devlin's book [l], page 82. It is often 

easier to work with this hierarchy ass n On- /3 for limit /3. (For all /3, 
S,.f= Jfi so the S-hierarchy is merely a "ramification" of the J-hierarchy.) 
Our definition of the projecta differs from Jensen's but is easily related to 
his definition and allows one to state cleanly the following characterization, 
which follows from Jensen's work: 

THEOREM 7. (a) p -least y such that there is a subset of ̂ / which is 
En over Sp but not a member of Sp. 

(b) (, = least ̂ / such that there is a subset of -' which is A, over Sp but 
not a member of Sp. 

(c) For ( < /3 let Zp cf(8) = least ^/ such that there is a function from 
V onto an unbounded subset of ( which is ?" over Sp. Then (3= 
max (pa, ?ncf(pn-)) 

The notion of a ?, master code is the key in Jensen's fine structure 
theory. A _ A3 is a Z. master code for /3 if: 

(a) A pc ; (b) A is ?X over So; (c) Let - <Sp,, A>. Then B C pn is ?, 
over 'A if and only if B is Zn+l over So. 

Jensen showed that ,. master codes always exist. As in [41, choose a canon- 
ical Y. master code for /3, CU, and let We = ISp, Cl>. It follows from (c) that 
B C AP is Em over An if and only if B is ?nm over So. 

The notion of a An master code occurs more rarely (though it was 
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considered by Jockusch and Simpson [5] in case p-- w). A _ /3 is a n 
master code for , if: 

(a) A _ e,, (b) A is An, over So. (c) If <S = KSo, A> then B '- fi is ?, 
over % if and only if B is I,, over Sp. 
Again, (c) implies that B CQ 6 is Ym over 'SC if and only if B is 1mn_- over Sp. 
z~, master codes do not always exist. They do if fi- = or if p'- = 6fi (in 
this case CA -, is a An, master code for /3). The case that concerns us here is 
when fi = and the results below show that a An, master code exists for 
,A if and only if ?cf(pi_)- = . In general a A,, master code exists for /3 if 
and only if Xfcf(p_=) EA 

As in the previous section let a denote 8t,, and assume V = L. We will 
describe a procedure for dissecting the a-degrees > O'. We first establish 
some basic facts about master codes which are subsets of a, a-master codes. 
Define A to be an a-master code for /3 if A is a In or /,, master code for /3 
for some n and A c a. 

PROPOSITION 8. (a) If pn = a then all Y, master codes for /3 have the 
same a-degree. 

(b) If an = a then all an master codes for /3 have the same a-degree. 
(c) If /31 < /32 then all a-master codes for /3, are a-recursive in all a- 

master codes for /32- 

(d) If pAul = a then the Ynaj master codes for /3 and the A, master codes 
for /3 have the same a-degree. 

(e) If a = an and if D is a 
A. 

master code for /3, C a E, master code for 
/3, then C =, a-jump(D). 

(f) If pa = a and C, is a S, master code for /3, C, a S,-! , master code for 

/3, then C2Q or a-jump(C,). 
Proposition 8 gives us the following picture: Say that a limit ordinal 

/3 > a is projectible into a if pn - a for some n. List the limit ordinals 
/3 > a which are projectible into a in order: a / 3n < /31 < ... and list the 
a-degrees of a-master codes in < f-increasing order 0 d, < d. < . If /3 
is projectible into a let n(/3) = least n such that pn= a. Now let /3 = ,, 
n n(/3) and X = i. Then if 6A - a and there is a An master code for /3, 
we have d. -- a-degree (any An master code for /3) and d; m a= a-degree (any 
'\n+m master code for /3). This occurs exactly when Encf(p&l) = cell. Other- 
wise d;.+m = a-degree (any vnl m master code for /3). Finally, for all V, 
d,+ = oa-jump(dj). 

Our ultimate aim is to show that the d, 's, v > 2, exhaust the a-degrees 
>- o0 d=.. We show how this is done after proving Proposition 8. 
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Proof of Proposition 8. (a) If A ci L_ then {x e La x C A} and 
{xe La x n A = 0} are both Y, over <La, A>. Therefore if C1, C2 are Yn 
master codes for /3, pi = a then {x e La x C1} and {x e La | x n cl = 0} are 
Y, over <L,, C1>, hence Y,,,, over /3, hence Y, over <La, C2>. So C, < C,* 

(b) Similar to (a). 
(c) If /3A < /3, then any a-master code C1 for A3l is /3,-finite; therefore 

{x e La x Ci C1} and {x e La I x n C1 - 0} are /32-finite, hence A , over Si2 and 
therefore A\, over <La, C> for any a-master code C for /32. 

(d) As we have noted, if p&1 a then any ? master code for /3 is 
also a An master code for /3. The result now follows from (b). 

(e) We have C ?a a-jump(D) as C is Y, over <La, D> and a-jump(D) has 
the largest a-degree of any set Y, over <La, D>. For the converse (a-jump 
(D) <a C), it suffices to show that both of the sets {x e La I x -o a-jump(D)} 
and {x e La I x n a-jump(D) = 0} are ?n? over S,. The latter set is actually 
HI, over <La, D>, hence Hn over S,. To complete the proof it suffices to show 
that {x e La x Co a-jump(D)} is Y2 over <La, D>. 

CLAIM. If B c a, B is ?1 over /L, D>, then B* = {x G L, i x B} 'is Y2 
over <La, D>. 

Proof of Claim. If <L,y D> is admissible then B* is actually Y, over 
<La, D>. Otherwise choose y < a, f: y -> a unbounded such that f is Y, over 
<La, D>. Let 9(x) be a Y, formula such that y e B - <L,y D> = (g(y). Then 

x z B - 3 sequence <x, 1 3 < Y> C La such that x = U3 xX and 
V /3 < y V ye xp<Lf(p), Dn f (/3)> 1= 9(y). 

This is true since any bounded subset of a is a member of La. This gives a 
Y2 over <La, D> definition of B*. 

(f) Follows from (d) and (e). F1 

Our method of showing that every a-degree >a 0' is one of the d,'s, 
2 > 2 is to prove for each v that for all d > 0': 

(*)> ~~~~d > d"I for all v' < v --> d > d> . 

Given this, argue that for all d > O' there is v such that d = d, as follows: 
Let v be least so that d > d>. If d t d>, for all v' < v then d > d, for all 
V' < v so by (*), d > d>, a contradiction. 

The proof of (*), breaks into cases. The case v = 2 is trivial. The suc- 
cessor case is handled by Theorem 4 and Proposition 8 as for any V, d,?1 = 
a-jump(d,). Our next result handles the limit case. 

THEOREM 9. Suppose p-l > s a and let C be a En master code for /3. 
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(a) If 1Pcf(p2L) =w, then -( a, there is a 
/,, 

masters code D for 13 
and for all A c a: 

A is 13-finite or D <, A V O'. 

(b) If 14cf(pl1) ( w, then for all A z a: 

A is S3-finite or C:<, A V O'. 

For then suppose X is a limit ordinal, X = am-. Then if (a) above holds 
with A3 = a3d, n = n(/3), we have d, = a-degree of a An master code for A3l; 
if (b) holds then d2 = a-degree of a Y master code for A3d. In either case 
for all A c- a, A is I3-finite or d, <0 A V 0'. But A /3,-finite implies A is a- 
recursive in some a-master code for some A3' < A3, and hence A < d;, for 
some v' < x. This demonstrates (*),.. 

The proof of Theorem 9 necessitates the introduction of some technical 
notions associated with Skolem functions. Let Kit = <Sn, A> be an amenable 
structure (i.e., A n S, e Si for ally < h3). If p e S, then a YP Skolem function 
for A{ is a partial function h(i, x) which is Y, over sV( with parameter p with 
the property that whenever p(x, y, z) is Y,(aX) then 

9{ = 'v x(3 Y(Px, a, p) - 3 i9p(xy h(iy x), p)) 
If p = 0 then we say that h is a I Skolem function for Sif. YP Skolem func- 
tions are easily constructed (see [0], p. 88). Also we define sit* = (13, A)* = 
least y such that there is a ?1(W) function f: ,3 - y and p(S) = p(Q3, A) = 
least p such that there is such an f which is A1 over 9N with parameter p. 

We are interested in using a IP,'A' Skolem function h to take Skolem 
hulls and then to analyze the nature of these Skolem hulls after they are 
transitively collapsed. If y < (,3, A)* then let H, = h[co x a] and wr: <Hr. 6>Z> 

<Sr', s>. Then y is (Q3, A)-pseudostable (or sQ{-pseudostable) if y 2 Hr. It can be 
easily checked that y (/3, A)-pseudostable implies y is a y '-cardinal. We also 
let YA = least a such that i[A n HJ] is definable over S,. 

In many contexts it is desirable to have a bound on YA (in terms of a). 
The reason for this is that if y is (/3, A)-pseudostable and B C (/3, A)* is Y, 
over 9A in some parameter in y U {p(/3, A)}, then B n y is ?1-definable over 
<Sr, rc[A n Hr] and thus a bound on YA gives a bound on where B n z is 
constructed. In case (/3, A)* = a this allows us to estimate the growth rate 
of fB, which is useful in view of Lemma 2. 

We describe now an important possible bound on YA* For y < (/3, A)*, 
let y = greatest 6 such that S, t y is a cardinal (a = Y if there is no such 
3). Then A is collapsible on /3 (or W is collapsible) if YA _ ' for all sufficiently 
large (/3, A)-pseudostable y < (/3, A)*. 
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Examples. (a) If A is A1 over So then A is collapsible. For, choose 
7, < (/3, A)* such that A is A, over S, with parameter q e hip x 7,]. Then 
(7 > a,, >y is /3, A-pseudostable) -' A n h[w x 7] is definable over ho x a7] 
7' >? . But S' = z is a cardinal. 

(b) If A is a A,, (Y,_-) master code for , and /3 = I (3 = p0-1) then A 
is a collapsible predicate on /8. 

Pr oof. Choose q e S, so that both A, /3-A are E over S,1 with parameter 
q. Let k be yq Skolem function for St and choose 'i, < /3 so that k n (a x /3) x /3 
is A1 over <Sp, A> with some parameter r e SrO. Then for 7 > 7,, h[w x D] is 
closed under k n(a) x /3) x 1 and so k[w x 7] n /3 h=jfa x 7] -Hr. Now if 
7 is /3, A-pseudostable let Kr = k[w x 71 and z: <Kr, s> -<S, s>. Then 
z D w: <H,, s> <Se, e>, 7" > y' and Sr t 7is a cardinal. ButA F Kr is A,, 
over K, so r[A n HJ] is A,, over Sr'. D-l 

Proof of Theorem 9. Let t = <S,_ , Cri,> and 7, = Acf(fA). Choose an 
sit-recursive order-preserving function f from 7/, onto an unbounded subset 
of p'-, such that 7 < 7,, 7 limit Ws = <Sf(,), C.,- n f(7)> is amenable. Let 
sI be the first s2t-pseudostable greater than St (for all 7 < 7,) and let s, be 
the first sNt-pseudostable greater than gt. Then s, = U {s' 17 < 7o}. 

First assume that 7, < a. 
Recall that the proof of Lemma 2 shows: If {6 I fA(6) ? g(Q)} is stationary 

and g Ha, B then A ?,a B. As Vf is collapsible, whenever C C a is A, over 9) 

then C n Ad is definable over S-,, for ( sufficiently large. Thus if A c a and 

fA(6) > s, for stationary many ( then Cn <, A. Otherwise fA(3) < s, for 

stationary many ( and A is Plrecursive. 

(a) Assume 7o = w,. Let D = <s 1(3 < o,>. 
Then A A, over <S,,, D> --- A A. over sit. Conversely: By Jensen's extension of 

embeddings lemma ([i], page 100) Cu, n f(7) is a Yn master code for some 
ordinal ( such that p-, = f(7), and hence is a collapsible predicate on f(7). 
It follows that if 55(x) is Y, then {x < ko, SI, O (x)} is definable over Se, 

where Jo, = So. Therefore the equivalence: 

i t (x) '- 3 6[x < i, A S)(, O (X)] 

shows that any subset of a which is A, over Vf is A. over <S,,, D>. So D is a 
A, master code for sit and hence a A,, master code for /3. 

Now if A Cc a and fA(6) < s, for stationary many ( then either fA(6) < s' 

for stationary many ( or fA(6) > s' for stationary many (. In the former 

case Fodor's Theorem implies that for some fixed 3, < co,, fA(6) < slo for 

stationary many ( so A is p --finite since the sequence <s' ( 3 < wc> is. In 

the latter case D <, A V 0'. Case (a) is complete. 
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(b) If -y0 # w, then fA(6) < s, for stationary many o implies that there 
is a fixed 60 < w1 such that fA(6) < s4' for stationary many 6. Again A is 

Pn -,-finite. 

To complete the proof of Theorem 9 we must treat the case y, > a. Then 
it is still true that fA(6) > s, for stationary many 3 implies Ci <, A V 0'. So 
assume that fA(a) < s, for stationary many i. Let p - p(P- 1.Cj,) and let h 
be a ? Skolem function for si(. For each 6 such that f.(6) < s, choose 
g(o) < 3 so that fA(a) e hiw x sq8 i and na < K , yA, < 8 so that if x, 
(na, ya) then h(x,) = fA(Q). Then by Fodor's Theorem there is '3 < w1 such 
that X = 16 | g(6) < 3,} is stationary. Then {Jx 16 e X} is a-finite and as J0 > a, 
h I (xe 16 e X} and hence A is p'-,-finite. L 

Thus we have established: 

THEOREM. For any A C a, 0' < A has the same a-degree as an a-master 
code. 

3. The strutLure of the /3-degrees 

We continue to assume V L and let a denote . Now also let /3 
denote a limit ordinal such that: 

(i) /3 > a, (ii) 3* - a, (iii) 21 cf13 < *3 
Typical such d's are a w, a w y, (To,. 

We develop a method of deducing structural properties of the ,8-degrees 
from the results of Section 2. If e, f are fl-degrees, define e-? ~ f if E < ,, f 
for some E e e. Our main result is: 

THEOREM 10. There is a well-ordered sequence eo <A el <a ... of /3- 
degrees of ordeer type ? such that: 

(i) Fork all y, e,?1 < e e,. 
(ii) If e is an arbitrary 3-degree then there is a unique y such that 

e,- A e <A e, 1. Also E <,, e, for every Ee e. 

Thus the fl-degrees are "nearly" well-ordered. It follows from the 
second part of (ii) that there do not exist subsets of 3 which are incompa- 
rable with respect to u 

Our proof of Theorem 10 depends upon choosing special representatives 
of the a-degrees. In case icf/3 - co1, all the degrees of Theorem 10 arise as 
the f-degrees of specially chosen subsets of a. Moreover this method is of 
use to us in the case lcffl # wo,. For now we only assume that /3 satisfies 
conditions (i), (ii), (iii) listed above. 

Definition. For B, C ' a3 we say that B ?ff C if for some g3-r.e. sets 
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W., W,: 

x B- 3z, w[<x, z, w> e WoAz ' CAW _ - C], 
y -C 3 B 3 z, w[<y, z, w> e W, A z CA w ' - C] 

where x, y, z, w vary over finite subsets of ,3. 

Definition. If A _ a then 

N~(A) {(x, y) x, y e Sp, x ' A, y a - A} 
and 

NJ(A) {(x, y) I x, y e S., x C A, y c a - A} . 

LEMMA 11. For every A C a there is A* C a such that A = A* and 
Np(A*) <pf Na(A*). 

Proof. Let p e Sp be a parameter such that there are f: a and 
g: 21cf, -3 unbounded which are Y, over Sp with parameter p. Let zr = 
21,cf,3 and choose a YP Skolem function h(i, x) for Si and approximation h''(i, x) 
such that for ̂ I < y,, hT is a YP Skolem function for Sg(,). Finally define 
sT = hr[w x X r n and s, = U < 0 s3 the first 3, 9-pseudostable greater 
than 8k. Note that h[o x a] Sp. 

Key Fact. If x e hr[o x 8t] and x = a then fr(6') < s.,+l for all 0' > aq 
where fx-cutoff function for x. (Proof: x n , e h -Iw x , and so 

-xr) ,, < s;+ a/ 

We assume that A is not 13-finite. 

Case 1. ?21cfl3 w01. Then the proof of Theorem 9 shows that 
X = {8 fA(6) ? s'} is stationary. Define: 

A*= { _ < f() for some a e X} 

Case 2. ?21cfls = 7o w 1o. Then the proof of Theorem 9 shows that 
X = {a fA(6) ? s4- is stationary. Define: 

A* ={y < _ fA() some e XI} 
We show now that A* works. Clearly A*-?f' =a A. Note that for 

y -a,yeht[wx dj: 

y n [o,-~?~) 0 y nrwd-, s6) o0 
Therefore y a -A* -> y = Y1 U Y2 where Y1, Y2 are 13-finite and y, - 
U3 0 - [ W9 W?+)9 Y2 bounded in a. Also for x C a, x e hL[w x z1: 

x bounded in , Cd d1)- - F _| Sd)- 

Therefore x ' A*-> x = xI U x2 where x,, x2 are 13-finite, for some z 
x e h7[w) x a] and 
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x1 UeX [ 
a, 

sa), x2 bounded in a. 
Thus Np(A*) f <' Na(A*). LI 

Note that for A, BC a, A B-->A* <?B. 
We now apply Lemma 11 to the master code degrees dl, d2, * *, dr, ... 

which we defined in Section, 2. Let d>1 be the a-degree of a S1 master code 
for /3. Choose canonical representatives D1,j Dr1+l, ... of d>1, d?1+l, ... 
respectively and define: 

eo= 0, 
el+, = ,8-degree (D7*,) 

Also let E0= 0 and E1+,- D>*?. Then Er E e for ally and ET+l ac-jump(E,) 
for y > 1. 

To understand the relationship between e- and Jr, we must discuss the 
weak ,3-jump. 

Definition. Let e, f be ,8-degrees. Then f is the weak ,3-jump of e if f 
is the largest ,3-degree which is aw i e. 

LEMMA 12. (a) f is the weak 13-jump of e if f ? p g for some g w up e and 
e- 3-jump(e) f. 

(b) e,-+ = the weak /3-jump of J, for all r. 

Proof. (a) Choose representatives E, F of e, f, respectively. It suffices 
to show that E' < us Ft G E -E-> G < F. Choose el, e2 so that 

x e G )l{e,} (x) diverges, 
x X G )l{e2}E(x) diverges . 

Also choose a P-recursive f(K, e) such that {f(K, e)} (O) diverges v x E K, 
{e} (x) diverges. Then 

K C G 4 {f(K, ei)}E(O) diverges, 
H C 3- G ){f(H, e2)} (O) diverges, 

so ,/-finite neighborhood questions about G can be answered using finite 
neighborhood information on E'. But E' < w F so G < ? F. 

(b) Recall that Np(E,) ? f Na(E,). We claim that 13-jump(E,) <use Ear. 
In case Y = 0 this is clear as E1 is a Y, master code for ga. Otherwise note 
that any subset of a which is ?1 over Sp is , over <Sa, E>> so we can write: 

(e, x) e ,1-jump(E,) # 3 z, w E S[<x, z, w> G We A z c E, A w A= 8 - E,] 
z, w e Sj[<x, z, w> G Wf(e,) Az E A w C a-E,] 

where f is f3-recursive. This last predicate is Y, over <S,, E,>. Thus /3- 
jump(E,) _ sf a-jump(E,) = E, ,-1. So /3-jump(E,) _ Enj l . 
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Now define: E= {<8, e, x> I {e}ET(x) converges by stage 4} _ wo1 x a x a. 
(Here, {e}E denotes the eth function partial a-recursive in E.) Then Er ?waEr 
s5 Er < a c,-jump(E,). Also a-jump(E,) : a E>. For Ke Sa, 

K C a-jump(E,) # V x e K, (x -<x, xl> and {xJ}aE(x1) converges) 
,f GSa, Y(f : a- aA URangef = KAVxGf(6), 

{x0}r(x1) converges by stage at, 
for every a < w1) 

if GSa, (f: w1- --a AK= URangef Ad < Wl 

vx G f), Ky, xo xi> G Ent) 

And, for He Sa, 

H C a - (a-jump(E,)) v x e H, ({x0}jE(xl) diverges) 
-VxGH, (v, x x.}) x {xl} Cc- a - 

So a-jump(E,) =, E;. 
Now we have E, ,- ca-jump(E,) =, E; so E?+1 < E (since for any 

B =C a, Erro < B ---, E ?l B). But /3-jump(E;) <?as E,+ so the hypotheses 
of part (a) are now satisfied and e; ,0l = 6-degree(E>+l) = weak /3-jump(e). D 

For all inadmissible , and all c-degrees e, weak ,8-jump (weak ,8-jump 
(e)) = ,-jump(e). Thus in this case it is appropriate to refer to weak ,8-jump 
as the ",8-half-jump." 

We now have all the ingredients needed to provide a proof of Theorem 
10 in the case Y1cfS - w1. For such a ,3 let e= e& for each y > 0. As 
Y1cf/ -3 1 there is a tame Yl(Sp) bijection f: ,3 a; i.e., for each o < a, 
f -1[1 is ,8-finite and the sequence <f-j'1 86 < a> is ?1 over S; . 

Now let B c a and consider f [B] c a. Then by the proof of Theorem 
9 either f [B] is ,8-recursive or E <?, fIB 1. In the former case, B is /3-recur- 
sive and so 0 e. < ,8-degree(B) _ el and B < ,; e(. In the latter case choose 
y so that E,; f [B]. Then Na(f I BI) < ?i3 B as f is tame and so we have 

NA (Ej) <,, ZN (E;) <, 2VN,(ffB) $B B 

therefore E; <B. Also B<,fjlBj ?|E,, ,, E;so B<E,,E;. This proves Theorem 
10 in this case. 

Note. There is an easier proof of Theorem 10 in case Ylcf/3- =w,: Define 
a ,8-degree d to be Xregular if <S;, D> is amenable for some D E d. One can 
show that in case Ylcf3 = c), the regular /3-degrees are well-ordered and 
for any A c ,3 there is a regular /3-degree d such that A < d and d <,: 73- 
degree(A). Moreover if d is regular, then weak /3-jump(d) is the least regular 
/3-degree greater than d. However the proof that we have given shows that 
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the degrees e, have representatives contained in a and also provides us with 
the objects needed to analyze the ,8-degrees when Y1cfa3 # w1. 

Finally we establish Theorem 10 in the case ?1cf/3 # w1. Recall the degrees 
e>, obtained by taking the ,8-degrees of specially chosen representatives of 
the a-degrees > a-degree (A1 master code for ,3). In our present case 
(Y1cfis -( wl), the conclusion of Theorem 10 does not hold if we simply take 
e; = e,; other natural ,8-degrees arise. For any limit ordinal y define X so 
that Er C e& is an a-master code for X and let 9 KSA1, Cr> where n = 
n(X) = least m such that pt equals a, C' 1 = n-, master code for x. Then 

v is masterful if ?Acf 91f=, 2=1cf/3. We shall define a certain ,8-degree p 
for masterful a. 

LEMMA 13. 7 masterful -a ?2'r-cofinality(7) = 7,. 

Proof. Note that v = w ordertype {,3' < pi-l 1,3' is projectible into a}. 
(a) If a= largest pi 1-cardinal then P-- {I' p<l 1 /3' is projectible into a} 

is unbounded in p2- unless pi-, is of the form o' + w. In the former case 

Il;i-cofinality(7) = r-cofinality(ordertype of P) 
- 

?Tf-cofinality(p4_,) = 
?) 

and in the latter case 

2T7-cofinality(=) = = YT-cofinality(p2l) = a, 

(b) If r = next pA l-cardinal after a then z K. There exists a para- 
meter p e S,1 such that if h is a ?? Skolem function for K), then h[w) x a] 
S21. Let f: 7_> p'_ be unbounded and , over 9t, Then define g: 70 K 

by g(6) = sup(hf"1[w x al n c), where VIy is the interpretation of a YP 
definition of h inside <Sf(), Cn-l n f ()> (if this structure is amenable then 
hay) is a Y? Skolem function for it). The function g is S1 over 9tr and un- 
bounded since Ua hf (8) = h and K C hi4 x a]. D 

Now let fT,: Vo --> y be cofinal, continuous, increasing and Y,(S)(7). Also 

choose f: /y -(/ cofinal, continuous, increasing and 11(S,). Define: 

Fr ={Kf(7'), 8> 17 < o A G Ef(T')} C S 

(Thus F, is obtained by "spreading out" the sequence <Ef,(r,,) I' < -x,> co- 
finally in Sp.) Fr is the ?1(S) union of: 

Fr='=I {f(7'), 8> 8 G Ef r ,n 7' < J0 

and for /3' < ,, Spi n F.' -0 for sufficiently large a' < 70. 

LEMMA 14. For all masterful ', 
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Np(Fr) = X Y {(x I y) x G Sp A X C FT A y C Sp - Fr} 
wp Np(F.) n {(x, y) I x and y are contained in f [-iv0 x 8, 

for some 8 < a} . 
Proof. We employ the Skolem function h introduced in the proof of 

Lemma 11. Then for all ' < a there is a stationary set X,', C w1 such that 
if y C a - Ef '), y G h[w x S then y = yi U y, where Yi, Y2 are /3-finite, 
Y1 C [W y? I t +1) and Y2 _ . - It follows that if Hc Si - F, HG 
h[w x Stj then H H1 U H2 where H1, H2 are ,3-finite, 

H1 _ UI<T({f(^')} x U 2 t ?+)) and H2 C f [-ol x W 
Also if x (- a, x e h[w x wj, then x _ Ef;' if and only if x = 
U L; Ex; IWP x n + < for each V' < w1 and x n SP =C Ef (T). 
It follows that if K c Sp, Ke h[jj x 8,, then K c F. if and only if K C 

Ur <ro ({f(f')} x U '6x1 Ii$, W1+1))y IK {f(v')} x $ ?+1 I , for V' < coiy 
' < vo and K n f [-01 x t, c F.. These two facts suffice to prove the 
lemma. D 

We are ready to define the e,'s in this case. For y masterful let fr = /3- 
degree(F,). Then we set, for 0 or a limit, n e : 

e>+n = e +n, not masterful 
er fr , eT+?l = er+n y masterful 

Our next lemma is the key lemma toward understanding the degrees e,, 7 
masterful. Let g,: o -> pn-l be cofinal, continuous, increasing and Y{9b,). In 
case vo > wo we also assume that CL, n g,(-') is a regular subset of g,(y') for 
each ' < yo. If yo =o then there is a 1 master code Dn~ for \ such that 

g,(-') n Dn_, is finite (and hence collapsible) for each ( D Co. Finally let 
C = Cn 1 if yo > Co, C = DI-1 if o = a) and set s(V, I) least g,(-K'), C n g(At')- 

pseudostable greater than t,, for each V < acl '7' < ^io. 

UNIFORMITY LEMMA. (a) Ifs su}P B then Fr ?p B. 
(b) If t: (v, x 0 --> a, t < B and for each y1' < ^ry, {I I s(V, ') < t(O, I')} 

is stationary then s :f i B. 

Proof. (a) If A ( a let fA: C1 --* a denote the cutoff function for A (as 
defined in Section 1). For I < y0, let Gr = Ur<{ t"} x EfT(" ) (c a and let 
gr = fgf. Then g, is pal-finite so there is an ordinal h(y') < Ko such that 
gr (V) < s(k, h(y')) for sufficiently large v < Co1. By Lemma 14 it suffices to 
show that g :Pwp B where g(v, ̂ ') = g?(v). But by the way we have defined 
G, 9 it actually suffices to show that g I X < wp j B where for unboundedly many 
-I < v1y {I I <v, ̂ '> e X} is unbounded. 
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We repeat now the argument of Lemma 2. For each y' < y0 and v < (o 
let m>' be the <,-least injection of s(V, h(y')) into t,, and choose a stationary 
set Xr' Q co, such that Yr = {m7'(g,,(v)) I v e XJ} is a bounded subset of a. As 
ay ( wO there is an unbounded Y - y0 such that Ur,,e Yr is bounded in a. 
But then g I X : fs s where X = {<I, y'> K v G X> A Y' e Y}. Since s ! " ,B B we 
get gIX awP B. 

(b) Note that for all v < avi, A' < 70, s I v x A' e S, where to = largest '2' 
such that SX W s(V, a') is a cardinal (use the fact that C n gr(y') is a collaps- 
ible predicate on gr(y')). Now define a(i, a') = if s r v x a' is the 7th set in 
the canonical well-ordering KJ. Thus we can assume that for each A' < y0, 
{vI -i') < t(v, 7')} is stationary and it suffices to produce X C co, x r0 such 
that g r X FU j B, and for unboundedly many y' < y0, {J I <v, a'> e X} is un- 
bounded in co,. Now simply repeat the argument in the second paragraph 
of part (a) to get such an X. O 

COROLLARY TO PROOF. Suppose t: co, x y0 -* a, u: w1 x y0 -. a and for 
each y' < yO, {v I t(v, a') < u(v, a')} is stationary. Then t ' X f f u for some 
X such that for unboundedly many I' < ry0, {v I (v, I') e X} is stationary. 

The Uniformity Lemma and its corollary are key steps in completing 
our proof. We first establish the relationship between Jr and fr for master- 
ful a. 

LEMMA 15. If y/ is masterful then er = weak ,3-jump fr. 

Proof. We use Lemma 12(a). Let Er and Fr be as defined earker. If 
k: A3 o a is a 3-recursive bijection then Er ?p k[Fr] since F, (and hence k[Fr]) 
is not pi l-finite. As k[Fr] w F, it only remains to show 13-jump(Fr) ?wP Er 
in order to establish our lemma. 

Note that the sequence <Ef(r') YI-' < Yo> is Yi1(94r) and therefore so is the 
sequence <Fr n f (7') i -' < 7r'>. It follows that Ng(F,) is YA over 9?( and since 

<e, x> e a-jump(FT) - <z, w> e Np(Fr) [<x, z, w> 
e 
We,] 

we see that 13-jump(Fr) is ?1 over Sr. But Er is a ?" master code for X (a ?1 
master code for sir) and therefore 3-jump(Fr) ? a k[13-jump(Fr)]-< r Er. Thus 
,3-jump(Fr) <.p Er. D 

We now complete our proof. First choose an increasing /3-recursive 
sequence <Kr I I < y0> of ,8-finite sets such that 1-cardinality (Kr,) = a for 
all I' and Sp= U Kr' (using the facts that h3* = a and y0 = Zcf,3). For 
each A' < 70 let k1, be the K,-least bijection from Kr, onto a. 

Now choose B c So and let Br' = k,,[B n Kr]. Define g: y O -@ + by 
the property: Br' a Egr ) -Let y = sup g[7j]. 
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Case 1. V gay') for some y'. If - 0 let , =3 8 and n 1. Otherwise, 
let E, be a An master code for x. Let 3 ?1cf ' -, and choose s: a), x o -> cY 
to be En over S, and such that lima a s(v, 8') = least pin, Cl ,-pseudostable 
> K. for each v < wo1. For each a' < v), if j,-.= cutoff function for B.- then 
{I j, (v) < s(Q, 3')} is stationary for some a' < 8. It follows from the corollary 
to the Uniformity Lemma that if we let j(v, 7I) = jr ,(v) then j r X A E, for 
some X C wo, x an such that for unboundedly many a' < IV, {I (V, v') e X} is 
stationary. Thus since <KK, I ' < v0> is increasing, j < us E, and so B ? u, ES. 
Also E, < B since for some a' < v0, E, < , B- (so N~(E-) fi N,(E,) ?f 

XN (B,,) w lf B). 

Case 2. Otherwise. Choose X so that E, is a master code for X and 
let n be least so that PI = a. Let j, the cutoff function for B, and 
jQS At) = j,,(i). Also define 8 = Y1cf(VtS1) and choose s: w, x a -> a to be 
?1St l)and such that lim, s(4, a') = the least pn-l, Cl-1-pseudostable 

greater than A,. As each B, is pi --finite, for each a' < 70 there is a' < a0 
such that {> I j(Q, 7') < s(Q, 6')} is stationary. But it cannot be the case that 
for a fixed a' < a, {IV j(vy 7') < s(Q, 6')} is stationary for unboundedly many 
I' < y0,. Thus if ( < a we must have a = 7y0. And, the argument at the end 
of the proof of Theorem 9 shows that a < a. Thus y is masterful. 

As 7y0 # w, there is no AX master code for X and thus E, is a ? master 
code for x. Now for each I' < y0 choose h1(y') so that {> I s(Q, y') < j(h, h1(7'))} 
contains a closed unbounded set (by the preceding paragraph). The Uni- 
formity Lemma (b) is satisfied by t(Q, y') = j(, h1(,')) and thus Fr : p B. But 
the above argument applies equally well to F, as to B, so for each I' < a,, 
choose h2(7') so that {f I s(v, y') < l(v, h2(y'))} contains a closed, unbounded set 
where 1(t, 7x')- tr(v) and 1t is the cutoff function for k1c[F,- n Kr, . Then for 
each I' < y0 there is h3(y') such that {f Q -(v, -I) < 1(Q, h3(7'))} is stationary so 
the corollary to the Uniformity Lemma applies to show that for some "large"' 
X, rI X-Afa1. But j ?fpj rXand 1 <- ..Fr so j vlF, Thus B_ uF,. LI 

We have established the conclusion of Theorem 10 when Ecfgy # wo1. 

'1. Further results and open questions 

As we have earlier mentioned, there are incomparable 8Av-degrees above 
O' as well as infinite descending sequences of 8,-degrees. However the 
degrees in these examples are of sets A2 over Lx+ where A+, = next admis- 
sible after ,. Thus we propose: 

Problem 1. Show that there are incomparable )A,-degrees above 0' and 
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infinite descending sequences of 8,,-de grees above 0' constructed (in L) 
before t(0. 

Harrington has shown that if 1cf/s = ?cf(83*) < 83* then incomparable 
/3-r.e. degrees exist. We have extended this to show that for any such ,3 
there are incomparable /3-degrees between e, and e>+, for all y (where e, is 
as in Theorem 10). These results will be presented in [31. However the case 
F1cf,3 # Vcf(I3*) remains unsettled. 

Problem 2. Show that if LjcfS, 14cf(,3*) < 1*, Alcf/83 # Vcf(13*) then 
there exist incomparable 13-r.e. degrees. 

Our last problem concerns the optimality of Theorem 10. A positive 
solution shows that {er Jy < K +} is definable over the fl-degrees as a partial 
ordering. For then this collection consists of all /3-degrees e such that for 
all a3-degrees f, either f < e or e ? f. 

Problem 3. Let <er y > < (,)l?1> be defined as in Theorem 10. Show that 
if er < f < ey+,, then there is a g incomparable f, e, < g < e,+. 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, CAMBRIDGE, MASS. 
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