
The Philosophy and Mathematics of Set-Theoretic Truth

1.-2.Vorlesungen

Introduction

My aim in this course is to discuss the roles of the �eld of Set Theory
together with evidence for the truth of set-theoretic assertions. This is of
course a broad topic with a rich literature and I can't hope to survey all
of the di�erent approaches to these topics. Instead it is my hope to clarify
the landscape through a discussion of Set Theory both as a mathematical
theory in its own write, as a foundation for mathematics and as a theory of
the set-concept, to classify the di�erent sources for set-theoretic truth and
to then focus in detail on one approach as provided by the Hyperuniverse
Programme.

The di�erent roles of Set Theory

In light of Set Theory's dramatic development as a mathematical disci-
pline and its fundamental role as a foundation for mathematics it is easy
to forget that it was born rather innocently out of a speci�c mathematical
problem. Cantor was concerned with sets of uniqueness for Fourier Series, a
topic still of interest to analysts. For our purposes it su�ces to focus on the
method that Cantor developed in order to solve the problem he was after,
now known as the iteration of the Cantor derivative.

If X is a set of real numbers then we use X ′ to denote the Cantor deriva-
tive of X, i.e. the subset of X consisting of those points in X which are also
limit points of X. Cantor observed that when replacing X by its derivative,
new isolated (i.e. non-limit) points appear, and therefore X ′′, the derivative
of X ′ may be strictly smaller than X ′. Indeed, the process of iterating the
derivative:

X ⊇ X ′ ⊇ X ′′ ⊇ · · · ⊇ X
′′′··· = Xω

need not terminate after the usual in�nity of steps, demanding a further
derivative Xω+1. What kind of entity is this ω + 1? It was to answer this
fundamental question that Cantor was led to the theory of ordinal numbers
and this was the �rst major step towards the development of Abstract Set
Theory.
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Thus Set Theory emerged from a concrete question of mathematics. But
today we see it as much more than a commentary regarding the Cantor
derivative. The further development of Cantor's theory, followed by the reso-
lution of the paradoxes through the introduction of the axioms of Zermelo Set
Theory, reaching its mature form as the now-standard axioms ZFC, reveals
its important role as the most successful foundation that we have for mathe-
matics as a whole. And the further mathematical development of the subject
establishes it as an important branch of mathematics in its own write.

So what is Set Theory? It is three things:

1. Set Theory is a branch of mathematics.

2. Set Theory provides a foundation for mathematics.

3. Set Theory is the study of the set-concept.

Points 1 and 2 above are commonly recoginised; it is however all too
common to forget point 3. Clearly there is a concept of set independent of
mathematics, as schoolchildren know: The famous Venn diagrams, illustrat-
ing the operations of union, intersection and di�erence of sets is (or at least
was) taught in the public schools and readily understood at a young age. No
mathematical experience is required to understand what the empty set is,
how to form new sets through the singleton, union or di�erence operations,
or even what the powerset of a given set denotes. These intuitions are part
of the intrinsic features of the set-concept. It is important to remember this
in discussions of set-theoretic truth, which I'll discuss next.

Sources for Set-Theoretic Truth

Corresponding to Set Theory's three distinct roles are three distinct
sources of set-theoretic truth.

Set Theory is a branch of mathematics. From this one can derive a notion
of truth in Set Theory (a special case of Maddy's Thin Realism) in which
truth is dictated by what best advances the mathematical development of the
subject. We can refer to this as practice-based truth in Set Theory. If an axiom
of Set Theory yields dramatic consequences for shedding light on a particular
area or for pointing the way to new and deep set-theoretic developments, then
we take this as evidence that such an axiom is true.
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But Set Theory also serves as a foundation for mathematics. What does
this mean? Simply that the assertions of mathematics can be faithfully trans-
lated into assertions in the language of Set Theory and the theorems of math-
ematics then become derivable from the standard ZFC axioms of Set Theory.
As long as mathematics can be �absorbed� into Set Theory in this way, and
given that we already accept the axioms of ZFC as being true, the role of Set
Theory as a foundation for mathematics is of no use in shedding new light
on set-theoretic truth.

However, ZFC is not su�cient to answer all interesting problems of math-
ematics: there are independent problems. Not only questions of a literally set-
theoretic form, such as Cantor's Continuum Hypothesis, but also questions
such as the Borel Conjecture, the Whitehead Problem and the Kaplansky
Conjecture have been shown to be independent from ZFC, i.e. neither prov-
able nor refutable using the standard axioms. Such cases of independence in
central mathematics, outside of Set Theory, continue to appear on a regular
basis.

The latter raises an intriguing but so far unexplored possibility: Perhaps
after a systematic study of the independence phenomenon across mathemat-
ics outside of Set Theory, identifying those areas of mathematics in which
independence phenomena occur, and for each such area, identi�ying those ax-
ioms of Set Theory which are most e�ective for resolving those independent
questions, a pattern will emerge. This pattern may suggest that particular ax-
ioms of Set Theory are especially desirable for the resolution of independence
across mathematics as a whole and therefore can be taken as true due to their
role in the foundation of mathematics. The latter investigation I refer to as
the Independence Project and its resulting notion of truth as independence-
based truth, coming from the role of Set Theory in mathematics outside of
Set Theory.

Taken together, both practice-based truth and independence-based truth
serve as sources of truth as understood by the Thin Realist of Penelope
Maddy:

�... doing good mathematics is the goal of mathematical practice, in set theory
and elsewhere. A person can call this the search for truth if he likes, but if so (I
say) then the grounding of this truth is in the goodness of the mathematics.�
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Maddy's Thin Realist does not presume a realm of objects (ontology) to
which set-theoretic truth is to remain faithful, as would the Platonist (a
Robust Realist). Instead, she considers truth in Set Theory to be determined
by what is best for the development of Set Theory and mathematics as a
whole as good mathematics.

Third and �nally, Set Theory can be regarded as the study of the set-
concept. This naturally leads us to the question: What set-theoretic assertions
are derivable from inherent features of the set-concept? This is sometimes
referred to as intrinsic truth in Set Theory, to contrast it with extrinsic
sources coming from the practice of Set Theory, the nature of independence
in mathematics outside of Set Theory or other sources (such as Gödel's notion
of �success�) also not regarded as derivable from the set-concept. How far does
intrinsic truth take us? It has been commonly assumed that the standard
axioms of ZFC express the limit of intrinsic truth, but a new approach, given
by the Hyperuniverse Programme (HP), challenges this assumption.

I'll now lay the foundations for the study of intrinsic truth by examining
the set-concept in more detail as well as its key feature of Maximality.

3.-4.Vorlesungen

The Iterative Conception of Set

As Gödel put it, the iterative conception of set expresses the idea that a
set is something obtainable from well-de�ned objects by iterated application
of the powerset operation. In more detail: Sets are formed in stages, where
only the empty set is formed at stage 0 and at any stage greater than 0,
one forms collections of sets formed at earlier stages. (Said this way, a set is
re-formed at every stage past where it is �rst formed, but this is OK.) Any
set is formed at some least stage, after its elements have been formed. This
conception excludes anomalies: We can't have x ∈ x, there is no set of all
sets, there are no cycles x0 ∈ x1 ∈ · · · ∈ xn ∈ x0 and there are no in�nite
sequences · · · ∈ xn ∈ xn−1 ∈ xn−2 ∈ · · · ∈ x1inx0, as there must be e a
least stage at which one of the xn's is formed. We also assume that there are
in�nite sets, so the iteration process leads to a limit stage ω , which is not 0
and is not a successor stage.

As Boolos pointed out, the iterative conception yields that the universe
of sets is a model of the axioms of Zermelo Set Theory, i.e. ZFC without
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Replacement and without the Axiom of Choice. The standard model for this
theory is Vω+ω.

Nevertheless, Replacement and Choice are included as part of the stan-
dard axioms of Set Theory, for very di�erent reasons. The case for Choice is
typically made on extrinsic grounds, citing its fruitfulness for the develop-
ment of mathematics. I.e., Choice is regarded as �true� when contemplating
Set Theory's role as a foundation for mathematics. It is not clear that Choice
is derivable from the iterative conception (though Shoen�eld and Tait have
argued for this, Boolos against), nor from the practice of Set Theory as a
branch of mathematics (though Ferreiros may have claimed this).

Replacement, on the other hand, is derivable from the concept of set. To
see this, we need to extend the iterative conception to the stronger maximal
iterative conception, also implicit in the set-concept.

Maximality and the iterative conception

The term Maximal is used in many di�erent senses in Set Theory, what I
have in mind here is a very speci�c use associated to the iterative conception
(IC). Recall that according to the IC, sets appear inside levels indexed by
the ordinal numbers, where each successor level Vα+1 is the powerset of the
previous. As Boolos explained, the IC alone takes no stand on how many
levels there are (the height of the universe V ) or on how fat the individual
levels are (the width of V ). However it is generally regarded as implicit in
the set-concept that both of these should be Maximal :

Ordinal or height maximality: The universe V is �as tall as possible�, i.e., the
length of the ordinals is �as long as possible�.

Powerset or width maximality: The universe V is �as wide (or thick) as pos-
sible�, i.e., the powerset of each set is as �large as possible�.

If we conjunct the IC with maximality we arrive at the MIC, the maximal
iterative conception, also part of the set-concept but more of a challenge to
explain than the simple IC. Let us proceed slowly with such an explanation.

There is implicitly a comparative aspect to maximality, as to be �as large
as possible� can only mean �as large as possible within the realm of possibil-
ities�. Thus to explain ordinal and powerset maximality we need to compare
our picture of the set-theoretic universe to other possible pictures.
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Now what does this mean in the case of ordinal maximality? We need to
consider the possibility of two pictures P and P ∗ where P ∗ lengthens P , i.e.
the universe V depicted by P is a rank-initial segment of the universe V ∗

depicted by P ∗ (the ordinals of V form an initial segment of the ordinals of
V ∗ and the powerset operations of these two universes agree on the sets in
V ). If P ∗ is a �lengthening� of P we equivalently say that P is a �shortening�
of P ∗.

For the case of powerset maximality we need to consider the possibility
of pictures P and P ∗ of the universe where the universe V depicted by P is
an inner model of the universe V ∗ depicted by P ∗ (V and V ∗ have the same
ordinals and V is included in V ∗). If P ∗ is a �thickening� of P we equivalently
say that P is a �thinning� of P ∗.

We can now begin to explain ordinal maximality (maximality in height)
and powerset maximality (maximality in width).

If a picture P is ordinal maximal then any �property� of the universe V de-
scribed by P also holds of some rank-initial segment of V . This is the typical
formulation of re�ection. (However we will see that ordinal-maximality is in
fact much stronger than re�ection.) Of course specifc realisations of re�ection
must specify exactly which �properties� are to be taken into account.

We can also begin to explain powerset maximality. A picture P of the
universe is powerset maximal if any propertyöf the universe described by a
thickening of P also holds of the universe described by some thinning of P .
In the case of �rst-order properties this is called the Inner Model Hypothesis,
or IMH.

Now let's step back a bit. Notice that our analysis of maximality is based
on �thickenings� and �lengthenings� of a given universe in terms of pictures.
Does it make sense to talk about pictures of universes V ∗ which �lengthen�
or �thicken� the universe V of all sets? There are di�erences of opinion about
this, which I'll take up next.

Actualism and Potentialism

Recall that in the IC we describe V , the universe of sets, via a process
of iteration of the powerset operation. Does this process come to an end,
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or is it inde�nite, always extendible further to a longer iteration? The for-
mer possibility, that there is a �limit� to the iteration process is referred to
as actualism in the philosophy of Set Theory, and the latter view is called
potentialism.

There is an ongoing debate regarding the suitability of actualism versus
potentialism. One scholar who has spoken in favour of the latter is Geo�rey
Hellman:

�The idea that any universe of sets can be properly extended (in height,
not width) is extremely natural, endorsed by many mathematicians (e.g.
MacLane, seemingly by Gödel, et. al.) ... As Maddy and others say, if it's
possible that sets beyond some (putatively maximal) level exist, then they do
exist ... Thus, if 'imaginable' (end) extensions of V are not incoherent, then
they are possible, and then they are actual, and V wasn't really maximal
after all. ... such extensions are always possible, so that the notion of a single
�xed, absolutely maximal universe V of sets is really an incoherent notion.�

And again:

�I have no earthly or heavenly idea what 'as high as possible' could mean,
since the notion of a set domain that absolutely could not in logic be extended
seems to me incoherent (or at any rate empty). As Putnam put it in his
controversial paper, 'Mathematics without Foundations' (1967), 'Even God
couldn't make a universe for Zermelo set theory that it would be impossible
to extend.' And I agree, theology aside.�

I endorse Hellman's view and will take a potentialist view of the universe
of sets. (Indeed I need such a view to facilitate a satisfactory development of
the Hyperuniverse Programme).

But recall that we have talked not only about �lengthenings� but also
about �thickenings� of V . Correspondingly there can be two views on the
possibility of �thickening� V , width actualism versus width potentialism. My
personal view is much in favour of the latter, in a strong form that I call
radical potentialism.

Radical potentialism can be described as follows. I sometimes refer to it
by its nickname, Skolem-worshipping :

7



Let be begin with something less radical, width potentialism. From a
�practice-based� viewpoint, it is obvious that we can thicken our pictures
of universes. Let V be a universe, it could even be the �real V � belonging to
a Platonist. Now even a Platonist has some idea of V [G] where G is generic
over V . Of course V [G] does not exist because our �real V � has all the sets.
But our Platonist can only picture V [G] as a thickening: Just try to teach
forcing and draw a picture of V [G] without thickening a triangle depicting V
to a wider triangle of the same height depicting V [G]! It is impossible. (Of
course the Boolean universe V B can be de�ned in V , but that's no picture!)

In width potentialism, any picture of the universe can be thickened, keep-
ing the same ordinals, even to the extent of making ordinals countable. So for
any ordinal α of V we can imagine how to thicken V to a universe where α is
countable. So any ordinal is �potentially countable�. But that does not mean
that every ordinal is countable! There is a big di�erence between universes
that we can imagine (where our ℵ1 becomes countable) and universes we can
�produce�. So this �potential countability� does not threaten the truth of the
powerset axiom in V .

The standard form of potentialism (in height) can be viewed as a process
of lengthening as opposed to thickening. Once again, there is no model of
ZFC �at the end� because there is no �end�.

Now radical potentialism is in e�ect a uni�cation of these two forms of
potentialism. We allow V to be lengthened and thickened simultaneously. If
we were to keep thickening to make every ordinal of V countable then after
Ord(V ) steps we are forced to also lengthen to reach a (picture of a) universe
that satis�es ZFC. In that universe, the original V looks countable. But then
we could repeat the process with this new universe until it is seen to be count-
able. The potentialist aspect is that we cannot end this process by taking
the union of all of our pictures. In fact, whereas in the standard discussion
of lengthenings there could be a debate about whether we can arrive at �the
end�, if we allow both lengthenings and thickenings, potentialism is the only
possibility ; actualism is ruled out because the union of our �universes� would
not be a model of ZFC and would therefore have to be lengthened further!
And again, the �potential countability of V � does not threaten the truth of
the axioms of ZFC in V !

In radical potentialsim there is a huge wealth of pictures of V and some are
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�better� than others in the sense that some are better witnesses to maximality
than others. The important question then arises: What �rst-order statements
are common to all of these �better� universes? Is CH or its negation one of
them?

But we are getting ahead of ourselves. Radical potentialism is not popular.
Again we quote Geo�rey Hellman:

�I have a good idea, I think, about 'as thick as possible', since the notion
of full power set of a given set makes perfect sense to me ... Granted that
forcing extensions can be viewed as 'thickenings' of the cumulative hierarchy,
as usually described, when we assert the standard Power Sets axiom, we
implicitly build in bivalence, i.e. that either x belongs to y or it doesn't, i.e.
we are in e�ect ruling forcing extensions or Boolean-valued generalizations
as non-standard [my italics], i.e. 'full power set' is to be understood only in
the standard way.�

And further:

�Thus, to my way of thinking, there is an important disanalogy between
'all ordinals' ... and 'all subsets of a given set'. The latter is 'already rel-
ativized'; there is nothing implicit in the notion of 'subset' that allows for
inde�nite extensions, so long as we are speaking of 'subsets of a �xed, given
set' ... In contrast, 'all ordinals' cries out for relativization (a point I �nd in
Zermelo's [1930]); without it, it does allow for inde�nite extensibility, by the
very operations that we use to describe ordinals�

Fortunately for the uses of �thickenings� of V that I want to make, there
is no need to impose any form of width potentialism, so I propose at this
point that we adopt the position of potentialism in height with actualism in
width.

5.Vorlesung

Maximality in Height and #-Generation

Recall that we take a potentialist view of the height of V , i.e., we allow
ourselves the option of lengthening V to universes V ∗ which have V as a rank-
initial segment. Of course we can also consider shortenings of V , replacing V
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by one of its own rank-initial segments. Let us now make use of lengthenings
and shortenings to formulate a vertical maximality principle for V , expressing
the idea that the sequence of ordinals is �as long as possible�.

Standard Lévy re�ection tells us that a single �rst-order property of V
with parameters will hold in some Vα which contains those parameters. It
is natural to strengthen this to the simultaneous re�ection of all �rst-order
properties of V to some Vα, allowing arbitrary parameters from Vα. Thus we
have re�ected V to a Vα which is an elementary submodel of V .

Repeating this process leads us to an increasing, continuous sequence of
ordinals (κi | i <∞), whee∞ denotes the ordinal height of V , such that the
models (Vκi | i <∞) form a continuous chain Vκ0 ≺ Vκ1 ≺ · · · of elementary
submodels of V whose union is all of V .

Let C be the proper class consisting of the κi's. We can apply re�ection
to V with C as an additional predicate to infer that properties of (V,C) also
hold of some (Vκ, C ∩κ). But the unboundedness of C is a property of (V,C)
so we get some (Vκ, C ∩ κ) where C ∩ κ is unbounded in κ and therefore κ
belongs to C. As a corollary, properties of V in fact hold in some Vκ where
κ belongs to C. It is convenient to formulate this in its contrapositive form:
If a property holds of Vκ for all κ in C then it also holds of V .

Now note that for all κ in C, Vκ can be lengthened to an elementary
extension (namely V ) of which it is a rank-initial segment. By the contra-
positive form of re�ection of the previous paragraph, V itself also has such a
lengthening V ∗.

But this is clearly not the end of the story. For the same reason we can
also infer that there is a continuous increasing sequence of such lengthenings
V = Vκ∞ ≺ V ∗κ∞+1

≺ V ∗κ∞+2
≺ · · · of length the ordinals. For ease of notation,

let us drop the ∗'s and write Wκi instead of V ∗κi for ∞ < i and instead of Vκi
for i ≤ ∞. Thus V equals W∞.

But which tower V = Wκ∞ ≺ Wκ∞+1 ≺ Wκ∞+2 ≺ · · · of lengthenings of
V should we consider? Can we make the choice of this tower �canonical�?

Consider the entire sequence Wκ0 ≺ Wκ1 ≺ · · · ≺ V = Wκ∞ ≺ Wκ∞+1 ≺
Wκ∞+2 ≺ · · ·. The intuition is that all of these models resemble each other in
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the sense that they share the same �rst-order properties. Indeed by virtue of
the fact that they form an elementary chain, these models all satisfy the same
�rst-order sentences. But again in the spirit of �resemblance�, it should be the
case that any two pairs (Wκi1

,Wκi0
), (Wκj1

,Wκj0
) (with i0 < i1 and j0 < j1)

satisfy the same �rst-order sentences, even allowing parameters which belong
to both Wκi0

and Wκj0
. Generalising this to triples, quadruples and n-tuples

in general we arrive at the following situation:

(∗) V occurs in a continuous elementary chain Wκ0 ≺ Wκ1 ≺ · · · ≺ V =
Wκ∞ ≺ Wκ∞+1 ≺ Wκ∞+2 ≺ · · · of length ∞ +∞, where the models Wκi

form a strongly-indiscernible chain in the sense that for any n and any two
increasing n-tuples ~i = i0 < i1 < · · · < in−1, ~j = j0 < j1 < · · · < jn−1, the
structures W~i = (Wκin−1

,Wκin−2
, · · · ,Wκi0

) and W~j (de�ned analagously)
satisfy the same �rst-order sentences, allowing parameters from Wκi0

∩Wκj0
.

6.-7.Vorlesungen

We are getting closer to #-generation, Surely we can impose higher-order
indiscernibility on our chain of models. For example, consider the pair of
models Wκ0 = Vκ0 , Wκ1 = Vκ1 . Surely we would want that these models
satisfy the same second-order sentences; equivalently, we would want H(κ+0 )V

and H(κ+1 )V to satisfy the same �rst-order sentences. But as with the pair
H(κ0)

V , H(κ1)
V we would want H(κ+0 )V , H(κ+1 )V to satisfy the same �rst-

order sentences with parameters. How can we formulate this? For example,
consider κ0, a parameter in H(κ+0 )V that is second-order with respect to
H(κ0)

V ; we cannot simply require H(κ+0 )V � ϕ(κ0) i� H(κ+1 )V � ϕ(κ0), as
κ0 is the largest cardinal in H(κ+0 )V but not in H(κ+1 )V . Instead we need to
replace the occurence of κ0 on the left side with a �corresponding� parameter
on the right side, namely κ1, resulting in the natural requirement H(κ+0 )V �
ϕ(κ0) i� H(κ+1 )V � ϕ(κ1). More generally, we should be able to replace
each parameter in H(κ+0 )V by a �corresponding� element of H(κ+1 )V and
conversely, it should be the case that, to the maximum extent possible, all
elements of H(κ+1 )V are the result of such a replacement. It is natural to solve
this parameter problem using embeddings. Thus we are led to the following.

De�nition. A structure N = (N,U) is called a # with critical point κ, or just
a #, if the following hold:

• N is a model of ZFC− (ZFC minus powerset) in which κ is the largest
cardinal and κ is strongly inaccessible.
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• (N,U) is amenable (i.e. x ∩ U ∈ N for any x ∈ N).

• U is a normal measure on κ in (N,U).

• N is iterable, i.e., all of the successive iterated ultrapowers starting with
(N,U) are well-founded, yielding iterates (Ni, Ui) and Σ1 elementary
iteration maps πij : Ni → Nj where (N,U) = (N0, U0).

We will use the convention that κi denotes the the largest cardinal of the
i-th iterate Ni.

If N is a # and λ is a limit ordinal then LP(Nλ) denotes the union of the
(Vκi)

Ni 's for i < λ. (LP stands for �lower part�.) LP(N∞) is a model of ZFC.

De�nition. We say that a transitive model V of ZFC is #-generated i� for
some # N = (N,U) with iteration N = N0 → N1 → · · ·, V equals LP(N∞)
where ∞ denotes the ordinal height of V .

#-generation ful�lls our requirements for vertical maximality, with power-
ful consequences for re�ection. L is #-generated i� 0# exists, so this principle
is compatible with V = L. If V is #-generated via (N,U) then there are el-
ementary embeddings from V to V which are canonically-de�nable through
iteration of (N,U): In the above notation, any order-preserving map from
the κi's to the κi's extends to such an elementary embedding. If π : V → V
is any such embedding then we obtain not only the indiscernibility of the
structures H(κ+i ), for all i but also of the structures H(κ+αi for any α < κ0
and more. Moreover, #-generation evidently provides the maximum amount
of vertical re�ection: If V is generated by (N,U) as LP(N∞) where ∞ is the
ordinal height of V , and x is any parameter in a further iterate V ∗ = N∞∗
of (N,U), then any �rst-order property ϕ(V, x) that holds in V ∗ re�ects to
ϕ(Vκi , x̄) in Nj for all su�ciently large i < j <∞, where πj,∞∗(x̄) = x. This
implies any known form of vertical re�ection and summarizes the amount of
re�ection one has in L under the assumption that 0# exists, the maximum
amount of re�ection in L.

Thus #-generation tells us what lengthenings of V to look at, namely the
initial segments of V ∗ where V ∗ is obtained by further iteration of a # that
generates V . And it fully realises the idea that M should look exactly like
closed unboundedly many of its rank initial segments as well as its �canonical�
lengthenings of arbitrary ordinal height.
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In summary, #-generation is the correct formalization of the principle
of vertical maximality, and we shall refer to #-generated models as being
maximal in height.

Maximality in Width and the IMH

Whereas in the case of maximality in height we can use height poten-
tialism (i.e., the option of lengthening V to a taller universe) to arrive at
an optimal criterion, the case of maximality in width is of a very di�erent
nature.

First, as we have adopted the perspective of width actualism, we cannot
directly talk about �thickenings� of V in the same way that we used lengthen-
ings of V to analyse height-maximality. To solve this problem we will invoke
a logic called V -logic to formulate consistent theories which describe �thick-
enings� of V without actually having direct access to them.

Second, unlike in the case of height-maximality, we will not arrive at
an optimal criterion. We will see that there are many distinct criteria for
width-maximality, with no apparent �universal� such criterion. Moreover, to
get a fair picture of maximality in both height and width, it is necessary
to �synthesise� or �unify� width-maximality criteria with #-generation, the
optimal height-maximality criterion.

A thorough analysis of the di�erent possible width-maximality criteria,
together with their synthesis with #-generation, with an aim towards arriving
at an optimal criterion, is the principal aim of the Hyperuniverse Programme.

V -Logic

To motivate V -logic let's begin with a naive formulation of the Inner
Model Hypothesis (IMH):

Naive IMH. If a �rst-order sentence holds in some �thickening� (outer model)
of V then it holds in some inner model of V .

This formulation is �naive�, as it fails to clarify the meaning of �thicken-
ing�. Our main task now is to clarify the use of this word.

Before introducing V -logic let's discuss something a bit simpler, Vω-logic.
In Vω-logic we have constant symbols ā for a ∈ Vω as well as a constant
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symbol V̄ω for Vω itself (in addition to ∈ other symbols of �rst-order logic).
Then to the usual logical axioms and the rule of Modus Ponens we add the
rules:

For a ∈ Vω: From ϕ(b̄) for each b ∈ a infer ∀x ∈ āϕ(x).

From ϕ(ā) for each a ∈ Vω infer ∀x ∈ Vωϕ(x).

Introducing the second of these rules generates new provable statements via
proofs which are now in�nite. The idea of Vω-logic is to capture the idea
of �model in which Vω is standard�. By the �ω-completeness theorem�, the
logically provable sentences of Vω-logic are exactly those which hold in every
model in which ā is interpreted as a for a ∈ Vω and V̄ω is interpreted as the
(real, standard) Vω. Thus a theory T in Vω-logic is consistent in Vω-logic i�
it has a model in which Vω is standard.

Now the set of logically-provable formulas (i.e. validities) in Vω-logic, un-
like in �rst-order logic is not arithmetical, i.e. it is not de�nable over the
model Vω. Instead it is de�nable over a larger structure, a lengthening of Vω.
Let me explain.

As proofs in Vω-logic are no longer �nite, they do not naturally belong to
Vω. Instead they belong to the least admissible set (Vω)+ containing Vω as an
element, this is known to higher recursion-theorists as Lωck

1
, where ωck1 is the

least non-recursive ordinal. Something very nice happens: Whereas proofs in
�rst-order logic belong to Vω and therefore provability is Σ1 de�nable over
Vω (�there exists a proof� is Σ1), proofs in Vω-logic belong to (Vω)+ and
provability is Σ1 de�nable over (Vω)+.

For our present purposes the point is that (Vω)+ is a lengthening, not
a thickening of Vω and in this lengthening we can formulate theories which
describle arbitrary models in which Vω is standard. For example the existence
of a real R such that (Vω, R) satis�es a �rst-order property can be formulated
as the consistency of a theory in Vω-logic. As the structure (Vω, R) can be
regarded as a �thickening� of Vω, we have described what can happen in
thickenings of Vω by a theory in (Vω)+, a lengthening of Vω. This is even
more dramatic if we start not with Vω but with Lωck

1
and introduce Lωck

1
-

logic, a logic for ensuring that the recursive ordinals are standard. Then in
the lengthening (Lωck

1
)+ of Lωck

1
, the least admissible set containing Lωck

1
,
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we can express the existence of a thickening of Lωck
1

in which a �rst-order
statement holds, and such thickenings can contain new reals and more as
elements.

V -logic is analogous to the above. It has the following constant symbols:

1. A constant symbol ā for each set a in V .
2. A constant symbol V̄ to denote the universe V .

Formulas are formed in the usual way, as in any �rst-order logic. To the usual
axioms and rules of �rst-order logic we add the new rules:

(∗) From ϕ(b̄) for all b ∈ a infer ∀x ∈ āϕ(x).

(∗∗) From ϕ(ā) for all a ∈ V infer ∀x ∈ V̄ ϕ(x).

This is the logic to describe models in which V is standard. The proofs of
this logic appear in V +, the least admissible set containing V as an element;
this structure V + is a special lengthening of V of the form Lα(V ), the α-th
level of Gödel's L-hierarchy built over V . We refer to such lengthenings as
Gödel lengthenings.

8.-9.Vorlesungen

The Inner Model Hypothesis

To illustrate how V -logic can be used to deal with speci�c criteria of
width-maximality we now discuss the IMH (Inner model hypothesis). Infor-
mally, this asserts the following:

IMH (informal version): Suppose that a �rst-order sentence holds in an outer
model of V . Then it holds in an inner model of V .

By allowing ourselves the freedom to work not in ZFC but in its con-
servative extension GB (Gödel-Bernays class theory), we can easily express
the notion of �inner model� used in the conclusion of the IMH, as we can
quantify over transitive subclases of V which satisfy ZFC. More di�cult is
making sense of the notion of �outer model� used in the hypothesis.

As width-actualists we cannot talk directly about outer models or even
about sets that do not belong to V . However using V -logic we can talk about
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them indirectly, as I'll now illustrate. Consider the theory in V -logic where
we not only have constant symbols ā for the elements of V and a constant
symbol V̄ for V itself, but also a constant symbol W̄ to denote an �outer
model� of V . We add the new axioms:

1. The universe is a model of ZFC (or at least the weaker KP, admissibility
theory).
2. W̄ is a transitive model of ZFC containing V̄ as a subset and with the
same ordinals as V .

So now when we take a model of our axioms which obeys the rules of V -logic,
we get a universe modelling ZFC (or at least KP) in which V̄ is interpreted
correctly as V and W̄ is interpreted as an outer model of V . Note that
this theory in V -logic has been formulated without �thickening� V , indeed
it is de�ned inside V +, the least �admissible set containing V �, a �Gödel
lengthening� of V of the form Lα(V ) for some ordinal α greater than the
ordinals of V . This all makes sense because we have allowed ourselves to be
height-potentialists and therefore can freely discuss arbitrary lengthenings of
V .

So what does the IMH really say? It says the following:

IMH: Suppose that ϕ is a �rst-order sentence and the above theory, together
the axiom �W̄ satis�es ϕ� is consistent in V -logic. Then ϕ holds in an inner
model of V .

In other words, instead of talking directly about �thickenings� of V (i.e.
�outer models�) we instead talk about the consistency of a theory formulated
in V -logic and de�ned in V +, a (mild) Gödel lengthening of V .

It is also worthwhile to brie�y revisit height-maximality, where we intro-
duced #-generation. Recall that this asserts the existence of a # for V , i.e.,
an iterable structure (N,U) which �generates� V . An important point is that
a witness (N,U) to #-generation cannot be an element of V , just as 0# is not
an element of Gödel's L. So again we have a �thickening� issue to deal with.
Again this is solved in V -logic, but now with arbitrary Gödel lengthenings
Lα(V ):

#-generation: There is an (N,U) which through iteration for Ord(V )-steps
generates V and which in addition is iterable for α-steps for any ordinal α
past Ord(V ).
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Once again we heavily use height-potentialism to make sense of ordinals past
the height of V . #-generation becomes a criterion that is expressible in V -
logic as follows: For any α let Tα be the theory in V -logic which asserts the
above for the ordinal α. Then #-generation means that for each α, the theory
Tα is consistent in V -logic. This time we cannot use a single theory, but must
assert consistency of theories formulated in arbitrary Gödel-lengthenings of
V .

So far we have worked with V , its lengthenings and its �thickenings�
(via theories expressed in its lengthenings). We next come to an important
step, which is to reduce this discussion to the study of certain properties of
countable transitive models of ZFC, i.e., to the Hyperuniverse.

The Reduction to the Hyperuniverse

Of course it would be much more comfortable to remove the quotes in
�thickenings� of V , as we could then dispense with the need to reformulate
our intuitions about outer models via theories in V -logic. Indeed, if we were
to have this discussion not about V but about a countable transitive ZFC
model �little-V �, then our worries evaporate, as genuine thickenings become
available. For example, if P is a forcing notion in little-V then we can surely
build a P -generic extension to get a little-V [G]. Of course we can't do this
for V itself as in general we cannot construct generic sets for partial orders
with uncountably many maximal antichains.

But the way we have analysed things with V -logic allows us to �reduce�
our study of maximality criteria for V to a study of countable transitive
models. As the collection of countable transitive models carries the name
�Hyperuniverse�, we are then led to what is known as the Hyperuniverse
Programme.

I'll illustrate the reduction to the Hyperuniverse with the speci�c example
of the IMH. Suppose that we formulate the IMH as above, using V -logic, and
want to know what �rst-order consequences it has.

Claim. Suppose that a �rst-order sentence ϕ holds in all countable models of
the IMH. Then it holds in all models of the IMH.

Here is the argument: Suppose that ϕ fails in some model V of the IMH, where
V may be uncountable. Now notice that the IMH is �rst-order expressible in
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V +, a lengthening of V . But then apply the downward Löwenheim-Skolem
theorem to obtain a countable little-V which satis�es the IMH, as veri�ed in
its associated little-V +, and fails to satisfy ϕ. But this is a contradiction, as
by hypothesis ϕ must hold in all countable models of the IMH. End of Proof.

So without loss of generality, when looking at �rst-order consequences of
maximality criteria as formulated in V -logic via lengthenings of V , we can
restrict ourselves to countable little-V 's. The advantage of this is then we can
dispense with the little-V -logic and the quotes in �thickenings� altogether, as
by the Completeness Theorem for little-V -logic, consistent theories in little-
V -logic do have models, thanks to the countability of little-V . Thus for a
countable little-V , we can simply say:

IMH for little-V 's: Suppose that a �rst-order sentence holds in an outer
model of little-V . Then it holds in an inner model of little-V .

This is exactly the informal version of the IMH with which we began.
Thus the informal and formal versions coincide on countable models.

The reduction to the Hyperuniverse is however not always so obvious; con-
sider the case of #-generation, which uses not one theory but many. Thus to
say that V is #-generated asserts the consistency of certain theories Tα in
Gödel lengthenings Lα(V ) for all α; with Löwenheim-Skolem we do indeed
get a little-V with the property that for each α, the theory expressing the
existence of an α-iterable generator for little-V is consistent. But the Com-
pleteness Theorem for little-V -logic then only gives us for each countable
α the existence of an α-iterable generator and not a single generator that
is α-iterable for all countable (and hence for all) α. We say that little-V is
weakly #-generated. So the �rst-order consequences of #-generation coincide
with the �rst-order consequences of weak #-generation for countable little-
V 's and not of full #-generation for countable little-V 's; the latter indeed
yields a larger theory.

The consistency of #-generation follows from the existence of 0#. But we
haven't yet established the consistency of the IMH, which we discuss next.

Consistency of the IMH

In view of the Reduction described above, we can regard the IMH as
a statement about countable transitive models of ZFC. So to establish its
consistency we aim for the following result.
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Theorem 1 Assuming large cardinals there exists a countable transitive mod-
el M of ZFC such that if a �rst-order sentence ϕ holds in an outer model N
of M then it also holds in an inner model of M .

Proof. For any real R let M(R) denote the least transitive model of ZFC
containing R. We are assuming large cardinals so indeed such anM(R) exists
(the existence of just an inaccessible is su�cient for this). We will need the
following consequence of large cardinals:

(∗) There is a real R such that for any real S in which R is recursive, the
(�rst-order) theory of M(R) is the same as the theory of M(S).

One can derive (∗) from large cardinals as follows. Large cardinals yield
Projective Determinacy (PD). A theorem of Martin is that PD implies the
following Cone Theorem: If X is a projective set of reals closed under Turing-
equivalence then for some real R, either S belongs toX for all reals S in which
R is recursive or S belongs to the complement of X for all reals S in which
R is recursive.

Now for each sentence ϕ consider the set X(ϕ) consisting of those reals R
such that M(R) satis�es ϕ. This set is projective and closed under Turing-
equivalence. By the cone theorem we can choose a real R(ϕ) so that either
ϕ is true in M(S) for all reals S in which R(ϕ) is recursive or this holds for
∼ ϕ. Now let R be any real in which every R(ϕ) is recursive; as there are
only countably-many ϕ's this is possible. Then R witnesses the property (∗).

Now we claim that if N is an outer model of M(R) satisfying ZFC and
ϕ is a sentence true in N then ϕ is true in an inner model of M(R). For this
we need the following deep theorem of Jensen.

Coding Theorem. Let α be the ordinal height of N . Then N has an outer
model of the form Lα[S] for some real S which satis�es ZFC and in which N
is ∆2-de�nable with parameters.

As R belongs toM(R) it also belongs to N and hence to Lα[S] where S codes
N as above. Also note that since α is least so that M(R) = Lα[R] models
ZFC, it is also least so that Lα[S] satis�es ZFC and therefore Lα[S] equals
M(S).
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Clearly we can choose S to be Turing above R (simply replace S by its
join with R). But now by the special property of R, the theories of M(R)
and M(S) are the same. As N is a de�nable inner model of M(S), part of
the theory of M(S) is the statement �There is an inner model of ϕ which is
∆2-de�nable with parameters� and therefore there is an inner model ofM(S)
satisfying ϕ, as desired. 2

Note that the model that we produce above for the IMH, M(R) for some
real R, is the minimal model containing the real R and therefore satis�es
�there are no inaccessible cardinals�. This is no accident:

Theorem 2 Suppose that M satis�es the IMH. Then in M : There are no
inaccessible cardinals and in fact there is a real R such that there is no
transitive model of ZFC containing R.

Proof. A theorem of Beller and David extends Jensen's Coding Theorem to
say that any model M has an outer model of the form M(R) for some real
R, where as above M(R) is the minimal transitive model of ZFC containing
R. Now suppose that M satis�es the IMH and consider the sentence �There
is no inaccessible cardinal�. This is true in an outer model M(R) of M and
therefore in an inner model ofM . It follows that there are no inaccessibles in
M . The same argument with the sentence �There is a real R such that there
is no transitive model of ZFC containing R� gives an inner model M0 of M
with this property for some real R; but then also M has this property as any
transitive model of ZFC containing R in M would also give such a model in
the L[R] of M and therefore in M0, as M0 contains the L[R] of M . 2

It follows that if M satis�es the IMH then some real in M has no # and
therefore boldface Π1

1 determinacy fails in M .

10.-11.Vorlesungen

Synthesis

We introduced the IMH as a criterion for width maximality and #-
generation as a criterion for height maximality. It is natural to see how
these can be combined into a single criterion which recognises both forms
of maximality. Note that the IMH implies that there are no inaccessibles yet
#-generation implies that there are. So we cannot simply take the conjunc-
tion of these two criteria.
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A #-generated modelM satis�es the IMH# i� whenever a sentence holds
in a #-generated outer model of M it also holds in an inner model of M .

Note that IMH# di�ers from the IMH by demanding that both M and
M∗, the outer model, are #-generated (while the outer models considered
in IMH are arbitrary). The motivation behind this requirement is to im-
pose width maximality only with respect to those models which are height
maximal.

Theorem 3 Assuming that every real has a # there is a model satisfying
IMH#.

Proof. Let R be a real with the following property: Whenever X is a lightface
and nonempty Π1

2 set of reals, then X has an element recursive in R. We
claim that any #-generated model M containing R as an element satis�es
the IMH#.

Suppose that ϕ holds in M∗, a #-generated outer model of M . Let
(m∗, U∗) be a # for M∗. Then the set X of reals S such that S codes such
an (m∗, U∗) is a lightface Π1

2 set. So there is such a real recursive in R and
therefore in M . But then M has an inner model satisfying ϕ, namely any
model generated by a # coded by an element of X in M . 2

The original proof of the previous result used a Woodin cardinal with
an inaccessible above. That proof seems to be needed for the consistency of
variants of the IMH# which we'll discuss a bit later.

Corollary 4 Suppose that ϕ is a sentence that holds in some Vκ with κ
measurable. Then there is a transitive model which satis�es both the IMH#
and the sentence ϕ.

Proof. Let R be as in the proof of Theorem 3 and let U be a normal measure
on κ. The structure N = (H(κ+), U) is a #; iterate N through a large
enough ordinal∞ so that M = LP (N∞), the lower part model generated by
N , has ordinal height ∞. Then M is #-generated and contains the real R.
It follows that M is a model of the IMH#. Moreover, as M is the union of
an elementary chain Vκ = V N

κ ≺ V N1
κ1
≺ · · · where ϕ is true in Vκ, it follows

that ϕ is also true in M . 2
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Note that in Corollary 4, if we take ϕ to be any large cardinal prop-
erty which holds in some Vκ with κ measurable, then we obtain models of
the IMH# which also satisfy this large cardinal property. This implies the
compatibility of the IMH# with arbitrarily strong large cardinal properties.

Thus we recognise that our perspective regarding the maximality of V in
height and width changes as we discover and synthesise di�erent mathemat-
ical criteria for expressing this feature. It is the aim of the Hyperuniverse
Programme (HP) to formulate, analyse and synthesise the widest possible
range of such criteria with an aim towards reaching consensus with an op-
timal criterion. This will no doubt take an enormous amount of work, both
philosophical and mathematical, but the ultimate bene�t will be that �rst-
order consequences of such an optimal criterion can be regarded as conse-
quences of the maximal iterative conception of set and therefore regarded as
legitimate evidence for what is true beyond the axioms of ZFC.

Most of the mathematical work in the HP is yet to be done. Therefore
what I will do in the remainder of this course is simply present a range of
maximality criteria which are yet to be fully analysed and which give the
�avour of how the HP is intended to proceed. These criteria are also referred
to as H-axioms, formulated as properties of elements of the Hyperuniverse
expressible within the Hyperuniverse.

H-Axioms: The Strong IMH

Our discussion of the IMH has been always with regard to sentences,
without parameters. Stronger forms result if we introduce parameters.

First note the di�culties with introducing parameters into the IMH. For
example the statement

�If a sentence with parameter ωV1 holds in an outer model of V then it holds
in an inner model�

is inconsistent, as the parameter ωV1 could become countable in an outer
model and therefore the above cannot hold for the sentence �ωV1 is countable�.
If we however require that ω1 is preserved then we get a consistent principle.

Theorem 5 Let SIMH(ω1) be the following principle: If a sentence with pa-
rameter ω1 holds in an ω1-preserving outer model then it holds in an inner
model. Then the SIMH(ω1) is consistent (assuming large cardinals).
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Proof. Again use PD to get a real R such that the theory of M(S), the least
transitive ZFC model containing S, is �xed for all S Turing above R. Now
suppose that ϕ(ω1) is a sentence true in an ω1-preserving outer model M of
M(R), where ω1 denotes the ω1 ofM(R). Then as in the proof of consistency
of the IMH, we can code M into M(S) for some real S Turing above R, and
moreover this coding is ω1-preserving. As ϕ(ω1) holds in a de�nable inner
model of M(S) and ω1 is the same in M(R) and M(S), it follows that M(R)
also has an inner model satisfying ϕ(ω1). 2

The above argument uses the fact that Jensen-coding is ω1-preserving.
It is however not ω2-preserving unless CH holds, and therefore we have the
following open question:

Q1. Let SIMH(ω1, ω2) be the following principle: If a sentence with param-
eters ω1, ω2 holds in an ω1-preserving and ω2-preserving outer model then
it holds in an inner model. Then is the SIMH(ω1, ω2) consistent (assuming
large cardinals)?

The SIMH(ω1, ω2) implies the failure of CH, as any model has a cardinal-
preserving outer model in which CH is false and therefore there is an injection
from ω2 into the reals. Is there an analogue M∗(R) of the minimal model
M(R) which does not satisfy CH? Is there a coding theorem which says that
any outer model of M∗(R) which preserves ω1 and ω2 has a further outer
model of the form M∗(S), also with the same ω1 and ω2? If so, then one
could establish the consistency of the SIMH(ω1, ω2).

The most general from of the SIMH makes use of absolute parameters.
A cardinal κ is absolute if some formula de�nes it in all outer models which
preserve cardinals up to and including κ. Then SIMH(≤ κ) for an absolute
cardinal κ states that if a sentence with absolute cardinal parameters at
most κ holds in an outer model which preserves cardinals up to and includ-
ing κ then it holds in an inner model. The full SIMH (Strong Inner Model
Hypothesis) states that this holds for every absolute cardinal parameter κ.

A simpler form of the SIMH is the cardinal-preserving SIMH, which uses
full cardinal-preservation instead of the �local� cardinal-preservation of the
SIMH. It says that if a sentence with cardinal-absolute parameters holds in a
cardinal-preserving outer model then it holds in an inner model, where a car-
dinal is cardinal-absolute if some formula de�nes it in all cardinal-preserving
outer models.
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Q2. Is the cardinal-preserving SIMH consistent (assuming large cardinals)?

The SIMH criteria are closely related to strong forms of Lévy absolute-
ness. For example, de�ne Lévy(ω1) to be the statement that Σ1 formulas
with parameter ω1 are absolute for ω1-preserving outer models; this fol-
lows from the SIMH(ω1) and is therefore consistent. But the consistency
of Lévy(ω1, ω2), i.e. Σ1 absoluteness with parameters ω1, ω2 for outer models
which preserve these cardinals, is open.

The SIMH#

There are two possible syntheses of the strong forms of the IMH with #-
generation, depending on whether one uses SIMH or its cardinal-preserving
version. The consistency of either synthesis is open. The version with cardinal-
preservation is formulated as follows:

V satis�es the cardinal-preserving SIMH# i� V is #-generated and when-
ever a �rst-order sentence ϕ with cardinal-absolute parameters holds in a
cardinal-preserving, #-generated outer model then it holds in some inner
model.

The version based on the SIMH uses only �local� versions of cardinal-
preservation. I'll discuss only the case of SIMH#(ω1), which says:

V is #-generated and whenever a �rst-order sentence ϕ(ω1) with parameter
ω1 holds in an ω1-preserving #-generated outer model then it holds in an
inner model.

Theorem 6 Assuming large cardinals, the SIMH#(ω1) is consistent.

Proof. Assume there is a Woodin cardinal with an inaccessible above. For each
real R let M#(R) be Lα[R] where α is least so that Lα[R] is #-generated.
The Woodin cardinal with an inaccessible above implies enough projective
determinacy to enable us to use Martin's Lemma to �nd a realR such that the
theory of M#(S) is constant for S Turing-above R. We claim that M#(R)
satis�es SIMH#(ω1): Indeed, let M be a #-generated ω1-preserving outer
model of M#(R) satisfying some sentence ϕ(ω1). Let α be the ordinal height
of M#(R) (= the ordinal height of M). By a result of Jensen, M has a #-
generated ω1-preserving outer model W of the form Lα[S] for some real S
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with R ≤T S. Of course α is least so that Lα[S] is #-generated. So W equals
M#(S) and the ω1 ofW equals the ω1 ofM

#(R). By the choice of R,M#(R)
also has a de�nable inner model satisfying ϕ(ω1). 2

However as with the SIMH(ω1, ω2), the consistency of SIMH#(ω1, ω2) is
open.

12.-13.Vorlesungen

A Maximality Protocol

This protocol aims to organise the study of height and width maximality
into three stages.

Stage 1. Maximise the ordinals (height-maximality).

Stage 2. Having maximised the ordinals, maximise the cardinals (and co�-
nalities).

Stage 3. Having maximised the ordinals and cardinals, maximise powerset.

Stage 1 is taken care of by #-generation. So we focus now on Stage
2, cardinal- (and co�nality-) maximisation. As co�nality-maximisation is a
small variant of cardinal-maximisation I'll just talk about the latter.

We would like a criterion which says that for each cardinal κ, κ+ is �as
large as possible�. To get started let's consider the case κ = ω, so we want to
maximise ω1. The basic problem of course is the following:

Fact. V has an outer model V ∗ in which ωV1 is countable.

But surely we would want something like: ωL1 is countable. The reason for
this is that ωL1 , unlike ω

V
1 in general, is �absolute� between V and its outer

models.

De�nition. Let p be a parameter in V and V ∗ an outer model of V . Then p
is absolute between V and V ∗ if there is a formula ϕ that de�nes p in both
V and V ∗.

So we could try the following:
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CardMax1. Suppose that the ordinal α is absolute between V and an outer
model V ∗. Then if α is countable in V ∗ it is also countable in V .

It is natural to strengthen this from countability to an arbitrary cardi-
nality. Let's say that p is absolute between V and V ∗ relative to parameters
in P if there is a formula ϕ with parameters in P that de�nes p in both V
and V ∗.

CardMax2. Suppose that κ is an in�nite cardinal and the ordinal α is absolute
between V and the outer model V ∗ relative to the parameter κ. Then if α
has cardinality at most κ in V ∗ it is has cardinality at most κ in V .

Proposition 7 CardMax2 implies that κ+ is greater than the κ+ of HOD
for each in�nite cardinal κ.

Proof. Suppose not and let V ∗ be an outer model of V in which the HOD of
V equals the HOD of V ∗ and in which κ+ is collapsed to ω. (Such a model
can be obtained by coding the HOD of V into the GCH-pattern above κ+

and then applying the homogeneous Lévy collapse of κ+ to ω.) Then the κ+

of V is absolute between V and V ∗ relative to the parameter κ, is countable
in V ∗ but remains a cardinal in V , contradicting CardMax2. 2

The conclusion of the Proposition is known to be consistent relative to a
supercompact.

Q3. Is CardMax2 consistent?

And �nally, we can introduce more parameters.

CardMax3. Suppose that the ordinal α is absolute between V and the outer
model V ∗ relative to ordinal parameters less than α. Then if α is collapsed
(i.e. is no longer a cardinal) in V ∗ it is also collapsed in V .

Proposition 8 CardMax3 implies that κ+ is inaccessible in HOD for each
in�nite cardinal κ.

Proof. Suppose not and let κ+ of V be λ+ of HOD. Then follow the proof of
Proposition 7 with the parameter λ to reach a contradiction. 2

Recent work suggests that the conclusion of the previous Proposition is
also consistent.
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CardMax4. Suppose that the ordinal α is absolute between V and the out-
er model V ∗ relative to bounded subsets of α as parameters. Then if α is
collapsed (i.e. is no longer a cardinal) in V ∗ it is also collapsed in V .

Theorem 9 CardMax4 is inconsistent.

Proof. By a theorem of Shelah, if κ is singular of uncountable co�nality then
κ+ equals κ+ of HODx for some x ⊆ κ. Let α be the κ+ of V . Now let V ∗

be an outer model of V in which HODx does not change and α is collapsed
to ω with a homgeneous Lévy collapse. Then α is absolute between V and
V ∗ relative to the parameters x, κ, collapsed in V ∗ but not in V , yielding a
counterexample to CardMax4. 2

OK, so we went too far. But perhaps we can explain our mistake: Our
aim is to maximise cardinals. Now CardMax4 when κ is ω looks consistent.
And having maximised ω1 in this way we can then move on to CardMax4
for κ = ω1, but we should require that ω1 is preserved when moving from V
to its outer model V ∗, as it has already been �maximised�. In general what
is missing is the requirement that the previous cardinal is preserved. So we
arrive at:

CardMax. Suppose that κ is an in�nite cardinal and the ordinal α is absolute
between V and the outer model V ∗ relative to subsets of κ. Also suppose that
κ remains a cardinal in V ∗. Then if α has cardinality at most κ in V ∗ it also
has cardinality at most κ in V .

Q4. Is CardMax consistent?

Stage 3: Having maximised the ordinals and cardinals, maximise powerset.

This is where we revisit the SIMH, but only in the context of cardinal-
preservation.

Cardinal-preserving IMH with locally-absolute parameters. Suppose that V ∗

is an outer model of V with the same cardinals as V and p is absolute between
V and V ∗. Then if a sentence with p as parameter holds in V ∗ it also holds
in an inner model of V .

Apparently weaker is to require more absoluteness of the parameters. A
parameter p is cardinal-absolute if there is a parameter-free formula which
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has p as its unique solution in all outer models of V which have the same
cardinals as V .

Cardinal-preserving IMH with cardinal-absolute parameters. Suppose that p
is cardinal-absolute, V ∗ is an outer model of V with the same cardinals as V
and ϕ is a sentence with parameter p which holds in V ∗. Then ϕ holds in an
inner model of V .

Q5. Is the cardinal-preserving IMH with locally-absolute cardinal parameters
or with cardinal-absolute parameters consistent?

Note that either of these criteria implies a strong failure of CH.

Width Indiscernibility

An alternative to the Maximality Protocool (which ideally should be syn-
thesised with it) is Width Indiscernibility. The motiviation is to provide a
description of V in width analogous to its description in height as provided
by #-generation.

Recall that with #-generation we arrive at the following:

V0 ≺ V1 ≺ · · · ≺ V = V∞ ≺ V∞+1 ≺ · · ·

where for i < j, Vi is a rank-initial segment of Vj. Moreover the models Vi
form a collection of �indiscernible models� in a strong sense. This picture was
the result of an analysis which began with �height re�ection�, starting with
the idea that V must have unboundedly many rank-initial segments Vi which
are elementary in V .

Analogously, we introduce �width re�ection�. We would like to say that V
has proper inner models which are �elementary� in V . Of course this cannot
literally be true, as if V0 is an elementary submodel of V with the same ordi-
nals as V then it is easy to see that V0 equals V . Instead, we use elementary
embeddings.

Width Re�ection. For each ordinal α, there is a proper elementary submodel
H of V such that Vα ⊆ H and H is amenable, i.e. H ∩ Vβ belongs to V for
each ordinal β.
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Equivalently:

Width Re�ection. For each ordinal α, there is a nontrivial elementary em-
bedding j : V0 → V with critical point at least α such that j is amenable,
i.e. j � (Vβ)V0 belongs to V for each ordinal β.

Let's write V0 < V if there is a nontrivial amenable j : V0 → V , as in the
second formulation of width re�ection. This relation is transitive.

Proposition 10 (a) If V0 < V then V0 is a proper inner model of V .
(b) Width Re�ection is consistent relative to the existence of a Ramsey car-
dinal.

Proof. (a) This follows from Kunen's Theorem that there can be no nontrivial
elementary embedding from V to V .
(b) Suppose that κ is Ramsey. Then it follows that any structure of the form
M = (Vκ,∈, . . .) has an unbounded set of indiscernibles, i.e. an unbounded
subset I of κ such that for each n, any two increasing n-tuples from I satisfy
the same formulas in M. Now apply this to M = (Vκ,∈, <) where < is a
wellorder of Vκ of length κ. Let J be any unbounded subset of I such that
I \ J is unbounded and for any α < κ, let H(J ∪ α) denote the Skolem hull
of J ∪ α inM. Then H(J ∪ α) is an elementary submodel of Vκ and is not
equal to Vκ because no element of I \ J greater than α belongs to it. As Vκ
contains all bounded subsets of κ it follows that H(J ∪ α) is amenable. 2

A variant of the argument in (b) above yields the consistency of arbitrarily
long �nite chains V0 < V1 < · · · < Vn. But obtaining in�nite such chains
seems more di�cult, and even more ambitiously we can ask:

Q6. Is it consistent to have V0 < V1 < · · · < V of length Ord + 1 such that
the union of the Vi's equals V ?

The latter would be a good start on the formulation of a consistent crite-
rion of Width Indiscernibility, as an analogue for maximality in width to the
criterion of maximality in height provided by #-generation.

14.-15.Vorlesungen

Omniscience
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Although the Hyperuniverse Programme focuses on the maximality of V ,
it can also be used to study a related property, called omniscience. Although
this property may not be �intrinsic� to the set-concept in the way that max-
imality is, it is nevertheless a natural and appealing feature for the universe
to enjoy.

As we typically do in the Hyperuniverse Programme, we work with el-
ements of the Hyperuniverse, i.e. with countable transitive models of ZFC.
For convenience let V denote such a model (and not the universe of all sets).
By OMT(V ), the outer model theory of V we mean the set of sentences with
arbitrary parameters from V which hold in all outer models of V . As usual,
we can use V -logic to express this in Hyp(V ), the least admissible set con-
taining V as an element. Recall that Hyp(V ) is also countable and of the
form Lα(V ) where α is least so that this set, the α-th level of the L-hierarchy
built over V , satis�es Σ1 replacement.

Recall the following version of Tarski's result on the unde�nability of
truth:

Proposition 11 The set of sentences with parameters from V which hold in
V is not (�rst-order) de�nable in V with parameters.

Surprisingly, Mack Stanley showed however that OMT(V ) can indeed be
V -de�nable.

Theorem 12 (M.Stanley) Suppose that in V there is a proper class of mea-
surable cardinals, and indeed this class is Hyp(V )-stationary, i.e. Ord(V ) is
regular with respect to Hyp(V )-de�nable functions and this class intersects ev-
ery club in Ord(V ) which is Hyp(V )-de�nable. Then OMT(V ) is V -de�nable.

Proof.Using V -logic we can translate the statement that a �rst-order sentence
ϕ (with parameters from V ) holds in all outer models of V to the validity of
a sentence ϕ∗ in V -logic, a fact expressible over Hyp(V ) by a Σ1 sentence.
Using this we show that the set of ϕ which hold in all outer models of V is
V -de�nable.

As Ord(V ) is regular with respect to Hyp(V )-de�nable functions we can
form a club C in Ord(V ) such that for κ in C there is a Σ1-elementary
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embedding from Hyp(Vκ) into Hyp(V ) (with critical point κ, sending κ to
Ord(V )). Indeed C can be chosen to be Hyp(V )-de�nable.

For any κ in C let ϕ∗κ be the sentence of Vκ-logic such that ϕ holds in all
outer models of Vκ i� ϕ

∗
κ is valid (a Σ1 property of Hyp(Vκ)). By elementarity,

ϕ∗κ is valid i� ϕ∗ is valid.

Now suppose that ϕ holds in all outer models of V , i.e. ϕ∗ is valid. Then
ϕ∗κ is valid for all κ in C and since the measurables form a Hyp(V )-stationary
class, there is a measurable κ such that ϕ∗κ is valid.

Conversely, suppose that ϕ∗κ is valid for some measurable κ. Now choose
a normal measure U on κ and iterate (H(κ+), U) for Ord(V ) steps to obtain
a wellfounded structure (H∗, U∗). (This structure is wellfounded, as for any
admissible set A, any measure in A can be iterated without losing wellfound-
edness for α steps, for any ordinal α in A.) Then H∗ equals Hyp(V ∗) for
some V ∗ ⊆ V . By elementarity, the sentence ϕ∗V ∗ which asserts that ϕ holds
in all outer models of V ∗ is valid. But as V ∗ is an inner model of V , ϕ also
holds in all outer models of V .

Thus ϕ belongs to OMT(V ) exactly if it belongs to OMT(Vκ) for some
measurable κ, and this is �rst-order expressible. 2

Are measurable cardinals needed for omniscience? Actually, M.Stanley
was able to use just Ramsey cardinals, but as far as the consistency of om-
niscience we have the following:

Theorem 13 (Radek and I) Suppose that κ is inaccessible and GCH holds.
Then there is an omniscient model of the form Vκ[G] where G is generic over
V .

I'll sketch the proof (the details will appear in a forthcoming paper).

Start with a ground model V satisfying GCH with a least inaccessible κ.
Let (Xi | i < κ) be a partition of X = the set of singular cardinals < κ into
κ-many unbounded pieces such that Xi ∩ i is empty for each i.

We are going to force over V with an f -good iteration of some length
µ < κ+. Here, f is an injection from µ into X such that Range(f) ∩ Xi is
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bounded in κ for each i and P is a full-support iteration of length µ which at
stage i forces either with Add(f(i)+, f(i)+++) or with Add(f(i)++, f(i)++++).
I.e., at stage i, P kills the GCH either at f(i)+ or at f(i)++, but not at both.

Note that each stage of the iteration is a forcing of size less than κ, so
in a sense we are forcing over Vκ. But this is not an iteration over Vκ in the
usual sense, as even though the stages of the iteration are of size less than
κ, the length of the iteration can be greater than κ. It is a �non-monotone
reverse Easton� iteration, in which the choice of cardinals at which to force
does not increase as the iteration proceeds, but can jump up and down in
a chaotic fashion. From the perspective of Vκ this is a new kind of �iterated
hyperclass forcing�.

A key lemma is that good iterations preserve co�nalities (see the forth-
coming paper for details).

Now to prove the theorem we de�ne a particular f -good iteration P of
some length µ as the limit of fi-good iterations Pi of lengths µi < µ as follows:

At stage i, via bookkeeping look at the i-th sentence ϕi with parameters
in Vκ[Gi] and see if there is an f ∗i -good iteration P ∗i extending the fi-good
iteration Pi which forces that ϕi belongs to OMT(Vκ[G

∗
i ]), where G

∗
i denotes

the P ∗i -generic. If so, then we take Pi+1 to be P ∗i followed by the forcing to
kill the GCH at α+

i , where αi is the least element of Xi greater than the
elements of Xi used in the iteration P ∗i (i.e. greater than all elements of
Xi ∩ Range(f ∗i )). And we de�ne fi+1 to extend f ∗i by assigning the value αi
at the least ordinal outside the domain of f ∗i .

On the other hand if there is no such good iteration extending Pi then we
instead just force to kill the GCH at α++

i where αi is the least element of Xi

greater than the elements of Xi used in the iteration Pi.

We claim that Vκ[G], where G is generic for the �nal good iteration P , the
limit of the good iterations Pi for i < κ, is omniscient. Indeed, suppose that
ϕ is a sentence with parameters from Vκ[G] and suppose that ϕ belongs to
OMT(Vκ[G]. Then at some stage i < κ, ϕ = ϕi and we extended Pi to a good
iteration Pi+1 forcing ϕ into OMT(Vκ[Gi+1]), coding this by killing GCH at
α+
i ; but then the largest cardinal in Xi where GCH fails in the �nal model

is α+
i , the successor (and not the double successor) of a singular cardinal.
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Alternatively, if ϕ does not belong to OMT(Vκ[G]) it also does not belong to
OMT(Vκ[Gi]) and we coded this by killing the GCH at α++

i ; this time the
largest cardinal in Xi where GCH fails is a double successor. So in the �nal
model Vκ[G] we can de�nably recover the set of sentences ϕ which belong to
OMT(Vκ[G]), completing the proof.
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