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The If:-Singleton Conjecture: A n  Introduction 
Sy D. R i e d m a n  

MIT 

Solovay conjectured that there is a IIi-Singleton R such that 0 < L  R <L O#.  My 
purpose here is to provide a setting for this conjecture and to give an idea of its proof, 
This article is intended for the non-specialist; I will do my best to explain all the basic 
notions. 

I will begin with the following result of Cohen: 
1) There can be a nonconstructible real. 

By this, I mean that “3R C w ( R  $! L)” is consistent with ZFC. It is natural to ask 
for something stronger: 

2) Can there be a definable nonconstructible real? 

This was answered affirmatively by McAloon, who showed using Cohen’s methods 
that R = (~212~” = N,+1} can be nonconstructible. For our present purposes a more 
definitive result is due to Silver and Solovay: 

3) 
nonconstructible real. 

By this we mean that the set of Godel numbers of formuls q5(11 . . .I,) in the language 
of set theory such that ( L ,  e) +(H1,. . . ,fin) is the definable, nonconstructible real 
Q#. When we write N1, N2 . . . we mean the first w-many uncountable cardinals of V= 
the real world, riot of L = the constructible universe. In fact if there is a measurable 
cardinal then Nf, N$, . . . are all countable ordinals. 

constructible reds: 

4) w - O# is definable, nonconstructible. 

5) O## = Thy(L[O#],fi1,N2,. . .) is definable, nonconstructible. 

We would like to eliminate examples as in 4), by modding out by a suitable equivalence 
relation. Define R 5~ S iff R E L [ q , R  <L S iff ( R  5~ S,S $ L  R),R = L  S iff 
( R  S L  S, S < L  R). Then =L is an equivalence relation. 

Solovay’s conjecture addresses the following question: 
Are O#,  O## ,  O### ,  . . . the only “canonical” nonconstructible reals, up to =L? Specif- 
ically: Is O# the SL-least “canonical” nonconstructible real? We must be careful with 
the word “canonical”. If we simply take this to mean “definable” we have a coun- 
terexample: 

6) There is areal R I L  O# which is Cohen generic over L. Now O# is not =L-equivalent 

If there is a measurable cardinal then O# = Thy(L, N1, N2,. . , ) is a definable 

It is not difficult to generate other examples of definable, non- 
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to any real Cohen generic over L. Thus R, = (L[O#]-least real Cohen generic over L )  
is a definable, nonconstructible real and O# $L R,. 

But R. is not really L'canonical'', because to define R, we need to refer to O# 
and O# is not constructible from R,. Thus we are looking for reals defined in a more 
absolute way, as follows: 

Definition R is a Solovay Singleton if for some formula $(z) with ordinal parameters, 
R is the unique real R such that L[R] 4(R). 

Now O# is a Solovay Singleton of a special type: 

Definition A IIi-formula is a formula of the form VS3T+ where rC, is arithmetical and 
S, T range over reals. R is a IIi-Singleton if R is the unique solution to a IIi formula. 

Leiry-Shoenfield absoIuteness implies that: 

7 )  R is a IIi-Singleton R is a Solovay Singleton via a formula $(z) that is II1 in 
the Lkvy hierarchy and has no ordinal parameters. 

Thus a IIi-Singleton is the simplest type of Solovay Singleton that could be noncon- 
structible. 

8) O# is a IIi-Singleton. 

Solovay's IIi-Singleton Conjecture There is a IIi-Singleton R, 0 <L R < L  O#. 

Results 

Theorem 1 There is a IIi-Singleton R,O < L  R < L  O#. 

II; if X = {RJ+(R)} where $ is a II: formula. 

Question Does every nonempty countable IIi set contain a IIi-singleton? 

Theorem 2 There is a nonempty countable II: set containing no 
IIi-singleton. 

A question related to the IIi-Singleton Conjecture is due to Kechris. A set X is 

On the other hand we have: 

Theorem (Harrington-Kechris) If X is a nonempty countable IIi set then X contains 
a Solovay Singleton, defined using parameters Nl , . . . N, for some n. 

Theorem 2' For each n there is a nonempty countable II: set X ,  such that no 
element of X, is a Solovay Singleton defined using parameters N1,. . . , N,. Thus the 
Harrington-Kechris result is best possible. 

On  t h e  Proof of Theorem 1 

R arises as the generic real for an L-definable forcing P. This is a c l a ~ s  forcing: P is 
not a set. P is built out of three types of forcings: 

1) Jensen Coding: This enables R to code a class of information. 
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2) Backwards Easton Forcing: This is used to add certain CUB subsets to L- 
inaccessible cardinals. Such a forcing is an iteration Po * PI * Pz * . . . * Pa * . . . 
through the ordinals with the restriction that the support of any condition is bounded 
in any L-inaccessible. 

3) Set Forcing: This helps to make R a IIi-Singleton, via a trick of Solovay. 
The existence of O# entails the existence of a canonical CUB class of indiscernibles 
I for (L ,  e) such that L = C1 Skolem hull (I) in (L ,  e). Our desired P-generic G P 
arises in a very natural way from I : G = {plp(ii.. . i n )  5 p for some il . . . i n  E I }  
where (il,. . . i n )  H p(il.. . i n )  is a &(L, e) procedure. 

Our goal is to show that there is only one P-generic. This is where the Back- 
wards Easton forcing comes in. There is a method of adding CUB sets (in a Backwards 
Easton fashion) for the purpose of "killing" guesses (21 . . . in) at an n-tuple of indis- 
cernibles. No  correct quess ( i l  . . . i n )  E I" can be killed. Our forcing is set up so 
that the generic G will kill any guess (i, . . . i n )  which via the C l ( L ,  E )  procedure above 
produces information p(i1 . , . i n )  contradicting G. So there can only be our one generic 
G, as another generic H would have to kill the correct guesses (21 . . . i n )  E I" which 
produce p(il . . . i n )  4 H. 

The other key ingredient in the proof is the Recursion Theorem. To create the 
forcing P we need a C1 index for the procedure (il . . . i n )  I-+ p ( i l  . . .in) in order to 
know which guesses (il . . .in) to kill. But this procedure in turn cannot be defined 
explicitly without knowing the forcing P! This circularity is dealt with by using the 
Recursion Theorem to obtain the desired index. 

A similar technique can be used to establish Theorem 2. 
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