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The IIl-Singleton Conjecture: An Introduction
Sy D. Friedman
MIT

Solovay conjectured that there is a [1}-Singleton R such that 0 <; R <z 0¥. My
purpose here is to provide a setting for this conjecture and to give an idea of its proof.
This article is intended for the non—specialist; I will do my best to explain all the basic
notions.

I will begin with the following result of Cohen:
1) There can be a nonconstructible real.

By this, I mean that “3R C w(R ¢ L)” is consistent with ZFC. It is natural to ask
for something stronger:

2) Can there be a definable nonconstructible real?

This was answered affirmatively by McAloon, who showed using Cohen'’s methods
that R = {n|2® = R,,,} can be nonconstructible. For our present purposes a more
definitive result is due to Silver and Solovay:

3) If there is a measurable cardinal then 0¥ = Thy(L,R;,R;,...) is a definable
nonconstructible real.

By this we mean that the set of G6del numbers of formuls ¢(z; ... z,) in the language
of set theory such that (L,€) = ¢(Ry,...,R,) is the definable, nonconstructible real
0#. When we write ®;,R; ... we mean the first w-many uncountable cardinals of V=
the real world, not of L = the constructible universe. In fact if there is a measurable
cardinal then R, R%,... are all countable ordinals.

It is not difficult to generate other examples of definable, non-
constructible reals:

4) w — 0# is definable, nonconstructible.

5) 0%¥ = Thy(L{0#],%:,Rz,...} is definable, nonconstructible.

We would like to eliminate examples as in 4), by modding out by a suitable equivalence
relation. Define R < St R € L[S],R <1 Siff (R <. 5,5 4L R),R =1 S iff
(R <. 5,5 <L R). Then = is an equivalence relation.

Solovay’s conjecture addresses the followin, question:
g
Are 0% 0## ### | the only “canonical” nonconstructible reals, up to =17 Specif-
) P P
ically: Is 0% the <p-least “canonical” nonconstructible real? We must be careful with
the word “canonical”. If we simply take this to mean “definable” we have a coun-
terexample:

6) Thereisareal R <j, 0% which is Cohen generic over L. Now 0% is not =g-equivalent
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to any real Cohen generic over L. Thus R, = (L[0¥]-least real Cohen generic over L)
is a definable, nonconstructible real and 0¥ £1 R,.

But R, is not really “canonical”, because to define R, we need to refer to o#
and 0% is not constructible from R,. Thus we are looking for reals defined in a more
absolute way, as follows:

Definition R is a Solovay Singleton if for some formula ¢(z) with ordinal parameters,
R is the unique real R such that L[R] & ¢(R).

Now 0# is a Solovay Singleton of a special type:

Definition A IIi-formula is a formula of the form VS3T4) where ¢ is arithmetical and
S, T range over reals. R is a II1-Singleton if R is the unique solution to a II} formula.

Levy—Shoenfield absoluteness implies that:
7) R is a I1}-Singleton <= R is a Solovay Singleton via a formula ¢(z) that is IT; in
the Lévy hierarchy and has no ordinal parameters.

Thus a I1}-Singleton is the simplest type of Solovay Singleton that could be noncon-
structible.

8) 0 is a II}-Singleton.

Solovay’s I}-Singleton Conjecture There is a I13-Singleton R, 0 < R < 0%,
Results

Theorem 1 There is a II}-Singleton R,0 <, R < 0%.

A question related to the II}-Singleton Conjecture is due to Kechris. A set X is
1} if X = {R|¢(R)} where ¢ is a II} formula.

Question Does every nonempty countable I} set contain a II1-singleton?

Theorem 2 There is a nonempty countable II} set containing no
II1-singleton.

On the other hand we have:

Theorem (Harrington—Kechris) If X is a nonempty countable II} set then X contains
a Solovay Singleton, defined using parameters Ry, ... R, for some n.

Theorem 2' For each n there is a nonempty countable IT} set X, such that no
element of X, is a Solovay Singleton defined using parameters Rj,...,R,. Thus the
Harrington—-Kechris result is best possible.

On the Proof of Theorem 1

R arises as the generic real for an L-definable forcing P. This is a class forcing: P is
not a set. P is built out of three types of forcings:

1) Jensen Coding: This enables R to code a class of information.



The 11} -Singleton Conjecture: An Introduction 115

2) Backwards Easton Forcing: This is used to add certain CUB subsets to L-
inaccessible cardinals. Such a forcing is an iteration P, * P; * Po % --- % Py % ...
through the ordinals with the restriction that the support of any condition is bounded
in any L-inaccessible.

3) Set Forcing: This helps to make R a II3-Singleton, via a trick of Solovay.

The existence of 0% entails the existence of a canonical CUB class of indiscernibles
I for (L,€) such that L = X, Skolem hull (I) in (L, €). Our desired P-generic G C P
arises in a very natural way from I : G = {p|p(éi...in) < p for some i3 ...1, € I}
where (i1,...7n) — p(i1...1,) is a X1(L, €) procedure.

Our goal is to show that there is only one P-generic. This is where the Back-
wards Easton forcing comes in. There is a method of adding CU B sets (in a Backwards
Easton fashion) for the purpose of “killing” guesses (i1 ...%,) at an n-tuple of indis-
cernibles. No correct quess (i;...1,) € I™ can be killed. Our forcing is set up so
that the generic G will kill any guess (1, ...i,) which via the ,(L, €) procedure above
produces information p(i; . ..1,) contradicting G. So there can only be our one generic
G, as another generic H would have to kill the correct guesses (i ...in) € I"™ which
produce p(iy...7,) ¢ H.

The other key ingredient in the proof is the Recursion Theorem. To create the
forcing P we need a T, index for the procedure (iy...7,) = p(i1...1,) in order to
know which guesses (7 ...%,) to kill. But this procedure in turn cannot be defined
explicitly without knowing the forcing P! This circularity is dealt with by using the
Recursion Theorem to obtain the desired index.

A similar technique can be used to establish Theorem 2.
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