Projective Singletons

Sy D. Friedman

December 13, 2002

Assuming large cardinals, the structure of Π_n^1 -singletons for odd n is well understood: using the prewellordering property of the pointclass Π_n^1 , it follows that they are prewellordered by Δ_n^1 -reducibility. But for even n, Π_n^1 the analysis of Π_n^1 -singletons requires new techniques.

For n = 2 one has:

Theorem 1. ([2]) There is a Π_2^1 -singleton R such that $0 <_L R <_L 0^{\#}$. Moreover, there are two such Π_2^1 -singletons of incomparable L-degree.

The proof of this result makes essential use of *L*-coding ([1], [4]). To generalize this result to level 4, it is necessary to understand the correct analogues of *L*-reducibility and $0^{\#}$ for the pointclass Π_4^1 , and to develop an appropriate generalized coding method.

The correct analogue of $0^{\#}$ at level 4 is $M_2^{\#}$, the least mouse with two Woodin cardinals and a sharp above. The correct analogue of L at level 4 is M_2 , the iterable extender model with 2 Woodin cardinals that results after iterating the sharp at the top of $M_2^{\#}$ to infinity. And the correct analogue of L-reducibility is M_2 -reducibility: $R <_4 S$ iff R belongs to M_2^S , the canonical iterable extender model with 2 Woodin cardinals containing S.

Next we make a few comments about Woodin cardinals. There are two equivalent definitions of this concept. An inaccessible cardinal δ is *Woodin* iff either of the following equivalent properties holds:

1. For any $f : \delta \to \delta$ there is $\kappa < \delta$ closed under f and an embedding $\pi : V \to M$ with critical point κ which is *f*-strong, i.e., such that $V_{\pi(f)(\kappa)}$ is

contained in M.

2. For any $A \subseteq \delta$, there is $\kappa < \delta$ which is A-strong up to δ : for any $\alpha < \delta$ there is $\pi : V \to M$ with critical point κ such that $A \cap \alpha = \pi(A) \cap \alpha$.

A set S of extenders (on V) is a weak Woodin witness for δ iff δ is Woodin via the first definition above, using ultrapower embeddings given by extenders in S. S is a strong Woodin witness for δ iff δ is Woodin via the second definition, using ultrapower embeddings given by extenders in S.

We shall also need the following technical fact, which follows directly from the results of [5].

Theorem 2. Assume that there are two Woodin cardinals with a measurable above them. Suppose that x is a real in W, an inner model which is $(\omega_1 + 1 -)$ iterable with respect to a countable set of extenders strongly witnessing the Woodinness of two cardinals. Then W contains all the reals of M_2^x .

We are now ready to discuss the analogue of Theorem 1 for Π_4^1 . First we need a class forcing technique in the context of Woodin cardinals.

Theorem 3. Suppose that $W = L^E$ is a good extender model (like M_2 , with sufficient Condensation and \Box , and with the properties that the class of extenders on the *E*-sequence is sufficient to witness Woodinness and is closed under cutbacks to cardinals of W). Then there is a real x which is class-generic but not set-generic over W such that every Woodin cardinal of W remains Woodin in W[x]. Moreover Woodinness in W has a W-definable weak witness, consisting of extenders on the *E*-sequence which have cardinal (of W) true length and lift to W[x].

By combining the techniques used in the proofs of Theorems 1 and 3, we can produce a real x with the following properties:

1. x is class generic over M_2 , x belongs to $L[M_2^{\#}]$ but not to M_2 and M_2 , $M_2[x]$ have the same cofinalities.

2. For some formula φ , x is the unique real such that $(M_2 \upharpoonright \alpha)[x] \vDash \varphi(x)$ for each ordinal α .

3. The Woodinness of the two Woodin cardinals of M_2 can be weakly witnessed by a set of extenders $T \in M_2$, each element of which is on the *E*sequence of M_2 , has M_2 -cardinal true length and lifts to $M_2[x]$. It can be shown that property 2 is Π_4^1 in any real which codes $M_2 \upharpoonright \delta_1$, where δ_1 is the smaller Woodin cardinal of M_2 . It follows that R is a Π_4^1 singleton relative to any such real.

Thus we have obtained an analogue of Theorem 1 at level 4 provided we can show that $M_2^{\#}$ does not belong to M_2^x , the canonical iterable extender model with 2 Woodin cardinals containing x. It is clear that the real $M_2^{\#}$ does not belong to $M_2[x]$, as the latter has the same cardinals as M_2 . But this does not suffice, as $M_2[x]$ and M_2^x might be different models. (In the Π_2^1 singleton result, there is no distinction between L^x and L[x].)

By Theorem 2 it suffices to show that the model $M_2[x]$ is $(\omega_1 + 1)$ iterable with respect to the extenders in a countable strong witness T^* to Woodinness in $M_2[x]$, for then $M_2[x]$ contains all reals of M_2^x and therefore the real $M_2^{\#}$ cannot belong to M_2^x . We take T^* to be the set of all liftings to $M_2[x]$ of extenders on the M_2 -sequence which have M_2 -cardinal true length. By Property 3 above, this is a weak witness to Woodinness in $M_2[x]$; T^* is in fact a strong witness: Suppose not, and choose δ to be Woodin in M_2 and $A \subseteq \delta$ such that no $\kappa < \delta$ is A-strong up to δ via extenders in T^* . For each $\kappa < \delta$ let $f(\kappa)$ be several M_2 -cardinals past the supremum of those $\alpha < \delta$ such that κ is A-strong up to α via extenders in T^* . As T^* is a weak witness to the Woodinness of δ in $M_2[x]$, we can choose $\kappa < \delta$ closed under f and an extender $E \in T^*$ such that E witnesses f-strength. In Ult $(M_2[x], E)$, $E(f)(\kappa)$ is several M_2 -cardinals past the supremum of those $\alpha < \delta$ such that κ is E(A)-strong up to α via extenders in $E(T^*)$. Let F be obtained from E by cutting its length back by one M_2 -cardinal. Then F belongs to $Ult(M_2[x], E)$ and witnesses that κ is E(A)-strong up to its length. But F is the lifting of a cutback to an M_2 -cardinal of an extender on the extender sequence of M_2 and therefore of $Ult(M_2, E)$, by coherence. Since such cutbacks are also on the extender sequence of $Ult(M_2, E)$, F belongs to $E(T^*)$, a contradiction.

Finally we argue that $M_2[x]$ is iterable with respect to the extenders in T^* . It suffices to show that any iteration $\langle N_i[x], E_i^* | i < \lambda \rangle$ of $M_2[x]$ via liftings of extenders from M_2 of M_2 -cardinal length is a lifting to $M_2[x]$ of an iteration $\langle N_i, E_i | i < \lambda \rangle$ of M_2 . This is clear by induction, provided the lifted extender E_i^* is applied to the model $N_j[x]$, when E_i is applied to N_j , and the resulting ultrapower embedding of $N_j[x]$ via E_i^* lifts the corresponding

ultrapower embedding of N_j via E_i . By definition, j is least so that the critical point of E_i is less than the true length of E_j . So for the first of these properties it suffices to show that E_i and E_i^* , the lifting of E_i , have the same critical point and true length. The fact that E_i^* is a lifting of E_i implies that E_i and E_i^* have the same critical point and that the true length of E_i^* is at most that of E_i . But since x preserves cardinals over N_i and the true length of E_i is a cardinal of N_i , it follows that the true length of E_i^* cannot be smaller than the true length of E_i . So E_i^* is indeed applied to $N_j[x]$, as desired. The second property follows from the special nature of the forcing P that produces x. Indeed, using density-reduction for P, any lifting E^* of an extender E from a model N to N[x], where x is P-generic over N, gives rise to an ultrapower embedding of N[x] which lifts the ultrapower embedding given by E.

In summary we have:

Theorem 4. There is a real R such that $0 <_4 R <_4 M_2^{\#}$ and R is a Π_4^1 -singleton and any real coding $M_2 \upharpoonright \delta_1$, where δ_1 is the smaller Woodin cardinal of M_2 . Moreover there are two such reals which are $<_4$ -incomparable.

The natural analogue of Theorem 3 also holds at higher even levels, where δ_1 is the least Woodin cardinal of M_{2n} . At level ω however, one needs a code for the entire M_{ω} , and not just $M_{\omega} \upharpoonright \delta_1$.

References

3. Friedman, Sy D., Genericity and large cardinals, to appear.

4. Friedman, Sy D., *Fine structure and class forcing*, de Gruyter, Berlin, 2000.

5. Steel, John, *The core model iterability problem*, Springer-Verlag, Berlin, 1996.

^{1.} Beller-Jensen-Welch, Coding the Universe, 1982.

^{2.} Friedman, Sy D., The Π_2^1 -singleton conjecture, Journal of the American Mathematical Society, 1990.