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Assuming large cardinals, the structure of Π1
n-singletons for odd n is well

understood: using the prewellordering property of the pointclass Π1
n, it fol-

lows that they are prewellordered by ∆1
n-reducibility. But for even n, Π1

n the
analysis of Π1

n-singletons requires new techniques.

For n = 2 one has:

Theorem 1. ([2]) There is a Π1
2-singleton R such that 0 <L R <L 0#. More-

over, there are two such Π1
2-singletons of incomparable L-degree.

The proof of this result makes essential use of L-coding ([1], [4]). To
generalize this result to level 4, it is necessary to understand the correct
analogues of L-reducibility and 0# for the pointclass Π1

4, and to develop an
appropriate generalized coding method.

The correct analogue of 0# at level 4 is M
#
2 , the least mouse with two

Woodin cardinals and a sharp above. The correct analogue of L at level 4 is
M2, the iterable extender model with 2 Woodin cardinals that results after
iterating the sharp at the top of M

#
2 to infinity. And the correct analogue of

L-reducibility is M2-reducibility: R <4 S iff R belongs to MS
2 , the canonical

iterable extender model with 2 Woodin cardinals containing S.

Next we make a few comments about Woodin cardinals. There are two
equivalent definitions of this concept. An inaccessible cardinal δ is Woodin

iff either of the following equivalent properties holds:

1. For any f : δ → δ there is κ < δ closed under f and an embedding
π : V → M with critical point κ which is f -strong, i.e., such that Vπ(f)(κ) is
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contained in M .
2. For any A ⊆ δ, there is κ < δ which is A-strong up to δ: for any α < δ

there is π : V → M with critical point κ such that A ∩ α = π(A) ∩ α.

A set S of extenders (on V ) is a weak Woodin witness for δ iff δ is Woodin
via the first definition above, using ultrapower embeddings given by extenders
in S. S is a strong Woodin witness for δ iff δ is Woodin via the second
definition, using ultrapower embeddings given by extenders in S.

We shall also need the following technical fact, which follows directly from
the results of [5].

Theorem 2. Assume that there are two Woodin cardinals with a measurable
above them. Suppose that x is a real in W , an inner model which is (ω1 +1-)
iterable with respect to a countable set of extenders strongly witnessing the
Woodinness of two cardinals. Then W contains all the reals of Mx

2 .

We are now ready to discuss the analogue of Theorem 1 for Π1
4. First we

need a class forcing technique in the context of Woodin cardinals.

Theorem 3. Suppose that W = LE is a good extender model (like M2,
with sufficient Condensation and 2, and with the properties that the class
of extenders on the E-sequence is sufficient to witness Woodinness and is
closed under cutbacks to cardinals of W ). Then there is a real x which is
class-generic but not set-generic over W such that every Woodin cardinal of
W remains Woodin in W [x]. Moreover Woodinness in W has a W -definable
weak witness, consisting of extenders on the E-sequence which have cardinal
(of W ) true length and lift to W [x].

By combining the techniques used in the proofs of Theorems 1 and 3, we can
produce a real x with the following properties:

1. x is class generic over M2, x belongs to L[M#
2 ] but not to M2 and M2,

M2[x] have the same cofinalities.
2. For some formula ϕ, x is the unique real such that (M2 ↾ α)[x] � ϕ(x) for
each ordinal α.
3. The Woodinness of the two Woodin cardinals of M2 can be weakly wit-
nessed by a set of extenders T ∈ M2, each element of which is on the E-
sequence of M2, has M2-cardinal true length and lifts to M2[x].
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It can be shown that property 2 is Π1
4 in any real which codes M2 ↾ δ1,

where δ1 is the smaller Woodin cardinal of M2. It follows that R is a Π1
4-

singleton relative to any such real.

Thus we have obtained an analogue of Theorem 1 at level 4 provided we
can show that M

#
2 does not belong to Mx

2 , the canonical iterable extender
model with 2 Woodin cardinals containing x. It is clear that the real M

#
2

does not belong to M2[x], as the latter has the same cardinals as M2. But
this does not suffice, as M2[x] and Mx

2 might be different models. (In the Π1
2

singleton result, there is no distinction between Lx and L[x].)

By Theorem 2 it suffices to show that the model M2[x] is (ω1+1-) iterable
with respect to the extenders in a countable strong witness T ∗ to Woodinness
in M2[x], for then M2[x] contains all reals of Mx

2 and therefore the real M
#
2

cannot belong to Mx
2 . We take T ∗ to be the set of all liftings to M2[x]

of extenders on the M2-sequence which have M2-cardinal true length. By
Property 3 above, this is a weak witness to Woodinness in M2[x]; T ∗ is in
fact a strong witness: Suppose not, and choose δ to be Woodin in M2 and
A ⊆ δ such that no κ < δ is A-strong up to δ via extenders in T ∗. For
each κ < δ let f(κ) be several M2-cardinals past the supremum of those
α < δ such that κ is A-strong up to α via extenders in T ∗. As T ∗ is a weak
witness to the Woodinness of δ in M2[x], we can choose κ < δ closed under f

and an extender E ∈ T ∗ such that E witnesses f -strength. In Ult(M2[x], E),
E(f)(κ) is several M2-cardinals past the supremum of those α < δ such that κ

is E(A)-strong up to α via extenders in E(T ∗). Let F be obtained from E by
cutting its length back by one M2-cardinal. Then F belongs to Ult(M2[x], E)
and witnesses that κ is E(A)-strong up to its length. But F is the lifting of
a cutback to an M2-cardinal of an extender on the extender sequence of M2

and therefore of Ult(M2, E), by coherence. Since such cutbacks are also on
the extender sequence of Ult(M2, E), F belongs to E(T ∗), a contradiction.

Finally we argue that M2[x] is iterable with respect to the extenders in
T ∗. It suffices to show that any iteration 〈Ni[x], E∗

i | i < λ〉 of M2[x] via
liftings of extenders from M2 of M2-cardinal length is a lifting to M2[x] of an
iteration 〈Ni, Ei | i < λ〉 of M2. This is clear by induction, provided the lifted
extender E∗

i is applied to the model Nj[x], when Ei is applied to Nj, and
the resulting ultrapower embedding of Nj [x] via E∗

i lifts the corresponding
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ultrapower embedding of Nj via Ei. By definition, j is least so that the
critical point of Ei is less than the true length of Ej . So for the first of these
properties it suffices to show that Ei and E∗

i , the lifting of Ei, have the same
critical point and true length. The fact that E∗

i is a lifting of Ei implies
that Ei and E∗

i have the same critical point and that the true length of E∗

i

is at most that of Ei. But since x preserves cardinals over Ni and the true
length of Ei is a cardinal of Ni, it follows that the true length of E∗

i cannot
be smaller than the true length of Ei. So E∗

i is indeed applied to Nj [x], as
desired. The second property follows from the special nature of the forcing P

that produces x. Indeed, using density-reduction for P , any lifting E∗ of an
extender E from a model N to N [x], where x is P -generic over N , gives rise
to an ultrapower embedding of N [x] which lifts the ultrapower embedding
given by E.

In summary we have:

Theorem 4. There is a real R such that 0 <4 R <4 M
#
2 and R is a Π1

4-
singleton an any real coding M2 ↾ δ1, where δ1 is the smaller Woodin cardinal
of M2. Moreover there are two such reals which are <4-incomparable.

The natural analogue of Theorem 3 also holds at higher even levels, where
δ1 is the least Woodin cardinal of M2n. At level ω however, one needs a code
for the entire Mω, and not just Mω ↾ δ1.
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