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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 48, Number 3, Sept. 1983 

SOME RECENT DEVELOPMENTS IN 
HIGHER RECURSION THEORY1 

SY D. FRIEDMAN 

Abstract. In recent years higher recursion theory has experienced a deep interaction 
with other areas of logic, particularly set theory (fine structure, forcing, and combina- 
torics) and infinitary model theory. In this paper we wish to illustrate this interaction by 
surveying the progress that has been made in two areas: the global theory of the K- 
degrees and the study of closure ordinals. 

?1. Global theory of the K-degrees. 
A. Basics. Degree theory on co has a natural generalization to any limit ordinal. 

We confine ourselves here to cardinals only. We also -assume V = L (although 
GCH suffices for most of what follows). If X is a cardinal and A, B c L4, we write 
A <?, B (A is K-recursive in B) if for any C c L, 

C21 over <LE,, A> -* C11 over <L, B>. 

This relation is transitive. When X co, A, B c co then this definition reduces to 
Turing reducibility. If for any A c L, we define A* {<x, y> x, y e L, and 
x c A, y n A = 0} then it is easy to see that A* is 21<L, A>. In fact: 

A < B if and only if A* is 21<L7 , B>. 

Intuitively: A <a B if the question of whether a member of L, (a K-finite set) is 
a subset of or is disjoint from A can be answered in a K-RE in B way. 

A c L_ is K-RE in B c L_ if A is 1<L,,, B>. The existence of a universal f, 
predicate for <L,, B> implies the existence of a universal K-RE in B set B' (K-jump 
of B). Thus B' is K-RE in B and whenever A is K-RE in B there is e E L4, such that 

x E A +-+ <e, x> E B', for all x E L,. 

An interesting fact in K-recursion theory is that A K-RE in B, (L, - A) K-RE in 
B A < , B (in general). 

Finally we discuss the K-degrees. The relation on A, B c L, given by (A <, B 
and B ? A) is an equivalence relation. The K-degrees are the equivalence classes 
of this equivalence relation. The K-degree of A, K-deg(A), is the equivalence class 
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to which A belongs. If dl, d2 are K-degrees then we write d1 < d2 if VA e d1VB E 
d2(A <, B). If d = K-deg(A) then d' = K-deg(A'). 0 denotes K-deg(0) and there- 
fore 0' denotes the largest K-degree of a K-RE (in 0) set. 

Just as in the case X = c) (see Simpson [77]) there are two types of K-degree 
theory for X > c): local and global. In local K-degree theory the emphasis is on 
the K-degrees < 0'. The techniques used are generalizations of the priority method. 
Work of Sacks-Simpson, Lerman and Shore has shown that these degrees have 
a rich structure. See Shore [77] for a survey of these results. 

Global K-degree theory is concerned with the structure of the K-degrees as a 
whole, emphasizing results which relativize to an arbitrary K-degree. The methods 
here arise from combinatorial set theory. We shall discuss global K-degree theory 
by considering the following two properties: 

(*) Vd3dO > d3d1 > d(do, dc are ?<-incomparable), 

(**) YlVdVdO > d3d1 > d(do, d1 are <-incomparable). 

We will show that these properties do hold in the K-degrees when X is regular, 
but not if X is singular of uncountable cofinality. (*) holds in case X is singular 
of cofinality c), but the situation regarding (**) is unknown. (We conjecture that 
(**) fails in this case.) 

We note that the above division into three cases is reminiscent of the singular 
cardinals problem. Indeed, it was Silver's solution to the singular cardinals prob- 
lem at uncountable cofinalities (Silver [74]) that led to the first results in global 
K-degree theory for singular K. 

B. K-Regular. We can establish (**) in this case by a simple application of Cohen 
forcing over L,. 

THEOREM 1. (**) holds if X is regular. 
PROOF. We fix D, Do c L,, D <,? Do, Do $,; D. Our goal is to produce D1 c 

Lx, D <, D,, Do and D1 < K-incomparable. Let g = 2< = conditions of size 
<,c for adding a new subset of K. Introduce a forcing language for adding a set 
g9-generic over <L,, Do>. There exists G c X which is g9-generic over <L,, Do> 
since we are only concerned with intersecting K-many dense open subsets of gP, 
and 9 is < K-closed. 

CLAIM. (a) G $, Do. (b) Do $, G V D. 
PROOF OF CLAIM. (a) Let QA {p E 9 I for some x E A, p H[ x 0 G or for some 

x ? A, p HF x E G}, for any A L,. Cleary QA is dense. Thus Gn flA Q 0 if 
A is definable over <L,, Do>. This proves that G is not definable over <L,, Do>. 

(b) As Do $, D it must be that either {x ELrlx c- Do} or {x ELx l X nDo = 0} 
is not K-RE in D. Without loss of generality, assume the former. Now suppose 
p E g and 0(x, D, G) is a ID formula. Then {x e L,13q < p q IFH (x, D, G)} is 
K-RE in D so cannot equal {x E La l x c Do}. Thus {p E- b I For some x c Do p HF- 
- ?(x, D, G) or for some x t Do p H- ?)(x, D, G)} is dense. So Do is not K-recursive 
in G V D, since 0 is arbitrary. H Claim- 

Finally we set D1 = G V D. This proves (**). - 
The above argument does not use the hypothesis V = L. The regularity of X 

is used to obtain a-generic sets. 
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C. X singular of uncountable cofinality. In this case (*) fails in a strong sense. 
The following result is contained in Friedman [81B] in the case X = Nw,: 

THEOREM 2. There is a K-degree d such that the K-degrees ? d are well-ordered 
with successor given by K-jump. 

We describe here the main idea in the proof. Choose a closed unbounded D c X 
consisting of cardinals, ordertype(D) = cf(x) < x. Let d = K-deg(D). We show 
that the K-degrees > d are well-ordered by <,. 

The K-degree of A ?, D is determined by the growth rate of its "cutoff" func- 
tion, fA. For x e L, let jxj = <L-rank of x, where <L is the canonical J1 well- 
ordering of L. Also let Kr 7 7th member of D. Then fA: cf(x) -X K is defined by: 

fA(T) = I AnKr. 

Note that fA(r) < x+ for all r and that A is determined by fA r X for any un- 
bounded X c cf(x). 

MAIN LEMMA. IffA(r) < fB(r) for stationary many r < cf(K) then A < , B V D. 
We can now establish that the K-degrees > d are well-ordered using this lemma. 

Indeed, suppose A ?,; D, B >2, D. Then either fA(r) < fB(r) for stationary many 
r or fA(r) > fB(r) for a closed unbounded set of r's. The lemma implies that 
either A <, B or B <, A. Moreover, suppose AO >, Al >, A2 >, * * * and each 
Ai >, D. Then there are closed unbounded sets C0, C1, ... so that 

fA,(r) > fA?+,(() for r E C1. 

But niCi o 0 so we have fA0Q() > fA1(r) > ... for some r. This contradicts 
the well-foundedness of ORD. 

The conclusion of the Main Lemma is established by constructing a function 
g: X -a i, g <? B v D, so that g -fA has bounded range on some unbounded 
X c cf(x). The equation fA(Q) = g-1 , (g -fA(r)) then shows that fA r X <?, B V D 
(as (gofA) [ X E L.). But as was indicated earlier, A ? ,fA r X for any unbounded 
X c cf(x). 

The combinatorial ingredient needed to construct g is Fodor's theorem. This 
type of argument originated in combinatorial proofs of Silver's theorem (the 
GCH holds at a singular cardinal of uncountable cofinality provided it holds 
below it). In fact Silver's theorem can be derived as a corollary of Theorem 2, 
as all that is needed for its proof is the assumption of the GCH at stationary 
many cardinals less than x. 

A refinement of the Main Lemma proves the statement in Theorem 2 concerning 
the K-jump. The full version of Theorem 2 in Friedman [81B] also provides canoni- 
cal representatives of the K-degrees ? d in terms of Jensen's master codes, assum- 
ing V = L. (More on this in subsection E below.) Moreover there is a natural 
choice of d (assuming only GCH): d = least K-degree which contains an un- 
bounded D c X of ordertype < K. 

D. X singular of cofinality w. The techniques of subsection C cannot be used 
here, as the combinatorics of stationary sets do not apply to w. In fact, an argument 
due to Harrington and Solovay (independently) shows that (*) holds in this case. 
We give here an indication of Solovay's argument, which is based on the com- 
binatorial notion of scale (his argument will appear in Friedman [82]). 
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Define D and fA as in C. Thus D has ordertype ct and fA(n) < 4+ for each n, 

where Kn = nth member of D. 
DEFINITION. A quasi-scale is a sequence <A, I a < x+> of subsets of K such that: 
(a) a, < c2 -+ fAa2 eventually dominates fA a. 
(b) For any g: a) -a+ , g(n) < 4+ for all n, there is a < x+ s.t. fAa eventually 

dominates g. 
Quasi-scales are easily constructed. 
To any A c X Solovay associates a function hA: A -X K such that hA(n) < 4n 

for all n and whenever B <, A V D, hA eventually dominates J Thus the strategy 
for obtaining ? i-incomparable A >K D, B >, D is to guarantee thatfA dominates 
hB infinitely often, and fB dominates hA infinitely often. 

It is not hard to see how quasi-scales can be used to do this. First, there must 
be no e a) so that for all r < 4+ there are unboundedly many a < K+ so that 

fAa(flO) > r. Otherwise for each n let g(n) < 4+ be a counterexample. Then for 
at most K-many a can we have fAa(n) > Fg(n) for some n. This contradicts (b) in 
the definition of quasi-scale. 

We can choose an unbounded X0 c x+ and To < 4+ so that a E X0 -+ hA(n) 

To (by regularity of K+). Then choose an unbounded Y0 c K+ so that a C= EY 

fAa (n0) > G-. Thus we have guaranteed that A E {Aaca E Y0}, B E fAalca E X0} im- 
plies that fA(fo) > hB(no). Now we can iterate this procedure to produce un- 
bounded Y1 c Y0, X1 c X0 and n, > no so that A E {Aa I acE Y1}, BE {AalA I } E X1 

hA(nl) < fB(nl). Continue with Y2, Y3, . . ., X2, X3, . ., n2, n3, . If hA(n2,+1) 

= hAa(n2,+1) for a E Y2,+1, fA(n2,) = fAa(n2,) for a E Y2, and if hB(n2,) = hAa(n2,) 
for a e X2K, fB(n2x+1) =fAa(n2,+1) for a E X2,+1, then fA dominates hB infinitely 
often, fB dominates hA infinitely often, so A v D, B v D are <,-incomparable. 
Moreover hA is defined so that for any infinite S c a), the limit of functions of 
the form hA r S is also of the form hA r S (similarly for fA). Thus we can obtain 
A, B meeting the above hypotheses. The above construction easily relativizes to 
any E ?, D. So we have established (*). 

Harrington's proof of this result is based on the 31-compactness of the fragment 
of Y.,,, based on La(D), where a = least D-admissible ordinal. (This compactness 
theorem is considered in more detail in ?2C.) Harrington's proof makes it clear 
that A, B may be chosen to be z12 over L(D). By relativization one obtains: 

THEOREM 3 (HARRINGTON, SOLOVAY). Suppose d is a K-degree containing an 
unbounded D c K of ordertype <X. Then there exist ?,,-incomparable Do ? "D, 
D1 ? ,D which are 12 over LJ(D), a = least D-admissible ordinal. 

The status of (**) in this case is open. We conjecture that it fails. A verification 
of this conjecture would show that the three cases we have considered differ 
according to the status of (*) and (**). 

E. A canonical jump hierarchy through the K-degrees. Jensen's master codes 
provide a natural way to iterate the K-jump for (K+)L steps, for any cardinal K. 

If V = L then this provides a cofinal jump hierarchy through the K-degrees. When 
X = a) this was discussed in Simpson [80]. 

For simplicity of notation assume V = L. The subsets of X appear at various 
ordinal stages ar < K+ in the usual L-hierarchy. If a new subset of K appears at 

level a (that is, it belongs to L,+, - LJ) then it must belong to Jn(L) - L,, for 
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some n. A Jn master code of ar is a member of ZIn(La) - L, which "encodes" all 
subsets of X in Zin(La) - La, 

DEFINITION. D c X is a Jn master code for ar if for all A c K 

A is JIn(La) A is zK<L,, D>. 

In case Zln(La) - Lo contains a subset of x, one would like to select a Jn master 
code for ca as a canonical representative. Unfortunately Jn master codes do not 
necessarily exist in this case. (In the special case X = co this problem does not 
arise.) A more complete discussion can be found in Friedman [81B]. 

Notice that any two Jn master codes for ar have the same K-degree. Moreover, 
if D is a Jn master code for ar then D' =-jump (D) is a Jn+1 master code for 
cr. Thus a cofinal jump hierarchy through the K-degrees is obtained by listing the 
K-degrees of master codes (that is, Jn master codes for ca for some n < co, some 
a < K+) in their natural order: if D1 is a Jni master code for a, and D2 is a 4l2 
master code for a2 then D1 <, D2 iff ai < a2 or (a, = a2 and n1 ? n2). We let 
Or denote the 7th K-degree in this sequence. This definition relativizes, thus 
providing a meaning for dr for any K-degree d. 

The question arises: is this the correct jump hierarchy? Or equivalently: for r 
limit is Or the least natural upper bound for Oa, a < r? When K = w, Hodes [80] 
provides strong evidence that the answer is "yes". When K- 8, the following 
result definitively settles the question. 

THEOREM 4 (K = x,,1). For r limit Or = least upper bound {a I a < r}. Thus the 
K-degrees > O' are exactly the degrees Or, r 2 1. 
. This is the main result of Friedman [811B]. A thorough study of the master 
codes is required. There is a version for any singular cardinal K of uncountable 
cofinality: If d is the least K-degree with the property of Theorem 2 then any 
i-degree ? d is of the form dr for some r. 

It would be interesting to obtain a positive answer to our question in the re- 
maining cases (K regular, uncountable and K singular of cofinality co). There are 
complexities arising in these cases which are not present when K = w, due to the 
fact that ordinals between K and K+ can have different cofinalities when K > (D. 

Hodes [80] uses Steel forcing. A generalization of Steel forcing to uncountable 
regular cardinals appears in Friedman [81E]. This may allow the adaptation of 
Hodes' arguments to the uncountable regular case. The appropriate tool when 
K is singular of cofinality co would be Barwise compactness, as developed in 
Friedman [81D]. 

?2. Closure ordinals. 
A. Basics. Let T be a set theory, such as KP, ZF-, Z, ZF. For any set x we can 

define the T-closure ordinal of x, aT(x), as the least ordinal ca such that some 
transitive model of T contains x (as a member) and has ordinal height ca. Given 
a cardinal K and a theory T we are particularly interested in characterizing the 
T-closure ordinals of subsets of K. 

We shall focus on the theories KPn = In-admissibility and ZF. Notice that in 
this case it is possible to provide a clearer definition of xT(X): it is the least a 
such that L,(X) h= T. 
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If o = e) then the T-closure ordinals of subsets of X were characterized in 
Sacks [76] for the case T = KPn and in David [81]2 for the case T = ZF. The 
case where X > co (and V = L) is treated in Friedman [81C, D] when T = KPn 
for regular X and when T = KPn or ZF for singular x. A characterization of the 
ordinals of the form aZF(X), x c X, is not yet known for regular K > W.3 

Sacks uses his method of pointed perfect forcing, while David's proof is based 
on a very sophisticated use of almost disjoint set forcing from Jensen [75]. Friedman 
[81C, D] uses almost disjoint set forcing in the regular case, Barwise compactness 
in the singular cofinality co case and Theorem 4 above in the singular uncountable 
cofinality case. 

Our goal in subsection B is to describe the various forcing methods used. In 
addition to those mentioned above, Steel [78] developed a very elegant forcing 
method which can be used to give a simpler proof of Sacks' characterization of 
the arKp(X), x cc w. Friedman [81E] adapted Steel's method to uncountable regular 
cardinals, simplifying the proof of the characterization in Friedman [81C] of the 
atKP(X), x C K, when K is regular. 

In C we consider the way in which model-theoretic ideas apply to the study of 
closure ordinals. The first application of this kind can be found in H. Friedman- 
Jensen [68] where Barwise's compactness theorem is used to prove Sacks' char- 
acterization of the aKp(x), x cc w. Later Grilliot and Simpson found an even 
simpler argument (see Keisler [71], page 58). A proof of the same result based on 
Barwise's study of HYP(w) (see Barwise [75]) can be found in Friedman [81A]. 
This proof generalizes to all regular X (see Friedman [81E]). And, the Grilliot- 
Simpson proof is adapted to singular cardinals of cofinality w) in Friedman [81 D]. 

B. Forcing methods. We begin with a description of Sacks' proof of: 
THEOREM 5 (SACKS [76]). If a > w) is a countable admissible ordinal then for some 

R c : 
(a) a is the least R-admissible ordinal (i.e., aKp(R) = a). 
(b) If S < h R then either R < h S or the least S-admissible ordinal is less than a. 
In (b), <? refers to hyperarithmetic reducibility. 
Of course Theorem 5(a) solves the closure ordinal problem for KP in the 

countable case. The statement (b) is a bonus obtained from the special type of 
forcing Sacks uses. 

It is easiest to describe Sacks' proof of Theorem 5 if we assume La k every set 
is countable (a is locally countable). The desired R cz w) is produced by hyper- 
arithmetically-pointed perfect set forcing over L.. A condition in this forcing is 
a perfect tree T c 2<w = all finite strings of O's and l's such that T E L. and T 
is hyperarithmetic in any infinite branch f through T. A condition T1 is stronger 
than a condition T2 if T1 c T2. If G is generic then nG is an infinite branch 

fG through 2<0. 

'David's result was proved independently by Beller; see A. Beller, R. Jensen and P. Welch, 
Coding the universe, Cambridge University Press, London, 1982. 

3There is now such a characterization: see R. David and S. Friedman, Uncountable ZF- 
ordinals, Recursion theory (American Mathematical Society Summer Institute, Ithaca, New York, 
1982), Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, 
R.I. (to appear). 
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Given any S ELa, S ' ), there is such a condition T such that S < h T. Thus 
if G is generic over La then S < h1 fG for any S E La. So hyperarithmetically pointed 
perfect set forcing over La produces a hyperarithmetic upper bound for the reals 
in La. The assumption that a is locally countable guarantees that any ordinal 

<oa is the ordertype of a well-ordering of w) which belongs to La. Therefore no 
ordinal less than a can be admissible relative to fG, whenever G is generic over L. 
(as all reals hyperarithmetic in fG belong to the least admissible set containing fG). 

Sacks shows that this forcing also preserves the admissibility of a, thus estab- 
lishing Theorem 5(a). His key lemma for accomplishing this is the fusion lemma 
which provides a weak form of countable closure. This allows one to bound any 
31-function in the generic extension by one in L., thereby establishing the admis- 
sibility of a relative to any generic real fG. 

Theorem 5(b) in the locally countable case comes about due to the fact that the 
conditions used are branching. This enables Sacks to show: If v(fG) is a term 
denoting a real in the generic extension and Tis a condition, then Tcan be strength- 
ened to T' c T so that either v(f) is the same for all infinite branches f through 
T' or v(f) uniquely determines f (as an infinite branch through T'). A consequence 
of this is the fact that if G is generic and g < hfG then either g E L. orfG < h g V f 
for some f e La. Now if a= aKp(f) for some f E L. then Theorem 5(b) is easy. 
Otherwise no g of lower hyperdegree thanfG can obey aKp(g) = a (as this implies 

.fG < h g V f for some f E La&- But clearly f < h g). The use of perfect conditions 
to guarantee minimality was inspired by Spector's construction of a minimal 
Turing degree. 

We now turn to the case where a is not locally countable. One can establish 
Theorem 5(a) by first generically extending La to LJ[A], A co a, so that LJ[A] 
is now locally countable. Then by a careful use of pointed perfect forcing over 

LcJA] a solution R to Theorem 5(a) can be produced. By a more elaborate argu- 
ment R can be chosen to be a < h-minimal upper bound for the reals in LcJA]. 
Theorem 5(b) requires more work. It is necessary to make A co a as above using 
branching conditions so that subsequent pointed perfect forcing will produce 
a minimal solution R to a = aKp(R). Thus in some sense A is made up of minimal 
collapsing maps from the a-cardinals to w. 

One of the advantages to this type of forcing is that it adapts naturally to a 
number of other situations by altering the notion of pointedness used. If one 
defines R < , S iff R is a member of the least 2n-admissible set containing S then 
forcing with <?,-pointed perfect conditions establishes: 

THEOREM 6 (SACKS [76]). Let n ? 1. If a > d is a countable 27-admissible ordinal, 
thenfor some R c I: 

(a) a is the least 27-admissible ordinal relative to R (i.e., a = aKpJ(R)). 
(b) If S <?n R then either R < S or aKKp"(S) < a. 
This solves the closure ordinal problem for the theories KPn, in the countable 

case. 
A disadvantage of pointed perfect forcing is its complexity. If one is willing to 

drop property (b) in Theorem 5 then simpler proofs can be given, both by forcing 
and by model theory. We now turn to the simplest of these forcing proofs, which 
is easily adapted to treating the uncountable regular case as well. 
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Steel forcing. Steel developed his method of forcing with tagged trees in Steel 
[78] to study definability in analysis. An additional benefit of his method is that 
it provides a very elegant solution to the closure ordinal problem for KP in the 
countable case. 

Friedman [81 E] describes a generalization of this method to any regular cardinal 
and shows how it can be used to characterize the ordinals aKP(X), x K K, when K 
is regular. This generalization suggests a modification in Steel's definition, which 
is what we present here. 

We fix an infinite regular cardinal K and an admissible ordinal a of cardinality K. 
The forcing a, described below is designed to arrange that if G is -generic over 
L. then G produces T c K so that aKp(T) = a. 

A condition in 9,, is a pair (T, h) where T is a size < K subtree of K0o and h is a 
tagging function on T. A tag is something of the form o or (,I7 r, a) where j3 < a, 
r < K, a < r7 A tagging function h: T -+ Tags must obey the following conditions: 

(a)h(0) = ce. 
(b) If h(a) = (6' r, a) and v E T is an immediate extension of a then either 

(i) h(v) = (p3', r', J') where j3' < /3 or (ii) h(v) = (p3, r7 J') some 5' < 7% 
The idea of this forcing is that if G = (TG, hG) is generic then TG is a tree such 

that a = supfK-rank(a) la e TG}- 
K-rank is defined as follows: For any tree T and a E T, Jul,, = 0 iff a has fewer 

than K immediate extensions on T. Otherwise Jl,, = sup {J + I I- has K-many 
immediate extensions v E T s.t. Ivl,, = j3}. The K-rank of a is the ordinal Jul,,. It 
may happen that not every a E T gets assigned a K-rank by the above definition. 
In this case it is convenient to write Jol, = ?. 

It is easily checked that if G = <TG, hG> is 9h,-generic over L,, then for a E TG, 
hG(cr) = (A37 r9 a) iff Ia1, = j3 and hG(U) = ce iff Jul, = o. This implies that 
aKp(TG) ? a, as the inductive definition of Jo-Il, a E TG, can be carried out inside 
any admissible set containing TG as a member. 

The proof that aKp(TG) < a is based on Steel's retagging lemma. This roughly 
states that as far as sentences of rank < B are concerned, j3 < a, the above forcing 
is unchanged by restriction to those conditions <T, h> where a E T -+ h(u) = oc 
or (DB', a m) for some B' < /3. Thus the original class forcing now becomes a set 
forcing provided /3<1 e L,, for each /3 < a. The fact that TG preserves the admis- 
sibility of a now follows from the elementary fact that set forcing preserves admis- 
sibility. 

Note that the condition /3 < a 1B3<K e La is automatic when K = w). Moreover 

9',-generics over La exist since La is countable. This establishes Theorem 5(a). 
The main result of Friedman [81C] establishes that La must obey this condition if 
a = aKP(x) for some x c K (assuming V= L). We say that a is < K-admissible 
if a is admissible, cofinality(a) ? K and j3 < a -+ 13<x e La. A lemma of Friedman 
[81C] shows that if a is < K-admissible then L. is admissible relative to the function 
B- + f3<K. As b,, is a < K-closed forcing we have established the following result. 

THEOREM 7 (FRIEDMAN [81 C]). Assume V = L and K is regular. Then a = aKp (x) 
for some x (- K iff a < K+ and a is < K-admissible. 

The proof of necessity in this theorem requires a thorough analysis of < K-admis- 
sibility in terms of Jensen's 2"-projecta. 
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It is not known if generalized Steel forcing can be used in the uncountable case 
to prove the analog of Theorem 6(a). The argument used in the proof of Theorem 
8 is based on almost disjoint set forcing, which we discuss momentarily. 

THEOREM 8 (FRIEDMAN [81 C]). Let n ? 1. Assume V = L and X regular. Then 
a- =xn(x) for some x c x iff ac < xf and a is < K-1, admissible (i.e., a is 2, admis- 
sible, cofinality (a) ? X and La is closed under j3 4 ><AK). 

Analogs of Theorems 5(b) and 6(b) can also be established. One must use 
pointed perfect trees on x. The theory of (iterated) perfect set forcing on i), was 
developed in Kanamori [80] and applied in its pointed version by Sacks-Slaman 
[82]. 

Almost disjoint set forcing. Recently, David [81] settled the closure ordinal prob- 
lem for ZF, in the countable case. His work is based on Jensen [75], which is a 
highly elaborate use of almost disjoint set forcing. This forcing technique has its 
origins in Jensen-Solovay [70]. 

Almost disjoint forcing makes it possible to code large sets by small ones. We 
illustrate with the simplest case. Suppose X is a subset of c),. We show how to 
generically construct a real R C w so that X E V[R]. First select a sequence <Rabxi < 
(01> of infinite almost disjoint subsets of w; i.e., a 3 --3 Ra n RB is finite. This is 
easily done by first selecting a sequence <R' la < &Wi> of distinct subsets of w and 
then letting R, = {nfn codes a finite initial segment of the characteristic function of 
R'}. Our forcing is designed-so that if R is generic then X = {f aIR fn R is finite}. 
So Xe V[R]. 

A condition is a pair <s, F> where s is a finite subset of w) and F is a finite subset 
of X. We say that <s', F'> is at least as strong as <s, F>, <s', F'> < <s, F>, if s' D s, 
F'P F and (s' - s) n Ra = 0 for all a E F. If G is generic let RG = U {s I <s, F> 
E G for some F}. Then a E X - RG fl Ra is finite, by a density argument. 

This forcing is very gentle as it obeys the countable chain condition (any col- 
lection of pairwise incompatible conditions is countable). Indeed, for <s, F> and 

<s', F'> to be incompatible one must have s = s'. 
This method extends easily to allow one to code a subset of xi+ by a subset of s, 

whenever Is is regular. In Jensen [75] it is shown that if 0# does not exist then one 
can also do a similar coding when ,- is singular. Then assuming GCH, Jensen puts 
all of these codings together simultaneously to code a given class A c ORD by a 
real R. Thus any model of GCH can be generically extended to one of the form 
L[R], R c C). 

There are formidable difficulties in Jensen's construction. The main lemma 
shows that for any successor cardinal s the forcing can be broken up into two 
pieces, one "below" X which obeys the ? K-chain condition, and the other "above" 
X which is K-distributive. This allows one to show that cardinals are preserved and 
that the ZF axioms hold in the generic extension. 

We now turn to David's result.4 
THEOREM 9 (DAVID [81]).4 If La, is a countable model of ZF then for some real 

R, arZF(R) = a. 
David's basic strategy is to build a predicate A c: a which "destroys" models 

4This was proved independently by Beller. 
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of ZF of the form Lo, : < a, and then to code A into a real using Jensen's methods. 
The exact property that one wants A to have is: 

(*) If r < 3 and Lp[A n r] I= ZF then Lp[A n r] I= r is not a cardinal. 

Now if R c c) codes A then LJ[R] + ZF whenever : is not an a-cardinal. To see 
this, suppose LJ[R] # ZF and X < < i+, x an a-cardinal. The details of Jensen 
coding show that ifr = (K+)Lp[R] then A n r E LJ[R]. By (*) we have a contradic- 
tion. To arrange that LJ[R] V ZF when : is an a-cardinal, David first uses a 
comparatively simple forcing to add a class AO to Loa so that 

<Lp[Ao n p], Ao n 3> V Replacement for all ax-cardinals A. 

Then by applying Jensen coding a real Ro is produced so that Ao n( is definable 
over Lp[RO] (and so Lp[RO] V ZF) for all LJRO]-cardinals if. Then the construction 
of A obeying (*) is done over the model LJRO]. 

Building A to satisfy (*) so that L[A] I= ZF necessitates delving into Jensen's 
construction in Jensen [75]. The reason is that the only way to arrange (*) for 
ordinals between X and K+ is to first know that (*) has been arranged for ordinals 
of cx-cardinality s+ and to have a code for An ((+, ?++) as a subset of s+. It is 

this type of "backwards" induction that forces one to build a coding of A into w 
simultaneously with the construction of A. Fortunately Jensen's technique blends 
nicely with the construction of A. 

The uncountable regular case of the closure ordinal problem for ZF remains 
open.5 The main problem is to develop the fine structure analysis which isolates 
the correct necessary condition for an ordinal aX of regular cardinality X > c) to 
be the ZF-closure ordinal of a subset of K. The singular case is treated in Part 
C. 

C. Model-theoretic methods. H. Friedman-Jensen [68] established a connection 
between infinitary logic and the closure ordinal problem for KP. We shall sketch 
here a proof of Theorem 5(a) based on a strengthening of Barwise's compactness 
theorem (Barwise [69]). 

The Barwise compactness theorem deals with fragments of %',Jw infinitary logic 
with countable conjunctions and disjunctions but only finite strings of quantifiers. 
We can think of formulas as being coded by sets in some natural way, and thereby 
any countable admissible set A gives rise to a fragment of Y,, - - {=S E L_1J 

code(qs) belongs to A}. In what follows we shall identify a formula with its code. 
Barwise's compactness theorem states that if O ' YA is a 21<A, e> collection 

of sentences and any 00 c: 0 00 E A, has a model, then 0 has a model. We shall 

need a refinement of this result which concerns the special case that KP c 0. 
A nonstandard admissible set is a model <M, E> of KP which is not well- 

founded. In this case let M' = {m E MIE is well-founded below m}. Then the 

standard part of <M, E> is the unique transitive set T such that <T. C> K <M', 
E [ M'>. A theorem in Barwise [75] states that T is admissible. 

If KP cP 0 then Barwise's compactness theorem has the following refinement 
(also due to Barwise): Under the same hypotheses as before, 0 has a model M 

5See footnote 3, above. 
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such that the standard part of M has ordinal height < ORD(A). This is proved 
by a sort of type-omitting argument. 

We are now prepared to present a model-theoretic proof of Theorem 5(a). Let 
a be a countable admissible ordinal and consider the following collection 0 of 
sentences infL,: 

(a) KP + R c co. 
(b) V = L(R). 
(c) Vb (b an ordinal -* Lb(R) is inadmissible). 
(d) Diagram(L). 
Some explanation is necessary for (d). Introduce names x for each x E L,. Then 

Diagram(L) consists of all sentences of the form Vz(z E x + Vy x Z = y). 
These sentences guarantee that La, is contained in the standard part of any model 
of 0. 

By the refined compactness theorem stated earlier, as 0 is zh <La, e> there is 
M l=( 0 such that T= standard part (M) has ordinal height < a. In fact T n 
ORD = a by axioms (d). 

Now R = (R)M belongs to T, so the admissibility of T implies that LJ(R) is 
admissible. But axiom (c) guarantees that L:(R) is inadmissible for A < (X. This 
proves Theorem 5(a). 

A similar argument will work in the uncountable case provided one has the above 
refined version of Barwise compactness for 2La. Friedman [81D] characterizes 
exactly when this holds, assuming V = L. The cardinality of ac = must be cofinal 
with c) and there must be a tame 1-I function f: L,, as (i.e., f-'[r] E L,, for all 
r < ,i). Finally, if there is a greatest a-cardinal then it must have cofinality C). 

THEOREM 10 (FRIEDMAN [81 D]). Assume V = L and x a cardinal cofinal with cv. 
Then aX = cXKP(X)Air .some x c X if 

0i) Ks < a < s- 

(ii) there is a tame I -1 finictionz f. La -A d, and 

(iii) ~ir = the large.vt a-ca}rIinal tle1z cof(r) = cv. 
The "only if" direction is based on a fine structure analysis of the above prop- 

erties. A related result appears in Magidor-Shelah-Stavi [81]. 
To give some idea why properties (i), (ii), (iii) yield a compactness theorem for 
La note that (ii) allows one to write a given collection 0 of sentences as a count- 

able union UndOn where each 0n E6 La. Then a Henkin construction can be 
performed in c) steps to build a model of 0. Condition (iii) comes into play 
when it is necessary to consistently choose disjuncts for each of the disjunctions 
in O,. 

Though Barwise compactness is not available at uncountable regular cardinals, 
a model-theoretic proof is nonetheless possible. Moreover an interesting con- 
nection with Scott rank emerges from this approach, which is based on Barwise's 
theory of admissible sets with urelements. 

If .// is a structure of finite similarity type then Barwise [75] discusses admissible 
sets above d/, where the elements of Id/l are treated as urelements, objects different 
from 0 but without elements. Ac, is admissible above X if 1 XE A., and A I 
satisfies J0-separation and J0-bounding when the basic operations of the structure 
JI on 1d,'f are taken as primitive. Barwise shows that there is a least admissible set 
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above X, HYP(S,), and that in case 0(&) = HYP(m) n ORD is greater than 

w, HYP(,&) is just Lo(x)(,&) (defined just as in the usual L-hierarchy but with 
X put in at the bottom). 

The usefulness of HYP(,&) for the study of closure ordinals is that it provides 
us with a new technique for solving the equation aX = cxKp(R), R c w. Indeed, if 
a = 0(XI) for some structure X then by forcing over HYP(,&) with finite condi- 
tions p: F -+ 1:1 1XI, F C w, one produces a generic structure &G on w such that 
dIG . X. Moreover La(GG) is admissible since we are forcing over the admissible 
structure HYP(,&) with a set of conditions 9 e HYP(,&). Thus aX = cxKp(R) where 
R c 0) codes &G. 

The natural candidate for X so that O(JI) = aX is the tree 9 produced by the 
variant of Steel forcing described in subsection B. The fact that O(,f) ? a follows 
from the fact that each : < a occurs as the co)-rank of a node of S-. To argue that 
0(Sf) < a we make use of the general result of Ressayre and Schlipf below (see 
Barwise [75], page 143). A structure X is ax-recursively saturated if X I= 3x AO(x) 
for any Zl(La,) collection of formulas 0(x) of YLfLA such that & 1= 3xAP0(x) for all 

o ' 0, BoiLa. 
THEOREM (RESSAYRE, SCHLIPF). 0(w/) = least or such that X is or-recursively 

saturated. 
Now it is easy to determine the possible YL,-types consistent with the structure 

Y: A complete 1-type is determined by specifying the level on 9Y, the c)-rank (either 
i < aX or cx) and the number of immediate extensions of the same co)-rank. It fol- 
lows easily that f7- is ax-recursively saturated and hence O(Q) < (X. 

We can use these ideas to give a new proof of "sufficiency" in Theorem 7. The 
appropriate generalization of HYP(,&) is <Ii-HYP(,&), obtained by first closing 
Aid under <K-sequences and then applying the HYP operation. This gives the 
least <K-admissible set above A. Given a < K-admissible aX < K+, the tree Y 
constructed for aX in subsection B obeys O<,( 3) ? ca as any : < a is the K-rank of 
a node on SY (O<,(A,) = <Kx-HYP(,&) n ORD). In the converse direction, one 
shows 0<,,(!) < a by using the a-recursive saturation of SY for the language 

Yo00,. n La. And finally, ca = IXKP(X) where x c K codes the generic collapse of 
the structure Y via a < K-closed set forcing over < K-HYP(9-). 

A more complete discussion of these ideas can be found in Friedman [81 E]. 
We close our brief description here by mentioning its implications for the theory 
of Scott rank. Nadel [74] shows that for any structure X, the Scott rank of X < 
O(S,). He calls a structure tall if equality holds. Given an admissible ordinal ca, 
a tall structure of Scott rank ca is obtained by considering the linear ordering 
ca + ca * . (7 = ordertype of the rationals) or the tree Y defined (for countable 
ax) in subsection B. For any regular K, the ordinal 0<,,(,) provides an upper bound 
on the < K-Scott rank of X, or equivalently the Yoo,,-rank of X. The generalized 
Steel trees then provide examples of < K-tall structures of any given < -admissible 
LO,,-rank ac (where X is < -tall if y,-rank(,&) = 0<,,&)). 

Lastly, we turn to the remaining singular cases of our closure ordinal problem. 
Assume V = L. For the singular, uncountable cofinality case it will be convenient 
to specify a specific example, 8.1- Then Theorem 4 tells us that if a = a(X) > N 
for some X ' N..1 then ca = oa(D) for some master code D ' N.V 
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LEMMA (JENSEN [72A]). Suppose X < p and there is a J1(Lp) subset of X which is 
not a member of L:. Then there is a J1(Lp) bisection f: p + K. 

Thus if D c X is a 4, master code for : then there is a well-ordering W of X of 
ordertype p which is J1(Lp) and hence < ,D. It follows that c(D) > P. Combining 
this with Theorem 4 we obtain the following result. Call ca a ZF-ordinal if Li I= ZF. 

THEOREM 11 (FRIEDMAN [81D]). Assume V = L and X = x' n 2 1. Then 
Ca = CaKPn (x) for some x c X iff ax is a successor 27-admissible ordinal and Lo #= X is 
the largest cardinal. ax = ZF(X) for some x c X if ca is successor ZF-ordinal and 
Lo I= The supremum of the ZF-ordinals has cardinality K. 

Another way of expressing the content of Theorem 11 is: If V = L and x ' 
then x E L "KP(X). A similar statement is true for x,,: If V = L and x c 4,,, then 
x E Lap2(x). This latter fact is established via the application of an effective version 
of Jensen's covering lemma, Devlin Jensen [74]. The effective version states that 
for x c X, if LJ(X) is 22 admissible, X is a cardinal and Lj(x) I= X is singular then 
x E LO, (assuming V = L). It is proved by showing that Jensen's arguments in 
Devlin-Jensen [74] can be performed inside a 22 admissible set. As for t;i,1 we can 
now state the solution to the closure ordinal problem for ox, when T= KP~, 
n > 2, or ZF. 

THEOREM 12 (FRIEDMAN [81D]). Assume V = L and X = S,, n ? 2. Then a 
aKPp"(x) for some x c X iff a is a successor 27,-admissible ordinal and Lo I= X is 
the largest cardinal. = aZF(X) for some X c X iff a is a successor ZF-ordinal 
and Lo k- The supremum of the ZF-ordinals has cardinality x. 

Friedman [81 D] also treats other singular cardinals, using the effective covering 
lemma. 

?3. Some open questions. 
1) Assume V = L, X regular and uncountable. Is there a nice characterization of 

the degrees 02 for limit 2 in terms of the Oa, ca < A? 
2) Assume V = L and let T= KPn or ZF, X a cardinal. Which sequences of 

ordinals <K7r17 < ro> less than K+ appear as the first ro ordinals a s.t. Lj(x) I= T. 
for some x c K? Progress was made when T = KPn ,X = ), ro < a) by Jensen 
[72B] and when T = ZF, X =K c), ro < a) by David [81]. If ro Kt0 then class 
forcing as in David [81] is necessary. 

3) Are there minimal solutions to the closure ordinal problem for ZF, or for 
KP when X = If, ? 

4) Can model theory be used to prove closure ordinal results for KPn, n > 1? 
For ZF? 

5) Is (**) true when X = If,? In particular, given a degree d, is there a degree 
e > d such that e, d' are incomparable? 
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