Answer to a Question of Wayne Richter

Sy D. Friedman

March 6, 2003

Wayne Richter posed the following question: Suppose that α is least so that for some $\kappa < \alpha$, L_{κ} and L_{α} have the same Σ_n theory. Then is L_{κ} a Σ_n elementary submodel of L_{α} ?

The answer is Yes. We give the proof here for the case n = 2.

Say that $x \in L_{\alpha}$ is a Σ_2 singleton if $\{x\}$ is Σ_2 definable in L_{α} . We shall show that $H = \{x \in L_{\alpha} \mid x \text{ is a } \Sigma_2 \text{ singleton}\}$ is a Σ_2 elementary submodel of L_{α} . Given this claim, we prove the desired result as follows: $L_{\alpha} \vDash \omega_1$ does not exist, due to the leastness of α . Therefore H is transitive and must equal either L_{κ} or L_{α} . But if $H = L_{\alpha}$ then κ is a Σ_2 singleton and therefore the Σ_2 theory of $L_{\alpha} = \text{the } \Sigma_2$ theory of L_{κ} is Π_2 definable over L_{α} , a contradiction. So $H = L_{\kappa}$ and therefore L_{κ} is Σ_2 elementary in L_{α} .

Now we prove that H is Σ_2 elementary in L_{α} . First we show that if A is nonempty and Σ_2 definable over L_{α} then A has an element in H. Let β be least so that some element of A belongs to the Σ_1 hull (in L_{α}) of $\beta + 1$ (= Σ_1 hull of $\{\beta\}$, since $L_{\alpha} \models \omega_1$ does not exist) and either β is Σ_1 stable (i.e., L_{β} is Σ_1 elementary in L_{α}) or $\beta = 0$. Such a β exists since every element of L_{α} belongs to the Σ_1 hull of $\beta + 1$ for such a β .

If $\beta = \kappa$ then there cannot be a Σ_1 stable greater than κ (as any such would have the same Σ_2 theory as L_{α} , contradicting the leastness of α) and therefore κ is the unique β such that β is Σ_1 stable and A contains an element of the Σ_1 hull of $\beta + 1$. So in this case κ is a Σ_2 singleton and therefore so is each element of the Σ_1 hull of $\{\kappa\} =$ the Σ_1 hull of $\kappa + 1$, including some element of A.

If $\beta \neq \kappa$ then let β^* be the least Σ_1 stable greater than β , if it exists, and α otherwise. Choose a Σ_2 sentence φ which is true in L_{β^*} but false in L_{β} , using the leastness of α if $\beta^* < \alpha$ and the fact that $\beta \neq \kappa$ if $\beta^* = \alpha$. Then

 β is the unique Σ_1 stable such that $L_\beta \vDash \varphi$ and A contains an element of the Σ_1 hull of $\beta + 1 =$ the Σ_1 hull of $\{\beta\}$. So again β is a Σ_2 singleton and therefore so is each element of the Σ_1 hull of $\{\beta\}$, including some element of A.

Thus we have shown that H contains an element of each nonempty Σ_2 definable subset of L_{α} . If A is Σ_2 definable over L_{α} with parameters $x_1, \ldots, x_n \in H$, then H must contain (x, x_1, \ldots, x_n) for some $x \in A$ and since the x_i 's are Σ_2 singletons, H must also contain x. So we have shown that H is Σ_2 elementary in L_{α} , as desired.

The above proof generalises to arbitrary n, using the fact that the relation $x \in \Sigma_{n-1}$ hull of $\{\beta\}$ is Σ_n definable.

Remarks. (a) Regarding the case n = 2: κ must be the largest Σ_1 stable, as any larger Σ_1 stable would yield the same Σ_2 theory as α , in contradiction to the leastness of α . And α is not Σ_1 admissible, as otherwise there would be an $\bar{\alpha} < \alpha$ such that $L_{\bar{\alpha}}$ satisfies all Π_2 sentences true in L_{α} (since this set of sentences belongs to L_{α}); but then $L_{\bar{\alpha}}$, L_{α} have the same Σ_2 theory, again contradicting the leastness of α . So in fact there is a bijection between ω and α which is Σ_1 definable over L_{α} with parameter κ . (b) A similar proof shows: Suppose that k, n are positive and let α be least so that there are kordinals $\beta < \alpha$ such that L_{β} has the same Σ_n theory as L_{α} . Then L_{β} is Σ_n elementary in L_{α} for such β . There is also a version for infinite k.