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In classical descriptive set theory, analytic equivalence relations (i.e., Σ1
1

equivalence relations with parameters) are compared under the relation of
Borel reducibility (for example, see [5]). An important subclass of the Σ1

1

equivalence relations are the isomorphism relations, i.e., the restrictions of
the isomorphism relation on countable structures (viewed as an equivalence
relation on reals coding such structures) to the models of a sentence of the
infinitary logic Lω1ω. Scott’s Theorem implies that the equivalence classes of
any isomorphism relation are Borel, and therefore no isomorphism relation
can be complete (under Borel reducibility) within the class of Σ1

1 equivalence
relations as a whole, some of which contain non-Borel equivalence classes.
(This is clarified below.)

The picture is different in the computable setting. It is shown in [2] that
isomorphism on computable structures (viewed as an equivalence relation
on natural numbers coding such structures), indeed on computable trees, is
complete for Σ1

1 equivalence relations under the natural analogue of Borel-
reducibility for equivalence relations on numbers: E0 is reducible to E1 iff
for some computable f : N→ N, E0(m,n) iff E1(f(m), f(n)) for all m,n.

In this article we survey the situation for classes of structures between the
class of computable structures and the class of arbitrary countable structures.
Our aim is to determine in which cases isomorphism is complete and in which
cases it is not.

∗The author would like to congratulate Professor Victor Selivanov on the occasion of
his 60th birthday for his broad and significant contributions to the field of mathematical
logic. He also wishes to thank the FWF (Austrian Science Fund) for its generous support
of this research through Project P 22430-N13.

1



Work has also been done by considering not arbitrary isomorphisms, but
isomorphisms of a restricted type (such as computable or hyperarithmetic
isomorphism). For this I refer the reader to [3].

Section 1. Classes of structures

To discuss classes of structures intermediate between the class of com-
putable structures and the class of arbitrary countable structures we make
use of the L-hierarchy. We fix a computable first-order language and con-
sider structures for that language with universe ω. Assume V = L; thus
every structure is definable over Lα for some infinite countable ordinal α.

For pairs (α, n) where α is an infinite countable ordinal, 0 < n ∈ ω,
define:

X(α, n) = all reals (subsets of ω) which are ∆n definable over Lα

Also when α is a countable ordinal greater than ω we define:

X(α, 0) = all reals (subsets of ω) which are elements of Lα

Now fix α, n as above and let E be an equivalence relation on reals which
is Σ1

1 with parameter from X(α, n). We say that E is complete on X(α, n)
iff whenever F is another such equivalence relation there exists a function f
from reals to reals sending X(α, n) into X(α, n) such that for x, y ∈ X(α, n):

E(x, y) iff F (f(x), f(y)),

where f is Hyp (i.e. ∆1
1) in a parameter from X(α, n).

Note that isomorphism (viewed as an equivalence relation on reals coding
countable structures) is a parameter-free Σ1

1 equivalence relation.

Main Question. For which α, n is isomorphism complete on X(α, n)?

Section 2: When isomorphism is complete

The basic positive result from [2] reads as follows.
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Theorem 1 ([2]) Isomorphism is complete on X(ω, 1), the set of computable
reals.

Roughly speaking, the proof goes as follows. Suppose that E(m,n) is a Σ1
1

equivalence relation on computable reals with a computable parameter; we
can translate E into a Σ1

1 equivalence relation E ′ on natural numbers with-
out parameter. By Kleene’s Representation Theorem choose a computable
sequence (T (m,n) | m,n ∈ ω) of computable trees such that E ′(m,n) iff
T (m,n) is illfounded. Using “rank-saturated” trees (see [1]) we can assume
that the isomorphism type of T (m,n) depends only on the rank of T (m,n)
(which is ∞ if T (m,n) is illfounded). The main trick is to ensure that this
rank depends only on the E ′-equivalence classes of m,n. Then by defining
T ∗(m) to be the “join” of the T (m,n), n ∈ ω, we obtain: E ′(m0,m1) iff
T ∗(m0) is isomorphic to T ∗(m1). For the details see [2]. Now using a Hyp
function which takes a computable real to a Turing-index for it, we obtain
the desired Hyp reduction of E to isomorphism on computable structures.

Now the above clearly relativises to a real parameter. Say that isomor-
phism is complete on the p-computable reals (where p is a real parameter) iff
whenever E is a Σ1

1 equivalence relation with a p-computable parameter there
is a Hyp function f with p-computable parameter sending p-computable re-
als to p-computable structures such that for p-computable x, y: E(x, y) iff
f(x), f(y) are isomorphic.

Corollary 2 For any parameter p, isomorphism is complete on the set of
p-computable reals.

This reduces the Main Question to the cases where n = 0, using the
following fine-structural fact (see [6] or [4]).

Theorem 3 For any α, n, X(α, n) either equals X(α, 0) or equals the set of
p-computable reals for some real p.

The reason for this is that if X(α, n) does not equal X(α, 0) then there
is a real which is ∆n over Lα but does not belong to Lα; then there is a
“canonical” such real called the “∆n master code” for Lα which serves as the
parameter p in the conclusion of the theorem.
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We can reduce our Main Question even further. For example, consider
X(ω + 1, 0), the set of arithmetical reals. There is a Hyp function which
takes an arithmetical real to an arithmetical code for it and this reduces the
completeness of isomorphism on X(ω + 1, 0) to its completeness on X(ω, 1),
the content of Theorem 1. More generally, suppose that X(α, 0) is distinct
from X(β, 0) for each β < α (an assumption we can make without loss
of generality) and that for some real p in Lα, α is less than the least p-
admissible ordinal ωp1; then there is a Hyp in p function which send the reals of
X(α, 0) injectively into ω, thereby reducing the completeness of isomorphism
on X(α, 0) to its completness on the p-computable reals, Corollary 2. Thus
we have the completeness of isomorphism on X(α, n) in all cases except when
n = 0 and one of the following holds:

1. α is admissible but not the limit of admissibles.
2. α is a limit of admissibles.

We now show that isomorphism is not complete on X(α, 0) in the second
of these cases.

Section 3: When isomorphism is not complete

First we need to clarify why isomorphism on arbitrary countable struc-
tures is not complete for Σ1

1 equivalence relations on arbitrary reals.

Proposition 4 There is a Σ1
1 equivalence relation E on reals with an equiv-

alence class which is not Borel (i.e., not Hyp with a real parameter).

Proof. Let X be a Σ1
1 set of reals which is not Borel. Define E by: E(x, y)

iff x, y ∈ X or x = y. Then X is an equivalence class of E. 2

Theorem 5 (Scott, see [5]) For any countable structure A, the set of (codes
for) countable structures which are isomorphic to A is Borel.

Proof. Let ϕ be the Scott sentence of A, i.e., the canonical sentence of
Lω1ω whose countable models are exactly those isomorphic to A. This set
of models is Borel, as the set of countable models of any sentence of Lω1ω is
Borel. 2
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Corollary 6 Isomorphism on countable structures is not complete for Σ1
1

equivalence relations (under Borel, i.e. Hyp in a real parameter, reducibility).

Proof. A Borel reduction from a Σ1
1 equivalence relation E to another such

equivalence relation F takes non-Borel equivalence classes to non-Borel equiv-
alence classes. 2

Now suppose that we replace the set of all reals by some subset X(α, 0)
of the reals; what do we need to know about α for the above argument to
still work?

Proposition 7 Suppose that α is a limit of admissibles. Let A be a countable
structure with code in Lα. Then the set of codes for countable structures
isomorphic to A is Hyp with parameter in Lα.

Proof. The canonical Scott sentence ϕ for A belongs to the second admissible
set containing x whenever x is a real coding A. As α is a limit of admissibles,
ϕ is coded by a real in Lα. It follows that the set of countable structures
isomorphic to A, i.e., the set of countable models of ϕ, is Hyp with parameter
in Lα. 2

Corollary 8 Isomorphism is not complete on X(α, 0) when α is a limit of
admissibles.

Proof. Let X be the set of reals which code linear orders which have infinite
descending chains. Then X is Σ1

1 and not Borel. Now X ∩ Lα is the set of
reals in Lα which code linear orders which have infinite descending chains
in Lα, using the fact that α is a limit of admissibles. Thus X ∩ Lα is Σ1

1

but not ∆1
1 in Lα. And if B is a Hyp set of reals with parameter in Lα

then B ∩ Lα is ∆1
1 in Lα, so it follows that X and B disagree on the reals

of Lα. Now as before consider the equivalence relation E(x, y) iff x ∈ X or
x = y; this equivalence relation is not reducible to isomorphism on X(α, 0)
as its restriction to Lα has an equivalence class which is not ∆1

1 in Lα but
the intersection with Lα of the equivalence classes of isomorphism are each
∆1

1 in Lα. 2

Successor admissibles?

We are left with cases of X(α, 0) when α is a successor admissible, i.e. an
admissible ordinal which is not the limit of admissibles. Note the following.
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Proposition 9 Suppose that α is a successor admissible. Then either X(α, 0)
equals X(β, 0) where β is a limit of admissibles or the reals of X(α, 0) are
exactly those which are hyperarithmetic in p for some fixed real p.

Proof. If Lα thinks that ℵ1 exists then X(α, 0) equals L(β, 0) where β is the
ℵ1 of Lα. Otherwise we may choose a real p in Lα which codes the supremum
of the admissibles less than α and then the reals of Lα are exactly those which
are hyperarithmetic in p. 2

Thus the only remaining cases are relativisations to a real parameter of
the following.

Open question. Is isomorphism complete on X(ωck1 , 0), the set of hyperarith-
metic reals?

Recall that this asks the following: Suppose that E is a Σ1
1 equivalence

relation on reals. Is there a Hyp function f which takes reals to countable
structures such that E(x, y) iff f(x), f(y) are isomorphic, whenever x, y are
hyperarithmetic? The proof methods of Theorem 1 and Corollary 8 do not
appear to cover this case.

Section 4: A variant

There is a strengthening of Corollary 8 for the case of X(α, 0) when α is
a limit of limits of admissibles.

Let E1 be the equivalence relation E1(x, y) iff for sufficiently large n,
(x)n = (y)n, where (x)n is the n-th “column” of x via some computable
pairing funcion 〈·, ·〉 on the natural numbers: (x)n(m) = x(〈m,n〉) for all m.
E1 is a Hyp equivalence relation.

Theorem 10 Let α be a limit of limits of admissibles. Then E1 is not
reducible to isomorphism on structures with codes in X(α, 0), the set of reals
in Lα, via a Hyp function with parameter from X(α, 0).

Proof. Suppose that there were such a reduction f with parameter p in Lα
and choose a limit of admissibles α0 < α so that p belongs to Lα0 .
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Let M denote Lα, M0 denote Lα0 and let (zn | n ∈ ω) ∈M be generic for
the ω-product of Sacks forcing over M0. Define xn so that (xn)k is the 0-real
for k < n and is zk otherwise. The xn’s are pairwise E1-equivalent so the
f(xn)’s are pairwise isomorphic. Choose a permutation π of ω in M which
is Cohen-generic over M0[x0]. Let x be the code for the structure obtained
from f(x0) by applying π. Then the structure coded by x is isomorphic to
the structures coded by the f(xn)’s. Now choose a real y in M0[x] so that
f(y) is isomorphic to the structure coded by x; this is possible as M0[x]
is elementary in V for Σ1

1 statements, using the fact that α0 is a limit of
x-admissibles. Then y is E1-equivalent to x0 and therefore some zn is a
component of y. But then M0[x], a Cohen-generic extension of M0, contains
a real which is Sacks-generic over M0, a contradiction. 2
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