Descriptive Set Theory, Sommersemester 2003
1.Vorlesung
My last course dealt with the techniques of Pure Set Theory:

Constructible Universe L
Set-forcing over L

Class-forcing over L

Inner models K for large cardinals
Set-forcing and Class-forcing over K

In the present course I consider applications of these techniques. There
are two kinds of applications:

Consistency results

Con(ZFC + a large cardinal) — Con(something interesting).

Some examples:

Con(GCH)

Con(Suslin’s Hypothesis)

Con(Inaccessnble) — Con(All projective sets of reals are measurable)
Con(Hypermeasurable) — Con(Failure of the singular cardinal hypothesis)

Con(Woodin) — Con(The nonstationary ideal on w; is saturated)

Theorems

ZFC + a large cardinal — something interesting.

Some examples in descriptive set theory:

Y1 sets of reals are measurable

Measurable cardinal — 31 sets of reals are measurable

Infinitely many Woodin cardinals — All sets of reals in L(R) are measurable

There is a good reason why the latter examples are taken from descriptive
set, theory: Large cardinals appear to give a complete understanding of the
behaviour of sets of reals in L(R). But if we go beyond that, we are faced
with CH, which remains undecidable even with the addition of large cardinal
hypotheses.

The aim of this course is to study applications of the second type, within
descriptive set theory. After establishing as much as possible in ZFC alone,



we shall introduce large cardinals in order to complete the picture

an outline:

ZFC Results

The Borel and Projective Hierarchies

Borel= Al

The Suslin Property and Regularity for Analytic Sets
Determinacy and the Wadge Property for Borel Sets
[T} Uniformisation

The Constructible Universe

Failure of Al Regularity

Failure of II} Determinacy and Wadge
Projective Uniformisation

Forcing Extensions of L
Solovay’s Model: Projective Regularity
Failure of IT} Uniformisation

Sharps

Regularity for 33 Sets

[T} Determinacy and Wadge
1} Uniformisation

Woodin Cardinals

Projective Regularity

Projective Uniformisation
Projective Determinacy and Wadge
Projective Equivalence Relations
Projective Basis Theorems

Part 1: ZFC Results

. Here is

A Polish space is a topological space that is homeomorphic to a complete,

separable metric space.

Lemma 1. Let X be a Polish space. Then there is a continuous function

from Baire Space N = {f | f is a function from N to N} onto X.



Proof. By induction on the length of s € Seq = the set of finite sequences of
elements of N, we define C; such that Cy = X and for nonempty s:

i. Cs is a closed ball of diameter < 1/n, where n = length s.
ii. C5 C Uy Csur (all s € Seq).
iii. s Ct — center(Cy) € Cs.

For each a € N let f(a) be the unique point in ({Cs | s C a}. Then f is
continuous and has range X. O

Borel Sets

Let X be a Polish space. A C X is Borel iff it belongs to the smallest
o-algebra of subsets of X containing all closed sets. The Borel hierarchy is

defined as follows: For each a < w; define X2, TTI? as follows:

3% = Open Sets

I1? = Closed Sets

%) = All sets A =J,;”, An, where each A, belongs to ITj for some § < a
I1° = Complements of sets in 3°

It is clear that the above sets are all Borel. As every open set is the countable
union of closed sets, we have 39 C 39 and then by induction:

0 0 0 0
o< f— X UTI, C XN TS,

Thus |, X2 = |, I is the collection of Borel sets. For each «, 39, II are
closed under finite unions, finite intersections and inverse images by contin-
uous functions.

We show that in the case where X is the Baire space, the Borel hierarchy is
strict: X9 ¢ TIY and therefore X9 # X0 | for each a. The proof generalises
to arbitrary uncountable Polish spaces.

Lemma 2. (Universal X2 Sets) For each a > 1 there exists a set U C N?
such that U is X0 and for every X9 set A C N there is a € N such that
A={x|(x,a) € U}.

Proof. By induction on a. For @ = 1 let G, G, ... be a list of all basic
open sets and Gy = (). We define U = {(z,y) | x € Gy for some n}. U
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is open and if G is an arbitrary open set, then G = {z | (z,a) € U} where
G = U, Gato

Suppose now that Up is a universal E% set for each § < o and we shall
construct a universal Eg set U. Choose ap < vy < --- less than « either with
supremum « or maximum the ordinal predecessor to . Choose a continuous
mapping of A/ onto N'* and for each a € N let (a), be the n-th coordinate
of the image of a. We define U = {(z,y) | (z, (y)n) ¢ U,,, for some n}. Then
Uis 0. If Ais 39 then A is the union of sets A, where A, is IT% . For
each n let a, be such that A, = {z | (z,a,) ¢ U,, } and let a be such that
(a), = a, for each n; then A ={z | (z,a) € U}. O

Corollary 3. For each o > 1 there is a set A C N that is X0 but not T19.

Proof. Let U be a universal X9 set and consider A = {z | (z,z) € U}. O
2.Vorlesung

Analytic Sets

The continuous image of a Borel set need not be Borel. Let X be a Polish
space.

Definition. A C X is analytic iff there is a continuous function f : N — X
with range A. The projection of aset S C X xY istheset P = {x | (z,y) € S
for some y € Y'}.

Lemma 4. The following are equivalent:

(a) A is the continuous image of a Borel set in some Polish space.

(b) A is analytic.

(c) A is the projection of a closed set in X x N.

(d) A is the projection of a Borel set in X x Y for some Polish space Y.

Proof. We will show that every Borel set is analytic. Then (a)—(b) follows.
(b)—(c) holds since if A is the range of f : N'— X then A is the projection
of the closed set {(f(z),z) |z € N} C X x N. (¢)—(d)—(a) is trivial.
Note that every closed set in a Polish space forms a Polish space and
therefore is analytic by Lemma 1. So it suffices to show that each Borel
subset of a Polish space X is the projection of a closed set in X x N. We
show that the family P of all projections of closed sets in X x A is closed



under countable unions and intersections. As P clearly contains all closed
sets and each open set is the countable union of closed sets, it follows that
P contains all Borel sets, as desired.

Let A, be the projection of the closed set F,, C X x N for each n. We shall
show that J, Ay, [, An are projections of closed sets. As before, choose a
continuous mapping of A onto N'* and for each a € N let (a),, be the n-th
coordinate of the image of a.

IEUA —

In Ja (z,a) € F, <

HaEIb(x, )EFb)
3 (x, (c)o) €

re), A, <
Vn Ja (z,a) € F,, <
de Vn (z, (c)n) € F), <

Je (x,¢) € N, {(z,¢) | (z,(c)n) € F,}.

Hence (J,, Ay is the projection of the closed set {(z,c) | (x,(c)o) € Fle),(0)}
and (), Ay is the projection of an intersection of closed sets. O

Lemma 5. The collection of analytic sets is closed under countable unions
and intersections, as well as continuous images and preimages.

Proof. Closure under countable unions and intersections was established in
the proof of the previous lemma. Closure under continuous images is clear
by definition. Suppose that z € A < f(z) € B, where f is continuous and
B is analytic. Write y € B < 3z C(y, z), where C' is Borel. Then z € A <
dz C(f(z),2), so A is the projection of the Borel set {(z,2) | C(f(x),z2)}
and therefore is analytic. O

The Projective Hierarchy

The collection of analytic sets is not closed under complementation. For
n > 1 we define the X! TI! and A} subsets of a Polish space X as follows:

»! = Analytic
H} = Coanalytic = Complements of Analytic sets
X!, = Projections of II}, subsets of X x N



IT! ., = Complements of 3}, sets
Al =3I NIIl.

A set is projective iff it is X! or II! for some n. Tt is obvious that Al C
¥, CAL,, AL CIIL C A} ; we shall show that X, # IT} and therefore
these inclusions are proper.

Lemma 6. (Universal 3! Sets) For each n > 1 there is a set U C N? such
that U is X! and for for every ) A C A there is some v € N such that
A=A{x| (z,v) € U}.

Proof. Let h be a homeomorphism of N2 with A/. For notational convenience,
define X} to be XY. We prove the Lemma by induction on n > 0. By
Lemma 2 there does exists a universal X} set. Inductively, assume that V'
is a universal 3! | set and define U = {(z,y) | (h(z,a),y) ¢ V for some
a € N}. Then U is .. If A C N is X then there is a II}_; set B such
that A = {x | (z,a) € B for some a € N'}. The set C = N — h[B] is . _,
and since V' is universal there exists a v such that C' = {u | (u,v) € V}; then

re A

(x,a) € B for some a «
h(z,a) ¢ C for some a «
(h(z,a),v) ¢ V for some a <
(x,v) € U.

So U is a universal X! set. O
Corollary 7. For each n > 1 there is a 3} set which is not IT..

Every Borel set is Al. This follows from the fact that the latter is closed
under countable unions and intersections, and contains all open and closed
sets. Conversely:

Theorem 8 (Suslin’s Theorem). Every Aj set is Borel.

Proof. We say that a set D separates two disjoint sets A, B iff A is contained
in D and B is disjoint from D. We shall show that any two disjoint analytic
sets can be separated by a Borel set, which clearly implies the Theorem.



First note that if A = |J,, A,, B = |JB, and the pair A,,, B,, can be
separated by a Borel set D,,, for each m,n, then the pair A, B can be
separated by a Borel set, namely by D =J, ), Dmn-

Now let A, B be analytic and choose continuous functions f, g such that
A = fIN],B = g|N]. For each s € Seq let A, = f[N;], Bs = g|Nj], where
N, is the basic open set {f | s C f} in Baire space. For each a,b € N,
{f(a)} =N, Aamm and {g(b)} = ), Ben- It follows that for any a,b € N,
there exists n such that A,), and By}, can be separated by an open set, as
if U,, Uy are disjoint open sets separating f(a) from g(b), the sets Ay, By,
will be contained in U,, Uy, respectively, for large enough n.

Now suppose that A, B cannot be separated by a Borel set. Then for
some Mg, Mo, Aimgy, Bing)y cannot be separated by a Borel set. Then for some
my, ny, the sets Ao myy, Bngny) cannot be separated by a Borel set, etc. Let
a = (mg,my,...) and b = (ng,nq,...). Then A,,, By, cannot be separated
by a Borel set for any n, in contradiction to the previous paragraph. O



Suslin Sets and Regularity Properties

For any set S let Seq(.S) denote the collection of finite sequences of ele-
ments of S. A tree T on S is a subset of Seq(.S) closed under initial segments.
A branch through T is a function a : w — S such that a [ n € T for all n. T
is well-founded iff T' has no branch.

Let x be an infinite cardinal. A free on w X k is a set T of pairs
(s,h) € Seq(w) x Seq(x) such that length (s) = length (h) and for each
n <length (s), (s [ n,h [ n) € T. For each x € N, T(x) ={h | (x [ n,h) €
T, where n = length (h)}. Then T'(x) is a tree on « for each x € N. The
projection of T is defined by

p[T] = {z € N'| T(z) has a branch}.
A set of reals A is k-Suslin iff it is the projection of a tree on w X k.
Proposition 9. Analytic subsets of N are w-Suslin.

Proof. If A is analytic, then A is the projection of a closed set C on ' x N.
Now consider the following tree on w X w:

T={(a[n,b|n)|(a,b)eC}.

A branch through T is essentially a pair (a,b) € C, and conversely, every
pair (a,b) € T is a branch through 7. As A is the projection of C, it is also
the projection of the tree T'. O

3.Vorlesung

A set C' is perfect iff it is nonempty, closed and has no isolated points.
ZFC™ is the theory obtained from ZFC by restricting the Replacement Axiom
to Yoo formulas.

Theorem 10. Suppose that A is the projection of a tree T on w X k which
belongs to the transitive ZFC™ model M. If A has an element not belonging
to M then A contains a perfect subset.

Corollary 11. An uncountable analytic set has a perfect subset.



Proof of Corollary 11. If A is analytic then choose a tree T' on w X w such
that A = p[T]. Choose a countable ZFC™ model M such that T' € M. By
the Theorem, A is either a subset of M, and therefore countable, or contains
a perfect subset. O

Proof of Theorem 10: Define Ty = T and inductively:

Tor1 = {(s,h) € T, | There exist (so, ho), (81, h1) € T, extending (s, h) such
that sg, s; are incompatible}.

For limit A, T) = ({7 | @« < A}. As T belongs to M and M is a model of
ZFC™, the sequence (T3 | B € Ord(M)) is definable in M and for some least
ordinal o« e M, T, =T,.;.

Let x belong to A and choose f so that (z, f) is a branch through 7.
If (z, f) is not a branch through T, then there is some least ordinal 3 such
that (z, f) is a branch through 7 but not through 7. So there is some
(s,h) C (x, f) in Ty—Tp41 and therefore x is the union of {s’ | (s, h’) extends
(s, h) and belongs to T3}. It follows that = belongs to M, since T does.

As A has an element not belonging to M, it must be that T, has a
branch and therefore is nonempty. If (s, h) belongs to T,, then we can choose
(S0, ho), (81, h1) extending (s,h) in T, with sq, s; incompatible. Then we can
choose extensions (soo, hoo), (So1, ho1) of (S0, ho) in T, such that sg, so; are
incompatible, and similarly for (s1, k7). Continuing in this way we can build
a subtree of T, whose projection is a perfect subset of A. O

A null set is a set of reals of Lebesgue measure 0. A meager set is the
countable union of nowhere dense sets. A set of reals is measurable iff it
differs by a null set from a Borel set (equivalently, from a countable union of
closed sets or from a countable intersection of open sets). It has the Baire
property iff it differs by a meager set from a Borel set (equivalently, from an
open set).

Theorem 12. Suppose that A is the projection of a tree T on w X k which
belongs to the transitive ZFC™ model M. Suppose that M has only countably
many reals. Then A is measurable and has the property of Baire.

Corollary 13. Analytic sets are measurable and have the Baire property.



Proof of Corollary 13. If A is analytic then A is the projection of a tree T
on w X w. There is a countable ZFC™ model that contains 7. So by the
Theorem, A is measurable and has the Baire property. O

Before proving Theorem 12, we must introduce Borel codes and absolute-
ness. Let I;,I,,... be a recursive enumeration of the basic open sets of V.
Let ¢ belong to N'. We define u(c) € N by u(c)(n) = ¢(n+1) for all n. Let T’
be a recursive bijection from N x N onto N. For each i € N we define v;(c)
by vi(¢)(n) = ¢(I'(i,n) + 1) for all n. For each positive countable ordinal «
we define coding sets X, 11, as follows:

ce Xy iff ¢(0) > 1

c € 11, iff either ¢ € ¥ 3 U Il for some 5 < a or ¢(0) = 0 and u(c) € X,

For a > 1: ¢ € %, iff either ¢ € ¥3 U1lz for some § < a or ¢(0) = 1 and
vi(c) € Upo(Es Ullg) for all d.

If c € ¥, we call ¢ a ¥-code, similarly for I -codes. The union of all ¥, is
the set BC of Borel codes. The Borel code ¢ codes the Borel set A, defined
as follows:

If c € ¥y then A. = {1, | ¢(n) = 1}
If c € I, and ¢(0) = 0 then A, = ~ Ay
If c € ¥, and ¢(0) = 1 then A, = |, Au,(c)-

It is clear that for every a > 0, if c € 3, then A. € X9, similarly for II,.
Conversely, every X2, TI? set B is coded by some ¢ € %, 12, respectively.

Thus {A. | ¢ € BC} is the collection of all Borel sets.

We introduce the hierarchy of X! and IT} formulas. A ¥} formula with
parameter p € N is a formula of the form

Qp(yla s 7yn) — Jz ,lvz)(yla s 7yn72ap)7

where v is arithmetical, i.e., a formula in the language of second-order arith-
metic with only number quantifiers. The subsets of N which are definable
by 21 formulas with parameters are exactly the analytic subsets of N. A
1} formula with parameter p is the negation of a 31 formula with parameter
p. Inductively: A X}, formula with parameter p is a formula of the form
(Y1, Yn) < 32 V(y1, - -, Yn, 2), where ¢ is a IT}, formula with parameter
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p and a H/1§+1 formula with parameter p is the negation of such a formula.
A subset of N is XL (p), IT (p) iff it is definable by a X!, TI} formula with
parameter p and is Al (p) iff it is both X (p) and II},(p). When p is recursive,
we write X1, TTL ) AL

Lemma 14. (a) The set BC of all Borel codes is II].
(b) There is a Aj relation R such that for Borel codes ¢, R(a,c) iff a € A...
(c) The following properties of Borel codes are IT3:

A. C Ay
Ac:Ad
Ac:®

A. =AU A,
Ac:NAd
A= AN A,
A.=Ag AN A,
A=, A,

Proof. (a) Define the relation E by:

xEy iff either (y(0) = 0 and = = u(y)) or (y(0) = 1 and =z = v;(y) for some

Then y is a Borel code iff there is no infinite sequence y = zg, z1,... with
Zni1 Bz, for each n. As the relation E is arithmetical, it follows that BC is
I

(b) For any ¢ € N there is a smallest countable T = T, C N with the
property:
(¥). ¢ € T and whenever y € T, zEy then z € T.

And if ¢ is a Borel code, a € N then there is a unique function A = h, . on
T, such that for all y € T.:

(x%), If y(0) > 1 then h(y) = 1iff a € I,, for some n such that y(n) =1
If y(0) = 0 then A(y) = 1 iff h(u(y)) =0
If y(0) =1 then h(y) = 1 iff h(v;(y)) = 1 for some 3.

For y € T, and h as above we have h(y) = 1 iff a € A,. Thus for a Borel
code c:
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a € A, iff

For all countable T satisfying (). and all h defined on T satisfying (s#x),,
h(c) = 1 iff

There is a countable T satisfying (). and an h defined on T satisfying (xx),
such that h(c) = 1.

As (). is 31 and (*x), is arithmetical, this gives the desired result.
(c) This follows easily from (b). O

Lemma 15. (Mostowski Absoluteness) Suppose that M is a transitive model
of ZFC™.

(a) If o(y1, - - ., yn) is a X} formula with parameter in M then for all yy, ..., y,
in M:
M ': ¢<y17 A 7yn) iﬁ (p(ylj L 7yn> is trlle.

(b) If o(y1, - - ., yn) is a X2 formula with parameter in M then for all 1, . .., y,
in M:
ME o(y1,...,y,) implies p(y1,...,yy,) is true.

Proof. (a) Using a recursive homeomorphism between N and N we can
assume that n = 1. In both M and the universe we have that ¢(y) holds iff
T'(y) has a branch, where T" is a tree on w x w. If T'(y) has a branch in M
then of course it also has one in the universe. If T'(y) has no branch in M
then T'(y) is well-founded in M and therefore there exists an order-preserving
function in M from 7T'(y) into the ordinals of M. It follows that there is such
a function in the universe and therefore T'(y) has no branch in the universe.

(b) Write p(y1,...,yn) = 32 V(Y1,- -, Yn, z), where 1 is IT. If M satisfies
©(Y1, ..., Yn) then choose y € M such that (y,...,yn, 2) holds in M. Tt
follows from (a) that the latter also holds in the universe, and therefore so

does So(yla - 7yn) U

For a transitive model M of ZFC™, let BCM denote the set of Borel codes,
as interpreted in M, and for ¢ € BC, let AM denote A, as interpreted in
M.

Corollary 16. Suppose that M is a transitive model of ZFC™. Then:
(a) BCY = BC N M.
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(b) If ¢ belongs to BCY then AM = A, N M.
(c) The following properties of Borel codes in M hold iff they hold in M:

A, C Ay
Ac:Ad
Ac:(b
A.=AqUA,
A. =~ Ay
A= AN A,
A=Ay AN A,
AC:UnACn

4.Vorlesung

Lemma 17. The following sets are both 33 and I} definable:
(a) {c| cis a Borel code and A, is null}.
(b) {c | ¢ is a Borel code and A, is meager}.

Proof. For a Borel code c:

A, is null iff

For each n there exists a ¥; code d such that A, C A; and A, has measure
less than 1/n iff

For all IT; codes e, if A, C A. then A, has measure 0.

As the properties “d is a ¥; code and A, has measure less than 1/n” and
“eis a Iy code and A, has measure 0" are arithmetical, the above provides
both 33 and IT! definitions for {c | ¢ is a Borel code and A, is null}.

Also:

A, is meager iff

There exist II; codes ¢,, n € N such that A. C |, A, and each A., is
nowhere dense iff

For all 31 codes d, if A; is nonempty then A. A A, is not meager.

As the property “c is a II; code and A, is nowhere dense” is arithmetical,
the second line above gives a 31 definition of {c | ¢ is a Borel code and A, is
meager }, and using this, the third line above gives a I} definition. O
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Corollary 18. Suppose that ¢ is a Borel code and ¢ belongs to the transitive
ZFC™ model M. Then A, is null iff M F A, is null, and A. is meager iff
M E A, is meager.

Proof. Use Lemma 17 and part (b) of Lemma 15. O

We consider B,, and B., the quotients of the o-algebra of Borel sets by
the ideals Z,, of null sets and Z. of meager sets. For each B € B, let [B],,,
[B]. denote the equivalence class of B in B,,, B,, respectively. We view B,,,,
B, as forcing notions by discarding [0],,, [0]. and using the natural order of
inclusion modulo Z,,, Z., respectively.

Lemma 19. (a) If G is B,,-generic then there is a unique real z¢ such that
for all non-null B € B:

[Blm € G < zg € B,

where B* denotes A¢ ') for any Borel code ¢ for B (this definition is inde-
pendent of the choice of ¢). And a real z (in an outer model of V') is of this
form iff x ¢ B* for each null B € B. Such reals are called random reals.

(b) If G is B.-generic then there is a unique real xs such that for all non-
meager B € B:
[B]. € G < x¢ € B,

where B* denotes AY ' for any Borel code ¢ for B. And a real z (in an outer
model of V') is of this form iff © ¢ B* for each meager B € B. Such reals are
called Cohen reals.

Proof. (a) For convenience we work not in Baire space but in the (real) real
numbers R. Define x5 = sup{r | r is rational and [(r,00)] € G}. We show
that x¢ belongs to A} iff [A.] € G, by induction on ¢ € BC. If cis a ¥, code
for a rational interval (p,q) then we have:

Tg € A: iff

p<zg<qiff

p <sup{r € Q| [(r,o0)] € G} < qiff
[(p,o0)] € G and [(¢,00)] ¢ G iff

[(p,q)] € G
[A] € G.
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If ¢ is a ¥; code for the union of rational intervals A, = |, I, then:

ve Ayiffz e Y, I} iff
[It,] € G for some n iff
U, Ir,] € G ift

[A.] € G.

Inductively, if « is countable and c¢ is a ¥, code, then the result holds by
induction by the same argument as above. If ¢ is a II, code, we may assume
that ¢(0) = 0 and therefore u(c) is a ¥, code, Ayr) =R — A. and we have:

x e A:iff

x ¢ Ay 1ﬁ’.
[Au(c)] ¢ G iff
[A] € G.

This proves the first part of (a), as the uniqueness of z¢ is clear.

Suppose that = z¢ is random. If A, is null then [A.] ¢ G and therefore
by the first part of (a), © ¢ A%. Conversely, suppose that z ¢ A whenever
A, is null. Note that if [A.] = [A4] then A, A Ay is null, A% A A% is null and
thus © € A} iff € A%, Now let G = {[A.] | € A%}, Tt is easy to check
that G is a filter on B,,. We claim that G is B,,-generic: Since B,, satisfies
the countable chain condition, it suffices to show that if {[A.,] | n € N}
is a maximal antichain in B, then x belongs to A} for some n. But the
maximality of this antichain implies that = belongs to (U, Ac,)* and the
latter equals J,, A7 .

(b) This is proved exactly as part (a), using the fact that B, also satisfies the
countable chain condition. O

We can now prove Theorem 12. As M has only countably many reals,
it follows that the set of reals which are not random over M is null. Thus
to show that A is measurable, it suffices to show that {x € A | x is random

over M} is Borel. Suppose that z is random over M and let z = x¢, where
G is B,,-generic over M. Then M|z] is a model of ZFC™ and we have:

ze Aiff

x € p[T) iff
Mz] E x € p[T] iff

15



For some [B),, € G, [B]n IF z¢ € p[T] iff
For some [B),,, * € B* and [B],, IF z¢ € p[T] iff
z € U{B" | [Blm IF za € p[T]},

and the latter is a Borel property of . The same proof shows that A has
the property of Baire. O

We next consider the Ramsey property. For an infinite set A C w we let
[A]“ denote the set of all infinite subsets of A. Is S C [w]* then we say that
an infinite H C w is homogeneous for S iff either [H]¥ C S or [H]* N S = ().
We say that S C [w]“ is Ramsey iff there is an infinite homogeneous set H
for S.

Theorem 20. Suppose that A is the projection of the tree 7" on w X k, where
T belongs to the transitive ZFC™ model M and M has only countably many
sets of reals. Then A is Ramsey.

The proof of this result makes use of Mathias forcing. A condition is a
pair (s, A) where s is a finite subset of w and A is an infinite subset of w such
that maxs < min A. A condition (s, A) extends a condition (¢, B) iff

1. ¢ is an initial segment of s.
2. ACB.
3. s—tC B.

If G is Mathias generic then G is determined by the real
TG = U{s | (s, A) € G for some A},

since G = {(s,A) | s C zg C sU A}. The real z¢ is called a Mathias real.
We shall prove:

Lemma 21. Let ¢ be a sentence of the forcing language and (s, A) a condition.
Then there exists an infinite B C A such that (s, B) decides ¢ (i.e., forces
either ¢ or ~ ).

Lemma 22. A real x is Mathias over the transitive ZFC™ model M iff x is
infinite and for each maximal almost disjoint family A € M of subsets of w,
there is an A € A such that z is almost contained in A.
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Given these Lemmas we prove Theorem 20 as follows: Suppose that M is
a transitive ZFC™ model with only countably many sets of reals and that A
is the projection of the tree T € M. For any real z, if M|[z] satisfies ZFC™,
then:

x belongs to A iff
T'(z) has a branch iff
M]z) E T'(x) has a branch.

Now let ¢ be the sentence “T'(z¢) has a branch”. By Lemma 21 there is a
condition of the form (), A) which decides ¢; assume that (0, A) |- . As
M has only countably many sets of reals, there exists a Mathias generic G
over M which contains the condition (§), A). Thus M[zg] F ¢. By Lemma 22
every infinite y C x is a Mathias real over M, and also the generic determined
by y contains the condition ({), A). Thus T'(y) has a branch for each infinite
y C x¢ and therefore z¢ is homogeneous for A.

5.Vorlesung

Lemma 21. Let ¢ be a sentence of the forcing language and (s, A) a condition.
Then there exists an infinite B C A such that (s, B) decides ¢ (i.e., forces
either ¢ or ~ ).

Lemma 22. A real x is Mathias over the transitive ZFC™ model M iff z is
infinite and for each maximal almost disjoint family A € M of subsets of w,
there is an A € A such that z is almost contained in A.

Proof of Lemma 21. For any A C w and k € w we let A(> k) denote
{n € A|n>k}. If sis a finite subset of w then A(> s) denotes A(> maxs).
We first construct an infinite B C A such that

(%) If (t,C) extends (s, B) and decides ¢ then so does (¢, B(> t)).

By induction we define b, = min By, for k € w: Set By = A. To define By
let {t1,...,%} be alist of all subsets of {by,...,b;}. Construct By, = By, 2
B}, D--- D Bl = By as follows: Given By, if there exists C' C chH
such that (sUt;41, C) decides ¢ then set Biﬂ = C; otherwise, chﬂ =B ,.
Then B = {b;, | k € w} is as desired.
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So we can suppose that A satisfies (x). Now define by = min By by
induction on k as follows: Set By = A. Given B, construct By, such that
for each ¢ C {by,...,b;} exactly one of the following holds:

(sUtU{n}, Brr1(>n)) IF ¢ for each n € By
(sUtU{n}, Bri1(>n)) IF ~ ¢ for each n € By
(sUtU{n}, Brr1(> n)) does not decide ¢ for each n € By,;.

We claim that (s, B) decides ¢: Let (¢,C) be an extension of (s, B) deciding
. Assume that Length(¢) is minimal. If Length(¢) = Length(s) then we
are done since it follows from (x) for A that (s, B) decides ¢. Otherwise let
m = maxt and write t = sUt'U{m} where t' C {by,...,b;}. By construction
(sUt' U{m}, Bry1(> m)) either forces ¢ or ~ ¢; assume the former. Then
the same holds for each m € Byyy. It follows that (s Ut',C) decides ¢,
contradicting the minimality of Length(¢). So (s, B) is the desired extension
of (s, A) which decides . O

Proof of Lemma 22. If x is Mathias over M and A is a maximal almost
disjoint family in M then D = {(s, B) | B is almost contained in an element
of A} is dense, and hence there exists (s, B) € G, N D; as x is almost
contained in B and B is almost contained in an element of A, it follows that
x is almost contained in an element of A.

Conversely, suppose that z is infinite and each maximal almost disjoint
family of M has an element which almost contains . Let D € M be dense
open for Mathias forcing; we must show that D has an element (s, A) such
that s C o C sU A. We say that an infinite A captures (s, D) iff

(%) For all infinite B C A(> s) there exists a finite initial segment ¢ of B
such that (sUt, A(> (sUt))) belongs to D.

Main Claim. For any infinite A, there is an infinite A* C A such that A*
captures (s, D) for each s with maxs € A*.

Proof of Main Claim. It suffices to show that for each infinite A and s
there is an infinite A* C A such that A* captures (s, D). For then, we can
inductively define k, = min A,, by setting Ag = A and choosing an infinite
Ani1 € A, which captures (s, D) for all s with maxs € {ko,...,k,}; then
A* = {ko, k1, ...} is as desired.
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So suppose that A and s are given, with max s € A. We may assume that
for all finite ¢t C A(> s) if (s Ut, B) belongs to D for some B C A(> (sUt))
then in fact (sUt, A(> (sUt))) belongs to D. Now let S be the set of all B
such that either B is not contained in A(> s) or (sUt, A(> (sUt))) belongs
to D for some finite initial segment ¢ of B. Then S is an open set (in the
space of infinite subsets of w). We shall show that open sets are completely
Ramsey (see below), which implies that there exists an infinite B C A(> s)
all of whose infinite subsets either belong to S or to the complement of S.
By our assumption about A and the density of D, it must be the case that
all infinite subsets of B belong to S. It follows that B captures (s, D), as
desired.

Finally, we establish the complete Ramseyness of open sets: S is com-
pletely Ramsey iff for any condition (s, A) there exists A* C A such that
either [s, A*] C S or [s, A*|NS =0, where [s, A*] ={B | s C BCsUA*}. It
suffices to show that open sets are Ramsey, as given (s, A) we can consider
S* = {B | f*(B) € S}, where f*(B) = sU f[B] and f is the increasing
enumeration of A; the Ramseyness of the open set S* implies the complete
Ramseyness of S with respect to (s, A). We say that A accepts siff [s, A] C S
and rejects s iff no B C A accepts s.

(i) There is an A = {ko, k1, ...} which either accepts or rejects each of its
finite subsets, obtained by inductively defining k, = min A,, where Ag = w
and A,,1 C A, accepts or rejects each subset of {ko, ..., k,}.

(ii) In fact there is an A = {kq, k1, ...} that either accepts () or rejects each
of its finite subsets, obtained by by choosing Ag as in (i) to reject () (without
loss of generality) and assuming that Ay rejects each subset of {ko, ..., k,_1},
choosing k,, as follows: For every subset s of {kg,...,k,_1} there are only
finitely many z € Ay such that Ay accepts s U {z}, as otherwise there is an
infinite Z C Ay such that Ay accepts s U {z} for each z € Z and therefore
Ay accepts s, in contradiction to the assumption that Ag rejects s. Thus
we can choose k, € Ay — {ko,...,k,_1} such that Ay rejects each subset of
{ko, ..., kn}. Ag rejects each finite subset of A = {ko, k1,...} and therefore
so does A itself.

(iii) Now if the set A constructed in (ii) accepts () we have established the
Ramseyness of S. Otherwise A rejects each of its finite subsets. We claim
that no infinite subset of A belongs to S. Otherwise there is an infinite B C A
which belongs to S and since S is open there is a finite initial segment s of
B such that [s, B(> s)] is contained in S; this contradicts the fact that A
rejects s. O (Main Claim).
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Now apply the hypothesis on x to obtain A almost containing x which cap-
tures (s, D) for all s with maxs € A. Choose a nonempty finite initial
segment s of x such that maxs € A and x C sU A(> s). Consider the
tree T of t C A(> s) such that (s Ut, A(> (sUt))) does not belong to D,
ordered by end-extension. Then 7" is well-founded, as A captures (s, D). By
absoluteness, T" is well-founded in V' and therefore z(> s) is not a branch
through 7. But then for some initial segment ¢ of x(> s), the condition
(sUt, A(> (sUt))) belongs to D and satisfies sUt C 2z C sUtUA(> (sUt)),
as desired. O

6.Vorlesung
Borel Determinacy

A pruned tree T on a set A is a nonempty set of finite sequences of
elements of A, closed under initial segments, such that each element of T has
proper extension in 7. We let [T'] denote the collection of infinite branches
through 7. For any X C [T], we define the game G(T, X) as follows: Players
I and I1I alternately choose ag,aq,... in A so that for each n the sequence
(ag,-..,a,) belongs to T. Player I wins the game iff the infinite sequence
(agp, a1, ...) belongs to X. A strategy for I assigns an extension of length
n+1in T to each element of T of even length n; similarly for /1 with “even”
replaced by “odd”. A strategy o for I is a winning strategy iff I always wins
the game using o, no matter how I plays; we similarly define a winning
strategy for II. The game G(T,X) is determined iff either I or I has a
winning strategy.

Theorem 23. If X C [T7] is either closed or open, then G(7T', X) is determined.

Proof. Suppose that X is closed and that /1 has no winning strategy. Con-
sider the strategy for I in which he plays in such a way as to guarantee that
IT still has no winning strategy afterwards. Inductively this is possible, as
otherwise /1 would have had a winning strategy before I plays his next move.
We claim that this is in fact a winning strategy for I: Otherwise there is a
play of the game (ag,ay,...) where I follows the described strategy but [
loses. Since X is closed this means that for some n, (ag,a,...,as,) has no
extension in X (i.e., I has already lost at a finite stage of the game). But
this contradicts the definition of I’s strategy!
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Similarly, if X is open and I has no winning strategy, then I1 uses the
strategy which always guarantees that [ still has no strategy. This must win
for 11, as otherwise I loses at a finite stage, contradicting the definition of
his strategy. O

Theorem 24. (Martin) If X C [T] is Borel then G(T, X) is determined.

Proof. Let T" be a nonempty pruned tree on a set A. A covering of T' is a
triple (7', 7, @) where

i. Tisa nonempty pruned tree on some set A.

ii. 7:7 — T is monotone (i.e., s C t — m(s) C m(t)) with Length(n(s)) =
Length(s). Thus 7 gives rise to a continuous function  : [T] — [T].

iii. ¢ maps strategies for I (II, respectively) in T to strategies for I (I1,
respectively) in 7' in such a way that (&) restricted to positions of length
< n depends only on & restricted to positions of length < n for each n.

iv. If & is a strategy for I (I1, respectively) in T and z € [T] is played
according to ¢(&) then there is © € [t] played according to & such that
(%) = .

It follows that if X C [T] and & is a winning strategy for I (I1, respec-
tively) in G(T', X), where X = 77'[X], then (&) is a winning strategy for
I (I1, respectively) in G(T, X). A k-covering of T is a covering (T, m, @) of
T such that 7 | 2k = T | 2k and 7 is the identity on 7' | 2k. For X C [T]
we say that (T, 7, ¢) unravels X iff 771[X] = X is a clopen subset of [T].

Thus Theorem 24 follows from:

Main Lemma 25. If T" is a nonempty pruned tree and X C [T'] is Borel then
for each k there is a k-covering of T" which unravels X.

We prove the Main Lemma using:
Lemma 26. The Main Lemma holds for closed X C [T].

Lemma 27. Fix k. Let (Tj41,7mit1,pi+1) be a (k + i)-covering of T; for
each 7. Then there is a pruned tree T, and 7 ;, ¥, such that for each ¢
(Toos Too,is Pooyi) 18 a (k 4 4)-covering of T; and 7o = Tit1 © Moo it1, Pooi =
Pit+1 O Pooit1-
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Proof of Main Lemma. We show by induction on £ > 0 that for all 7', all
k and all Eg subsets X of T', there is a k-covering of T that unravels X.
Notice that if a k-covering unravels X it also unravels ~ X, so by Lemma
26 we are done if £ = 1. Assume £ > 1 and that the desired property holds
for all n < £. So for each T', each n < &, each H(r)z subset Y of T', and each
k there is a k-covering that unravels ~ Y, and therefore also Y. Let X be
Eg and k € N. Then X = |J, X; with X, € ng & < & Let (11,7, ¢1) be
a k-covering of Ty = T that unravels X,. Then 7, '[X;] is also IT on T for
each i. By recursion define (T;,1, 741, pir1) to be a (k + i)-covering of T;

that unravels 7; ' o} o+ o7 [ X;]. Let (Too, Tooi, Pooyi) be as in Lemma
27. Then (T, Too0, Poo0) unravels every X;. Thus mo[X] = U, 730 [X]

is open in [T,]. Finally, let (ji,ﬂ', ¢) be a k-covering of T, that unravels
Tooo[X], by Lemma 26. Then (T, Moo 0 T, o000 @) is & k-covering of T' that
unravels X.

7.Vorlesung

Proof of Lemma 27. Note that for any finite sequence s if Length(s) < 2(k+1)
then whether s € T; or not is independent of 7. So we define:

s € Ty iff
s € T; for any i with Length(s) < 2(k +1).

It is clear that Ty, is a pruned tree and that T, T; have the same first 2(k+1)
levels.

We define 7o ;: If Length(s) < 2(k + i) then 7o ;(s) = s. If 2(k +1i) <
Length(s) < 2(k + j) we put 7w (S) = mip1 0 Mo 0 -+ 0 m;(s) (this is
independent of j).

We similarly define ¢ ;: If 0o is a strategy for T let vooi(0) [ 2(k +
i) = 0o [ 2(k+1) and for j >4, pooi(000) [ 2(k+]) = @ir100i420 - -00;(00s |
2(k +7)).

It remains to verify condition (iv) of the definition of covering. Suppose
that o is a strategy for T, and let z; € [pooi(0a0)] (i-€., z; is a play according
to the strategy ¥oo,i(0a0)). Let Zii1 € [Pooit1(0o0)]s Tite € [Pooita(0s0)], - - -
come from (iv) for the coverings (Tiy1, mir1, iv1), (Tivo, Tive, Piza), - .. ap-
plied to the strategies ©;i1(¥0o,j+1(000)) = $o0,j(0s0) for j > 4, so that
miy1(xjq41) = x; for any j > i. Since 7;4; is the identity on sequences of
length < 2(k + j), it follows that (z;, x;11, Z;y0,...) converges to a sequence
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Too defined by xoo | 2(k+j) = z; [ 2(k+7) for j > i. Now 0o and @ j(000)
agree on sequences of length < 2(k+75) so as z; follows the strategy oo ;(000)
for 7 > ¢ we have that x, follows the strategy o.. Finally it is clear that
Too,i(Too) = . O

Proof of Lemma 26. We first introduce quasistrategies. If T is a nonempty
pruned tree then a quasistrateqy for I in T is a nonempty pruned subtree
Y C T such that if (ap,...,as;) € X and (ao,...,a2,a2j+1) € T then
(ag,...,as,az+1) € X. Similarly we define quasistrategies for II in T. If
X C [T]is given we say that a quasistrategy X for I is winning in G(T, X) iff
[¥] € X (similarly for /7). Thus a winning strategy for I in G(7, X) can be
identified with a winning quasistrategy for I with the additional property that
for each (ao, ..., azj_1) € X there is a unique ag; such that (ao,...,as;) € X.
If X is closed, then there is a canonical quasistrategy for I in G(T, X), de-
fined by ¥ = {p € T'| p is not losing for I}. If I has a winning quasistrategy
then his canonical quasistrategy is winning.

Fix k, T and X as in the Lemma and let T'x be the subtree of T" whose
branches are the elements of X. For a tree S, S, denotes {v | uxv € S} and
for Y C [S], Y, denotes {z | u*x € Y}. The desired k-covering (7,7, ) is
described via the following auxiliary game:

(i) Players start with moves xq, 1, . . ., Tog_2, Tok_1 such that (xq, ..., To_1) €
T.
(ii) In his next move, I plays (xoy, X.7) where (xq,...,29,) € T and X; is a

quasistrategy for I in T{y . 2.,) (with the convention that IT starts first in
games on T(gy . 2..))-

(iii) /1 now has two options:

Option 1: IT plays (zog41,u) where (zo,...,2o11) € T and u is a sequence
of even length such that u € T{ay,... 20, 1) A0 U € (1) @arr 1) = (TX) (20,..szans)-
From then on I and II play zoi2, Togts, - .. S0 that (xg,...,z;) € T for all
j and u g (l‘2k+2, Tok+3, - - )

Option 2: 11 plays (o1, X77) where (2o, ..., xor41) € T and X7 is a quasis-
trategy for 11 in (Xr)(,,,,) With X1 C (Tx)(z,....00,1)- From then on I and
II play T2k+2, L2k+3, - - - SO that (l‘2k+2, Tok+3y -+ - - ,ZL‘[) € Y foralll > 2k +2.

The map 7 is given by m(zo, ..., Top_1, (Tog, *), (Toks1, *), Togso, ..., Ty) =
(g, ...,m). As € m1(X) iff Z(2k +1) is of the form (zox11, X77), it follows
that 7—'(X) is clopen.
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Finally we must define ¢ so that given a strategy & on T, the strategy
o = () on T has the property that for any x € [o] there is Z € [5] with

7(Z) = x. We now describe the strategy o. There are two cases.
Case 1. & is a strategy for [ in 7.

For the first 2k moves, o is just . Then & provides I with (xo, X;); o
has I play xo;. Then I1 plays xor.1. There are two subcases.

Subcase 1. I has a winning strategy in G((EI)(MH), [(21)(x2k+1)]—X(xo,___7$2k+l)).

Then o requires [ to play this winning strategy. After finitely many moves
a shortest position u of even length is reached for which u & (T'x)(a0,....0011)s
say u = (Tokt2; - - - 7372151)- Then (xo, ..., Zogp—1, (Tor, X1), (Tor+1, W), Topg2, - - -, Ta—1)
is a legal position in 7', and o requires I from then on to play following &.

Subcase 2. 1T has a winning strategy in G((Xr)zy. 1) [(E;)(I%H)]—X(m’..,,x%ﬂ)).

Let X;; be II's canonical quasistrategy in this game. From then on, I
plays following &, assuming that in the game on T, IT played (xos1, %77). 1
can do this as long as I collaborates and plays so that (xogyo,..., 29 1) €
(311) (wo,....war1)» SinCe then we have legal positions in T. But if for some [
with 20 — 1 > 2k 4 2, I1 plays so that (zopi2, ..., Ta-1) & (311)(@o,...a96:1)1
then by definition of ¥, it follows that I has a winning strategy in
G((ZI)($2I€+17---7$2L—1)7 [(ZI)($2I€+17---7$2L—1)] - X(l'07---7$2k+17---7732l—1))' Then I contin-
ues as in Subcase 1.

Case 2. & is a strategy for 1T in T'.

Again for the first 2k moves o is just 6. Next I plays xox. Put U =
{(@or41) ¥ u € Tiay,....zp,) | v has even length and there is a quasistrategy ¥;
for I in T{4,,  2,,) such that & requires /1 to play (z2x11,u) when I plays
(IQk, 21)} Then

U={z € [Tis,. 000)) | © 2 (T2p41) * u for some (xo11) xu € U}
is an open set in [T(a,... z00))-

Consider now the game on T{, . ,.) Where IT plays first, the players
produce Zogy1, Togra, ... and I1 wins iff (xory1, Togse, .. .) belongs to U.
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Subcase 1. /] has a winning strategy in this game.

Then o follows this winning strategy until a position (xogy1,...,Ty_1) =
u is reached which belongs to U. Let ¥X; witness u € U. [II then follows &
after the pOSitiOIl (l‘o, R ({L‘Qk, Z]), (l‘gk_H, u), Tokt2y - - - ,1‘21_1).

Subcase 2. [ has a winning strategy in this game.

Let ¥; be the canonical quasistrategy for I. Then if I plays (zox, X7) in
the game on T, 6 cannot ask I to play something of the form (Topy1, u),
because then (zg,41) * u belongs to U and by the rules of f, (Tokt1) * u
belongs to ¥, contradicting the fact that no sequence in ¥; can belong to

U.

So if I plays (zox, %) in the game on T, 5 asks IT to play (zogi1, Xr1)-
So ¢ has Il play zory1 and then follow ¢ as long as I collaborates so that
(Tokt2, ..., T9) belongs to Xy, If for some | > k + 1, I plays zy with
(Tokt2s - -, T2r) € Xpg, then since X7 is a quasistrategy for 17 in (3;),

$2k+1)
(and therefore I’s moves are untrestricted as long as they are in ;) it follows
that (vorq2, ..., 22) € (X1)(@,,,) and we are back in Subcase 1 again.

This completes the proof of Lemma 26. O
8.Vorlesung
The Wadge Property

Suppose that A, B are subsets of Baire space. We say that A is Wadge
reducible to B, written A <,, B, iff there is a continuous function f such
that x € A iff f(z) € B.

Theorem 28. If A, B are Borel then either A <,, B or B <,~ A.

Proof. Consider the Wadge game G,(A, B) where players I and II al-
ternately choose natural numbers x(0),y(0),z(1),y(1),... and II wins iff
(x € A < y € B). This is a Borel game and therefore determined. If o
is a winning strategy for I/ then o induces a continuous function ¢* from
Baire space to Baire space such that + € A < ¢*(z) € B. If ¢ is a winning
strategy for I then o induces a continuous function ¢* from Baire space to
Baire space such that y € B < o*(y) e~ A. O
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The Wadge degree of A is its equivalence class [A],, under the equivalence
relation A =, B iff (A <, B and B <,, A). Theorem 28 says that the
ordering of Wadge degrees is almost a linear ordering, in the sense that the
only incomparable pairs of Wadge degrees are of the form [A],, [~ A],. It
is also possible that [A], = [~ A],; an example is A = {z | 2(0) is even}.

Theorem 29. The ordering of Wadge degrees is well-founded.

Proof. If not then there is a sequence Ag, Aq,... with A, fw A, and
A, fw A, 11 for each n. Let 00 be a winning strategy for I in G (A, Any1)
and ¢! a winning strategy for I in G, (A,,~ Ani1).

Fix r € 2V. We deﬁne plays of games G{j, GY, . .. as follows: In game G7.,

I applies the strategy oz , and the k-th move of 1] is the k-th move of [ in
G ... Let y,(x) be the play of I in game G%. Then

(+) yn(x) & Ay > yoia(z) € ALY,

where A%, | = A, 11, A}, =~ A,41. Consider now X = {z € 2V | yo(z) €
Ap}.

Claim. If x, z differ at exactly one argument, we have z € X iff z ¢ X.

Proof of Claim. Suppose that x and z differ exactly at argument k. Then

Yr+1(2) = yp1(Z), since these depend only on z(n) for n > k. So by (x),
z(k - x(k z(k)
ui(r) & Ae < pen(n) € AL o pen(n) € AL < gen(n) € AL -
yk( ) € Ag. Since z, T agree at arguments less than k, it follows again by

(%) that yo(x )¢A0<—>yo( ) € Agsie, z ¢ X iff z € X. O (Claim)

X is Borel and therefore has the Baire property. Therefore either X or
~ X is comeager inside some basic open set Ny = {z | s C x}, s € 2<“. But
the homeomorphism that switches the value of  at n = Length(s) sends
X NN, to~ XN N, and therefore gives two disjoint comeager subsets of Ny,
a contradiction. O

Uniformisation of 11, X3 Relations

Let P C N xN and let F be a function with domain and range contained
in V. We say that F uniformises P iff the domain of F equals {z | Jy (z,y) €
P} and for z in the domain of F, (z, F(x)) € P.
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Theorem 30. Every IIj relation can be uniformised by a function F' whose
graph {(z,y) | y = F(x)} is II;.

Proof. First we show how to pick a special element from a given II} set P.
Let U be a recursive tree on w X w such that

x € P iff U(z) is well-founded.

Let (u, | n € N) be a recursive enumeration of Seq = w<* where uy = () and
length u,, < n for each n. Define the tree T" on w X w;y by:

(s,h) € T < ¥Ym,n < Length(s)[ If u,, D u, and (s | Length(uy,),s [ u,) €
U then h(m) < h(n)].

Then z € P <> T'(z) has a branch. Also, if = belongs to P then T'(x) has a
least branch, i.e., a branch g, with the property that g,(n) < f(n) whenever
f is a branch through T'(z): g, is defined by g¢,(n) = Rank(u,) in T'(x) if
u, € U(x); 0 otherwise.

Now define Py = P, Py,11 = {x € Py, | gz(n) is least}, Pa,0 = {x €
Py, 11 | x(n) is least}. Then the intersection of the P,’s has a unique element
a.

Claim. {a} is IIj.
Proof of Claim. We have:

Tz € P«
T € ]]Z/\ Vy(Rank(ug) in U(z) < Rank(ug) in U(y))
T € Iy <>
x € P AVy((Rank(ug) in U(z) < Rank(up) in U(y)) V (Rank(ug) in U(z) =
Rank(u) in U(y) A 2(0) < 9(0)))
T € Py~
x € Py AVy((Rank(ug) in U(z) < Rank(ug) in U(y)) V (Rank(ug) in U(x) =
Rank(ug) in U(y) A x(0) < y(0)) V (Rank(ug) in U(z) = Rank(ug) in U(y) A
E(O) = y(0) A Rank(uy) in U(y) < Rank(uy) in U(x))

te.

The above are I} definitions, using the equivalences:
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Rank(u) in U(z) < Rank(u) in U(y) iff

There exists an order-preserving function from (U(z)), into (U(y)).
Rank(u) in U(z) < Rank(u) in Ul(y) iff

There exists an order-preserving function from (U(z)), into (U(y)),+ for some
u* properly extending u.

Now we prove the Uniformisation Theorem. Let P be a Il subset of
N x N. Let U be a tree in w X w x w such that

(x,y) € Piff U(x,y) is well-founded.

For each z € N let P® be the I set {y | (z,y) € P} and define P* = Py D
PP DO .- exactly as we defined P,, n € N, with P, U(y) replaced by P*,
U(z,y). Let Q" the intersection of the P?’s. Then @* has a single element,
which we denote by F(z). The II expression we gave above applies to Q%,
and shows that the graph of F', {(z,y) | y € Q%}, is I}, as desired. O

Corollary 31. Every X} binary relation can be uniformised by a ¥ function.

Proof. Suppose that P C N x N is ¥1; then there is a II! relation Q C N?
such that P is the projection of Q; i.e., P = {(z,y) | 3z((z,y,2) € Q)}.
Apply II! uniformisation to get a II} function F : N — N? with domain
{z | y,2((z,y,2) € Q)} such that for = in this set, F(z) = (F(z)o, F(2)1)
where (z, F'(x)o, F'(x)1) € Q. Then F* uniformises P, where F*(z) = F(z)o.
And the graph of F* is X} since

y=F*(x)iff 3z (y, 2) = F(x).
Thus F* is the desired X} uniformising function. O.
9.Vorlesung
Part 2: The Constructible Universe

We showed that the regularity properties measurability, Baire property,
perfect set property and Ramsey property hold for ! sets, provably in ZFC.
However this does not extend to Al sets:

Theorem 32. In L, there is a wellordering < of the reals of length w; such
that the relation {(x,y) | y codes the set of <-predecessors of x} is Al. (Such
a wellordering is called a good Al wellordering.)
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Proof. < is just the usual canonical wellordering of L, restricted to the reals.
We have:

y codes the set of <-predecessors of z iff

Jz(z codes an L, F ZFC™ containing x, and y codes the set of <, _-predecessors
of zin L,) iff

Vz(If z codes an L, F ZFC™ containing x then y codes the set of < -
predecessors of = in L)

Thus we have a good A} wellordering. O

Corollary 33. In L, there are Al sets which are not measurable and do not
have the Baire, perfect set or Ramsey properties.

Proof. List the reals using a good Al wellordering as (z, | & < w;) and build
X by inductively deciding x, € X, diagonalising over reals which might
witness one of the four regularity properties. O

We proved determinacy for Borel sets in ZFC. This does not extend to
[T} sets: A Turing set of reals is a set of reals X with the property: = € X,
x =7y —y € X, where =7 denotes Turing equivalence. A cone is a Turing
set of the form {y | x <t y} for some x.

Lemma 34. (Martin’s Lemma) Suppose that X is a determined Turing set.
Then either X or ~ X contains a cone.

Proof. If I has a winning strategy ¢ in the game for X then for any possible
play y for player 11, o(y) belongs to X, where o(y) is the result of the game
where I plays y and [ follows his strategy o. Thus if ¢ <7 y, it follows
that o(y) =1 y belongs to X. If I1 has the winning strategy 7, then we get
T(x) =rx e~ X forallz >p 7. O

Corollary 35. In L, IT} determinacy fails.

Proof. Tt suffices to find a Turing set X such that neither X nor ~ X contains
a cone. Consider X = {x | x is the first-order theory of some L, F ZFC™}.
Clearly ~ X cannot contain a cone as every real is recursive in some element
of X. And if x belongs to X, then 2/(= the Turing jump of z) does not, so
~ X does not contain a cone. O
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We showed that for Borel sets A and B either A <y B or B <y~ A.
The same property for [T} would imply that any two non-Borel I} sets have
the same Wadge degree. The latter fails in L:

Theorem 36. In L, not all non-Borel II} sets have the same Wadge degree.

Proof. Let (a; | 0 < i < wy) be the increasing enumeration of the countable
ordinals « such that L, is admissible. Let WO be the set of x such that x
codes an ordinal. WO is a complete IT] set, and therefore each I1; set is Wadge
reducible to WO. Let X be the set of x such that x codes an ordinal between
a; and a;yq for an even i. X is H} and not Borel. Now suppose that WO
were Wadge reducible to X and let a be a real coding a continuous function
f such that x € WO « f(z) € X. Choose an odd ¢ such that a belongs to
L., and «; is countable in L,,,, = M. Then x € WONM < f(z) € XN M,
and X N M is Ay(M). So WO N M is Ay (M), which is impossible since M
is the least admissible set containing some real. O

The Uniformisation Property does extend in L beyond 3i:

Theorem 37. In L: Each X! binary relation can be uniformised by a !
function, for each n > 2.

Proof. Let < be a good Al wellordering of the reals. If R(x,y) < 3z S(z,y, 2)
with S II1 ., n > 2, then define:

S*(x,y, 2) = (S(2,y,2) AV(Y', 2') < (y, 2)(~ S(x,9,2))).

Then S*is X1, as < is a good Al wellordering and n > 2. So R is uniformised
by R*(z,y) <« 3z S*(x,y,2). O

10.Vorlesung
Part 3: Forcing Extensions of L

[s it possible to have regularity properties beyond %! in a forcing extension
of L? Solovay constructed, using an L-inaccessible, a generic extension of L
in which all projective sets are regular.

Theorem 38. (Solovay) Assume that there is an L-inaccessible. Then there
is a set-generic extension of L in which all projective sets are measurable and
have the Baire, perfect set and Ramsey properties.

30



Proof. Let k be inaccessible in L and let P be the Lévy collapse to make
equal to wy: A condition in P is a finite function p : F' — k, where ' C w X K
and p(n,a) < « for each (n,a) € Dom p. P makes each o < x countable
and has the s-cc; it follows that in a P-generic extension L[G], k is w;. Also
P is homogeneous: If p, g are elements of P then there is an automorphism
of P which sends p to a condition compatible with .

We show that in L[G], each projective set of reals X is measurable. Sup-
pose that © € X < L[G]| E ¢(z,a) where ¢ is a formula of second-order
arithmetic and a € L[G] is a real parameter. We may choose o < k such
that a belongs to L|G,], where G, = GN L, is P, = PN L,-generic over L.
Then L[G] is a P-generic extension of L[G,], since P ~ P, x P.

Almost every real (in the sense of Lebesgue measure) is random over
L|G,] and therefore it suffices to show that X agrees with some Borel set on
the reals which are random over L[G,|. Suppose that z is such a real; then
L|G] = L|G,]|G,][H,], where P ~ P,xQ*R, G, is the generic corresponding
to x for random real forcing @ over L[G,] and H, is generic over L[G,][G.]
for some forcing R. It is not difficult to show that R is equivalent to P, and
so we can assume R = P. Thus by the homogeneity of P:

r e X iff

LIGIGAIH,] F o(,a) iff

LIGIG E (P F olz,a) iff

For some B € G, B lFg (P IF ¢(%,a)) iff

x belongs to the union of the B B € Q such that B I (P IF o(i,a)).

As L[G,] has only countably many reals, it follows that @ is countable and
therefore this last condition on x is a Borel condition. So X is measurable.

The same argument works for the Baire property, using the Cohen algebra
in place of the random algebra.

If X is an uncountable projective set of reals in L[G] then again we can
write x € X iff L[G,]|G.] E (P Ik ¢(x,a)), where a belongs to L[G,], a < k
and G, is generic over L[G,] for some forcing (),. As X is uncountable, we
can choose x € X to not belong to L|G,| and for this x can assume that
Q. IF (& ¢ L|G,] and (P IF ¢(&,a))). As the power set of @, in L[G,]
is countable in L[G], we can build a perfect set of y’s with corresponding
Q.-generics G, such that L|G,][G,] E (P IF ¢ (y,a)). Thus y belongs to X
for each such y, showing that X has a perfect subset.

For the Ramsey property, we again write = € X iff L|G,]|G.] E (P Ik

31



(x,a)). There is a Mathias condition (), A) which forces over L[G,] that
L|G,]|G:] E (P Ik ¢(&,a)) where & denotes the Mathias generic real (or the
same with v replaced by ~ 1; assume the former). Then if x is Mathias
generic over L[G,], x C A, it follows that L[G,][G,] F (P IF ¥(y,a)) for all
infinite y C x, as any such y is also Mathias generic. Thus y € X for such y
and z is homogeneous for X. O

Shelah showed that the use of an L-inaccessible as above is necessary
to obtain the measurability of 31 sets. (It is however not necessary for the
measurability of Al sets.) He also showed that an L-inaccessible is not needed
to obtain the Baire property for all projective sets. It is not difficult to show
that an L-inaccessible is necessary to obtain the perfect set property for II}
sets. The situation with regard to the Ramsey property is still open.

11.Vorlesung

We showed that both II} determinacy and the Wadge property for I}
sets fail in L. These properties also fail in all set-generic extensions of L, by
similar arguments. Are these properties in fact refutable in ZFC? We will
see that they are implied by the existence of large cardinals, which makes
this rather unlikely.

We showed that projective relations can be projectively uniformised in L.
This can fail in a set-generic extension of L:

Theorem 39. There is a forcing extension of L in which some II} binary
relation has no projective uniformisation.

Proof. Add w; Cohen reals to L. In the extension, we have: For each real
x, there is a real y which is Cohen over L[z]. Consider now the relation
R(z,y) < y is Cohen over L[z]. This is a total II3 relation. Suppose that f
were a projective function with parameter a which uniformised R. Then our
model can be written as L[b, G| where a belongs to L[b] and G is generic for
adding w; Cohen reals over L[b]. But by homogeneity, f(b) must belong to
L[b], which contradicts the fact that f(b) is Cohen over L[b]. O

Part 4: Sharps

Assume that every real has a #. We will show that the regularity, de-
terminacy, Wadge and uniformisation properties that we established in ZFC
can be extended to one more level of the projective hierarchy.
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Theorem 40. Suppose that w; is inaccessible to reals, i.e., L]a] contains only
countably many reals for each real a. Then every X1 set is measurable and
has the Baire, perfect set and Ramsey properties.

Proof. By Theorems 10, 12 and 20, it suffices to show that each X1 set A
is the projection of a tree 7" on w X k for some k, where T belongs to a
transitive ZFC™ model containing only countably many reals. Let U be a
tree on w X w X w such that

r e Aiff 3y U(x,y) is well-founded.

Let (u, | n € N) be a recursive enumeration of Seq such that ug = () and
Length(u,) < n for each n. Define the tree 7" on w X w X w; by:

(u,v,h) € T < ¥m,n < Length(u) = Length(v) [ If w, 2 u, and (u |
Length(u,,),v | Length(u,,), um,) € U then h(m) < h(n)].

Then x € A < T'(x) has a branch. T can be identified with a tree on w x w;
and belongs to L[a], where a is a real coding the tree U. It follows that A
is the projection of a tree which belongs to a transitive ZFC™ model all of
whose reals are constructible from a. By hypothesis this model contains only
countably many reals. O

Theorem 41. Suppose that z# exists for every real x. Then every 3! set is
determined.

Proof. Let A be X1; we want to show that the game G4 (played on w) is
determined. Let T be a tree on Seq” suich that

r € A < T(x) has a branch.

Let <* be the Kleene-Brouwer ordering on Seq: s <* t iff either s properly
extends ¢ or s(n) < t(n) where n is least so that s(n) # t(n). For s € Seq
let Ty = {t | (u,t) € T for some u C s}. Also let ¢, t1,... be an enumeration
of Seq and if s has length 2n, let K be the set {to,...,t,—1} N Ty, ks =
Card (Kj).

We define an auxiliary game G* as follows: Player I plays natural num-
bers ag, a1, ... and player 11 plays pairs (bo, ho), (b1, h1), ... where the b; are
natural numbers and for each n, h, is an order-preserving function from
(K (ao,b0,..ambn), <) into wy and ¢ < j — h; C h;. If Player I1 can follow
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these rules for infinitely many moves then he wins; otherwise player I wins.
Clearly G* is determined, as it is a closed game.

If 7T has a winning strategy in G* then of course he also has a winning
strategy in G 4.

Let o* be the canonical winning strategy for I in G*. We shall construct a
winning strategy o for I in G 4. Suppose that s* = (ag, (bo, ho), - - -, Gn, (bn, hy))
is a play in G*, and let E be the range of h,,. Then the h;’s are uniquely deter-
mined by F, as h,, is the unique order-preserving function from the ordering
(K (40,50, am,bn)» <) into wy, and the h; are the appropriate restrictions of h,,.
So s* is uniquely determined by s = (ay, by, - . ., @, b,) and E. For each such
s let Fy be the function Fs(E) = 0*(s*), where s* is uniquely determined as
above by E. Then as ¢* is constructible from a real and this real has a #,
it follows that there is an uncountable H C w; which is homogeneous for F
for every s, i.e., for all s, Fy(F) is the same for all E C H of cardinality k.
Define the strategy o by: o(s) = Fs(FE), for any E C H of cardinality k.

We claim that this is a winning strategy for I. If not, let x be a result
of playing this strategy with z ¢ A. Then there is an order-preserving
embedding h of (T'(z),<*) into H, as H is uncountable and (7'(z), <*) is
a countable well-ordering. But consider now the play of G* where 1 plays
restrictions of h to the appropriate K,’s. This is a play of G* according to
the strategy o*, in contradiction to the fact that ¢* is a winning strategy for
Iin G*. O

Martin showed that the existence of #’s is also sufficient for the deter-
minacy Boolean combinations of IT} sets. Thus from this assumption the
Wadge property holds for IT} sets.

12.Vorlesung

Theorem 42. Assume that every real has a # and A(x,y) is I1. Then A can
be uniformised by a IT} function.

Proof. First we show how to choose a canonical element from a nonempty I}
set A. It will be convenient to work with the space 2¥ instead of Baire space.
Write x € A «» Vy T'(x,y) has a branch, where 7" is a tree on 2 X 2 X w. Then
x € A < U(zx) is well-founded, where a node in U is of the form (s,t, f)
with s and ¢ finite 0, 1-sequences of the same length, f an order-preserving
function from (7'(s,t), <*) into w; and <* the Kleene-Brouwer order. Let L*
denote | J{L[z] | = a real}.
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Now suppose that s, are finite 0, 1-sequences of the same length and
F,G € L* are functions from U(s,t) into Ord. We write F' <* G iff for some
CUB C Cw in L*, F(f) < G(f) for all f € U(s,t) with Range (f) C C.
For any F' and G, either F' <* G or G <* F', since we have assumed #’s
and F, G are constructible from reals. Therefore <* gives a wellordering if
we identify F' with G when F' =* G.

For x € A let F® be the canonical ranking function on U(z). Then
F? belongs to L* since it is constructible from 7" and z. Fix n and let
ty,to, ..., ton list the 0, 1-sequences of length n in lexicographical order. Then
set af = ((,...,Pan), where (; is the rank of F* [ U(z [ n,t;) in <*.

We can now define a canonical element of A. Choose z; to minimize
af,z(0) (in the lexicographical ordering of finite sequences of ordinals) for
x € A, and set ng = 21(0). Then choose x5 to minimize o3, z(1) for x € A
which minimize of, z(0), and set n; = z5(1). Continue in this way, producing
areal z* = (ng,nq,...).

We claim that z* belongs to A. Indeed, for each n choose F™(t) with
domain U(z* | n,t), t of length n, whose ranks realize o®». Then for some
CUB C, the F"(t) restricted to elements of U(z* [ n,t) with range in C
cohere. It follows that U(z*) is well-founded, and therefore z* belongs to A.

We show that {z*} is IT} in a real coding T'. Indeed:

y=x"iffy € A and
Vz,k (If z belongs to A, z [ k =y [ k and of = o] for | < k then «f is
greater than o or z(k) > y(k)).

As o and of can be compared in L[(y, 2)#], this gives a II} definition. And
as in the proof of T uniformisation, the above relativises uniformly to give
that a binary IT} relation can be IT} uniformised. O

Corollary 43. Assume #’s for reals. Then every binary X} relation can be
3! uniformised.

We cannot expect to extend these results to higher projective levels only
under the assumption of #’s. There is a smallest inner model closed under
#, and this model has a A} wellordering of its reals. Thus in this model
regularity must fail for Al sets. And in this model there is a II} set A such
that both A and the complement of A are cofinal in the Turing degrees,
showing that IT} determinacy must fail. (In fact A} determinacy fails.) The

35



Wadge property also fails for I} sets. And in the forcing extension obtained
by adding w; Cohen reals, there is a II} binary relation which cannot be
projectively uniformised.

To extend descriptive set theory, one must a large cardinal hypothesis
which violate the existence of a A} wellordering of the reals. This hypothesis
is: There is a Woodin cardinal s such that V# exists. With this hypothe-
sis, one obtains X! regularity, II} determinacy and the uniformisation of I3
binary relations by II} functions. More Woodin cardinals carry the theory
to the higher levels of the projective hierarchy. Thus with infinitely many
Woodin cardinals, one has a very satisfying theory of the projective sets.
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