
Des
riptive Set Theory, Sommersemester 20031.VorlesungMy last 
ourse dealt with the te
hniques of Pure Set Theory:Constru
tible Universe LSet-for
ing over LClass-for
ing over LInner models K for large 
ardinalsSet-for
ing and Class-for
ing over KIn the present 
ourse I 
onsider appli
ations of these te
hniques. Thereare two kinds of appli
ations:Consisten
y resultsCon(ZFC + a large 
ardinal) → Con(something interesting).Some examples:Con(GCH)Con(Suslin's Hypothesis)Con(Ina

essible) → Con(All proje
tive sets of reals are measurable)Con(Hypermeasurable) → Con(Failure of the singular 
ardinal hypothesis)Con(Woodin) → Con(The nonstationary ideal on ω1 is saturated)TheoremsZFC + a large 
ardinal → something interesting.Some examples in des
riptive set theory:
Σ1

1 sets of reals are measurableMeasurable 
ardinal → Σ1
2 sets of reals are measurableIn�nitely many Woodin 
ardinals → All sets of reals in L(R) are measurableThere is a good reason why the latter examples are taken from des
riptiveset theory: Large 
ardinals appear to give a 
omplete understanding of thebehaviour of sets of reals in L(R). But if we go beyond that, we are fa
edwith CH, whi
h remains unde
idable even with the addition of large 
ardinalhypotheses.The aim of this 
ourse is to study appli
ations of the se
ond type, withindes
riptive set theory. After establishing as mu
h as possible in ZFC alone,1



we shall introdu
e large 
ardinals in order to 
omplete the pi
ture. Here isan outline:ZFC ResultsThe Borel and Proje
tive Hierar
hiesBorel= ∆1
1The Suslin Property and Regularity for Analyti
 SetsDetermina
y and the Wadge Property for Borel Sets

Π1
1 UniformisationThe Constru
tible UniverseFailure of ∆1

2 RegularityFailure of Π1
1 Determina
y and WadgeProje
tive UniformisationFor
ing Extensions of LSolovay's Model: Proje
tive RegularityFailure of Π1
2 UniformisationSharpsRegularity for Σ1

2 Sets
Π1

1 Determina
y and Wadge
Π1

2 UniformisationWoodin CardinalsProje
tive RegularityProje
tive UniformisationProje
tive Determina
y and WadgeProje
tive Equivalen
e RelationsProje
tive Basis TheoremsPart 1: ZFC ResultsA Polish spa
e is a topologi
al spa
e that is homeomorphi
 to a 
omplete,separable metri
 spa
e.Lemma 1. Let X be a Polish spa
e. Then there is a 
ontinuous fun
tionfrom Baire Spa
e N = {f | f is a fun
tion from N to N} onto X.2



Proof. By indu
tion on the length of s ∈ Seq = the set of �nite sequen
es ofelements of N , we de�ne Cs su
h that C∅ = X and for nonempty s:i. Cs is a 
losed ball of diameter ≤ 1/n, where n = length s.ii. Cs ⊆
⋃∞

k=0Cs∗k (all s ∈ Seq).iii. s ⊆ t→ 
enter(Ct) ∈ Cs.For ea
h a ∈ N let f(a) be the unique point in ⋂
{Cs | s ⊆ a}. Then f is
ontinuous and has range X. 2Borel SetsLet X be a Polish spa
e. A ⊆ X is Borel i� it belongs to the smallest

σ-algebra of subsets of X 
ontaining all 
losed sets. The Borel hierar
hy isde�ned as follows: For ea
h α < ω1 de�ne Σ
0
α, Π0

α as follows:
Σ

0
1 = Open Sets

Π
0
1 = Closed Sets

Σ
0
α = All sets A =

⋃∞
n=0An, where ea
h An belongs to Π

0
β for some β < α

Π
0
α = Complements of sets in Σ

0
αIt is 
lear that the above sets are all Borel. As every open set is the 
ountableunion of 
losed sets, we have Σ

0
1 ⊆ Σ

0
2 and then by indu
tion:

α < β → Σ
0
α ∪Π

0
α ⊆ Σ

0
β ∩Π

0
β.Thus ⋃

α Σ
0
α =

⋃
α Π

0
α is the 
olle
tion of Borel sets. For ea
h α, Σ0

α, Π0
α are
losed under �nite unions, �nite interse
tions and inverse images by 
ontin-uous fun
tions.We show that in the 
ase whereX is the Baire spa
e, the Borel hierar
hy isstri
t: Σ

0
α * Π

0
α and therefore Σ

0
α 6= Σ

0
α+1 for ea
h α. The proof generalisesto arbitrary un
ountable Polish spa
es.Lemma 2. (Universal Σ

0
α Sets) For ea
h α ≥ 1 there exists a set U ⊆ N 2su
h that U is Σ

0
α and for every Σ

0
α set A ⊆ N there is a ∈ N su
h that

A = {x | (x, a) ∈ U}.Proof. By indu
tion on α. For α = 1 let G1, G2, . . . be a list of all basi
open sets and G0 = ∅. We de�ne U = {(x, y) | x ∈ Gy(n) for some n}. U3



is open and if G is an arbitrary open set, then G = {x | (x, a) ∈ U} where
G =

⋃
nGa(n).Suppose now that Uβ is a universal Σ

0
β set for ea
h β < α and we shall
onstru
t a universal Σ0

α set U . Choose α0 ≤ α1 ≤ · · · less than α either withsupremum α or maximum the ordinal prede
essor to α. Choose a 
ontinuousmapping of N onto N ω and for ea
h a ∈ N let (a)n be the n-th 
oordinateof the image of a. We de�ne U = {(x, y) | (x, (y)n) /∈ Uαn
for some n}. Then

U is Σ
0
α. If A is Σ

0
α then A is the union of sets An where An is Π

0
αn
. Forea
h n let an be su
h that An = {x | (x, an) /∈ Uαn

} and let a be su
h that
(a)n = an for ea
h n; then A = {x | (x, a) ∈ U}. 2Corollary 3. For ea
h α ≥ 1 there is a set A ⊆ N that is Σ

0
α but not Π

0
α.Proof. Let U be a universal Σ

0
α set and 
onsider A = {x | (x, x) ∈ U}. 22.VorlesungAnalyti
 SetsThe 
ontinuous image of a Borel set need not be Borel. Let X be a Polishspa
e.De�nition. A ⊆ X is analyti
 i� there is a 
ontinuous fun
tion f : N → Xwith range A. The proje
tion of a set S ⊆ X×Y is the set P = {x | (x, y) ∈ Sfor some y ∈ Y }.Lemma 4. The following are equivalent:(a) A is the 
ontinuous image of a Borel set in some Polish spa
e.(b) A is analyti
.(
) A is the proje
tion of a 
losed set in X ×N .(d) A is the proje
tion of a Borel set in X × Y for some Polish spa
e Y .Proof. We will show that every Borel set is analyti
. Then (a)→(b) follows.(b)→(
) holds sin
e if A is the range of f : N → X then A is the proje
tionof the 
losed set {(f(x), x) | x ∈ N} ⊆ X ×N . (
)→(d)→(a) is trivial.Note that every 
losed set in a Polish spa
e forms a Polish spa
e andtherefore is analyti
 by Lemma 1. So it su�
es to show that ea
h Borelsubset of a Polish spa
e X is the proje
tion of a 
losed set in X × N . Weshow that the family P of all proje
tions of 
losed sets in X × N is 
losed4



under 
ountable unions and interse
tions. As P 
learly 
ontains all 
losedsets and ea
h open set is the 
ountable union of 
losed sets, it follows that
P 
ontains all Borel sets, as desired.Let An be the proje
tion of the 
losed set Fn ⊆ X×N for ea
h n. We shallshow that ⋃

nAn, ⋂
nAn are proje
tions of 
losed sets. As before, 
hoose a
ontinuous mapping of N onto N ω and for ea
h a ∈ N let (a)n be the n-th
oordinate of the image of a.

x ∈
⋃

nAn ↔
∃n ∃a (x, a) ∈ Fn ↔
∃a ∃b (x, a) ∈ Fb(0) ↔
∃c (x, (c)0) ∈ F(c)1(0).
x ∈

⋂
nAn ↔

∀n ∃a (x, a) ∈ Fn ↔
∃c ∀n (x, (c)n) ∈ Fn ↔
∃c (x, c) ∈

⋂
n{(x, c) | (x, (c)n) ∈ Fn}.Hen
e ⋃

nAN is the proje
tion of the 
losed set {(x, c) | (x, (c)0) ∈ F(c)1(0)}and ⋂
nAN is the proje
tion of an interse
tion of 
losed sets. 2Lemma 5. The 
olle
tion of analyti
 sets is 
losed under 
ountable unionsand interse
tions, as well as 
ontinuous images and preimages.Proof. Closure under 
ountable unions and interse
tions was established inthe proof of the previous lemma. Closure under 
ontinuous images is 
learby de�nition. Suppose that x ∈ A ↔ f(x) ∈ B, where f is 
ontinuous and

B is analyti
. Write y ∈ B ↔ ∃z C(y, z), where C is Borel. Then x ∈ A ↔
∃z C(f(x), z), so A is the proje
tion of the Borel set {(x, z) | C(f(x), z)}and therefore is analyti
. 2The Proje
tive Hierar
hyThe 
olle
tion of analyti
 sets is not 
losed under 
omplementation. For
n ≥ 1 we de�ne the Σ

1
n, Π

1
n and ∆

1
n subsets of a Polish spa
e X as follows:

Σ
1
1 = Analyti


Π
1
1 = Coanalyti
 = Complements of Analyti
 sets

Σ
1
n+1 = Proje
tions of Π

1
n subsets of X ×N5



Π
1
n+1 = Complements of Σ

1
n+1 sets

∆
1
n = Σ

1
n ∩ Π

1
n.A set is proje
tive i� it is Σ

1
n or Π

1
n for some n. It is obvious that ∆

1
n ⊆

Σ
1
n ⊆ ∆

1
n+1, ∆

1
n ⊆ Π

1
n ⊆ ∆

1
n+1; we shall show that Σ

1
n 6= Π

1
n and thereforethese in
lusions are proper.Lemma 6. (Universal Σ

1
n Sets) For ea
h n ≥ 1 there is a set U ⊆ N 2 su
hthat U is Σ

1
n and for for every Σ

1
n A ⊆ N there is some v ∈ N su
h that

A = {x | (x, v) ∈ U}.Proof. Let h be a homeomorphism ofN 2 withN . For notational 
onvenien
e,de�ne Σ
1
0 to be Σ

0
1. We prove the Lemma by indu
tion on n ≥ 0. ByLemma 2 there does exists a universal Σ

1
0 set. Indu
tively, assume that Vis a universal Σ

1
n−1 set and de�ne U = {(x, y) | (h(x, a), y) /∈ V for some

a ∈ N}. Then U is Σ
1
n. If A ⊆ N is Σ

1
n then there is a Π

1
n−1 set B su
hthat A = {x | (x, a) ∈ B for some a ∈ N}. The set C = N − h[B] is Σ

1
n−1and sin
e V is universal there exists a v su
h that C = {u | (u, v) ∈ V }; then

x ∈ A↔
(x, a) ∈ B for some a↔
h(x, a) /∈ C for some a↔
(h(x, a), v) /∈ V for some a↔
(x, v) ∈ U .So U is a universal Σ

1
n set. 2Corollary 7. For ea
h n ≥ 1 there is a Σ

1
n set whi
h is not Π

1
n.Every Borel set is ∆

1
1. This follows from the fa
t that the latter is 
losedunder 
ountable unions and interse
tions, and 
ontains all open and 
losedsets. Conversely:Theorem 8 (Suslin's Theorem). Every ∆

1
1 set is Borel.Proof. We say that a set D separates two disjoint sets A,B i� A is 
ontainedin D and B is disjoint from D. We shall show that any two disjoint analyti
sets 
an be separated by a Borel set, whi
h 
learly implies the Theorem.6



First note that if A =
⋃

nAn, B =
⋃
Bn and the pair Am, Bn 
an beseparated by a Borel set Dm,n for ea
h m,n, then the pair A,B 
an beseparated by a Borel set, namely by D =

⋃
m

⋂
nDm,n.Now let A,B be analyti
 and 
hoose 
ontinuous fun
tions f, g su
h that

A = f [N ], B = g[N ]. For ea
h s ∈ Seq let As = f [Ns], Bs = g[Ns], where
Ns is the basi
 open set {f | s ⊆ f} in Baire spa
e. For ea
h a, b ∈ N ,
{f(a)} =

⋂
nAa↾n and {g(b)} =

⋂
nBb↾n. It follows that for any a, b ∈ N ,there exists n su
h that Aa↾n and Bb↾n 
an be separated by an open set, asif Ua, Ub are disjoint open sets separating f(a) from g(b), the sets Aa↾n, Bb↾nwill be 
ontained in Ua, Ub, respe
tively, for large enough n.Now suppose that A,B 
annot be separated by a Borel set. Then forsome m0, n0, A〈m0〉, B〈n0〉 
annot be separated by a Borel set. Then for some

m1, n1, the sets A〈m0,m1〉, B〈n0,n1〉 
annot be separated by a Borel set, et
. Let
a = 〈m0, m1, . . .〉 and b = 〈n0, n1, . . .〉. Then Aa↾n, Bb↾n 
annot be separatedby a Borel set for any n, in 
ontradi
tion to the previous paragraph. 2

7



Suslin Sets and Regularity PropertiesFor any set S let Seq(S) denote the 
olle
tion of �nite sequen
es of ele-ments of S. A tree T on S is a subset of Seq(S) 
losed under initial segments.A bran
h through T is a fun
tion a : ω → S su
h that a ↾ n ∈ T for all n. Tis well-founded i� T has no bran
h.Let κ be an in�nite 
ardinal. A tree on ω × κ is a set T of pairs
(s, h) ∈ Seq(ω) × Seq(κ) su
h that length (s) = length (h) and for ea
h
n ≤ length (s), (s ↾ n, h ↾ n) ∈ T . For ea
h x ∈ N , T (x) = {h | (x ↾ n, h) ∈
T , where n = length (h)}. Then T (x) is a tree on κ for ea
h x ∈ N . Theproje
tion of T is de�ned by

p[T ] = {x ∈ N | T (x) has a bran
h}.A set of reals A is κ-Suslin i� it is the proje
tion of a tree on ω × κ.Proposition 9. Analyti
 subsets of N are ω-Suslin.Proof. If A is analyti
, then A is the proje
tion of a 
losed set C on N ×N .Now 
onsider the following tree on ω × ω:
T = {(a ↾ n, b ↾ n) | (a, b) ∈ C}.A bran
h through T is essentially a pair (a, b) ∈ C, and 
onversely, everypair (a, b) ∈ T is a bran
h through T . As A is the proje
tion of C, it is alsothe proje
tion of the tree T . 23.VorlesungA set C is perfe
t i� it is nonempty, 
losed and has no isolated points.ZFC− is the theory obtained from ZFC by restri
ting the Repla
ement Axiomto Σ100 formulas.Theorem 10. Suppose that A is the proje
tion of a tree T on ω × κ whi
hbelongs to the transitive ZFC− modelM . If A has an element not belongingto M then A 
ontains a perfe
t subset.Corollary 11. An un
ountable analyti
 set has a perfe
t subset.8



Proof of Corollary 11. If A is analyti
 then 
hoose a tree T on ω × ω su
hthat A = p[T ]. Choose a 
ountable ZFC− model M su
h that T ∈ M . Bythe Theorem, A is either a subset of M , and therefore 
ountable, or 
ontainsa perfe
t subset. 2Proof of Theorem 10: De�ne T0 = T and indu
tively:
Tα+1 = {(s, h) ∈ Tα | There exist (s0, h0), (s1, h1) ∈ Tα extending (s, h) su
hthat s0, s1 are in
ompatible}.For limit λ, Tλ =

⋂
{Tα | α < λ}. As T belongs to M and M is a model ofZFC−, the sequen
e 〈Tβ | β ∈ Ord(M)〉 is de�nable in M and for some leastordinal α ∈M , Tα = Tα+1.Let x belong to A and 
hoose f so that (x, f) is a bran
h through T .If (x, f) is not a bran
h through Tα then there is some least ordinal β su
hthat (x, f) is a bran
h through Tβ but not through Tβ+1. So there is some

(s, h) ⊆ (x, f) in Tβ−Tβ+1 and therefore x is the union of {s′ | (s′, h′) extends
(s, h) and belongs to Tβ}. It follows that x belongs to M , sin
e Tβ does.As A has an element not belonging to M , it must be that Tα has abran
h and therefore is nonempty. If (s, h) belongs to Tα then we 
an 
hoose
(s0, h0), (s1, h1) extending (s, h) in Tα with s0, s1 in
ompatible. Then we 
an
hoose extensions (s00, h00), (s01, h01) of (s0, h0) in Tα su
h that s00, s01 arein
ompatible, and similarly for (s1, h1). Continuing in this way we 
an builda subtree of Tα whose proje
tion is a perfe
t subset of A. 2A null set is a set of reals of Lebesgue measure 0. A meager set is the
ountable union of nowhere dense sets. A set of reals is measurable i� itdi�ers by a null set from a Borel set (equivalently, from a 
ountable union of
losed sets or from a 
ountable interse
tion of open sets). It has the Baireproperty i� it di�ers by a meager set from a Borel set (equivalently, from anopen set).Theorem 12. Suppose that A is the proje
tion of a tree T on ω × κ whi
hbelongs to the transitive ZFC− modelM . Suppose thatM has only 
ountablymany reals. Then A is measurable and has the property of Baire.Corollary 13. Analyti
 sets are measurable and have the Baire property.9



Proof of Corollary 13. If A is analyti
 then A is the proje
tion of a tree Ton ω × ω. There is a 
ountable ZFC− model that 
ontains T . So by theTheorem, A is measurable and has the Baire property. 2Before proving Theorem 12, we must introdu
e Borel 
odes and absolute-ness. Let I1, I2, . . . be a re
ursive enumeration of the basi
 open sets of N .Let c belong to N . We de�ne u(c) ∈ N by u(c)(n) = c(n+1) for all n. Let Γbe a re
ursive bije
tion from N ×N onto N . For ea
h i ∈ N we de�ne vi(c)by vi(c)(n) = c(Γ(i, n) + 1) for all n. For ea
h positive 
ountable ordinal αwe de�ne 
oding sets Σα, Πα as follows:
c ∈ Σ1 i� c(0) > 1
c ∈ Πα i� either c ∈ Σβ ∪ Πβ for some β < α or c(0) = 0 and u(c) ∈ ΣαFor α > 1: c ∈ Σα i� either c ∈ Σβ ∪ Πβ for some β < α or c(0) = 1 and
vi(c) ∈

⋃
β<α(Σβ ∪ Πβ) for all i.If c ∈ Σα we 
all c a Σ

0
α-
ode, similarly for Π

0
α-
odes. The union of all Σα isthe set BC of Borel 
odes. The Borel 
ode c 
odes the Borel set Ac de�nedas follows:If c ∈ Σ1 then Ac =

⋃
{In | c(n) = 1}If c ∈ Πα and c(0) = 0 then Ac = ∼ Au(c)If c ∈ Σα and c(0) = 1 then Ac =

⋃
iAvi(c).It is 
lear that for every α > 0, if c ∈ Σα then Ac ∈ Σ

0
α, similarly for Πα.Conversely, every Σ

0
α, Π

0
α set B is 
oded by some c ∈ Σα, Π0

α, respe
tively.Thus {Ac | c ∈ BC} is the 
olle
tion of all Borel sets.We introdu
e the hierar
hy of Σ1
n and Π1

n formulas. A Σ1
1 formula withparameter p ∈ N is a formula of the form

ϕ(y1, . . . , yn) ↔ ∃z ψ(y1, . . . , yn, z, p),where ψ is arithmeti
al, i.e., a formula in the language of se
ond-order arith-meti
 with only number quanti�ers. The subsets of N n whi
h are de�nableby Σ1
1 formulas with parameters are exa
tly the analyti
 subsets of N n. A

Π1
1 formula with parameter p is the negation of a Σ1

1 formula with parameter
p. Indu
tively: A Σ1

k+1 formula with parameter p is a formula of the form
ϕ(y1, . . . , yn) ↔ ∃z ψ(y1, . . . , yn, z), where ψ is a Π1

k formula with parameter10



p and a Π1
k+1 formula with parameter p is the negation of su
h a formula.A subset of N n is Σ1

n(p), Π1
n(p) i� it is de�nable by a Σ1

n, Π1
n formula withparameter p and is ∆1

n(p) i� it is both Σ1
n(p) and Π1

n(p). When p is re
ursive,we write Σ1
n, Π1

n, ∆1
n.Lemma 14. (a) The set BC of all Borel 
odes is Π1

1.(b) There is a ∆1
1 relation R su
h that for Borel 
odes c, R(a, c) i� a ∈ Ac.(
) The following properties of Borel 
odes are Π1

1:
Ac ⊆ Ad

Ac = Ad

Ac = ∅
Ac = Ad ∪Ae

Ac =∼ Ad

Ac = Ad ∩Ae

Ac = Ad △Ae

Ac =
⋃

nAcn
.Proof. (a) De�ne the relation E by:

xEy i� either (y(0) = 0 and x = u(y)) or (y(0) = 1 and x = vi(y) for some
i).Then y is a Borel 
ode i� there is no in�nite sequen
e y = z0, z1, . . . with
zn+1Ezn for ea
h n. As the relation E is arithmeti
al, it follows that BC is
Π1

1.(b) For any c ∈ N there is a smallest 
ountable T = Tc ⊆ N with theproperty:
(∗)c c ∈ T and whenever y ∈ T , zEy then z ∈ T .And if c is a Borel 
ode, a ∈ N then there is a unique fun
tion h = ha,c on
Tc su
h that for all y ∈ Tc:
(∗∗)a If y(0) > 1 then h(y) = 1 i� a ∈ In for some n su
h that y(n) = 1If y(0) = 0 then h(y) = 1 i� h(u(y)) = 0If y(0) = 1 then h(y) = 1 i� h(vi(y)) = 1 for some i.For y ∈ Tc and h as above we have h(y) = 1 i� a ∈ Ay. Thus for a Borel
ode c: 11



a ∈ Ac i�For all 
ountable T satisfying (∗)c and all h de�ned on T satisfying (∗∗)a,
h(c) = 1 i�There is a 
ountable T satisfying (∗)c and an h de�ned on T satisfying (∗∗)asu
h that h(c) = 1.As (∗)c is Σ1

1 and (∗∗)a is arithmeti
al, this gives the desired result.(
) This follows easily from (b). 2Lemma 15. (Mostowski Absoluteness) Suppose that M is a transitive modelof ZFC−.(a) If ϕ(y1, . . . , yn) is a Σ1
1 formula with parameter inM then for all y1, . . . , ynin M :

M � ϕ(y1, . . . , yn) i� ϕ(y1, . . . , yn) is true.(b) If ϕ(y1, . . . , yn) is a Σ1
2 formula with parameter inM then for all y1, . . . , ynin M :

M � ϕ(y1, . . . , yn) implies ϕ(y1, . . . , yn) is true.Proof. (a) Using a re
ursive homeomorphism between N n and N we 
anassume that n = 1. In both M and the universe we have that ϕ(y) holds i�
T (y) has a bran
h, where T is a tree on ω × ω. If T (y) has a bran
h in Mthen of 
ourse it also has one in the universe. If T (y) has no bran
h in Mthen T (y) is well-founded inM and therefore there exists an order-preservingfun
tion in M from T (y) into the ordinals of M . It follows that there is su
ha fun
tion in the universe and therefore T (y) has no bran
h in the universe.(b) Write ϕ(y1, . . . , yn) = ∃z ψ(y1, . . . , yn, z), where ψ is Π1

1. If M satis�es
ϕ(y1, . . . , yn) then 
hoose y ∈ M su
h that ψ(y1, . . . , yn, z) holds in M . Itfollows from (a) that the latter also holds in the universe, and therefore sodoes ϕ(y1, . . . , yn). 2For a transitive modelM of ZFC−, let BCM denote the set of Borel 
odes,as interpreted in M , and for c ∈ BCM , let AM

c denote Ac as interpreted in
M .Corollary 16. Suppose that M is a transitive model of ZFC−. Then:(a) BCM = BC ∩M . 12



(b) If c belongs to BCM then AM
c = Ac ∩M .(
) The following properties of Borel 
odes in M hold i� they hold in M :

Ac ⊆ Ad

Ac = Ad

Ac = ∅
Ac = Ad ∪Ae

Ac =∼ Ad

Ac = Ad ∩Ae

Ac = Ad △Ae

Ac =
⋃

nAcn
. 4.VorlesungLemma 17. The following sets are both Σ1

2 and Π1
2 de�nable:(a) {c | c is a Borel 
ode and Ac is null}.(b) {c | c is a Borel 
ode and Ac is meager}.Proof. For a Borel 
ode c:

Ac is null i�For ea
h n there exists a Σ1 
ode d su
h that Ac ⊆ Ad and Ad has measureless than 1/n i�For all Π1 
odes e, if Ae ⊆ Ac then Ae has measure 0.As the properties �d is a Σ1 
ode and Ad has measure less than 1/n� and�e is a Π1 
ode and Ae has measure 0� are arithmeti
al, the above providesboth Σ1
2 and Π1

n de�nitions for {c | c is a Borel 
ode and Ac is null}.Also:
Ac is meager i�There exist Π1 
odes cn, n ∈ N su
h that Ac ⊆

⋃
nAcn

and ea
h Acn
isnowhere dense i�For all Σ1 
odes d, if Ad is nonempty then Ac △Ad is not meager.As the property �c is a Π1 
ode and Ac is nowhere dense� is arithmeti
al,the se
ond line above gives a Σ1

2 de�nition of {c | c is a Borel 
ode and Ac ismeager}, and using this, the third line above gives a Π1
2 de�nition. 213



Corollary 18. Suppose that c is a Borel 
ode and c belongs to the transitiveZFC− model M . Then Ac is null i� M � Ac is null, and Ac is meager i�
M � Ac is meager.Proof. Use Lemma 17 and part (b) of Lemma 15. 2We 
onsider Bm and Bc, the quotients of the σ-algebra of Borel sets bythe ideals Im of null sets and Ic of meager sets. For ea
h B ∈ B, let [B]m,
[B]c denote the equivalen
e 
lass of B in Bm, Bc, respe
tively. We view Bm,
Bc as for
ing notions by dis
arding [∅]m, [∅]c and using the natural order ofin
lusion modulo Im, Ic, respe
tively.Lemma 19. (a) If G is Bm-generi
 then there is a unique real xG su
h thatfor all non-null B ∈ B:

[B]m ∈ G↔ xG ∈ B∗,where B∗ denotes AV [G]
c for any Borel 
ode c for B (this de�nition is inde-pendent of the 
hoi
e of c). And a real x (in an outer model of V ) is of thisform i� x /∈ B∗ for ea
h null B ∈ B. Su
h reals are 
alled random reals.(b) If G is Bc-generi
 then there is a unique real xG su
h that for all non-meager B ∈ B:

[B]c ∈ G↔ xG ∈ B∗,where B∗ denotes AV [G]
c for any Borel 
ode c for B. And a real x (in an outermodel of V ) is of this form i� x /∈ B∗ for ea
h meager B ∈ B. Su
h reals are
alled Cohen reals.Proof. (a) For 
onvenien
e we work not in Baire spa
e but in the (real) realnumbers R. De�ne xG = sup{r | r is rational and [(r,∞)] ∈ G}. We showthat xG belongs to A∗

c i� [Ac] ∈ G, by indu
tion on c ∈ BC. If c is a Σ1 
odefor a rational interval (p, q) then we have:
xG ∈ A∗

c i�
p < xG < q i�
p < sup{r ∈ Q | [(r,∞)] ∈ G} < q i�
[(p,∞)] ∈ G and [(q,∞)] /∈ G i�
[(p, q)] ∈ G
[Ac] ∈ G. 14



If c is a Σ1 
ode for the union of rational intervals Ac =
⋃

n Ikn
then:

x ∈ A∗
c i� x ∈

⋃
n I

∗
kn

i�
[Ikn

] ∈ G for some n i�
[
⋃

n Ikn
] ∈ G i�

[Ac] ∈ G.Indu
tively, if α is 
ountable and c is a Σα 
ode, then the result holds byindu
tion by the same argument as above. If c is a Πα 
ode, we may assumethat c(0) = 0 and therefore u(c) is a Σα 
ode, Au(c) = R− Ac and we have:
x ∈ A∗

c i�
x /∈ A∗

u(c) i�
[Au(c)] /∈ G i�
[Ac] ∈ G.This proves the �rst part of (a), as the uniqueness of xG is 
lear.Suppose that x = xG is random. If Ac is null then [Ac] /∈ G and thereforeby the �rst part of (a), x /∈ A∗

c . Conversely, suppose that x /∈ A∗
c whenever

Ac is null. Note that if [Ac] = [Ad] then Ac △Ad is null, A∗
c △A∗

d is null andthus x ∈ A∗
c i� x ∈ A∗

d. Now let G = {[Ac] | x ∈ A∗
c}. It is easy to 
he
kthat G is a �lter on Bm. We 
laim that G is Bm-generi
: Sin
e Bm satis�esthe 
ountable 
hain 
ondition, it su�
es to show that if {[Acn

] | n ∈ N}is a maximal anti
hain in Bm then x belongs to A∗
cn

for some n. But themaximality of this anti
hain implies that x belongs to (
⋃

nAcn
)∗ and thelatter equals ⋃

nA
∗
cn
.(b) This is proved exa
tly as part (a), using the fa
t that Bc also satis�es the
ountable 
hain 
ondition. 2We 
an now prove Theorem 12. As M has only 
ountably many reals,it follows that the set of reals whi
h are not random over M is null. Thusto show that A is measurable, it su�
es to show that {x ∈ A | x is randomover M} is Borel. Suppose that x is random over M and let x = xG, where

G is Bm-generi
 over M . Then M [x] is a model of ZFC− and we have:
x ∈ A i�
x ∈ p[T ] i�
M [x] � x ∈ p[T ] i� 15



For some [B]m ∈ G, [B]m 
 xG ∈ p[T ] i�For some [B]m, x ∈ B∗ and [B]m 
 xG ∈ p[T ] i�
x ∈

⋃
{B∗ | [B]m 
 xG ∈ p[T ]},and the latter is a Borel property of x. The same proof shows that A hasthe property of Baire. 2We next 
onsider the Ramsey property. For an in�nite set A ⊆ ω we let

[A]ω denote the set of all in�nite subsets of A. Is S ⊆ [ω]ω then we say thatan in�nite H ⊆ ω is homogeneous for S i� either [H ]ω ⊆ S or [H ]ω ∩ S = ∅.We say that S ⊆ [ω]ω is Ramsey i� there is an in�nite homogeneous set Hfor S.Theorem 20. Suppose that A is the proje
tion of the tree T on ω× κ, where
T belongs to the transitive ZFC− modelM and M has only 
ountably manysets of reals. Then A is Ramsey.The proof of this result makes use of Mathias for
ing. A 
ondition is apair (s, A) where s is a �nite subset of ω and A is an in�nite subset of ω su
hthat max s < minA. A 
ondition (s, A) extends a 
ondition (t, B) i�1. t is an initial segment of s.2. A ⊆ B.3. s− t ⊆ B.If G is Mathias generi
 then G is determined by the real

xG =
⋃

{s | (s, A) ∈ G for some A},sin
e G = {(s, A) | s ⊆ xG ⊆ s ∪ A}. The real xG is 
alled a Mathias real.We shall prove:Lemma 21. Let ϕ be a senten
e of the for
ing language and (s, A) a 
ondition.Then there exists an in�nite B ⊆ A su
h that (s, B) de
ides ϕ (i.e., for
eseither ϕ or ∼ ϕ).Lemma 22. A real x is Mathias over the transitive ZFC− model M i� x isin�nite and for ea
h maximal almost disjoint family A ∈M of subsets of ω,there is an A ∈ A su
h that x is almost 
ontained in A.16



Given these Lemmas we prove Theorem 20 as follows: Suppose thatM isa transitive ZFC− model with only 
ountably many sets of reals and that Ais the proje
tion of the tree T ∈ M . For any real x, if M [x] satis�es ZFC−,then:
x belongs to A i�
T (x) has a bran
h i�
M [x] � T (x) has a bran
h.Now let ϕ be the senten
e �T (xG) has a bran
h�. By Lemma 21 there is a
ondition of the form (∅, A) whi
h de
ides ϕ; assume that (∅, A) 
 ϕ. As
M has only 
ountably many sets of reals, there exists a Mathias generi
 GoverM whi
h 
ontains the 
ondition (∅, A). Thus M [xG] � ϕ. By Lemma 22every in�nite y ⊆ x is a Mathias real overM , and also the generi
 determinedby y 
ontains the 
ondition (∅, A). Thus T (y) has a bran
h for ea
h in�nite
y ⊆ xG and therefore xG is homogeneous for A.5.VorlesungLemma 21. Let ϕ be a senten
e of the for
ing language and (s, A) a 
ondition.Then there exists an in�nite B ⊆ A su
h that (s, B) de
ides ϕ (i.e., for
eseither ϕ or ∼ ϕ).Lemma 22. A real x is Mathias over the transitive ZFC− model M i� x isin�nite and for ea
h maximal almost disjoint family A ∈M of subsets of ω,there is an A ∈ A su
h that x is almost 
ontained in A.Proof of Lemma 21. For any A ⊆ ω and k ∈ ω we let A(> k) denote
{n ∈ A | n > k}. If s is a �nite subset of ω then A(> s) denotes A(> max s).We �rst 
onstru
t an in�nite B ⊆ A su
h that
(∗) If (t, C) extends (s, B) and de
ides ϕ then so does (t, B(> t)).By indu
tion we de�ne bk = minBk for k ∈ ω: Set B0 = A. To de�ne Bk+1let {t1, . . . , tl} be a list of all subsets of {b1, . . . , bk}. Constru
t Bk = B1

k+1 ⊇

B2
k+1 ⊇ · · · ⊇ Bl

k+1 = Bk+1 as follows: Given Bj
k+1, if there exists C ⊆ Bj

k+1su
h that (s∪ tj+1, C) de
ides ϕ then set Bj+1
k+1 = C; otherwise, Bj+1

k+1 = Bj
k+1.Then B = {bk | k ∈ ω} is as desired. 17



So we 
an suppose that A satis�es (∗). Now de�ne bk = minBk byindu
tion on k as follows: Set B0 = A. Given Bk 
onstru
t Bk+1 su
h thatfor ea
h t ⊆ {b1, . . . , bk} exa
tly one of the following holds:
(s ∪ t ∪ {n}, Bk+1(> n)) 
 ϕ for ea
h n ∈ Bk+1

(s ∪ t ∪ {n}, Bk+1(> n)) 
 ∼ ϕ for ea
h n ∈ Bk+1

(s ∪ t ∪ {n}, Bk+1(> n)) does not de
ide ϕ for ea
h n ∈ Bk+1.We 
laim that (s, B) de
ides ϕ: Let (t, C) be an extension of (s, B) de
iding
ϕ. Assume that Length(t) is minimal. If Length(t) = Length(s) then weare done sin
e it follows from (∗) for A that (s, B) de
ides ϕ. Otherwise let
m = max t and write t = s∪t′∪{m} where t′ ⊆ {b1, . . . , bk}. By 
onstru
tion
(s ∪ t′ ∪ {m}, Bk+1(> m)) either for
es ϕ or ∼ ϕ; assume the former. Thenthe same holds for ea
h m ∈ Bk+1. It follows that (s ∪ t′, C) de
ides ϕ,
ontradi
ting the minimality of Length(t). So (s, B) is the desired extensionof (s, A) whi
h de
ides ϕ. 2Proof of Lemma 22. If x is Mathias over M and A is a maximal almostdisjoint family in M then D = {(s, B) | B is almost 
ontained in an elementof A} is dense, and hen
e there exists (s, B) ∈ Gx ∩ D; as x is almost
ontained in B and B is almost 
ontained in an element of A, it follows that
x is almost 
ontained in an element of A.Conversely, suppose that x is in�nite and ea
h maximal almost disjointfamily of M has an element whi
h almost 
ontains x. Let D ∈ M be denseopen for Mathias for
ing; we must show that D has an element (s, A) su
hthat s ⊆ x ⊆ s ∪ A. We say that an in�nite A 
aptures (s,D) i�
(∗∗) For all in�nite B ⊆ A(> s) there exists a �nite initial segment t of Bsu
h that (s ∪ t, A(> (s ∪ t))) belongs to D.Main Claim. For any in�nite A, there is an in�nite A∗ ⊆ A su
h that A∗
aptures (s,D) for ea
h s with max s ∈ A∗.Proof of Main Claim. It su�
es to show that for ea
h in�nite A and sthere is an in�nite A∗ ⊆ A su
h that A∗ 
aptures (s,D). For then, we 
anindu
tively de�ne kn = minAn by setting A0 = A and 
hoosing an in�nite
An+1 ⊆ An whi
h 
aptures (s,D) for all s with max s ∈ {k0, . . . , kn}; then
A∗ = {k0, k1, . . .} is as desired. 18



So suppose that A and s are given, with max s ∈ A. We may assume thatfor all �nite t ⊆ A(> s) if (s ∪ t, B) belongs to D for some B ⊆ A(> (s ∪ t))then in fa
t (s ∪ t, A(> (s ∪ t))) belongs to D. Now let S be the set of all Bsu
h that either B is not 
ontained in A(> s) or (s∪ t, A(> (s∪ t))) belongsto D for some �nite initial segment t of B. Then S is an open set (in thespa
e of in�nite subsets of ω). We shall show that open sets are 
ompletelyRamsey (see below), whi
h implies that there exists an in�nite B ⊆ A(> s)all of whose in�nite subsets either belong to S or to the 
omplement of S.By our assumption about A and the density of D, it must be the 
ase thatall in�nite subsets of B belong to S. It follows that B 
aptures (s,D), asdesired.Finally, we establish the 
omplete Ramseyness of open sets: S is 
om-pletely Ramsey i� for any 
ondition (s, A) there exists A∗ ⊆ A su
h thateither [s, A∗] ⊆ S or [s, A∗]∩S = ∅, where [s, A∗] = {B | s ⊆ B ⊆ s∪A∗}. Itsu�
es to show that open sets are Ramsey, as given (s, A) we 
an 
onsider
S∗ = {B | f ∗(B) ∈ S}, where f ∗(B) = s ∪ f [B] and f is the in
reasingenumeration of A; the Ramseyness of the open set S∗ implies the 
ompleteRamseyness of S with respe
t to (s, A). We say that A a

epts s i� [s, A] ⊆ Sand reje
ts s i� no B ⊆ A a

epts s.(i) There is an A = {k0, k1, . . .} whi
h either a

epts or reje
ts ea
h of its�nite subsets, obtained by indu
tively de�ning kn = minAn where A0 = ωand An+1 ⊆ An a

epts or reje
ts ea
h subset of {k0, . . . , kn}.(ii) In fa
t there is an A = {k0, k1, . . .} that either a

epts ∅ or reje
ts ea
hof its �nite subsets, obtained by by 
hoosing A0 as in (i) to reje
t ∅ (withoutloss of generality) and assuming that A0 reje
ts ea
h subset of {k0, . . . , kn−1},
hoosing kn as follows: For every subset s of {k0, . . . , kn−1} there are only�nitely many z ∈ A0 su
h that A0 a

epts s ∪ {z}, as otherwise there is anin�nite Z ⊆ A0 su
h that A0 a

epts s ∪ {z} for ea
h z ∈ Z and therefore
A0 a

epts s, in 
ontradi
tion to the assumption that A0 reje
ts s. Thuswe 
an 
hoose kn ∈ A0 − {k0, . . . , kn−1} su
h that A0 reje
ts ea
h subset of
{k0, . . . , kn}. A0 reje
ts ea
h �nite subset of A = {k0, k1, . . .} and thereforeso does A itself.(iii) Now if the set A 
onstru
ted in (ii) a

epts ∅ we have established theRamseyness of S. Otherwise A reje
ts ea
h of its �nite subsets. We 
laimthat no in�nite subset of A belongs to S. Otherwise there is an in�nite B ⊆ Awhi
h belongs to S and sin
e S is open there is a �nite initial segment s of
B su
h that [s, B(> s)] is 
ontained in S; this 
ontradi
ts the fa
t that Areje
ts s. 2 (Main Claim). 19



Now apply the hypothesis on x to obtain A almost 
ontaining x whi
h 
ap-tures (s,D) for all s with max s ∈ A. Choose a nonempty �nite initialsegment s of x su
h that max s ∈ A and x ⊆ s ∪ A(> s). Consider thetree T of t ⊆ A(> s) su
h that (s ∪ t, A(> (s ∪ t))) does not belong to D,ordered by end-extension. Then T is well-founded, as A 
aptures (s,D). Byabsoluteness, T is well-founded in V and therefore x(> s) is not a bran
hthrough T . But then for some initial segment t of x(> s), the 
ondition
(s∪ t, A(> (s∪ t))) belongs to D and satis�es s∪ t ⊆ x ⊆ s∪ t∪A(> (s∪ t)),as desired. 2 6.VorlesungBorel Determina
yA pruned tree T on a set A is a nonempty set of �nite sequen
es ofelements of A, 
losed under initial segments, su
h that ea
h element of T hasproper extension in T . We let [T ] denote the 
olle
tion of in�nite bran
hesthrough T . For any X ⊆ [T ], we de�ne the game G(T,X) as follows: Players
I and II alternately 
hoose a0, a1, . . . in A so that for ea
h n the sequen
e
(a0, . . . , an) belongs to T . Player I wins the game i� the in�nite sequen
e
(a0, a1, . . .) belongs to X. A strategy for I assigns an extension of length
n+1 in T to ea
h element of T of even length n; similarly for II with �even�repla
ed by �odd�. A strategy σ for I is a winning strategy i� I always winsthe game using σ, no matter how II plays; we similarly de�ne a winningstrategy for II. The game G(T,X) is determined i� either I or II has awinning strategy.Theorem 23. If X ⊆ [T ] is either 
losed or open, then G(T,X) is determined.Proof. Suppose that X is 
losed and that II has no winning strategy. Con-sider the strategy for I in whi
h he plays in su
h a way as to guarantee that
II still has no winning strategy afterwards. Indu
tively this is possible, asotherwise II would have had a winning strategy before I plays his next move.We 
laim that this is in fa
t a winning strategy for I: Otherwise there is aplay of the game (a0, a1, . . .) where I follows the des
ribed strategy but Iloses. Sin
e X is 
losed this means that for some n, (a0, a1, . . . , a2n) has noextension in X (i.e., I has already lost at a �nite stage of the game). Butthis 
ontradi
ts the de�nition of I's strategy!20



Similarly, if X is open and I has no winning strategy, then II uses thestrategy whi
h always guarantees that I still has no strategy. This must winfor II, as otherwise II loses at a �nite stage, 
ontradi
ting the de�nition ofhis strategy. 2Theorem 24. (Martin) If X ⊆ [T ] is Borel then G(T,X) is determined.Proof. Let T be a nonempty pruned tree on a set A. A 
overing of T is atriple (T̃ , π, ϕ) wherei. T̃ is a nonempty pruned tree on some set Ã.ii. π : T̃ → T is monotone (i.e., s ⊆ t → π(s) ⊆ π(t)) with Length(π(s)) =Length(s). Thus π gives rise to a 
ontinuous fun
tion π : [T̃ ] → [T ].iii. ϕ maps strategies for I (II, respe
tively) in T̃ to strategies for I (II,respe
tively) in T in su
h a way that ϕ(σ̃) restri
ted to positions of length
≤ n depends only on σ̃ restri
ted to positions of length ≤ n for ea
h n.iv. If σ̃ is a strategy for I (II, respe
tively) in T̃ and x ∈ [T ] is playeda

ording to ϕ(σ̃) then there is x̃ ∈ [t̃] played a

ording to σ̃ su
h that
π(x̃) = x.It follows that if X ⊆ [T ] and σ̃ is a winning strategy for I (II, respe
-tively) in G(T̃ , X̃), where X̃ = π−1[X], then ϕ(σ̃) is a winning strategy for
I (II, respe
tively) in G(T,X). A k-
overing of T is a 
overing (T̃ , π, ϕ) of
T su
h that T ↾ 2k = T̃ ↾ 2k and π is the identity on T̃ ↾ 2k. For X ⊆ [T ]we say that (T̃ , π, ϕ) unravels X i� π−1[X] = X̃ is a 
lopen subset of [T̃ ].Thus Theorem 24 follows from:Main Lemma 25. If T is a nonempty pruned tree and X ⊆ [T ] is Borel thenfor ea
h k there is a k-
overing of T whi
h unravels X.We prove the Main Lemma using:Lemma 26. The Main Lemma holds for 
losed X ⊆ [T ].Lemma 27. Fix k. Let (Ti+1, πi+1, ϕi+1) be a (k + i)-
overing of Ti forea
h i. Then there is a pruned tree T∞ and π∞,i, ϕ∞,i su
h that for ea
h i
(T∞, π∞,i, ϕ∞,i) is a (k + i)-
overing of Ti and π∞,i = πi+1 ◦ π∞,i+1, ϕ∞,i =
ϕi+1 ◦ ϕ∞,i+1. 21



Proof of Main Lemma. We show by indu
tion on ξ > 0 that for all T , all
k and all Σ

0
ξ subsets X of T , there is a k-
overing of T that unravels X.Noti
e that if a k-
overing unravels X it also unravels ∼ X, so by Lemma26 we are done if ξ = 1. Assume ξ > 1 and that the desired property holdsfor all η < ξ. So for ea
h T , ea
h η < ξ, ea
h Π

0
η subset Y of T , and ea
h

k there is a k-
overing that unravels ∼ Y , and therefore also Y . Let X be
Σ

0
ξ and k ∈ N . Then X =

⋃
iXi with Xi ∈ Π

0
ξi
, ξi < ξ. Let (T1, π1, ϕ1) bea k-
overing of T0 = T that unravels X0. Then π−1
1 [Xi] is also Π

0
ξi
on T1 forea
h i. By re
ursion de�ne (Ti+1, πi+1, ϕi+1) to be a (k + i)-
overing of Tithat unravels π−1

i ◦ π−1
i−1 ◦ · · · ◦ π

−1
1 [Xi]. Let (T∞, π∞,i, ϕ∞,i) be as in Lemma27. Then (T∞, π∞,0, ϕ∞,0) unravels every Xi. Thus π−1

∞,0[X] =
⋃

i π
−1
∞,0[Xi]is open in [T∞]. Finally, let (T̃ , π, ϕ) be a k-
overing of T∞ that unravels

π−1
∞,0[X], by Lemma 26. Then (T̃ , π∞,0 ◦π, ϕ∞,0 ◦ϕ) is a k-
overing of T thatunravels X. 7.VorlesungProof of Lemma 27. Note that for any �nite sequen
e s if Length(s) ≤ 2(k+i)then whether s ∈ Ti or not is independent of i. So we de�ne:
s ∈ T∞ i�
s ∈ Ti for any i with Length(s) ≤ 2(k + i).It is 
lear that T∞ is a pruned tree and that T∞, Ti have the same �rst 2(k+i)levels.We de�ne π∞,i: If Length(s) ≤ 2(k + i) then π∞,i(s) = s. If 2(k + i) <Length(s) ≤ 2(k + j) we put π∞,i(s) = πi+1 ◦ πi+2 ◦ · · · ◦ πj(s) (this isindependent of j).We similarly de�ne ϕ∞,i: If σ∞ is a strategy for T∞ let ϕ∞,i(σ∞) ↾ 2(k +
i) = σ∞ ↾ 2(k+i) and for j > i, ϕ∞,i(σ∞) ↾ 2(k+j) = ϕi+1◦ϕi+2◦· · ·◦ϕj(σ∞ ↾

2(k + j)).It remains to verify 
ondition (iv) of the de�nition of 
overing. Supposethat σ∞ is a strategy for T∞ and let xi ∈ [ϕ∞,i(σ∞)] (i.e., xi is a play a

ordingto the strategy ϕ∞,i(σ∞)). Let xi+1 ∈ [ϕ∞,i+1(σ∞)], xi+2 ∈ [ϕ∞,i+2(σ∞)], . . .
ome from (iv) for the 
overings (Ti+1, πi+1, ϕi+1), (Ti+2, πi+2, ϕi+2), . . . ap-plied to the strategies ϕj+1(ϕ∞,j+1(σ∞)) = ϕ∞,j(σ∞) for j ≥ i, so that
πj+1(xj+1) = xj for any j ≥ i. Sin
e πj+1 is the identity on sequen
es oflength ≤ 2(k + j), it follows that (xi, xi+1, xi+2, . . .) 
onverges to a sequen
e22



x∞ de�ned by x∞ ↾ 2(k+ j) = xj ↾ 2(k+ j) for j ≥ i. Now σ∞ and ϕ∞,j(σ∞)agree on sequen
es of length ≤ 2(k+j) so as xj follows the strategy ϕ∞,j(σ∞)for j ≥ i we have that x∞ follows the strategy σ∞. Finally it is 
lear that
π∞,i(x∞) = xi. 2Proof of Lemma 26. We �rst introdu
e quasistrategies. If T is a nonemptypruned tree then a quasistrategy for I in T is a nonempty pruned subtree
Σ ⊆ T su
h that if (a0, . . . , a2j) ∈ Σ and (a0, . . . , a2j , a2j+1) ∈ T then
(a0, . . . , a2j , a2j+1) ∈ Σ. Similarly we de�ne quasistrategies for II in T . If
X ⊆ [T ] is given we say that a quasistrategy Σ for I is winning in G(T,X) i�
[Σ] ⊆ X (similarly for II). Thus a winning strategy for I in G(T,X) 
an beidenti�ed with a winning quasistrategy for I with the additional property thatfor ea
h (a0, . . . , a2j−1) ∈ Σ there is a unique a2j su
h that (a0, . . . , a2j) ∈ Σ.If X is 
losed, then there is a 
anoni
al quasistrategy for I in G(T,X), de-�ned by Σ = {p ∈ T | p is not losing for I}. If I has a winning quasistrategythen his 
anoni
al quasistrategy is winning.Fix k, T and X as in the Lemma and let TX be the subtree of T whosebran
hes are the elements of X. For a tree S, Su denotes {v | u ∗ v ∈ S} andfor Y ⊆ [S], Yu denotes {x | u ∗ x ∈ Y }. The desired k-
overing (T̃ , π, ϕ) isdes
ribed via the following auxiliary game:(i) Players start with moves x0, x1, . . . , x2k−2, x2k−1 su
h that (x0, . . . , x2k−1) ∈
T .(ii) In his next move, I plays (x2k,ΣI) where (x0, . . . , x2k) ∈ T and ΣI is aquasistrategy for I in T(x0,...,x2k) (with the 
onvention that II starts �rst ingames on T(x0,...,x2k)).(iii) II now has two options:Option 1: II plays (x2k+1, u) where (x0, . . . , x2k+1) ∈ T and u is a sequen
eof even length su
h that u ∈ T(x0,...,x2k+1) and u ∈ (ΣI)(x2k+1)−(TX)(x0,...,x2k+1).From then on I and II play x2k+2, x2k+3, . . . so that (x0, . . . , xj) ∈ T for all
j and u ⊆ (x2k+2, x2k+3, . . .).Option 2: II plays (x2k+1,ΣII) where (x0, . . . , x2k+1) ∈ T and ΣII is a quasis-trategy for II in (ΣI)(x2k+1) with ΣII ⊆ (TX)(x0,...,x2k+1). From then on I and
II play x2k+2, x2k+3, . . . so that (x2k+2, x2k+3, . . . , xl) ∈ ΣII for all l ≥ 2k+2.The map π is given by π(x0, . . . , x2k−1, (x2k, ∗), (x2k+1, ∗), x2k+2, . . . , xl) =
(x0, . . . , xl). As x̃ ∈ π−1(X) i� x̃(2k+1) is of the form (x2k+1,ΣII), it followsthat π−1(X) is 
lopen. 23



Finally we must de�ne ϕ so that given a strategy σ̃ on T̃ , the strategy
σ = ϕ(σ̃) on T has the property that for any x ∈ [σ] there is x̃ ∈ [σ̃] with
π(x̃) = x. We now des
ribe the strategy σ. There are two 
ases.Case 1. σ̃ is a strategy for I in T̃ .For the �rst 2k moves, σ is just σ̃. Then σ̃ provides I with (x2k,ΣI); σhas I play x2k. Then II plays x2k+1. There are two sub
ases.Sub
ase 1. I has a winning strategy inG((ΣI)(x2k+1), [(ΣI)(x2k+1)]−X(x0,...,x2k+1)).Then σ requires I to play this winning strategy. After �nitely many movesa shortest position u of even length is rea
hed for whi
h u /∈ (TX)(x0,...,x2k+1),say u = (x2k+2, . . . , x2l−1). Then (x0, . . . , x2k−1, (x2k,ΣI), (x2k+1, u), x2k+2, . . . , x2l−1)is a legal position in T̃ , and σ requires I from then on to play following σ̃.Sub
ase 2. II has a winning strategy inG((ΣI)(x2k+1), [(ΣI)(x2k+1)]−X(x0,...,x2k+1)).Let ΣII be II's 
anoni
al quasistrategy in this game. From then on, Iplays following σ̃, assuming that in the game on T̃ , II played (x2k+1,ΣII). I
an do this as long as II 
ollaborates and plays so that (x2k+2, . . . , x2l−1) ∈
(ΣII)(x0,...,x2k+1), sin
e then we have legal positions in T̃ . But if for some lwith 2l − 1 > 2k + 2, II plays so that (x2k+2, . . . , x2l−1) /∈ (ΣII)(x0,...,x2k+1),then by de�nition of ΣII , it follows that I has a winning strategy in
G((ΣI)(x2k+1,...,x2l−1), [(ΣI)(x2k+1,...,x2l−1)]−X(x0,...,x2k+1,...,x2l−1)). Then I 
ontin-ues as in Sub
ase 1.Case 2. σ̃ is a strategy for II in T̃ .Again for the �rst 2k moves σ is just σ̃. Next I plays x2k. Put U =
{(x2k+1) ∗ u ∈ T(x0,...,x2k) | u has even length and there is a quasistrategy ΣIfor I in T(x0,...,x2k) su
h that σ̃ requires II to play (x2k+1, u) when I plays
(x2k,ΣI)}. Then

U = {x ∈ [T(x0,...,x2k)] | x ⊇ (x2k+1) ∗ u for some (x2k+1) ∗ u ∈ U}is an open set in [T(x0,...,x2k)].Consider now the game on T(x0,...,x2k) where II plays �rst, the playersprodu
e x2k+1, x2k+2, . . . and II wins i� (x2k+1, x2k+2, . . .) belongs to U .24



Sub
ase 1. II has a winning strategy in this game.Then σ follows this winning strategy until a position (x2k+1, . . . , x2l−1) =
u is rea
hed whi
h belongs to U . Let ΣI witness u ∈ U . II then follows σ̃after the position (x0, . . . , x2k−1, (x2k,ΣI), (x2k+1, u), x2k+2, . . . , x2l−1).Sub
ase 2. I has a winning strategy in this game.Let ΣI be the 
anoni
al quasistrategy for I. Then if I plays (x2k,ΣI) inthe game on T̃ , σ̃ 
annot ask II to play something of the form (x2k+1, u),be
ause then (x2k+1) ∗ u belongs to U and by the rules of T̃ , (x2k+1) ∗ ubelongs to ΣI , 
ontradi
ting the fa
t that no sequen
e in ΣI 
an belong to
U . So if I plays (x2k,ΣI) in the game on T̃ , σ̃ asks II to play (x2k+1,ΣII).So σ has II play x2k+1 and then follow σ̃ as long as I 
ollaborates so that
(x2k+2, . . . , x2l) belongs to ΣII . If for some l ≥ k + 1, I plays x2l with
(x2k+2, . . . , x2l) /∈ ΣII , then sin
e ΣII is a quasistrategy for II in (ΣI)(x2k+1)(and therefore I's moves are untrestri
ted as long as they are in ΣI) it followsthat (x2k+2, . . . , x2l) /∈ (ΣI)(x2k+1) and we are ba
k in Sub
ase 1 again.This 
ompletes the proof of Lemma 26. 28.VorlesungThe Wadge PropertySuppose that A, B are subsets of Baire spa
e. We say that A is Wadgeredu
ible to B, written A ≤w B, i� there is a 
ontinuous fun
tion f su
hthat x ∈ A i� f(x) ∈ B.Theorem 28. If A, B are Borel then either A ≤w B or B ≤w∼ A.Proof. Consider the Wadge game Gw(A,B) where players I and II al-ternately 
hoose natural numbers x(0), y(0), x(1), y(1), . . . and II wins i�
(x ∈ A ↔ y ∈ B). This is a Borel game and therefore determined. If σis a winning strategy for II then σ indu
es a 
ontinuous fun
tion σ∗ fromBaire spa
e to Baire spa
e su
h that x ∈ A ↔ σ∗(x) ∈ B. If σ is a winningstrategy for I then σ indu
es a 
ontinuous fun
tion σ∗ from Baire spa
e toBaire spa
e su
h that y ∈ B ↔ σ∗(y) ∈∼ A. 225



The Wadge degree of A is its equivalen
e 
lass [A]w under the equivalen
erelation A ≡w B i� (A ≤w B and B ≤w A). Theorem 28 says that theordering of Wadge degrees is almost a linear ordering, in the sense that theonly in
omparable pairs of Wadge degrees are of the form [A]w, [∼ A]w. Itis also possible that [A]w = [∼ A]w; an example is A = {x | x(0) is even}.Theorem 29. The ordering of Wadge degrees is well-founded.Proof. If not then there is a sequen
e A0, A1, . . . with An �w An+1 and
An �∼ An+1 for ea
h n. Let σ0

n be a winning strategy for I in Gw(An, An+1)and σ1
n a winning strategy for I in Gw(An,∼ An+1).Fix x ∈ 2N . We de�ne plays of games Gx

0 , G
x
1 , . . . as follows: In game Gx

n,
I applies the strategy σx(n)

n , and the k-th move of II is the k-th move of I in
Gx

n+1. Let yn(x) be the play of I in game Gx
n. Then

(∗) yn(x) /∈ An ↔ yn+1(x) ∈ A
x(n)
n+1 ,where A0

n+1 = An+1, A1
n+1 =∼ An+1. Consider now X = {x ∈ 2N | y0(x) ∈

A0}.Claim. If x, x̄ di�er at exa
tly one argument, we have x ∈ X i� x̄ /∈ X.Proof of Claim. Suppose that x and x̄ di�er exa
tly at argument k. Then
yk+1(x) = yk+1(x̄), sin
e these depend only on x(n) for n > k. So by (∗),
yk(x) /∈ Ak ↔ yk+1(x) ∈ A

x(k)
k+1 ↔ yk+1(x̄) ∈ A

x(k)
k+1 ↔ yk+1(x̄) /∈ A

x̄(k)
k+1 ↔

yk(x̄) ∈ Ak. Sin
e x, x̄ agree at arguments less than k, it follows again by
(∗) that y0(x) /∈ A0 ↔ y0(x̄) ∈ A0; i.e., x /∈ X i� x̄ ∈ X. 2 (Claim)

X is Borel and therefore has the Baire property. Therefore either X or
∼ X is 
omeager inside some basi
 open set Ns = {x | s ⊆ x}, s ∈ 2<ω. Butthe homeomorphism that swit
hes the value of x at n = Length(s) sends
X ∩Ns to ∼ X ∩Ns and therefore gives two disjoint 
omeager subsets of Ns,a 
ontradi
tion. 2 Uniformisation of Π1

1, Σ1
2 RelationsLet P ⊆ N×N and let F be a fun
tion with domain and range 
ontainedinN . We say that F uniformises P i� the domain of F equals {x | ∃y (x, y) ∈

P} and for x in the domain of F , (x, F (x)) ∈ P .26



Theorem 30. Every Π1
1 relation 
an be uniformised by a fun
tion F whosegraph {(x, y) | y = F (x)} is Π1

1.Proof. First we show how to pi
k a spe
ial element from a given Π1
1 set P .Let U be a re
ursive tree on ω × ω su
h that

x ∈ P i� U(x) is well-founded.Let 〈un | n ∈ N〉 be a re
ursive enumeration of Seq = ω<ω where u0 = ∅ andlength un ≤ n for ea
h n. De�ne the tree T on ω × ω1 by:
(s, h) ∈ T ↔ ∀m,n < Length(s)[ If um ⊇ un and (s ↾ Length(um), s ↾ um) ∈
U then h(m) < h(n)].Then x ∈ P ↔ T (x) has a bran
h. Also, if x belongs to P then T (x) has aleast bran
h, i.e., a bran
h gx with the property that gx(n) ≤ f(n) whenever
f is a bran
h through T (x): gx is de�ned by gx(n) = Rank(un) in T (x) if
un ∈ U(x); 0 otherwise.Now de�ne P0 = P , P2n+1 = {x ∈ P2n | gx(n) is least}, P2n+2 = {x ∈
P2n+1 | x(n) is least}. Then the interse
tion of the Pn's has a unique element
a.Claim. {a} is Π1

1.Proof of Claim. We have:
x ∈ P1 ↔
x ∈ P ∧ ∀y(Rank(u0) in U(x) ≤ Rank(u0) in U(y))
x ∈ P2 ↔
x ∈ P1 ∧ ∀y((Rank(u0) in U(x) < Rank(u0) in U(y)) ∨ (Rank(u0) in U(x) =Rank(u0) in U(y) ∧ x(0) ≤ y(0)))
x ∈ P3 ↔
x ∈ P2 ∧ ∀y((Rank(u0) in U(x) < Rank(u0) in U(y)) ∨ (Rank(u0) in U(x) =Rank(u0) in U(y) ∧ x(0) < y(0)) ∨ (Rank(u0) in U(x) = Rank(u0) in U(y) ∧
x(0) = y(0) ∧ Rank(u1) in U(y) ≤ Rank(u1) in U(x))Et
.The above are Π1

1 de�nitions, using the equivalen
es:27



Rank(u) in U(x) ≤ Rank(u) in U(y) i�There exists an order-preserving fun
tion from (U(x))u into (U(y))uRank(u) in U(x) < Rank(u) in U(y) i�There exists an order-preserving fun
tion from (U(x))u into (U(y))u∗ for some
u∗ properly extending u.Now we prove the Uniformisation Theorem. Let P be a Π1

1 subset of
N ×N . Let U be a tree in ω × ω × ω su
h that

(x, y) ∈ P i� U(x, y) is well-founded.For ea
h x ∈ N let P x be the Π1
1 set {y | (x, y) ∈ P} and de�ne P x = P x

0 ⊇
P x

1 ⊇ · · · exa
tly as we de�ned Pn, n ∈ N , with P , U(y) repla
ed by P x,
U(x, y). Let Qx the interse
tion of the P x

n 's. Then Qx has a single element,whi
h we denote by F (x). The Π1
1 expression we gave above applies to Qx,and shows that the graph of F , {(x, y) | y ∈ Qx}, is Π1

1, as desired. 2Corollary 31. Every Σ1
2 binary relation 
an be uniformised by a Σ1

2 fun
tion.Proof. Suppose that P ⊆ N ×N is Σ1
2; then there is a Π1

1 relation Q ⊆ N 3su
h that P is the proje
tion of Q; i.e., P = {(x, y) | ∃z((x, y, z) ∈ Q)}.Apply Π1
1 uniformisation to get a Π1

1 fun
tion F : N → N 2 with domain
{x | ∃y, z((x, y, z) ∈ Q)} su
h that for x in this set, F (x) = (F (x)0, F (x)1)where (x, F (x)0, F (x)1) ∈ Q. Then F ∗ uniformises P , where F ∗(x) = F (x)0.And the graph of F ∗ is Σ1

2 sin
e
y = F ∗(x) i� ∃z (y, z) = F (x).Thus F ∗ is the desired Σ1

2 uniformising fun
tion. 2.9.VorlesungPart 2: The Constru
tible UniverseWe showed that the regularity properties measurability, Baire property,perfe
t set property and Ramsey property hold for Σ
1
1 sets, provably in ZFC.However this does not extend to ∆

1
2 sets:Theorem 32. In L, there is a wellordering < of the reals of length ω1 su
hthat the relation {(x, y) | y 
odes the set of <-prede
essors of x} is ∆1

2. (Su
ha wellordering is 
alled a good ∆1
2 wellordering.)28



Proof. < is just the usual 
anoni
al wellordering of L, restri
ted to the reals.We have:
y 
odes the set of <-prede
essors of x i�
∃z(z 
odes an Lα � ZFC− 
ontaining x, and y 
odes the set of<Lα

-prede
essorsof x in Lα) i�
∀z(If z 
odes an Lα � ZFC− 
ontaining x then y 
odes the set of <Lα

-prede
essors of x in Lα)Thus we have a good ∆1
2 wellordering. 2Corollary 33. In L, there are ∆1

2 sets whi
h are not measurable and do nothave the Baire, perfe
t set or Ramsey properties.Proof. List the reals using a good ∆1
2 wellordering as 〈xα | α < ω1〉 and build

X by indu
tively de
iding xα ∈ X, diagonalising over reals whi
h mightwitness one of the four regularity properties. 2We proved determina
y for Borel sets in ZFC. This does not extend to
Π1

1 sets: A Turing set of reals is a set of reals X with the property: x ∈ X,
x =T y → y ∈ X, where =T denotes Turing equivalen
e. A 
one is a Turingset of the form {y | x ≤T y} for some x.Lemma 34. (Martin's Lemma) Suppose that X is a determined Turing set.Then either X or ∼ X 
ontains a 
one.Proof. If I has a winning strategy σ in the game for X then for any possibleplay y for player II, σ(y) belongs to X, where σ(y) is the result of the gamewhere II plays y and I follows his strategy σ. Thus if σ ≤T y, it followsthat σ(y) =T y belongs to X. If II has the winning strategy τ , then we get
τ(x) =T x ∈∼ X for all x ≥T τ . 2Corollary 35. In L, Π1

1 determina
y fails.Proof. It su�
es to �nd a Turing set X su
h that neitherX nor ∼ X 
ontainsa 
one. Consider X = {x | x is the �rst-order theory of some Lα � ZFC−}.Clearly ∼ X 
annot 
ontain a 
one as every real is re
ursive in some elementof X. And if x belongs to X, then x′(= the Turing jump of x) does not, so
∼ X does not 
ontain a 
one. 2 29



We showed that for Borel sets A and B either A ≤W B or B ≤W∼ A.The same property for Π1
1 would imply that any two non-Borel Π1

1 sets havethe same Wadge degree. The latter fails in L:Theorem 36. In L, not all non-Borel Π1
1 sets have the same Wadge degree.Proof. Let 〈αi | 0 ≤ i < ω1〉 be the in
reasing enumeration of the 
ountableordinals α su
h that Lα is admissible. Let WO be the set of x su
h that x
odes an ordinal. WO is a 
ompleteΠ1

1 set, and therefore ea
h Π1
1 set is Wadgeredu
ible to WO. Let X be the set of x su
h that x 
odes an ordinal between

αi and αi+1 for an even i. X is Π1
1 and not Borel. Now suppose that WOwere Wadge redu
ible to X and let a be a real 
oding a 
ontinuous fun
tion

f su
h that x ∈ WO ↔ f(x) ∈ X. Choose an odd i su
h that a belongs to
Lαi

and αi is 
ountable in Lαi+1
= M . Then x ∈ WO∩M ↔ f(x) ∈ X ∩M ,and X ∩M is ∆1(M). So WO ∩M is ∆1(M), whi
h is impossible sin
e Mis the least admissible set 
ontaining some real. 2The Uniformisation Property does extend in L beyond Σ1

2:Theorem 37. In L: Ea
h Σ1
n binary relation 
an be uniformised by a Σ1

nfun
tion, for ea
h n ≥ 2.Proof. Let< be a good∆1
2 wellordering of the reals. IfR(x, y) ↔ ∃z S(x, y, z)with S Π1

n−1, n ≥ 2, then de�ne:
S∗(x, y, z) ↔ (S(x, y, z) ∧ ∀(y′, z′) < (y, z)(∼ S(x, y′, z′))).Then S∗ is Σ1

n, as < is a good ∆1
2 wellordering and n ≥ 2. So R is uniformisedby R∗(x, y) ↔ ∃z S∗(x, y, z). 210.VorlesungPart 3: For
ing Extensions of LIs it possible to have regularity properties beyond Σ1

1 in a for
ing extensionof L? Solovay 
onstru
ted, using an L-ina

essible, a generi
 extension of Lin whi
h all proje
tive sets are regular.Theorem 38. (Solovay) Assume that there is an L-ina

essible. Then thereis a set-generi
 extension of L in whi
h all proje
tive sets are measurable andhave the Baire, perfe
t set and Ramsey properties.30



Proof. Let κ be ina

essible in L and let P be the Lévy 
ollapse to make κequal to ω1: A 
ondition in P is a �nite fun
tion p : F → κ, where F ⊆ ω×κand p(n, α) < α for ea
h (n, α) ∈ Dom p. P makes ea
h α < κ 
ountableand has the κ-

; it follows that in a P -generi
 extension L[G], κ is ω1. Also
P is homogeneous: If p, q are elements of P then there is an automorphismof P whi
h sends p to a 
ondition 
ompatible with q.We show that in L[G], ea
h proje
tive set of reals X is measurable. Sup-pose that x ∈ X ↔ L[G] � ϕ(x, a) where ϕ is a formula of se
ond-orderarithmeti
 and a ∈ L[G] is a real parameter. We may 
hoose α < κ su
hthat a belongs to L[Gα], where Gα = G ∩ Lα is Pα = P ∩ Lα-generi
 over L.Then L[G] is a P -generi
 extension of L[Gα], sin
e P ≈ Pα × P .Almost every real (in the sense of Lebesgue measure) is random over
L[Gα] and therefore it su�
es to show that X agrees with some Borel set onthe reals whi
h are random over L[Gα]. Suppose that x is su
h a real; then
L[G] = L[Gα][Gx][Hx], where P ≈ Pα∗Q∗R, Gx is the generi
 
orrespondingto x for random real for
ing Q over L[Gα] and Hx is generi
 over L[Gα][Gx]for some for
ing R. It is not di�
ult to show that R is equivalent to P , andso we 
an assume R = P . Thus by the homogeneity of P :
x ∈ X i�
L[Gα][Gx][Hx] � ϕ(x, a) i�
L[Gα][Gx] � (P 
 ϕ(x, a)) i�For some B ∈ Gx, B 
Q (P 
 ϕ(ẋ, a)) i�
x belongs to the union of the BL[G], B ∈ Q su
h that B 
Q (P 
 ϕ(ẋ, a)).As L[Gα] has only 
ountably many reals, it follows that Q is 
ountable andtherefore this last 
ondition on x is a Borel 
ondition. So X is measurable.The same argument works for the Baire property, using the Cohen algebrain pla
e of the random algebra.If X is an un
ountable proje
tive set of reals in L[G] then again we 
anwrite x ∈ X i� L[Gα][Gx] � (P 
 ψ(x, a)), where a belongs to L[Gα], α < κand Gx is generi
 over L[Gα] for some for
ing Qx. As X is un
ountable, we
an 
hoose x ∈ X to not belong to L[Gα] and for this x 
an assume that
Qx 
 (ẋ /∈ L[Gα] and (P 
 ψ(ẋ, a))). As the power set of Qx in L[Gα]is 
ountable in L[G], we 
an build a perfe
t set of y's with 
orresponding
Qx-generi
s Gy su
h that L[Gα][Gy] � (P 
 ψ(ẏ, a)). Thus y belongs to Xfor ea
h su
h y, showing that X has a perfe
t subset.For the Ramsey property, we again write x ∈ X i� L[Gα][Gx] � (P 
31



ψ(x, a)). There is a Mathias 
ondition (∅, A) whi
h for
es over L[Gα] that
L[Gα][Gẋ] � (P 
 ψ(ẋ, a)) where ẋ denotes the Mathias generi
 real (or thesame with ψ repla
ed by ∼ ψ; assume the former). Then if x is Mathiasgeneri
 over L[Gα], x ⊆ A, it follows that L[Gα][Gy] � (P 
 ψ(y, a)) for allin�nite y ⊆ x, as any su
h y is also Mathias generi
. Thus y ∈ X for su
h yand x is homogeneous for X. 2Shelah showed that the use of an L-ina

essible as above is ne
essaryto obtain the measurability of Σ1

3 sets. (It is however not ne
essary for themeasurability of ∆1
2 sets.) He also showed that an L-ina

essible is not neededto obtain the Baire property for all proje
tive sets. It is not di�
ult to showthat an L-ina

essible is ne
essary to obtain the perfe
t set property for Π1

1sets. The situation with regard to the Ramsey property is still open.11.VorlesungWe showed that both Π1
1 determina
y and the Wadge property for Π1

1sets fail in L. These properties also fail in all set-generi
 extensions of L, bysimilar arguments. Are these properties in fa
t refutable in ZFC? We willsee that they are implied by the existen
e of large 
ardinals, whi
h makesthis rather unlikely.We showed that proje
tive relations 
an be proje
tively uniformised in L.This 
an fail in a set-generi
 extension of L:Theorem 39. There is a for
ing extension of L in whi
h some Π1
2 binaryrelation has no proje
tive uniformisation.Proof. Add ω1 Cohen reals to L. In the extension, we have: For ea
h real

x, there is a real y whi
h is Cohen over L[x]. Consider now the relation
R(x, y) ↔ y is Cohen over L[x]. This is a total Π1

2 relation. Suppose that fwere a proje
tive fun
tion with parameter a whi
h uniformised R. Then ourmodel 
an be written as L[b, G] where a belongs to L[b] and G is generi
 foradding ω1 Cohen reals over L[b]. But by homogeneity, f(b) must belong to
L[b], whi
h 
ontradi
ts the fa
t that f(b) is Cohen over L[b]. 2Part 4: SharpsAssume that every real has a #. We will show that the regularity, de-termina
y, Wadge and uniformisation properties that we established in ZFC
an be extended to one more level of the proje
tive hierar
hy.32



Theorem 40. Suppose that ω1 is ina

essible to reals, i.e., L[a] 
ontains only
ountably many reals for ea
h real a. Then every Σ
1
2 set is measurable andhas the Baire, perfe
t set and Ramsey properties.Proof. By Theorems 10, 12 and 20, it su�
es to show that ea
h Σ

1
2 set Ais the proje
tion of a tree T on ω × κ for some κ, where T belongs to atransitive ZFC− model 
ontaining only 
ountably many reals. Let U be atree on ω × ω × ω su
h that

x ∈ A i� ∃y U(x, y) is well-founded.Let 〈un | n ∈ N〉 be a re
ursive enumeration of Seq su
h that u0 = ∅ andLength(un) ≤ n for ea
h n. De�ne the tree T on ω × ω × ω1 by:
(u, v, h) ∈ T ↔ ∀m,n < Length(u) = Length(v) [ If um ⊇ un and (u ↾Length(um), v ↾ Length(um), um) ∈ U then h(m) < h(n)].Then x ∈ A↔ T (x) has a bran
h. T 
an be identi�ed with a tree on ω×ω1and belongs to L[a], where a is a real 
oding the tree U . It follows that Ais the proje
tion of a tree whi
h belongs to a transitive ZFC− model all ofwhose reals are 
onstru
tible from a. By hypothesis this model 
ontains only
ountably many reals. 2Theorem 41. Suppose that x# exists for every real x. Then every Σ

1
1 set isdetermined.Proof. Let A be Σ

1
1; we want to show that the game GA (played on ω) isdetermined. Let T be a tree on Seq2 sui
h that

x ∈ A↔ T (x) has a bran
h.Let <∗ be the Kleene-Brouwer ordering on Seq: s <∗ t i� either s properlyextends t or s(n) < t(n) where n is least so that s(n) 6= t(n). For s ∈ Seqlet Ts = {t | (u, t) ∈ T for some u ⊆ s}. Also let t0, t1, . . . be an enumerationof Seq and if s has length 2n, let Ks be the set {t0, . . . , tn−1} ∩ Ts, ks =Card (Ks).We de�ne an auxiliary game G∗ as follows: Player I plays natural num-bers a0, a1, . . . and player II plays pairs (b0, h0), (b1, h1), . . . where the bi arenatural numbers and for ea
h n, hn is an order-preserving fun
tion from
(K(a0,b0,...,an,bn), <

∗) into ω1 and i < j → hi ⊆ hj . If Player II 
an follow33



these rules for in�nitely many moves then he wins; otherwise player I wins.Clearly G∗ is determined, as it is a 
losed game.If II has a winning strategy in G∗ then of 
ourse he also has a winningstrategy in GA.Let σ∗ be the 
anoni
al winning strategy for I in G∗. We shall 
onstru
t awinning strategy σ for I inGA. Suppose that s∗ = (a0, (b0, h0), . . . , an, (bn, hn))is a play inG∗, and let E be the range of hn. Then the hi's are uniquely deter-mined by E, as hn is the unique order-preserving fun
tion from the ordering
(K(a0,b0,...,an,bn), <

∗) into ω1, and the hi are the appropriate restri
tions of hn.So s∗ is uniquely determined by s = (a0, b0, . . . , an, bn) and E. For ea
h su
h
s let Fs be the fun
tion Fs(E) = σ∗(s∗), where s∗ is uniquely determined asabove by E. Then as σ∗ is 
onstru
tible from a real and this real has a #,it follows that there is an un
ountable H ⊆ ω1 whi
h is homogeneous for Fsfor every s, i.e., for all s, Fs(E) is the same for all E ⊆ H of 
ardinality ks.De�ne the strategy σ by: σ(s) = Fs(E), for any E ⊆ H of 
ardinality ks.We 
laim that this is a winning strategy for I. If not, let x be a resultof playing this strategy with x /∈ A. Then there is an order-preservingembedding h of (T (x), <∗) into H , as H is un
ountable and (T (x), <∗) isa 
ountable well-ordering. But 
onsider now the play of G∗ where II playsrestri
tions of h to the appropriate Ks's. This is a play of G∗ a

ording tothe strategy σ∗, in 
ontradi
tion to the fa
t that σ∗ is a winning strategy for
I in G∗. 2Martin showed that the existen
e of #'s is also su�
ient for the deter-mina
y Boolean 
ombinations of Π

1
1 sets. Thus from this assumption theWadge property holds for Π

1
1 sets.12.VorlesungTheorem 42. Assume that every real has a # and A(x, y) is Π

1
2. Then A 
anbe uniformised by a Π

1
3 fun
tion.Proof. First we show how to 
hoose a 
anoni
al element from a nonempty Π

1
2set A. It will be 
onvenient to work with the spa
e 2ω instead of Baire spa
e.Write x ∈ A↔ ∀y T (x, y) has a bran
h, where T is a tree on 2×2×ω. Then

x ∈ A ↔ U(x) is well-founded, where a node in U is of the form (s, t, f)with s and t �nite 0, 1-sequen
es of the same length, f an order-preservingfun
tion from (T (s, t), <∗) into ω1 and <∗ the Kleene-Brouwer order. Let L∗denote ⋃
{L[x] | x a real}. 34



Now suppose that s, t are �nite 0, 1-sequen
es of the same length and
F,G ∈ L∗ are fun
tions from U(s, t) into Ord. We write F ≤∗ G i� for someCUB C ⊆ ω1 in L∗, F (f) ≤ G(f) for all f ∈ U(s, t) with Range (f) ⊆ C.For any F and G, either F ≤∗ G or G ≤∗ F , sin
e we have assumed #'sand F,G are 
onstru
tible from reals. Therefore ≤∗ gives a wellordering ifwe identify F with G when F =∗ G.For x ∈ A let F x be the 
anoni
al ranking fun
tion on U(x). Then
F x belongs to L∗ sin
e it is 
onstru
tible from T and x. Fix n and let
t1, t2, . . . , t2n list the 0, 1-sequen
es of length n in lexi
ographi
al order. Thenset αx

n = 〈β1, . . . , β2n〉, where βi is the rank of F x ↾ U(x ↾ n, ti) in ≤∗.We 
an now de�ne a 
anoni
al element of A. Choose x1 to minimize
αx

1 , x(0) (in the lexi
ographi
al ordering of �nite sequen
es of ordinals) for
x ∈ A, and set n0 = x1(0). Then 
hoose x2 to minimize αx

2 , x(1) for x ∈ Awhi
h minimize αx
1 , x(0), and set n1 = x2(1). Continue in this way, produ
inga real x∗ = 〈n0, n1, . . .〉.We 
laim that x∗ belongs to A. Indeed, for ea
h n 
hoose F n(t) withdomain U(x∗ ↾ n, t), t of length n, whose ranks realize αxn

n . Then for someCUB C, the F n(t) restri
ted to elements of U(x∗ ↾ n, t) with range in C
ohere. It follows that U(x∗) is well-founded, and therefore x∗ belongs to A.We show that {x∗} is Π1
3 in a real 
oding T . Indeed:

y = x∗ i� y ∈ A and
∀z, k (If z belongs to A, z ↾ k = y ↾ k and αz

l = αy
l for l < k then αz

k isgreater than αy
k or z(k) ≥ y(k)).As αy

l and αz
l 
an be 
ompared in L[(y, z)#], this gives a Π1

3 de�nition. Andas in the proof of Π1
1 uniformisation, the above relativises uniformly to givethat a binary Π

1
2 relation 
an be Π

1
3 uniformised. 2Corollary 43. Assume #'s for reals. Then every binary Σ

1
3 relation 
an be

Σ
1
4 uniformised.We 
annot expe
t to extend these results to higher proje
tive levels onlyunder the assumption of #'s. There is a smallest inner model 
losed under

#, and this model has a ∆1
3 wellordering of its reals. Thus in this modelregularity must fail for ∆1

3 sets. And in this model there is a Π1
2 set A su
hthat both A and the 
omplement of A are 
o�nal in the Turing degrees,showing that Π1

2 determina
y must fail. (In fa
t ∆1
2 determina
y fails.) The35



Wadge property also fails for Π1
2 sets. And in the for
ing extension obtainedby adding ω1 Cohen reals, there is a Π1

3 binary relation whi
h 
annot beproje
tively uniformised.To extend des
riptive set theory, one must a large 
ardinal hypothesiswhi
h violate the existen
e of a ∆1
3 wellordering of the reals. This hypothesisis: There is a Woodin 
ardinal κ su
h that V #

κ exists. With this hypothe-sis, one obtains Σ1
3 regularity, Π1

2 determina
y and the uniformisation of Π1
3binary relations by Π1

3 fun
tions. More Woodin 
ardinals 
arry the theoryto the higher levels of the proje
tive hierar
hy. Thus with in�nitely manyWoodin 
ardinals, one has a very satisfying theory of the proje
tive sets.
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