
Desriptive Set Theory, Sommersemester 20031.VorlesungMy last ourse dealt with the tehniques of Pure Set Theory:Construtible Universe LSet-foring over LClass-foring over LInner models K for large ardinalsSet-foring and Class-foring over KIn the present ourse I onsider appliations of these tehniques. Thereare two kinds of appliations:Consisteny resultsCon(ZFC + a large ardinal) → Con(something interesting).Some examples:Con(GCH)Con(Suslin's Hypothesis)Con(Inaessible) → Con(All projetive sets of reals are measurable)Con(Hypermeasurable) → Con(Failure of the singular ardinal hypothesis)Con(Woodin) → Con(The nonstationary ideal on ω1 is saturated)TheoremsZFC + a large ardinal → something interesting.Some examples in desriptive set theory:
Σ1

1 sets of reals are measurableMeasurable ardinal → Σ1
2 sets of reals are measurableIn�nitely many Woodin ardinals → All sets of reals in L(R) are measurableThere is a good reason why the latter examples are taken from desriptiveset theory: Large ardinals appear to give a omplete understanding of thebehaviour of sets of reals in L(R). But if we go beyond that, we are faedwith CH, whih remains undeidable even with the addition of large ardinalhypotheses.The aim of this ourse is to study appliations of the seond type, withindesriptive set theory. After establishing as muh as possible in ZFC alone,1



we shall introdue large ardinals in order to omplete the piture. Here isan outline:ZFC ResultsThe Borel and Projetive HierarhiesBorel= ∆1
1The Suslin Property and Regularity for Analyti SetsDeterminay and the Wadge Property for Borel Sets

Π1
1 UniformisationThe Construtible UniverseFailure of ∆1

2 RegularityFailure of Π1
1 Determinay and WadgeProjetive UniformisationForing Extensions of LSolovay's Model: Projetive RegularityFailure of Π1
2 UniformisationSharpsRegularity for Σ1

2 Sets
Π1

1 Determinay and Wadge
Π1

2 UniformisationWoodin CardinalsProjetive RegularityProjetive UniformisationProjetive Determinay and WadgeProjetive Equivalene RelationsProjetive Basis TheoremsPart 1: ZFC ResultsA Polish spae is a topologial spae that is homeomorphi to a omplete,separable metri spae.Lemma 1. Let X be a Polish spae. Then there is a ontinuous funtionfrom Baire Spae N = {f | f is a funtion from N to N} onto X.2



Proof. By indution on the length of s ∈ Seq = the set of �nite sequenes ofelements of N , we de�ne Cs suh that C∅ = X and for nonempty s:i. Cs is a losed ball of diameter ≤ 1/n, where n = length s.ii. Cs ⊆
⋃∞

k=0Cs∗k (all s ∈ Seq).iii. s ⊆ t→ enter(Ct) ∈ Cs.For eah a ∈ N let f(a) be the unique point in ⋂
{Cs | s ⊆ a}. Then f isontinuous and has range X. 2Borel SetsLet X be a Polish spae. A ⊆ X is Borel i� it belongs to the smallest

σ-algebra of subsets of X ontaining all losed sets. The Borel hierarhy isde�ned as follows: For eah α < ω1 de�ne Σ
0
α, Π0

α as follows:
Σ

0
1 = Open Sets

Π
0
1 = Closed Sets

Σ
0
α = All sets A =

⋃∞
n=0An, where eah An belongs to Π

0
β for some β < α

Π
0
α = Complements of sets in Σ

0
αIt is lear that the above sets are all Borel. As every open set is the ountableunion of losed sets, we have Σ

0
1 ⊆ Σ

0
2 and then by indution:

α < β → Σ
0
α ∪Π

0
α ⊆ Σ

0
β ∩Π

0
β.Thus ⋃

α Σ
0
α =

⋃
α Π

0
α is the olletion of Borel sets. For eah α, Σ0

α, Π0
α arelosed under �nite unions, �nite intersetions and inverse images by ontin-uous funtions.We show that in the ase whereX is the Baire spae, the Borel hierarhy isstrit: Σ

0
α * Π

0
α and therefore Σ

0
α 6= Σ

0
α+1 for eah α. The proof generalisesto arbitrary unountable Polish spaes.Lemma 2. (Universal Σ

0
α Sets) For eah α ≥ 1 there exists a set U ⊆ N 2suh that U is Σ

0
α and for every Σ

0
α set A ⊆ N there is a ∈ N suh that

A = {x | (x, a) ∈ U}.Proof. By indution on α. For α = 1 let G1, G2, . . . be a list of all basiopen sets and G0 = ∅. We de�ne U = {(x, y) | x ∈ Gy(n) for some n}. U3



is open and if G is an arbitrary open set, then G = {x | (x, a) ∈ U} where
G =

⋃
nGa(n).Suppose now that Uβ is a universal Σ

0
β set for eah β < α and we shallonstrut a universal Σ0

α set U . Choose α0 ≤ α1 ≤ · · · less than α either withsupremum α or maximum the ordinal predeessor to α. Choose a ontinuousmapping of N onto N ω and for eah a ∈ N let (a)n be the n-th oordinateof the image of a. We de�ne U = {(x, y) | (x, (y)n) /∈ Uαn
for some n}. Then

U is Σ
0
α. If A is Σ

0
α then A is the union of sets An where An is Π

0
αn
. Foreah n let an be suh that An = {x | (x, an) /∈ Uαn

} and let a be suh that
(a)n = an for eah n; then A = {x | (x, a) ∈ U}. 2Corollary 3. For eah α ≥ 1 there is a set A ⊆ N that is Σ

0
α but not Π

0
α.Proof. Let U be a universal Σ

0
α set and onsider A = {x | (x, x) ∈ U}. 22.VorlesungAnalyti SetsThe ontinuous image of a Borel set need not be Borel. Let X be a Polishspae.De�nition. A ⊆ X is analyti i� there is a ontinuous funtion f : N → Xwith range A. The projetion of a set S ⊆ X×Y is the set P = {x | (x, y) ∈ Sfor some y ∈ Y }.Lemma 4. The following are equivalent:(a) A is the ontinuous image of a Borel set in some Polish spae.(b) A is analyti.() A is the projetion of a losed set in X ×N .(d) A is the projetion of a Borel set in X × Y for some Polish spae Y .Proof. We will show that every Borel set is analyti. Then (a)→(b) follows.(b)→() holds sine if A is the range of f : N → X then A is the projetionof the losed set {(f(x), x) | x ∈ N} ⊆ X ×N . ()→(d)→(a) is trivial.Note that every losed set in a Polish spae forms a Polish spae andtherefore is analyti by Lemma 1. So it su�es to show that eah Borelsubset of a Polish spae X is the projetion of a losed set in X × N . Weshow that the family P of all projetions of losed sets in X × N is losed4



under ountable unions and intersetions. As P learly ontains all losedsets and eah open set is the ountable union of losed sets, it follows that
P ontains all Borel sets, as desired.Let An be the projetion of the losed set Fn ⊆ X×N for eah n. We shallshow that ⋃

nAn, ⋂
nAn are projetions of losed sets. As before, hoose aontinuous mapping of N onto N ω and for eah a ∈ N let (a)n be the n-thoordinate of the image of a.

x ∈
⋃

nAn ↔
∃n ∃a (x, a) ∈ Fn ↔
∃a ∃b (x, a) ∈ Fb(0) ↔
∃c (x, (c)0) ∈ F(c)1(0).
x ∈

⋂
nAn ↔

∀n ∃a (x, a) ∈ Fn ↔
∃c ∀n (x, (c)n) ∈ Fn ↔
∃c (x, c) ∈

⋂
n{(x, c) | (x, (c)n) ∈ Fn}.Hene ⋃

nAN is the projetion of the losed set {(x, c) | (x, (c)0) ∈ F(c)1(0)}and ⋂
nAN is the projetion of an intersetion of losed sets. 2Lemma 5. The olletion of analyti sets is losed under ountable unionsand intersetions, as well as ontinuous images and preimages.Proof. Closure under ountable unions and intersetions was established inthe proof of the previous lemma. Closure under ontinuous images is learby de�nition. Suppose that x ∈ A ↔ f(x) ∈ B, where f is ontinuous and

B is analyti. Write y ∈ B ↔ ∃z C(y, z), where C is Borel. Then x ∈ A ↔
∃z C(f(x), z), so A is the projetion of the Borel set {(x, z) | C(f(x), z)}and therefore is analyti. 2The Projetive HierarhyThe olletion of analyti sets is not losed under omplementation. For
n ≥ 1 we de�ne the Σ

1
n, Π

1
n and ∆

1
n subsets of a Polish spae X as follows:

Σ
1
1 = Analyti

Π
1
1 = Coanalyti = Complements of Analyti sets

Σ
1
n+1 = Projetions of Π

1
n subsets of X ×N5



Π
1
n+1 = Complements of Σ

1
n+1 sets

∆
1
n = Σ

1
n ∩ Π

1
n.A set is projetive i� it is Σ

1
n or Π

1
n for some n. It is obvious that ∆

1
n ⊆

Σ
1
n ⊆ ∆

1
n+1, ∆

1
n ⊆ Π

1
n ⊆ ∆

1
n+1; we shall show that Σ

1
n 6= Π

1
n and thereforethese inlusions are proper.Lemma 6. (Universal Σ

1
n Sets) For eah n ≥ 1 there is a set U ⊆ N 2 suhthat U is Σ

1
n and for for every Σ

1
n A ⊆ N there is some v ∈ N suh that

A = {x | (x, v) ∈ U}.Proof. Let h be a homeomorphism ofN 2 withN . For notational onveniene,de�ne Σ
1
0 to be Σ

0
1. We prove the Lemma by indution on n ≥ 0. ByLemma 2 there does exists a universal Σ

1
0 set. Indutively, assume that Vis a universal Σ

1
n−1 set and de�ne U = {(x, y) | (h(x, a), y) /∈ V for some

a ∈ N}. Then U is Σ
1
n. If A ⊆ N is Σ

1
n then there is a Π

1
n−1 set B suhthat A = {x | (x, a) ∈ B for some a ∈ N}. The set C = N − h[B] is Σ

1
n−1and sine V is universal there exists a v suh that C = {u | (u, v) ∈ V }; then

x ∈ A↔
(x, a) ∈ B for some a↔
h(x, a) /∈ C for some a↔
(h(x, a), v) /∈ V for some a↔
(x, v) ∈ U .So U is a universal Σ

1
n set. 2Corollary 7. For eah n ≥ 1 there is a Σ

1
n set whih is not Π

1
n.Every Borel set is ∆

1
1. This follows from the fat that the latter is losedunder ountable unions and intersetions, and ontains all open and losedsets. Conversely:Theorem 8 (Suslin's Theorem). Every ∆

1
1 set is Borel.Proof. We say that a set D separates two disjoint sets A,B i� A is ontainedin D and B is disjoint from D. We shall show that any two disjoint analytisets an be separated by a Borel set, whih learly implies the Theorem.6



First note that if A =
⋃

nAn, B =
⋃
Bn and the pair Am, Bn an beseparated by a Borel set Dm,n for eah m,n, then the pair A,B an beseparated by a Borel set, namely by D =

⋃
m

⋂
nDm,n.Now let A,B be analyti and hoose ontinuous funtions f, g suh that

A = f [N ], B = g[N ]. For eah s ∈ Seq let As = f [Ns], Bs = g[Ns], where
Ns is the basi open set {f | s ⊆ f} in Baire spae. For eah a, b ∈ N ,
{f(a)} =

⋂
nAa↾n and {g(b)} =

⋂
nBb↾n. It follows that for any a, b ∈ N ,there exists n suh that Aa↾n and Bb↾n an be separated by an open set, asif Ua, Ub are disjoint open sets separating f(a) from g(b), the sets Aa↾n, Bb↾nwill be ontained in Ua, Ub, respetively, for large enough n.Now suppose that A,B annot be separated by a Borel set. Then forsome m0, n0, A〈m0〉, B〈n0〉 annot be separated by a Borel set. Then for some

m1, n1, the sets A〈m0,m1〉, B〈n0,n1〉 annot be separated by a Borel set, et. Let
a = 〈m0, m1, . . .〉 and b = 〈n0, n1, . . .〉. Then Aa↾n, Bb↾n annot be separatedby a Borel set for any n, in ontradition to the previous paragraph. 2
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Suslin Sets and Regularity PropertiesFor any set S let Seq(S) denote the olletion of �nite sequenes of ele-ments of S. A tree T on S is a subset of Seq(S) losed under initial segments.A branh through T is a funtion a : ω → S suh that a ↾ n ∈ T for all n. Tis well-founded i� T has no branh.Let κ be an in�nite ardinal. A tree on ω × κ is a set T of pairs
(s, h) ∈ Seq(ω) × Seq(κ) suh that length (s) = length (h) and for eah
n ≤ length (s), (s ↾ n, h ↾ n) ∈ T . For eah x ∈ N , T (x) = {h | (x ↾ n, h) ∈
T , where n = length (h)}. Then T (x) is a tree on κ for eah x ∈ N . Theprojetion of T is de�ned by

p[T ] = {x ∈ N | T (x) has a branh}.A set of reals A is κ-Suslin i� it is the projetion of a tree on ω × κ.Proposition 9. Analyti subsets of N are ω-Suslin.Proof. If A is analyti, then A is the projetion of a losed set C on N ×N .Now onsider the following tree on ω × ω:
T = {(a ↾ n, b ↾ n) | (a, b) ∈ C}.A branh through T is essentially a pair (a, b) ∈ C, and onversely, everypair (a, b) ∈ T is a branh through T . As A is the projetion of C, it is alsothe projetion of the tree T . 23.VorlesungA set C is perfet i� it is nonempty, losed and has no isolated points.ZFC− is the theory obtained from ZFC by restriting the Replaement Axiomto Σ100 formulas.Theorem 10. Suppose that A is the projetion of a tree T on ω × κ whihbelongs to the transitive ZFC− modelM . If A has an element not belongingto M then A ontains a perfet subset.Corollary 11. An unountable analyti set has a perfet subset.8



Proof of Corollary 11. If A is analyti then hoose a tree T on ω × ω suhthat A = p[T ]. Choose a ountable ZFC− model M suh that T ∈ M . Bythe Theorem, A is either a subset of M , and therefore ountable, or ontainsa perfet subset. 2Proof of Theorem 10: De�ne T0 = T and indutively:
Tα+1 = {(s, h) ∈ Tα | There exist (s0, h0), (s1, h1) ∈ Tα extending (s, h) suhthat s0, s1 are inompatible}.For limit λ, Tλ =

⋂
{Tα | α < λ}. As T belongs to M and M is a model ofZFC−, the sequene 〈Tβ | β ∈ Ord(M)〉 is de�nable in M and for some leastordinal α ∈M , Tα = Tα+1.Let x belong to A and hoose f so that (x, f) is a branh through T .If (x, f) is not a branh through Tα then there is some least ordinal β suhthat (x, f) is a branh through Tβ but not through Tβ+1. So there is some

(s, h) ⊆ (x, f) in Tβ−Tβ+1 and therefore x is the union of {s′ | (s′, h′) extends
(s, h) and belongs to Tβ}. It follows that x belongs to M , sine Tβ does.As A has an element not belonging to M , it must be that Tα has abranh and therefore is nonempty. If (s, h) belongs to Tα then we an hoose
(s0, h0), (s1, h1) extending (s, h) in Tα with s0, s1 inompatible. Then we anhoose extensions (s00, h00), (s01, h01) of (s0, h0) in Tα suh that s00, s01 areinompatible, and similarly for (s1, h1). Continuing in this way we an builda subtree of Tα whose projetion is a perfet subset of A. 2A null set is a set of reals of Lebesgue measure 0. A meager set is theountable union of nowhere dense sets. A set of reals is measurable i� itdi�ers by a null set from a Borel set (equivalently, from a ountable union oflosed sets or from a ountable intersetion of open sets). It has the Baireproperty i� it di�ers by a meager set from a Borel set (equivalently, from anopen set).Theorem 12. Suppose that A is the projetion of a tree T on ω × κ whihbelongs to the transitive ZFC− modelM . Suppose thatM has only ountablymany reals. Then A is measurable and has the property of Baire.Corollary 13. Analyti sets are measurable and have the Baire property.9



Proof of Corollary 13. If A is analyti then A is the projetion of a tree Ton ω × ω. There is a ountable ZFC− model that ontains T . So by theTheorem, A is measurable and has the Baire property. 2Before proving Theorem 12, we must introdue Borel odes and absolute-ness. Let I1, I2, . . . be a reursive enumeration of the basi open sets of N .Let c belong to N . We de�ne u(c) ∈ N by u(c)(n) = c(n+1) for all n. Let Γbe a reursive bijetion from N ×N onto N . For eah i ∈ N we de�ne vi(c)by vi(c)(n) = c(Γ(i, n) + 1) for all n. For eah positive ountable ordinal αwe de�ne oding sets Σα, Πα as follows:
c ∈ Σ1 i� c(0) > 1
c ∈ Πα i� either c ∈ Σβ ∪ Πβ for some β < α or c(0) = 0 and u(c) ∈ ΣαFor α > 1: c ∈ Σα i� either c ∈ Σβ ∪ Πβ for some β < α or c(0) = 1 and
vi(c) ∈

⋃
β<α(Σβ ∪ Πβ) for all i.If c ∈ Σα we all c a Σ

0
α-ode, similarly for Π

0
α-odes. The union of all Σα isthe set BC of Borel odes. The Borel ode c odes the Borel set Ac de�nedas follows:If c ∈ Σ1 then Ac =

⋃
{In | c(n) = 1}If c ∈ Πα and c(0) = 0 then Ac = ∼ Au(c)If c ∈ Σα and c(0) = 1 then Ac =

⋃
iAvi(c).It is lear that for every α > 0, if c ∈ Σα then Ac ∈ Σ

0
α, similarly for Πα.Conversely, every Σ

0
α, Π

0
α set B is oded by some c ∈ Σα, Π0

α, respetively.Thus {Ac | c ∈ BC} is the olletion of all Borel sets.We introdue the hierarhy of Σ1
n and Π1

n formulas. A Σ1
1 formula withparameter p ∈ N is a formula of the form

ϕ(y1, . . . , yn) ↔ ∃z ψ(y1, . . . , yn, z, p),where ψ is arithmetial, i.e., a formula in the language of seond-order arith-meti with only number quanti�ers. The subsets of N n whih are de�nableby Σ1
1 formulas with parameters are exatly the analyti subsets of N n. A

Π1
1 formula with parameter p is the negation of a Σ1

1 formula with parameter
p. Indutively: A Σ1

k+1 formula with parameter p is a formula of the form
ϕ(y1, . . . , yn) ↔ ∃z ψ(y1, . . . , yn, z), where ψ is a Π1

k formula with parameter10



p and a Π1
k+1 formula with parameter p is the negation of suh a formula.A subset of N n is Σ1

n(p), Π1
n(p) i� it is de�nable by a Σ1

n, Π1
n formula withparameter p and is ∆1

n(p) i� it is both Σ1
n(p) and Π1

n(p). When p is reursive,we write Σ1
n, Π1

n, ∆1
n.Lemma 14. (a) The set BC of all Borel odes is Π1

1.(b) There is a ∆1
1 relation R suh that for Borel odes c, R(a, c) i� a ∈ Ac.() The following properties of Borel odes are Π1

1:
Ac ⊆ Ad

Ac = Ad

Ac = ∅
Ac = Ad ∪Ae

Ac =∼ Ad

Ac = Ad ∩Ae

Ac = Ad △Ae

Ac =
⋃

nAcn
.Proof. (a) De�ne the relation E by:

xEy i� either (y(0) = 0 and x = u(y)) or (y(0) = 1 and x = vi(y) for some
i).Then y is a Borel ode i� there is no in�nite sequene y = z0, z1, . . . with
zn+1Ezn for eah n. As the relation E is arithmetial, it follows that BC is
Π1

1.(b) For any c ∈ N there is a smallest ountable T = Tc ⊆ N with theproperty:
(∗)c c ∈ T and whenever y ∈ T , zEy then z ∈ T .And if c is a Borel ode, a ∈ N then there is a unique funtion h = ha,c on
Tc suh that for all y ∈ Tc:
(∗∗)a If y(0) > 1 then h(y) = 1 i� a ∈ In for some n suh that y(n) = 1If y(0) = 0 then h(y) = 1 i� h(u(y)) = 0If y(0) = 1 then h(y) = 1 i� h(vi(y)) = 1 for some i.For y ∈ Tc and h as above we have h(y) = 1 i� a ∈ Ay. Thus for a Borelode c: 11



a ∈ Ac i�For all ountable T satisfying (∗)c and all h de�ned on T satisfying (∗∗)a,
h(c) = 1 i�There is a ountable T satisfying (∗)c and an h de�ned on T satisfying (∗∗)asuh that h(c) = 1.As (∗)c is Σ1

1 and (∗∗)a is arithmetial, this gives the desired result.() This follows easily from (b). 2Lemma 15. (Mostowski Absoluteness) Suppose that M is a transitive modelof ZFC−.(a) If ϕ(y1, . . . , yn) is a Σ1
1 formula with parameter inM then for all y1, . . . , ynin M :

M � ϕ(y1, . . . , yn) i� ϕ(y1, . . . , yn) is true.(b) If ϕ(y1, . . . , yn) is a Σ1
2 formula with parameter inM then for all y1, . . . , ynin M :

M � ϕ(y1, . . . , yn) implies ϕ(y1, . . . , yn) is true.Proof. (a) Using a reursive homeomorphism between N n and N we anassume that n = 1. In both M and the universe we have that ϕ(y) holds i�
T (y) has a branh, where T is a tree on ω × ω. If T (y) has a branh in Mthen of ourse it also has one in the universe. If T (y) has no branh in Mthen T (y) is well-founded inM and therefore there exists an order-preservingfuntion in M from T (y) into the ordinals of M . It follows that there is suha funtion in the universe and therefore T (y) has no branh in the universe.(b) Write ϕ(y1, . . . , yn) = ∃z ψ(y1, . . . , yn, z), where ψ is Π1

1. If M satis�es
ϕ(y1, . . . , yn) then hoose y ∈ M suh that ψ(y1, . . . , yn, z) holds in M . Itfollows from (a) that the latter also holds in the universe, and therefore sodoes ϕ(y1, . . . , yn). 2For a transitive modelM of ZFC−, let BCM denote the set of Borel odes,as interpreted in M , and for c ∈ BCM , let AM

c denote Ac as interpreted in
M .Corollary 16. Suppose that M is a transitive model of ZFC−. Then:(a) BCM = BC ∩M . 12



(b) If c belongs to BCM then AM
c = Ac ∩M .() The following properties of Borel odes in M hold i� they hold in M :

Ac ⊆ Ad

Ac = Ad

Ac = ∅
Ac = Ad ∪Ae

Ac =∼ Ad

Ac = Ad ∩Ae

Ac = Ad △Ae

Ac =
⋃

nAcn
. 4.VorlesungLemma 17. The following sets are both Σ1

2 and Π1
2 de�nable:(a) {c | c is a Borel ode and Ac is null}.(b) {c | c is a Borel ode and Ac is meager}.Proof. For a Borel ode c:

Ac is null i�For eah n there exists a Σ1 ode d suh that Ac ⊆ Ad and Ad has measureless than 1/n i�For all Π1 odes e, if Ae ⊆ Ac then Ae has measure 0.As the properties �d is a Σ1 ode and Ad has measure less than 1/n� and�e is a Π1 ode and Ae has measure 0� are arithmetial, the above providesboth Σ1
2 and Π1

n de�nitions for {c | c is a Borel ode and Ac is null}.Also:
Ac is meager i�There exist Π1 odes cn, n ∈ N suh that Ac ⊆

⋃
nAcn

and eah Acn
isnowhere dense i�For all Σ1 odes d, if Ad is nonempty then Ac △Ad is not meager.As the property �c is a Π1 ode and Ac is nowhere dense� is arithmetial,the seond line above gives a Σ1

2 de�nition of {c | c is a Borel ode and Ac ismeager}, and using this, the third line above gives a Π1
2 de�nition. 213



Corollary 18. Suppose that c is a Borel ode and c belongs to the transitiveZFC− model M . Then Ac is null i� M � Ac is null, and Ac is meager i�
M � Ac is meager.Proof. Use Lemma 17 and part (b) of Lemma 15. 2We onsider Bm and Bc, the quotients of the σ-algebra of Borel sets bythe ideals Im of null sets and Ic of meager sets. For eah B ∈ B, let [B]m,
[B]c denote the equivalene lass of B in Bm, Bc, respetively. We view Bm,
Bc as foring notions by disarding [∅]m, [∅]c and using the natural order ofinlusion modulo Im, Ic, respetively.Lemma 19. (a) If G is Bm-generi then there is a unique real xG suh thatfor all non-null B ∈ B:

[B]m ∈ G↔ xG ∈ B∗,where B∗ denotes AV [G]
c for any Borel ode c for B (this de�nition is inde-pendent of the hoie of c). And a real x (in an outer model of V ) is of thisform i� x /∈ B∗ for eah null B ∈ B. Suh reals are alled random reals.(b) If G is Bc-generi then there is a unique real xG suh that for all non-meager B ∈ B:

[B]c ∈ G↔ xG ∈ B∗,where B∗ denotes AV [G]
c for any Borel ode c for B. And a real x (in an outermodel of V ) is of this form i� x /∈ B∗ for eah meager B ∈ B. Suh reals arealled Cohen reals.Proof. (a) For onveniene we work not in Baire spae but in the (real) realnumbers R. De�ne xG = sup{r | r is rational and [(r,∞)] ∈ G}. We showthat xG belongs to A∗

c i� [Ac] ∈ G, by indution on c ∈ BC. If c is a Σ1 odefor a rational interval (p, q) then we have:
xG ∈ A∗

c i�
p < xG < q i�
p < sup{r ∈ Q | [(r,∞)] ∈ G} < q i�
[(p,∞)] ∈ G and [(q,∞)] /∈ G i�
[(p, q)] ∈ G
[Ac] ∈ G. 14



If c is a Σ1 ode for the union of rational intervals Ac =
⋃

n Ikn
then:

x ∈ A∗
c i� x ∈

⋃
n I

∗
kn

i�
[Ikn

] ∈ G for some n i�
[
⋃

n Ikn
] ∈ G i�

[Ac] ∈ G.Indutively, if α is ountable and c is a Σα ode, then the result holds byindution by the same argument as above. If c is a Πα ode, we may assumethat c(0) = 0 and therefore u(c) is a Σα ode, Au(c) = R− Ac and we have:
x ∈ A∗

c i�
x /∈ A∗

u(c) i�
[Au(c)] /∈ G i�
[Ac] ∈ G.This proves the �rst part of (a), as the uniqueness of xG is lear.Suppose that x = xG is random. If Ac is null then [Ac] /∈ G and thereforeby the �rst part of (a), x /∈ A∗

c . Conversely, suppose that x /∈ A∗
c whenever

Ac is null. Note that if [Ac] = [Ad] then Ac △Ad is null, A∗
c △A∗

d is null andthus x ∈ A∗
c i� x ∈ A∗

d. Now let G = {[Ac] | x ∈ A∗
c}. It is easy to hekthat G is a �lter on Bm. We laim that G is Bm-generi: Sine Bm satis�esthe ountable hain ondition, it su�es to show that if {[Acn

] | n ∈ N}is a maximal antihain in Bm then x belongs to A∗
cn

for some n. But themaximality of this antihain implies that x belongs to (
⋃

nAcn
)∗ and thelatter equals ⋃

nA
∗
cn
.(b) This is proved exatly as part (a), using the fat that Bc also satis�es theountable hain ondition. 2We an now prove Theorem 12. As M has only ountably many reals,it follows that the set of reals whih are not random over M is null. Thusto show that A is measurable, it su�es to show that {x ∈ A | x is randomover M} is Borel. Suppose that x is random over M and let x = xG, where

G is Bm-generi over M . Then M [x] is a model of ZFC− and we have:
x ∈ A i�
x ∈ p[T ] i�
M [x] � x ∈ p[T ] i� 15



For some [B]m ∈ G, [B]m  xG ∈ p[T ] i�For some [B]m, x ∈ B∗ and [B]m  xG ∈ p[T ] i�
x ∈

⋃
{B∗ | [B]m  xG ∈ p[T ]},and the latter is a Borel property of x. The same proof shows that A hasthe property of Baire. 2We next onsider the Ramsey property. For an in�nite set A ⊆ ω we let

[A]ω denote the set of all in�nite subsets of A. Is S ⊆ [ω]ω then we say thatan in�nite H ⊆ ω is homogeneous for S i� either [H ]ω ⊆ S or [H ]ω ∩ S = ∅.We say that S ⊆ [ω]ω is Ramsey i� there is an in�nite homogeneous set Hfor S.Theorem 20. Suppose that A is the projetion of the tree T on ω× κ, where
T belongs to the transitive ZFC− modelM and M has only ountably manysets of reals. Then A is Ramsey.The proof of this result makes use of Mathias foring. A ondition is apair (s, A) where s is a �nite subset of ω and A is an in�nite subset of ω suhthat max s < minA. A ondition (s, A) extends a ondition (t, B) i�1. t is an initial segment of s.2. A ⊆ B.3. s− t ⊆ B.If G is Mathias generi then G is determined by the real

xG =
⋃

{s | (s, A) ∈ G for some A},sine G = {(s, A) | s ⊆ xG ⊆ s ∪ A}. The real xG is alled a Mathias real.We shall prove:Lemma 21. Let ϕ be a sentene of the foring language and (s, A) a ondition.Then there exists an in�nite B ⊆ A suh that (s, B) deides ϕ (i.e., foreseither ϕ or ∼ ϕ).Lemma 22. A real x is Mathias over the transitive ZFC− model M i� x isin�nite and for eah maximal almost disjoint family A ∈M of subsets of ω,there is an A ∈ A suh that x is almost ontained in A.16



Given these Lemmas we prove Theorem 20 as follows: Suppose thatM isa transitive ZFC− model with only ountably many sets of reals and that Ais the projetion of the tree T ∈ M . For any real x, if M [x] satis�es ZFC−,then:
x belongs to A i�
T (x) has a branh i�
M [x] � T (x) has a branh.Now let ϕ be the sentene �T (xG) has a branh�. By Lemma 21 there is aondition of the form (∅, A) whih deides ϕ; assume that (∅, A)  ϕ. As
M has only ountably many sets of reals, there exists a Mathias generi GoverM whih ontains the ondition (∅, A). Thus M [xG] � ϕ. By Lemma 22every in�nite y ⊆ x is a Mathias real overM , and also the generi determinedby y ontains the ondition (∅, A). Thus T (y) has a branh for eah in�nite
y ⊆ xG and therefore xG is homogeneous for A.5.VorlesungLemma 21. Let ϕ be a sentene of the foring language and (s, A) a ondition.Then there exists an in�nite B ⊆ A suh that (s, B) deides ϕ (i.e., foreseither ϕ or ∼ ϕ).Lemma 22. A real x is Mathias over the transitive ZFC− model M i� x isin�nite and for eah maximal almost disjoint family A ∈M of subsets of ω,there is an A ∈ A suh that x is almost ontained in A.Proof of Lemma 21. For any A ⊆ ω and k ∈ ω we let A(> k) denote
{n ∈ A | n > k}. If s is a �nite subset of ω then A(> s) denotes A(> max s).We �rst onstrut an in�nite B ⊆ A suh that
(∗) If (t, C) extends (s, B) and deides ϕ then so does (t, B(> t)).By indution we de�ne bk = minBk for k ∈ ω: Set B0 = A. To de�ne Bk+1let {t1, . . . , tl} be a list of all subsets of {b1, . . . , bk}. Construt Bk = B1

k+1 ⊇

B2
k+1 ⊇ · · · ⊇ Bl

k+1 = Bk+1 as follows: Given Bj
k+1, if there exists C ⊆ Bj

k+1suh that (s∪ tj+1, C) deides ϕ then set Bj+1
k+1 = C; otherwise, Bj+1

k+1 = Bj
k+1.Then B = {bk | k ∈ ω} is as desired. 17



So we an suppose that A satis�es (∗). Now de�ne bk = minBk byindution on k as follows: Set B0 = A. Given Bk onstrut Bk+1 suh thatfor eah t ⊆ {b1, . . . , bk} exatly one of the following holds:
(s ∪ t ∪ {n}, Bk+1(> n))  ϕ for eah n ∈ Bk+1

(s ∪ t ∪ {n}, Bk+1(> n))  ∼ ϕ for eah n ∈ Bk+1

(s ∪ t ∪ {n}, Bk+1(> n)) does not deide ϕ for eah n ∈ Bk+1.We laim that (s, B) deides ϕ: Let (t, C) be an extension of (s, B) deiding
ϕ. Assume that Length(t) is minimal. If Length(t) = Length(s) then weare done sine it follows from (∗) for A that (s, B) deides ϕ. Otherwise let
m = max t and write t = s∪t′∪{m} where t′ ⊆ {b1, . . . , bk}. By onstrution
(s ∪ t′ ∪ {m}, Bk+1(> m)) either fores ϕ or ∼ ϕ; assume the former. Thenthe same holds for eah m ∈ Bk+1. It follows that (s ∪ t′, C) deides ϕ,ontraditing the minimality of Length(t). So (s, B) is the desired extensionof (s, A) whih deides ϕ. 2Proof of Lemma 22. If x is Mathias over M and A is a maximal almostdisjoint family in M then D = {(s, B) | B is almost ontained in an elementof A} is dense, and hene there exists (s, B) ∈ Gx ∩ D; as x is almostontained in B and B is almost ontained in an element of A, it follows that
x is almost ontained in an element of A.Conversely, suppose that x is in�nite and eah maximal almost disjointfamily of M has an element whih almost ontains x. Let D ∈ M be denseopen for Mathias foring; we must show that D has an element (s, A) suhthat s ⊆ x ⊆ s ∪ A. We say that an in�nite A aptures (s,D) i�
(∗∗) For all in�nite B ⊆ A(> s) there exists a �nite initial segment t of Bsuh that (s ∪ t, A(> (s ∪ t))) belongs to D.Main Claim. For any in�nite A, there is an in�nite A∗ ⊆ A suh that A∗aptures (s,D) for eah s with max s ∈ A∗.Proof of Main Claim. It su�es to show that for eah in�nite A and sthere is an in�nite A∗ ⊆ A suh that A∗ aptures (s,D). For then, we anindutively de�ne kn = minAn by setting A0 = A and hoosing an in�nite
An+1 ⊆ An whih aptures (s,D) for all s with max s ∈ {k0, . . . , kn}; then
A∗ = {k0, k1, . . .} is as desired. 18



So suppose that A and s are given, with max s ∈ A. We may assume thatfor all �nite t ⊆ A(> s) if (s ∪ t, B) belongs to D for some B ⊆ A(> (s ∪ t))then in fat (s ∪ t, A(> (s ∪ t))) belongs to D. Now let S be the set of all Bsuh that either B is not ontained in A(> s) or (s∪ t, A(> (s∪ t))) belongsto D for some �nite initial segment t of B. Then S is an open set (in thespae of in�nite subsets of ω). We shall show that open sets are ompletelyRamsey (see below), whih implies that there exists an in�nite B ⊆ A(> s)all of whose in�nite subsets either belong to S or to the omplement of S.By our assumption about A and the density of D, it must be the ase thatall in�nite subsets of B belong to S. It follows that B aptures (s,D), asdesired.Finally, we establish the omplete Ramseyness of open sets: S is om-pletely Ramsey i� for any ondition (s, A) there exists A∗ ⊆ A suh thateither [s, A∗] ⊆ S or [s, A∗]∩S = ∅, where [s, A∗] = {B | s ⊆ B ⊆ s∪A∗}. Itsu�es to show that open sets are Ramsey, as given (s, A) we an onsider
S∗ = {B | f ∗(B) ∈ S}, where f ∗(B) = s ∪ f [B] and f is the inreasingenumeration of A; the Ramseyness of the open set S∗ implies the ompleteRamseyness of S with respet to (s, A). We say that A aepts s i� [s, A] ⊆ Sand rejets s i� no B ⊆ A aepts s.(i) There is an A = {k0, k1, . . .} whih either aepts or rejets eah of its�nite subsets, obtained by indutively de�ning kn = minAn where A0 = ωand An+1 ⊆ An aepts or rejets eah subset of {k0, . . . , kn}.(ii) In fat there is an A = {k0, k1, . . .} that either aepts ∅ or rejets eahof its �nite subsets, obtained by by hoosing A0 as in (i) to rejet ∅ (withoutloss of generality) and assuming that A0 rejets eah subset of {k0, . . . , kn−1},hoosing kn as follows: For every subset s of {k0, . . . , kn−1} there are only�nitely many z ∈ A0 suh that A0 aepts s ∪ {z}, as otherwise there is anin�nite Z ⊆ A0 suh that A0 aepts s ∪ {z} for eah z ∈ Z and therefore
A0 aepts s, in ontradition to the assumption that A0 rejets s. Thuswe an hoose kn ∈ A0 − {k0, . . . , kn−1} suh that A0 rejets eah subset of
{k0, . . . , kn}. A0 rejets eah �nite subset of A = {k0, k1, . . .} and thereforeso does A itself.(iii) Now if the set A onstruted in (ii) aepts ∅ we have established theRamseyness of S. Otherwise A rejets eah of its �nite subsets. We laimthat no in�nite subset of A belongs to S. Otherwise there is an in�nite B ⊆ Awhih belongs to S and sine S is open there is a �nite initial segment s of
B suh that [s, B(> s)] is ontained in S; this ontradits the fat that Arejets s. 2 (Main Claim). 19



Now apply the hypothesis on x to obtain A almost ontaining x whih ap-tures (s,D) for all s with max s ∈ A. Choose a nonempty �nite initialsegment s of x suh that max s ∈ A and x ⊆ s ∪ A(> s). Consider thetree T of t ⊆ A(> s) suh that (s ∪ t, A(> (s ∪ t))) does not belong to D,ordered by end-extension. Then T is well-founded, as A aptures (s,D). Byabsoluteness, T is well-founded in V and therefore x(> s) is not a branhthrough T . But then for some initial segment t of x(> s), the ondition
(s∪ t, A(> (s∪ t))) belongs to D and satis�es s∪ t ⊆ x ⊆ s∪ t∪A(> (s∪ t)),as desired. 2 6.VorlesungBorel DeterminayA pruned tree T on a set A is a nonempty set of �nite sequenes ofelements of A, losed under initial segments, suh that eah element of T hasproper extension in T . We let [T ] denote the olletion of in�nite branhesthrough T . For any X ⊆ [T ], we de�ne the game G(T,X) as follows: Players
I and II alternately hoose a0, a1, . . . in A so that for eah n the sequene
(a0, . . . , an) belongs to T . Player I wins the game i� the in�nite sequene
(a0, a1, . . .) belongs to X. A strategy for I assigns an extension of length
n+1 in T to eah element of T of even length n; similarly for II with �even�replaed by �odd�. A strategy σ for I is a winning strategy i� I always winsthe game using σ, no matter how II plays; we similarly de�ne a winningstrategy for II. The game G(T,X) is determined i� either I or II has awinning strategy.Theorem 23. If X ⊆ [T ] is either losed or open, then G(T,X) is determined.Proof. Suppose that X is losed and that II has no winning strategy. Con-sider the strategy for I in whih he plays in suh a way as to guarantee that
II still has no winning strategy afterwards. Indutively this is possible, asotherwise II would have had a winning strategy before I plays his next move.We laim that this is in fat a winning strategy for I: Otherwise there is aplay of the game (a0, a1, . . .) where I follows the desribed strategy but Iloses. Sine X is losed this means that for some n, (a0, a1, . . . , a2n) has noextension in X (i.e., I has already lost at a �nite stage of the game). Butthis ontradits the de�nition of I's strategy!20



Similarly, if X is open and I has no winning strategy, then II uses thestrategy whih always guarantees that I still has no strategy. This must winfor II, as otherwise II loses at a �nite stage, ontraditing the de�nition ofhis strategy. 2Theorem 24. (Martin) If X ⊆ [T ] is Borel then G(T,X) is determined.Proof. Let T be a nonempty pruned tree on a set A. A overing of T is atriple (T̃ , π, ϕ) wherei. T̃ is a nonempty pruned tree on some set Ã.ii. π : T̃ → T is monotone (i.e., s ⊆ t → π(s) ⊆ π(t)) with Length(π(s)) =Length(s). Thus π gives rise to a ontinuous funtion π : [T̃ ] → [T ].iii. ϕ maps strategies for I (II, respetively) in T̃ to strategies for I (II,respetively) in T in suh a way that ϕ(σ̃) restrited to positions of length
≤ n depends only on σ̃ restrited to positions of length ≤ n for eah n.iv. If σ̃ is a strategy for I (II, respetively) in T̃ and x ∈ [T ] is playedaording to ϕ(σ̃) then there is x̃ ∈ [t̃] played aording to σ̃ suh that
π(x̃) = x.It follows that if X ⊆ [T ] and σ̃ is a winning strategy for I (II, respe-tively) in G(T̃ , X̃), where X̃ = π−1[X], then ϕ(σ̃) is a winning strategy for
I (II, respetively) in G(T,X). A k-overing of T is a overing (T̃ , π, ϕ) of
T suh that T ↾ 2k = T̃ ↾ 2k and π is the identity on T̃ ↾ 2k. For X ⊆ [T ]we say that (T̃ , π, ϕ) unravels X i� π−1[X] = X̃ is a lopen subset of [T̃ ].Thus Theorem 24 follows from:Main Lemma 25. If T is a nonempty pruned tree and X ⊆ [T ] is Borel thenfor eah k there is a k-overing of T whih unravels X.We prove the Main Lemma using:Lemma 26. The Main Lemma holds for losed X ⊆ [T ].Lemma 27. Fix k. Let (Ti+1, πi+1, ϕi+1) be a (k + i)-overing of Ti foreah i. Then there is a pruned tree T∞ and π∞,i, ϕ∞,i suh that for eah i
(T∞, π∞,i, ϕ∞,i) is a (k + i)-overing of Ti and π∞,i = πi+1 ◦ π∞,i+1, ϕ∞,i =
ϕi+1 ◦ ϕ∞,i+1. 21



Proof of Main Lemma. We show by indution on ξ > 0 that for all T , all
k and all Σ

0
ξ subsets X of T , there is a k-overing of T that unravels X.Notie that if a k-overing unravels X it also unravels ∼ X, so by Lemma26 we are done if ξ = 1. Assume ξ > 1 and that the desired property holdsfor all η < ξ. So for eah T , eah η < ξ, eah Π

0
η subset Y of T , and eah

k there is a k-overing that unravels ∼ Y , and therefore also Y . Let X be
Σ

0
ξ and k ∈ N . Then X =

⋃
iXi with Xi ∈ Π

0
ξi
, ξi < ξ. Let (T1, π1, ϕ1) bea k-overing of T0 = T that unravels X0. Then π−1
1 [Xi] is also Π

0
ξi
on T1 foreah i. By reursion de�ne (Ti+1, πi+1, ϕi+1) to be a (k + i)-overing of Tithat unravels π−1

i ◦ π−1
i−1 ◦ · · · ◦ π

−1
1 [Xi]. Let (T∞, π∞,i, ϕ∞,i) be as in Lemma27. Then (T∞, π∞,0, ϕ∞,0) unravels every Xi. Thus π−1

∞,0[X] =
⋃

i π
−1
∞,0[Xi]is open in [T∞]. Finally, let (T̃ , π, ϕ) be a k-overing of T∞ that unravels

π−1
∞,0[X], by Lemma 26. Then (T̃ , π∞,0 ◦π, ϕ∞,0 ◦ϕ) is a k-overing of T thatunravels X. 7.VorlesungProof of Lemma 27. Note that for any �nite sequene s if Length(s) ≤ 2(k+i)then whether s ∈ Ti or not is independent of i. So we de�ne:
s ∈ T∞ i�
s ∈ Ti for any i with Length(s) ≤ 2(k + i).It is lear that T∞ is a pruned tree and that T∞, Ti have the same �rst 2(k+i)levels.We de�ne π∞,i: If Length(s) ≤ 2(k + i) then π∞,i(s) = s. If 2(k + i) <Length(s) ≤ 2(k + j) we put π∞,i(s) = πi+1 ◦ πi+2 ◦ · · · ◦ πj(s) (this isindependent of j).We similarly de�ne ϕ∞,i: If σ∞ is a strategy for T∞ let ϕ∞,i(σ∞) ↾ 2(k +
i) = σ∞ ↾ 2(k+i) and for j > i, ϕ∞,i(σ∞) ↾ 2(k+j) = ϕi+1◦ϕi+2◦· · ·◦ϕj(σ∞ ↾

2(k + j)).It remains to verify ondition (iv) of the de�nition of overing. Supposethat σ∞ is a strategy for T∞ and let xi ∈ [ϕ∞,i(σ∞)] (i.e., xi is a play aordingto the strategy ϕ∞,i(σ∞)). Let xi+1 ∈ [ϕ∞,i+1(σ∞)], xi+2 ∈ [ϕ∞,i+2(σ∞)], . . .ome from (iv) for the overings (Ti+1, πi+1, ϕi+1), (Ti+2, πi+2, ϕi+2), . . . ap-plied to the strategies ϕj+1(ϕ∞,j+1(σ∞)) = ϕ∞,j(σ∞) for j ≥ i, so that
πj+1(xj+1) = xj for any j ≥ i. Sine πj+1 is the identity on sequenes oflength ≤ 2(k + j), it follows that (xi, xi+1, xi+2, . . .) onverges to a sequene22



x∞ de�ned by x∞ ↾ 2(k+ j) = xj ↾ 2(k+ j) for j ≥ i. Now σ∞ and ϕ∞,j(σ∞)agree on sequenes of length ≤ 2(k+j) so as xj follows the strategy ϕ∞,j(σ∞)for j ≥ i we have that x∞ follows the strategy σ∞. Finally it is lear that
π∞,i(x∞) = xi. 2Proof of Lemma 26. We �rst introdue quasistrategies. If T is a nonemptypruned tree then a quasistrategy for I in T is a nonempty pruned subtree
Σ ⊆ T suh that if (a0, . . . , a2j) ∈ Σ and (a0, . . . , a2j , a2j+1) ∈ T then
(a0, . . . , a2j , a2j+1) ∈ Σ. Similarly we de�ne quasistrategies for II in T . If
X ⊆ [T ] is given we say that a quasistrategy Σ for I is winning in G(T,X) i�
[Σ] ⊆ X (similarly for II). Thus a winning strategy for I in G(T,X) an beidenti�ed with a winning quasistrategy for I with the additional property thatfor eah (a0, . . . , a2j−1) ∈ Σ there is a unique a2j suh that (a0, . . . , a2j) ∈ Σ.If X is losed, then there is a anonial quasistrategy for I in G(T,X), de-�ned by Σ = {p ∈ T | p is not losing for I}. If I has a winning quasistrategythen his anonial quasistrategy is winning.Fix k, T and X as in the Lemma and let TX be the subtree of T whosebranhes are the elements of X. For a tree S, Su denotes {v | u ∗ v ∈ S} andfor Y ⊆ [S], Yu denotes {x | u ∗ x ∈ Y }. The desired k-overing (T̃ , π, ϕ) isdesribed via the following auxiliary game:(i) Players start with moves x0, x1, . . . , x2k−2, x2k−1 suh that (x0, . . . , x2k−1) ∈
T .(ii) In his next move, I plays (x2k,ΣI) where (x0, . . . , x2k) ∈ T and ΣI is aquasistrategy for I in T(x0,...,x2k) (with the onvention that II starts �rst ingames on T(x0,...,x2k)).(iii) II now has two options:Option 1: II plays (x2k+1, u) where (x0, . . . , x2k+1) ∈ T and u is a sequeneof even length suh that u ∈ T(x0,...,x2k+1) and u ∈ (ΣI)(x2k+1)−(TX)(x0,...,x2k+1).From then on I and II play x2k+2, x2k+3, . . . so that (x0, . . . , xj) ∈ T for all
j and u ⊆ (x2k+2, x2k+3, . . .).Option 2: II plays (x2k+1,ΣII) where (x0, . . . , x2k+1) ∈ T and ΣII is a quasis-trategy for II in (ΣI)(x2k+1) with ΣII ⊆ (TX)(x0,...,x2k+1). From then on I and
II play x2k+2, x2k+3, . . . so that (x2k+2, x2k+3, . . . , xl) ∈ ΣII for all l ≥ 2k+2.The map π is given by π(x0, . . . , x2k−1, (x2k, ∗), (x2k+1, ∗), x2k+2, . . . , xl) =
(x0, . . . , xl). As x̃ ∈ π−1(X) i� x̃(2k+1) is of the form (x2k+1,ΣII), it followsthat π−1(X) is lopen. 23



Finally we must de�ne ϕ so that given a strategy σ̃ on T̃ , the strategy
σ = ϕ(σ̃) on T has the property that for any x ∈ [σ] there is x̃ ∈ [σ̃] with
π(x̃) = x. We now desribe the strategy σ. There are two ases.Case 1. σ̃ is a strategy for I in T̃ .For the �rst 2k moves, σ is just σ̃. Then σ̃ provides I with (x2k,ΣI); σhas I play x2k. Then II plays x2k+1. There are two subases.Subase 1. I has a winning strategy inG((ΣI)(x2k+1), [(ΣI)(x2k+1)]−X(x0,...,x2k+1)).Then σ requires I to play this winning strategy. After �nitely many movesa shortest position u of even length is reahed for whih u /∈ (TX)(x0,...,x2k+1),say u = (x2k+2, . . . , x2l−1). Then (x0, . . . , x2k−1, (x2k,ΣI), (x2k+1, u), x2k+2, . . . , x2l−1)is a legal position in T̃ , and σ requires I from then on to play following σ̃.Subase 2. II has a winning strategy inG((ΣI)(x2k+1), [(ΣI)(x2k+1)]−X(x0,...,x2k+1)).Let ΣII be II's anonial quasistrategy in this game. From then on, Iplays following σ̃, assuming that in the game on T̃ , II played (x2k+1,ΣII). Ian do this as long as II ollaborates and plays so that (x2k+2, . . . , x2l−1) ∈
(ΣII)(x0,...,x2k+1), sine then we have legal positions in T̃ . But if for some lwith 2l − 1 > 2k + 2, II plays so that (x2k+2, . . . , x2l−1) /∈ (ΣII)(x0,...,x2k+1),then by de�nition of ΣII , it follows that I has a winning strategy in
G((ΣI)(x2k+1,...,x2l−1), [(ΣI)(x2k+1,...,x2l−1)]−X(x0,...,x2k+1,...,x2l−1)). Then I ontin-ues as in Subase 1.Case 2. σ̃ is a strategy for II in T̃ .Again for the �rst 2k moves σ is just σ̃. Next I plays x2k. Put U =
{(x2k+1) ∗ u ∈ T(x0,...,x2k) | u has even length and there is a quasistrategy ΣIfor I in T(x0,...,x2k) suh that σ̃ requires II to play (x2k+1, u) when I plays
(x2k,ΣI)}. Then

U = {x ∈ [T(x0,...,x2k)] | x ⊇ (x2k+1) ∗ u for some (x2k+1) ∗ u ∈ U}is an open set in [T(x0,...,x2k)].Consider now the game on T(x0,...,x2k) where II plays �rst, the playersprodue x2k+1, x2k+2, . . . and II wins i� (x2k+1, x2k+2, . . .) belongs to U .24



Subase 1. II has a winning strategy in this game.Then σ follows this winning strategy until a position (x2k+1, . . . , x2l−1) =
u is reahed whih belongs to U . Let ΣI witness u ∈ U . II then follows σ̃after the position (x0, . . . , x2k−1, (x2k,ΣI), (x2k+1, u), x2k+2, . . . , x2l−1).Subase 2. I has a winning strategy in this game.Let ΣI be the anonial quasistrategy for I. Then if I plays (x2k,ΣI) inthe game on T̃ , σ̃ annot ask II to play something of the form (x2k+1, u),beause then (x2k+1) ∗ u belongs to U and by the rules of T̃ , (x2k+1) ∗ ubelongs to ΣI , ontraditing the fat that no sequene in ΣI an belong to
U . So if I plays (x2k,ΣI) in the game on T̃ , σ̃ asks II to play (x2k+1,ΣII).So σ has II play x2k+1 and then follow σ̃ as long as I ollaborates so that
(x2k+2, . . . , x2l) belongs to ΣII . If for some l ≥ k + 1, I plays x2l with
(x2k+2, . . . , x2l) /∈ ΣII , then sine ΣII is a quasistrategy for II in (ΣI)(x2k+1)(and therefore I's moves are untrestrited as long as they are in ΣI) it followsthat (x2k+2, . . . , x2l) /∈ (ΣI)(x2k+1) and we are bak in Subase 1 again.This ompletes the proof of Lemma 26. 28.VorlesungThe Wadge PropertySuppose that A, B are subsets of Baire spae. We say that A is Wadgereduible to B, written A ≤w B, i� there is a ontinuous funtion f suhthat x ∈ A i� f(x) ∈ B.Theorem 28. If A, B are Borel then either A ≤w B or B ≤w∼ A.Proof. Consider the Wadge game Gw(A,B) where players I and II al-ternately hoose natural numbers x(0), y(0), x(1), y(1), . . . and II wins i�
(x ∈ A ↔ y ∈ B). This is a Borel game and therefore determined. If σis a winning strategy for II then σ indues a ontinuous funtion σ∗ fromBaire spae to Baire spae suh that x ∈ A ↔ σ∗(x) ∈ B. If σ is a winningstrategy for I then σ indues a ontinuous funtion σ∗ from Baire spae toBaire spae suh that y ∈ B ↔ σ∗(y) ∈∼ A. 225



The Wadge degree of A is its equivalene lass [A]w under the equivalenerelation A ≡w B i� (A ≤w B and B ≤w A). Theorem 28 says that theordering of Wadge degrees is almost a linear ordering, in the sense that theonly inomparable pairs of Wadge degrees are of the form [A]w, [∼ A]w. Itis also possible that [A]w = [∼ A]w; an example is A = {x | x(0) is even}.Theorem 29. The ordering of Wadge degrees is well-founded.Proof. If not then there is a sequene A0, A1, . . . with An �w An+1 and
An �∼ An+1 for eah n. Let σ0

n be a winning strategy for I in Gw(An, An+1)and σ1
n a winning strategy for I in Gw(An,∼ An+1).Fix x ∈ 2N . We de�ne plays of games Gx

0 , G
x
1 , . . . as follows: In game Gx

n,
I applies the strategy σx(n)

n , and the k-th move of II is the k-th move of I in
Gx

n+1. Let yn(x) be the play of I in game Gx
n. Then

(∗) yn(x) /∈ An ↔ yn+1(x) ∈ A
x(n)
n+1 ,where A0

n+1 = An+1, A1
n+1 =∼ An+1. Consider now X = {x ∈ 2N | y0(x) ∈

A0}.Claim. If x, x̄ di�er at exatly one argument, we have x ∈ X i� x̄ /∈ X.Proof of Claim. Suppose that x and x̄ di�er exatly at argument k. Then
yk+1(x) = yk+1(x̄), sine these depend only on x(n) for n > k. So by (∗),
yk(x) /∈ Ak ↔ yk+1(x) ∈ A

x(k)
k+1 ↔ yk+1(x̄) ∈ A

x(k)
k+1 ↔ yk+1(x̄) /∈ A

x̄(k)
k+1 ↔

yk(x̄) ∈ Ak. Sine x, x̄ agree at arguments less than k, it follows again by
(∗) that y0(x) /∈ A0 ↔ y0(x̄) ∈ A0; i.e., x /∈ X i� x̄ ∈ X. 2 (Claim)

X is Borel and therefore has the Baire property. Therefore either X or
∼ X is omeager inside some basi open set Ns = {x | s ⊆ x}, s ∈ 2<ω. Butthe homeomorphism that swithes the value of x at n = Length(s) sends
X ∩Ns to ∼ X ∩Ns and therefore gives two disjoint omeager subsets of Ns,a ontradition. 2 Uniformisation of Π1

1, Σ1
2 RelationsLet P ⊆ N×N and let F be a funtion with domain and range ontainedinN . We say that F uniformises P i� the domain of F equals {x | ∃y (x, y) ∈

P} and for x in the domain of F , (x, F (x)) ∈ P .26



Theorem 30. Every Π1
1 relation an be uniformised by a funtion F whosegraph {(x, y) | y = F (x)} is Π1

1.Proof. First we show how to pik a speial element from a given Π1
1 set P .Let U be a reursive tree on ω × ω suh that

x ∈ P i� U(x) is well-founded.Let 〈un | n ∈ N〉 be a reursive enumeration of Seq = ω<ω where u0 = ∅ andlength un ≤ n for eah n. De�ne the tree T on ω × ω1 by:
(s, h) ∈ T ↔ ∀m,n < Length(s)[ If um ⊇ un and (s ↾ Length(um), s ↾ um) ∈
U then h(m) < h(n)].Then x ∈ P ↔ T (x) has a branh. Also, if x belongs to P then T (x) has aleast branh, i.e., a branh gx with the property that gx(n) ≤ f(n) whenever
f is a branh through T (x): gx is de�ned by gx(n) = Rank(un) in T (x) if
un ∈ U(x); 0 otherwise.Now de�ne P0 = P , P2n+1 = {x ∈ P2n | gx(n) is least}, P2n+2 = {x ∈
P2n+1 | x(n) is least}. Then the intersetion of the Pn's has a unique element
a.Claim. {a} is Π1

1.Proof of Claim. We have:
x ∈ P1 ↔
x ∈ P ∧ ∀y(Rank(u0) in U(x) ≤ Rank(u0) in U(y))
x ∈ P2 ↔
x ∈ P1 ∧ ∀y((Rank(u0) in U(x) < Rank(u0) in U(y)) ∨ (Rank(u0) in U(x) =Rank(u0) in U(y) ∧ x(0) ≤ y(0)))
x ∈ P3 ↔
x ∈ P2 ∧ ∀y((Rank(u0) in U(x) < Rank(u0) in U(y)) ∨ (Rank(u0) in U(x) =Rank(u0) in U(y) ∧ x(0) < y(0)) ∨ (Rank(u0) in U(x) = Rank(u0) in U(y) ∧
x(0) = y(0) ∧ Rank(u1) in U(y) ≤ Rank(u1) in U(x))Et.The above are Π1

1 de�nitions, using the equivalenes:27



Rank(u) in U(x) ≤ Rank(u) in U(y) i�There exists an order-preserving funtion from (U(x))u into (U(y))uRank(u) in U(x) < Rank(u) in U(y) i�There exists an order-preserving funtion from (U(x))u into (U(y))u∗ for some
u∗ properly extending u.Now we prove the Uniformisation Theorem. Let P be a Π1

1 subset of
N ×N . Let U be a tree in ω × ω × ω suh that

(x, y) ∈ P i� U(x, y) is well-founded.For eah x ∈ N let P x be the Π1
1 set {y | (x, y) ∈ P} and de�ne P x = P x

0 ⊇
P x

1 ⊇ · · · exatly as we de�ned Pn, n ∈ N , with P , U(y) replaed by P x,
U(x, y). Let Qx the intersetion of the P x

n 's. Then Qx has a single element,whih we denote by F (x). The Π1
1 expression we gave above applies to Qx,and shows that the graph of F , {(x, y) | y ∈ Qx}, is Π1

1, as desired. 2Corollary 31. Every Σ1
2 binary relation an be uniformised by a Σ1

2 funtion.Proof. Suppose that P ⊆ N ×N is Σ1
2; then there is a Π1

1 relation Q ⊆ N 3suh that P is the projetion of Q; i.e., P = {(x, y) | ∃z((x, y, z) ∈ Q)}.Apply Π1
1 uniformisation to get a Π1

1 funtion F : N → N 2 with domain
{x | ∃y, z((x, y, z) ∈ Q)} suh that for x in this set, F (x) = (F (x)0, F (x)1)where (x, F (x)0, F (x)1) ∈ Q. Then F ∗ uniformises P , where F ∗(x) = F (x)0.And the graph of F ∗ is Σ1

2 sine
y = F ∗(x) i� ∃z (y, z) = F (x).Thus F ∗ is the desired Σ1

2 uniformising funtion. 2.9.VorlesungPart 2: The Construtible UniverseWe showed that the regularity properties measurability, Baire property,perfet set property and Ramsey property hold for Σ
1
1 sets, provably in ZFC.However this does not extend to ∆

1
2 sets:Theorem 32. In L, there is a wellordering < of the reals of length ω1 suhthat the relation {(x, y) | y odes the set of <-predeessors of x} is ∆1

2. (Suha wellordering is alled a good ∆1
2 wellordering.)28



Proof. < is just the usual anonial wellordering of L, restrited to the reals.We have:
y odes the set of <-predeessors of x i�
∃z(z odes an Lα � ZFC− ontaining x, and y odes the set of<Lα

-predeessorsof x in Lα) i�
∀z(If z odes an Lα � ZFC− ontaining x then y odes the set of <Lα

-predeessors of x in Lα)Thus we have a good ∆1
2 wellordering. 2Corollary 33. In L, there are ∆1

2 sets whih are not measurable and do nothave the Baire, perfet set or Ramsey properties.Proof. List the reals using a good ∆1
2 wellordering as 〈xα | α < ω1〉 and build

X by indutively deiding xα ∈ X, diagonalising over reals whih mightwitness one of the four regularity properties. 2We proved determinay for Borel sets in ZFC. This does not extend to
Π1

1 sets: A Turing set of reals is a set of reals X with the property: x ∈ X,
x =T y → y ∈ X, where =T denotes Turing equivalene. A one is a Turingset of the form {y | x ≤T y} for some x.Lemma 34. (Martin's Lemma) Suppose that X is a determined Turing set.Then either X or ∼ X ontains a one.Proof. If I has a winning strategy σ in the game for X then for any possibleplay y for player II, σ(y) belongs to X, where σ(y) is the result of the gamewhere II plays y and I follows his strategy σ. Thus if σ ≤T y, it followsthat σ(y) =T y belongs to X. If II has the winning strategy τ , then we get
τ(x) =T x ∈∼ X for all x ≥T τ . 2Corollary 35. In L, Π1

1 determinay fails.Proof. It su�es to �nd a Turing set X suh that neitherX nor ∼ X ontainsa one. Consider X = {x | x is the �rst-order theory of some Lα � ZFC−}.Clearly ∼ X annot ontain a one as every real is reursive in some elementof X. And if x belongs to X, then x′(= the Turing jump of x) does not, so
∼ X does not ontain a one. 2 29



We showed that for Borel sets A and B either A ≤W B or B ≤W∼ A.The same property for Π1
1 would imply that any two non-Borel Π1

1 sets havethe same Wadge degree. The latter fails in L:Theorem 36. In L, not all non-Borel Π1
1 sets have the same Wadge degree.Proof. Let 〈αi | 0 ≤ i < ω1〉 be the inreasing enumeration of the ountableordinals α suh that Lα is admissible. Let WO be the set of x suh that xodes an ordinal. WO is a ompleteΠ1

1 set, and therefore eah Π1
1 set is Wadgereduible to WO. Let X be the set of x suh that x odes an ordinal between

αi and αi+1 for an even i. X is Π1
1 and not Borel. Now suppose that WOwere Wadge reduible to X and let a be a real oding a ontinuous funtion

f suh that x ∈ WO ↔ f(x) ∈ X. Choose an odd i suh that a belongs to
Lαi

and αi is ountable in Lαi+1
= M . Then x ∈ WO∩M ↔ f(x) ∈ X ∩M ,and X ∩M is ∆1(M). So WO ∩M is ∆1(M), whih is impossible sine Mis the least admissible set ontaining some real. 2The Uniformisation Property does extend in L beyond Σ1

2:Theorem 37. In L: Eah Σ1
n binary relation an be uniformised by a Σ1

nfuntion, for eah n ≥ 2.Proof. Let< be a good∆1
2 wellordering of the reals. IfR(x, y) ↔ ∃z S(x, y, z)with S Π1

n−1, n ≥ 2, then de�ne:
S∗(x, y, z) ↔ (S(x, y, z) ∧ ∀(y′, z′) < (y, z)(∼ S(x, y′, z′))).Then S∗ is Σ1

n, as < is a good ∆1
2 wellordering and n ≥ 2. So R is uniformisedby R∗(x, y) ↔ ∃z S∗(x, y, z). 210.VorlesungPart 3: Foring Extensions of LIs it possible to have regularity properties beyond Σ1

1 in a foring extensionof L? Solovay onstruted, using an L-inaessible, a generi extension of Lin whih all projetive sets are regular.Theorem 38. (Solovay) Assume that there is an L-inaessible. Then thereis a set-generi extension of L in whih all projetive sets are measurable andhave the Baire, perfet set and Ramsey properties.30



Proof. Let κ be inaessible in L and let P be the Lévy ollapse to make κequal to ω1: A ondition in P is a �nite funtion p : F → κ, where F ⊆ ω×κand p(n, α) < α for eah (n, α) ∈ Dom p. P makes eah α < κ ountableand has the κ-; it follows that in a P -generi extension L[G], κ is ω1. Also
P is homogeneous: If p, q are elements of P then there is an automorphismof P whih sends p to a ondition ompatible with q.We show that in L[G], eah projetive set of reals X is measurable. Sup-pose that x ∈ X ↔ L[G] � ϕ(x, a) where ϕ is a formula of seond-orderarithmeti and a ∈ L[G] is a real parameter. We may hoose α < κ suhthat a belongs to L[Gα], where Gα = G ∩ Lα is Pα = P ∩ Lα-generi over L.Then L[G] is a P -generi extension of L[Gα], sine P ≈ Pα × P .Almost every real (in the sense of Lebesgue measure) is random over
L[Gα] and therefore it su�es to show that X agrees with some Borel set onthe reals whih are random over L[Gα]. Suppose that x is suh a real; then
L[G] = L[Gα][Gx][Hx], where P ≈ Pα∗Q∗R, Gx is the generi orrespondingto x for random real foring Q over L[Gα] and Hx is generi over L[Gα][Gx]for some foring R. It is not di�ult to show that R is equivalent to P , andso we an assume R = P . Thus by the homogeneity of P :
x ∈ X i�
L[Gα][Gx][Hx] � ϕ(x, a) i�
L[Gα][Gx] � (P  ϕ(x, a)) i�For some B ∈ Gx, B Q (P  ϕ(ẋ, a)) i�
x belongs to the union of the BL[G], B ∈ Q suh that B Q (P  ϕ(ẋ, a)).As L[Gα] has only ountably many reals, it follows that Q is ountable andtherefore this last ondition on x is a Borel ondition. So X is measurable.The same argument works for the Baire property, using the Cohen algebrain plae of the random algebra.If X is an unountable projetive set of reals in L[G] then again we anwrite x ∈ X i� L[Gα][Gx] � (P  ψ(x, a)), where a belongs to L[Gα], α < κand Gx is generi over L[Gα] for some foring Qx. As X is unountable, wean hoose x ∈ X to not belong to L[Gα] and for this x an assume that
Qx  (ẋ /∈ L[Gα] and (P  ψ(ẋ, a))). As the power set of Qx in L[Gα]is ountable in L[G], we an build a perfet set of y's with orresponding
Qx-generis Gy suh that L[Gα][Gy] � (P  ψ(ẏ, a)). Thus y belongs to Xfor eah suh y, showing that X has a perfet subset.For the Ramsey property, we again write x ∈ X i� L[Gα][Gx] � (P 31



ψ(x, a)). There is a Mathias ondition (∅, A) whih fores over L[Gα] that
L[Gα][Gẋ] � (P  ψ(ẋ, a)) where ẋ denotes the Mathias generi real (or thesame with ψ replaed by ∼ ψ; assume the former). Then if x is Mathiasgeneri over L[Gα], x ⊆ A, it follows that L[Gα][Gy] � (P  ψ(y, a)) for allin�nite y ⊆ x, as any suh y is also Mathias generi. Thus y ∈ X for suh yand x is homogeneous for X. 2Shelah showed that the use of an L-inaessible as above is neessaryto obtain the measurability of Σ1

3 sets. (It is however not neessary for themeasurability of ∆1
2 sets.) He also showed that an L-inaessible is not neededto obtain the Baire property for all projetive sets. It is not di�ult to showthat an L-inaessible is neessary to obtain the perfet set property for Π1

1sets. The situation with regard to the Ramsey property is still open.11.VorlesungWe showed that both Π1
1 determinay and the Wadge property for Π1

1sets fail in L. These properties also fail in all set-generi extensions of L, bysimilar arguments. Are these properties in fat refutable in ZFC? We willsee that they are implied by the existene of large ardinals, whih makesthis rather unlikely.We showed that projetive relations an be projetively uniformised in L.This an fail in a set-generi extension of L:Theorem 39. There is a foring extension of L in whih some Π1
2 binaryrelation has no projetive uniformisation.Proof. Add ω1 Cohen reals to L. In the extension, we have: For eah real

x, there is a real y whih is Cohen over L[x]. Consider now the relation
R(x, y) ↔ y is Cohen over L[x]. This is a total Π1

2 relation. Suppose that fwere a projetive funtion with parameter a whih uniformised R. Then ourmodel an be written as L[b, G] where a belongs to L[b] and G is generi foradding ω1 Cohen reals over L[b]. But by homogeneity, f(b) must belong to
L[b], whih ontradits the fat that f(b) is Cohen over L[b]. 2Part 4: SharpsAssume that every real has a #. We will show that the regularity, de-terminay, Wadge and uniformisation properties that we established in ZFCan be extended to one more level of the projetive hierarhy.32



Theorem 40. Suppose that ω1 is inaessible to reals, i.e., L[a] ontains onlyountably many reals for eah real a. Then every Σ
1
2 set is measurable andhas the Baire, perfet set and Ramsey properties.Proof. By Theorems 10, 12 and 20, it su�es to show that eah Σ

1
2 set Ais the projetion of a tree T on ω × κ for some κ, where T belongs to atransitive ZFC− model ontaining only ountably many reals. Let U be atree on ω × ω × ω suh that

x ∈ A i� ∃y U(x, y) is well-founded.Let 〈un | n ∈ N〉 be a reursive enumeration of Seq suh that u0 = ∅ andLength(un) ≤ n for eah n. De�ne the tree T on ω × ω × ω1 by:
(u, v, h) ∈ T ↔ ∀m,n < Length(u) = Length(v) [ If um ⊇ un and (u ↾Length(um), v ↾ Length(um), um) ∈ U then h(m) < h(n)].Then x ∈ A↔ T (x) has a branh. T an be identi�ed with a tree on ω×ω1and belongs to L[a], where a is a real oding the tree U . It follows that Ais the projetion of a tree whih belongs to a transitive ZFC− model all ofwhose reals are onstrutible from a. By hypothesis this model ontains onlyountably many reals. 2Theorem 41. Suppose that x# exists for every real x. Then every Σ

1
1 set isdetermined.Proof. Let A be Σ

1
1; we want to show that the game GA (played on ω) isdetermined. Let T be a tree on Seq2 suih that

x ∈ A↔ T (x) has a branh.Let <∗ be the Kleene-Brouwer ordering on Seq: s <∗ t i� either s properlyextends t or s(n) < t(n) where n is least so that s(n) 6= t(n). For s ∈ Seqlet Ts = {t | (u, t) ∈ T for some u ⊆ s}. Also let t0, t1, . . . be an enumerationof Seq and if s has length 2n, let Ks be the set {t0, . . . , tn−1} ∩ Ts, ks =Card (Ks).We de�ne an auxiliary game G∗ as follows: Player I plays natural num-bers a0, a1, . . . and player II plays pairs (b0, h0), (b1, h1), . . . where the bi arenatural numbers and for eah n, hn is an order-preserving funtion from
(K(a0,b0,...,an,bn), <

∗) into ω1 and i < j → hi ⊆ hj . If Player II an follow33



these rules for in�nitely many moves then he wins; otherwise player I wins.Clearly G∗ is determined, as it is a losed game.If II has a winning strategy in G∗ then of ourse he also has a winningstrategy in GA.Let σ∗ be the anonial winning strategy for I in G∗. We shall onstrut awinning strategy σ for I inGA. Suppose that s∗ = (a0, (b0, h0), . . . , an, (bn, hn))is a play inG∗, and let E be the range of hn. Then the hi's are uniquely deter-mined by E, as hn is the unique order-preserving funtion from the ordering
(K(a0,b0,...,an,bn), <

∗) into ω1, and the hi are the appropriate restritions of hn.So s∗ is uniquely determined by s = (a0, b0, . . . , an, bn) and E. For eah suh
s let Fs be the funtion Fs(E) = σ∗(s∗), where s∗ is uniquely determined asabove by E. Then as σ∗ is onstrutible from a real and this real has a #,it follows that there is an unountable H ⊆ ω1 whih is homogeneous for Fsfor every s, i.e., for all s, Fs(E) is the same for all E ⊆ H of ardinality ks.De�ne the strategy σ by: σ(s) = Fs(E), for any E ⊆ H of ardinality ks.We laim that this is a winning strategy for I. If not, let x be a resultof playing this strategy with x /∈ A. Then there is an order-preservingembedding h of (T (x), <∗) into H , as H is unountable and (T (x), <∗) isa ountable well-ordering. But onsider now the play of G∗ where II playsrestritions of h to the appropriate Ks's. This is a play of G∗ aording tothe strategy σ∗, in ontradition to the fat that σ∗ is a winning strategy for
I in G∗. 2Martin showed that the existene of #'s is also su�ient for the deter-minay Boolean ombinations of Π

1
1 sets. Thus from this assumption theWadge property holds for Π

1
1 sets.12.VorlesungTheorem 42. Assume that every real has a # and A(x, y) is Π

1
2. Then A anbe uniformised by a Π

1
3 funtion.Proof. First we show how to hoose a anonial element from a nonempty Π

1
2set A. It will be onvenient to work with the spae 2ω instead of Baire spae.Write x ∈ A↔ ∀y T (x, y) has a branh, where T is a tree on 2×2×ω. Then

x ∈ A ↔ U(x) is well-founded, where a node in U is of the form (s, t, f)with s and t �nite 0, 1-sequenes of the same length, f an order-preservingfuntion from (T (s, t), <∗) into ω1 and <∗ the Kleene-Brouwer order. Let L∗denote ⋃
{L[x] | x a real}. 34



Now suppose that s, t are �nite 0, 1-sequenes of the same length and
F,G ∈ L∗ are funtions from U(s, t) into Ord. We write F ≤∗ G i� for someCUB C ⊆ ω1 in L∗, F (f) ≤ G(f) for all f ∈ U(s, t) with Range (f) ⊆ C.For any F and G, either F ≤∗ G or G ≤∗ F , sine we have assumed #'sand F,G are onstrutible from reals. Therefore ≤∗ gives a wellordering ifwe identify F with G when F =∗ G.For x ∈ A let F x be the anonial ranking funtion on U(x). Then
F x belongs to L∗ sine it is onstrutible from T and x. Fix n and let
t1, t2, . . . , t2n list the 0, 1-sequenes of length n in lexiographial order. Thenset αx

n = 〈β1, . . . , β2n〉, where βi is the rank of F x ↾ U(x ↾ n, ti) in ≤∗.We an now de�ne a anonial element of A. Choose x1 to minimize
αx

1 , x(0) (in the lexiographial ordering of �nite sequenes of ordinals) for
x ∈ A, and set n0 = x1(0). Then hoose x2 to minimize αx

2 , x(1) for x ∈ Awhih minimize αx
1 , x(0), and set n1 = x2(1). Continue in this way, produinga real x∗ = 〈n0, n1, . . .〉.We laim that x∗ belongs to A. Indeed, for eah n hoose F n(t) withdomain U(x∗ ↾ n, t), t of length n, whose ranks realize αxn

n . Then for someCUB C, the F n(t) restrited to elements of U(x∗ ↾ n, t) with range in Cohere. It follows that U(x∗) is well-founded, and therefore x∗ belongs to A.We show that {x∗} is Π1
3 in a real oding T . Indeed:

y = x∗ i� y ∈ A and
∀z, k (If z belongs to A, z ↾ k = y ↾ k and αz

l = αy
l for l < k then αz

k isgreater than αy
k or z(k) ≥ y(k)).As αy

l and αz
l an be ompared in L[(y, z)#], this gives a Π1

3 de�nition. Andas in the proof of Π1
1 uniformisation, the above relativises uniformly to givethat a binary Π

1
2 relation an be Π

1
3 uniformised. 2Corollary 43. Assume #'s for reals. Then every binary Σ

1
3 relation an be

Σ
1
4 uniformised.We annot expet to extend these results to higher projetive levels onlyunder the assumption of #'s. There is a smallest inner model losed under

#, and this model has a ∆1
3 wellordering of its reals. Thus in this modelregularity must fail for ∆1

3 sets. And in this model there is a Π1
2 set A suhthat both A and the omplement of A are o�nal in the Turing degrees,showing that Π1

2 determinay must fail. (In fat ∆1
2 determinay fails.) The35



Wadge property also fails for Π1
2 sets. And in the foring extension obtainedby adding ω1 Cohen reals, there is a Π1

3 binary relation whih annot beprojetively uniformised.To extend desriptive set theory, one must a large ardinal hypothesiswhih violate the existene of a ∆1
3 wellordering of the reals. This hypothesisis: There is a Woodin ardinal κ suh that V #

κ exists. With this hypothe-sis, one obtains Σ1
3 regularity, Π1

2 determinay and the uniformisation of Π1
3binary relations by Π1

3 funtions. More Woodin ardinals arry the theoryto the higher levels of the projetive hierarhy. Thus with in�nitely manyWoodin ardinals, one has a very satisfying theory of the projetive sets.
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