
Internal and External Consisteny, Wintersemester 20051.-6.VorlesungenThere are two standard ways to establish onsisteny in set theory. Oneis to prove onsisteny using inner models, in the way that Gödel provedthe onsisteny of GCH using the inner model L. The other is to proveonsisteny using outer models, in the way that Cohen proved the onsistenyof the negation of CH by enlarging L to a foring extension L[G].But we an demand more from the outer model method, and we illustratethis by examining Easton's strengthening of Cohen's result:Theorem 1 (Easton's Theorem) There is a foring extension L[G] of L inwhih GCH fails at every regular ardinal.Assume that the universe V of all sets is rih in the sense that it ontainsinner models with large ardinals. Then what is the relationship betweenEaston's model L[G] and V ? In partiular, are these models ompatible, inthe sense that they are inner models of a ommon third model? If not, thenthe failure of GCH at every regular ardinal is onsistent only in a weak sense,as it an only hold in universes whih are inompatible with the universe ofall sets. Ideally, we would like L[G] to not only be ompatible with V , butto be an inner model of V .We say that a statement is internally onsistent (relative to large ardi-nals) i� it holds in some inner model (under the assumption that there areinner models with large ardinals). By speifying what large ardinals arerequired, we obtain a new type of onsisteny result. Let Con (ZFC + ϕ)stand for �ZFC + ϕ is onsistent� and Ion(ZFC + ϕ) stand for �there is aninner model of ZFC + ϕ�. A typial onsisteny result takes the formCon (ZFC + LC) → Con (ZFC + ϕ)where LC denotes some large ardinal axiom. An internal onsisteny resulttakes the form Ion(ZFC + LC) → Ion(ZFC + ϕ).Thus a statement ϕ is internally onsistent relative to large ardinals i�Ion(ZFC + ϕ) follows from Ion(ZFC + LC) for some large ardinal axiomLC. 1



A statement an be onsistent without being internally onsistent relativeto large ardinals. . An example is the statement that there are no transitivemodels of ZFC, whih fails in any inner model (assuming there are innermodels with inaessible ardinals). Another example is:For eah in�nite regular ardinal κ there is a nononstrutible subset of κwhose proper initial segments are onstrutible.This an be fored over L, but does not hold in any inner model, assumingthe existene of 0#.If the onsisteny of a statement without parameters is shown using setforing, then it is usually easy to prove its internal onsisteny relative tolarge ardinals. (Some examples are mentioned below.) But this is not thease for statements that ontain unountable parameters or for statementswhose onsisteny is shown through the use of lass foring. In these latterases, questions of internal onsisteny and of internal onsisteny strengthan be quite interesting, as we shall see.Large Cardinals and L-like UniversesThe seond part of this ourse addresses the following question: Can wesimultaneously have the advantages of both the axiom of onstrutibilityand the existene of large ardinals? Unfortunately even rather modest largeardinal hypotheses, suh as the existene of a measurable ardinal, refute
V = L. We an however hope for the following ompromise:

V is an �L-like� model ontaining large ardinals.In this artile we explore the possibilities for this assertion, for variousnotions of �L-like� and for various types of large ardinals.There are two approahes to this problem. The �rst approah is via theInner model program. Show that any universe with large ardinals has an
L-like inner model with large ardinals.2



The inner model program, through use of �ne struture theory and thetheory of iterated ultrapowers, has sueeded in produing very L-like innermodels ontaining many Woodin ardinals.An alternative approah is given by theOuter model program. Show that any universe with large ardinals has an
L-like outer model with large ardinals.We will show that L-like outer models with extremely large ardinals anbe obtained using the method of iterated foring.Part One. Internal ConsistenyWe turn now to a detailed study of internal onsisteny, beginning withEaston's theorem.Let Reg denote the lass of in�nite regular ardinals and Card the lass ofall in�nite ardinals. An Easton funtion is a lass funtion F : Reg → Cardsuh that:For all κ ≤ λ in Reg: F (κ) ≤ F (λ).For all κ ∈ Reg: of (F (κ)) > κ.Easton showed that if F is an Easton funtion in L, then there is a o�nality-preserving lass foring extension L[G] of L in whih 2κ = F (κ) for all regular
κ. We say that the model L[G] realises the Easton funtion F .Whih Easton funtions in L an be realised in an inner model? Thefollowing results were obtained jointly with Pavel Ondrejovi¢.Theorem 2 Suppose that 0# exists and F is an Easton funtion in L whihis L-de�nable using parameters whih are ountable in V . Then there existsan inner model with the same o�nalities as L in whih 2κ = F (κ) for eahin�nite regular κ.Corollary 3 The statement

2κ = κ++ for all in�nite regular κis internally onsistent relative to 0#.3



Theorem 4 Assume that 0# exists, κ is a regular unountable ardinal and
α < κ+. Then there is an inner model with the same o�nalities as L inwhih GCH holds below κ and 2κ > α.Corollary 5 Assume that 0# exists. Then there is an inner model with thesame o�nalities as L in whih the GCH holds below ℵV

1 but fails at ℵV
1 .Proof of Corollary 3. We onsider the following reverse Easton iteration (de-�ned in L): P0 is trivial. Pλ, λ limit, is the diret limit of the Pi, i < λ,if λ is regular, and is the inverse limit of the Pi, i < λ, if λ is singular.

Pα+1 = Pα ∗ Qα for every α, where Qα is trivial unless α is a limit ardinal,in whih ase:
Qα =

∏
n∈ω Add (α+n, α+(n+2)), if α is regular;

Qα =
∏

0<n∈ω Add (α+n, α+(n+2)), if α is singular.The foring Add (β, γ) (for regular β) adds γ subsets of β: Conditions arefuntions p : d → 2, d a subset of β × γ of size less than β, ordered byextension.For any regular α, P fators as P (≤ α) ∗ P (> α) where P (≤ α) is α+-and P (≤ α) fores that P (> α) is α+-losed. It follows that o�nalities arepreserved by P . Also P fores that 2α = α++ for every regular α.We show that if 0# exists, then there is a P -generi over L. By indutionon i ∈ I = the Silver indisernibles we onstrut a P (≤ i)-generi G(≤ i). Tofailitate limit stages of the onstrution, we maintain the following property:
(∗) i < j → G(≤ i) embeds into G(≤ j) in the sense that πij [G(≤ i)] ⊆ G(≤
j).In (∗), πij is the �shift map� de�ned as follows. Let 〈iα | α ∈ Ord〉 be theinreasing enumeration of I. Then πiαiβ �xes indisernibles less than iα andsends iα+γ to iβ+γ. This de�nition of πij on indisernibles lifts uniquely to anelementary embedding πij : L → L.Lemma 6 Suppose that j is a limit indisernible and G(≤ i) is de�ned for
i ∈ I ∩ j so as to satisfy (∗). De�ne:
G(≤ j) =

⋃
i∈I∩j πij [G(≤ i)].Then G(≤ j) is P (≤ j)-generi over L.4



Proof. If D ∈ L is open dense on P (≤ j) then write D as t(~i, j, ~∞) where
t is a Skolem term for L and ~i < j < ~∞ are indisernibles. Let k be anindisernible suh that ~i < k < j and set D̄ = t(~i, k, ~∞). Then D̄ is opendense on P (≤ k) and is therefore met by some ondition p in G(≤ k). Butthen πkj(p) belongs to G(≤ j) ∩ D. 2Now suppose that G(≤ i) is de�ned and we wish to de�ne G(≤ i∗), where
i∗ is the least indisernible greater than i, obeying property (∗). First we makea preliminary hoie for G(≤ i∗). Note that P (≤ i∗) fators as P (≤ i)∗P (i, i∗]where P (≤ i) fores that P (i, i∗] is i+-losed.Lemma 7 Let D be the olletion of open dense subsets of P (i, i∗] whihbelong to L[G(≤ i)]. Then D is the union of sets Dn, n ∈ ω, whih belong to
L[G(≤ i)] and have ardinality at most i in that model.Proof. Every D ∈ D is named by a term in L(i∗)+L ⊆ Li∗∗ . So it su�es toshow that Li∗∗ an be written as the ountable union of sets whih belong to
L and have size at most i in L. Any element of Li∗∗ is of the form t(α, i, i∗, ~∞)where t is a Skolem term for L, α is an ordinal less than i and ~∞ is a �niteinitial segment of I − (i∗ + 1). For a �xed t, the olletion of t(α, i, i∗, ~∞),
α < i, is a onstrutible set of L-ardinality at most i. As there are onlyountably many t's, we are done. 2By Lemma 7 we an build a P (i, i∗]-generi G′(i, i∗] over L[G(≤ i)] in ωsteps, using the i+-losure of P (i, i∗] to meet all open dense sets in Dn atstep n. This yields a generi G′(≤ i∗) = G(≤ i) ∗ G′(i, i∗] for P (≤ i∗).However we must also ensure property (∗). Let π denote πi,i∗ . As π is theidentity on Li we do have G(< i) = π[G(< i)] ⊆ G(< i∗); however we mustmodify G′(i∗). Reall that Qi∗ is the foring ∏

n∈ω Add ((i∗)+n, (i∗)+(n+2)).Therefore G′(i∗) an be written as ∏
n∈ω G′(i∗)n, where G′(i∗)n is generi forAdd ((i∗)+n, (i∗)+(n+2)). We show how to modify G′(i∗)0 so as to guarantee

(∗); the modi�ation of the entire G′(i∗) is similar.Eah ondition p′ in G′(i∗)0 is a funtion from a subset of i∗× (i∗)++ into
2. Its modi�ation p has the same domain as p′ and is de�ned by:
p(α, β) = p′(α, β) if α ≥ i or β /∈ Range (π)
p(α, β) = G(i)0(α, β̄) if α < i and π(β̄) = β.5



Lemma 8 (1) If p′ is a ondition in G′(i∗)0 then so is its above modi�ation
p.(2) Let G(i∗)0 onsist of all modi�ations p of onditions p′ in G′(i∗)0. Then
G(i∗)0 is Add (i∗, (i∗)++)-generi over L[G(< i∗)].Proof. (1) We �rst show that if X is a onstrutible set of L-ardinality i∗and X̄ = π−1(X) then π ↾ X̄ is onstrutible.Suppose that X is an element of Range (π). Then Range (π) also ontainsa bijetion f between X and i∗, and X ∩ Range π = f−1[i∗ ∩ Range (π)] =
f−1[i]. Now π−1(f) = f̄ is a bijetion between π−1(X) = X̄ and i, and for x ∈
X̄ we have: f̄(x) = π(f̄(x)) = π(f̄)(π(x)) = f(π(x)), so π(x) = f−1 ◦ f̄(x).Thus π ↾ X̄ is the omposition of two onstrutible funtions.If X is not an element of Range (π), then write X as t(α, i, i∗,~j) where α <
i and~j are indisernibles greater than i∗. Let Y be the union of all t(α, β, i∗,~j)of L-ardinality i∗, where α < β < i∗. Then Y ontains X as a subset, has
L-ardinality i∗ and is an element of Range (π) = Hull(I − {i}). By theabove argument, π ↾ Ȳ is onstrutible, where Ȳ = π−1[Y ∩ Range (π)].As X ∩ Range (π) = X ∩ (Y ∩ Range (π)) it follows that X ∩ Range (π) isonstrutible and therefore π ↾ X̄ is too, where X̄ = π−1[X ∩Range (π)].We now show that the modi�ation p of any p′ in G′(i∗)0 is a ondition.Note that Dom (p′) is an element of L[G(< i∗)] of size less than i∗ andtherefore is a subset of a onstrutible set of size i∗. It follows from theabove that Dom (p′)∩Range (π) and π−1 ↾ (Dom (p′)∩Range (π)) belong to
L[G(< i∗)]. It follows that p, whih is obtained by modifying p′ on Dom (p′)∩Range (π) using π−1, also belongs to L[G(< i∗)], as desired.(2) We laim that if D ∈ L[G(< i∗)] is open dense on Add (i∗, (i∗)++) thenthere is a ondition p′ ∈ G′(i∗)0 whih strongly meets D, i.e., any modi�ationof p′ on a set of size ≤ i++ meets D. This implies the generiity of G(i∗)0, asthe above modi�ation p of p′ takes plae on a set of size i++.It su�es to show that the set of q whih strongly meet D is dense. Given
q0, extend q0 to q1 meeting D. Then temporarily modify q1 (in i++ plaes)and extend this modi�ation to meet D; unmodify this extension to obtain anextension q2 of q1. Continue this proess for i+++ steps, ensuring at the endthat any modi�ation of the �nal ondition has been onsidered at some stage6



of the onstrution. Then the �nal ondition strongly meets D. 2 (Lemma8) We now verify (∗) as follows. The embedding π = πi,i∗ from L to L an beextended to an embedding π∗ from L[G(< i)] to L[G(< i∗)] (sending G(< i)to G(< i∗)) as G(< i) ⊆ G(< i∗). By hoie of G0(i
∗), π∗ an be further ex-tended to an embedding from L[G(< i)][G0(i)] to L[G(< i∗)][G0(i

∗)] (sending
G0(i) to G0(i

∗)). We an similarly modify eah of the G′
n(i∗), and therefore

π∗ an in fat be extended to an embedding π∗∗ from L[G(< i)][G(i)] to
L[G(< i∗)][G(i∗)] (sending G(i) to G(i∗)). It follows that π∗∗ sends G(≤ i)to G(≤ i∗) as these are G(< i) ∗ G(i), G(< i∗) ∗ G(i∗), respetively. So
π[G(≤ i)] ⊆ G(≤ i∗), as stated in (∗). 2Proof of Theorem 4. First obtain a generi for the reverse Easton iteration
P , de�ned just as in the previous proof, but with Qα nontrivial at exatlythe regular ardinals, where it is taken to be simply Add (α, α). Let G be
P -generi over L and set g = G(κ), a generi for Add (κ, κ) over the groundmodel L[G(< κ)].Now let κ ≤ α < (κ+)V . We will show that a generi for Add (κ, α) over
L[G(< κ)] an be obtained by �strething� g. For this purpose we need aspeial type of bijetion between α and κ:De�nition. A bijetion f : α → κ is good i� f ↾ X is onstrutible whenever
X ⊆ α is onstrutible and has L-ardinality κ.Lemma 9 For any α < (κ+)V there exists a good bijetion f : α → κ.Proof. We prove by indution on i ∈ I ∩ [κ, (κ+)V ) that there is a goodbijetion fi : i → κ. Set fκ = the identity. If the result holds for i thenprove it for i∗, the I-suessor to i, as follows: For eah n ∈ ω set Hn =
i∗ ∩ Hull(i + 1 ∪ {i∗, i∗∗, . . . , i∗n}), where Hull denotes Skolem hull in L and
i∗n is the n-th indisernible greater than i. Then eah Hn has L-ardinality iand any subset of i∗ of L-ardinality i is ontained in some Hn. Let X0 = H0and Xn+1 = Hn+1 − Hn. Using the indutively de�ned fi, we an reate abijetion f ∗ between i∗ and κ × ω with the property that for eah n, f ∗ ↾ Xis onstrutible for any onstrutible X ⊆ Xn of L-ardinality κ. As anyonstrutible X ⊆ i∗ of L-ardinality κ is ontained in �nitely many Xn's7



it follows that f ∗ is a good bijetion between i∗ and κ × ω. Obtain fi∗ byomposing f ∗ with a onstrutible bijetion between κ × ω and κ.Suppose that i is a limit indisernible and let γ be its o�nality (in V ).Let 〈iα | α < γ〉 be inreasing, ontinuous and o�nal in i, with i0 = 0and eah iα a multiple of κ. A onstrutible subset of i of L-ardinality κintersets only �nitely many of the intervals [iα, iα+1). Using the fiα we antherefore reate a good bijetion between i and κ×γ. Then fi is obtained byomposing this good bijetion with a onstrutible bijetion between κ × γand κ. 2 (Lemma 9)It follows that for any α < (κ+)V there is a bijetion f : α → κ whihis L[G(< κ)]-good, i.e., good with L replaed by L[G(< κ)]. This is beauseany set in L[G(< κ)] of L[G(< κ)]-ardinality κ is a subset of a onstrutibleset of L-ardinality κ.Fix an L[G(< κ)]-good bijetion f : α → κ. For a ondition p ∈ Add (κ, α)de�ne f(p) as follows: (β, γ) is in the domain of f(p) i� (β, f−1(γ)) is in thedomain of p, in whih ase f(p)(β, γ) = p(β, f−1(γ)). Note that f(p) is a on-dition in Add (κ, κ) as f is L[G(< κ)]-good. (In fat, we only need goodnesshere for sets in L[G(< κ)] of L[G(< κ)]-ardinality stritly less than κ.)Claim. Let h be the set of p ∈ Add (κ, α) suh that f(p) belongs to g. Then
h is Add (κ, α)-generi over L[G(< κ)].Proof. Clearly h is a ompatible, upward-losed set of onditions. We mustshow that if A ⊆ Add (κ, α) is a maximal antihain in L[G(< κ)] then f(p)belongs to g for some p ∈ A. It su�es to show that B = {f(p) | p ∈ A} is amaximal antihain in Add (κ, κ), as by the L[G(< κ)]-goodness of f , B doesbelong to L[G(< κ)].Let D(A) be the union of the domains of the onditions in A and D(B)the union of the domains of the onditions in B. Then id × f maps D(A)onto D(B) and by the L[G(< κ)]-goodness of f , id × f ↾ D(A) belongs to
L[G(< κ)]. It follows that any ondition q ∈ Add (κ, κ) with domain inludedin D(B) is of the form f(p) for some ondition p ∈ Add (κ, α).Now let q be an arbitrary ondition in Add (κ, κ). We must show that qis ompatible with some element of B. It su�es to show that q0 = q ↾ D8



is ompatible with some element of B, as inompatibility between q and aondition in B an only our on D. Now by the above, q0 is of the form f(p0)for some p0 ∈ Add (κ, α). As A is a maximal antihain in Add (κ, α), p0 isompatible with some r ∈ A. Then f(p0) = q0 is ompatible with f(r) ∈ B,as desired. 2Conjeture. Assume that 0# exists. Then an L-de�nable Easton funtion Fan be realised in an inner model M having the same o�nalities as L i� itsatis�es: F (κ) < (κ++)V for all κ ∈ RegL.Singular Jonsson ardinalsA Jonsson ardinal is a ardinal κ with the property that every struturefor a ountable language of size κ has a proper substruture of size κ.
κ is Ramsey i� κ → (κ)<ω, i.e., whenever F is a funtion from [κ]<ω into

2, there is H ⊆ κ of size κ suh that F is onstant on [H ]n for eah n. Inthe large ardinal hierarhy, Ramsey ardinals lie stritly between 0# and ameasurable ardinal.Theorem 10 The following are equionsistent:a. There is a Jonsson ardinal.b. There is a Ramsey ardinal.The equionsisteny is in fat an internal equionsisteny: If κ is Jonssonthen κ is Ramsey in an inner model (the Dodd-Jensen ore model); onversely,if κ is Ramsey then κ is Jonsson in an inner model (in fat, in V itself).Theorem 11 The following are equionsistent:a. There is a singular Jonsson ardinal.b. There is a measurable ardinal.The diretion Con a → Con b is internal: Mithell showed that if there isa singular Jonsson ardinal then there is an inner model with a measurableardinal. The usual proof of Con b → Con a is however via foring, andtherefore not internal. Here is the argument:Theorem 12 (Prikry) Suppose that κ is measurable. Then there is a generiextension in whih κ is a singular Jonsson ardinal.9



Proof. We use Prikry foring. Fix a normal, κ-omplete nonprinipal ultra-�lter U on κ. Conditions are pairs (s, A) where s is a �nite subset of κ and
A is an element of U whose min is greater than max(s). When strengthening
(s, A), s is end-extended and A is shrunk to a subset. Prikry shows that forany sentene ϕ of the foring language and ondition (s, A), ϕ is deided byan extension of (s, A) of the form (s, B). It follows using the κ-additivity of
U that bounded subsets of κ are not added. Also the foring is κ+-, soardinals greater than κ are preserved. If G is generi then the union of the�rst omponents of onditions in G is an unbounded subset of κ of ordertype
ω. It remains to show that κ is Jonsson in the Prikry extension. For this weuse the following ombinatorial form of the Jonsson property:Proposition 13 κ is Jonsson i� for every F : [κ]<ω → κ there is H ⊆ κ ofsize κ suh that F ↾ [H ]<ω : [H ]<ω → κ is not onto.This is easily proved: If κ is Jonsson then a proper substruture of (κ, F ) ofsize κ provides the required H ; onversely, if A is a struture on κ then de�ne
F so that its range on any nonempty set is the universe of a substruture of
A. Now suppose that (s, A)  F : [κ]<ω → κ; we laim that there is a set Bin U and a ountable subset x of ω1 suh that B ⊆ A and (s, B) fores thatwhenever t belongs to [B]<ω and F (t) is ountable, then F (t) belongs to x.To obtain B and x, onsider the funtion G : [A]ω × [A]ω → κ de�ned by:
G(t, u) = α i� α is ountable and (s ∪ t, C)  F (u) = α for some C ⊆ A; ifthere is no suh α then set G(t, u) = 0. Now we use:Lemma 14 If U is a normal, κ-omplete ultra�lter on κ and G : [κ]<ω → λ,
λ < κ, then there is a set B ∈ U suh that G is onstant on [B]n for eah n.Using this Lemma, there is a B ∈ U , B ⊆ A, suh that G takes onlyountably-many values on [B]<ω × [B]<ω. It follows that (s, B) fores F totake only ountably-many ountable values on [B]<ω, as desired. 2But is the equionsisteny in Theorem 11 internal? By Theorem 12, it suf-�es to show that the existene of a measurable ardinal implies the existeneof an inner model whih is a Prikry extension.10



Theorem 15 Suppose that there is a measurable ardinal. Then there is aninner model of the form V ∗[G∗] where G∗ is Prikry generi over V ∗.Proof. Let U be a normal, κ-additive nonprinipal ultra�lter on κ. The ultra-power of (V, U) is formed by taking all equivalene lasses [f ]U of f : κ → Vin V under the equivalene relation f =U g i� {α | f(α) = g(α)} ∈ U ,with the relation ∈U de�ned by [f ]U ∈U [g]U i� {α | f(α) ∈ g(α)} ∈ U .This ultrapower is well-founded as U is ountably omplete and therefore isisomorphi to (V1, U1), where V1 is a transitive inner model and in V1, U1is a normal, κ1-additive nonprinipal ultra�lter on some κ1. We obtain anelementary embedding πU from V into V1 by sending x to [cx]U , where cx isthe onstant funtion on κ with value x. Every element of V1 is of the form
πU(f)(κ) where f is a funtion on κ, as the latter equals [f ]U .We an iterate this ω times, forming suessive well-founded ultrapowers
(Vn, Un), n ∈ ω, with orresponding measurable ardinals κn. As eah Vnanonially embeds into Vn+1, we an form the diret limit of the Vn's, Vω.Lemma 16 (1) Vω is well-founded and therefore isomorphi to a transitiveinner model V ∗.(2) The image of (κ, U) under the anonial embedding of (V, U) into V ∗is (κ∗, U∗), where κ∗ is the supremum of the κn's and U∗ is a normal, κ∗-additive nonprinipal ultra�lter on κ∗ in V ∗.(3) The sequene {κn | n ∈ ω} is a Prikry sequene over V ∗ for the measure
U∗.This will �nish the proof, as then V ∗[G∗] is an inner model whih isa Prikry extension of V ∗, where G∗ is the Prikry generi orresponding to
{κn | n ∈ ω}.Proof of Lemma 16. (1) First note that if π : (V̄ , Ū) → (V, U) is elementarythen there is an elementary embedding π∗ : Ult(V̄ , Ū) → Ult(V, U) suhthat π∗πŪ = πUπ (where πU , πŪ are the anonial embeddings of (V, U),
(V̄ , Ū) into their ultrapowers). π∗ is de�ned by: π∗(πŪ(f)(κ̄)) = πU(π(f))(κ),where Ū is an ultra�lter on κ̄. It follows that the entire ω-iteration (V̄ , Ū) →
(V̄1, Ū1) → · · · of (V̄ , Ū) embeds into the ω-iteration (V, U) → (V1, U1) →
· · · of (V, U) in the following sense: Suppose that πij (π̄ij) is the anonialembedding of (Vi, Ui) into (Vj , Uj) (of (V̄i, Ūi) into (V̄j, Ūj)). Then there areembeddings τn : (V̄n, Ūn) → (Vn, Un) with πijτi = τj π̄ij . It follows that there11



is an embedding τ ∗ from (V̄ω, Ūω), the diret limit of the (V̄n, Ūn)'s, into
(Vω, Uω).Now note that if Vω is ill-founded then (V̄ , Ū) an be hosen to be oun-table and so that the assoiated τ ∗ has an in�nite desending sequene in itsrange. So it su�es to show: If π : (V̄ , Ū) → (V, U) is elementary with V̄ountable, then the ω-iteration of (V̄ , Ū) is well-founded.Lemma 17 Suppose that π : (V̄ , Ū) → (V, U) and V̄ is ountable. Thenthere is σ : Ult(V̄ , Ū) → (V, U) suh that σπŪ = π.Given the Lemma, we an suessively embed the n-th iterate (V̄n, Ūn)into (V, U), and therefore the ω-th iterate (V̄ω, Ūω) as well, proving its well-foundedness.Proof of Lemma 17. As the intersetion of ountably many elements of U isnonempty, we an hoose an ordinal α whih belongs to π(A) for every A ∈ Ū .Now de�ne σ(πŪ(f)(κ̄)) = π(f)(α). We must hek that this is well-de�ned:
πŪ(f)(κ̄) = πŪ(g)(κ̄) →
[f ]Ū = [g]Ū →
{ᾱ | f(ᾱ) = g(ᾱ)} ∈ Ū →
α ∈ π({ᾱ | f(ᾱ) = g(ᾱ)}) →
α ∈ {β | π(f)(β) = π(g)(β)} →
π(f)(α) = π(g)(α),as desired. 2 (Lemma 17)(2) The anonial embedding πn,n+1 from Vn to Vn+1 is the identity on κnand sends κn to κn+1; it follows that the image of κ = κ0 in the ω-th iterateis the supremum of the κn's.(3) First note that the set C of κn's has the following property:
(∗) For A ⊆ κ∗ in V ∗: A ∈ U∗ i� A ontains all but �nitely many elementsof C.For, if A ⊆ κ∗ and A belongs to U∗ then for large enough n we an write A as
π∗

n(An), where An ⊆ κn belongs to Un and π∗
n is the anonial embedding of

Vn into V ∗. Then for suh n, κn belongs to πn,n+1(An) and therefore to A. If12



A does not belong to U∗ then its omplement does and therefore A ontainsonly �nitely many elements of C.Lastly we show:Lemma 18 Suppose that U is a normal, κ-omplete nonprinipal ultra�lteron κ in V and C is a subset of κ of ordertype ω suh that for A ⊆ κ in V :
A ∈ U i� A ontains all but �nitely many elements of C. Then C is a Prikrysequene for U over V .Proof. Let P denote Prikry foring for the ultra�lter U over V . We showthat G = {(s, A) ∈ P | s is a �nite initial segment of C and C \ s ⊆ A} is
P -generi over V .Let D ∈ V be open dense on P . For eah s ∈ [κ]<ω let Fs : [κ]<ω → 2be de�ned by F (t) = 1 i� max(s) < min(t) and for some X, (s ∪ t, X) ∈ D.Choose As ∈ U suh that Fs is onstant on [As]

n for eah n. If there is an Xsuh that (s, X) ∈ D then hoose suh an X = Xs and de�ne Bs = As ∩Xs;otherwise set Bs = As.Let A be the diagonal intersetion of the Bs, i.e., the set of α < κ suhthat α belongs to Bs whenever max(s) is less than α. (It is easy to show that
A belongs to U , as eah Bs does.) Note that for all s, if (s, X) ∈ D for some
X, then (s, Bs) ∈ D and therefore (s, A \ (max(s) + 1)) ∈ D.By hypothesis there is a �nite initial segment s of C suh that A ontains
C \ s. As D is dense we an hoose an extension (s ∪ t, X) of (s, A) whihbelongs to D (with max(s) < min(t)). As A \ (max(s) + 1) is homogeneousfor Fs, it follows that for any u ⊆ C \ (max(s) + 1) of the same size as t,
(s ∪ u, Y ) belongs to D for some Y and therefore (s ∪ u, A \ (max(u) + 1))belongs to D. By hoosing u to be an initial segment of C \ s, the ondition
(s ∪ u, A \ (max(u) + 1)) is in D ∩ G, as desired. 27.VorlesungThe singular ardinal hypothesisThe Singular ardinal hypothesis (SCH) is the statement: For every sin-gular ardinal κ, if 2of κ < κ then κof κ = κ+.13



Note that κof κ is always at least κ+, as by König's theorem, if 〈κi |
i < of κ〉 is a o�nal inreasing sequene of ardinals less than κ, then
κ =

∑
i<of κ

κi <
∏

i<of κ
κ = κof κ. Thus the SCH follows from theGCH. And the SCH implies that the GCH must hold at singular strong limitardinals, as for suh λ, 2of λ < λ and therefore 2λ = λof λ = λ+ by theSCH.Under SCH, ardinal exponentiation is ompletely determined by the be-haviour of the ontinuum funtion κ 7→ 2κ for regular κ:Theorem 19 Assume SCH.(a) If κ is a singular ardinal then 2κ is 2<κ if the ontinuum funtion iseventually onstant below κ, and is (2<κ)+ otherwise.(b) If κ, λ are any in�nite ardinals, then:(b1) If κ ≤ 2λ then κλ = 2λ.(b2) If 2λ < κ and λ < of κ then κλ = κ.(b3) If 2λ < κ and of κ ≤ λ then κλ = κ+.Proof. (a) For any limit ardinal κ, 2κ = (2<κ)of κ. If κ is singular and theontinuum funtion is eventually onstant below κ then hoose µ < κ suhthat of κ < µ and 2µ = 2<κ; then we have 2κ = (2<κ)of κ = (2µ)of κ =

2µ = 2<κ. If the ontinuum funtion is not eventually onstant below κ then
λ = 2<κ has o�nality of κ and 2of κ < λ; by the SCH, 2κ = (2<κ)of κ =

λof λ = λ+ = (2<κ)+.(b) Fix λ; we prove this by indution on κ. (b1) holds as κλ ≤ (2λ)λ = 2λ ≤
κλ. Assume that 2λ < κ. If κ is a suessor ardinal ν+ then by indution
νλ is either 2λ, ν or ν+; in any ase it is at most κ. So as λ < κ, κλ =
(ν+)λ = ν+ · νλ = κ. If κ is a limit ardinal, then by indution νλ < κfor all ν < κ. So if λ < of κ we have κλ = κ. If λ ≥ of κ then we have
κλ ≤

∏
i<of κ

κλ
i ≤

∏
i<of κ

κ = κof κ ≤ κλ; so κλ = κof κ and as
2of κ ≤ 2λ < κ, the latter is κ+ by the SCH. 2The analog of Cohen's result for the SCH is:Theorem 20 (Gitik) Suppose that K is an inner model satisfying GCHwhih ontains a totally measurable ardinal κ (i.e., a ardinal κ of Mit-hell order κ++). Then there is a generi extension K[G] of K in whih κ isa singular strong limit ardinal of o�nality ω and GCH fails at κ.14



By work of Mithell, a totally measurable ardinal is neessary. Now on-sider the following weak analogue of Easton's result for the singular ardinalhypothesis:(Global Gitik) GCH fails on a proper lass of singular strong limit ardinals.The proof of the previous theorem shows:Theorem 21 Suppose that K is an inner model satisfying GCH whih on-tains a proper lass of totally measurable ardinals. Then there is a generiextension K[G] of K in whih Global Gitik holds.Is Global Gitik internally onsistent relative to large ardinals? In analogyto Easton's theorem, we might expet to show that the generi extension
K[G] of Theorem 21 an be obtained as an inner model. This is however nottrue for the natural hoie of K, using overing arguments. The following isjoint with Tomá² Futá².Theorem 22 Suppose that there is a # for a proper lass of totally measu-rable ardinals and let K be the �natural� inner model with a lass of totallymeasurable ardinals. (K is obtained by taking the least iterable mouse mwith a measurable limit of totally measurable ardinals and iterating its topmeasure to in�nity.) Then there is no inner model of the form K[G], where
G is generi over K, in whih Global Gitik holds.On the other hand, it is possible to hoose K di�erently, so as to witnessthe internal onsisteny relative to large ardinals of Global Gitik:Theorem 23 Suppose that there is an inner model ontaining a measurablelimit κ of totally measurable ardinals, where κ is ountable in V . Then thereis an inner model in whih Global Gitik holds.This is proved as follows: Using the proof of Theorem 21, fore over thegiven inner model to obtain a failure of the GCH on a set of singular stronglimit ardinals o�nal in κ. This foring preserves the measurability of κ.Using the ountability of κ, the generi exists in V . Now iterate κ to in�nity;the resulting model is a model of Global Gitik.What is the internal onsisteny strength of Global Gitik, i.e., what largeardinal hypothesis must hold to guarantee an inner model of Global Gitik?15



Theorem 23 provides an upper bound, but the optimal upper bound is notyet known. 8.VorlesungPart Two. External Consisteny: Large Cardinals and L-like UniversesWe now turn to a detailed disussion of the outer model program. Firstwe have to say what we mean by �large ardinals�.A ardinal κ is inaessible i� it is unountable, regular and larger thanthe power set of any smaller ardinal. It ismeasurable i� there is a κ-omplete,nonprinipal ultra�lter on κ.Measurability is equivalent to a property expressed in terms of embed-dings, and stronger large ardinal properties are also expressed in this way.As usual, V denotes the universe of all sets. Let M be an inner model, i.e.,a transitive proper lass that satis�es the axioms of ZFC. A lass funtion
j : V → M is an embedding i� it preserves the truth of formulas with parame-ters in the language of set theory and is not the identity. If j is an embeddingthen there is a least ordinal κ suh that j(κ) 6= κ, alled the ritial point of
j, whih is a measurable ardinal.For an ordinal α, j : V → M is α-strong i� Vα is ontained in M . Aardinal κ is α-strong i� there is an α-strong embedding with ritial point
κ. Strong means α-strong for all α.Kunen showed that no embedding is strong. However a ardinal an bestrong, as embeddings witnessing its α-strength an vary with α. Strongerproperties are obtained by requiring j : V → M to have strength dependingon the image under j of its ritial point. For example, κ is superstrongi� there is a nontrivial elementary embedding j : V → M with ritialpoint κ whih is j(κ)-strong. An important weakening of superstrength isthe property that for eah f : κ → κ there is a κ̄ < κ losed under f anda nontrivial elementary embedding j : V → M with ritial point κ̄ whihis j(f)(κ̄)-strong; suh κ are known as Woodin ardinals. The onsistenystrength of the existene of a Woodin ardinal is stritly between that of astrong ardinal and a superstrong ardinal.16



We an demand more than superstrength. A ardinal κ is hyperstrong i� itis the ritial point of an embedding j : V → M whih is j(κ)+1-strong. Fora �nite n > 0, n-superstrength is obtained by requiring j to be jn(κ)-strong,where j1 = j, jk+1 = j ◦ jk. Finally, κ is ω-superstrong i� it is the ritialpoint of an embedding j : V → M whih is n-superstrong for all n. Kunen'sresult shows that no embedding j with ritial point κ is jω(κ) + 1-strong,where jω(κ) is the supremum of the jn(κ) for �nite n.Large ardinals and L-like universesRegarding the inner model program: If κ is inaessible, then κ is alsoinaessible in L, the most L-like model of all. This is not the ase for mea-surability, however if κ is measurable then κ is measurable in an inner model
L[U ], where U is an ultra�lter on κ, whih has a de�nable wellordering andin whih GCH, ♦, 2 hold and gap 1 morasses exist. For a strong ardinal
κ there is a similarly L-like inner model L[E] in whih κ is strong, where
E now is not a single ultra�lter, but rather a sequene of generalised ultra-�lters, alled extenders. More reent work yields similar results for Woodinardinals, and even for Woodin limits of Woodin ardinals.However, progress beyond that has been impeded by the so-alled iter-ability problem.The outer model program: Can we obtain L-like outer models with largeardinals? For inaessibles one has the following result of Jensen:Theorem 24 (L-oding) There is a generi extension V [G] of V suh thata. ZFC holds in V [G].b. V [G] = L[R] for some real R.. Every inaessible ardinal of V remains inaessible in V [G].There are similar L[U ] and L[E] oding theorems, providing outer modelsof the form L[U ][R] and L[E][R], R a real, whih are just as L-like as L[U ]and L[E], preserving measurability and strength, respetively.However the approah via oding is limited in its use. Obtaining L-likeouter models via oding depends on the existene of L-like inner models, suhas L[U ] or L[E], whih, as we have observed, are not known to exist beyond17



Woodin limits of Woodin ardinals. And there are problems with the odingmethod itself whih arise already just past a strong ardinal.A more promising approah is to use iterated foring. To illustrate this,onsider the problem of making the GCH true in an outer model. Begin withan arbitrary model V of ZFC. Using foring, we an add a funtion from ℵ1onto 2ℵ0 without adding reals, thereby making CH true. By foring again,we add a funtion from (the possibly new) ℵ2 onto (the possibly new) 2ℵ1without adding subsets of ℵ1, thereby obtaining 2ℵ1 = ℵ2. Continue thisinde�nitely (via a reverse Easton iteration) and the result is a model of theGCH.Do we preserve large ardinal properties if we make GCH true in thisway? The answer is Yes. 9.VorlesungTheorem 25 (Large ardinals and the GCH) If κ is superstrong then thereis an outer model in whih κ is still superstrong and the GCH holds. Thesame holds for hyperstrong, n-superstrong for �nite n and ω-superstrong.Proof. First we desribe in more detail the above iteration to make GCHtrue. By indution on α we de�ne the iteration Pα of length α: P0 is thetrivial foring. For limit λ, Pλ is the inverse limit of the Pα, α < λ, if λ issingular and is the diret limit of the Pα, α < λ, if λ is regular. For suessor
α + 1, Pα+1 = Pα ∗ Qα, where Qα is the foring that ollapses 2ℵα to ℵα+1using onditions of size at most ℵα. For any ardinal κ of the form iα+1, theentire iteration P an be fatored as Pκ ∗ P κ, where Pκ has a dense subsetof size κ and P κ is κ+-losed. In partiular, strongly inaessible ardinalsremain strongly inaessible after foring with P .Now suppose that κ is superstrong, witnessed by the embedding j : V →
M , and that G is P -generi. Let P ∗ denote M 's version of P . To showthat κ is superstrong in V [G], it su�es to �nd a P ∗-generi G∗ suh that
V

V [G]
j(κ) ⊆ M [G∗] and G∗ ontains j[G], the pointwise image of G under j,as a sublass: Given suh a G∗, extend the embedding j to an embedding

j∗ : V [G] → M [G∗] by sending σG to j(σ)G∗ , for an arbitrary P -name σ.This is well-de�ned and elementary by the truth lemma, as G∗ ontains j[G].And j∗ witnesses the superstrength of κ in V [G] as V
V [G]
j(κ) ⊆ M [G∗].18



Now P ∗
α is the same as Pα for α < j(κ), as j is a superstrong embedding.The �rst di�erene between P ∗ and P is at j(κ): P ∗

j(κ) is the diret limit ofthe Pα, α < j(κ), as j(κ) is inaessible in M ; but j(κ) is not neessarilyregular in V and therefore it is possible that Pj(κ) is the inverse limit of the
Pα, α < j(κ). So we annot simply hoose G∗

j(κ) to be Gj(κ), as the latter isgeneri for the wrong foring.But this problem is easily �xed: As j(κ) is in fat Mahlo in M , it followsthat P ∗

j(κ) has the j(κ)- in M : If ∆ ∈ M is a maximal antihain in P ∗

j(κ)then by Mahloness ∆0 = ∆ ∩ P ∗
α is a maximal antihain in P ∗

α for someregular α < j(κ); but then ∆0 is a maximal antihain in the entire P ∗

j(κ) asby Easton support, any ondition in P ∗

j(κ) is the join of a ondition in P ∗
αwith a ondition with no support below α, and therefore is ompatible withan element of ∆0. So any G∗

j(κ) ontained in P ∗

j(κ) whose intersetion witheah Pα, α < j(κ), is Pα-generi must also be P ∗

j(κ)-generi. It follows that wean take G∗

j(κ) to simply be the intersetion of Gj(κ) with P ∗

j(κ). Notie that
G∗ ∩ Vj(κ) equals G ∩ Vj(κ) and trivially ontains the pointwise image of Gκunder j as j is the identity below κ.Finally we must de�ne a generi G∗, j(κ) for the �upper part� P ∗, j(κ) ofthe P ∗ iteration, whih starts at j(κ) and is de�ned in the ground model
M [G∗

j(κ)]. In addition, G∗, j(κ) must ontain the pointwise image of Gκ under
j∗, where j∗ is the lifting of j to V [Gκ] and Gκ is generi for P κ, an iterationstarting at κ de�ned over the ground model V [Gκ].In fat this latter requirement ompletely determines G∗, j(κ):Lemma 26 j∗[Gκ] generates a P ∗, j(κ)-generi over M [G∗

j(κ)], i.e., eah pre-dense sublass of P ∗, j(κ) whih is de�nable over M [G∗

j(κ)] has an elementwhih is extended by a ondition in j∗[Gκ].Proof. We only onsider predense subsets of P ∗, j(κ) in M [G∗

j(κ)]; a similarargument works for predense sublasses.We an assume that j : V → M is given as an extender ultrapowerembedding. This means that eah element of M is of the form j(f)(a), where
a belongs to V M

j(κ) = Vj(κ) and f is a funtion (in V ) with domain Vκ. To seethis, it su�es to show that the lass H = {j(f)(a) | a ∈ Vj(κ), f a funtion19



with domain Vκ} is an elementary submodel of M , for then we an replae
j by πj, where π is the transitive ollapse of H . Now for any f1, . . . , fnwith domain Vκ and any formula ϕ(x1, . . . , xn, y) let f be a funtion withdomain Vκ suh that for any b1, . . . , bn in Vκ, if ϕ(f(b1), . . . , f(bn), y) holdsfor some y then y an be taken to be f(〈b1, . . . , bn〉). Then for any a1, . . . , anin V M

j(κ) = Vj(κ), if ϕ(j(f1)(a1), . . . , j(fn)(an), y) holds for some y in M then yan be taken to be j(f)(〈a1, . . . , an〉). It follows that H is elementary in M .Now let D be a predense subset of P ∗, j(κ) in M [G∗

j(κ)]. D is of the form
σG∗

j(κ) where the name σ an be written as j(f)(a) with f and a as above.Now using the κ+-losure of P κ, hoose a ondition p in Gκ whih extendsan element of f(ā) whenever ā belongs to Vκ and f(ā)Gκ is predense on
P ∗, κ. Then j∗(p) belongs to j∗[Gκ] and extends an element of j(f)(a)G∗

j(κ) =

σG∗

j(κ) = D, as desired. 2 (Lemma 26)This ompletes the onstrution of G∗ and therefore the proof that Ppreserves superstrong ardinals.10.-12.VorlesungenNow suppose that κ is hyperstrong. We need to �nd a P ∗-generi G∗suh that V
V [G]
j(κ)+1 ⊆ M [G∗] and G∗ ontains j[G] as a sublass. Note that

V
V [G]
j(κ)+1 equals Vj(κ)+1[Gj(κ)] so for the former ondition it su�es to have

G∗

j(κ) = Gj(κ).The forings Pj(κ)+1 = Pj(κ) ∗Qj(κ) and P ∗

j(κ)+1 agree as j(κ) is regular in
V and M ontains Vj(κ)+1. We take G∗

j(κ) to be Gj(κ). Also, j∗[gκ], where j∗ isthe lifting of j to V [Gκ] and gκ is the QGκ
κ -generi hosen by G at stage κ ofthe iteration, is a set of onditions in Q
Gj(κ)

j(κ) whih belongs to M [Gj(κ)] andhas size 2κ there; therefore j∗[gκ] has a lower bound in Q
Gj(κ)

j(κ) . By hoosingour generi G so that gj(κ) inludes this lower bound (or by modifying G toa P -generi G′ in V [G] so that g′

j(κ) will ontain this lower bound), we ansueed in lifting j to V [Gκ+1]. We may assume that j : V → M is given bya hyperextender ; this means that eah element of M is of the form j(f)(a)where f is a funtion in V with domain Vκ+1 and a is an element of Vj(κ)+1.Then we an use the argument from the superstrong ase to generate theentire generi G∗ ontaining j[G]. 20



The ase of n-superstrongs raises a new di�ulty. We �rst treat the ase
n = 2. As in the superstrong ase, P and P ∗ may take di�erent limits at
j2(κ), as the latter may be singular in V . As in that ase, we an obtain a
P ∗

j2(κ)-generi by interseting Gj2(κ) with P ∗

j2(κ). However we must also ensurethat G∗

j2(κ) ontain j[Gj(κ)] as a subset. Write Pj(κ) as Pκ ∗P κ
j(κ); it su�es toarrange that G∗

j2(κ) ontain j∗[Gκ
j(κ)] as a subset, where j∗ is the lifting of jto V [Gκ] and Gκ

j(κ) is P κ
j(κ)-generi over V [Gκ].We argue as follows. If j[j(κ)] is bounded in j2(κ) then the set of on-ditions j∗[Gκ

j(κ)] has a lower bound in P ∗

j2(κ) ⊆ Pj2(κ). Otherwise j2(κ) issingular, so Pj2(κ) is an inverse limit and again the set of onditions j∗[Gκ
j(κ)]has a lower bound in Pj2(κ). We therefore assume that our generi G has be-en hosen so that Gj2(κ) ontains the greatest lower bound of j∗[Gκ

j(κ)]. Thenwe an take G∗

j2(κ) to be the intersetion of Gj2(κ) with P ∗

j2(κ) and therebyobtain j[Gj(κ)] ⊆ G∗

j2(κ). This allows us to lift j to V [Gj(κ)]. Then we an usethe argument from the superstrong ase to generate the entire generi G∗ontaining j[G].For the ase n > 2 the argument is similar; we must hoose Gjn(κ) toontain the greatest lower bound of j∗[G
jn−2(κ)
jn−1(κ)], where j∗ is the lifting of jto the model V [Gjn−2(κ)].Finally we onsider ω-superstrength. Again we must hoose G∗ to be

P ∗-generi over M and to ontain the pointwise image of G under j. Let
jω(κ) denote the supremum of the jn(κ), n ∈ ω. As before it su�es to �nd
G∗

jω(κ) whih is P ∗

jω(κ)-generi and ontains j[Gjω(κ)] as a subset. Note that
j[Gκ] = Gκ is trivially ontained in Gjω(κ) and j∗[Gκ

jω(κ)] has a lower bound in
P κ

jω(κ) (as de�ned in V [Gκ]); by hoosing Gjω(κ) to ontain this lower boundwe an take G∗

jω(κ) to be Gjω(κ)∩P ∗

jω(κ) and thereby obtain j[Gjω(κ)] ⊆ G∗

jω(κ).And again we an use the argument from the superstrong ase to generatethe entire generi G∗ ontaining j[G]. So it only remains to show:Lemma 27 Gjω(κ) ∩ P ∗

jω(κ) is P ∗

jω(κ)-generi over M .Proof. Suppose that D ∈ M is dense on P ∗

jω(κ) and write D as j(f)(a) where fhas domain Vjω(κ) and a belongs to Vjn+1(κ) for some n. (We may assume thatevery element of M is of this form.) Choose p in Gjω(κ) suh that p redues21



f(ā) below jn(κ) whenever ā belongs to Vjn(κ) and f(ā) is open dense on
Pjω(κ), in the sense that if q extends p then q an be further extended into
f(ā) without hanging q at or above jn(κ). Suh a p exists using the jn(κ)+-losure of P

jn(κ)
jω(κ) in V [Gjn(κ)]. Then j(p) belongs to j[Gjω(κ)] and redues Dbelow jn+1(κ). As Gjn+1(κ) is Pjn+1(κ)-generi and P , P ∗ agree below jn+1(κ),it follows that Gjω(κ) ∩ P ∗

jω(κ) intersets D, as desired. 2 (Lemma 27)This ompletes the proof of the Theorem. 2Jensen's (global) 2 priniple asserts the existene of a sequene 〈Cα | αsingular〉 suh that Cα has ordertype less than α for eah α and Cᾱ = Cα∩ ᾱwhenever ᾱ ∈ Lim Cα. The following strengthens a result of Doug Burke:Theorem 28 (Superstrong ardinals and 2) If κ is superstrong then thereis an outer model in whih κ is still superstrong and 2 holds.Proof. We may assume the GCH. Consider now the reverse Easton iteration
P where at the regular stage α, Qα is a Pα-name for the foring whih addsa 2-sequene on the singular limit ordinals less than α. A ondition in Qα isa sequene 〈Cβ | β ≤ γ, β singular〉, γ < α, suh that Cβ has ordertype lessthan β for eah β and Cβ̄ = Cβ ∩ β̄ whenever β̄ belongs to Lim Cβ.Using the fat that Pα fores 2-sequenes of any regular length less than
α, it is easy to verify by indution that any ondition in Qα an be extendedto have arbitrarily large length less than α. Also Qα, and indeed the entireiteration from stage α on, is α-distributive.Let P ∗ denote M 's version of P . We want to onstrut G∗ to be P ∗-generi over M , to agree with G stritly below j(κ) and to ontain j[G] as asublass. As in earlier arguments, P and P ∗ agree stritly below j(κ) but notneessarily at j(κ), whih is regular in M but may be singular in V ; as beforewe take G∗

j(κ) to be Gj(κ) ∩ P ∗

j(κ). Our new task is to de�ne a Q∗

j(κ)-generi gover M [G∗

j(κ)].Lemma 29 Assume GCH and let j : V → M witness the superstrength of
κ with j(κ) minimal. Then j(κ) has o�nality κ+.Proof. Let 〈fi | i < κ+〉 be a list of all funtions from κ to κ. Then thesequene 〈j(fi) | i < κ〉 belongs to M , as it equals j(〈fi | i < κ+〉) ↾ κ. For22



any ordinal α < κ+ we an use a bijetion between α and κ and similarlyonlude that 〈j(fi) | i < α〉 belongs to M .Now for eah α < κ+ let κα be least so that κα is losed under eah j(fi),
i < α. Then κα is less than j(κ), as j(κ) is regular in M . Let κ∗ be the supre-mum of the κα's. It su�es to show that there is a superstrong embedding
j∗ with ritial point κ suh that j∗(κ) = κ∗; then by the minimality of j(κ),we must have j(κ) = κ∗ and therefore j(κ) has o�nality κ+.To obtain j∗ de�ne H = {j(f)(a) | f : Vκ → V , a ∈ Vκ∗}. Then H is anelementary submodel of M and H ∩ j(κ) = κ∗. Let π : H ≃ M∗; then j∗ =
πj : V → M∗ witnesses the superstrength of κ and j∗(κ) = π(j(κ)) = κ∗, asdesired. 2We an assume that j is given by an ultrapower, and therefore that j isontinuous at κ+. It follows that (j(κ)+)M has o�nality κ+. Therefore wean write the olletion of κ+-many open dense subsets of Q∗

j(κ) as the unionof κ∗ subolletions, eah of size less than j(κ). Now we an build g in κ+steps, using j(κ)-distributivity to meet fewer than j(κ) open dense sets ateah step (and de�ning the 2-sequene oherently at limit stages). We mustalso ensure that g extend gκ; but this is easy to arrange as the latter is aondition in the foring Q∗

j(κ).Finally the rest of G∗ an be generated from j[G] as before. 2The proof of the previous theorem does not work for hyperstrong κ, andthere is a good reason for this. κ is subompat i� for any B ⊆ Hκ+ thereare µ < κ, A ⊆ Hµ+ and an elementary embedding j : (Hµ+ , A) → (Hκ+, B)with ritial point µ. (Note that by elementarity, j must send µ to κ.)Proposition 30 (a) If κ is hyperstrong then κ is subompat. (b) (Jensen)If there is a subompat ardinal then 2 (even when restrited to ordinalsbetween κ and κ+) fails.Proof. (a) Suppose that j : V → M witnesses hyperstrength. Then for allsubsets B of j(κ)+ in the range of j, j gives an elementary embedding of
(Hκ+, A) into (Hj(κ)+ , B), where j(A) = B; moreover this embedding belongsto M as j is hyperstrong and j ↾ Hκ+ belongs to Hj(κ)+. As the range of j is anelementary submodel of M , it follows that there is an elementary embedding23



of some (Hµ+ , A) into (Hj(κ)+ , B) (sending µ to j(κ)) whih belongs to therange of j. So j(κ) is subompat in Range j and therefore by elementaritysubompat in M . As j is elementary, κ is subompat in V .(b) Suppose that κ is subompat and ~C = 〈Cα | κ < α < κ+, α singular〉has the properties of a 2-sequene. By thinning out the Cα's we an ensurethat eah has ordertype at most κ. Let j be an embedding from (Hµ+ , ~̄C)to (Hκ+ , ~C), sending µ to κ. Let α be the supremum of the ordinals in therange of j. Then α has o�nality µ+. The ordinals in the range of j form a
< µ-losed and therefore ω-losed unbounded subset of α. And Lim Cα is alosed unbounded subset of α. Therefore the intersetion D of these two setsis unbounded in α. By the oherene property of ~C, the ordertype of Cβ forsu�iently large β in D is at least µ. But as the ordertype of Cα is at most
κ (in fat less than κ), the ordertype of Cβ for all β in D is stritly less than
κ. Thus there are β in D ⊆ Range j with Cβ of ordertype not in Range j,ontraditing the elementarity of j. 213.-14.VorlesungenAnother important property of L is the existene of a de�nable wellorde-ring of the universe.Theorem 31 (Large ardinals and de�nable wellorderings) If κ is super-strong then there is an outer model in whih κ is still superstrong and thereis a de�nable wellordering of the universe. The same holds for hyperstrong,
n-superstrong for �nite n and ω-superstrong.Proof.We may assume the GCH. Let κ have one of the large ardinal proper-ties mentioned in the theorem, as witnessed by the embedding j : V → M .Choose λ to be a ardinal greater than jω(κ). By the method of L-oding,we an enlarge V without adding subsets of λ to a universe of the form L[A],
A a subset of λ+. By an earlier argument, the embedding j lifts to L[A] andtherefore κ retains its large ardinal properties.Now we introdue a de�nable wellordering. Perform a reverse Eastoniteration of length λ+, indexed by suessor ardinals greater than λ+, whereat the i-th suessor ardinal, an i+-Cohen set is added i� i belongs to A.The result is that i belongs to A i� not every subset of the suessor ofthe i-th suessor ardinal is onstrutible from a subset of the i-th suessor24



ardinal. Now the result of this iteration is a model of the form L[B] where Bis a subset of λ(λ+), the �λ+-th ardinal greater than λ�. Repeat this to ode
B using the next interval of suessor ardinals. Continuing this inde�nitelyyields a model with a wellordering de�nable from the parameter λ.To eliminate the parameter λ, use a pairing funtion f : Ord×Ord → Ordon the ordinals and arrange that the universe is of the form L[C] where Cis a lass of ordinals and for any i, i is in C i� some subset of the suessorto the f(i, j)-th suessor ardinal is not onstrutible from a subset of the
f(i, j)-th suessor ardinal, for all su�iently large j. 2Jensen's (global) 2 priniple asserts the existene of a sequene 〈Cα | αsingular〉 suh that Cα has ordertype less than α for eah α and Cᾱ = Cα∩ ᾱwhenever ᾱ ∈ Lim Cα. The following strengthens a result of Doug Burke.Theorem 32 (Superstrong ardinals and 2) If κ is superstrong then thereis an outer model in whih κ is still superstrong and 2 holds.Proof. We may assume the GCH. Consider now the reverse Easton iteration
P where at the regular stage α, Qα is a Pα-name for the foring whih addsa 2-sequene on the singular limit ordinals less than α. A ondition in Qα isa sequene 〈Cβ | β ≤ γ, β singular〉, γ < α, suh that Cβ has ordertype lessthan β for eah β and Cβ̄ = Cβ ∩ β̄ whenever β̄ belongs to Lim Cβ.Using the fat that Pα fores 2-sequenes of any regular length less than
α, it is easy to verify by indution that any ondition in Qα an be extendedto have arbitrarily large length less than α. Also Qα, and indeed the entireiteration from stage α on, is α-distributive.Let P ∗ denote M 's version of P . We want to onstrut G∗ to be P ∗-generi over M , to agree with G stritly below j(κ) and to ontain j[G] as asublass. As in earlier arguments, P and P ∗ agree stritly below j(κ) but notneessarily at j(κ), whih is regular in M but may be singular in V ; as beforewe take G∗

j(κ) to be Gj(κ) ∩ P ∗

j(κ). Our new task is to de�ne a Q∗

j(κ)-generi gover M [G∗

j(κ)].Lemma 33 Assume GCH and let j : V → M witness the superstrength of
κ with j(κ) minimal. Then j(κ) has o�nality κ+.25



Proof. Let 〈fi | i < κ+〉 be a list of all funtions from κ to κ. Then thesequene 〈j(fi) | i < κ〉 belongs to M , as it equals j(〈fi | i < κ+〉) ↾ κ. Forany ordinal α < κ+ we an use a bijetion between α and κ and similarlyonlude that 〈j(fi) | i < α〉 belongs to M .Now for eah α < κ+ let κα be least so that κα is losed under eah j(fi),
i < α. Then κα is less than j(κ), as j(κ) is regular in M . Let κ∗ be the supre-mum of the κα's. It su�es to show that there is a superstrong embedding
j∗ with ritial point κ suh that j∗(κ) = κ∗; then by the minimality of j(κ),we must have j(κ) = κ∗ and therefore j(κ) has o�nality κ+.To obtain j∗ de�ne H = {j(f)(a) | f : Vκ → V , a ∈ Vκ∗}. Then H is anelementary submodel of M and H ∩ j(κ) = κ∗. Let π : H ≃ M∗; then j∗ =
πj : V → M∗ witnesses the superstrength of κ and j∗(κ) = π(j(κ)) = κ∗, asdesired. 2We an assume that j is given by an ultrapower, and therefore that j isontinuous at κ+. It follows that (j(κ)+)M has o�nality κ+ and H(j(κ)+)M islosed under κ-sequenes. Therefore we an write the olletion of (j(κ)+)M -many open dense subsets of Q∗

j(κ) as the union of κ+ subolletions, eah ofwhih belongs to M [G∗

j(κ)] and has size less than j(κ) there. Now we an build
g in κ+ steps, using j(κ)-distributivity to meet fewer than j(κ) open densesets at eah step (and de�ning the 2-sequene oherently at limit stages).We must also ensure that g extend gκ; but this is easy to arrange as the latteris a ondition in the foring Q∗

j(κ).Finally the rest of G∗ an be generated from j[G] as before. 2The proof of the previous theorem does not work for hyperstrong κ, andthere is a good reason for this. κ is subompat i� for any B ⊆ Hκ+ thereare µ < κ, A ⊆ Hµ+ and an elementary embedding j : (Hµ+ , A) → (Hκ+, B)with ritial point µ. (Note that by elementarity, j must send µ to κ.)Proposition 34 (a) If κ is hyperstrong then κ is subompat. (b) (Jensen)If there is a subompat ardinal then 2 (even when restrited to ordinalsbetween κ and κ+) fails.Proof. (a) Suppose that j : V → M witnesses hyperstrength. Then for allsubsets B of j(κ)+ in the range of j, j gives an elementary embedding of26



(Hκ+, A) into (Hj(κ)+ , B), where j(A) = B; moreover this embedding belongsto M as j is hyperstrong and j ↾ Hκ+ belongs to Hj(κ)+. As the range of j is anelementary submodel of M , it follows that there is an elementary embeddingof some (Hµ+ , A) into (Hj(κ)+ , B) (sending µ to j(κ)) whih belongs to therange of j. So j(κ) is subompat in Range j and therefore by elementaritysubompat in M . As j is elementary, κ is subompat in V .(b) Suppose that κ is subompat and ~C = 〈Cα | κ < α < κ+, α singular〉has the properties of a 2-sequene. By thinning out the Cα's we an ensurethat eah has ordertype at most κ. Let j be an embedding from (Hµ+ , ~̄C)to (Hκ+ , ~C), sending µ to κ. Let α be the supremum of the ordinals in therange of j. Then α has o�nality µ+. The ordinals in the range of j form a
< µ-losed and therefore ω-losed unbounded subset of α. And Lim Cα is alosed unbounded subset of α. Therefore the intersetion D of these two setsis unbounded in α. By the oherene property of ~C, the ordertype of Cβ forsu�iently large β in D is at least µ. But as the ordertype of Cα is at most
κ (in fat less than κ), the ordertype of Cβ for all β in D is stritly less than
κ. Thus there are β in D ⊆ Range j with Cβ of ordertype not in Range j,ontraditing the elementarity of j. 2For unountable, regular κ, ♦κ says that there exists 〈Dα | α < κ〉 suhthat Dα is a subset of α for eah α and for every subset D of κ, {α < κ |
Dα = D∩α} is stationary in κ.♦ asserts that♦κ holds for every unountable,regular κ.Theorem 35 (Large ardinals and ♦) If κ is superstrong then there is anouter model in whih κ is still superstrong and ♦ holds. The same holds forhyperstrong, n-superstrong for �nite n and ω-superstrong.Proof.We use a reverse Easton iteration P where at eah regular stage α, Qαis α-distributive (in fat, in the present ontext the entire iteration startingwith α is α-losed). A ondition in Qα is a sequene 〈Dβ | β < γ〉, γ < α,suh that Dβ is a subset of β for eah β < γ. It is easy to show that a
Qα-generi yields a ♦α-sequene, using the α-losure of Qα.The proof in the superstrong ase is just as in Theorem 32, where we take
G∗

j(κ) to be the intersetion of Gj(κ) with P ∗

j(κ) and then build a Q∗

j(κ)-generiontaining the ondition gκ. For hyperstrong κ (witnessed by j : V → M),we need only observe that j[Gκ+ ] has a lower bound in the foring P ∗

j(κ)+27



and hoose G∗

j(κ)+ = Gj(κ)+ to ontain this lower bound. (This is where theargument with 2 breaks down.)For n-superstrongs, 1 < n �nite, we an take G∗

jn(κ) to be the intersetionof Gjn(κ) with P ∗

jn(κ) (requiring the latter to ontain the greatest lower boundof j[Gjn−1(κ)]), but fae the problem of de�ning a Q∗

jn(κ)-generi ontaining theimage of gjn−1(κ) under (the lifting to V [Gjn−1(κ)] of) j. We use the following.Lemma 36 Suppose that n is greater than 1 and j : V → M witnesses the
n-superstrength of κ, with jn(κ) hosen minimally. Then j is ontinuous at
jn−1(κ) (i.e., the range of j is o�nal in jn(κ)).Proof. Let κ∗ be the supremum of the range of j interset jn(κ). It su�es toshow that there is an n-superstrong embedding j∗ with ritial point κ suhthat (j∗)n(κ) = κ∗.Let H onsist of all elements of M of the form j(f)(a), where f : Vκ → Vand a belongs to Vκ∗ . Then H is an elementary submodel of M : If M �

ϕ(y, j(f1)(a1), . . . , j(fn)(an)) for some y in M , where fi : Vκ → V , ai ∈ Vκ∗for eah i, then hoose g : Vκ → V so that g(〈x1, . . . , xn〉) = y is a so-lution to ϕ(y, f1(x1), . . . , fn(an)) in V (if there is suh a solution y in V ).Then by elementarity, M � ϕ(y, j(f1)(a1), . . . , j(fn)(an)) where y equals
j(g)(〈a1, . . . , an〉). The latter is an element of H .Note that H ∩ jn(κ) = κ∗: If j(f)(a) is less than jn(κ), where f : Vκ → Vand a ∈ Vκ∗ , then j(f)(a) is less than the supremum of j(f)[Vα] ∩ jn(κ)where α ∈ Range (j)∩κ∗ is large enough so that Vα ontains a; as the lattersupremum belongs to Range (j), it follows that j(f)(a) is less than κ∗.Now let π : H ≃ M∗ be the transitive ollapse of H and de�ne j∗ = πj.Then j∗ : V → M∗ is elementary and has ritial point κ. As π sends jn(κ)to κ∗ and is the identity on κ∗, it follows that (j∗)m(κ) = jm(κ) for m < nand (j∗)n(κ) = κ∗. And j∗ is n-superstrong as Vκ∗ = V M

κ∗ = V M∗

κ∗ . 2We may assume that every element of M is of the form j(f)(a) where
f : Vjn−1(κ) → V and a belongs to Vjn(κ). Now we laim that the image of
gjn−1(κ) under (the lifting to V [Gjn−1(κ)] of) j generates a generi for Q∗

jn(κ),in the sense that every dense subset of Q∗

jn(κ) whih belongs to M [G∗

jn(κ)] ismet by a ondition in j[gjn−1(κ)]. For, if D is suh a dense set, then D has a28



name of the form j(f)(a) where a belongs to Vj(α) for some α < jn−1(κ). Bythe jn−1(κ)-losure of Qjn−1(κ), there is a ondition p̄ ∈ gjn−1(κ) whih meetsall dense sets with names of the form f(ā), ā ∈ Vα; then j(p̄) = p meets D.Finally, ω-superstrength is handled just as in the ase of GCH. 2The tehnique of the previous proof an also be used to fore a weakenedform of 2, preserving very large ardinals. 2 holds at small o�nalities i� the
2 priniple holds when restrited to singular ordinals of o�nality at mostthe least superstrong ardinal.Theorem 37 If κ is hyperstrong then thre is an outer model in whih κ isstill hyperstrong and 2 holds at small o�nalities.Proof. Perform a reverse Easton iteration where at eah regular stage α, Qαadds a 2-sequene on the singular ordinals less than κ whih have o�nalityat most the least superstrong ardinal. If j : V → M witnesses that κ ishyperstrong, then we take G∗

j(κ)+ to be Gj(κ+ and observe that j[gκ+] doeshave a greatest lower bound in Qj(κ)+ , beause its supremum is an ordinal ofo�nality κ+, greater than the least superstrong ardinal of M . By hoosing
g∗

j(κ)+ = gj(κ)+ to ontain this greatest lower bound, we an lift j to V [Gκ++1],and then to all of V [G]. If j : V → M witnesses the 2-superstrength of κthen similarly we get a greatest lower bound for j[Gj(κ)] in Pj2(κ)] as for eahregular α ∈ (κ, j(κ)), the supremum of j[α] is an ordinal of o�nality greaterthan κ, whih is superstrong (and more) in M . Then we use the argumentof the preeding proof to lift j to all of V [G]. A similar argument handles
ω-superstrength. 2Theorem 38 (Large ardinals and Gap 1 morasses) If κ is superstrong thenthere is an outer model in whih κ is still superstrong and gap 1 morassesexist at eah regular ardinal. The same holds for hyperstrong, n-superstrongfor �nite n and ω-superstrong.Proof. For the de�nition of a gap 1 morass we refer the reader to Devlin'sbook. Assume GCH and let κ be superstrong. We apply the reverse Eastoniteration P where at eah regular stage α, Qα adds a gap 1 morass at α. Aondition in Qα is a size < α initial segment of a morass up to some toplevel, together with a map of an initial segment of this top level into α+whih obeys the requirements of a morass map. To extend a ondition, we29



end-extend the morass up to its top level and require that the map from thegiven initial segment of its top level into α+ fator as the omposition of amap into the top level of the stronger ondition followed by the map givenby the stronger ondition into α+. The foring Qα is α-losed and, using a
∆-system argument, is α+-.To obtain the desired G∗, we must build a Q∗

j(κ)-generi whih extendsthe image under (the lifting to V[Gκ] of) j of the Qκ-generi gκ. As in thease of 2 we use minimisation of j(κ) to ensure that it has o�nality κ+ andthen build a Q∗

j(κ)-generi in κ+ steps. Note that any ondition in j[gκ] isextended by one whih has top level κ and maps an initial segment of thetop level into j(κ)+ using j. Now given fewer than j(κ) maximal antihainsin M [G∗

j(κ)], we an hoose α < j(κ)+ of o�nality j(κ) in M so that thesemaximal antihains are maximal when restrited to onditions whih are�below α� in the sense that they map an initial segment of their top levelinto α. Moreover, there is a ondition whih serves as a lower bound to allonditions in j[gκ] whih are below α in this sense. Therefore we an hoosea ondition below α meeting all of the given maximal antihains ompatiblywith the onditions in j[gκ] whih are below α, and therefore ompatiblywith all onditions in j[gκ]. Repeating this in κ+ steps for inreasingly large
α < j(κ)+ of M-o�nality j(κ) (taking unions at limit stages) yields thedesired Q∗

j(κ)-generi. The remainder of the generi G∗ an be generated asbefore.Now suppose that κ is hyperstrong. We must de�ne a suitable Q∗

j(κ)+-generi. We may assume that j is given by a hyperextender and therefore jis o�nal from κ++ into j(κ)++ of M . Let S onsist of those morass pointsat the top level (i.e., level κ+) of gκ+ whih have o�nality κ+. For eah σin S let gκ+ ↾ σ denote the set of onditions in gκ+ whih are below σ. Then
j[gκ+ ↾ σ] has a greatest lower bound pσ in Q∗

j(κ)+ .The olletion of maximal antihains of Q∗

j(κ)+ whih belong to M [G∗

j(κ)+ ]an be written as a union ⋃
i<j(κ)+ Xi where for eah i and eah σ in S,

Xi ↾ j(σ) (the subset of Xi onsisting of those maximal antihains all of whoseelements are below j(σ)) is a set of size at most j(κ) in M . By indution on
σ ∈ S hoose a ondition qσ extending pσ and all qτ , τ ∈ S∩σ, whih meets allantihains in X0 ↾ j(σ). By hyperstrength, the sequene of qτ ↾ j(σ), τ ∈ S,has a greatest lower bound p1

σ for eah σ ∈ S. Now repeat this onstrution30



for X1, X2, . . . for j(κ)+ steps, resulting in a set of onditions whih generatesa generi gj(κ)+ for Q∗

j(κ)+ . As before, the remainder of the generi G∗ an begenerated as before.The ases of n-superstrength, 2 ≤ n �nite, are handled as in the proof ofTheorem 35. ω-superstrength is handled as in the ase of GCH. 2Questions. 1. The above proofs show that one an fore the GCH and 2preserving the superstrength of all superstrong ardinals and GCH preservingthe hyperstrength of all hyperstrong ardinals. Is it possible to fore GCHpreserving the 2-superstrength of all 2-superstrong ardinals?2. It is possible to fore a de�nable wellordering of the universe over a model ofGCH preserving the superstrength of all superstrong ardinals, at the ost ofsome ardinal ollapsing. Is it possible to do this without ardinal ollapsing?Is it possible to preserve the superstrength of all superstrong ardinals whileforing not only the universe but also eah H(κ), κ > ω1, to have a de�nablewellordering?3. Is it onsistent with a superstrong ardinal to have a gap 2 morass at everyregular ardinal?4. To what extent are the ondensation and hyper�ne strutural propertiesof L onsistent with large ardinals?

31


