Topics in Set Theory, Wintersemester 2006

1.Vorlesung

Stationary reflection

If S is a set of ordinals and α is an ordinal of uncountable cofinality, we say that S is stationary in α iff S intersects every closed unbounded subset of α . We say that stationary reflection holds at α , abbreviated SR(α) iff every S which is stationary in α is also stationary in some smaller $\overline{\alpha}$ of uncountable cofinality.

Note that $SR(\alpha)$ is equivalent to $SR(cof \alpha)$, so we will just study $SR(\kappa)$ for regular cardinals κ .

Theorem 1 κ weakly compact $\rightarrow SR(\kappa)$.

Proof. Recall that κ is weakly compact iff κ is Π_1^1 reflecting, i.e., for any $S \subseteq \kappa$, if φ is a Π_1 formula true in (H_{κ^+}, \in, S) then φ is also true in $(H_{\alpha^+}, \in, S \cap \alpha)$ for some $\alpha < \kappa$. As the property "S is stationary in κ " is a Π_1 property of $(H_{\kappa^+}, \in, S \cap \kappa)$, stationary reflection follows. \Box

Theorem 2 In L, $SR(\kappa) \rightarrow \kappa$ weakly compact.

Proof. Assume V = L. First assume that κ is inaccessible. Let $\langle C_{\alpha} \mid \alpha$ a singular cardinal \rangle be a square sequence on the singular cardinals, i.e., for each singular cardinal α , C_{α} is a closed unbounded subset of α of ordertype less than α and if $\bar{\alpha}$ is a limit point of C_{α} then $\bar{\alpha}$ is a singular cardinal and $C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$.

Assume that κ is not weakly compact and choose $A \subseteq \kappa$ and a Π_1 formula φ so that φ holds in $(H_{\kappa^+}, \in, A) = (L_{\kappa^+}, \in, A)$ but not in $(H_{\alpha^+}, \in, A \cap \alpha) = (L_{\alpha^+}, \in, A \cap \alpha)$ for any $\alpha < \kappa$. Let S_0 consist of all singular cardinals $\alpha < \kappa$ such that φ holds in $(L_{\beta}, \in, A \cap \alpha)$ provided $\beta < \alpha^+$ is a limit ordinal and α is regular in L_{β} .

Claim 1. S_0 is stationary in κ .

Proof. Suppose that C is closed unbounded in κ and choose a limit $\beta < \kappa^+$ so that A and C belong to L_{β} . As φ is Π_1 , it holds in $\mathcal{S} = (L_{\beta}, \in, A)$. For each

cardinal $\alpha < \kappa$ let M_{α} be the least Σ_1 elementary submodel of \mathcal{S} containing $\alpha \cup \{A, C\}$ as a subset. Then $C_0 = \{\alpha < \kappa \mid \alpha = M_{\alpha} \cap \kappa\}$ is a closed unbounded subset of C which is definable over \mathcal{S} . If α is the ω -th element of C_0 , then α belongs to S_0 , as α is singular definably over the transitive collapse $(L_{\bar{\beta}}, \in, A \cap L_{\alpha})$ of M_{α} and φ holds in this structure. $\Box(Claim1)$

Claim 2. S_0 is not stationary in α for any regular $\alpha < \kappa$.

Proof. Suppose that $\alpha < \kappa$ is regular and choose a limit ordinal $\beta < \alpha^+$ large enough so that $A \cap \alpha$ belongs to L_β and φ does not hold in $\mathcal{S} = (L_\beta, \in, A \cap \alpha)$. Much as in the previous proof, for each cardinal $\bar{\alpha} < \alpha$ let $M_{\bar{\alpha}}$ be the least Σ_1 elementary submodel of \mathcal{S} containing $\bar{\alpha} \cup \{A \cap L_\alpha\}$ as a subset and $C_0 = \{\bar{\alpha} < \alpha \mid \bar{\alpha} = M_{\bar{\alpha}} \cap \alpha\}$, a closed unbounded subset of α . Then no $\bar{\alpha}$ in C_0 belongs to S_0 . $\Box(Claim2)$

Now we thin out S_0 to a stationary subset that is not stationary in any $\alpha < \kappa$. For each α in S_0 let $f(\alpha)$ be the ordertype of C_{α} , the closed unbounded subset of α assigned by our square sequence on the singular cardinals. Let S be a stationary subset of S_0 on which f is constant.

Claim 3. S is not stationary in any $\alpha < \kappa$.

Proof. Suppose that $S \cap \alpha$ were stationary in α ; then α must be a singular cardinal of uncountable cofinality, and $S \cap \text{Lim } C_{\alpha}$ is unbounded in α . But f is constant on S and 1-1 on $\text{Lim } C_{\alpha}$, by the coherence property of the square sequence. Contradiction! $\Box(Claim3)$

Thus S is a stationary subset of κ which is not stationary in any $\alpha < \kappa$, so $SR(\kappa)$ fails.

If $\kappa = \lambda^+$ is a successor cardinal, then we use a \Box_{λ} sequence, i.e., a sequence $\langle C_{\alpha} \mid \lambda < \alpha < \lambda^+, \alpha \text{ limit} \rangle$ such that C_{α} is closed unbounded in α of ordertype $\leq \lambda$ and $\bar{\alpha} \in \text{Lim } C_{\alpha} \to C_{\bar{\alpha}} = C_{\alpha} \cap \bar{\alpha}$. As above choose $S \subseteq (\lambda, \kappa)$ to be a stationary set of limit ordinals on which the function $\alpha \mapsto$ ordertype C_{α} is constant. Then S is not stationary in any $\alpha < \kappa$. \Box

2.Vorlesung

Theorem 3 Relative to a weakly compact, it is consistent that $SR(\kappa)$ does not imply that κ is weakly compact.

Proof. Suppose that κ is weakly compact. Then κ is weakly compact in L. Let P_{κ} be the reverse Easton iteration of length κ which at inaccessible $\alpha < \kappa$ adds an α -Cohen set. Let G_{κ} be P_{κ} -generic over L.

Now over $L[G_{\kappa}]$, consider the following forcing Q, due to Kunen, for adding a κ -Suslin tree:

For an ordinal α , an α -tree is a subset T of $2^{<\alpha}$ closed under initial segment such that for each $\beta < \alpha$, some element of T has length β . We refer to α as the *height* of T. For limit α , we say that an α -tree T is *homogeneous* iff for any s in T, $T_s = \{t \mid s * t \in T\}$ equals T and an $\alpha + 1$ -tree T is *homogeneous* iff for $s \in T$ of length less than α , T_s equals T. For limit α , a homogeneous α -tree exists iff α is indecomposable, i.e., $\beta + \gamma$ is less than α whenever β and γ are less than α . If T is an $\alpha + 1$ -tree then not only does T have a path of length α , but every node of T of length less than α can be extended to such a path.

The forcing Q consists of the one-point tree $\{\emptyset\}$, together with homogeneous trees T of successor height less than κ such that both $\langle 0 \rangle$ and $\langle 1 \rangle$ belong to T. Q is ordered by end-extension.

If T is a homogeneous α -tree, α limit, and s is any path through T of length α then there is a minimal extension m(T,s) of T to a condition of height $\alpha + 1$ which contains s, namely $T \cup \{s_0 * (s \setminus \beta) \mid s_0 \in T \text{ and } \beta < \alpha\}$, where for each $\beta < \alpha, s \setminus \beta$ is such that $(s \upharpoonright \beta) * (s \setminus \beta) = s$.

Claim 1. Q is κ -distributive and adds a κ -Suslin tree.

Proof. Q may fail to be κ -closed, as if $T_0 \geq T_1 \geq \cdots$ is a descending sequence through Q of limit length $\lambda < \kappa$, then although the union T_{λ}^- of the T_i 's is homogeneous, it may have no path of length $\operatorname{Height}(T_{\lambda}^-)$ and therefore not be extendible to a condition. However if in addition to the T_i 's we have paths $s_i \in T_i$ of length $\operatorname{Height}(T_i) - 1$ such that $i < j \to s_i \subseteq s_j$, then the union s_{λ} of the s_i 's forms a path through T_{λ}^- of length $\operatorname{Height}(T_{\lambda}^-)$, and we can extend T_{λ}^- to a condition $T_{\lambda} = m(T_{\lambda}^-, s_{\lambda})$ below each of the T_i 's which contains s_{λ} . This implies that we can inductively extend any condition to meet a sequence of fewer than κ open dense sets, i.e., the forcing Q is κ -distributive. It follows from this and induction on $\alpha < \kappa$, that any condition can be extended to one of height at least α , and therefore the union of a Q-generic is indeed a κ -tree which we denote as T_Q .

We now check that T_Q is κ -Suslin. Suppose that $T \Vdash A$ is a maximal antichain in T_Q . Define a descending sequence of conditions T_{ξ} , $\xi < \kappa$, of height $\gamma_{\xi} + 1$ together with elements s_{ξ} of T_{ξ} of length γ_{ξ} which end-extend each other so that for limit ξ , $T_{\xi} = m(\bigcup_{\xi' < \xi} T_{\xi'}, s_{\xi})$, and

1. For any ξ , if $s \in T_{\xi}$ then $T_{\xi+1}$ decides $s \in A$.

2. For any $s \in \bigcup_{\xi < \kappa} T_{\xi}$ and $\alpha < \kappa$ there is an η such that $\gamma_{\eta} > \alpha$ and T_{η} forces that some proper initial segment of $s * (s_{\eta} \setminus \alpha)$ belongs to \dot{A} .

To achieve 2, consider how to handle a particular s and α . Choose a limit ξ such that γ_{ξ} is greater than both α and the length of s. If T_{ξ} forces that some proper initial segment of $s * (s_{\xi} \setminus \alpha)$ belongs to \dot{A} then take η to be ξ . Otherwise there is a T' extending T_{ξ} and an s_1 such that $s * (s_{\xi} \setminus \alpha) * s_1$ belongs to T' and T' forces $s * (s_{\xi} \setminus \alpha) * s_1$ to belong to \dot{A} . Let $T_{\xi+1}$ extend T' and satisfy 1. Choose $s_{\xi+1}$ to be a path through $T_{\xi+1}$ extending s_{ξ} so that $s_{\xi+1} \setminus \alpha$ extends $(s_{\xi} \setminus \alpha) * s_1$. Then 2 is satisfied with η equal to $\xi + 1$.

There must be a limit ordinal ξ such that for $\alpha < \gamma_{\xi}$ and $s \in \bigcup_{\xi' < \xi} T_{\xi'}$ there is an initial segment of $s * (s_{\xi} \setminus \alpha)$ that is forced to belong to \dot{A} . It follows that every point in $T_{\xi} = m(\bigcup_{\xi' < \xi} T_{\xi'}, s_{\xi})$ of length γ_{ξ} is forced to lie above some point in \dot{A} , so T_{ξ} forces that $\dot{A} \subseteq T_{\xi}$ has size less than κ . This proves that the generic tree is κ -Suslin. $\Box(Claim1)$

Claim 2. Let T_Q denote the κ -Suslin tree added by Q. Then the 2-step iteration $Q * T_Q$ is equivalent to κ -Cohen.

Proof. The forcing $Q * T_Q$ has $R = \{(T, s) \mid T \text{ has height Dom } (s) + 1 \text{ and } s$ belongs to $T\}$ as a dense subforcing. But then both R and κ -Cohen are κ -closed forcings of cardinality κ and therefore generate isomorphic complete Boolean algebras. It follows that $Q * T_Q$ is equivalent to κ -Cohen. $\Box(Claim2)$

It follows that $P_{\kappa} * Q * T_Q$ is equivalent to $P_{\kappa} * \kappa$ -Cohen.

Claim 3. $P_{\kappa} * \kappa$ -Cohen preserves the weak compactness of κ .

Proof. We must show that κ satisfies Π_1^1 reflection in $L[G((\leq \kappa)] = L[G_{\kappa}][G(\kappa)]]$, where G_{κ} is generic over L for P_{κ} and $G(\kappa)$ is generic over $L[G_{\kappa}]$ for κ -Cohen.

Suppose that (p, \dot{q}) is a condition in $P_{\kappa} * \kappa$ -Cohen which forces \dot{A} to be a subset of κ and the Π_1 sentence φ to hold in the structure $(L_{\kappa^+}[G(\leq \kappa)], \in, \dot{A})$. As P_{κ} is κ -cc, we may assume that \dot{q} belongs to L_{κ} . And we may assume that the name \dot{A} is a subset of L_{κ} . Now the statement

$$(p, \dot{q}) \Vdash \varphi$$
 holds in $(L_{\kappa^+}[G(\leq \kappa)], \in, A)$

is a Π_1 statement about the structure $(L_{\kappa^+}, \in, A, p, \dot{q})$ and therefore by Π_1^1 reflection in L there exists a cardinal $\alpha < \kappa$ such that (p, \dot{q}) belongs to L_{α} and

$$(p, \dot{q}) \Vdash_{\alpha} \varphi$$
 holds in $(L_{\alpha^+}[\dot{G}(\leq \alpha)], \in, \dot{A} \cap L_{\alpha}),$

where \Vdash_{α} refers to the forcing $P_{\alpha} * \alpha$ -Cohen and $\dot{G}(\leq \alpha)$ refers to the generic for that forcing. Now choose a condition extending (p, \dot{q}) which forces (in $P_{\kappa} * \kappa$ -Cohen) that $\dot{G}(\kappa) \upharpoonright \alpha = \dot{G}(\alpha)$, and therefore that $\dot{A} \cap \alpha$ equals $(\dot{A} \cap L_{\alpha})^{\dot{G}(\leq \alpha)}$. Then this condition forces (in $P_{\kappa} * \kappa$ -Cohen) that $H(\alpha^{+})$ of $L[\dot{G}(\leq \kappa)] = L_{\alpha^{+}}[\dot{G}(\leq \alpha)]$ and φ holds in $(L_{\alpha^{+}}[\dot{G}(\leq \alpha)], \in, \dot{A} \cap \alpha)$, as desired. $\Box(Claim3)$

Now let H be Q-generic over $L[G_{\kappa}]$. Then in $L[G_{\kappa}][H]$, κ is not weakly compact as there is a κ -Suslin tree. However, if S is a stationary subset of κ in this model, then since the forcing T_Q is κ -cc, S is also stationary in the larger model $L[G_{\kappa}][H][B]$, where B is T_Q -generic over $L[G_{\kappa}][H]$. As κ is weakly compact in $L[G_{\kappa}][H][B]$, it follows that S is stationary in some $\alpha < \kappa$. Thus $L[G_{\kappa}][H]$ is the desired model where κ is not weakly compact but where $SR(\kappa)$ holds. \Box

3.Vorlesung

Can $SR(\kappa)$ hold for a successor cardinal κ ?

Proposition 4 $SR(\kappa)$ fails if κ is the successor of a regular cardinal.

Proof. Suppose that $\kappa = \gamma^+$, γ regular. Then $S = \{\alpha < \kappa \mid \text{cof } \alpha = \gamma\}$ is stationary in κ but not in any $\bar{\kappa} < \kappa$. \Box

Theorem 5 If λ is a singular limit of λ^+ -supercompact cardinals then $SR(\lambda^+)$ holds.

Proof. Recall that κ is μ -supercompact iff there is an elementary embedding $j: V \to M$ with critical point κ such that $j(\kappa) > \mu$ and $M^{\mu} \subseteq M$.

Now suppose that S is stationary in λ^+ . Then for some λ^+ -supercompact $\kappa < \lambda$, $T = S \cap \operatorname{Cof}(<\kappa)$ is stationary. Let $j: V \to M$ witness the λ^+ -supercompactness of κ . We show that $T \cap \alpha$ is stationary for some $\alpha < \lambda^+$. Let γ be the supremum of $j[\lambda^+]$; as $j \upharpoonright \lambda^+$ belongs to M, cof $^M(\gamma) = \lambda^+$, and therefore γ is less than $j(\lambda^+)$, which is regular in M. It suffices to show that $M \vDash j(T) \cap \gamma$ is stationary, for then by elementarity, $V \vDash T \cap \alpha$ is stationary for some $\alpha < \lambda^+$.

Suppose that C is closed unbounded in γ . As j is continuous at ordinals of cofinality $< \kappa$, $j[\lambda^+]$ is $< \kappa$ -closed, i.e., contains all of its limit points of cofinality less than κ . It follows that Range $(j) \cap C$ is unbounded in γ and therefore $D = j^{-1}[C] \subseteq \lambda^+$ is unbounded in λ^+ . And again since jis continuous at ordinals of cofinality $< \kappa$, D is $< \kappa$ -closed. Since T is a stationary subset of $\operatorname{Cof}(<\kappa) \cap \lambda^+$, it follows that $T \cap D$ is nonempty and therefore $j[T \cap D] \subseteq j(T) \cap C$ is nonempty, as desired. \Box

Theorem 6 Assume GCH and suppose that $\kappa_0 < \kappa_1 < \cdots$ is an ω sequence of supercompact cardinals. Define $P_1 = Coll (\omega, < \kappa_0)$, $P_{n+1} = P_n * Coll (\kappa_{n-1}, < \kappa_n)$ for finite n > 0 and $P_{\omega} = Inverse limit of the <math>P_n$'s. Then P_{ω} forces $SR(\aleph_{\omega+1})$.

Proof. Let λ be the supremum of the κ_n 's and let G_{ω} be P_{ω} -generic, $G_n = G_{\omega} \upharpoonright P_n$.

Claim 1. In $V[G_{\omega}]$, $\kappa_n = \aleph_{n+1}$, $\lambda = \aleph_{\omega}$ and $\lambda^+ = \aleph_{\omega+1}$.

Proof. The forcing Coll $(\omega, < \kappa_0)$ makes everything less than κ_0 countable and is κ_0 -cc. So κ_0 is \aleph_1 in $V[G_1]$. The rest of the iteration is κ_0 -closed, so κ_0 is also \aleph_1 in $V[G_{\omega}]$. A similar argument shows that each κ_n is \aleph_{n+1} , and therefore that λ is \aleph_{ω} . If λ^+ were collapsed then it would be given a cofinality less than some κ_n ; but for large enough m, the iteration P_{ω} factors as $P_m * P_{m,\omega}$ where P_m has size less than λ and $P_{m,\omega}$ is κ_n -closed; it follows that λ^+ cannot have cofinality less than κ_n in $V[G_{\omega}]$. \Box (Claim 1)

4.Vorlesung

Claim 2. For each *n* there is a generic extension $V[G_{\omega}][H_n]$ of $V[G_{\omega}]$ in which there is a definable elementary embedding $k_n : V[G_{\omega}] \to M_n \subseteq V[G_{\omega}][H_n]$ with critical point κ_n such that $k_n \upharpoonright \lambda^+$ belongs to M_n and $k_n(\kappa_n) > \lambda^+$. Moreover the forcing to add H_n is \aleph_n -closed.

Proof. Let $j: V \to M$ witness that κ_n is λ^+ supercompact. We wish to extend j to the k_n of the Claim. To do so, we need to find, in an \aleph_n -closed generic extension of $V[G_{\omega}]$, a $j(P_{\omega}) = P_{\omega}^M$ -generic G_{ω}^M over M which contains $j[G_{\omega}]$ as a subset.

The forcing P_{ω} is the ω -iteration Coll $(\omega, < \kappa_0) * \text{Coll } (\kappa_0, < \kappa_1) * \cdots$ and therefore $j(P_{\omega}) = P_{\omega}^M$ is the ω -iteration in M given by Coll ${}^M(\omega, < \kappa_0) * \text{Coll } {}^M(\kappa_0, < \kappa_1) * \cdots * \text{Coll } {}^M(\kappa_{n-2}, < \kappa_{n-1}) * \text{Coll } {}^M(\kappa_{n-1}, < j(\kappa_n)) * \text{Coll } {}^M(j(\kappa_n), < j(\kappa_{n+1})) * \cdots$. The first n factors of these two iterations are the same and so we choose G_n^M to be G_n , yielding a lifting of j to an elementary embedding $j^* : V[G_n] \to M[G_n^M]$. The next factor Coll $(\kappa_{n-1}, < \kappa_n)$ of the V iteration is included as a subforcing of the next factor Coll ${}^M(\kappa_{n-1}, < j(\kappa_n)) = \text{Coll } (\kappa_{n-1}, < j(\kappa_n))$ of the M-iteration and indeed the latter factors as Coll $(\kappa_{n-1}, < \kappa_n) \times \text{Coll } (\kappa_{n-1}, [\kappa_n, j(\kappa_n))$. Note that the forcing Coll $(\kappa_{n-1}, [\kappa_n, j(\kappa_n))$ is $\kappa_{n-1} = \aleph_n$ -closed. So we choose a generic for this product whose first factor equals the generic specified by G_{n+1} , thereby lifting j^* to $j^{**} : V[G_{n+1}] \to M[G_{n+1}^M]$.

Now the remainder P^{n+1} of the P_{ω} iteration (where $P_{\omega} = P_{n+1} * P^{n+1}$) has size $(\kappa_{\omega}^+)^V$ and $j(\kappa_n)$ is greater than $(\kappa_{\omega}^{++})^V$; therefore in $M[G_{n+1}^M]$, P^{n+1} is an \aleph_n -closed forcing with only \aleph_n maximal antichains in $V[G_{n+1}]$. It follows that in $M[G_{n+1}^M]$ there is a generic for P^{n+1} over $V[G_{n+1}]$, which we may assume equals G^{n+1} . As the remainder $P^{M,n+1}$ of the iteration P_{ω}^M (where $P_{\omega}^M = P_{n+1}^M * P^{M,n+1}$) is $j(\kappa_n)$ -closed and therefore $(\lambda^{++})^V$ -closed, there is a single condition in $P^{M,n+1}$ which is below each condition in $j^{**}[G^{n+1}]$; so we force below that condition. The result is that in a κ_n -closed forcing extension we have lifted j to $k_n : V[G_{\omega}] \to M[G_{\omega}^M]$, as desired. \Box (Claim 2)

5.Vorlesung

Claim 3. Suppose that n > 0 is finite and $V[G_{\omega}] \vDash S \cap \operatorname{Cof}(\langle \aleph_n)$ is stationary. Then S remains stationary in all \aleph_n -closed forcing extensions of $V[G_{\omega}]$.

Given this last Claim, we finish the proof of the Theorem as follows. Suppose that $V[G_{\omega}] \models S \subseteq \aleph_{\omega+1}$ is stationary. Then for some finite $n > \infty$ 0, $V[G_{\omega}] \models S \cap \operatorname{Cof}(\langle \aleph_n)$ is stationary. By Claim 2, in some \aleph_n -closed forcing extension $V[G_{\omega}][H_n]$ of $V[G_{\omega}]$ there is an embedding $k_n : V[G_{\omega}] \to M_n \subseteq V[G_{\omega}][H_n]$ with critical point $\kappa_n = \aleph_{n+1}^{V[G_{\omega}]}, k_n \upharpoonright \aleph_{\omega+1}^{V[G_{\omega}]} \in M_n$ and $k_n(\aleph_{n+1}^{V[G_{\omega}]}) > \aleph_{\omega+1}^{V[G_{\omega}]}$. By Claim 3, S is still stationary in $V[G_{\omega}][H_n]$. Let γ be the supremum of $k_n[\aleph_{\omega+1}^{V[G_{\omega}]}]$. Then γ has cofinality \aleph_n in M_n and therefore γ is less than $k_n(\aleph_{\omega+1}^{V[G_{\omega}]})$, which is regular in M_n .

We claim that $k_n(S) \cap \gamma$ is stationary in M_n . Suppose that $C \subseteq \gamma$ is closed unbounded, $C \in M_n$. As k_n is continuous at ordinals of $V[G_{\omega}]$ -cofinality $\langle \aleph_n$ and $V[G_{\omega}]$, $V[G_{\omega}][H_n]$ have the same $\langle \aleph_n$ sequences of ordinals, it follows that Range $(k_n \upharpoonright \aleph_{\omega+1}^{V[G_{\omega}]})$ is $\langle \aleph_n$ -closed in M_n . Therefore Range $(k_n) \cap C$ is unbounded in γ . Let D be $k_n^{-1}[C]$. Then D is unbounded in $\aleph_{\omega+1}^{V[G_{\omega}]}$ and moreover is $\langle \aleph_n$ -closed. As S is a subset of $\operatorname{Cof}(\langle \aleph_n)$ which is stationary in $V[G_{\omega}][H_n]$, it follows that $S \cap D$ is nonempty, and therefore that $k_n(S) \cap C$ is nonempty, as desired.

As $M_n \vDash k_n(S) \cap \gamma$ is stationary, it follows that $V[G_{\omega}] \vDash S \cap \alpha$ is stationary for some $\alpha < \aleph_{\omega+1}$, thereby proving $SR(\aleph_{\omega+1})$ in $V[G_{\omega}]$.

Proof of Claim 3. We use the following Lemma of Shelah:

Lemma 7 In $V[G_{\omega}]$ there is a sequence $\langle x_{\alpha} \mid \alpha < \aleph_{\omega+1} \rangle$ of bounded subsets of $\aleph_{\omega+1}$ such that for all α in a closed unbounded subset C of $\aleph_{\omega+1}$ there is a closed unbounded $c \subseteq \alpha$ of ordertype cof (α) such that all proper initial segments of c are of the form x_{β} for some $\beta < \alpha$.

Now suppose that in $V[G_{\omega}]$, $S \subseteq \operatorname{Cof}(\langle \aleph_n)$ is stationary and P is an \aleph_n -closed forcing. Let $\langle x_{\alpha} \mid \alpha < \aleph_{\omega+1} \rangle$ and C be as in the Lemma. Given $p \in P$ which forces \dot{D} to be closed unbounded in $\aleph_{\omega+1}$, we must find an extension q of p which forces that some α is in $S \cap \dot{D}$.

In $V[G_{\omega}]$ let $(N, \in, <_N)$ be an elementary submodel of some large $(H_{\theta}, \in, <_{\theta})$ (where $<_{\theta}$ is a well-ordering of H_{θ}) which contains $P, p, \dot{D}, \langle x_{\alpha} | \alpha < \aleph_{\omega+1} \rangle$, D and such that $N \cap \aleph_{\omega+1}$ is an ordinal $\alpha \in C \cap S$. This is possible as S is stationary in $V[G_{\omega}]$. Let $c \subseteq \alpha$ be of ordertype cof $(\alpha) < \aleph_n$ with all of its proper initial segments of the form x_{γ} for some $\gamma < \alpha$. It follows that all of the proper initial segments of c belong to N.

Now build a descending chain of conditions $\langle p_i \mid i < \operatorname{cof} (\alpha) \rangle$ such that $p_0 = p$ and p_j is the $\langle N$ -least extension of $p_i, i < j$, which forces some ordinal greater than the *j*-th element of *c* into \dot{D} . Then for each $j < \operatorname{cof} (\alpha)$, the sequence $\langle p_i \mid i < j \rangle$ belongs to N and by the $\langle \aleph_n$ -closure of P there is a condition q below each of the $p_i, i < \operatorname{cof} (\alpha)$. Then $q \leq p$ forces that α belongs to $S \cap \dot{D}$, as desired. $\Box(\operatorname{Claim} 3)$.

This completes the proof of the theorem.

6.Vorlesung

Saturated Ideals

Let κ be an uncountable regular cardinal and I a nonprincipal κ -complete ideal on κ , i.e., a collection of subsets of κ , including all bounded subsets of κ , with the following properties:

1. $A \subseteq B \in I \to A \in I$. 2. $\alpha < \kappa, A_i \in I$ for each $i < \alpha \to \bigcup_{i < \alpha} A_i \in I$. 3. $\kappa \notin I$.

For a cardinal λ , I is λ -saturated iff the Boolean algebra $\mathcal{P}(\kappa)/I$ has the λ -cc. Equivalently: If A_i , $i < \lambda$ are subsets of κ not in I, then $A_i \cap A_j$ belongs to I for some distinct pair $i, j < \lambda$. We say that κ carries a λ -saturated ideal iff there exists a λ -saturated, κ -complete ideal on κ .

I is 2-saturated iff I is a maximal ideal, and therefore κ carries a 2-saturated ideal iff κ is measurable. However even \aleph_1 -saturation does not imply measurability, as the next result shows.

Theorem 8 If κ is measurable then in some cofinality-preserving forcing extension, $2^{\aleph_0} = \kappa$ and κ carries an \aleph_1 -saturated ideal.

Proof. Let P be the forcing that adds κ Cohen reals, by a finite support product. As P is ccc, cofinalities are preserved. In the extension $2^{\aleph_0} = \kappa$. Let I be a κ -complete maximal ideal on κ , whose existence is guaranteed by the measurability of κ . We claim that in V[G], where G is P-generic, the ideal $J = \{X \subseteq \kappa \mid X \subseteq Y \text{ for some } Y \in I\}$ is a κ -complete, \aleph_1 -saturated ideal.

First we prove that J is κ -complete. Suppose that $p \Vdash X_{\alpha} \in J$ for each $\alpha < \lambda$, where λ is less than κ . For each $\alpha < \lambda$ let A_{α} be a maximal antichain

of conditions q below p which force \dot{X}_{α} to be a subset of some $Y_q^{\alpha} \in I$. p forces \dot{X}_{α} to be a subset of the union of the Y_q^{α} 's. It follows that p forces $\bigcup_{\alpha<\lambda}\dot{X}_{\alpha}$ to belong to J, as it forces it to be a subset of $\bigcup_{\alpha<\lambda,q\in A_{\alpha}}Y_q^{\alpha}$, which belongs to I as I is κ -complete and each A_{α} has size less than κ (in fact, each A_{α} is countable).

To prove \aleph_1 -saturation, suppose that X_{α} , $\alpha < \omega_1$, is forced by a condition p to be a sequence of subsets of κ not in J whose pairwise intersections are in J. By the \aleph_1 -completeness of J, we may in fact assume that p forces $\dot{X}_{\alpha} \cap \dot{X}_{\beta}$ to be empty for distinct $\alpha, \beta < \omega_1$. For each $\alpha < \omega_1$, let Y_{α} be the set of ordinals which are forced into \dot{X}_{α} by some condition below p. As \dot{X}_{α} is not in J, it follows that Y_{α} is not in I and therefore as I is an \aleph_2 -complete maximal ideal, the intersection Y of the Y_{α} , $\alpha < \omega_1$, belongs to I. Let γ belong to Y. Then for each $\alpha < \omega_1$ there is an extension q_{α} of p which forces $\gamma \in \dot{X}_{\alpha}$. By the ccc, there exist distinct $\alpha, \beta < \omega_1$ such that q_{α}, q_{β} are compatible; but then a common extension of q_{α}, q_{β} forces that $\dot{X}_{\alpha} \cap \dot{X}_{\beta}$ is nonempty, contradiction. \Box

7.Vorlesung

Thus κ can carry an \aleph_1 -saturated ideal without being strongly inaccessible. However:

Theorem 9 If κ carries a κ -saturated ideal then κ is weakly inaccessible.

Proof. We must show that κ is a limit cardinal. Suppose not and let $\kappa = \lambda^+$, λ an infinite cardinal. For $\xi < \lambda^+$ let f_{ξ} be a surjection of λ onto ξ . For $\alpha < \lambda^+$ and $\eta < \lambda$ define $A_{\alpha,\eta} = \{\xi \mid f_{\xi}(\eta) = \alpha\}$. Then for each $\eta < \lambda$, $A_{\alpha,\eta}$ and $A_{\beta,\eta}$ are disjoint for distinct $\alpha, \beta < \lambda^+$. And for each $\alpha < \lambda^+$, the union of the $A_{\alpha,\eta}, \eta < \lambda$, contains all sufficiently large ordinals $< \lambda^+$.

Now suppose that I were a λ^+ -saturated ideal on λ^+ . It follows from the λ^+ -completeness of I that for each $\alpha < \lambda^+$, A_{α,η_α} does not belong to I for some $\eta_\alpha < \lambda$. Therefore for some fixed $\eta < \lambda$, $A_{\alpha,\eta}$ does not belong to I for λ^+ -many $\alpha < \lambda^+$. But as $A_{\alpha,\eta}$ and $A_{\beta,\eta}$ are disjoint for distinct $\alpha, \beta < \lambda^+$, this contradicts the λ^+ -saturation of I. \Box

Can a successor cardinal κ carry a κ^+ -saturated ideal? We give a positive answer using forcing axioms.

Definition. Let P be a forcing and $p \in P$. The proper game for P below p is defined as follows: Player I plays P-names $\dot{\alpha}_n$ for ordinals and II plays ordinals β_n . II wins iff there is some $q \leq p$ which forces that for each n, $\dot{\alpha}_n$ equals some β_k . The semiproper game (for P below p) is defined in the same way, but with "ordinals" replaced with "countable ordinals". P is proper (semiproper) iff for each $p \in P$, II has a winning strategy in the proper (semiproper) game for P below p.

Properness (semiproperness) can be equivalently formulated in terms of the existence of generics over countable models.

Definition. Let P be a forcing. For any countable set M, q is (M, P)-generic (semigeneric) iff for every name $\sigma \in M$ for an ordinal (countable ordinal), q forces that σ equals some ordinal of M.

Lemma 10 P is proper (semiproper) iff for sufficiently large cardinals λ there is a closed unbounded set of $M \in [H_{\lambda}]^{\aleph_0}$ such that each $p \in M$ has an extension which is (M, P)-generic (semigeneric).

The Proper forcing axiom PFA (the semiproper forcing axiom SPFA) is the assertion that if P is a proper (semiproper) forcing and \mathcal{D} a collection of \aleph_1 -many dense subsets of P then there is a compatible $G \subseteq P$ which intersects each element of \mathcal{D} .

Lemma 11 Suppose that P_{α} is a countable support iteration of forcings $\langle Q_{\beta} | \beta < \alpha \rangle$ such that $P_{\alpha} \upharpoonright \beta$ forces \dot{Q}_{β} to be proper for each $\beta < \alpha$. Then P_{α} is proper.

Definition. κ is λ -supercompact, where λ is a cardinal $\geq \kappa$, iff there is an elementary embedding $j: V \to M$ with critical point κ such that $j(\kappa) > \lambda$ and $M^{\lambda} \subseteq M$. κ is supercompact iff κ is λ -supercompact for all λ .

Remark. Supercompactness is a first-order property, as the λ -supercompactness of κ can be witnessed by an embedding of the form $j_U : V \to M_U$ where U is a normal measure on $P_{\kappa}\lambda$.

Theorem 12 If κ is supercompact then there is a proper forcing extension in which κ equals \aleph_2 and PFA holds.

Proof. We need the following Lemma.

Lemma 13 Suppose that κ is supercompact. Then there is a function f: $\kappa \to V_{\kappa}$ such that for every set x and every cardinal $\lambda \geq \kappa$ such that $x \in H_{\lambda^+}$ there is a $j: V \to M$ with critical point κ such that $j(\kappa) > \lambda$, $M^{\lambda} \subseteq M$ and $j(f)(\kappa) = x$. f is called a Laver function on κ .

Proof. Assume that the Lemma fails. For each $f: \kappa \to V_{\kappa}$ let λ_f be the least cardinal $\geq \kappa$ such that some $x \in H_{\lambda_f^+}$ witnesses that f is not a Laver function for κ , i.e., such that $j(f)(\kappa) \neq x$ for every $j: V \to M$ with critical point κ such that $j(\kappa) > \lambda$ and $M^{\lambda} \subseteq M$. Let ν be greater than all of the λ_f 's and let $j: V \to M$ witness the ν -supercompactness of κ .

Now inductively define $f : \kappa \to V_{\kappa}$ as follows: If $f \upharpoonright \alpha$ is not a Laver function for α then let λ be least so that some $x \in H_{\lambda^+}$ witnesses this and choose $f(\alpha) = x_{\alpha}$ to be such an x; otherwise set $f(\alpha) = 0$.

Now consider $x = j(f)(\kappa)$. By the definition of f and the elementarity of j, x witnesses the failure of f to be a Laver function in M. As $M^{\nu} \subseteq M$, x also witnesses the failure of f to be a Laver function in V and λ_f is defined the same way in M as in V. This is a contradiction, as $j(\kappa) > \lambda_f$ and $j(f)(\kappa) = x$. \Box (Lemma 13)

8.Vorlesung

Now we prove the Theorem. Let $f : \kappa \to V_{\kappa}$ be a Laver function. Construct a countable support iteration P_{κ} of $\langle \dot{Q}_{\alpha} | \alpha < \kappa \rangle$ as follows. At stage α , if $f(\alpha)$ is a pair (\dot{P}, \dot{D}) of P_{α} -names such that \dot{P} is proper and \dot{D} is a γ -sequence of dense subsets of \dot{P} for some $\gamma < \kappa$ then set $\dot{Q}_{\alpha} = \dot{P}$; otherwise let \dot{Q}_{α} be the trivial forcing.

Let G be P_{κ} -generic. As P_{κ} is proper, \aleph_1 is preserved. Each P_{α} , $\alpha < \kappa$, has size less than κ and the iteration is performed with countable support; it follows that P_{κ} is κ -cc and therefore κ is preserved.

We claim that in V[G], if P is proper and $\mathcal{D} = \langle D_{\alpha} \mid \alpha < \gamma \rangle$, $\gamma < \kappa$, is a sequence of dense subsets of P then there is a compatible subset of Pwhich intersects each D_{α} . Let \dot{P} and $\dot{\mathcal{D}}$ be P_{κ} -names for P and \mathcal{D} . Choose λ to be much larger than P and let $j: V \to M$ have critical point κ with $j(\kappa) > \lambda$, $M^{\lambda} \subseteq M$ and $j(f)(\kappa) = (\dot{P}, \dot{\mathcal{D}})$. We can assume that V_{λ}^{M} is very elementary in M and therefore $V_{\lambda}^{M[G]} = V_{\lambda}^{V[G]}$ is very elementary in M[G]; it follows that P is not only proper in V[G], but also in M[G].

Now consider the iteration $j(P_{\kappa})$ in M, which is a countable support iteration of length $j(\kappa)$ using the Laver function j(f). As $j(f)(\kappa) = (\dot{P}, \dot{D})$ and \dot{P} is proper in M[G], it follows that the forcing \dot{P} is used at stage κ in the $j(P_{\kappa})$ iteration in M. So we can write $j(P_{\kappa}) = P_{\kappa} * \dot{P} * \dot{R}$ for some \dot{R} . If H * K is generic for $\dot{P} * \dot{R}$ over V[G], then in V[G * H * K] we can extend jto an elementary embedding $j^* : V[G] \to M[G * H * K]$. H is P-generic over V[G] and therefore meets each $D_{\alpha}, \alpha < \gamma$. Let $E = \{j^*(p) \mid p \in H\}$. Then Ebelongs to M[G * H * K] and is a compatible set of conditions in $j^*(P)$ that meets each dense set in $j^*(\mathcal{D})$. By elementarity it follows that in V[G] there is a compatible set of conditions in P which meets each dense set in \mathcal{D} , as desired.

It now follows that V[G] is a model of PFA as $\aleph_1 < \kappa$. Also note that P_{κ} collapses each $\gamma < \kappa$ to ω_1 as Coll (ω_1, γ) is countably-closed, and therefore proper, and for each $\alpha < \gamma$, the set of conditions $f \in \text{Coll } (\omega_1, \gamma)$ with $\alpha \in \text{Range } (f)$ is dense. So κ is the ω_2 of V[G]. \Box

The iteration lemma for proper forcing has an analogue for semiproper forcing. There is a notion of *revised* countable support iteration that preserves semiproperness, and therefore one has:

Theorem 14 If κ is supercompact then there is a semiproper forcing extension in which κ equals \aleph_2 and SPFA holds.

SPFA implies an apparently stronger axiom. A forcing P is stationarypreserving iff each stationary subset of ω_1 remains stationary in P-generic extensions. Martin's maximum MM is the assertion that if P is stationarypreserving and \mathcal{D} a collection of \aleph_1 -many dense subsets of P then there is a compatible $G \subseteq P$ which intersects each element of \mathcal{D} .

9.Vorlesung

Theorem 15 SPFA implies MM.

Proof. In fact SPFA implies that every stationary-preserving forcing is semiproper, as we now show. Let X be a set of countable elementary submodels of $H^*_{\lambda} = (H_{\lambda}, \in, <)$ (where < is a wellordering of H_{λ}). We write X^{\perp} for $\{M \in [H_{\lambda}]^{\aleph_0} \mid M \prec H^*_{\lambda}$ and $N \notin X$ for every countable N that satisfies $M \prec N \prec H^*_{\lambda}$ and $N \cap \omega_1 = M \cap \omega_1\}$. A nice chain in H^*_{λ} is a sequence $\langle M_{\alpha} \mid \alpha < \theta \rangle$ of countable elementary submodels of H^*_{λ} such that $\alpha < \beta \to M_{\alpha} \in M_{\beta}$ and M_{λ} is the union of $M_{\alpha}, \alpha < \lambda$, for limit λ .

Lemma 16 (Main Lemma) Assume SPFA and let $\omega_1 \leq \kappa < \lambda$ with λ regular and sufficiently large. Let $Y \subseteq [H_{\kappa}]^{\aleph_0}$ be stationary and $X = \{M \in [H_{\lambda}]^{\aleph_0} \mid M \cap H_{\kappa} \in Y\}$ (the "lifting" of Y to H_{λ}). Then there exists a nice chain $\langle M_{\alpha} \mid \alpha < \omega_1 \rangle$ in H_{λ}^* such that $M_{\alpha} \in X \cup X^{\perp}$ for every α .

We now prove the Theorem using the Main Lemma. Assume SPFA and suppose Q is a stationary-preserving forcing. Choose κ large enough so that any Q-names for a countable ordinal is equivalent to one in H_{κ} . Choose a condition p in Q and define $Y = \{M \in [H_{\kappa}]^{\aleph_0} \mid \text{There exists no } (M, Q)$ semigeneric $q \leq p\}$. Choose $\lambda > \kappa$ to be regular and let $X = \{M \in [H_{\lambda}]^{\aleph_0} \mid$ $M \cap H_{\kappa} \in Y\}$ be the lifting of Y to H_{λ} . By the choice of κ , $X = \{M \in [H_{\lambda}]^{\aleph_0} \mid$ There exists no (M, Q)-semigeneric $q \leq p\}$.

By the Main Lemma, there is a nice chain $\langle M_{\alpha} \mid \alpha < \omega_1 \rangle$ in H_{λ}^* such that $M_{\alpha} \in X \cup X^{\perp}$ for each $\alpha < \omega_1$. We claim that $S = \{\alpha < \omega_1 \mid M_{\alpha} \in X\}$ is nonstationary. Let G be Q-generic, p in G. Let $\dot{\delta}_{\xi}, \xi < \omega_1$, enumerate all names for countable ordinals in $\bigcup_{\alpha < \omega_1} M_{\alpha}$. Then $C = \{\alpha < \omega_1 \mid M_{\alpha} \cap \omega_1 = \alpha$ and $\dot{\delta}_{\xi} \in M_{\alpha}, \dot{\delta}_{\xi}^G < \alpha$ for all $\xi < \alpha\}$ is closed unbounded. And for each $\alpha \in C$, there exists $q \in G$ below p which forces each $\dot{\delta}_{\xi} \in M_{\alpha}$ to equal some ordinal in M_{α} and is therefore (M_{α}, Q) -semigeneric. So S is nonstationary in V[G] and therefore nonstationary in V.

It follows that there is a nice chain $\langle M_{\alpha} \mid \alpha < \omega_1 \rangle$ in H_{λ}^* such that $M_{\alpha} \in X^{\perp}$ for each $\alpha < \omega_1$. Let $\mu > \lambda$ be sufficiently large. Choose a countable $M \prec (H_{\mu}, \in, <, Q, \langle M_{\alpha} \mid \alpha < \omega_1 \rangle)$ (where < is a wellordering of H_{μ}) with $p \in M$. Set $\delta = M \cap \omega_1$. Then $M \cap H_{\lambda} \supseteq M_{\delta}$ and $\delta = M_{\delta} \cap \omega_1$; since M_{δ} belongs to X^{\perp} we have $M \cap H_{\lambda} \notin X$. So by the definition of X, there exists an (M, Q)-semigeneric q below p. So for each $p \in Q$, there is a closed unbounded set of countable $M \prec H_{\mu}^* = (H_{\mu}, \in, <)$ and an (M, Q)-semigeneric $q \leq p$. It follows by taking a diagonal intersection that for a closed unbounded set of countable $M \prec H_{\mu}^*$, there is an (M, Q)-semigeneric below any $p \in M$, establishing the semiproperness of Q.

10.Vorlesung

Proof of the Main Lemma. Let P be the forcing that adds a nice ω_1 -chain through $X \cup X^{\perp}$ using nice countable chains $\langle M_{\alpha} \mid \alpha \leq \gamma \rangle$ through $X \cup X^{\perp}$, ordered by end-extension.

For each $\gamma < \omega_1$ the set D_{γ} of conditions in P of length at least γ is dense: Let G be generic for collapsing H_{λ} to ω_1 with countable conditions. Then in V[G], there is a nice ω_1 -chain through $[H_{\lambda}^V]^{\aleph_0}$ with union H_{λ}^V , and $X \subseteq [H_{\lambda}^V]^{\aleph_0}$ is stationary. It follows that in V[G] there are nice chains through X of any countable length, and therefore such chains exist also in V. It then follows that any condition in P can be extended to any countable length and therefore each D_{γ} is dense.

We show that P is semiproper. Let $\mu > \lambda$ be sufficiently large and $M \prec H^*_{\mu} = (H_{\mu}, \in, <)$, M countable (where < is a wellordering of H_{μ}). Let p belong to $P \cap M$. We show that there is a $q \leq p$ which is (M, P)-semigeneric. First note that there is a countable $N, M \prec N \prec H^*_{\mu}$, such that $N \cap \omega_1 = M \cap \omega_1$ and $N \cap H_{\lambda} \in X \cup X^{\perp}$: This is clear if $M \cap H_{\lambda}$ belongs to X^{\perp} ; otherwise choose a countable $N', M \cap H_{\lambda} \subseteq N' \prec H^*_{\lambda}$, such that $N' \cap \omega_1 = M \cap \omega_1$ and N' belongs to X. Let N be the least elementary submodel of H^*_{μ} containing $M \cup (N' \cap H_{\kappa})$. Then $N' \cap H_{\kappa} = N \cap H_{\kappa}$ so N is as desired.

Now we find the desired (M, P)-semigeneric below p. Choose N as above. We can build a descending ω -sequence of conditions $p_n = \langle M_\alpha \mid \alpha \leq \gamma_n \rangle \in N$ below p such that the union of the M_{γ_n} 's equals $N \cap H_\lambda$ and every name in Nfor a countable ordinal is forced by some p_n to be an ordinal in N. Define q to be $\langle M_\alpha \mid \alpha < \gamma = \sup_n \gamma_n \rangle$ together with $M_\gamma = N \cap H_\lambda$. Then q is a condition below p which is (N, P)-semigeneric and therefore also (M, P)-semigeneric.

Finally, apply SPFA to obtain a nice chain of length ω_1 using the semiproperness of P. \Box

We return to saturated ideals.

Theorem 17 MM implies that the ideal of nonstationary subsets of ω_1 is ω_2 -saturated.

Proof. Assume MM and let $\{A_i \mid i \in W\}$ be a maximal collection of stationary subsets of ω_1 such that $A_i \cap A_j$ is nonstationary for distinct i, j. We show that for some $W_0 \subseteq W$ of size at most ω_1 , $\{A_i \mid i \in W_0\}$ is also maximal.

Let P be the 2-step iteration Q * R where Q adds a surjection $f : \omega_1 \to W$ using countable conditions $q : \alpha \to W$, $\alpha < \omega_1$, and R adds a closed unbounded subset to $\nabla_{\alpha < \omega_1} A_{f(\alpha)} = \{\alpha \mid \alpha \in A_{f(\beta)} \text{ for some } \beta < \alpha\}$ using countable closed subsets r of $\nabla_{\alpha < \omega_1} A_{f(\alpha)}$, ordered by end-extension. Then P is stationary-preserving: Suppose that $S \subseteq \omega_1$ is stationary. Then $S \cap A_i$ is stationary for some $i \in W$ by the maximality of $\{A_i \mid i \in W\}$. Forcing with Q preserves the stationarity of $S \cap A_i$ as Q is ω -closed. And forcing with R preserves the stationarity of any stationary subset of $\nabla_{\alpha < \omega_1} A_{f(\alpha)}$ and therefore the stationarity of $S \cap A_i$.

Now for each $\alpha < \omega_1$ the set D_α of conditions (q, r) in P such that $\alpha \in \operatorname{dom}(q) \cap \max(r)$ is dense and therefore by MM there is a compatible $G \subseteq P$ which intersects each D_α . Then $\bigcup \{q \mid (q, r) \in G \text{ for some } r\}$ is a function $f: \omega_1 \to W$ and $\bigcup \{r \mid (q, r) \in G \text{ for some } q\}$ is a closed unbounded subset C of $\bigtriangledown_{\alpha < \omega_1} A_{f(\alpha)}$. It follows that $\{A_i \mid i \in \operatorname{Range}(f)\}$ is maximal, as any stationary subset of $\bigtriangledown_{\alpha < \omega_1} A_{f(\alpha)}$ has stationary intersection with some single $A_{f(\alpha)}$. \Box

11.Vorlesung

The tree property

A tree is a partial ordering $T = (T, \leq_T)$ with the property that for each $t \in T$, $T_t =$ the set of \leq_T -predecessors of t is well-ordered by \leq_T . The α -th level of T is $T_{\alpha} = \{t \in T \mid T_t \text{ is well-ordered by } \leq_T \text{ with ordertype } \alpha\}$. The height of T is the supremum of $\{\alpha + 1 \mid T_{\alpha} \text{ is nonempty}\}$.

Let κ be an infinite regular cardinal. T is a κ -tree iff T has height κ and for $\alpha < \kappa$, T_{α} has cardinality less than κ . A κ -tree T is κ -Aronszajn iff it has no κ -branch, i.e., there is no subset of T well-ordered by \leq_T with ordertype κ .

 κ has the *tree property* iff there is no κ -Aronszajn tree. \aleph_0 has the tree property as by König's Lemma, a finitely branching tree of height ω must have an infinite branch. But ω_1 does not have the tree property:

Theorem 18 There is an ω_1 -Aronszajn tree.

Proof. We construct a an ω_1 -tree T whose elements are bounded, increasing, well-ordered sequences of rational numbers, ordered by end-extension. It is clear that such a tree has no ω_1 -branch, as that would give an increasing sequence of rationals of length ω_1 , which is impossible.

We construct the α -th level T_{α} of T by induction on $\alpha < \omega_1$. We inductively maintain the following property:

(*) T_{α} is countable and if x belongs to T_{β} , $\beta < \alpha$ and q is a rational greater than $\sup(x)$ then x is extended by some $y \in T_{\alpha}$ with $\sup(y) < q$.

 T_0 consists only of the empty sequence (we take $\sup(\emptyset)$ to be $-\infty$. To define $T_{\alpha+1}$ from T_{α} , simply extend each $x \in T_{\alpha}$ with each rational $q > \sup(x)$. It is clear that property (*) is preserved. If α is a limit ordinal then for each x in some $T_{\beta}, \beta < \alpha$, and each rational $q > \sup(x)$, we extend x to $x_1 \subseteq x_2 \subseteq \cdots$ so that $\sup(x_n) < q$ for each n and the levels of the x_n 's are cofinal in α ; then put the resulting sequence $\bigcup_n x_n$ into T_{α} . It follows that T_{α} is countable and that for each $x \in \bigcup_{\beta < \alpha} T_{\beta}$ and $q > \sup(x)$, x has an extension y in T_{α} with $\sup(y) \leq q$; by choosing q' between q and $\sup(x)$ we can in fact guarantee $\sup(y) < q$, which gives (*) for α . \Box

The previous proof generalises. For an infinite cardinal λ , let Q_{λ} be the set of $< \lambda$ sequences of ordinals less than λ , ordered lexicographically. Then λ can be order-preservingly embedded into any interval of Q_{λ} . Now the cardinality of Q_{λ} is $\lambda^{<\lambda}$; if this is λ , then we can replace the rationals by Q_{λ} in the previous proof, obtaining:

Theorem 19 If $\lambda^{<\lambda} = \lambda$ then there is a λ^+ -Aronszajn tree. In particular if GCH holds and λ is regular, there is a λ^+ -Aronszajn tree.

The consistency strength of the existence of an uncountable κ with the tree property is that of a weakly compact:

Theorem 20 (1) If κ is weakly compact then κ has the tree property. (2) In L, κ has the tree property iff κ is weakly compact. (3) If κ has the tree property then κ is weakly compact in L. Proof. (1) It suffices to show that any κ -tree T with universe κ has a κ branch. If T is a κ -tree on κ then the statement that T has no κ -branch is a Π_1^1 statement about the structure (H_{κ}, \in, T) . As κ is weakly compact, it is Π_1^1 reflecting, which implies that for some $\alpha < \kappa$, $T|\alpha = \bigcup_{\beta < \alpha} T_\beta$ has no α -branch. But this is impossible, as the T-predecessors of any element of T_{α} form an α -branch through $T|\alpha$.

(2) This uses the fine structure theory and will not be proved here.

(3) Sketch: If κ is not weakly compact in L then by 2 there is a κ -tree T in L with no κ -branch in L. Now build another κ -tree T^* in L with the property that any κ -branch through T^* gives rise to a constructible κ -branch through T; it follows that κ does not have the tree property. \Box

Can ω_2 have the tree property? By the above results, we will need to use a weakly compact cardinal and kill CH to obtain the consistency of this. The following characterisation of weak compactness in terms of elementary embeddings will prove useful.

Proposition 21 κ is weakly compact iff κ is strongly inaccessible and for every transitive model M of ZF^- such that κ belongs to M, M is $< \kappa$ -closed and M has size κ there is an elementary embedding $j : M \to N$, N transitive, with critical point κ .

12.Vorlesung

Theorem 22 Suppose that κ is weakly compact. Then in some forcing extension, $\kappa = \omega_2$, $2^{\aleph_0} = \aleph_2$ and ω_2 has the tree property.

Proof. Consider the following "mixed support" iteration $P = \langle P_{\alpha} \mid \alpha < \kappa \rangle$. For each $\alpha < \kappa$, $P_{\alpha+1} = P_{\alpha} * Q_{\alpha}$, where Q_{α} is a P_{α} -name for the product ω -Cohen $\times \omega_1$ -Cohen. For limit α we take all $p = \langle (p(\beta)_0, p(\beta)_1) \mid \beta < \alpha \rangle$ in the inverse limit of the $P_{\beta}, \beta < \alpha$, such that for all but finitely many $\beta < \alpha, p(\beta)_0$ is trivial and for all but countably many $\beta < \alpha, p(\beta)_1$ is trivial. For $p \in P$ write $(p)_0$ for $\langle p(\beta)_0 \mid \beta < \text{length } (p) \rangle$ and $(p)_1$ for $\langle p(\beta)_1 \mid \beta < \text{length } (p) \rangle$ (where length (p) denotes the strict supremum of the support of p). Thus $(p)_0$ is finitely supported and $(p)_1$ is countably supported.

At stage $\alpha < \kappa$, Q_{α} collapses α to ω_1 as P_{α} adds α reals and Q_{α} adds an ω_1 -Cohen set. P is κ -cc: If X is a maximal antichain in P then for some $\alpha < \kappa$ of uncountable cofinality, $X \cap P_{\alpha}$ is a maximal antichain in P_{α} and since P_{α} is a direct limit, $X \cap P_{\alpha}$ is in fact a maximal antichain in P.

Note that it is dense for $p \in P$ to have the property that for each $\alpha <$ length (p), if $p(\alpha)_0$ is not the trivial name then it is forced by $p \upharpoonright \alpha$ to be equal to some particular ω -Cohen condition. This is proved for P_{α} by induction on α ; the successor case is easy, and as $(p)_0$ is finitely supported, the case where α is a limit ordinal is trivial.

Also note that any condition in P is equivalent to a condition p in P with the property that for each $\alpha < \text{length } (p)$, the trivial condition in P_{α} forces $p(\alpha)$ to belong to Q_{α} . This is because we can replace the P_{α} name $p(\alpha)$ by a name which is forced by the trivial condition to equal $p(\alpha)$ if $p(\alpha)$ belongs to Q_{α} and is forced to be the trivial condition of Q_{α} otherwise.

Let P^* be the dense set of conditions in P with the above two properties. We show that P^* , and therefore also P, preserves ω_1 : Suppose that \dot{f} is forced to be a function from ω into ω_1 . Given a condition p we will find an extension of p which forces a countable bound on the range of \dot{f} . Extend p to a condition q_1 which decides a value of $\dot{f}(0)$ and let p_1 be obtained from q_1 by setting $p_1(\alpha)_0$ to be $p(\alpha)_0$ for $\alpha < \text{length } (p)$ and to be the trivial name for α in [length (p), length (q_1)). Extend p_1 to a condition q_2 which decides a different value of $\dot{f}(0)$ and obtain p_2 from q_2 by setting $p_2(\alpha)_0$ to be $p(\alpha)_0$ for $\alpha < \text{length } (p)$ and to be the trivial name for α in [length (p), length (q_2)). Continue this construction as long as possible, taking greatest lower bounds at countable limit stages. In fact this construction terminates at some countable stage, as the collection of $(q_i)_0$'s forms an antichain in the finite support iteration of ω -Cohen, and any such antichain is countable. The result is a condition q extending p which forces a bound on $\dot{f}(0)$. Now repeat this for $\dot{f}(1)$, $\dot{f}(2)$, etc., resulting in an extension of p which forces a bound on \dot{f} .

So in V[G], where G is P-generic, κ equals ω_2 and there are ω_2 reals. Suppose that T were an ω_2 -Aronszajn tree in V[G]. Let \dot{T} be a name for T. As κ is weakly compact, there is an elementary embedding $j: M \to N$ with critical point κ where \dot{T} belongs to M and M, N are transitive ZF⁻ models. Then \dot{T} belongs to N and therefore T belongs to N[G]. As T has no cofinal branch in V[G], it has none in N[G].

Now the forcing j(P) is the mixed support iteration of ω -Cohen and ω_1 -Cohen in N, of length $j(\kappa)$. The forcing j(P) factors as P * Q where Q is the

mixed support iteration of ω -Cohen and ω_1 -Cohen defined in N^P , indexed on the interval $[\kappa, j(\kappa))$. Choose H to be Q^G -generic over N[G]; then the embedding $j : M \to N$ lifts to $j^* : M[G] \to N[G][H]$. As T is an initial segment of the tree $j^*(T)$, it follows that T has a cofinal branch in N[G][H]. However this contradicts the following Claim.

13.Vorlesung

Claim. The forcing Q^G for adding H over N[G] adds no cofinal branch through T.

Proof of Claim. Let C be generic over N[G] for Coll (ω_1, ω_2) , the forcing which collapses ω_2 using countable conditions. Then T has no cofinal branch in N[G][C]: Suppose that \dot{B} were a name for such a branch. Build an infinite binary tree of conditions p_s , $s \in 2^{<\omega}$, in Coll (ω_1, ω_2) and an ω -sequence $\alpha_1 < \alpha_2 < \cdots$ less than κ such that for distinct s and t of length n, p_s, p_t force different elements of T to belong to \dot{B} at level α_n . Then as there are ω_2 reals in N[G], this gives ω_2 different elements of the α -th level of T, where α is the supremum of the α_n 's, contradicting the fact that T is an ω_2 -tree.

To prove the Claim, it suffices to show that Q^G does not add a cofinal branch through T over the ground model N[G][C]. Suppose that $p \in Q^G$ forces \dot{B} to be such a branch and let $\langle \alpha_i \mid i < \omega_1 \rangle$ be an increasing sequence in N[G][C] cofinal in $\omega_2^{N[G]}$. As in the proof that P preserves ω_1 , form a decreasing sequence of conditions p_i , $i < \omega_1$ in Q^G as follows: Extend pto a condition q_1 which decides which element of T_{α_0} belongs to \dot{B} and let p_1 be obtained from q_1 by setting $p_1(\alpha)_0$ to be $p(\alpha)_0$ for $\alpha < \text{length } (p)$ and to be the trivial name for α in [length (p), length (q_1)). Extend p_1 to a condition q_2 which decides which element of T_{α_1} belongs to \dot{B} and obtain p_2 from q_2 by setting $p_2(\alpha)_0$ to be $p(\alpha)_0$ for $\alpha < \text{length } (p)$ and to be the trivial name for α in [length (p), length (q_2)). Continue this construction for ω_1 stages, taking greatest lower bounds at countable limit stages. By a Δ system argument, there is an uncountable $S \subseteq \omega_1$ such that for any α, β in S, $(q_\alpha)_0, (q_\beta)_0$ are compatible. But this gives a cofinal branch through T in N[G][C], contradiction. \Box

The previous proof generalises to show that if $\lambda > \omega$ is regular and $\kappa > \lambda$ is weakly compact, then in some forcing extension, λ^+ has the tree property: Use the length κ iteration of ω -Cohen $\times \lambda$ -Cohen, with finite support on the ω -Cohen forcings and $\langle \lambda \rangle$ support on the λ -Cohen forcings. (For this argument, (ω , finite) could be replaced with ($\bar{\lambda}, \langle \bar{\lambda} \rangle$) for any regular $\bar{\lambda} \langle \lambda$.)

Can the successor of a singular cardinal have the tree property? We provide a postitive answer using strongly compact cardinals.

Definition. κ is λ -strongly compact iff it is the critical point of an elementary embedding $j: V \to M$ such that any $X \subseteq M$ of cardinality λ is a subset of some $Y \in M$ of *M*-cardinality $< j(\kappa)$. We say that κ is strongly compact iff it is λ -strongly compact for every λ .

Note that λ -supercompactness easily implies λ -strong compactness, as in that case $j(\kappa)$ is greater than λ and M is closed under λ -sequences, so we may take Y to equal X.

14.Vorlesung

Lemma 23 κ is λ -strongly compact iff for any set I, any κ -complete filter on I generated by at most λ sets can be extended to a κ -complete ultrafilter on I.

Proof. Suppose that κ is λ -strongly compact, witnessed by $j : V \to M$, and let X be a collection of λ -many sets on I which generate a κ -complete filter \mathcal{F} . Choose $Y \supseteq j[X]$ in M of M-cardinality $\langle j(\kappa)$. Then $j(\mathcal{F})$ is a $j(\kappa)$ -complete filter in M and $j(\mathcal{F}) \cap Y$ is a subset of $j(\mathcal{F})$ in M of Mcardinality less than $j(\kappa)$. So we may choose $a \in \bigcap(j(\mathcal{F}) \cap Y)$. Define an ultrafilter \mathcal{U} by: $A \in \mathcal{U}$ iff $A \subseteq I$ and $a \in j(A)$. Then \mathcal{U} is a κ -complete ultrafilter extending \mathcal{F} . Conversely, consider the κ -complete filter \mathcal{F} on $P_{\kappa\lambda}$ generated by the sets $\{x \mid \alpha \in x\}$ for $\alpha < \lambda$. Extend \mathcal{F} to a κ -complete ultrafilter \mathcal{U} and let $j : V \to M = V^{P_{\kappa\lambda}}/\mathcal{U}$ be the ultrapower of V by \mathcal{U} . If $X = \{[f_{\alpha}] \mid \alpha < \lambda\} \subseteq M$, define $G(x) = \{f_{\alpha}(x) \mid \alpha \in x\}$. Then $X \subseteq [G]$ and $M \models \operatorname{card}([G]) < j(\kappa)$. \Box

Theorem 24 If $\lambda_0 < \lambda_1 < \cdots$ is an ω -sequence with supremum λ and each λ_n is λ^+ -strongly compact then λ^+ has the tree property.

Proof. Let T be a λ^+ -tree. We assume that the α -th level T_{α} of T is the set $\lambda \times \{\alpha\}$. For each n let $T_{\alpha,n}$ be $\lambda_n \times \{\alpha\}$.

Claim. There is an unbounded $D \subseteq \lambda^+$ and $n \in \omega$ such that whenever $\alpha < \beta$ belong to D, there are $a \in T_{\alpha,n}$ and $b \in T_{\beta,n}$ with $a <_T b$.

Proof of Claim. Using the fact that λ_0 is λ^+ -strongly compact extend the filter of subsets of T with complement of size at most λ to a countably complete ultrafilter \mathcal{U} . For $\alpha < \lambda^+$ define $n_\alpha \in \omega$ as follows: For $x \in T$ at some level greater than α choose $p_\alpha^x \in T_\alpha$ below x and let n^x be least so that p_α^x belongs to T_{α,n^x} . By the countable completeness of \mathcal{U} there is some $n_\alpha \in \omega$ such that $X_\alpha = \{x \in T \mid n^x = n_\alpha\}$ belongs to \mathcal{U} .

Now choose an unbounded $D \subseteq \lambda^+$ such that n_{α} is some fixed n for $\alpha \in D$. If we take $\alpha < \beta$ in D then $X_{\alpha} \cap X_{\beta}$ contains some x and then $p_{\alpha}^x <_T p_{\beta}^x$ belong to $T_{\alpha,n}, T_{\beta,n}$, respectively. \Box (*Claim*)

Now let D, n be as in the Claim and choose \mathcal{V} to be a λ_n^+ -complete ultrafilter on λ^+ containing D and all final segments of λ^+ . Choose any $\alpha \in D$. For every $\beta > \alpha$ in D find $a(\beta) \in T_{\alpha,n}$ and $b(\beta) \in T_{\beta,n}$ such that $a(\beta) <_T b(\beta)$. Using the λ_n^+ -completeness of \mathcal{V} , find $a_\alpha \in T_{\alpha,n}$ and $\xi_\alpha < \lambda_n$ such that for a set of β 's in \mathcal{V} , $a_\alpha = a(\beta)$ and $b(\beta) = (\xi_\alpha, \beta)$. For an unbounded $D' \subseteq D$, the ordinal ξ_α has a fixed value ξ for $\alpha \in D'$. Now the collection $\{a_\alpha \mid \alpha \in D'\}$ is a branch through T, because if α_1, α_2 belong to D' then for some β (indeed for a set of β 's in \mathcal{V}) both a_{α_1} and a_{α_2} are below (ξ, β) . \Box

Magidor and Shelah also showed that in fact $\aleph_{\omega+1}$ can have the tree property. For this they needed to assume the consistency of an ω -sequence of cardinals $\kappa < \lambda_0 < \lambda_1 < \cdots$ with κ the critical point of $j : V \to M$, $j(\kappa) = \lambda_0$, M closed under $\mu = (\sup_n \lambda_n)^+$ sequences, with each λ_n being μ -supercompact.

15.Vorlesung

Jónsson cardinals

A structure \mathcal{A} of cardinality κ for a countable language is a *Jónsson* structure iff it has no proper elementary submodel of cardinality κ . We say that κ is a *Jónsson cardinal* iff there is no Jónsson structure of cardinality κ . We do not assume here that κ is regular.

Using Skolem functions it is easy to show that κ is a Jónsson cardinal iff $\kappa \to [\kappa]^{<\omega}_{\kappa}$, i.e., whenever $F : [\kappa]^{<\omega} \to \kappa$ there is $H \subseteq \kappa$ of cardinality κ such that the range of F on $[H]^{<\omega}$ is a proper subset of κ .

We show that measurable cardinals are Jónsson.

Definition. We write $\kappa \to (\kappa)_{\lambda}^{<\omega}$ for the following: For any $F : [\kappa]^{<\omega} \to \lambda$ there is $H \subseteq \kappa$ of cardinality κ such that F is constant on $[H]^n$ for each n. κ is Ramsey iff $\kappa \to (\kappa)_{\lambda}^{<\omega}$ for all $\lambda < \kappa$.

Theorem 25 (a) Measurable cardinals are Ramsey. (b) Ramsey cardinals are Jónsson.

Proof. (a) Suppose κ is measurable with nonprincipal, κ -complete, normal ultrafilter \mathcal{U} . We prove by induction on $n < \omega$ that for any $F_n : [\kappa]^n \to \lambda$, $\lambda < \kappa$, there is a set H_n in \mathcal{U} such that F_n is constant on $[H_n]^n$. For n = 1 this is clear by the κ -completeness of \mathcal{U} . Suppose the result holds for n and $F_{n+1} : [\kappa]^{n+1} \to \lambda$. For each $\alpha < \kappa$ define $G_n^{\alpha} : [(\alpha, \kappa)]^n \to \lambda$ by $G_n^{\alpha}(x) = F_{n+1}(\{\alpha\} \cup x)$. By induction there is some $\beta_\alpha < \lambda$ such that G_n^{α} is constant with value β_α on $[H_n^{\alpha}]^n$ for some H_n^{α} in \mathcal{U} . By the κ -completeness of \mathcal{U} there is a fixed $\beta < \lambda$ such that G_n^{α} is constant on $[H_n^{\alpha}]^n$ with value β for all α in some set $H \in \mathcal{U}$. It follows that F_{n+1} is constant on $[H_{n+1}]^{n+1}$, where $H_{n+1} \in \mathcal{U}$ is the intersection with H of the diagonal intersection of the H_n^{α} , $\alpha \in H$.

Then if $F : [\kappa]^{<\omega} \to \lambda, \lambda < \kappa$, we can choose $H_n \in \mathcal{U}$ for each n such that $F_n = F \upharpoonright [\kappa]^n$ is constant on $[H_n]^n$; it follows that F is constant on $[H]^n$ for each n, where H is the intersection of the H_n 's.

(b) Suppose that κ is Ramsey and $F : [\kappa]^{<\omega} \to \kappa$. Consider the structure $\mathcal{A} = (\kappa, <, F_1, F_2, \ldots)$ where F_n is the restriction of F to $[\kappa]^n$. Using Ramseyness we can get $I \subseteq \kappa$ of cardinality κ such that for each n, all increasing n-tuples from I realise the same type in \mathcal{A} . (Apply Ramseyness to $F : [\kappa]^{<\omega} \to 2^{\aleph_0}$ where F(x) describes the type of x in \mathcal{A} .) Now let $i_0 < i_1$ be the first two elements of I. Then for $x \in [I \setminus \{i_0, i_1\}]^{<\omega}$, F(x) cannot equal i_0 ; otherwise, by the choice of I, F(x) would also have to equal i_1 , contradicting the fact that F is a function. So the range of F on $[I \setminus \{i_0, i_1\}]^{<\omega}$ is not all of κ , proving Jónssonness. \Box

Mitchell showed that all Jónsson cardinals are Ramsey in the Dodd-Jensen core model, and therefore these two large cardinal notions have the same consistency strength.

The next result shows that a Jónsson cardinal can be singular.

Theorem 26 Suppose that κ is measurable. Then in a forcing extension, κ is a singular Jónsson cardinal.

Proof. Use Prikry Forcing: Conditions are pairs (s, A) where $s \in [\kappa]^{<\omega}$ and $A \in \mathcal{U}$, where \mathcal{U} is a normal measure on κ . The condition (t, B) extends (s, A) iff t end-extends $s, B \subseteq A$ and $t \setminus s \subseteq A$. Prikry forcing preserves cardinals and gives κ cofinality ω .

Now suppose that $(s, A) \Vdash \dot{F} : [\kappa]^{<\omega} \to \kappa$. We find $(s, B) \leq (s, A)$ which forces Range $(\dot{F} \upharpoonright [B]^{<\omega}) \neq \kappa$. Let $\langle R_i \mid i < \omega_1 \rangle$ be a partition of κ into ω_1 disjoint pieces.

For $s,t \in [\kappa]^{<\omega}$ write s < t for $\max(s) < \min(t)$. Now for each $t \in [\kappa]^{<\omega}$ with s < t consider the partition $F_t : [\kappa]^{<\omega} \to \omega_1$ defined by: $F_t(u) = i + 1$ iff for some $B \in \mathcal{U}, (t, B) \Vdash \dot{F}(u) \in R_i$; $F_t(u) = 0$ if otherwise undefined. (Note that F_t is single-valued.) Using the proof of Theorem 25(b), for each t with s < t choose $A_t \in \mathcal{U}$ such that for each n, F_t is constant on $[A_t]^n$, and denote this constant value by $G_n(t)$. Let B_0 be the diagonal intersection of the A_t , i.e., the set of $\alpha < \kappa$ such that α belongs to A_t for each t with $\max(t) < \alpha$; then for each t, F_t is constant with value $G_n(t)$ on $[B_0 \setminus (\max(t) + 1)]^n$. Now choose $B_1 \in \mathcal{U}$ such that for each n, G_n is constant on $[B_1]^n$ and let B the intersection of B_1 with B_0 . Then F_t can take on only countably many values for t in $[B]^{<\omega}$ and therefore (s, B) forces a countable bound on $\{i < \omega_1 \mid \operatorname{Range}(\dot{F} \upharpoonright [B]^{<\omega}) \cap R_i \neq \emptyset\}$. In particular, (s, B) forces that Range $(\dot{F} \upharpoonright [B]^{<\omega})$ is not all of κ . \Box

Mitchell showed that if κ is a singular Jónsson cardinal then κ is measurable in some inner model, and therefore the existence of a singular Jónsson cardinal is equiconsistent with that of a measurable cardinal.

16.Vorlesung

Can a small cardinal be Jónsson? \aleph_0 is obviously not a Jónsson cardinal. The next result implies that neither is any \aleph_n , *n* finite.

Theorem 27 If κ is not a Jónsson cardinal then neither is κ^+ .

Proof. Assume that κ is not a Jónsson cardinal and let $F : [\kappa]^{<\omega} \to \kappa$ witness this. For any $\alpha \in [\kappa, \kappa^+)$ we can use a bijection between κ and α

to get $F_{\alpha} : [\alpha]^{<\omega} \to \alpha$ which is surjective when restricted to $[A]^{<\omega}$ for any $A \subseteq \alpha$ of cardinality κ . Define $G : [\kappa^+]^{<\omega} \to \kappa^+$ by $G(\alpha_1, \ldots, \alpha_n) = 0$ if $\alpha_n < \kappa$, $G(\alpha_1, \ldots, \alpha_n) = F_{\alpha_n}(\alpha_1, \ldots, \alpha_{n-1})$, otherwise. Then if $A \subseteq \kappa^+$ has cardinality κ^+ it follows that the range of G on $[A]^{<\omega}$ contains α for unboundedly many $\alpha < \kappa^+$, and therefore the range of G is all of κ^+ . \Box

Can \aleph_{ω} be a Jónsson cardinal? The answer is unknown. However there are some results about the failure of certain regular cardinals to be Jónsson.

Theorem 28 If λ is a regular Jónsson cardinal then stationary reflection holds for λ .

Corollary 29 The successor of a regular cardinal is not Jónsson.

Proof of Theorem 28. Let λ be a regular Jónsson cardinal and choose M to be elementary in some large $H(\theta)$ so that $\lambda \in M$, $M \cap \lambda$ has cardinality λ but λ is not a subset of M. We show that each stationary $S \subseteq \lambda$ belonging to M reflects, i.e., has a stationary proper initial segment. By the elementarity of M this suffices.

First note that $S \setminus M$ is stationary. Otherwise, let E be cub in $\lambda, E \cap S \subseteq M$. In M we can split S into λ -many disjoint stationary subsets, so there is in M a function $f : S \to \lambda$ such that S_{α} , the preimage of $\{\alpha\}$ under f, is stationary for each $\alpha < \lambda$. Choose $\alpha \notin M$. Since $S_{\alpha} \subseteq S$, $E \cap S_{\alpha}$ is a nonempty subset of M. But if β belongs to $E \cap S_{\alpha}$, it then follows that $\alpha = f(\beta)$ belongs to M, contradiction.

So choose $\delta \in S \setminus M$ such that $\delta = \sup(M \cap \delta)$. Define β_{δ} to be $\min(M \setminus \delta)$. Then $\delta < \beta_{\delta}$ and β_{δ} is a limit ordinal of uncountable cofinality. We show that $S \cap \beta_{\delta}$ is stationary in β_{δ} : If not, then since S and β_{δ} are in M, M contains a cub subset C of β_{δ} which is disjoint from S. As $M \cap \delta$ is cofinal in δ , for any $\alpha < \delta$ there is $\beta \in M$ with $\alpha < \beta < \delta$. Since $M \models C$ is unbounded in β_{δ} , there is $\gamma \in M \cap C$ with $\beta < \gamma$. By choice of β_{δ} , γ must be less than δ . We have shown that δ is a limit point of C and therefore belongs to C; this contradicts our assumption that S and C are disjoint. \Box

17.Vorlesung

Theorem 30 $\aleph_{\omega+1}$ is not a Jónsson cardinal.

Proof. We use the following result of Shelah:

Lemma 31 There exists an infinite $I \subseteq \omega$ and $F \subseteq \prod_{n \in I} \aleph_n$ such that: (i) F is wellordered by \leq^* in length $\aleph_{\omega+1}$, where \leq^* denotes the eventual domination order. (ii) F is \leq^* -cofinal in $\prod_{n \in I} \aleph_n$.

For each *n* choose a structure \mathcal{A}_n with universe \aleph_n for a countable language with no proper substructure of cardinality \aleph_n , using the fact that \aleph_n is not Jónsson. Choose \mathcal{A} to be the least elementary submodel of $(H(\aleph_{\omega+2}), \in, <)$ (where < is a wellordering of $H(\aleph_{\omega+2})$) of cardinality $\aleph_{\omega+1}$ which contains $\aleph_{\omega+1}$ as a subset and F as well as each \mathcal{A}_n as elements. We show that \mathcal{A} has no proper elementary submodel of cardinality $\aleph_{\omega+1}$ which contains F and the \mathcal{A}_n 's as elements, proving that $\aleph_{\omega+1}$ is not Jónsson.

Suppose that B were the universe of a proper elementary submodel \mathcal{B} of \mathcal{A} of cardinality $\aleph_{\omega+1}$ containing F and the \mathcal{A}_n 's. As \mathcal{A} is the least elementary submodel of itself containing $\aleph_{\omega+1}$ as a subset and F as well as each \mathcal{A}_n as elements, it follows that $B \cap \aleph_{\omega+1}$ is unbounded in $\aleph_{\omega+1}$.

If $B \cap \aleph_n$ is unbounded in \aleph_n for infinitely many $n \in I$ then as each \mathcal{A}_n witnesses that \aleph_n is not Jónsson, B must contain \aleph_{ω} as a subset. It follows that $B \cap \aleph_{\omega+1}$ is an initial segment of $\aleph_{\omega+1}$ and therefore equals $\aleph_{\omega+1}$. Therefore B is the universe of \mathcal{A} , contradiction.

So it must be that for large enough $n \in I$, $g(n) = \sup(B \cap \aleph_n)$ is less than \aleph_n . We may choose $f \in F$ such that $g <^* f$; as B is cofinal in $\aleph_{\omega+1}$ and F is wellordered by \leq^* in length $\aleph_{\omega+1}$, we may in fact choose $f \in F \cap \mathcal{B}$. But then f(n) belongs to $B \cap \aleph_n$ for each n and for large enough n, f(n) is greater than $g(n) = \sup(B \cap \aleph_n)$, contradiction. \Box