
Topis in Set Theory, Wintersemester 20061.VorlesungStationary re�etionIf S is a set of ordinals and α is an ordinal of unountable o�nality, wesay that S is stationary in α i� S intersets every losed unbounded subset of
α. We say that stationary re�etion holds at α, abbreviated SR(α) i� every
S whih is stationary in α is also stationary in some smaller ᾱ of unountableo�nality.Note that SR(α) is equivalent to SR(of α), so we will just study SR(κ)for regular ardinals κ.Theorem 1 κ weakly ompat → SR(κ).Proof. Reall that κ is weakly ompat i� κ is Π1

1 re�eting, i.e., for any S ⊆ κ,if ϕ is a Π1 formula true in (Hκ+ ,∈, S) then ϕ is also true in (Hα+ ,∈, S ∩α)for some α < κ. As the property �S is stationary in κ� is a Π1 property of
(Hκ+,∈, S ∩ κ), stationary re�etion follows. 2Theorem 2 In L, SR(κ) → κ weakly ompat.Proof. Assume V = L. First assume that κ is inaessible. Let 〈Cα | α asingular ardinal〉 be a square sequene on the singular ardinals, i.e., foreah singular ardinal α, Cα is a losed unbounded subset of α of ordertypeless than α and if ᾱ is a limit point of Cα then ᾱ is a singular ardinal and
Cᾱ = Cα ∩ ᾱ.Assume that κ is not weakly ompat and hoose A ⊆ κ and a Π1 formula
ϕ so that ϕ holds in (Hκ+ ,∈, A) = (Lκ+ ,∈, A) but not in (Hα+ ,∈, A ∩ α) =
(Lα+ ,∈, A ∩ α) for any α < κ. Let S0 onsist of all singular ardinals α < κsuh that ϕ holds in (Lβ,∈, A∩ α) provided β < α+ is a limit ordinal and αis regular in Lβ .Claim 1. S0 is stationary in κ.Proof. Suppose that C is losed unbounded in κ and hoose a limit β < κ+ sothat A and C belong to Lβ. As ϕ is Π1, it holds in S = (Lβ,∈, A). For eah1



ardinal α < κ let Mα be the least Σ1 elementary submodel of S ontaining
α ∪ {A, C} as a subset. Then C0 = {α < κ | α = Mα ∩ κ} is a losedunbounded subset of C whih is de�nable over S. If α is the ω-th elementof C0, then α belongs to S0, as α is singular de�nably over the transitiveollapse (Lβ̄ ,∈, A ∩ Lα) of Mα and ϕ holds in this struture. 2(Claim1)Claim 2. S0 is not stationary in α for any regular α < κ.Proof. Suppose that α < κ is regular and hoose a limit ordinal β < α+ largeenough so that A ∩ α belongs to Lβ and ϕ does not hold in S =
(Lβ,∈, A ∩ α). Muh as in the previous proof, for eah ardinal ᾱ < α let
Mᾱ be the least Σ1 elementary submodel of S ontaining ᾱ ∪ {A ∩ Lα} as asubset and C0 = {ᾱ < α | ᾱ = Mᾱ ∩ α}, a losed unbounded subset of α.Then no ᾱ in C0 belongs to S0. 2(Claim2)Now we thin out S0 to a stationary subset that is not stationary in any
α < κ. For eah α in S0 let f(α) be the ordertype of Cα, the losed unboundedsubset of α assigned by our square sequene on the singular ardinals. Let Sbe a stationary subset of S0 on whih f is onstant.Claim 3. S is not stationary in any α < κ.Proof. Suppose that S ∩ α were stationary in α; then α must be a singularardinal of unountable o�nality, and S ∩Lim Cα is unbounded in α. But fis onstant on S and 1-1 on Lim Cα, by the oherene property of the squaresequene. Contradition! 2(Claim3)Thus S is a stationary subset of κ whih is not stationary in any α < κ,so SR(κ) fails.If κ = λ+ is a suessor ardinal, then we use a 2λ sequene, i.e., asequene 〈Cα | λ < α < λ+, α limit〉 suh that Cα is losed unbounded in
α of ordertype ≤ λ and ᾱ ∈ Lim Cα → Cᾱ = Cα ∩ ᾱ. As above hoose
S ⊆ (λ, κ) to be a stationary set of limit ordinals on whih the funtion α 7→ordertype Cα is onstant. Then S is not stationary in any α < κ. 22.VorlesungTheorem 3 Relative to a weakly ompat, it is onsistent that SR(κ) doesnot imply that κ is weakly ompat. 2



Proof. Suppose that κ is weakly ompat. Then κ is weakly ompat in L.Let Pκ be the reverse Easton iteration of length κ whih at inaessible α < κadds an α-Cohen set. Let Gκ be Pκ-generi over L.Now over L[Gκ], onsider the following foring Q, due to Kunen, foradding a κ-Suslin tree:For an ordinal α, an α-tree is a subset T of 2<α losed under initialsegment suh that for eah β < α, some element of T has length β. We referto α as the height of T . For limit α, we say that an α-tree T is homogeneousi� for any s in T , Ts = {t | s ∗ t ∈ T} equals T and an α + 1-tree T ishomogeneous i� for s ∈ T of length less than α, Ts equals T . For limit α, ahomogeneous α-tree exists i� α is indeomposable, i.e., β + γ is less than αwhenever β and γ are less than α. If T is an α + 1-tree then not only does
T have a path of length α, but every node of T of length less than α an beextended to suh a path.The foring Q onsists of the one-point tree {∅}, together with homo-geneous trees T of suessor height less than κ suh that both 〈0〉 and 〈1〉belong to T . Q is ordered by end-extension.If T is a homogeneous α-tree, α limit, and s is any path through T oflength α then there is a minimal extension m(T, s) of T to a ondition ofheight α + 1 whih ontains s, namely T ∪ {s0 ∗ (s \ β) | s0 ∈ T and β < α},where for eah β < α, s \ β is suh that (s ↾ β) ∗ (s \ β) = s.Claim 1. Q is κ-distributive and adds a κ-Suslin tree.Proof. Q may fail to be κ-losed, as if T0 ≥ T1 ≥ · · · is a desending sequenethrough Q of limit length λ < κ, then although the union T−

λ of the Ti's ishomogeneous, it may have no path of length Height(T−
λ ) and therefore notbe extendible to a ondition. However if in addition to the Ti's we have paths

si ∈ Ti of length Height(Ti)− 1 suh that i < j → si ⊆ sj, then the union sλof the si's forms a path through T−
λ of length Height(T−

λ ), and we an extend
T−

λ to a ondition Tλ = m(T−
λ , sλ) below eah of the Ti's whih ontains sλ.This implies that we an indutively extend any ondition to meet a sequeneof fewer than κ open dense sets, i.e., the foring Q is κ-distributive. It followsfrom this and indution on α < κ, that any ondition an be extended to3



one of height at least α, and therefore the union of a Q-generi is indeed a
κ-tree whih we denote as TQ.We now hek that TQ is κ-Suslin. Suppose that T  Ȧ is a maximalantihain in TQ. De�ne a desending sequene of onditions Tξ, ξ < κ, ofheight γξ + 1 together with elements sξ of Tξ of length γξ whih end-extendeah other so that for limit ξ, Tξ = m(

⋃
ξ′<ξ Tξ′, sξ), and1. For any ξ, if s ∈ Tξ then Tξ+1 deides s ∈ Ȧ.2. For any s ∈

⋃
ξ<κ Tξ and α < κ there is an η suh that γη > α and Tηfores that some proper initial segment of s ∗ (sη \ α) belongs to Ȧ.To ahieve 2, onsider how to handle a partiular s and α. Choose a limit

ξ suh that γξ is greater than both α and the length of s. If Tξ fores thatsome proper initial segment of s ∗ (sξ \ α) belongs to Ȧ then take η to be
ξ. Otherwise there is a T ′ extending Tξ and an s1 suh that s ∗ (sξ \ α) ∗ s1belongs to T ′ and T ′ fores s ∗ (sξ \ α) ∗ s1 to belong to Ȧ. Let Tξ+1 extend
T ′ and satisfy 1. Choose sξ+1 to be a path through Tξ+1 extending sξ so that
sξ+1 \ α extends (sξ \ α) ∗ s1. Then 2 is satis�ed with η equal to ξ + 1.There must be a limit ordinal ξ suh that for α < γξ and s ∈

⋃
ξ′<ξ Tξ′there is an initial segment of s ∗ (sξ \ α) that is fored to belong to Ȧ. Itfollows that every point in Tξ = m(

⋃
ξ′<ξ Tξ′, sξ) of length γξ is fored to lieabove some point in Ȧ, so Tξ fores that Ȧ ⊆ Tξ has size less than κ. Thisproves that the generi tree is κ-Suslin. 2(Claim1)Claim 2. Let TQ denote the κ-Suslin tree added by Q. Then the 2-step ite-ration Q ∗ TQ is equivalent to κ-Cohen.Proof. The foring Q ∗ TQ has R = {(T, s) | T has height Dom (s) + 1 and

s belongs to T} as a dense subforing. But then both R and κ-Cohen are
κ-losed forings of ardinality κ and therefore generate isomorphi ompleteBoolean algebras. It follows that Q∗TQ is equivalent to κ-Cohen. 2(Claim2)It follows that Pκ ∗ Q ∗ TQ is equivalent to Pκ ∗ κ-Cohen.Claim 3. Pκ ∗ κ-Cohen preserves the weak ompatness of κ.Proof. Wemust show that κ satis�es Π1

1 re�etion in L[G((≤ κ)] = L[Gκ][G(κ)],where Gκ is generi over L for Pκ and G(κ) is generi over L[Gκ] for κ-Cohen.4



Suppose that (p, q̇) is a ondition in Pκ ∗κ-Cohen whih fores Ȧ to be a sub-set of κ and the Π1 sentene ϕ to hold in the struture (Lκ+ [G(≤ κ)],∈, Ȧ).As Pκ is κ-, we may assume that q̇ belongs to Lκ. And we may assume thatthe name Ȧ is a subset of Lκ. Now the statement
(p, q̇)  ϕ holds in (Lκ+ [Ġ(≤ κ)],∈, Ȧ)is a Π1 statement about the struture (Lκ+,∈, Ȧ, p, q̇) and therefore by Π1

1re�etion in L there exists a ardinal α < κ suh that (p, q̇) belongs to Lαand
(p, q̇) α ϕ holds in (Lα+ [Ġ(≤ α)],∈, Ȧ ∩ Lα),where α refers to the foring Pα ∗α-Cohen and Ġ(≤ α) refers to the generifor that foring. Now hoose a ondition extending (p, q̇) whih fores (in

Pκ ∗ κ-Cohen) that Ġ(κ) ↾ α = Ġ(α), and therefore that Ȧ ∩ α equals
(Ȧ ∩ Lα)Ġ(≤α). Then this ondition fores (in Pκ ∗ κ-Cohen) that H(α+) of
L[Ġ(≤ κ)] = Lα+ [Ġ(≤ α)] and ϕ holds in (Lα+ [Ġ(≤ α)],∈, Ȧ∩α), as desired.
2(Claim3)Now let H be Q-generi over L[Gκ]. Then in L[Gκ][H ], κ is not weaklyompat as there is a κ-Suslin tree. However, if S is a stationary subset of
κ in this model, then sine the foring TQ is κ-, S is also stationary inthe larger model L[Gκ][H ][B], where B is TQ-generi over L[Gκ][H ]. As κis weakly ompat in L[Gκ][H ][B], it follows that S is stationary in some
α < κ. Thus L[Gκ][H ] is the desired model where κ is not weakly ompatbut where SR(κ) holds. 2 3.VorlesungCan SR(κ) hold for a suessor ardinal κ?Proposition 4 SR(κ) fails if κ is the suessor of a regular ardinal.Proof. Suppose that κ = γ+, γ regular. Then S = {α < κ | of α = γ} isstationary in κ but not in any κ̄ < κ. 2Theorem 5 If λ is a singular limit of λ+-superompat ardinals then SR(λ+)holds. 5



Proof. Reall that κ is µ-superompat i� there is an elementary embedding
j : V → M with ritial point κ suh that j(κ) > µ and Mµ ⊆ M .Now suppose that S is stationary in λ+. Then for some λ+-superompat
κ < λ, T = S ∩ Cof(< κ) is stationary. Let j : V → M witness the λ+-superompatness of κ. We show that T ∩ α is stationary for some α < λ+.Let γ be the supremum of j[λ+]; as j ↾ λ+ belongs to M , of M(γ) = λ+, andtherefore γ is less than j(λ+), whih is regular in M . It su�es to show that
M � j(T )∩ γ is stationary, for then by elementarity, V � T ∩α is stationaryfor some α < λ+.Suppose that C is losed unbounded in γ. As j is ontinuous at ordinalsof o�nality < κ, j[λ+] is < κ-losed, i.e., ontains all of its limit pointsof o�nality less than κ. It follows that Range (j) ∩ C is unbounded in γand therefore D = j−1[C] ⊆ λ+ is unbounded in λ+. And again sine jis ontinuous at ordinals of o�nality < κ, D is < κ-losed. Sine T is astationary subset of Cof(< κ) ∩ λ+, it follows that T ∩ D is nonempty andtherefore j[T ∩ D] ⊆ j(T ) ∩ C is nonempty, as desired. 2Theorem 6 Assume GCH and suppose that κ0 < κ1 < · · · is an ω se-quene of superompat ardinals. De�ne P1 = Coll (ω, < κ0), Pn+1 = Pn ∗Coll (κn−1, < κn) for �nite n > 0 and Pω = Inverse limit of the Pn's. Then
Pω fores SR(ℵω+1).Proof. Let λ be the supremum of the κn's and let Gω be Pω-generi, Gn =
Gω ↾ Pn.Claim 1. In V [Gω], κn = ℵn+1, λ = ℵω and λ+ = ℵω+1.Proof. The foring Coll (ω, < κ0) makes everything less than κ0 ountableand is κ0-. So κ0 is ℵ1 in V [G1]. The rest of the iteration is κ0-losed,so κ0 is also ℵ1 in V [Gω]. A similar argument shows that eah κn is ℵn+1,and therefore that λ is ℵω. If λ+ were ollapsed then it would be given ao�nality less than some κn; but for large enough m, the iteration Pω fatorsas Pm ∗ Pm,ω where Pm has size less than λ and Pm,ω is κn-losed; it followsthat λ+ annot have o�nality less than κn in V [Gω]. 2(Claim 1)4.Vorlesung6



Claim 2. For eah n there is a generi extension V [Gω][Hn] of V [Gω] in whihthere is a de�nable elementary embedding kn : V [Gω] → Mn ⊆ V [Gω][Hn]with ritial point κn suh that kn ↾ λ+ belongs to Mn and kn(κn) > λ+.Moreover the foring to add Hn is ℵn-losed.Proof. Let j : V → M witness that κn is λ+ superompat. We wish to extend
j to the kn of the Claim. To do so, we need to �nd, in an ℵn-losed generiextension of V [Gω], a j(Pω) = P M

ω -generi GM
ω over M whih ontains j[Gω]as a subset.The foring Pω is the ω-iteration Coll (ω, < κ0) ∗ Coll (κ0, < κ1) ∗ · · ·and therefore j(Pω) = P M

ω is the ω-iteration in M given by Coll M(ω, <
κ0) ∗ Coll M(κ0, < κ1) ∗ · · · ∗ Coll M(κn−2, < κn−1) ∗ Coll M(κn−1, < j(κn)) ∗Coll M(j(κn), < j(κn+1)) ∗ · · ·. The �rst n fators of these two iterations arethe same and so we hoose GM

n to be Gn, yielding a lifting of j to an elemen-tary embedding j∗ : V [Gn] → M [GM
n ]. The next fator Coll (κn−1, < κn) ofthe V iteration is inluded as a subforing of the next fator Coll M(κn−1, <

j(κn)) = Coll (κn−1, < j(κn)) of the M-iteration and indeed the latter fa-tors as Coll (κn−1, < κn) × Coll (κn−1, [κn, j(κn)). Note that the foringColl (κn−1, [κn, j(κn)) is κn−1 = ℵn-losed. So we hoose a generi for thisprodut whose �rst fator equals the generi spei�ed by Gn+1, thereby lif-ting j∗ to j∗∗ : V [Gn+1] → M [GM
n+1].Now the remainder P n+1 of the Pω iteration (where Pω = Pn+1∗P n+1) hassize (κ+

ω )V and j(κn) is greater than (κ++
ω )V ; therefore in M [GM

n+1], P n+1 isan ℵn-losed foring with only ℵn maximal antihains in V [Gn+1]. It followsthat in M [GM
n+1] there is a generi for P n+1 over V [Gn+1], whih we mayassume equals Gn+1. As the remainder P M,n+1 of the iteration P M

ω (where
P M

ω = P M
n+1 ∗ P M,n+1) is j(κn)-losed and therefore (λ++)V -losed, there is asingle ondition in P M,n+1 whih is below eah ondition in j∗∗[Gn+1]; so wefore below that ondition. The result is that in a κn-losed foring extensionwe have lifted j to kn : V [Gω] → M [GM

ω ], as desired. 2(Claim 2)5.VorlesungClaim 3. Suppose that n > 0 is �nite and V [Gω] � S ∩ Cof(< ℵn) is statio-nary. Then S remains stationary in all ℵn-losed foring extensions of V [Gω].Given this last Claim, we �nish the proof of the Theorem as follows.Suppose that V [Gω] � S ⊆ ℵω+1 is stationary. Then for some �nite n >7



0, V [Gω] � S ∩ Cof(< ℵn) is stationary. By Claim 2, in some ℵn-losedforing extension V [Gω][Hn] of V [Gω] there is an embedding kn : V [Gω] →

Mn ⊆ V [Gω][Hn] with ritial point κn = ℵ
V [Gω]
n+1 , kn ↾ ℵ

V [Gω ]
ω+1 ∈ Mn and

kn(ℵ
V [Gω]
n+1 ) > ℵ

V [Gω]
ω+1 . By Claim 3, S is still stationary in V [Gω][Hn]. Let γ bethe supremum of kn[ℵ

V [Gω ]
ω+1 ]. Then γ has o�nality ℵn in Mn and therefore γis less than kn(ℵ

V [Gω]
ω+1 ), whih is regular in Mn.We laim that kn(S)∩γ is stationary in Mn. Suppose that C ⊆ γ is losedunbounded, C ∈ Mn. As kn is ontinuous at ordinals of V [Gω]-o�nality < ℵnand V [Gω], V [Gω][Hn] have the same < ℵn sequenes of ordinals, it followsthat Range (kn ↾ ℵ

V [Gω]
ω+1 ) is < ℵn-losed in Mn. Therefore Range (kn) ∩ Cis unbounded in γ. Let D be k−1

n [C]. Then D is unbounded in ℵ
V [Gω ]
ω+1 andmoreover is < ℵn-losed. As S is a subset of Cof(< ℵn) whih is stationaryin V [Gω][Hn], it follows that S∩D is nonempty, and therefore that kn(S)∩Cis nonempty, as desired.As Mn � kn(S)∩γ is stationary, it follows that V [Gω] � S∩α is stationaryfor some α < ℵω+1, thereby proving SR(ℵω+1) in V [Gω].Proof of Claim 3. We use the following Lemma of Shelah:Lemma 7 In V [Gω] there is a sequene 〈xα | α < ℵω+1〉 of bounded subsetsof ℵω+1 suh that for all α in a losed unbounded subset C of ℵω+1 there isa losed unbounded c ⊆ α of ordertype of (α) suh that all proper initialsegments of c are of the form xβ for some β < α.Now suppose that in V [Gω], S ⊆ Cof(< ℵn) is stationary and P is an

ℵn-losed foring. Let 〈xα | α < ℵω+1〉 and C be as in the Lemma. Given
p ∈ P whih fores Ḋ to be losed unbounded in ℵω+1, we must �nd anextension q of p whih fores that some α is in S ∩ Ḋ.In V [Gω] let (N,∈, <N) be an elementary submodel of some large (Hθ,∈
, <θ) (where <θ is a well-ordering of Hθ) whih ontains P, p, Ḋ, 〈xα | α <
ℵω+1〉, D and suh that N ∩ℵω+1 is an ordinal α ∈ C ∩S. This is possible as
S is stationary in V [Gω]. Let c ⊆ α be of ordertype of (α) < ℵn with all ofits proper initial segments of the form xγ for some γ < α. It follows that allof the proper initial segments of c belong to N .8



Now build a desending hain of onditions 〈pi | i < of (α)〉 suh that
p0 = p and pj is the <N -least extension of pi, i < j, whih fores some ordinalgreater than the j-th element of c into Ḋ. Then for eah j < of (α), thesequene 〈pi | i < j〉 belongs to N and by the < ℵn-losure of P there isa ondition q below eah of the pi, i < of (α). Then q ≤ p fores that αbelongs to S ∩ Ḋ, as desired. 2(Claim 3).This ompletes the proof of the theorem.6.VorlesungSaturated IdealsLet κ be an unountable regular ardinal and I a nonprinipal κ-ompleteideal on κ, i.e., a olletion of subsets of κ, inluding all bounded subsets of
κ, with the following properties:1. A ⊆ B ∈ I → A ∈ I.2. α < κ, Ai ∈ I for eah i < α →

⋃
i<α Ai ∈ I.3. κ /∈ I.For a ardinal λ, I is λ-saturated i� the Boolean algebra P(κ)/I has the λ-.Equivalently: If Ai, i < λ are subsets of κ not in I, then Ai ∩ Aj belongs to

I for some distint pair i, j < λ. We say that κ arries a λ-saturated ideal i�there exists a λ-saturated, κ-omplete ideal on κ.
I is 2-saturated i� I is a maximal ideal, and therefore κ arries a 2-saturated ideal i� κ is measurable. However even ℵ1-saturation does notimply measurability, as the next result shows.Theorem 8 If κ is measurable then in some o�nality-preserving foringextension, 2ℵ0 = κ and κ arries an ℵ1-saturated ideal.Proof. Let P be the foring that adds κ Cohen reals, by a �nite supportprodut. As P is , o�nalities are preserved. In the extension 2ℵ0 = κ. Let

I be a κ-omplete maximal ideal on κ, whose existene is guaranteed by themeasurability of κ. We laim that in V [G], where G is P -generi, the ideal
J = {X ⊆ κ | X ⊆ Y for some Y ∈ I} is a κ-omplete, ℵ1-saturated ideal.First we prove that J is κ-omplete. Suppose that p  Ẋα ∈ J for eah
α < λ, where λ is less than κ. For eah α < λ let Aα be a maximal antihain9



of onditions q below p whih fore Ẋα to be a subset of some Y α
q ∈ I. pfores Ẋα to be a subset of the union of the Y α

q 's. It follows that p fores
⋃

α<λ Ẋα to belong to J , as it fores it to be a subset of ⋃
α<λ,q∈Aα

Y α
q , whihbelongs to I as I is κ-omplete and eah Aα has size less than κ (in fat,eah Aα is ountable).To prove ℵ1-saturation, suppose that Ẋα, α < ω1, is fored by a ondition

p to be a sequene of subsets of κ not in J whose pairwise intersetions are in
J . By the ℵ1-ompleteness of J , we may in fat assume that p fores Ẋα∩Ẋβto be empty for distint α, β < ω1. For eah α < ω1, let Yα be the set ofordinals whih are fored into Ẋα by some ondition below p. As Ẋα is not in
J , it follows that Yα is not in I and therefore as I is an ℵ2-omplete maximalideal, the intersetion Y of the Yα, α < ω1, belongs to I. Let γ belong to
Y . Then for eah α < ω1 there is an extension qα of p whih fores γ ∈ Ẋα.By the , there exist distint α, β < ω1 suh that qα, qβ are ompatible;but then a ommon extension of qα, qβ fores that Ẋα ∩ Ẋβ is nonempty,ontradition. 2 7.VorlesungThus κ an arry an ℵ1-saturated ideal without being strongly inaessi-ble. However:Theorem 9 If κ arries a κ-saturated ideal then κ is weakly inaessible.Proof. We must show that κ is a limit ardinal. Suppose not and let κ = λ+,
λ an in�nite ardinal. For ξ < λ+ let fξ be a surjetion of λ onto ξ. For
α < λ+ and η < λ de�ne Aα,η = {ξ | fξ(η) = α}. Then for eah η < λ, Aα,ηand Aβ,η are disjoint for distint α, β < λ+. And for eah α < λ+, the unionof the Aα,η, η < λ, ontains all su�iently large ordinals < λ+.Now suppose that I were a λ+-saturated ideal on λ+. It follows from the
λ+-ompleteness of I that for eah α < λ+, Aα,ηα

does not belong to I forsome ηα < λ. . Therefore for some �xed η < λ, Aα,η does not belong to I for
λ+-many α < λ+. But as Aα,η and Aβ,η are disjoint for distint α, β < λ+,this ontradits the λ+-saturation of I. 2Can a suessor ardinal κ arry a κ+-saturated ideal? We give a positiveanswer using foring axioms. 10



De�nition. Let P be a foring and p ∈ P . The proper game for P below pis de�ned as follows: Player I plays P -names α̇n for ordinals and II playsordinals βn. II wins i� there is some q ≤ p whih fores that for eah n,
α̇n equals some βk. The semiproper game (for P below p) is de�ned in thesame way, but with �ordinals� replaed with �ountable ordinals�. P is proper(semiproper) i� for eah p ∈ P , II has a winning strategy in the proper(semiproper) game for P below p.Properness (semiproperness) an be equivalently formulated in terms ofthe existene of generis over ountable models.De�nition. Let P be a foring. For any ountable set M , q is (M, P )-generi(semigeneri) i� for every name σ ∈ M for an ordinal (ountable ordinal), qfores that σ equals some ordinal of M .Lemma 10 P is proper (semiproper) i� for su�iently large ardinals λthere is a losed unbounded set of M ∈ [Hλ]

ℵ0 suh that eah p ∈ M has anextension whih is (M, P )-generi (semigeneri).The Proper foring axiom PFA (the semiproper foring axiom SPFA) isthe assertion that if P is a proper (semiproper) foring and D a olletionof ℵ1-many dense subsets of P then there is a ompatible G ⊆ P whihintersets eah element of D.Lemma 11 Suppose that Pα is a ountable support iteration of forings 〈Q̇β |
β < α〉 suh that Pα ↾ β fores Q̇β to be proper for eah β < α. Then Pα isproper.De�nition. κ is λ-superompat, where λ is a ardinal ≥ κ, i� there is anelementary embedding j : V → M with ritial point κ suh that j(κ) > λand Mλ ⊆ M . κ is superompat i� κ is λ-superompat for all λ.Remark. Superompatness is a �rst-order property, as the λ-superompatnessof κ an be witnessed by an embedding of the form jU : V → MU where Uis a normal measure on Pκλ.Theorem 12 If κ is superompat then there is a proper foring extensionin whih κ equals ℵ2 and PFA holds.Proof. We need the following Lemma.11



Lemma 13 Suppose that κ is superompat. Then there is a funtion f :
κ → Vκ suh that for every set x and every ardinal λ ≥ κ suh that x ∈ Hλ+there is a j : V → M with ritial point κ suh that j(κ) > λ, Mλ ⊆ M and
j(f)(κ) = x. f is alled a Laver funtion on κ.Proof. Assume that the Lemma fails. For eah f : κ → Vκ let λf be the leastardinal ≥ κ suh that some x ∈ Hλ+

f
witnesses that f is not a Laver funtionfor κ, i.e., suh that j(f)(κ) 6= x for every j : V → M with ritial point κsuh that j(κ) > λ and Mλ ⊆ M . Let ν be greater than all of the λf 's andlet j : V → M witness the ν-superompatness of κ.Now indutively de�ne f : κ → Vκ as follows: If f ↾ α is not a Laverfuntion for α then let λ be least so that some x ∈ Hλ+ witnesses this andhoose f(α) = xα to be suh an x; otherwise set f(α) = 0.Now onsider x = j(f)(κ). By the de�nition of f and the elementarity of

j, x witnesses the failure of f to be a Laver funtion in M . As Mν ⊆ M , xalso witnesses the failure of f to be a Laver funtion in V and λf is de�nedthe same way in M as in V . This is a ontradition, as j(κ) > λf and
j(f)(κ) = x. 2 (Lemma 13) 8.VorlesungNow we prove the Theorem. Let f : κ → Vκ be a Laver funtion. Con-strut a ountable support iteration Pκ of 〈Q̇α | α < κ〉 as follows. At stage
α, if f(α) is a pair (Ṗ , Ḋ) of Pα-names suh that Ṗ is proper and Ḋ is a
γ-sequene of dense subsets of Ṗ for some γ < κ then set Q̇α = Ṗ ; otherwiselet Q̇α be the trivial foring.Let G be Pκ-generi. As Pκ is proper, ℵ1 is preserved. Eah Pα, α < κ,has size less than κ and the iteration is performed with ountable support;it follows that Pκ is κ- and therefore κ is preserved.We laim that in V [G], if P is proper and D = 〈Dα | α < γ〉, γ < κ,is a sequene of dense subsets of P then there is a ompatible subset of Pwhih intersets eah Dα. Let Ṗ and Ḋ be Pκ-names for P and D. Choose
λ to be muh larger than P and let j : V → M have ritial point κ with
j(κ) > λ, Mλ ⊆ M and j(f)(κ) = (Ṗ , Ḋ). We an assume that V M

λ is very12



elementary in M and therefore V
M [G]
λ = V

V [G]
λ is very elementary in M [G];it follows that P is not only proper in V [G], but also in M [G].Now onsider the iteration j(Pκ) in M , whih is a ountable supportiteration of length j(κ) using the Laver funtion j(f). As j(f)(κ) = (Ṗ , Ḋ)and Ṗ is proper in M [G], it follows that the foring Ṗ is used at stage κ inthe j(Pκ) iteration in M . So we an write j(Pκ) = Pκ ∗ Ṗ ∗ Ṙ for some Ṙ. If

H ∗K is generi for Ṗ ∗ Ṙ over V [G], then in V [G ∗H ∗K] we an extend jto an elementary embedding j∗ : V [G] → M [G ∗H ∗K]. H is P -generi over
V [G] and therefore meets eah Dα, α < γ. Let E = {j∗(p) | p ∈ H}. Then Ebelongs to M [G ∗H ∗K] and is a ompatible set of onditions in j∗(P ) thatmeets eah dense set in j∗(D). By elementarity it follows that in V [G] thereis a ompatible set of onditions in P whih meets eah dense set in D, asdesired.It now follows that V [G] is a model of PFA as ℵ1 < κ. Also note that Pκollapses eah γ < κ to ω1 as Coll (ω1, γ) is ountably-losed, and thereforeproper, and for eah α < γ, the set of onditions f ∈ Coll (ω1, γ) with
α ∈ Range (f) is dense. So κ is the ω2 of V [G]. 2The iteration lemma for proper foring has an analogue for semiproperforing. There is a notion of revised ountable support iteration that preservessemiproperness, and therefore one has:Theorem 14 If κ is superompat then there is a semiproper foring exten-sion in whih κ equals ℵ2 and SPFA holds.SPFA implies an apparently stronger axiom. A foring P is stationary-preserving i� eah stationary subset of ω1 remains stationary in P -generiextensions. Martin's maximum MM is the assertion that if P is stationary-preserving and D a olletion of ℵ1-many dense subsets of P then there is aompatible G ⊆ P whih intersets eah element of D.9.VorlesungTheorem 15 SPFA implies MM.Proof. In fat SPFA implies that every stationary-preserving foring is semi-proper, as we now show. 13



Let X be a set of ountable elementary submodels of H∗
λ = (Hλ,∈, <)(where < is a wellordering of Hλ). We write X⊥ for {M ∈ [Hλ]

ℵ0 | M ≺
H∗

λ and N /∈ X for every ountable N that satis�es M ≺ N ≺ H∗
λ and

N ∩ ω1 = M ∩ ω1}. A nie hain in H∗
λ is a sequene 〈Mα | α < θ〉 ofountable elementary submodels of H∗

λ suh that α < β → Mα ∈ Mβ and
Mλ is the union of Mα, α < λ, for limit λ.Lemma 16 (Main Lemma) Assume SPFA and let ω1 ≤ κ < λ with λ regularand su�iently large. Let Y ⊆ [Hκ]

ℵ0 be stationary and X = {M ∈ [Hλ]
ℵ0 |

M ∩ Hκ ∈ Y } (the �lifting� of Y to Hλ). Then there exists a nie hain
〈Mα | α < ω1〉 in H∗

λ suh that Mα ∈ X ∪ X⊥ for every α.We now prove the Theorem using the Main Lemma. Assume SPFA andsuppose Q is a stationary-preserving foring. Choose κ large enough so thatany Q-names for a ountable ordinal is equivalent to one in Hκ. Choose aondition p in Q and de�ne Y = {M ∈ [Hκ]
ℵ0 | There exists no (M, Q)-semigeneri q ≤ p}. Choose λ > κ to be regular and let X = {M ∈ [Hλ]

ℵ0 |
M∩Hκ ∈ Y } be the lifting of Y to Hλ. By the hoie of κ, X = {M ∈ [Hλ]

ℵ0 |There exists no (M, Q)-semigeneri q ≤ p}.By the Main Lemma, there is a nie hain 〈Mα | α < ω1〉 in H∗
λ suh that

Mα ∈ X ∪ X⊥ for eah α < ω1. We laim that S = {α < ω1 | Mα ∈ X}is nonstationary. Let G be Q-generi, p in G. Let δ̇ξ, ξ < ω1, enumerate allnames for ountable ordinals in ⋃
α<ω1

Mα. Then C = {α < ω1 | Mα∩ω1 = αand δ̇ξ ∈ Mα, δ̇G
ξ < α for all ξ < α} is losed unbounded. And for eah α ∈ C,there exists q ∈ G below p whih fores eah δ̇ξ ∈ Mα to equal some ordinalin Mα and is therefore (Mα, Q)-semigeneri. So S is nonstationary in V [G]and therefore nonstationary in V .It follows that there is a nie hain 〈Mα | α < ω1〉 in H∗

λ suh that
Mα ∈ X⊥ for eah α < ω1. Let µ > λ be su�iently large. Choose a ountable
M ≺ (Hµ,∈, <, Q, 〈Mα | α < ω1〉) (where < is a wellordering of Hµ) with
p ∈ M . Set δ = M ∩ ω1. Then M ∩ Hλ ⊇ Mδ and δ = Mδ ∩ ω1; sine Mδbelongs to X⊥ we have M∩Hλ /∈ X. So by the de�nition of X, there exists an
(M, Q)-semigeneri q below p. So for eah p ∈ Q, there is a losed unboundedset of ountable M ≺ H∗

µ = (Hµ,∈, <) and an (M, Q)-semigeneri q ≤ p. Itfollows by taking a diagonal intersetion that for a losed unbounded setof ountable M ≺ H∗
µ, there is an (M, Q)-semigeneri below any p ∈ M ,establishing the semiproperness of Q.14



10.VorlesungProof of the Main Lemma. Let P be the foring that adds a nie ω1-hainthrough X ∪ X⊥ using nie ountable hains〈Mα | α ≤ γ〉 through X ∪ X⊥,ordered by end-extension.For eah γ < ω1 the set Dγ of onditions in P of length at least γ isdense: Let G be generi for ollapsing Hλ to ω1 with ountable onditions.Then in V [G], there is a nie ω1-hain through [HV
λ ]ℵ0 with union HV

λ , and
X ⊆ [HV

λ ]ℵ0 is stationary. It follows that in V [G] there are nie hains through
X of any ountable length, and therefore suh hains exist also in V . It thenfollows that any ondition in P an be extended to any ountable length andtherefore eah Dγ is dense.We show that P is semiproper. Let µ > λ be su�iently large and M ≺
H∗

µ = (Hµ,∈, <), M ountable (where < is a wellordering of Hµ). Let p belongto P ∩ M . We show that there is a q ≤ p whih is (M, P )-semigeneri. Firstnote that there is a ountable N , M ≺ N ≺ H∗
µ, suh that N ∩ ω1 = M ∩ω1and N ∩ Hλ ∈ X ∪ X⊥: This is lear if M ∩ Hλ belongs to X⊥; otherwisehoose a ountable N ′, M ∩Hλ ⊆ N ′ ≺ H∗

λ, suh that N ′ ∩ω1 = M ∩ω1 and
N ′ belongs to X. Let N be the least elementary submodel of H∗

µ ontaining
M ∪ (N ′ ∩ Hκ). Then N ′ ∩ Hκ = N ∩ Hκ so N is as desired.Now we �nd the desired (M, P )-semigeneri below p. Choose N as above.We an build a desending ω-sequene of onditions pn = 〈Mα | α ≤ γn〉 ∈ Nbelow p suh that the union of the Mγn

's equals N ∩Hλ and every name in Nfor a ountable ordinal is fored by some pn to be an ordinal in N . De�ne q tobe 〈Mα | α < γ = supn γn〉 together with Mγ = N∩Hλ. Then q is a onditionbelow p whih is (N, P )-semigeneri and therefore also (M, P )-semigeneri.Finally, apply SPFA to obtain a nie hain of length ω1 using the semi-properness of P . 2We return to saturated ideals.Theorem 17 MM implies that the ideal of nonstationary subsets of ω1 is
ω2-saturated. 15



Proof. Assume MM and let {Ai | i ∈ W} be a maximal olletion of stationa-ry subsets of ω1 suh that Ai ∩Aj is nonstationary for distint i, j. We showthat for some W0 ⊆ W of size at most ω1, {Ai | i ∈ W0} is also maximal.Let P be the 2-step iteration Q ∗ R where Q adds a surjetion f : ω1 →
W using ountable onditions q : α → W , α < ω1, and R adds a losedunbounded subset to ▽α<ω1

Af(α) = {α | α ∈ Af(β) for some β < α} usingountable losed subsets r of ▽α<ω1
Af(α), ordered by end-extension. Then

P is stationary-preserving: Suppose that S ⊆ ω1 is stationary. Then S ∩ Aiis stationary for some i ∈ W by the maximality of {Ai | i ∈ W}. Foringwith Q preserves the stationarity of S ∩ Ai as Q is ω-losed. And foringwith R preserves the stationarity of any stationary subset of ▽α<ω1
Af(α) andtherefore the stationarity of S ∩ Ai.Now for eah α < ω1 the set Dα of onditions (q, r) in P suh that

α ∈ dom(q) ∩ max(r) is dense and therefore by MM there is a ompatible
G ⊆ P whih intersets eah Dα. Then ⋃

{q | (q, r) ∈ G for some r} is afuntion f : ω1 → W and ⋃
{r | (q, r) ∈ G for some q} is a losed unboundedsubset C of ▽α<ω1

Af(α). It follows that {Ai | i ∈ Range (f)} is maximal, asany stationary subset of ▽α<ω1
Af(α) has stationary intersetion with somesingle Af(α). 2 11.VorlesungThe tree propertyA tree is a partial ordering T = (T,≤T ) with the property that for eah

t ∈ T , Tt = the set of ≤T -predeessors of t is well-ordered by ≤T . The α-thlevel of T is Tα = {t ∈ T | Tt is well-ordered by ≤T with ordertype α}. Theheight of T is the supremum of {α + 1 | Tα is nonempty}.Let κ be an in�nite regular ardinal. T is a κ-tree i� T has height κ andfor α < κ, Tα has ardinality less than κ. A κ-tree T is κ-Aronszajn i� it hasno κ-branh, i.e., there is no subset of T well-ordered by ≤T with ordertype
κ.

κ has the tree property i� there is no κ-Aronszajn tree. ℵ0 has the treeproperty as by König's Lemma, a �nitely branhing tree of height ω musthave an in�nite branh. But ω1 does not have the tree property:16



Theorem 18 There is an ω1-Aronszajn tree.Proof. We onstrut a an ω1-tree T whose elements are bounded, inreasing,well-ordered sequenes of rational numbers, ordered by end-extension. It islear that suh a tree has no ω1-branh, as that would give an inreasingsequene of rationals of length ω1, whih is impossible.We onstrut the α-th level Tα of T by indution on α < ω1. We indu-tively maintain the following property:
(∗) Tα is ountable and if x belongs to Tβ, β < α and q is a rational greaterthan sup(x) then x is extended by some y ∈ Tα with sup(y) < q.
T0 onsists only of the empty sequene (we take sup(∅) to be −∞. To de�ne
Tα+1 from Tα, simply extend eah x ∈ Tα with eah rational q > sup(x). It islear that property (∗) is preserved. If α is a limit ordinal then for eah x insome Tβ, β < α, and eah rational q > sup(x), we extend x to x1 ⊆ x2 ⊆ · · ·so that sup(xn) < q for eah n and the levels of the xn's are o�nal in α; thenput the resulting sequene ⋃

n xn into Tα. It follows that Tα is ountable andthat for eah x ∈
⋃

β<α Tβ and q > sup(x), x has an extension y in Tα with
sup(y) ≤ q; by hoosing q′ between q and sup(x) we an in fat guarantee
sup(y) < q, whih gives (∗) for α. 2The previous proof generalises. For an in�nite ardinal λ, let Qλ be the setof < λ sequenes of ordinals less than λ, ordered lexiographially. Then λ anbe order-preservingly embedded into any interval of Qλ. Now the ardinalityof Qλ is λ<λ; if this is λ, then we an replae the rationals by Qλ in theprevious proof, obtaining:Theorem 19 If λ<λ = λ then there is a λ+-Aronszajn tree. In partiular ifGCH holds and λ is regular, there is a λ+-Aronszajn tree.The onsisteny strength of the existene of an unountable κ with thetree property is that of a weakly ompat:Theorem 20 (1) If κ is weakly ompat then κ has the tree property.(2) In L, κ has the tree property i� κ is weakly ompat.(3) If κ has the tree property then κ is weakly ompat in L.17



Proof. (1) It su�es to show that any κ-tree T with universe κ has a κ-branh. If T is a κ-tree on κ then the statement that T has no κ-branh isa Π1
1 statement about the struture (Hκ,∈, T ). As κ is weakly ompat, itis Π1
1 re�eting, whih implies that for some α < κ, T |α =

⋃
β<α Tβ has no

α-branh. But this is impossible, as the T -predeessors of any element of Tαform an α-branh through T |α.(2) This uses the �ne struture theory and will not be proved here.(3) Sketh: If κ is not weakly ompat in L then by 2 there is a κ-tree T in Lwith no κ-branh in L. Now build another κ-tree T ∗ in L with the propertythat any κ-branh through T ∗ gives rise to a onstrutible κ-branh through
T ; it follows that κ does not have the tree property. 2Can ω2 have the tree property? By the above results, we will need touse a weakly ompat ardinal and kill CH to obtain the onsisteny of this.The following haraterisation of weak ompatness in terms of elementaryembeddings will prove useful.Proposition 21 κ is weakly ompat i� κ is strongly inaessible and forevery transitive model M of ZF− suh that κ belongs to M , M is < κ-losedand M has size κ there is an elementary embedding j : M → N , N transitive,with ritial point κ. 12.VorlesungTheorem 22 Suppose that κ is weakly ompat. Then in some foring ex-tension, κ = ω2, 2ℵ0 = ℵ2 and ω2 has the tree property.Proof. Consider the following �mixed support� iteration P = 〈Pα | α < κ〉.For eah α < κ, Pα+1 = Pα ∗ Qα, where Qα is a Pα-name for the produt ω-Cohen × ω1-Cohen. For limit α we take all p = 〈(p(β)0, p(β)1) | β < α〉 in theinverse limit of the Pβ, β < α, suh that for all but �nitely many β < α, p(β)0is trivial and for all but ountably many β < α, p(β)1 is trivial. For p ∈ Pwrite (p)0 for 〈p(β)0 | β < length (p)〉 and (p)1 for 〈p(β)1 | β < length (p)〉(where length (p) denotes the strit supremum of the support of p). Thus
(p)0 is �nitely supported and (p)1 is ountably supported.At stage α < κ, Qα ollapses α to ω1 as Pα adds α reals and Qα addsan ω1-Cohen set. P is κ-: If X is a maximal antihain in P then for some18



α < κ of unountable o�nality, X ∩ Pα is a maximal antihain in Pα andsine Pα is a diret limit, X ∩ Pα is in fat a maximal antihain in P .Note that it is dense for p ∈ P to have the property that for eah α <length (p), if p(α)0 is not the trivial name then it is fored by p ↾ α to be equalto some partiular ω-Cohen ondition. This is proved for Pα by indution on
α; the suessor ase is easy, and as (p)0 is �nitely supported, the ase where
α is a limit ordinal is trivial.Also note that any ondition in P is equivalent to a ondition p in P withthe property that for eah α < length (p), the trivial ondition in Pα fores
p(α) to belong to Qα. This is beause we an replae the Pα name p(α) bya name whih is fored by the trivial ondition to equal p(α) if p(α) belongsto Qα and is fored to be the trivial ondition of Qα otherwise.Let P ∗ be the dense set of onditions in P with the above two proper-ties. We show that P ∗, and therefore also P , preserves ω1: Suppose that ḟ isfored to be a funtion from ω into ω1. Given a ondition p we will �nd anextension of p whih fores a ountable bound on the range of ḟ . Extend p toa ondition q1 whih deides a value of ḟ(0) and let p1 be obtained from q1by setting p1(α)0 to be p(α)0 for α < length (p) and to be the trivial namefor α in [length (p), length (q1)). Extend p1 to a ondition q2 whih deides adi�erent value of ḟ(0) and obtain p2 from q2 by setting p2(α)0 to be p(α)0 for
α < length (p) and to be the trivial name for α in [length (p), length (q2)).Continue this onstrution as long as possible, taking greatest lower boundsat ountable limit stages. In fat this onstrution terminates at some ounta-ble stage, as the olletion of (qi)0's forms an antihain in the �nite supportiteration of ω-Cohen, and any suh antihain is ountable. The result is aondition q extending p whih fores a bound on ḟ(0). Now repeat this for
ḟ(1), ḟ(2), et., resulting in an extension of p whih fores a bound on ḟ .So in V [G], where G is P -generi, κ equals ω2 and there are ω2 reals.Suppose that T were an ω2-Aronszajn tree in V [G]. Let Ṫ be a name for T .As κ is weakly ompat, there is an elementary embedding j : M → N withritial point κ where Ṫ belongs to M and M, N are transitive ZF− models.Then Ṫ belongs to N and therefore T belongs to N [G]. As T has no o�nalbranh in V [G], it has none in N [G].Now the foring j(P ) is the mixed support iteration of ω-Cohen and ω1-Cohen in N , of length j(κ). The foring j(P ) fators as P ∗Q where Q is the19



mixed support iteration of ω-Cohen and ω1-Cohen de�ned in NP , indexedon the interval [κ, j(κ)). Choose H to be QG-generi over N [G]; then theembedding j : M → N lifts to j∗ : M [G] → N [G][H ]. As T is an initialsegment of the tree j∗(T ), it follows that T has a o�nal branh in N [G][H ].However this ontradits the following Claim.13.VorlesungClaim. The foring QG for adding H over N [G] adds no o�nal branhthrough T .Proof of Claim. Let C be generi over N [G] for Coll (ω1, ω2), the foringwhih ollapses ω2 using ountable onditions. Then T has no o�nal branhin N [G][C]: Suppose that Ḃ were a name for suh a branh. Build an in�nitebinary tree of onditions ps, s ∈ 2<ω, in Coll (ω1, ω2) and an ω-sequene
α1 < α2 < · · · less than κ suh that for distint s and t of length n, ps, ptfore di�erent elements of T to belong to Ḃ at level αn. Then as there are ω2reals in N [G], this gives ω2 di�erent elements of the α-th level of T , where αis the supremum of the αn's, ontraditing the fat that T is an ω2-tree.To prove the Claim, it su�es to show that QG does not add a o�nalbranh through T over the ground model N [G][C]. Suppose that p ∈ QGfores Ḃ to be suh a branh and let 〈αi | i < ω1〉 be an inreasing sequenein N [G][C] o�nal in ω

N [G]
2 . As in the proof that P preserves ω1, form adereasing sequene of onditions pi, i < ω1 in QG as follows: Extend pto a ondition q1 whih deides whih element of Tα0

belongs to Ḃ and let
p1 be obtained from q1 by setting p1(α)0 to be p(α)0 for α < length (p)and to be the trivial name for α in [length (p), length (q1)). Extend p1 to aondition q2 whih deides whih element of Tα1

belongs to Ḃ and obtain
p2 from q2 by setting p2(α)0 to be p(α)0 for α < length (p) and to be thetrivial name for α in [length (p), length (q2)). Continue this onstrution for
ω1 stages, taking greatest lower bounds at ountable limit stages. By a ∆-system argument, there is an unountable S ⊆ ω1 suh that for any α, β in
S, (qα)0, (qβ)0 are ompatible. But this gives a o�nal branh through T in
N [G][C], ontradition. 2The previous proof generalises to show that if λ > ω is regular and κ > λis weakly ompat, then in some foring extension, λ+ has the tree property:Use the length κ iteration of ω-Cohen × λ-Cohen, with �nite support on20



the ω-Cohen forings and < λ support on the λ-Cohen forings. (For thisargument, (ω, �nite) ould be replaed with (λ̄, < λ̄) for any regular λ̄ < λ.)Can the suessor of a singular ardinal have the tree property? We pro-vide a postitive answer using strongly ompat ardinals.De�nition. κ is λ-strongly ompat i� it is the ritial point of an elementaryembedding j : V → M suh that any X ⊆ M of ardinality λ is a subset ofsome Y ∈ M of M-ardinality < j(κ). We say that κ is strongly ompat i�it is λ-strongly ompat for every λ.Note that λ-superompatness easily implies λ-strong ompatness, as inthat ase j(κ) is greater than λ and M is losed under λ-sequenes, so wemay take Y to equal X. 14.VorlesungLemma 23 κ is λ-strongly ompat i� for any set I, any κ-omplete �lteron I generated by at most λ sets an be extended to a κ-omplete ultra�lteron I.Proof. Suppose that κ is λ-strongly ompat, witnessed by j : V → M ,and let X be a olletion of λ-many sets on I whih generate a κ-omplete�lter F . Choose Y ⊇ j[X] in M of M-ardinality < j(κ). Then j(F) is a
j(κ)-omplete �lter in M and j(F) ∩ Y is a subset of j(F) in M of M-ardinality less than j(κ). So we may hoose a ∈

⋂
(j(F) ∩ Y ). De�ne anultra�lter U by: A ∈ U i� A ⊆ I and a ∈ j(A). Then U is a κ-ompleteultra�lter extending F . Conversely, onsider the κ-omplete �lter F on Pκλgenerated by the sets {x | α ∈ x} for α < λ. Extend F to a κ-ompleteultra�lter U and let j : V → M = V Pκλ/U be the ultrapower of V by U . If

X = {[fα] | α < λ} ⊆ M , de�ne G(x) = {fα(x) | α ∈ x}. Then X ⊆ [G] and
M � ard([G]) < j(κ). 2Theorem 24 If λ0 < λ1 < · · · is an ω-sequene with supremum λ and eah
λn is λ+-strongly ompat then λ+ has the tree property.Proof. Let T be a λ+-tree. We assume that the α-th level Tα of T is the set
λ × {α}. For eah n let Tα,n be λn × {α}.21



Claim. There is an unbounded D ⊆ λ+ and n ∈ ω suh that whenever α < βbelong to D, there are a ∈ Tα,n and b ∈ Tβ,n with a <T b.Proof of Claim.Using the fat that λ0 is λ+-strongly ompat extend the �lterof subsets of T with omplement of size at most λ to a ountably ompleteultra�lter U . For α < λ+ de�ne nα ∈ ω as follows: For x ∈ T at some levelgreater than α hoose px
α ∈ Tα below x and let nx be least so that px

α belongsto Tα,nx . By the ountable ompleteness of U there is some nα ∈ ω suh that
Xα = {x ∈ T | nx = nα} belongs to U .Now hoose an unbounded D ⊆ λ+ suh that nα is some �xed n for
α ∈ D. If we take α < β in D then Xα ∩ Xβ ontains some x and then
px

α <T px
β belong to Tα,n, Tβ,n, respetively. 2 (Claim)Now let D, n be as in the Claim and hoose V to be a λ+

n -ompleteultra�lter on λ+ ontaining D and all �nal segments of λ+. Choose any
α ∈ D. For every β > α in D �nd a(β) ∈ Tα,n and b(β) ∈ Tβ,n suhthat a(β) <T b(β). Using the λ+

n -ompleteness of V, �nd aα ∈ Tα,n and
ξα < λn suh that for a set of β's in V, aα = a(β) and b(β) = (ξα, β). For anunbounded D′ ⊆ D, the ordinal ξα has a �xed value ξ for α ∈ D′. Now theolletion {aα | α ∈ D′} is a branh through T , beause if α1, α2 belong to
D′ then for some β (indeed for a set of β's in V) both aα1

and aα2
are below

(ξ, β). 2Magidor and Shelah also showed that in fat ℵω+1 an have the treeproperty. For this they needed to assume the onsisteny of an ω-sequeneof ardinals κ < λ0 < λ1 < · · · with κ the ritial point of j : V → M ,
j(κ) = λ0, M losed under µ = (supn λn)+ sequenes, with eah λn being
µ-superompat. 15.VorlesungJónsson ardinalsA struture A of ardinality κ for a ountable language is a Jónssonstruture i� it has no proper elementary submodel of ardinality κ. We saythat κ is a Jónsson ardinal i� there is no Jónsson struture of ardinality
κ. We do not assume here that κ is regular.Using Skolem funtions it is easy to show that κ is a Jónsson ardinal i�
κ → [κ]<ω

κ , i.e., whenever F : [κ]<ω → κ there is H ⊆ κ of ardinality κ suhthat the range of F on [H ]<ω is a proper subset of κ.22



We show that measurable ardinals are Jónsson.De�nition. We write κ → (κ)<ω
λ for the following: For any F : [κ]<ω → λthere is H ⊆ κ of ardinality κ suh that F is onstant on [H ]n for eah n.

κ is Ramsey i� κ → (κ)<ω
λ for all λ < κ.Theorem 25 (a) Measurable ardinals are Ramsey.(b) Ramsey ardinals are Jónsson.Proof. (a) Suppose κ is measurable with nonprinipal, κ-omplete, normalultra�lter U . We prove by indution on n < ω that for any Fn : [κ]n → λ,

λ < κ, there is a set Hn in U suh that Fn is onstant on [Hn]n. For n = 1this is lear by the κ-ompleteness of U . Suppose the result holds for n and
Fn+1 : [κ]n+1 → λ. For eah α < κ de�ne Gα

n : [(α, κ)]n → λ by Gα
n(x) =

Fn+1({α} ∪ x). By indution there is some βα < λ suh that Gα
n is onstantwith value βα on [Hα

n ]n for some Hα
n in U . By the κ-ompleteness of U thereis a �xed β < λ suh that Gα

n is onstant on [Hα
n ]n with value β for all αin some set H ∈ U . It follows that Fn+1 is onstant on [Hn+1]

n+1, where
Hn+1 ∈ U is the intersetion with H of the diagonal intersetion of the Hα

n ,
α ∈ H .Then if F : [κ]<ω → λ, λ < κ, we an hoose Hn ∈ U for eah n suh that
Fn = F ↾ [κ]n is onstant on [Hn]n; it follows that F is onstant on [H ]n foreah n, where H is the intersetion of the Hn's.(b) Suppose that κ is Ramsey and F : [κ]<ω → κ. Consider the struture A =
(κ, <, F1, F2, . . .) where Fn is the restrition of F to [κ]n. Using Ramseynesswe an get I ⊆ κ of ardinality κ suh that for eah n, all inreasing n-tuplesfrom I realise the same type in A. (Apply Ramseyness to F : [κ]<ω → 2ℵ0where F (x) desribes the type of x in A.) Now let i0 < i1 be the �rst twoelements of I. Then for x ∈ [I \ {i0, i1}]

<ω, F (x) annot equal i0; otherwise,by the hoie of I, F (x) would also have to equal i1, ontraditing the fatthat F is a funtion. So the range of F on [I \ {i0, i1}]
<ω is not all of κ,proving Jónssonness. 2Mithell showed that all Jónsson ardinals are Ramsey in the Dodd-Jensen ore model, and therefore these two large ardinal notions have thesame onsisteny strength.The next result shows that a Jónsson ardinal an be singular.23



Theorem 26 Suppose that κ is measurable. Then in a foring extension, κis a singular Jónsson ardinal.Proof. Use Prikry Foring: Conditions are pairs (s, A) where s ∈ [κ]<ω and
A ∈ U , where U is a normal measure on κ. The ondition (t, B) extends
(s, A) i� t end-extends s, B ⊆ A and t \ s ⊆ A. Prikry foring preservesardinals and gives κ o�nality ω.Now suppose that (s, A)  Ḟ : [κ]<ω → κ. We �nd (s, B) ≤ (s, A) whihfores Range (Ḟ ↾ [B]<ω) 6= κ. Let 〈Ri | i < ω1〉 be a partition of κ into ω1disjoint piees.For s, t ∈ [κ]<ω write s < t for max(s) < min(t). Now for eah t ∈ [κ]<ωwith s < t onsider the partition Ft : [κ]<ω → ω1 de�ned by: Ft(u) = i + 1 i�for some B ∈ U , (t, B)  Ḟ (u) ∈ Ri; Ft(u) = 0 if otherwise unde�ned. (Notethat Ft is single-valued.) Using the proof of Theorem 25(b), for eah t with
s < t hoose At ∈ U suh that for eah n, Ft is onstant on [At]

n, and denotethis onstant value by Gn(t). Let B0 be the diagonal intersetion of the At,i.e., the set of α < κ suh that α belongs to At for eah t with max(t) < α;then for eah t, Ft is onstant with value Gn(t) on [B0 \ (max(t) + 1)]n.Now hoose B1 ∈ U suh that for eah n, Gn is onstant on [B1]
n andlet B the intersetion of B1 with B0. Then Ft an take on only ountablymany values for t in [B]<ω and therefore (s, B) fores a ountable bound on

{i < ω1 | Range (Ḟ ↾ [B]<ω) ∩ Ri 6= ∅}. In partiular, (s, B) fores thatRange (Ḟ ↾ [B]<ω) is not all of κ. 2Mithell showed that if κ is a singular Jónsson ardinal then κ is measu-rable in some inner model, and therefore the existene of a singular Jónssonardinal is equionsistent with that of a measurable ardinal.16.VorlesungCan a small ardinal be Jónsson? ℵ0 is obviously not a Jónsson ardinal.The next result implies that neither is any ℵn, n �nite.Theorem 27 If κ is not a Jónsson ardinal then neither is κ+.Proof. Assume that κ is not a Jónsson ardinal and let F : [κ]<ω → κwitness this. For any α ∈ [κ, κ+) we an use a bijetion between κ and α24



to get Fα : [α]<ω → α whih is surjetive when restrited to [A]<ω for any
A ⊆ α of ardinality κ. De�ne G : [κ+]<ω → κ+ by G(α1, . . . , αn) = 0if αn < κ, G(α1, . . . , αn) = Fαn

(α1, . . . , αn−1), otherwise. Then if A ⊆ κ+has ardinality κ+ it follows that the range of G on [A]<ω ontains α forunboundedly many α < κ+, and therefore the range of G is all of κ+. 2Can ℵω be a Jónsson ardinal? The answer is unknown. However thereare some results about the failure of ertain regular ardinals to be Jónsson.Theorem 28 If λ is a regular Jónsson ardinal then stationary re�etionholds for λ.Corollary 29 The suessor of a regular ardinal is not Jónsson.Proof of Theorem 28. Let λ be a regular Jónsson ardinal and hoose M tobe elementary in some large H(θ) so that λ ∈ M , M ∩ λ has ardinality λbut λ is not a subset of M . We show that eah stationary S ⊆ λ belonging to
M re�ets, i.e., has a stationary proper initial segment. By the elementarityof M this su�es.First note that S \M is stationary. Otherwise, let E be ub in λ, E∩S ⊆
M . In M we an split S into λ-many disjoint stationary subsets, so thereis in M a funtion f : S → λ suh that Sα, the preimage of {α} under
f , is stationary for eah α < λ. Choose α /∈ M . Sine Sα ⊆ S, E ∩ Sα isa nonempty subset of M . But if β belongs to E ∩ Sα, it then follows that
α = f(β) belongs to M , ontradition.So hoose δ ∈ S\M suh that δ = sup(M∩δ). De�ne βδ to be min(M \δ).Then δ < βδ and βδ is a limit ordinal of unountable o�nality. We show that
S ∩ βδ is stationary in βδ: If not, then sine S and βδ are in M , M ontainsa ub subset C of βδ whih is disjoint from S. As M ∩ δ is o�nal in δ, forany α < δ there is β ∈ M with α < β < δ. Sine M � C is unbounded in
βδ, there is γ ∈ M ∩ C with β < γ. By hoie of βδ, γ must be less than δ.We have shown that δ is a limit point of C and therefore belongs to C; thisontradits our assumption that S and C are disjoint. 217.VorlesungTheorem 30 ℵω+1 is not a Jónsson ardinal.25



Proof. We use the following result of Shelah:Lemma 31 There exists an in�nite I ⊆ ω and F ⊆
∏

n∈I ℵn suh that:(i) F is wellordered by ≤∗ in length ℵω+1, where ≤∗ denotes the eventualdomination order.(ii) F is ≤∗-o�nal in ∏
n∈I ℵn.For eah n hoose a struture An with universe ℵn for a ountable languagewith no proper substruture of ardinality ℵn, using the fat that ℵn is notJónsson. Choose A to be the least elementary submodel of (H(ℵω+2),∈, <)(where < is a wellordering of H(ℵω+2)) of ardinality ℵω+1 whih ontains

ℵω+1 as a subset and F as well as eah An as elements. We show that A hasno proper elementary submodel of ardinality ℵω+1 whih ontains F andthe An's as elements, proving that ℵω+1 is not Jónsson.Suppose that B were the universe of a proper elementary submodel B of
A of ardinality ℵω+1 ontaining F and the An's. As A is the least elementarysubmodel of itself ontaining ℵω+1 as a subset and F as well as eah An aselements, it follows that B ∩ ℵω+1 is unbounded in ℵω+1.If B ∩ ℵn is unbounded in ℵn for in�nitely many n ∈ I then as eah
An witnesses that ℵn is not Jónsson, B must ontain ℵω as a subset. Itfollows that B∩ℵω+1 is an initial segment of ℵω+1 and therefore equals ℵω+1.Therefore B is the universe of A, ontradition.So it must be that for large enough n ∈ I, g(n) = sup(B ∩ ℵn) is lessthan ℵn. We may hoose f ∈ F suh that g <∗ f ; as B is o�nal in ℵω+1 and
F is wellordered by ≤∗ in length ℵω+1, we may in fat hoose f ∈ F ∩ B.But then f(n) belongs to B ∩ ℵn for eah n and for large enough n, f(n) isgreater than g(n) = sup(B ∩ ℵn), ontradition. 2
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