Definable wellorders, Sommersemester 2009

1.-2.Vorlesungen

Introduction

In ZF, the axiom of choice is equivalent to the assertion that for every infinite cardinal κ there is a wellorder of the power set of κ . This is equivalent to saying that $H(\kappa^+)$, the set of sets whose transitive closure has size at most κ , can be wellordered for every infinite cardinal κ .

In this course we explore the possibilities for definable wellorders in various set-theoretic contexts. For an infinite cardinal κ we say that $H(\kappa^+)$ has a Σ_n definable wellorder iff there is a wellorder of $H(\kappa^+)$ which is Σ_n definable over $(H(\kappa^+), \in)$ with parameter κ . It has a Σ_n definable wellorder with parameters if arbitrary parameters from $H(\kappa^+)$ are allowed.

In Gödel's universe L, the situation is ideal:

Theorem 1 Assume V = L. Then for each infinite cardinal κ , there is a Σ_1 definable wellorder of $H(\kappa^+)$.

Proof. For x, y in $H(\kappa^+)$ define:

x < y iff

There exists a transitive model M of $ZFC^- + V = L$ of size at most κ such that x, y belongs to M and in $M, x <_L y$

This wellorder is Σ_1 over $H(\kappa^+)$ and in fact uses no parameter. \Box

Now what happens if we consider definable wellorders in the context of large cardinals? First consider the case $\kappa = \omega$ and make the following observation:

Proposition 2 $H(\omega_1)$ has a Σ_n definable wellorder (with/without parameters) iff there is a Σ_{n+1}^1 wellorder of the reals (with/without parameters).

Proof. Consider the case with no parameters and n = 1. (The general case $n \ge 1$ (with or without parameters) follows easily from this special case.) If

< is a wellorder of $H(\omega_1)$ defined by the Σ_1 formula $\varphi(x, y)$ then obtain a Σ_{n+1}^1 definable wellorder of the reals as follows:

 $R <^* S$ iff

There exists a real T which codes a countable transitive set M such that R, S belong to M and in $M, \varphi(R, S)$

This is Σ_2^1 as to say that T codes a countable transitive set is a Π_1^1 property.

Conversely, if < is a wellorder of the reals defined by the Σ_2^1 formula $\varphi(R, S)$ then obtain a Σ_1 definable wellorder of $H(\omega_1)$ as follows:

 $x <^* y$ iff

There exists a countable transitive model M of ZFC⁻ such that x, y belong to M and in M, for some reals R, S: R codes x, S codes y and $\varphi(R, S)$

This works as for any transitive model M of ZFC⁻, if $\varphi(R, S)$ holds in M for reals R, S in M, then in fact $\varphi(R, S)$ holds in V. \Box

Now we have:

Theorem 3 (Mansfield) If there is a Σ_2^1 wellorder of the reals then every real is constructible.

Theorem 4 (Martin-Steel) (a) The existence of a \sum_{n+2}^{1} wellorder of the reals is consistent with the existence of n Woodin cardinals. (b) The existence of a \sum_{n+2}^{1} wellorder of the reals with parameters is inconsistent with the existence of n Woodin cardinals and a measurable cardinal above them.

Now suppose that $\kappa = \omega_1$ and therefore we are considering definable wellorders of $H(\omega_2)$. We say that a forcing is *small* if it has size less than the least inaccessible cardinal. Note that a small forcing preserves large cardinal properties.

Theorem 5 (F-Asperó) There is a small forcing which forces CH together with a definable wellorder of $H(\omega_2)$. In particular it is consistent with arbitrary large cardinals and CH that there is a definable wellorder of $H(\omega_2)$.

It is not known if "definable" can be taken to be " Σ_2 definable" in the previous theorem. However Σ_1 definability is in general not possible:

Theorem 6 (Woodin) Assume that there is a measurable Woodin cardinal and CH holds. Then there is no Σ_1 definable wellorder of $H(\omega_2)$; in fact there is no wellorder of the reals which is Σ_1 definable over $H(\omega_2)$.

Woodin's result is optimal in the following sense:

Theorem 7 (Avraham-Shelah) There is a small forcing which forces a wellorder of the reals which is Σ_1 definable over $H(\omega_2)$. Necessarily, CH fails in the forcing extension.

Theorem 16 extends to all regular uncountable κ :

Theorem 8 (F-Asperó) There is a class forcing which forces GCH, adds a definable wellorder of $H(\kappa^+)$ for all regular uncountable κ and preserves all supercompact cardinals as well as a proper class of n-huge cardinals for each n.

It is not known if "definable" can be taken to be " Σ_1 definable" in the previous theorem, provided one restricts to regular κ greater than ω_1 .

For singular κ there is a limitation in the presence of very large cardinals.

Proposition 9 Suppose that there is a nontrivial elementary embedding from $L(H(\lambda^+)) \rightarrow L(H(\lambda^+))$ (fixing λ , with critical point less than λ). Then there is no definable wellorder of $H(\lambda^+)$ with parameters.

The cardinal λ in this proposition has cofinality ω .

Next we consider definable wellorders in the context of forcing axioms. First suppose that κ equals ω .

Theorem 10 (a) (Harrington, F) Martin's axiom is consistent with the existence of a Σ_3^1 wellorder of the reals. (b) (Caicedo-F) Relative to a reflecting cardinal, BSPFA is consistent with the existence of a Σ_3^1 wellorder of the reals.

It is not known if BMM is consistent with a projective wellorder of the reals (i.e., a wellorder of the reals which is Σ_n^1 with parameters for some n). Unlike BPFA, the full PFA implies that there is no such wellorder as it implies PD.

For $\kappa = \omega_1$ a surprising thing happens:

Theorem 11 (Moore) BPFA implies that there is a definable wellorder of $H(\omega_2)$ with parameters.

Concerning wellorders without parameters:

Theorem 12 (Caicedo-F) Relative to a reflecting cardinal there is a model of BSPFA with a Σ_1 definable wellorder of $H(\omega_2)$.

Theorem 13 (Larson) Relative to enough supercompacts, there is a model of MM with a definable wellorder of $H(\omega_2)$.

Forcing axioms have no effect on definable wellorders when κ is greater than ω_1 .

One can consider definable wellorders in many other contexts. Below is a sample of open questions.

1. Is it consistent that for all infinite regular κ , GCH fails at κ and there is a definable wellorder of $H(\kappa^+)$?

2. Is the tree property at ω_2 consistent with a projective wellorder of the reals?

3. Is it consistent that the nonstationary ideal on ω_1 is saturated and there is a Σ_4^1 wellorder of the reals?

4. Is it consistent that GCH fails at a measurable cardinal κ and there is a definable wellorder of $H(\kappa^+)$?

Now we start to prove some of the results listed earlier.

Theorem 14 (Mansfield) If there is a Σ_2^1 wellorder of the reals then every real is constructible.

Proof. Assume that there is a nonconstructible real and let < be a Σ_2^1 wellorder of the reals, which we take to be Cantor space, the set of all paths through the binary branching tree $2^{<\omega}$. For any perfect subtree T of $2^{<\omega}$, let [T] denote the set of infinite paths through T, a perfect closed subset of Cantor space. For any order-preserving $f: T \to 2^{<\omega}$ we let f^* denote the induced continuous function from [T] to Cantor space. **Lemma 15** Suppose that T is constructible, $f: T \to 2^{<\omega}$ is constructible and f^* is injective. Then there is a constructible perfect $U \subseteq T$ and constructible, order-preserving $g: U \to 2^{<\omega}$ such that g^* is injective and $g^*(x) < f^*(x)$ for all $x \in [U]$.

Proof of Lemma. As T is a perfect tree, there is a constructible $h: T \to 2^{<\omega}$ such that h^* is a bijection from [T] onto Cantor space. For $s \in 2^{<\omega}$ let \bar{s} be the "flip" of s, i.e., if $s = (s(0), s(1), \ldots, s(k))$ then $\bar{s} = (1 - s(0), 1 - s(1), \ldots, 1 - s(k))$. For x in Cantor space, \bar{x} is defined similarly.

Let A be the set of $x \in [T]$ such that $f^*(x) > h^*(x)$ and B the set of $x \in [T]$ such that $f^*(x) > h^*(x)$. We claim that either A or B contains a nonconstructible element: Let z be the <-least nonconstructible real and choose $x, y \in [T]$ so that $h^*(x) = z$, $h^*(y) = \overline{z}$. As x, y are nonconstructible and f^* is an injective, constructible function, it follows that $f^*(x), f^*(y)$ are nonconstructible and therefore $\geq z$. As $f^*(x), f^*(y)$ are distinct, either $\frac{f^*(x)}{h^*(y)} > z$ or $f^*(y) > z$. But then either $f^*(x) > z = h^*(x)$ or $f^*(y) > z =$ $h^*(y)$, as desired.

Without loss of generality, assume that A has a nonconstructible element. Then A is Σ_2^1 with constructible parameters and therefore has a "constructible" perfect subset, i.e., $[U] \subseteq A$ for some constructible perfect tree U. If we let g be $h \upharpoonright U$ then we have satisfied the conclusion of the Lemma. \Box (Lemma)

Now given the Lemma we easily reach a contradiction: Let T_0 be $2^{<\omega}$ and $f_0: T_0 \to T_0$ the identity. Successively applying the Lemma we get $T_0 \supseteq T_1 \supseteq \cdots$ and $f_0 \supseteq f_1 \supseteq \cdots$ such that $f_n^*(x) > f_{n+1}^*(x)$ for all $x \in T_{n+1}$. Since the $[T_n]$'s are compact sets, they have a nonempty intersection and if x belongs to this intersection we get $f_0^*(x) > f_1^*(x) > \cdots$, contradicting the hypothesis that < is a wellorder. \Box

3.Vorlesung

We say that a forcing is *small* if it has size less than the least inaccessible cardinal. Note that a small forcing preserves large cardinal properties.

Theorem 16 (F-Asperó) There is a small forcing which forces CH together with a definable wellorder of $H(\omega_2)$. In particular it is consistent with arbitrary large cardinals and CH that there is a definable wellorder of $H(\omega_2)$. I'll begin with the following easier result.

Theorem 17 There is a small forcing which forces CH together with a Σ_1 wellorder of $H(\omega_2)$ with parameters.

Proof. First force CH by adding an ω_1 -Cohen set. Next add an ω_2 -Cohen set A. In the resulting model, $H(\omega_2)$ is $L_{\omega_2}[A]$ and CH holds. For technical reasons, we assume that $A \cap \omega_1$ is empty.

The final step is to add $B, C \subseteq \omega_1$ which "code" A in the sense that A is Δ_1 definable over $L_{\omega_2}[A, B, C]$ (the final $H(\omega_2)$) with B, C, ω_1 as parameters. This gives a Σ_1 wellorder of $L_{\omega_2}[A, B, C]$ with B, C, ω_1 as parameters: simply take the canonical wellorder with parameters A, B, C and eliminate A in favour of its Δ_1 definition with parameters B, C, ω_1 .

The forcing P for adding B is a forcing to code A using "canonical functions". For each uncountable $\beta < \omega_2$ choose a bijection $f_{\beta} : \omega_1 \to \beta$. The set B codes A in the following way: β belongs to A iff $\operatorname{ot}(f_{\beta}[\gamma])$ belongs to B for a CUB set of $\gamma < \omega_1$, where "ot" stands for "ordertype". Note that if f_{β}^0 , f_{β}^1 are any two bijections from ω_1 onto β then the set of $\gamma < \omega_1$ where $\operatorname{ot}(f_{\beta}^0[\gamma])$ equals $\operatorname{ot}(f_{\beta}^1[\gamma])$ contains a CUB set. Thus this coding is independent of the choice of the functions $f_{\beta}, \omega_1 \leq \beta < \omega_2$.

A condition in P is a triple (p, p^*, p^{**}) where:

p is an ω_1 -Cohen condition, i.e., a function from a countable ordinal |p| to 2. p^* is a countable subset of ω_2 .

 p^{**} is a closed, bounded subset of ω_1 .

For β in p^* and γ in p^{**} , $\operatorname{ot}(f_{\beta}[\gamma])$ is at least γ and less than |p|.

We say that (q, q^*, q^{**}) extends (p, p^*, p^{**}) iff:

q end-extends p, q^* contains p^*, q^{**} end-extends p^{**} . All elements of $q^{**} \setminus p^{**}$ are at least |p|. For γ in $q^{**} \setminus p^{**}$ and β in $p^*, q(\operatorname{ot}(f_{\beta}[\gamma]))$ equals $A(\beta)$.

Lemma 18 (a) For any (p, p^*, p^{**}) , $\alpha \in [\omega_1, \omega_2)$ and $\delta < \omega_1$ there is an extension (q, q^*, q^{**}) of (p, p^*, p^{**}) such that α belongs to q^* and $\max(q^{**})$ is greater than δ .

(b) P is ω_2 -cc.

(c) P is ω -distributive.

Proof. (a) Choose γ greater than |p|, δ so that for distinct β_0, β_1 in $p^* \cup \{\alpha\}$, $\operatorname{ot}(f_{\beta_0}[\gamma]), \operatorname{ot}(f_{\beta_1}[\gamma])$ are distinct. This is possible as the set of such γ contains a CUB set. Now set $q^* = p^* \cup \{\alpha\}$, extend p to q so that $q(\operatorname{ot}(f_{\beta}[\gamma]))$ equals $A(\beta)$ for β in $p^* \cup \{\alpha\}$ and set $q^{**} = p^{**} \cup \{\gamma\}$.

(b) Note that if p = q and $p^{**} = q^{**}$ then (p, p^*, p^{**}) and (q, q^*, q^{**}) are compatible, as they are both extended by $(p, p^* \cup q^*, p^{**})$. Therefore CH gives us the ω_2 -cc.

4.-5. Vorlesungen

We finish the proof of:

Theorem 19 There is a small forcing which forces CH together with a Σ_1 wellorder of $H(\omega_2)$ with parameters.

Lemma 20 (a) For any (p, p^*, p^{**}) , $\alpha \in [\omega_1, \omega_2)$ and $\delta < \omega_1$ there is an extension (q, q^*, q^{**}) of (p, p^*, p^{**}) such that α belongs to q^* and $\max(q^{**})$ is greater than δ . (b) P is ω_2 -cc. (c) P is ω -distributive.

Proof of (c). Suppose that $(p_0, p_0^*, p_0^{**}) \ge (p_1, p_1^*, p_1^{**}) \cdots$ is a descending ω sequence of conditions. To obtain a lower bound (q, q^*, q^{**}) we start by taking q to be the union of the p_n 's, q^* to be the union of the p_n^{**} and q^{**} to be the union of the p_n^{**} together with the supremum γ of the max p_n^{**} 's. Then qmust be lengthened so that for β in q^* , $q(\operatorname{ot}(f_\beta[\gamma]))$ is defined and equal to $A(\beta)$. The problem with this lengthening is that $\operatorname{ot}(f_\beta[\gamma])$ may be the same for two distinct β 's in q^* at which A differs. To solve this problem, it suffices to know that for each n:

(*) $\max(p_{n+1}^{**})$ belongs to a CUB set of δ 's on which $\operatorname{ot}(f_{\beta}[\delta])$ is distinct for distinct β in p_n^* .

Then $\operatorname{ot}(f_{\beta}[\gamma])$ will be distinct for any two distinct β in q^* , enabling us to lengthen q as desired.

Finally, note that if D_0, D_1, \ldots are open dense sets then we can build an ω -sequence $(p_0, p_0^*, p_0^{**}) \ge (p_1, p_1^*, p_1^{**}) \cdots$ below any given condition so that $(p_{n+1}, p_{n+1}^*, p_{n+1}^{**})$ belongs to D_n and obeys (*). \Box

Suppose that G is P-generic and let B be the union of the p for (p, p^*, p^{**}) in G, C the union of the p^{**} for (p, p^*, p^{**}) in G. Then for any $\beta \in [\omega_1, \omega_2)$ we have:

(**) β belongs (does not belong) to A iff $\operatorname{ot}(f_{\beta}[\gamma])$ belongs (does not belong) to B for sufficiently large γ in C.

In fact we can write:

(***) β belongs (does not belong) to A iff for some bijection $f : \omega_1 \to \beta$, $ot(f[\gamma])$ belongs (does not belong) to B for sufficiently large γ in C.

This is because if β does not belong to A, (**) implies that $\operatorname{ot}(f_{\beta}[\gamma])$ does not belong to B for sufficiently large γ in C and as $\operatorname{ot}(f_{\beta}[\gamma])$ equals $\operatorname{ot}(f[\gamma])$ for unboundedly many γ in C, it follows that $\operatorname{ot}(f[\gamma])$ does not belong to Bfor unboundedly many γ in C.

This shows that in V[G], the predicate A is Δ_1 over $H(\omega_2)$ in parameters B, C and ω_1 . As there is a wellorder of $H(\omega_2) = L_{\omega_2}[A, B, C]$ which is Σ_1 with parameters A, B, C it follows that there is one which is Σ_1 with parameters A, B, ω_1 . \Box (Theorem 27)

Theorem 21 There is a small forcing which forces CH together with a definable wellorder of $H(\omega_2)$.

We first prove something easier (although certainly not easy!):

Theorem 22 Suppose that A is a subset of ω_1 . Then there is a small forcing which forces CH, preserves ω_1 and forces A to be definable over $H(\omega_2)$.

The proof uses a "weak club-guessing" property (due to Asperó, inspired by work of Avraham-Shelah). As we will need these properties later when studying $H(\kappa^+)$ for arbitrary regular uncountable κ , we present the relevant definitions in a general setting.

A club-sequence with length λ and domain D is a sequence $\vec{C} = \langle C_{\delta} | \delta < \lambda \rangle$, where λ is an ordinal, such that each C_{δ} is a subset of δ for each δ and D consists of those δ such that C_{δ} is a club in δ . We write D as dom (\vec{C}) . The range of \vec{C} is the union of the C_{δ} , $\delta \in \text{dom}(\vec{C})$.

 \vec{C} is a *coherent* club sequence iff there is a club-sequence \vec{D} with dom $(\vec{D}) \supseteq$ dom (\vec{C}) such that \vec{D}, \vec{C} agree on dom (\vec{C}) and whenever δ belongs to dom (\vec{D}) and γ is a limit point of D_{δ}, γ also belongs to dom (\vec{D}) and $D_{\gamma} = D_{\delta} \cap \gamma$. In this case we say that \vec{D} witnesses the coherence of \vec{C} .

Suppose that \vec{C} is a club sequence and there exists a fixed τ such that $ot(C_{\delta}) = \tau$ for each δ in dom (\vec{C}) ; then we say that τ is the *height* of \vec{C} .

Suppose that λ has uncountable cofinality and \vec{C} is a club sequence of length λ . We say that \vec{C} is guessing iff for every club C in λ there is some δ in $C \cap \operatorname{dom}(\vec{C})$ such that C_{δ} is almost contained in C, i.e., $C_{\delta} \setminus C$ is bounded in δ . We say that \vec{C} is strongly guessing iff for every club C in λ there is a club D in λ such that C_{δ} is almost contained in C for all δ in $D \cap \operatorname{dom}(\vec{C})$. If $\operatorname{dom}(\vec{C})$ is stationary and \vec{C} is strongly guessing then it is also guessing.

Now we weaken the concepts of guessing and strongly guessing. If X, Y are sets of ordinals then we define $X \cap^* Y$ to consist of all δ in $X \cap Y$ such that δ is not a limit point of X. (This operation is not symmetric.) Then we say that \vec{C} is *type-guessing* iff for every club C in λ there is $\delta \in C \cap \operatorname{dom}(\vec{C})$ such that $\operatorname{ot}(C_{\delta} \cap^* C) = \operatorname{ot}(C_{\delta})$. And \vec{C} is *strongly type-guessing* iff for every club C in λ there is a club D in λ such that $\operatorname{ot}(C_{\delta} \cap^* C) = \operatorname{ot}(C_{\delta})$ for every $\delta \in D \cap \operatorname{dom}(\vec{C})$.

An ordinal τ is perfect iff $\omega^{\tau} = \tau$.

Definition 23 For κ uncountable and regular, I_{κ} denotes the set of perfect ordinals $\tau < \kappa$ of countable cofinality for which there is a coherent strongly type-guessing club sequence \vec{C} of length κ with stationary domain and of height τ .

To prove Theorem 28 we use:

Lemma 24 (Main Claim) Assume GCH at \aleph_0, \aleph_1 and suppose that $B \subseteq \omega_1$ is a set of perfect ordinals. Then there is an ω -strategically closed, \aleph_2 -cc forcing P which forces that I_{ω_1} equals B.

The lemma implies that any subset of ω_1 can be made Σ_2 definable over $H(\omega_2)$ by a small forcing, a strong version of Theorem 28.

6.-7.Vorlesungen

Lemma 25 (Main Claim) Assume GCH at \aleph_0, \aleph_1 and suppose that $B \subseteq \omega_1$ is an unbounded set of perfect ordinals. Then there is an ω -strategically closed, \aleph_2 -cc forcing P which forces that I_{ω_1} equals B.

The lemma implies that any subset of ω_1 can be made Σ_2 definable over $H(\omega_2)$ by a small forcing.

To prove the Main Claim we begin with the following lemma.

Lemma 26 Under the assumptions of the Main Claim, write B in increasing order as $(\tau_{\nu})_{\nu < \omega_1}$. Then there is an ω -closed forcing P^* of size ω_1 which forces that there are sequences $(\vec{C}^{\nu})_{\nu < \omega_1}$, $(\vec{D}^{\nu})_{\nu < \omega_1}$, such that $(dom(\vec{C}^{\nu}))_{\nu < \omega_1}$ forms a sequence of pairwise disjoint stationary subsets of ω_1 and for all $\nu < \omega_1$:

(a) \vec{C}^{ν} has height τ_{ν} .

(b) \vec{D}^{ν} witnesses the coherence of \vec{C}^{ν} .

(c) The range of \vec{C}^{ν} is disjoint from the domain of $\vec{C}^{\nu'}$ for all $\nu' < \omega_1$.

(d) Successor elements of \vec{C}^{ν}_{δ} are limit ordinals for each δ in dom (\vec{C}^{ν}) .

(e) \vec{C}^{ν} is a guessing club-sequence.

Proof. P^* consists of all pairs

$$p = ((\vec{C}^{p,\nu} \mid \nu < \lambda_p), (\vec{D}^{p,\nu} \mid \nu < \lambda_p))$$

(for some ordinal $\lambda_p < \omega_1$) such that for each $\nu < \lambda_p$:

- (1) $\vec{C}^{p,\nu}$ and $\vec{D}^{p,\nu}$ are club sequences of length $\lambda_p + 1$.
- (2) $\vec{C}^{p,\nu}$ has height τ_{ν} .
- (3) The range of $\vec{C}^{p,\nu}$ is disjoint from the domain of $\vec{C}^{p,\nu'}$ for each $\nu' < \lambda_p$.
- (4) $\vec{D}^{p,\nu}$ witnesses the coherence of $\vec{C}^{p,\nu}$.
- (5) Successor elements of $\vec{C}^{p,\nu}_{\delta}$ are limit ordinals for each δ in dom $(\vec{C}^{p,\nu})$.

 p_1 extends p_0 iff $\lambda_{p_0} \leq \lambda_{p_1}$ and for each $\nu < \lambda_{p_0}$, $\vec{C}^{p_1,\nu}$ extends $\vec{C}^{p_0,\nu}$ and $\vec{D}^{p_1,\nu}$ extends $\vec{D}^{p_0,\nu}$.

Clearly P^* has size ω_1 , as we have assumed CH. To see that P^* is ω -closed, reason as follows. Suppose that $p_0 \ge p_1 \ge \cdots$ is a descending ω -sequence of conditions and we want to show that this sequence has a lower bound. We may assume that this sequence is strictly decreasing, and therefore the supremum

 λ of the λ_{p_n} 's does not belong to the domain of any club-sequence mentioned by any of the p_n 's. But now we can obtain a lower bound p by choosing the club-sequences $\vec{C}^{p,\nu}$ and $\vec{D}^{p,\nu}$, $\nu < \lambda$, of length $\lambda + 1$ to not include λ in their domain.

Let G be P^* -generic and for $\nu < \omega_1$ let \vec{C}^{ν} , \vec{D}^{ν} respectively denote the union of the $\vec{C}^{p,\nu}$ for p in G, the union of the $\vec{D}^{p,\nu}$ for p in G.

We claim that each \overline{C}^{ν} is a guessing club-sequence in V[G] for each $\nu < \omega_1$. Let \dot{C} be a P^* -name for a club in ω_1 and let p be a condition in P^* . Let $(N_i)_{i \leq \tau_{\nu}}$ be a continuous chain of countable elementary substructures of some large $(H(\theta), \in, \Delta)$ (where Δ is a wellorder of $H(\theta)$) such that N_0 contains ν, \dot{C} and p and for each $i < \tau_{\nu}, (N_j)_{j \leq i}$ belongs to N_{i+1} . For $i \leq \tau_{\nu}$ let δ_i be $N_i \cap \omega_1$ and let $(\epsilon_n^i)_{n < \omega}$ be the Δ -least ω -sequence cofinal in δ_i .

Now choose $(q_n)_{n<\omega}$ to form a descending sequence of conditions in N_0 extending p such that for all n, λ_{q_n} is greater than ϵ_n^0 and q_n forces some ordinal greater than ϵ_n^0 into \dot{C} . Let p_0 be the lower bound to the q_n 's obtained by setting $\lambda_{p_0} = \delta_0$ and $\vec{C}_{\delta_0}^{p_0,\nu'} = \vec{D}_{\delta_0}^{p_0,\nu'} = \emptyset$ for all $\nu' < \delta_0$. Then form $p_1 \leq p_0$ in a similar way, with N_0 , p, $(\epsilon_n^0)_{n<\omega}$ and δ_0 replaced by N_1 , p_0 , $(\epsilon_n^1)_{n<\omega}$ and δ_1 , respectively. Continue this for τ_{ν} steps to build the τ_{ν} -sequence $p_0 \geq p_1 \geq \cdots$, choosing lower bounds p_i at limit stages $i \leq \tau_{\nu}$ to obey the following:

$$\vec{D}^{p_i,\nu}_{\delta_i} = \{\delta_j \mid j < i\}$$
$$\vec{C}^{p_{\tau\nu},\nu}_{\delta_{\tau\nu}} = \{\delta_j \mid j < \tau_\nu\}$$

Then $q = p_{\tau_{\nu}}$ is indeed a condition extending p which forces that $\vec{C}^{\nu}_{\delta_{\tau_{\nu}}}$ is a subset of \dot{C} . \Box

Now to prove the Main Claim we perform an iteration with countable support $(P_{\xi} | \xi < \omega_2)$ using names $(\dot{Q}_{\xi} | \xi < \omega_2)$. The desired forcing that satisfies the Main Claim is P_{ω_2} , the direct limit of the P_{ξ} , $\xi < \omega_2$.

If \vec{C} is a (type-) guessing club sequence of length ω_1 and $C \subseteq \omega_1$ is a club, then $P(\vec{C}, C)$ is the natural forcing for adding a club $D \subseteq \omega_1$ such that $\operatorname{ot}(C_{\delta} \cap^* C) = \operatorname{ot}(C_{\delta})$ for δ in $D \cap \operatorname{dom}(\vec{C})$. A condition in this forcing a closed, bounded subset d of ω_1 such that $\operatorname{ot}(C_{\delta} \cap^* C) = \operatorname{ot}(C_{\delta})$ for all δ in $d \cap \operatorname{dom}(\vec{C})$.

At the first stage of our iteration we force with the P^* of Lemma 26. Let $(\vec{C}^{\nu})_{\nu < \omega_1}, (\vec{D}^{\nu})_{\nu < \omega_1}$ be the club sequences added by this forcing. Let \vec{C} denote the amalgamtion of the \vec{C}^{ν} , i.e., the club sequence with domain $\bigcup_{\nu} \operatorname{dom}(\vec{C}^{\nu})$ whose restriction to each $\operatorname{dom}(\vec{C}^{\nu})$ is \vec{C}^{ν} .

At each stage $\xi > 0$ of the iteration we pick some P_{ξ} -name \dot{C}_{ξ} for a club in ω_1 and we let \dot{Q}_{ξ} be a P_{ξ} -name for the forcing $P(\vec{C}, \dot{C}_{\xi})$. As we have assumed CH, each $P_{\xi}, \xi < \omega_2$ has a dense subset of size ω_1 and the entire iteration is ω_2 -cc. It follows that any club $C \subseteq \omega_1$ added by P has a P_{ξ} -name for some $\xi < \omega_2$. Moreover as we have assumed $2^{\omega_1} = \omega_2$, we can use a bookkeeping function to choose our names \dot{C}_{ξ} so that every club $C \subseteq \omega_1$ added by P is named by some \dot{C}_{ξ} and therefore we force with $P(\vec{C}, C)$ at some stage of the iteration.

8.-9. Vorlesungen

The ω_2 -iteration P is ω -strategically closed: Recall that the first component of P is the forcing P^* . Suppose that $p_0 \ge p_1 \ge \cdots$ is an ω -sequence in P such that for some λ , the sup of the lengths of the p_n 's on each component in the union of the supports of the p_n 's equals λ . Then we can obtain a lower bound q by taking the first component of q to have length $\lambda + 1$ while assigning the empty set at λ for all of its club-sequences, and including λ into the clubs at all later components of q. The ω -strategic closure of P now follows from the fact that it is easy to form a strategy which generates sequences of p_n 's as above.

It is also easy to verify that the sets added by the forcings $P(\vec{C}, C)$ are unbounded and therefore clubs; this is simply because the complement of the domain of \vec{C} is stationary. It follows that P forces each \vec{C}^{ν} to be strongly type-guessing, as for each club $C \subseteq \omega_1$ in the extension, P explicitly adds a club D witnessing strong type-guessing for each \vec{C}^{ν} and C. Of course this is vacuous without knowing that the domain of \vec{C}^{ν} is stationary in the final model. (The positive stages of the iteration are not proper.) An argument as in the proof that P^* produces club-sequences with stationary domain verifies this last fact, and in fact shows that each \vec{C}^{ν} is a guessing club-sequence.

Our main and final task is now to show that if τ is perfect but not one of the desired heights, i.e., does not equal τ_{ν} for some $\nu < \omega_1$, then in the *P*generic extension there is no strongly type-guessing club-sequence of height τ with stationary domain. Let G be P-generic and \vec{E} a club-sequence of length ω_1 with stationary domain of perfect height $\tau < \omega_1$. Choose $0 < \xi < \omega_2$ so that \vec{E} belongs to $V[G_0]$ where $G_0 = G \cap P_{\xi}$. We work in $V[G_0]$. Let D be the club added at stage ξ of the iteration (which witnesses strong type-guessing for the club-sequence \vec{C} with respect to the club C_{ξ}) and let \dot{D} be a P/G_0 -name for D. Our goal is to show that if τ is not of the form $\tau_{\eta}, \eta < \omega_1$, then any condition p in P/G_0 forcing that \dot{E} is a name for a club in ω_1 can be extended to a condition q forcing that for some δ in $\dot{E} \cap \operatorname{dom}(\vec{E})$, $\operatorname{ot}(E_{\delta} \cap^* \dot{D})$ is less than τ , the ordertype of E_{δ} .

Let θ be large and let $(N_i)_{i < \omega_1}$ be a continuous chain of elementary submodels of $H(\theta)$ such that N_0 contains all relevant parameters (such as p, τ , \dot{D} and \dot{E}). Set $\delta_i = N_i \cap \omega_1$ for each $i < \omega_1$ and let D_0 be the club consisting of the δ_i 's. In the final model V[G], the set $\{\delta < \omega_1 \mid \delta \in$ $\operatorname{dom}(\vec{C}) \to \operatorname{ot}(C_{\delta} \cap^* D_0) = \operatorname{ot}(C_{\delta})\}$ contains a club. As $\operatorname{dom}(\vec{E})$ is stationary in the final model we can choose $i^* = \delta_{i^*} < \omega_1$ in $\operatorname{dom}(\vec{E})$ such that $i^* \in \operatorname{dom}(\vec{C}) \to \operatorname{ot}(C_{i^*} \cap^* D_0) = \operatorname{ot}(C_{i^*}).$

We show that some extension q of p of length i^* (i.e., with all names of clubs assigned by q on the components in its support forced to have length i^*) forces that i^* belongs to \dot{E} and that $ot(E_{i^*} \cap^* \dot{D})$ is less than τ , the ordertype of E_{i^*} . There are three cases.

Case 1. i^* does not belong to dom(\hat{C}).

In this case we find an extension q of p which forces D to be disjoint from E_{i^*} above δ_0 .

As i^* is greater than τ , it follows that we can choose an ω -sequence $i_0 < i_1 < \cdots$ cofinal in i^* such that $E_{i^*} \cap \delta_{i_n}$ is bounded in δ_{i_n} for each n. Now build an ω -sequence $p = p_0 \ge p_1 \ge \cdots$ of conditions such that each p_{n+1} belongs to $N_{i_{n+1}}$, forces some ordinal greater than δ_{i_n} into \dot{E} and forces that the least ordinal in $\dot{D} \cap [\delta_{i_n}, \delta_{i_{n+1}})$ is greater than $\max(E_{i^*} \cap \delta_{i_{n+1}})$. Moreover we can assume that all of the components of p_{n+1} in its support are forced to have length at least δ_{i_n} . Then as i^* does not belong to the domain of \vec{C} the sequence of p_n 's has a greatest lower bound q which forces that $E_{i^*} \cap \dot{D}$ is bounded in i^* ; in particular q forces that $ot(E_{i^*} \cap^* \dot{D})$ is less than τ , as desired. Case 2. i^* belongs to dom (\vec{C}) and $\tau_0 = \operatorname{ot}(C_{i^*})$ is less than $\tau = \operatorname{ot}(E_{i^*})$.

In this case we find an extension q of p which forces $E_{i^*} \cap D$ to be included in C_{i^*} above δ_0 .

Denote $\operatorname{ot}(C_{i^*})$ by τ_0 . The desired q will have length i^* and be obtained as the greatest lower bound of a τ_0 -sequence of conditions of shorter length. To guarantee that this lower bound q exists we must ensure that the ordinal i^* can be placed into all of the clubs \dot{D}_η for η in the support of q. As i^* now belongs to the domain of \vec{C} , this demands that $\operatorname{ot}(C_{i^*} \cap^* \dot{C}_\eta)$ be maximised (i.e., equal to τ_0) for each such η . In particular, the club $\vec{D} = \dot{D}_{\xi}$ is of the form \dot{C}_η for some η in the support of q and therefore we must ensure that $\operatorname{ot}(C_{i^*} \cap^* \dot{D})$ is maximised, while at the same time ensuring that $\operatorname{ot}(E_{i^*} \cap^* \dot{D})$ is less than $\operatorname{ot}(E_{i^*}) = \tau$. In the present case the latter goal can be achieved by simply arranging that $E_{i^*} \cap \dot{D}$ be contained in C_{i^*} above δ_0 , as C_{i^*} has ordertype τ_0 which by assumption is indeed less than τ .

Let $(\delta_{i_j})_{j < \tau_0}$ increasingly enumerate $D_0 \cap C_{i^*}$. We inductively build the $p_j, j < \tau_0$, to meet the following conditions:

1. p_0 extends p and p_j belongs to N_{i_j+1} for each j.

2. For limit j, p_j is the greatest lower bound of $(p_k)_{k < j}$.

3. Each p_{j+1} is the greatest lower bound of an ω -sequence of conditions in N_{i_j+1} and forces that $\delta_{i_{j+1}}$ belongs to \dot{E} .

4. For each η in the support of p_j , p_{j+1} forces that $\delta_{i_{j+1}}$ belongs to \dot{C}_{η} (where \dot{C}_{η} is the club considered by the iteration at stage η).

5. Each p_{j+1} forces that $E_{i^*} \cap D \cap (\delta_{i_j}, \delta_{i_j+1})$ is empty.

As in Case 1, lower bounds are easily obtained at limit stages j less than τ_0 , as C_{i^*} is disjoint from the domain of \vec{C} and therefore δ_{i_j} does not belong to the domain of \vec{C} . Condition 4 implies that the p_j 's have a greatest lower bound q at the final stage τ_0 , as it implies that for each η in the union of the supports of the p_j 's, a final segment of $C_{i^*} \cap^* D_0$ is forced inside \dot{C}_{η} , allowing us to put i^* into \dot{D}_{η} , the club witnessing strong type-guessing for \vec{C} relative to the club \dot{C}_{η} . Condition 3 implies that i^* is forced into \dot{E} . And by condition 5, q forces that $E_{i^*} \cap \dot{D}$ above δ_{i_0} is contained in $D_0 \cap C_{i^*}$ and therefore has ordertype at most $\tau_0 < \tau$.

The conditions 1, 2 and the first part of 3 are easily arranged; to fulfill the remaining conditions, use the fact that $\tau = \operatorname{ot}(E_{i^*})$ is less than $\delta_{i_{j+1}}$ in order to meet the relevant dense sets in $N_{i_{j+1}}$ between adjacent elements of E_{i^*} .

Case 3. i^* belongs to dom(C) and $\tau = \operatorname{ot}(E_{i^*})$ is less than $\tau_0 = \operatorname{ot}(C_{i^*})$.

In this case we find an extension q of p which forces D to be disjoint from E_{i^*} above δ_0 .

For any γ in E_{i^*} let γ^* denote the least element of E_{i^*} greater than γ . Also let $(t_k \mid k \in \omega)$ be an increasing sequence cofinal in τ_0 . As τ is less than τ_0 , for each k there are unboundedly many γ_k in E_{i^*} such that the ordertype of $C_{i^*} \cap^* D_0$ on the interval (γ_k, γ_k^*) is greater than t_k . Otherwise $\tau_0 = \operatorname{ot}(C_{i^*} \cap^* D_0)$ is bounded by $t_k \cdot \tau$ for some k, contradicting the assumption that τ_0 is a perfect ordinal greater than τ . Choose an increasing sequence of such γ_k 's, and for each k let D_0^k consist of the first $t_k + 1$ elements of $C_{i^*} \cap D_0$ in the interval (γ_k, γ_k^*) .

Let $(\delta_{i_j})_{j < \tau_0}$ increasingly enumerate the union of the D_0^k 's, a club in i^* . We inductively build the p_j , $j < \tau_0$, to meet the following conditions:

1. p_0 extends p and p_j belongs to N_{i_j+1} for each j.

2. For limit j, p_j is the greatest lower bound of $(p_k)_{k < j}$.

3. Each p_{j+1} is the greatest lower bound of an ω -sequence of conditions in N_{i_j+1} and forces that $\delta_{i_{j+1}}$ belongs to \dot{E} .

4. For each η in the support of p_j , p_{j+1} forces that $\delta_{i_{j+1}}$ belongs to \dot{C}_{η} (where \dot{C}_{η} is the club considered by the iteration at stage η).

5. Each p_{j+1} forces that $E_{i^*} \cap D \cap (\delta_{i_j}, \delta_{i_j+1})$ is empty.

As in Case 2, lower bounds exist at limit stages and i^* is forced by the final q into \dot{E} . By condition 5, q forces that E_{i^*} is disjoint from \dot{D} above the length of p_0 , and therefore has ordertype less than τ , as desired. Conditions 1-4 are easily arranged; so is condition 5 as each D_0^k is a closed set lying entirely in the open interval (γ_k, γ_k^*) .

This completes the proof that there are no unintended heights of strongly type-guessing club sequences in the P-generic extension. \Box

10.-11.Vorlesungen

Recall that we have:

Theorem 27 There is a small forcing which forces CH together with a Σ_1 wellorder of $H(\omega_2)$ with parameters.

Theorem 28 Suppose that A is a subset of ω_1 . Then there is a small forcing which forces CH, preserves ω_1 and forces A to be definable over $H(\omega_2)$.

We now want to combine these results to get:

Theorem 29 There is a small forcing which forces CH together with a definable wellorder of $H(\omega_2)$.

Roughly speaking, in Theorem 27 we make a wellorder of $H(\omega_2)$ definable by coding it using "canonical function coding" by a subset of ω_1 , and in Theorem 28 we make a subset of ω_1 definable by coding it using "club-guessing" by a subset of $H(\omega_2)$. Now we want to combine these methods to add $B \subseteq \omega_1$ and $G \subseteq H(\omega_2)$ so that:

1. B codes G using canonical function coding.

2. G codes B using club-guessing.

If we first add B and then add G then we have not achieved the desired result, as we will only get a definable wellorder of the $H(\omega_2)$ of the ground model, not of the extension. Note that we can't do this with a standard ω_2 -iteration with the ω_2 -cc, as then any subset of ω_1 will have appeared by some initial stage of the iteration, which makes it impossible for it to decode the generic for the entire iteration.

We need to add B and G "simultaneously". There is feedback: the forcing to add G depends on B and the forcing to add B depends on G. A condition in the desired forcing specifies partial information about B as well as partial information about G; this information is fully determined and does not depend on the ultimate choice of generic. The resulting generic produces both B and G with the desired feedback: B codes G and G codes B. The forcing has features of an iteration as G is added in ω_2 stages, however also has of a product, as conditions are completely determined in the ground model.

We now review the earlier terminology regarding canonical function coding and club guessing that will be needed for the construction. For uncountable $\gamma < \omega_2$, a canonical function for γ is a function $f_{\gamma} : \omega_1 \rightarrow \omega_1$ such that for some surjection $\pi : \omega_1 \rightarrow \gamma$, $f_{\gamma}(\nu) = \operatorname{ot}(\pi[\nu])$ for all $\nu < \omega_1$. Any two canonical functions for γ agree on a club.

A club-sequence of length λ with domain D is a sequence $\vec{C} = (C_{\delta} | \delta < \lambda)$ where each C_{δ} is a subset of δ , $\lambda \leq \omega_1$ and $D = \operatorname{dom}(\vec{C})$ is the set of limit $\delta < \lambda$ such that C_{δ} is a club in δ . The range of \vec{C} is the union of the $C_{\delta}, \delta \in \operatorname{dom}(\vec{C})$. We say that \vec{C} is coherent iff there is a club-sequence \vec{D} extending \vec{C} to a possibly larger domain such that $\delta \in \operatorname{dom}(\vec{D}), \gamma$ a limit point of D_{δ} implies $\gamma \in \operatorname{dom}(\vec{D})$ and $D_{\gamma} = D_{\delta} \cap \gamma$. We say that \vec{D} witnesses the coherence of \vec{C} .

The height of a club guessing sequence \vec{C} , if defined, is the unique τ such that $\operatorname{ot}(C_{\delta}) = \tau$ for all δ in $\operatorname{dom}(\vec{C})$. An ordinal τ is perfect iff $\omega^{\tau} = \tau$. If X is a set of ordinals then we let X^+ denote the set of elements of X which are not limit points of X. A club sequence \vec{C} of length ω_1 with stationary domain is strongly type guessing iff for every club C in ω_1 there is a club D in ω_1 such that $\operatorname{ot}(C_{\delta}^+ \cap C) = \operatorname{ot}(C_{\delta})$ for every $\delta \in \operatorname{dom}(\vec{C}) \cap D$.

The desired forcing P

Assume the GCH at \aleph_0 and \aleph_1 and fix a bookkeeping function F, i.e., a function $F : \omega_2 \to H(\omega_2)$ such that for each $a \in H(\omega_2)$, the set of α such that $F(\alpha) = a$ is unbounded in ω_2 .

Choose canonical functions $(f_{\gamma} \mid \omega_1 \leq \gamma < \omega_2)$. We assume that $f_{\gamma}(\delta) \geq \delta$ for all γ and all limit $\delta < \omega_1$. Also, for distinct γ_0, γ_1 let E_{γ_0,γ_1} be a club in ω_1 of limit ordinals on which f_{γ_0} and f_{γ_1} differ.

Let A be a subset of ω_2 such that $L_{\omega_2}[A] = H(\omega_2)$ and the sequences $(f_{\gamma} \mid \gamma < \omega_2)$ and $(E_{\gamma_0,\gamma_1} \mid \gamma_0, \gamma_1 < \omega_2)$ are definable over $(H(\omega_2), \in, A)$.

Let $(\eta_{\xi})_{\xi < \omega_1}$ increasingly enumerate the countable perfect ordinals and let \mathcal{C} be the set of nonzero $\alpha \leq \omega_2$ such that $\omega_1 \cdot \alpha' < \alpha$ for all $\alpha' < \alpha$.

We will define an increasing sequence of partial orders $(P_{\alpha}, \leq_{\alpha}), \alpha \in \mathcal{C}$. The desired forcing P will be $(P_{\omega_2}, \leq_{\omega_2})$. Given $\alpha \in \mathcal{C}$ and assuming that $P_{\alpha'}$ has been defined for $\alpha' < \alpha$ in \mathcal{C} , conditions in P_{α} are of the form:

$$p = (b, C, (c_{\gamma} \mid \gamma \in a), ((\vec{C^i}, \vec{D^i}) \mid i < \beta), (D_{\gamma} \mid \gamma \in a))$$

satisfying the following conditions, where for any ordinal α , $p \upharpoonright \alpha$ denotes $(b, C, (c_{\gamma} \mid \gamma \in a \cap \alpha), ((\vec{C}^{i}, \vec{D}^{i}) \mid i < \beta), (D_{\gamma} \mid \gamma \in a \cap \alpha))$:

1. *a* is a countable subset of $\bigcup_{1 \le \rho < \alpha} [\omega_1 \cdot \rho, \omega_1 \cdot \rho + \beta]$ and γ' belongs to *a* whenever $\gamma' \ge \omega_1$ and $\gamma \in a$ is of the form $\omega_1 \cdot \gamma' + \zeta$ for some countable ζ . 2. *C* is a club in ω_1 contained in $\bigcap \{ E_{\gamma,\gamma'} \mid \gamma, \gamma' \in a, \gamma \ne \gamma' \}$.

3. β is a countable ordinal closed under Gödel pairing and β belongs to C. 4. b is a subset of β of ordertype β .

5. For $\gamma \in a$, c_{γ} is a closed subset of β and $f_{\gamma}(\nu) < \beta$ for ν in c_{γ} .

6. Each \vec{C}^i and \vec{D}^i (for $i < \beta$) is a club-sequence of length $\beta + 1$, \vec{C}^i has a well-defined perfect height and \vec{D}^i witnesses the coherence of \vec{C}^i .

7. *b* is the set of $\xi < \beta$ such that some \vec{C}^i , $i < \beta$, has height η_{ξ} . Also, the domain of each \vec{D}^i is contained in $[i + 1, \omega_1)$ and for each $i, j, \operatorname{dom}(\vec{D}^i) \cap \operatorname{dom}(\vec{D}^j) = \operatorname{dom}(\vec{D}^i) \cap \operatorname{range}(\vec{D}^j) = \operatorname{range}(\vec{D}^i) \cap \operatorname{range}(\vec{D}^j) = \emptyset$.

8. For
$$\gamma \in a$$
, D_{γ} is a closed subset of $\beta + 1$.

9. Suppose that γ belongs to a and there is a least α' in $\gamma \cap \mathcal{C}$ such that $F(\gamma)$ is a $P_{\alpha'}$ -name for a club in ω_1 . Then for each ν in $\beta \cap (\max(D_{\gamma}) + 1)$, $p \upharpoonright \alpha'$ decides (in the forcing $P_{\alpha'}$) whether or not ν belongs to $F(\gamma)$. Let C_{γ} be the closure of the set of $\nu \in \beta \cap (\max(D_{\gamma}) + 1)$ such that $p \upharpoonright \alpha'$ forces $\nu \in F(\gamma)$. Then $\operatorname{ot}((C_{\delta}^i)^+ \cap C_{\gamma}) = \operatorname{height}(\vec{C}^i)$ for each $i < \beta$ and $\delta \in D_{\gamma} \cap \operatorname{dom}(\vec{C}^i)$.

Clause 9 reflects our desire to code using strong type guessing. The canonical function coding is reflected in our notion of extension and makes use of components C and $(c_{\gamma} \mid \gamma \in a)$ above. First, for any condition p in P_{α} associate in a canonical way a set $\mathcal{A}(p)$ contained in $\bigcup_{1 \leq \rho < \alpha} [\omega_1 \cdot \rho, \omega_1 \cdot \rho + \beta)$ which codes $A \cap \bigcup_{\rho < \alpha} [\omega_1 \cdot \rho, \omega_1 \cdot \rho + \beta)$ on $\bigcup_{1 \leq \rho < \alpha} [\omega_1 \cdot \rho, \omega_1 \cdot \rho + \beta)$ as well as the components of p on $\bigcup_{1 \leq \rho \in a^p \alpha} [\omega_1 \cdot \rho, \omega_1 \cdot \rho + \beta)$. Then we say that the condition q extends $p, q \leq_{\alpha} p$, iff the following conditions hold (where if $q = (b, C, (c_{\gamma} \mid \gamma \in a), ((\vec{C}^i, \vec{D}^i) \mid i < \beta), (D_{\gamma} \mid \gamma \in a))$ is a condition then $b^q, C^q, c^q_{\gamma}, a^q \dots$ denote $b, C, c_{\gamma}, a \dots$):

a. $C^q \subseteq C^p$. b. $\beta^p \leq \beta^q$, $a^p \subseteq a^q$ and $b^p = b^q \cap \beta^p$. c. For $\gamma \in a^p$, $c^p_{\gamma} = c^q_{\gamma} \cap \beta^p$, $c^q_{\gamma} \setminus c^p_{\gamma} \subseteq C^p$ and $D^p_{\gamma} = D^q_{\gamma} \cap (\beta^p + 1)$. d. $\vec{C}^{i,p} = \vec{C}^{i,1} \upharpoonright \beta^p + 1$ and $\vec{D}^{i,p} = \vec{D}^{i,1} \upharpoonright \beta^p + 1$ for all $i < \beta^p$. e. For $\gamma \in a^p$ and $\nu \in c^1_{\gamma} \setminus c^p_{\gamma}$, $f_{\gamma}(\nu) \in b^q$ iff $\gamma \in \mathcal{A}(p)$.

The relation \leq_{α} is transitive, using the fact that if $q \leq_{\alpha} p$ and γ belongs to a^p then γ belongs to $\mathcal{A}(p)$ iff γ belongs to $\mathcal{A}(q)$. (The latter is verified using clause 1 in the definition of condition.)

The P_{α} 's form an increasing sequence of partial orders and $P = P_{\omega_2}$ has size ω_2 . The following are straightforward:

Lemma 30 For $\alpha' \leq \alpha$ in C, $p \upharpoonright \alpha'$ belongs to $P_{\alpha'}$ for each p in P_{α} ; furthermore, $P_{\alpha'}$ is a complete suborder of P_{α} .

Lemma 31 P has the ω_2 -cc.

Lemma 32 P is ω_1 -closed.

If G is P-generic then $b^G = \bigcup \{b^p \mid p \in G\}$ codes G: Since the canonical function coding is built into the definition of the forcing, we have that b^G codes $\mathcal{A}(G) = \bigcup \{\mathcal{A}(p) \mid p \in G\}$; from the latter we can define the $\vec{C}^i(G)$, $\vec{D}^i(G), C_{\gamma}(G), D_{\gamma}(G)$ (the unions of the corresponding objects associated to $p \in G$), and this is enough to define G.

The main lemma states that in V[G], b^G is definable over $(H(\omega_2), \in)$, as the set of ξ such that there is a strong type guessing club-sequence with stationary domain of height η_{ξ} . The argument is similar to the one used by Asperó to make any given subset of ω_1 definable over $H(\omega_2)$ in a forcing extension using strong type guessing. \Box

The above gives a Σ_4 definable wellorder of $H(\omega_2)$ in a small forcing extension. It is not known if this is optimal. However Woodin showed that if there is a measurable Woodin cardinal and CH holds then there is no Σ_1 definable wellorder of $H(\omega_2)$ with parameter ω_1 ; in fact there is no wellorder of the reals which is Σ_1 definable over $H(\omega_2)$ with parameter ω_1 .a

Definable wellowers of $H(\kappa^+)$, κ large

Theorem 29 extends to all regular uncountable κ :

Theorem 33 (F-Asperó) There is a class forcing which forces GCH, adds a definable wellorder of $H(\kappa^+)$ for all regular uncountable κ and preserves all supercompact cardinals as well as a proper class of n-huge cardinals for each n.

For singular κ there is a limitation in the presence of very large cardinals.

Proposition 34 Suppose that there is an elementary embedding from $L(H(\lambda^+))$ to itself fixing λ with critical point less than λ . Then there is no definable wellorder of $H(\lambda^+)$ with parameters.

Proof of Proposition. Kunen's proof that there is no nontrivial elementary embedding $j: V \to V$ goes as follows: Let κ be the critical point of j and λ the supreumum of the $j^n(\kappa)$'s for $n \in \omega$. Then λ is the first fixed point of j greater than κ . Let F be an ω -Jonsson function for λ , i.e., a function Ffrom $[\lambda]^{\omega}$ to λ such that whenever $X \subseteq \lambda$ has size λ then the range of F on $[X]^{\omega}$ is all of λ . It is not difficult to construct such a function F using the axiom of choice. Then j(F) has the same property and $j[\lambda] = X$ has size λ . It follows that κ is of the form j(F)(s) for some $s \in [X]^{\omega}$, which is impossible as s belongs to the range of j and κ does not.

Now suppose that j were an elementary embedding from $L(H(\lambda^+))$ to itself fixing λ with critical point κ less than λ . Then λ is at least the supremum $\overline{\lambda}$ of the $j^n(\kappa)$, $n \in \omega$. Kunen's argument shows that there cannot be an ω -Jonsson function for $\overline{\lambda}$ in $L(H(\lambda^+))$. Thus λ must equal $\overline{\lambda}$ and there is no ω -Jonsson function for λ in $L(H(\lambda^+))$. In particular, the axiom of choice must fail in $L(H(\lambda^+))$, which implies that there is no definable wellorder of $H(\lambda^+)$. \Box

It is not known if there is a small forcing that creates a definable wellorder of $H(\aleph_{\omega+1})$.

12.-13.Vorlesungen

Definable wellorders and forcing axioms

We first consider definable wellorders of $H(\omega_1)$, or equivalently, projective wellorders of the reals. As forcing axioms imply the negation of CH, we first show: **Theorem 35** A projective wellorder of the reals is consistent with the negation of CH.

I won't give the simplest proof of this result, but rather a proof which is amenable to generalisation. I begin with the following easier result:

Theorem 36 It is consistent with the negation of CH that there is a wellorder of the reals definable in $H(\omega_2)$.

Proof. The desired model will be obtained via an ω_1 -preserving, ω_2 -cc iteration over L of length ω_2 with countable support.

Fix a sequence $(S_{\alpha} \mid \alpha < \omega_2)$ of pairwise almost disjoint stationary subsets of ω_1 . We assume that this sequence is definable over L_{ω_2} . For any pair of reals x, y let z = x * y be defined by $z = \{2n \mid n \in x\} \cup \{2n+1 \mid n \in y\}$. We will force to kill CH and create a wellorder < of the reals so that:

(*) x < y iff for some limit α , n belongs to x * y iff $S_{\alpha+n}$ is not stationary.

For the sake of later applications, we will add reals using Sacks forcing, rather than Cohen forcing. We will need a bookkeeping function, i.e., a function $F: \omega_2 \to L_{\omega_2}$ (definable over L_{ω_2}) such that for each $a \in L_{\omega_2}$, $F(\alpha) = a$ for unboundedly many $\alpha < \omega_2$.

The iteration uses the names Q_{α} defined as follows. Let P_{α} denote the first α stages of the iteration (for $\alpha \leq \omega_2$) and let G_{α} denote the P_{α} -generic. Order the reals in $L[G_{\alpha}]$ by: $x <_{\alpha} y$ iff the *L*-least P_{α} -name for x (i.e., the *L*-least P_{α} -name σ_x such that $\sigma_x^{G_{\alpha}} = x$) is less than the *L*-least P_{α} -name for y in the canonical wellorder of L. We assume that this is defined in such a way that if $\alpha < \beta$ are both limits then $<_{\alpha}$ is an initial segment of $<_{\beta}$.

For limit α , Q_{α} is trivial unless $F(\alpha)$ is a P_{α} -name for a pair of reals $x <_{\alpha} y$. In that case, Q_{α} is the forcing that adds a club to the complement of $S_{\alpha+n}$ for each n in x * y. A condition in Q_{α} is an ω -sequence (c_0, c_1, \cdots) of closed, bounded subsets of ω_1 such that for each n in x * y, c_n is disjoint from $S_{\alpha+n}$.

For α equal to 0 or α successor, Q_{α} is Sacks forcing.

The desired forcing is $P = P_{\omega_2}$.

Lemma 37 P is ω_2 -cc.

Proof. This follows easily, as our ground model satisfies CH, we are using countable support and each Q_{α} has size ω_1 . \Box

Lemma 38 Suppose that G is P-generic and at limit stage $\alpha < \omega_2$ either Q_{α} is trivial or n does not belong to the real x * y considered at stage α . Then $S_{\alpha+n}$ is stationary in L[G]. In particular, ω_1 is preserved.

Proof. Let p be a condition in P forcing that n does not belong to the real x * y considered at stage α of the iteration and forcing that \dot{C} is a P-name for a club in ω_1 . We want to find $q \leq p$ and i in $S_{\alpha+n}$ such that q forces i to belong to \dot{C} .

Let $(M_i \mid i < \omega_1)$ be a continuous chain of countable elementary submodels of some large L_{θ} such that M_0 contains p, α, F and \dot{C} . For each $i < \omega_1$ let γ_i denote $M_i \cap \omega_1$. Then $S^0_{\alpha+n} = \{i < \omega_1 \mid i = \gamma_i \text{ belongs to } S_{\alpha+n}\}$ is stationary.

Claim. There exists i in $S^0_{\alpha+n}$ such that i does not belong to S_β for any β in M_i which differs from $\alpha + n$.

Proof of Claim. Otherwise for each limit i in $S^0_{\alpha+n}$ choose f(i) < i such that i belongs to S_β for some β in $M_{f(i)}$ which differs from $\alpha + n$. By Fodor, f has some constant value i_0 on a stationary subset of $S^0_{\alpha+n}$. As M_{i_0} is countable, there is a fixed β in M_{i_0} different from $\alpha + n$ such that i belongs to S_β for stationary-many i in $S^0_{\alpha+n}$. But this contradicts the fact that $S_{\alpha+n}$ and S_β are almost disjoint. \Box (Claim)

Choose *i* as in the Claim. We want to build an ω -sequence $p = p_0 \ge p_1 \ge \cdots$ with a lower bound *q* forcing *i* to belong to \dot{C} . Let $i_0 < i_1 < \cdots$ be an ω -sequence cofinal in *i*. To define p_{n+1} , choose a finite subset F_n of the support of p_n and extend p_n inside the model M_i without thinning the *n*-th splitting level of $p_n(\beta)$ for non-limit $\beta \in F_n$ so that p_{n+1} forces some ordinal greater than i_n to belong to \dot{C} . This can be done by successively considering the $(2^n)^{|F_n|}$ different choices of nodes on the *n*-th splitting levels of the trees specified by p_n on the non-limit components in F_n . In addition, for limit β in F_n , extend $p_n(\beta)$ to ensure that the max of this closed set is at least i_n . The

 F_n 's should be chosen so that their union equals the union of the supports of the p_n 's.

Then the sequence of p_n 's has a lower bound q: For non-limit α in the union A of the supports of the p_n 's the $p_n(\alpha)$'s form a fusion sequence, so we obtain a Sacks condition when we intersect the $p_n(\alpha)$'s. As A is a subset of the model M_i , we know by the choice of i that i does not belong to S_β for any β in A which differs from $\alpha + n$. Therefore for limit β in A different from $\alpha + n$ we get a condition if we take the union of the $p_n(\beta)$'s (which has supremum i) and add i at the top. At component $\alpha + n$ we can also put i at the top as $p = p_0$ forces that n does not belong to the real x * y considered at stage α of the iteration.

Finally, note that q forces i to belong to \dot{C} and therefore we have proved the stationarity of $S_{\alpha+n}$. \Box (Claim)

Corollary 39 P forces the negation of CH.

Clearly if Q_{α} is nontrivial at a limit stage α and n does belong to the real x * y considered at stage α then $S_{\alpha+n}$ is not stationary in L[G]. Thus if < denotes the wellorder of the reals in L[G] obtained by taking the union of the $<_{\alpha}$'s we have:

(*) x < y iff for some limit $\alpha < \omega_2$, $S_{\alpha+n}$ is stationary iff n belongs to x * y.

As the sequence $(S_{\alpha} \mid \alpha < \omega_2)$ is definable over L_{ω_2} , this gives a wellorder in L[G] which is definable over $L_{\omega_2}[G] = H(\omega_2)^{V[G]}$. \Box

Now we prove the more difficult result:

Theorem 40 It is consistent with the negation of CH that there is a projective (indeed Σ_3^1 definable) wellower of the reals.

Proof. We perform an ω_2 -iteration as in the previous proof, but do more at limit stages. Recall that in the previous proof we started with L and added a wellorder < of ω_2 -many reals such that:

x < y iff for some limit $\alpha < \omega_2$, n belongs to x * y iff $S_{\alpha+n}$ is nonstationary,

where $(S_{\beta} \mid \beta < \omega_2)$ is an L_{ω_2} -definable sequence of pairwise almost disjoint stationary subsets of ω_1 . In the present proof this will be modified slightly:

(1) x < y iff for some limit $\alpha < \omega_2$, $S_{\alpha+2n}$ is nonstationary for n in x * y and $S_{\alpha+2n+1}$ is nonstationary for n not in x * y.

This small change has the advantage that not only membership, but also non-membership in x * y is witnessed by the existence, rather than the nonexistence, of a club.

Our goal is to express the above nonstationarity in terms of quanitification over countable models. Ideally, we would like to have (1) together with the following:

(2) If x < y then there exists a real R such that for any countable transitive ZF^- model M containing R there is a limit ordinal $\bar{\alpha} < \omega_2^M$ such that $S_{\bar{\alpha}+2n}^M$ is nonstationary in M for n in x * y and $S_{\bar{\alpha}+2n+1}^M$ is nonstationary in M for n not in x * y,

where $(S_{\beta}^{M} \mid \beta < \omega_{2}^{M})$ denotes *M*'s interpretation of the sequence $(S_{\beta} \mid \beta < \omega_{2})$. We show now that (1) implies the converse of (2). It follows that (1) and (2) together give a projective wellorder of the reals, as the conclusion of (2) is first-order over $H(\omega_{1})$.

Suppose that R is a real such that for any countable transitive ZF^- model M containing R there is a limit ordinal $\bar{\alpha} < \omega_2^M$ such that $S_{\bar{\alpha}+2n}^M$ is nonstationary in M for n in x * y and $S_{\bar{\alpha}+2n+1}^M$ is nonstationary in M for n not in x * y. By Löwenheim-Skolem this holds for arbitrary transitive ZF^- models M containing R. Consider then the model $M = L_{\theta}[R]$ for a large regular θ and let $\alpha < \omega_2^M = \omega_2$ be the limit ordinal guaranteed the conclusion of (2) for M. As $(S_{\beta} \mid \beta < \omega_2)$ is definable over L_{ω_2} and θ is greater than ω_2 , it follows that S_{β}^M equals S_{β} for each $\beta < \omega_2$. Thus $S_{\alpha+2n}$ is nonstationary in M for n in x * y and $S_{\alpha+2n+1}$ is nonstationary in M for n not in x * y. It follows that these sets are nonstationary in the larger model L[G] and therefore by (1), we have x < y.

We will not actually achieve (2) above, but a slight weakening of it. Say that a transitive ZF⁻ model M is *suitable* iff $M \models \omega_2 = \omega_2^L$ exists. We will obtain (2) restricted to suitable M. Then to establish the converse of the new version of (2), we need only observe that as our forcing preserves cardinals, $L_{\theta}[R]$ is indeed suitable for any large regular θ and any real R in the generic extension. We now begin the proof. To facilitate the argument we need some extra properties of the bookkeeping function F and of the sequence $(S_{\beta} \mid \beta < \omega_2)$ of almost disjoint stationary subsets of ω_1 .

Lemma 41 Assume V = L. There is a bookkeeping function $F : \omega_2 \to L_{\omega_2}$ definable over L_{ω_2} via a formula φ and a sequence $(S_\beta \mid \beta < \omega_2)$ of almost disjoint stationary subsets of ω_1 definable over L_{ω_2} via a formula ψ such that whenever M, N are suitable transitive ZF^- models, F^M, F^N denote the interpretations of φ in M, N, respectively, $\vec{S}^M = (S^M_\beta \mid \beta < \omega^M_2), \vec{S}^N =$ $(S^N_\beta \mid \beta < \omega^N_2)$ denote the interpretations of ψ in M, N, respectively, and $\omega^M_1 = \omega^N_1$ then F^M, F^N agree on $\omega^M_2 \cap \omega^N_2$ and \vec{S}^M, \vec{S}^N agree on $\omega^M_2 \cap \omega^N_2$. In particular, if M is suitable and $\omega^M_1 = \omega_1$ then F^M, \vec{S}^M equal the restrictions of F, \vec{S} to the ω_2 of M.

Proof Sketch. For the bookkeeping function define $F(\alpha) = a$ iff via Gödel pairing α codes a pair (α_0, α_1) where a has rank α_0 in the natural wellorder of the sets in L. For the almost disjoint stationary sets, let $(D_{\gamma} | \gamma < \omega_1)$ be the canonical L_{ω_1} -definable \diamondsuit sequence, for each $\alpha < \omega_2$ let A_{α} be the L-least subset of ω_1 coding α and define S_{α} to be the set of $i < \omega_1$ such that $D_i = A_{\alpha} \cap i$. \Box (Lemma 41)

14.-15.Vorlesungen

Now we describe stage α of our iteration. For non-limit $\alpha < \omega_2$ we add a Sacks real. For limit $\alpha < \omega_2$, we kill the stationarity of $S_{\alpha+2n}$ for n in $x_{\alpha} * y_{\alpha}$ and of $S_{\alpha+2n+1}$ for n not in $x_{\alpha} * y_{\alpha}$, where $x_{\alpha} <_{\alpha} y_{\alpha}$ are the reals chosen by the bookkeeping function F at that stage. Call this forcing Q_{α}^0 and let H_{α} denote the Q_{α}^0 -generic. Now let $X_{\alpha} \in L[G_{\alpha} * H_{\alpha}]$ be a subset of ω_1 which codes the ordinal α , codes a level of L in which α has size at most ω_1 and codes the generic $G_{\alpha} * H_{\alpha}$, which we can regard as an element of L_{ω_2} . We have:

(*) If M is suitable and X_{α} belongs to M, then the limit ordinal α coded by X_{α} is less than ω_2^M and $S_{\alpha+2n}^M$ is not stationary in M for n in $x_{\alpha} * y_{\alpha}$, $S_{\alpha+2n+1}^M$ is not stationary in M for n not in $x_{\alpha} * y_{\alpha}$.

This is because in any such M we can decode $G_{\alpha} * H_{\alpha}$ from X_{α} inside Mand $S_{\alpha+n}^{M}$ equals $S_{\alpha+n}$ for each n. Recall that we want to add a real which "reflects" this property into all countable, suitable models that contain it. First we force a subset Y_{α} of ω_1 which "localises" the above property in the following sense:

(**) For any $\gamma < \omega_1$ and countable, suitable M containing $Y_{\alpha} \cap \gamma$ as an element: If $\gamma = \omega_1^M$ then for some limit ordinal $\bar{\alpha}$ less than ω_2^M , $S_{\bar{\alpha}+2n}^M$ is not stationary in M for n in $x_{\alpha} * y_{\alpha}$ and $S_{\bar{\alpha}+2n+1}^M$ is not stationary in M for n not in $x_{\alpha} * y_{\alpha}$.

We now describe a forcing Q_{α}^{1} to create the witness Y_{α} to (**). A condition in Q_{α}^{1} is an ω_{1} -Cohen condition $r : |r| \to 2$ in $L[G_{\alpha} * H_{\alpha}]$ with the following properties:

1. The domain |r| of r is a countable limit ordinal.

2. $X_{\alpha} \cap |r|$ is the even part of r, i.e., for $\gamma < |r|$, γ belongs to X_{α} iff $r(2\gamma) = 1$. 3. (**) holds for all limit $\gamma \leq |r|$ with $Y_{\alpha} \cap \gamma$ replaced by $r \upharpoonright \gamma$, i.e.:

 $(**)_r$ For any limit $\gamma \leq |r|$ and countable, suitable M containing $r \upharpoonright \gamma$ as an element: If $\gamma = \omega_1^M$ then for some limit ordinal $\bar{\alpha}$ less than ω_2^M , $S_{\bar{\alpha}+2n}^M$ is not stationary in M for n in $x_{\alpha} * y_{\alpha}$ and $S_{\bar{\alpha}+2n+1}^M$ is not stationary in M for n not in $x_{\alpha} * y_{\alpha}$.

As a warmup for a later argument, we pause now to consider the case $\alpha = \omega$, assume that $x_{\omega} <_{\omega} y_{\omega}$ are well-defined and show that the forcing $P_{\omega} * Q_{\alpha}^{0} * Q_{\alpha}^{1}$ preserves the stationarity of the "untouched" S_{β} 's, i.e., of those S_{β} 's where β is not of the form $\omega + 2n$, $n \in x_{\omega} * y_{\omega}$ or of the form $\omega + 2n + 1$, $n \notin x_{\omega} * y_{\omega}$. Later we will show that the entire iteration preserves the stationarity of those S_{β} 's untouched by the generic for the full ω_{2} -iteration P.

Suppose that (p, q^0, r) is a condition in $P_{\omega} * Q_{\alpha}^0 * Q_{\alpha}^1$ forcing that β is not of the form $\omega + 2n$, $n \in x_{\omega} * y_{\omega}$, β is not of the form $\omega + 2n + 1$, $n \notin x_{\omega} * y_{\omega}$ and that \dot{C} is a club in ω_1 . We will find $(p_{\omega}, q_{\omega}^0, r_{\omega})$ below (p, q^0, r) forcing i to belong to \dot{C} for some i in S_{β} .

First note that Q_{ω}^{1} satisfies the following extendibility property: Given rand a countable limit γ greater than |r|, we can extend r to r^{*} of length γ . This is because we can take the odd part of r^{*} on the interval $[|r|, |r| + \omega)$ to code γ and to consist only of 0's on $[|r| + \omega, \gamma)$; then there are no new instances of requirement 3 for being a condition to check because no ZF⁻ model containing $r^{*} \upharpoonright |r| + \omega$ can have its ω_{1} in the interval $(|r|, \gamma]$. Now let $(M_i \mid i < \omega_1)$ be a continuus chain of countable elementary submodels of some large L_{θ} such that M_0 contains the parameters (p, q^0, r) , $\beta, \dot{C}, P_{\omega} * Q_{\omega}^0 * Q_{\omega}^1$ and a $P_{\omega} * Q_{\omega}^0$ -name \dot{X}_{ω} for X_{ω} . Let *i* be an element of S_{β} such that $i = M_i \cap \omega_1$ and *i* does not belong to S_{δ} for any δ in M_i which differs from β . (We argued earlier that there must be such an *i*, using a Fodor argument.) Successively extend (p, q^0, r) to $(p_0, q_0^0, r_0) \ge (p_1, q_1^0, r_1) \ge \cdots$ in M_i so that for each finite *n* the $p_k(n), k \in \omega$, form a fusion sequence and if *D* in M_i is a dense set for the forcing $P_{\omega} * Q_{\omega}^0 * Q_{\omega}^1$ then for some *k*, (p_k, q_k^0, r_k) reduces *D* to the *k*-th splitting level of finitely many of the trees $p_k(n)$ (i.e., if finitely many of the trees $p_k(n)$ are restricted to some node on their *k*-th splitting level, then the resulting condition (p'_k, q_k^0, r_k) meets *D*). In particular, the condition (p_k, q_k^0, r_k) forces the $P_{\omega} * Q_{\omega}^0 * Q_{\omega}^1$ -generic to meet *D* in a condition belonging to M_i . By extendibility, the max's of the q_k^0 's and the domains of the r_k 's converge to *i*. And the (p_k, q_k^0, r_k) 's force arbitrary large ordinals less than *i* into \dot{C} .

We want to show that the (p_k, q_k^0, r_k) 's have a lower bound $(p_\omega, q_\omega^0, r_\omega)$. By fusion the p_k 's have a greatest lower bound p_ω . And just as in our earlier argument, the q_k^0 's have a greatest lower bound q_ω^0 as *i* does not belong to S_δ for any δ in M_i which differs from β . We show that the condition (p_ω, q_ω^0) in $P_\omega * Q_\omega^0$ forces the union r_ω of the r_k 's to be a condition in Q_ω^1 . For this it suffices to force property $(**)_{r_\omega}$ when γ is equal to *i*, the length of r_ω . I.e., (p_ω, q_ω^0) must force:

(* * *) For any suitable M containing r_{ω} : If $i = \omega_1^M$ then $S_{\omega+2n}^M$ is not stationary in M for n in $x_{\omega} * y_{\omega}$ and $S_{\omega+2n+1}^M$ is not stationary in M for n not in $x_{\alpha} * y_{\alpha}$.

Fix a generic $G_{\omega} * H_{\omega}$ below the condition $(p_{\omega}, q_{\omega}^0)$. Then if D is a dense set for $P_{\omega} * Q_{\omega}^0$ belonging to M_i , by construction we have that $(G_{\omega} * H_{\omega}) \cap M_i$ meets D. Thus not only is M_i elementary in L_{θ} , but also $(M_i[(G_{\omega} * H_{\omega}) \cap M_i], (G_{\omega} * H_{\omega}) \cap M_i)$ is elementary in $(L_{\theta}[G_{\omega} * H_{\omega}], G_{\omega} * H_{\omega})$. Let $(\overline{M}[\overline{G} * \overline{H}], \overline{G} * \overline{H})$ be the transitive collapse of $(M_i[(G_{\omega} * H_{\omega}) \cap M_i], (G_{\omega} * H_{\omega}) \cap M_i]$. As X_{ω} has a name in M_i , it follows that X_{ω} belongs to $M_i[(G_{\omega} * H_{\omega}) \cap M_i]$ and therefore $X_{\omega} \cap i$ belongs to $\overline{M}[\overline{G} * \overline{H}]$. As X_{ω} codes the generic $G_{\omega} * H_{\omega}$, it ensures the nonstationarity of $S_{\omega+2n}$ for n in $x_{\omega} * y_{\omega}$ and of $S_{\omega+2n+1}$ for n not in $x_{\omega} * y_{\omega}$ in all suitable models containing X_{ω} as an element; it follows that $X_{\omega} \cap i$ ensures the nonstationarity of $S_{\omega+2n}^{\overline{M}}$ for n in $x_{\omega} * y_{\omega}$ and of $S_{\omega+2n+1}^{\overline{M}}$ for n

not in $x_{\omega} * y_{\omega}$ in all suitable models containing $X_{\omega} \cap i$ as an element. Now if M is any suitable model containing r_{ω} as an element such that $\omega_1^M = i$, M also contains $X_{\omega} \cap i$ as an element (as $X_{\omega} \cap i$ is the even part of r_{ω}) and as $\omega_1^M = i = \omega_1^{\overline{M}}$, we have $S_{\omega+n}^M = S_{\omega+n}^{\overline{M}}$ for each n; it follows that $S_{\omega+2n}^M$ is nonstationary in M for n in $x_{\omega} * y_{\omega}$ and $S_{\omega+2n+1}^M$ is nonstationary in M for n not in $x_{\omega} * y_{\omega}$, establishing (* * *).

So the (p_k, q_k^0, r_k) 's have a lower bound $(p_\omega, q_\omega^0, r_\omega)$. This condition forces unboundedly many ordinals less than *i* into \dot{C} and therefore forces *i* into \dot{C} , where *i* belongs to S_β . Thus we have shown that the stationarity of S_β is preserved by the forcing $P_\omega * Q_\omega^0 * Q_\omega^1$.

16.-17.Vorlesungen

To complete stage α of the iteration, we code the Q_{α}^{1} -generic Y_{α} by a real via the forcing \mathcal{C}_{α} defined below. This can most easily be done using a ccc almost disjoint coding with finite conditions; but for the sake of future applications we use here perfect trees to code. Note that the ground model $L[G_{\alpha} * H_{\alpha} * Y_{\alpha}]$ is in fact equal to $L[Y_{\alpha}]$ as the even part of Y_{α} codes $G_{\alpha} * H_{\alpha}$.

Inductively define L-countable ordinals μ_i , $i < \omega_1^L$ by: μ_i is the least $\mu > \bigcup \{\mu_j \mid j < i\}$ (this condition is vacuous if *i* equals 0) such that $L_{\mu}[Y_{\alpha} \cap i] \models \mathbb{Z}F^-$ and $L_{\mu} \models \omega$ is the largest cardinal. (There are many μ 's with these properties, for example any μ such that $L_{\mu}[Y_{\alpha} \cap i]$ is an elementary submodel of $L_{\omega_1}[Y_{\alpha} \cap i]$). A real R codes Y_{α} below *i* iff for all $j < i, j \in Y_{\alpha}$ iff $L_{\mu_j}[Y_{\alpha} \cap j, R] \models \mathbb{Z}F^-$. For $T \subseteq 2^{<\omega}$ a perfect tree, let |T| denote the least *i* such that $T \in L_{\mu_i}[Y_{\alpha} \cap i]$. A condition in \mathcal{C}_{α} is a perfect tree T such that R codes Y_{α} below |T| whenever R is a branch through T. (Note that by absoluteness, if T is a condition then R codes Y_{α} below |T| even for branches R through T in the generic extension; in particular this holds for the generic branch.) \mathcal{C}_{α} is ordered by: $T_0 \leq T_1$ iff T_0 is a subtree of T_1 . This is equivalent to $[T_0] \subseteq [T_1]$ where [T] denotes the set of infinite branches through T.

Lemma 42 (a) If T belongs to C_{α} and $|T| \leq i < \omega_1$ then there is a $T^* \leq T$ such that $|T^*| = i$. (b) C_{α} preserves ω_1 .

Proof. (a) By induction on *i*. We may assume that |T| is less than *i*. If i = j+1 then we may also assume by induction that |T| equals *j* and hence that *T* belongs to $\mathcal{A}_j = L_{\mu_j}[Y_\alpha \cap j]$. If *j* belongs to Y_α then we take $T^* \leq T$ to

have the property that R is P_T -generic over \mathcal{A}_j for $R \in [T^*]$, where P_T is the forcing (isomorphic to Cohen forcing) whose conditions are the elements of T, ordered by extension. Note that T^* can be chosen in $\mathcal{A}_i = L_{\mu_i}[Y_\alpha \cap i]$ as \mathcal{A}_j is a countable element of \mathcal{A}_i . Also $L_{\mu_j}[Y_\alpha \cap j, R] \models \mathbb{Z}F^-$ for $R \in [T^*]$, by the P_T -genericity of $R \in [T^*]$. So T^* is a condition and $|T^*| = i$. If jdoes not belong to Y_α then choose a real R_0 coding a well ordering of ω of ordertype μ_j , $R_0 \in \mathcal{A}_i$, and take $T^* \leq T$ to be the tree whose branches are exactly the branches R through T such that for all $n, n \in R_0$ iff R goes right at the 2n-th splitting level of T. Then T^* belongs to \mathcal{A}_i and for $R \in [T^*]$, (R, T) computes R_0 and hence $L_{\mu_j}[Y_\alpha \cap j, R]$ is not a model of $\mathbb{Z}F^-$, since it contains R_0 as an element.

If *i* is a limit ordinal then choose $|T| = i_0 < i_1 < \cdots$ to be an ω -sequence cofinal in *i* which belongs to $\mathcal{A}_i = L_{\mu_i}[Y_\alpha \cap i]$. Define $T_0 \leq_n T_1$ iff $T_0 \leq T_1$ and T_0, T_1 have the same first *n* splitting levels. Now let $T_0 = T$ and for each *n* let $T_{n+1} \in \mathcal{C}_\alpha$ be least in $\mathcal{A}_{i_{n+1}}$ such that $|T_{n+1}| = i_{n+1}$ and $T_{n+1} \leq_n T_n$. Such T_n 's exist by induction. If $T^* = \bigcap_n T_n$ then $T^* \leq T$ belongs to \mathcal{A}_i and satisfies the requirement for belonging to \mathcal{C}_α . So $T^* \leq T, |T^*| = i$, as desired.

(b) We say that $D \subseteq C_{\alpha}$ is *n*-dense iff for all $T \in C_{\alpha}$ there is $T^* \leq_n T$, $T^* \in D$. We show that if for each n, D_n is open and *n*-dense then for all $T \in C_{\alpha}$ there exists $T^* \leq T$ such that T^* belongs to D_n for each n. It follows that C_{α} preserves "cofinality $> \omega$," for if σ is a name for a function from ω into Ord then for each n, $D_n = \{T \in C_{\alpha} \mid \text{For some finite } d, T \Vdash \sigma(n) \in d\}$ is *n*-dense and hence our result implies that the range of σ is covered by a set countable in the ground model.

So suppose T belongs to \mathcal{C}_{α} and D_n is open and n-dense for each n. Let M be a countable elementary submodel of some large $L_{\theta}[Y_{\alpha}]$ containing T and $\langle D_n \mid n \in \omega \rangle$ as elements and let $i = M \cap \omega_1$. Also let $i_0 < i_1 < \cdots$ be an ω -sequence cofinal in i belonging to \mathcal{A}_i . Note that the transitive collapse of M belongs to \mathcal{A}_i as it satisfies $i = \omega_1$ whereas $L_{\mu_i} \vDash i$ is countable. So we can choose $T = T_0 \geq_0 T_1 \geq_1 T_2 \geq_2 \cdots$ in \mathcal{A}_i so that $T_{n+1} \in D_n \cap M$ and $|T_{n+1}| \geq \alpha_{n+1}$. Then $T^* = \bigcap_n T_n$ belongs to each $D_n, T^* \leq T$ and T^* belongs to \mathcal{C}_{α} as T^* belongs to \mathcal{A}_i . \Box

This completes the definition for limit $\alpha < \omega_2$ of $Q_\alpha = Q_\alpha^0 * Q_\alpha^1 * \mathcal{C}_\alpha$. For non-limit $\alpha < \omega_2$, Q_α is Sacks forcing. The desired forcing P is the iteration with countable support of these Q_α 's. Let R_{α} denote the \mathcal{C}_{α} -generic real coding the Q_{α}^{1} -generic Y_{α} . Then $Y_{\alpha} \cap \omega_{1}^{M}$ can be decoded from R_{α} in M for any suitable M containing R_{α} as an element. Therefore the real R_{α} satisfies the following important property.

 $(*)_{R_{\alpha}}$ For any suitable model M containing R_{α} as an element, there is a limit ordinal $\bar{\alpha} < \omega_2^M$ such that $S^M_{\bar{\alpha}+2n}$ is nonstationary for n in $x_{\alpha} * y_{\alpha}$ and $S^M_{\bar{\alpha}+2n+1}$ is nonstationary for n not in $x_{\alpha} * y_{\alpha}$.

We now show that the iteration P preserves the stationarity of the untouched S_{β} 's, i.e., for P-generic G, S_{β} remains stationary except for β of the form $\alpha + 2n$, α limit and n in $x_{\alpha}^{G} * y_{\alpha}^{G}$ or of the form $\alpha + 2n + 1$, α limit and n not in $x_{\alpha}^{G} * y_{\alpha}^{G}$. Then as we have observed earlier, $(*)_{R_{\alpha}}$ for each α implies that in the P-generic extension L[G], the union $<^{G}$ of the partial wellorders $<_{\alpha}^{G}$, $\alpha < \omega_{2}$ limit, has a Σ_{3}^{1} definition:

 $x <^{G} y$ iff there exists a real R such that for all countable, suitable M containing R as an element there is a limit $\alpha < \omega_2^M$ such that $S_{\alpha+2n}^M$ is nonstationary in M for n in x * y and $S_{\alpha+2n+1}^M$ is nonstationary in M for n not in x * y.

Thus to complete the proof of the theorem we only need the following.

Lemma 43 Suppose that G is P-generic. Then for $\beta < \omega_2^L$ not of the form $\alpha + 2n$, α limit, $n \in x_{\alpha}^G * y_{\alpha}^G$ and not of the form $\alpha + 2n + 1$, α limit, $n \notin x_{\alpha}^G * y_{\alpha}^G$, S_{β} is stationary in L[G]. Moreover L and L[G] have the same cardinals.

Proof. Let p be a condition forcing that $\beta < \omega_2^L$ is not of the form $\alpha + 2n$, α limit, $n \in x_{\alpha}^G * y_{\alpha}^G$ and not of the form $\alpha + 2n + 1$, α limit, $n \notin x_{\alpha}^G * y_{\alpha}^G$, and also forcing that \dot{C} is a club in ω_1^L . We want to find an extension q of p and $i < \omega_1^L$ in S_β such that q forces i to belong to \dot{C} .

As before let $(M_i \mid i < \omega_1^L)$ be a continuous chain of countable elementary submodels of some large L_{θ} such that M_0 contains all imaginable parameters, and choose $i < \omega_1^L$ in S_{β} so that *i* does not belong to S_{δ} for any δ in M_i other than β . Build an ω -sequence $p = p_0 \ge p_1 \ge \cdots$ of conditions below *p* such that for any dense set *D* for the forcing *P* in M_i , some p_k forces the generic to intersect $D \cap M_i$. Moreover ensure that for each non-limit α in the union of the supports of the p_k 's, the sequence $p_k(\alpha)$ forms a fusion sequence in Sacks forcing and also that for each limit α in the union of the supports of the p_k 's, if we write $p_k(\alpha) = (p_k(\alpha)^0, p_k(\alpha)^1, p_k(\alpha)^2)$, then the sequence of $p_k(\alpha)^2$'s is forced to form a fusion sequence in the coding forcing C_{α} . In addition, choose the sequence of p_k 's to belong to the least L_{μ} in which \overline{M} , the transitive collapse of M_i , is countable.

We now produce a lower bound q to the sequence of p_k 's, whose support Supp(q) is the union of the supports of the p_k 's, by defining $q(\alpha)$ by induction on α in Supp(q). If α is a non-limit then we take $q(\alpha)$ to simply be the fusion of the $p_k(\alpha)$'s. Suppose then that α is a limit and $q \upharpoonright \alpha$ is already defined as a condition in P_{α} . We want to define $q(\alpha) = (q(\alpha)^0, q(\alpha)^1, q(\alpha)^2)$.

For $q(\alpha)^0$, a name for a sequence of closed sets, we take the union of the closed sets in the $p_k(\alpha)^0$'s and put *i* at the top. This results in a condition because *i* is forced to not belong to any of the $S_{\alpha+2n+1}$, $n \in x_{\alpha} * y_{\alpha}$ or the $S_{\alpha+2n+1}$, $n \notin x_{\alpha} * y_{\alpha}$ (because such $\alpha + 2n$, $\alpha + 2n + 1$ belong to M_i or equal β) and therefore a condition will indeed result if *i* is added at the top. Also note that the closed sets in the $p_k(\alpha)^0$'s have maxima cofinal in *i* by the construction of the p_k 's, so we indeed obtain closed sets when putting *i* at the top.

For $q(\alpha)^1$ we use the same argument that we used earlier for Q_{ω}^1 . We take $q(\alpha)^1$ to be the union of the $p_k(\alpha)^1$'s. Fix a generic $G_{\alpha} * H_{\alpha}$ below $(q \upharpoonright \alpha, q(\alpha)^0)$; we must show that when $q(\alpha)^1$ is interpreted by $G_{\alpha} * H_{\alpha}$ the result is a condition in Q_{α}^1 (as interpreted by $G_{\alpha} * H_{\alpha}$). By the construction of the p_k 's, M_i is not only elementary in L_{θ} but this remains so if we introduce $G_{\alpha} * H_{\alpha}$ as a predicate, i.e., $(M_i[(G_{\alpha} * H_{\alpha}) \cap M_i], (G_{\alpha} * H_{\alpha}) \cap M_i)$ is elementary in $(L_{\theta}[G_{\alpha} * H_{\alpha}], G_{\alpha} * H_{\alpha})$. As $X_{\alpha} \subseteq \omega_1$ codes the generic $G_{\alpha} * H_{\alpha}$ and has a name in M_i , it follows that $X_{\alpha} \cap i$ belongs to the transitive collapse $\overline{M}[\overline{G} * \overline{H}]$ of $M_i[(G_{\alpha} * H_{\alpha}) \cap M_i]$. Moreover, just as X_{α} ensures the nonstationarity of the appropriate $S_{\alpha+n}$'s in any suitable M containing $X_{\alpha} \cap i$ such that $\omega_1^M = i$. This implies that $q(\alpha)^1$, which has $X_{\alpha} \cap i$ as its even part, ensures the same nonstationarity and therefore is a condition in Q_{α}^1 .

Finally, we take $q(\alpha)^2$ to be the fusion of the $p_k(\alpha)^2$'s. To verify that this is a condition in \mathcal{C}_{α} we need to verify that it is forced to belong to the structure $\mathcal{A}_i = L_{\mu_i}[Y_{\alpha} \cap i]$. Recall that the sequence of p_k 's belongs to the least L_{μ} in which \overline{M} , the transitive collapse of M_i , is countable. It follows that $q(\alpha)^2$ is forced to belong to $L_{\mu}[Y_{\alpha} \cap i]$ for this μ and by the definition of μ_i , we have $\mu < \mu_i$. Thus $q(\alpha)^2$ is indeed forced to belong to \mathcal{A}_i , as desired.

The fact that L and L[G] have the same cardinals now follows from ω_1 -preservation and the ω_2 -cc. \Box

18.-20. Vorlesungen

Our next goal is to prove the following.

Theorem 44 Relative to the consistency of a reflecting cardinal, BPFA is consistent with the existence of a Σ_3^1 wellorder of the reals.

BPFA is the bounded forcing axiom for proper forcings. It is equivalent to the statement that any Σ_1 sentence with an element of $H(\omega_2)$ as parameter which is true in a proper forcing extension of the universe is already true. A cardinal κ is *reflecting* iff it is regular and $H(\kappa)$ is Σ_2 elementary in V.

Goldstern and Shelah showed that BPFA is consistent relative to a reflecting cardinal by starting with a reflecting cardinal in L and performing a countable support κ -iteration of proper forcings of size $< \kappa$. At each stage a proper forcing is chosen to witness a new Σ_1 fact with parameter in (the current) $H(\omega_2)$. The fact that κ is reflecting is used to show that these proper forcings can in fact be taken to have size $< \kappa$ and therefore κ will remain reflecting throughout the iteration (until the final stage). As the forcing is proper and κ -cc, it follows that ω_1 is preserved and that BPFA holds in the resulting forcing extension.

We first show:

Theorem 45 Relative to the consistent of a reflecting cardinal, BPFA is consistent with the existence of a wellorder of the reals which is definable over $H(\omega_2)$.

To prove Theorem 45 we start in the same way as Goldstern-Shelah, with a reflecting cardinal κ in L, and perform a countable support iteration of length κ . A possible strategy is to code a wellorder of the reals using stationary subsets of ω_1 , as in our previous proof. However this will destroy the properness of the iteration, so we take another approach, based on controlling which of certain constructible trees T have T-generic branches over L in the final model. **Lemma 46** Assume V = L. Suppose that β is regular and uncountable and consider the tree $T(\beta)$ of sequences through β^+ of length less than β . Suppose that Q is a forcing such that $2^{2^{|Q|}}$ is less than β and G is Q-generic over L. Then:

(a) $T(\beta)$, viewed as a forcing, is proper in L[G].

(b) There is a proper forcing R in L[G] of size β^+ which destroys the properness of $T(\beta)$; in fact, if H is R-generic over L[G] then in any ω_1 -preserving outer model of L[G][H] there is no branch through $T(\beta)$ which is $T(\beta)$ -generic over L.

Proof. (a) It suffices to show that Q is proper in $T(\beta)$ -generic extensions of L. But the forcing $T(\beta)$ is β -closed and therefore does not add subsets of $2^{2^{|Q|}}$; it follows that any witness to the properness of Q in L is still a witness to its properness in any $T(\beta)$ -generic extension of L.

(b) First add β^{++} Cohen reals with a finite support product over L[G], producing $L[G][H_0]$. Then Lévy collapse β^+ to ω_1 with countable conditions, producing $L[G][H_0][H_1]$. As ccc and ω -closed forcings are proper, this is a proper forcing extension of L[G]. Now note that in $L[G][H_0][H_1]$, any β -branch through $T(\beta)$ in fact belongs to $L[G][H_0]$: Otherwise we choose a $L[G][H_0]$ -name \dot{b} for the new branch and build a binary ω -tree U of conditions in the Lévy collapse, each branch of which has a lower bound, such that distinct cofinal branches through U force different interpretations of the name \dot{b} . It follows that in $L[G][H_0], T(\beta)$ has $2^{\aleph_0} = \beta^+$ nodes on a fixed level, which is impossible because GCH holds in L. Thus the tree $T(\beta)$ has at most ω_1 -many branches in $L[G][H_0][H_1]$, none of which contains ordinals cofinal in β^+ and therefore none of which is $T(\beta)$ -generic over L. Also, every node of $T(\beta)$ belongs to a β -branch.

Now we use Baumgartner's general method of "specialising a tree off a small set of branches".

Fact. If T is a tree of height ω_1 with at most \aleph_1 cofinal branches (and every node of T belongs to a cofinal branch of T) then there is a ccc forcing P such that if G is P-generic over V then in any ω_1 -preserving outer model of V[G], all cofinal branches through T belong to V.

Proof sketch. List the branches as $(b_i \mid i < \omega_1)$ and write T as the disjoint union of $b_i(x_i)$, where each x_i is a node on b_i and $b_i(x_i)$ denotes the tail of b_i

starting at x_i . Now add a function f with finite conditions from $\{x_i \mid i < \omega_1\}$ into ω such that if x_i is below x_j in T then $f(x_i)$ is different from $f(x_j)$. Baumgartner shows that this forcing is ccc. Now if b is a cofinal branch through T distinct from the b_i 's in an outer model of V[f], then b must intersect uncountably many of the $b_i(x_i)$'s and therefore contains uncountably many x_i 's. But then the $f(x_i)$'s are distinct for these uncountably many x_i 's, contradicting the fact that f maps into ω . \Box (Fact)

Now use the Fact to create a ccc extension $L[G][H_0][H_1][H_2]$ of $L[G][H_0][H_1]$ to ensure that $T(\beta)$ (viewed as a tree of height ω_1 using a cofinal ω_1 -sequence through $(\beta^+)^L$) will have no new branches in any ω_1 -preserving outer model. As no β -branch through $T(\beta)$ in $L[G][H_0]$ is $T(\beta)$ -generic over L and all cofinal branches through $T(\beta)$ in an ω_1 -preserving outer model of $L[G][H_0][H_1][H_2] = L[G][H]$ belong to $L[G][H_0]$, we are done. \Box

Proof of Theorem 45. Let κ be reflecting in L and let C enumerate the closed unbounded subset of κ consisting of those α such that L_{α} is Σ_2 elementary in L_{κ} . (As κ is inaccessible, C is indeed unbounded in κ .) We perform a proper iteration of length κ with countable support which is nontrivial at stages α in C. The iteration $P_{\alpha} * Q(\alpha)$ up to and including stage α will belong to L_{β} where β is the least element of C greater than α . In particular, P_{α} has size less than κ for each $\alpha < \kappa$ and therefore κ remains reflecting throughout the iteration.

Suppose that α belongs to C; we describe the forcing $Q(\alpha)$, which is a two-step iteration $Q^0(\alpha) * Q^1(\alpha)$.

As P_{α} has size at most $(\alpha^+)^L$, we know that the forcing $T(\beta)$, consisting of $<\beta$ sequences through β^+ , is proper in $L[G_{\alpha}]$ when β is regular and at least $(\alpha^{++++})^L$. In addition there is a forcing $R(\beta)$ of size β^+ which guarantees that there is no $T(\beta)$ -generic over L. Now let α_n be $(\alpha^{+4(n+1)})^L$ for each finite n, and let T(n) denote $T(\alpha_n)$, R(n) denote $R(\alpha_n)$. Then both T(n) and R(n) are proper in any extension of $L[G_{\alpha}]$ obtained by forcing with $U(0) * U(1) * \cdots * U(n-1)$ where each U(i) is either T(i) or R(i).

As in the earlier proofs, let $x_{\alpha} <_{\alpha} y_{\alpha}$ be a pair of reals in $L[G_{\alpha}]$ provided by the bookkeeping function and now take $Q^{0}(\alpha)$ to be the ω -iteration U(0) * $U(1) * \ldots$ where U(n) equals T(n) if n belongs to $x_{\alpha} * y_{\alpha}$ and equals R(n) otherwise. This is a proper forcing and $P_{\alpha} * Q^{0}(\alpha)$ belongs to L_{β} , where β is the least element of C greater than α .

Now we choose a Σ_1 sentence with parameter from $L[G_\alpha]$, provided by the bookkeeping function, and ask if it holds in a proper forcing extension of $L[G_\alpha][H^0]$, where H^0 is our $Q^0(\alpha)$ -generic. If so, then as κ is reflecting in $L[G_\alpha][H^0]$, there is such a proper forcing in $L_\kappa[G_\alpha][H^0]$, and also the witness to the Σ_1 sentence can be assumed to have a name in $L_\kappa[G_\alpha][H^0]$. Let β be the least element of C greater than α ; then L_β is Σ_2 elementary in L_κ and therefore $L_\beta[G_\alpha][H^0]$ is Σ_2 elementary in $L_\kappa[G_\alpha][H^0]$. It follows that we can choose our proper forcing $Q^1(\alpha)$ witnessing the Σ_1 sentence to be an element of $L_\beta[G_\alpha][H^0]$, maintaining the requirement that $P_\alpha * Q(\alpha)$ belong to L_β . This completes the construction.

The iteration is proper, forces κ to be at most ω_2 and is κ -cc. It follows that κ equals ω_2 in the generic extension L[G] and BPFA holds there. The desired wellorder of the reals is defined by:

x < y iff For some α in C, $(x, y) = (x_{\alpha}^{G}, y_{\alpha}^{G})$ iff There exists α in C such that for all n, n belongs to x * y iff there is a $T(\alpha_{n})$ -generic over L in L[G].

This works because at each stage α in C and for each n, we either forced with $T(\alpha_n)$, thereby producing a $T(\alpha_n)$ -generic over (more than) L in L[G], or we forced with $R(\alpha_n)$, which guaranteed that there can be no $T(\alpha_n)$ generic over L without collapsing ω_1 ; as ω_1 is not collapsed, there is in the latter case no $T(\alpha_n)$ -generic over L in L[G].

Finally, note that as C is definable over L_{κ} , it follows that the above gives a wellorder definable (indeed Σ_3) over the $H(\omega_2)$ of L[G]. \Box