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1.-2.Vorlesungen

Introduction

In ZF, the axiom of choice is equivalent to the assertion that for every
in�nite cardinal κ there is a wellorder of the power set of κ. This is equivalent
to saying that H(κ+), the set of sets whose transitive closure has size at most
κ, can be wellordered for every in�nite cardinal κ.

In this course we explore the possibilities for de�nable wellorders in va-
rious set-theoretic contexts. For an in�nite cardinal κ we say that H(κ+)
has a Σn de�nable wellorder i� there is a wellorder of H(κ+) which is Σn

de�nable over (H(κ+),∈) with parameter κ. It has a Σn de�nable wellorder
with parameters if arbitrary parameters from H(κ+) are allowed.

In Gödel's universe L, the situation is ideal:

Theorem 1 Assume V = L. Then for each in�nite cardinal κ, there is a Σ1

de�nable wellorder of H(κ+).

Proof. For x, y in H(κ+) de�ne:

x < y i�
There exists a transitive model M of ZFC− + V = L of size at most κ such
that x, y belongs to M and in M , x <L y

This wellorder is Σ1 over H(κ+) and in fact uses no parameter. 2

Now what happens if we consider de�nable wellorders in the context of
large cardinals? First consider the case κ = ω and make the following obser-
vation:

Proposition 2 H(ω1) has a Σn de�nable wellorder (with/without parame-
ters) i� there is a Σ1

n+1 wellorder of the reals (with/without parameters).

Proof. Consider the case with no parameters and n = 1. (The general case
n ≥ 1 (with or without parameters) follows easily from this special case.) If
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< is a wellorder of H(ω1) de�ned by the Σ1 formula ϕ(x, y) then obtain a
Σ1

n+1 de�nable wellorder of the reals as follows:

R <∗ S i�
There exists a real T which codes a countable transitive set M such that
R,S belong to M and in M , ϕ(R,S)

This is Σ1
2 as to say that T codes a countable transitive set is a Π1

1 property.

Conversely, if < is a wellorder of the reals de�ned by the Σ1
2 formula

ϕ(R,S) then obtain a Σ1 de�nable wellorder of H(ω1) as follows:

x <∗ y i�
There exists a countable transitive model M of ZFC− such that x, y belong
to M and in M , for some reals R,S: R codes x, S codes y and ϕ(R,S)

This works as for any transitive model M of ZFC−, if ϕ(R,S) holds in M
for reals R,S in M , then in fact ϕ(R,S) holds in V . 2

Now we have:

Theorem 3 (Mans�eld) If there is a Σ1
2 wellorder of the reals then every

real is constructible.

Theorem 4 (Martin-Steel) (a) The existence of a Σ1
n+2 wellorder of the reals

is consistent with the existence of n Woodin cardinals. (b) The existence of a
Σ1

n+2 wellorder of the reals with parameters is inconsistent with the existence
of n Woodin cardinals and a measurable cardinal above them.

Now suppose that κ = ω1 and therefore we are considering de�nable
wellorders of H(ω2). We say that a forcing is small if it has size less than the
least inaccessible cardinal. Note that a small forcing preserves large cardinal
properties.

Theorem 5 (F-Asperó) There is a small forcing which forces CH together
with a de�nable wellorder of H(ω2). In particular it is consistent with arbi-
trary large cardinals and CH that there is a de�nable wellorder of H(ω2).

It is not known if �de�nable� can be taken to be �Σ2 de�nable� in the
previous theorem. However Σ1 de�nability is in general not possible:
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Theorem 6 (Woodin) Assume that there is a measurable Woodin cardinal
and CH holds. Then there is no Σ1 de�nable wellorder of H(ω2); in fact there
is no wellorder of the reals which is Σ1 de�nable over H(ω2).

Woodin's result is optimal in the following sense:

Theorem 7 (Avraham-Shelah) There is a small forcing which forces a well-
order of the reals which is Σ1 de�nable over H(ω2). Necessarily, CH fails in
the forcing extension.

Theorem 16 extends to all regular uncountable κ:

Theorem 8 (F-Asperó) There is a class forcing which forces GCH, adds a
de�nable wellorder of H(κ+) for all regular uncountable κ and preserves all
supercompact cardinals as well as a proper class of n-huge cardinals for each
n.

It is not known if �de�nable� can be taken to be �Σ1 de�nable� in the
previous theorem, provided one restricts to regular κ greater than ω1.

For singular κ there is a limitation in the presence of very large cardinals.

Proposition 9 Suppose that there is a nontrivial elementary embedding from
L(H(λ+)) → L(H(λ+)) (�xing λ, with critical point less than λ). Then there
is no de�nable wellorder of H(λ+) with parameters.

The cardinal λ in this proposition has co�nality ω.

Next we consider de�nable wellorders in the context of forcing axioms.
First suppose that κ equals ω.

Theorem 10 (a) (Harrington, F) Martin's axiom is consistent with the exi-
stence of a Σ1

3 wellorder of the reals. (b) (Caicedo-F) Relative to a re�ecting
cardinal, BSPFA is consistent with the existence of a Σ1

3 wellorder of the
reals.

It is not known if BMM is consistent with a projective wellorder of the
reals (i.e., a wellorder of the reals which is Σ1

n with parameters for some
n). Unlike BPFA, the full PFA implies that there is no such wellorder as it
implies PD.

For κ = ω1 a surprising thing happens:

3



Theorem 11 (Moore) BPFA implies that there is a de�nable wellorder of
H(ω2) with parameters.

Concerning wellorders without parameters:

Theorem 12 (Caicedo-F) Relative to a re�ecting cardinal there is a model
of BSPFA with a Σ1 de�nable wellorder of H(ω2).

Theorem 13 (Larson) Relative to enough supercompacts, there is a model
of MM with a de�nable wellorder of H(ω2).

Forcing axioms have no e�ect on de�nable wellorders when κ is greater
than ω1.

One can consider de�nable wellorders in many other contexts. Below is a
sample of open questions.

1. Is it consistent that for all in�nite regular κ, GCH fails at κ and there is
a de�nable wellorder of H(κ+)?
2. Is the tree property at ω2 consistent with a projective wellorder of the
reals?
3. Is it consistent that the nonstationary ideal on ω1 is saturated and there
is a Σ1

4 wellorder of the reals?
4. Is it consistent that GCH fails at a measurable cardinal κ and there is a
de�nable wellorder of H(κ+)?

Now we start to prove some of the results listed earlier.

Theorem 14 (Mans�eld) If there is a Σ1
2 wellorder of the reals then every

real is constructible.

Proof. Assume that there is a nonconstructible real and let < be a Σ1
2 well-

order of the reals, which we take to be Cantor space, the set of all paths
through the binary branching tree 2<ω. For any perfect subtree T of 2<ω,
let [T ] denote the set of in�nite paths through T , a perfect closed subset of
Cantor space. For any order-preserving f : T → 2<ω we let f ∗ denote the
induced continuous function from [T ] to Cantor space.
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Lemma 15 Suppose that T is constructible, f : T → 2<ω is constructible and
f ∗ is injective. Then there is a constructible perfect U ⊆ T and constructible,
order-preserving g : U → 2<ω such that g∗ is injective and g∗(x) < f ∗(x) for
all x ∈ [U ].

Proof of Lemma. As T is a perfect tree, there is a constructible h : T → 2<ω

such that h∗ is a bijection from [T ] onto Cantor space. For s ∈ 2<ω let s̄
be the ��ip� of s, i.e., if s = (s(0), s(1), . . . , s(k)) then s̄ = (1 − s(0), 1 −
s(1), . . . , 1− s(k)). For x in Cantor space, x̄ is de�ned similarly.

Let A be the set of x ∈ [T ] such that f ∗(x) > h∗(x) and B the set of
x ∈ [T ] such that f ∗(x) > h∗(x). We claim that either A or B contains
a nonconstructible element: Let z be the <-least nonconstructible real and
choose x, y ∈ [T ] so that h∗(x) = z, h∗(y) = z̄. As x, y are nonconstructible
and f ∗ is an injective, constructible function, it follows that f ∗(x), f∗(y)
are nonconstructible and therefore ≥ z. As f ∗(x), f∗(y) are distinct, either
f ∗(x) > z or f ∗(y) > z. But then either f ∗(x) > z = h∗(x) or f ∗(y) > z =
h∗(y), as desired.

Without loss of generality, assume that A has a nonconstructible element.
Then A is Σ1

2 with constructible parameters and therefore has a �construc-
tible� perfect subset, i.e., [U ] ⊆ A for some constructible perfect tree U . If
we let g be h � U then we have satis�ed the conclusion of the Lemma. 2

(Lemma)

Now given the Lemma we easily reach a contradiction: Let T0 be 2<ω

and f0 : T0 → T0 the identity. Successively applying the Lemma we get
T0 ⊇ T1 ⊇ · · · and f0 ⊇ f1 ⊇ · · · such that f ∗n(x) > f∗n+1(x) for all x ∈ Tn+1.
Since the [Tn]'s are compact sets, they have a nonempty intersection and if
x belongs to this intersection we get f ∗0 (x) > f ∗1 (x) > · · ·, contradicting the
hypothesis that < is a wellorder. 2

3.Vorlesung

We say that a forcing is small if it has size less than the least inaccessible
cardinal. Note that a small forcing preserves large cardinal properties.

Theorem 16 (F-Asperó) There is a small forcing which forces CH together
with a de�nable wellorder of H(ω2). In particular it is consistent with arbi-
trary large cardinals and CH that there is a de�nable wellorder of H(ω2).
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I'll begin with the following easier result.

Theorem 17 There is a small forcing which forces CH together with a Σ1

wellorder of H(ω2) with parameters.

Proof. First force CH by adding an ω1-Cohen set. Next add an ω2-Cohen
set A. In the resulting model, H(ω2) is Lω2 [A] and CH holds. For technical
reasons, we assume that A ∩ ω1 is empty.

The �nal step is to add B,C ⊆ ω1 which �code� A in the sense that A is
∆1 de�nable over Lω2 [A,B,C] (the �nal H(ω2)) with B,C, ω1 as parameters.
This gives a Σ1 wellorder of Lω2 [A,B,C] with B,C, ω1 as parameters: simply
take the canonical wellorder with parameters A,B,C and eliminate A in
favour of its ∆1 de�nition with parameters B,C, ω1.

The forcing P for adding B is a forcing to code A using �canonical func-
tions�. For each uncountable β < ω2 choose a bijection fβ : ω1 → β. The set
B codes A in the following way: β belongs to A i� ot(fβ[γ]) belongs to B for
a CUB set of γ < ω1, where �ot� stands for �ordertype�. Note that if f

0
β , f

1
β

are any two bijections from ω1 onto β then the set of γ < ω1 where ot(f
0
β [γ])

equals ot(f 1
β [γ]) contains a CUB set. Thus this coding is independent of the

choice of the functions fβ, ω1 ≤ β < ω2.

A condition in P is a triple (p, p∗, p∗∗) where:

p is an ω1-Cohen condition, i.e., a function from a countable ordinal |p| to 2.
p∗ is a countable subset of ω2.
p∗∗ is a closed, bounded subset of ω1.
For β in p∗ and γ in p∗∗, ot(fβ[γ]) is at least γ and less than |p|.

We say that (q, q∗, q∗∗) extends (p, p∗, p∗∗) i�:

q end-extends p, q∗ contains p∗, q∗∗ end-extends p∗∗.
All elements of q∗∗ \ p∗∗ are at least |p|.
For γ in q∗∗ \ p∗∗ and β in p∗, q(ot(fβ[γ])) equals A(β).

Lemma 18 (a) For any (p, p∗, p∗∗), α ∈ [ω1, ω2) and δ < ω1 there is an
extension (q, q∗, q∗∗) of (p, p∗, p∗∗) such that α belongs to q∗ and max(q∗∗) is
greater than δ.
(b) P is ω2-cc.
(c) P is ω-distributive.
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Proof. (a) Choose γ greater than |p|, δ so that for distinct β0, β1 in p
∗ ∪ {α},

ot(fβ0 [γ]), ot(fβ1 [γ]) are distinct. This is possible as the set of such γ contains
a CUB set. Now set q∗ = p∗ ∪ {α}, extend p to q so that q(ot(fβ[γ]) equals
A(β) for β in p∗ ∪ {α} and set q∗∗ = p∗∗ ∪ {γ}.
(b) Note that if p = q and p∗∗ = q∗∗ then (p, p∗, p∗∗) and (q, q∗, q∗∗) are com-
patible, as they are both extended by (p, p∗ ∪ q∗, p∗∗). Therefore CH gives us
the ω2-cc.

4.-5.Vorlesungen

We �nish the proof of:

Theorem 19 There is a small forcing which forces CH together with a Σ1

wellorder of H(ω2) with parameters.

Lemma 20 (a) For any (p, p∗, p∗∗), α ∈ [ω1, ω2) and δ < ω1 there is an
extension (q, q∗, q∗∗) of (p, p∗, p∗∗) such that α belongs to q∗ and max(q∗∗) is
greater than δ.
(b) P is ω2-cc.
(c) P is ω-distributive.

Proof of (c). Suppose that (p0, p
∗
0, p

∗∗
0 ) ≥ (p1, p

∗
1, p

∗∗
1 ) · · · is a descending ω-

sequence of conditions. To obtain a lower bound (q, q∗, q∗∗) we start by taking
q to be the union of the pn's, q

∗ to be the union of the p∗n's and q∗∗ to be
the union of the p∗∗n together with the supremum γ of the max p∗∗n 's. Then q
must be lengthened so that for β in q∗, q(ot(fβ[γ])) is de�ned and equal to
A(β). The problem with this lengthening is that ot(fβ[γ]) may be the same
for two distinct β's in q∗ at which A di�ers. To solve this problem, it su�ces
to know that for each n:

(∗) max(p∗∗n+1) belongs to a CUB set of δ's on which ot(fβ[δ]) is distinct for
distinct β in p∗n.

Then ot(fβ[γ]) will be distinct for any two distinct β in q∗, enabling us to
lengthen q as desired.

Finally, note that if D0, D1, . . . are open dense sets then we can build an
ω-sequence (p0, p

∗
0, p

∗∗
0 ) ≥ (p1, p

∗
1, p

∗∗
1 ) · · · below any given condition so that

(pn+1, p
∗
n+1, p

∗∗
n+1) belongs to Dn and obeys (∗). 2
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Suppose that G is P -generic and let B be the union of the p for (p, p∗, p∗∗)
in G, C the union of the p∗∗ for (p, p∗, p∗∗) in G. Then for any β ∈ [ω1, ω2)
we have:

(∗∗) β belongs (does not belong) to A i� ot(fβ[γ]) belongs (does not belong)
to B for su�ciently large γ in C.

In fact we can write:

(∗ ∗ ∗) β belongs (does not belong) to A i� for some bijection f : ω1 → β,
ot(f [γ]) belongs (does not belong) to B for su�ciently large γ in C.

This is because if β does not belong to A, (∗∗) implies that ot(fβ[γ]) does
not belong to B for su�ciently large γ in C and as ot(fβ[γ]) equals ot(f [γ])
for unboundedly many γ in C, it follows that ot(f [γ]) does not belong to B
for unboundedly many γ in C.

This shows that in V [G], the predicate A is ∆1 over H(ω2) in parameters
B,C and ω1. As there is a wellorder of H(ω2) = Lω2 [A,B,C] which is Σ1 with
parameters A,B,C it follows that there is one which is Σ1 with parameters
A,B, ω1. 2 (Theorem 27)

Theorem 21 There is a small forcing which forces CH together with a de-
�nable wellorder of H(ω2).

We �rst prove something easier (although certainly not easy!):

Theorem 22 Suppose that A is a subset of ω1. Then there is a small forcing
which forces CH, preserves ω1 and forces A to be de�nable over H(ω2).

The proof uses a �weak club-guessing� property (due to Asperó, inspired
by work of Avraham-Shelah). As we will need these properties later when
studying H(κ+) for arbitrary regular uncountable κ, we present the relevant
de�nitions in a general setting.

A club-sequence with length λ and domain D is a sequence ~C = 〈Cδ | δ <
λ〉, where λ is an ordinal, such that each Cδ is a subset of δ for each δ and D

consists of those δ such that Cδ is a club in δ. We write D as dom(~C). The

range of ~C is the union of the Cδ, δ ∈ dom(~C).
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~C is a coherent club sequence i� there is a club-sequence ~D with dom( ~D) ⊇
dom(~C) such that ~D, ~C agree on dom(~C) and whenever δ belongs to dom( ~D)

and γ is a limit point of Dδ, γ also belongs to dom( ~D) and Dγ = Dδ ∩ γ. In
this case we say that ~D witnesses the coherence of ~C.

Suppose that ~C is a club sequence and there exists a �xed τ such that
ot(Cδ) = τ for each δ in dom(~C); then we say that τ is the height of ~C.

Suppose that λ has uncountable co�nality and ~C is a club sequence of
length λ. We say that ~C is guessing i� for every club C in λ there is some δ
in C ∩dom(~C) such that Cδ is almost contained in C, i.e., Cδ \C is bounded

in δ. We say that ~C is strongly guessing i� for every club C in λ there is a
club D in λ such that Cδ is almost contained in C for all δ in D ∩ dom(~C).

If dom(~C) is stationary and ~C is strongly guessing then it is also guessing.

Now we weaken the concepts of guessing and strongly guessing. If X, Y
are sets of ordinals then we de�ne X ∩∗ Y to consist of all δ in X ∩ Y such
that δ is not a limit point of X. (This operation is not symmetric.) Then we

say that ~C is type-guessing i� for every club C in λ there is δ ∈ C ∩ dom(~C)

such that ot(Cδ ∩∗ C) = ot(Cδ). And ~C is strongly type-guessing i� for every
club C in λ there is a club D in λ such that ot(Cδ ∩∗ C) = ot(Cδ) for every

δ ∈ D ∩ dom(~C).

An ordinal τ is perfect i� ωτ = τ .

De�nition 23 For κ uncountable and regular, Iκ denotes the set of perfect
ordinals τ < κ of countable co�nality for which there is a coherent strongly
type-guessing club sequence ~C of length κ with stationary domain and of
height τ .

To prove Theorem 28 we use:

Lemma 24 (Main Claim) Assume GCH at ℵ0,ℵ1 and suppose that B ⊆
ω1 is a set of perfect ordinals. Then there is an ω-strategically closed, ℵ2-cc
forcing P which forces that Iω1 equals B.

The lemma implies that any subset of ω1 can be made Σ2 de�nable over
H(ω2) by a small forcing, a strong version of Theorem 28.

6.-7.Vorlesungen
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Lemma 25 (Main Claim) Assume GCH at ℵ0,ℵ1 and suppose that B ⊆
ω1 is an unbounded set of perfect ordinals. Then there is an ω-strategically
closed, ℵ2-cc forcing P which forces that Iω1 equals B.

The lemma implies that any subset of ω1 can be made Σ2 de�nable over
H(ω2) by a small forcing.

To prove the Main Claim we begin with the following lemma.

Lemma 26 Under the assumptions of the Main Claim, write B in increasing
order as (τν)ν<ω1. Then there is an ω-closed forcing P ∗ of size ω1 which forces

that there are sequences (~Cν)ν<ω1, ( ~Dν)ν<ω1, such that (dom(~Cν))ν<ω1 forms
a sequence of pairwise disjoint stationary subsets of ω1 and for all ν < ω1:

(a) ~Cν has height τν.

(b) ~Dν witnesses the coherence of ~Cν.

(c) The range of ~Cν is disjoint from the domain of ~Cν′
for all ν ′ < ω1.

(d) Successor elements of ~Cν
δ are limit ordinals for each δ in dom(~Cν).

(e) ~Cν is a guessing club-sequence.

Proof. P ∗ consists of all pairs

p = ((~Cp,ν | ν < λp), ( ~D
p,ν | ν < λp))

(for some ordinal λp < ω1) such that for each ν < λp:

(1) ~Cp,ν and ~Dp,ν are club sequences of length λp + 1.

(2) ~Cp,ν has height τν .

(3) The range of ~Cp,ν is disjoint from the domain of ~Cp,ν′
for each ν ′ < λp.

(4) ~Dp,ν witnesses the coherence of ~Cp,ν .

(5) Successor elements of ~Cp,ν
δ are limit ordinals for each δ in dom(~Cp,ν).

p1 extends p0 i� λp0 ≤ λp1 and for each ν < λp0 , ~C
p1,ν extends ~Cp0,ν and

~Dp1,ν extends ~Dp0,ν .

Clearly P ∗ has size ω1, as we have assumed CH. To see that P ∗ is ω-closed,
reason as follows. Suppose that p0 ≥ p1 ≥ · · · is a descending ω-sequence of
conditions and we want to show that this sequence has a lower bound. We may
assume that this sequence is strictly decreasing, and therefore the supremum
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λ of the λpn 's does not belong to the domain of any club-sequence mentioned
by any of the pn's. But now we can obtain a lower bound p by choosing the
club-sequences ~Cp,ν and ~Dp,ν , ν < λ, of length λ+1 to not include λ in their
domain.

Let G be P ∗-generic and for ν < ω1 let ~Cν , ~Dν respectively denote the
union of the ~Cp,ν for p in G, the union of the ~Dp,ν for p in G.

We claim that each ~Cν is a guessing club-sequence in V [G] for each ν < ω1.
Let Ċ be a P ∗-name for a club in ω1 and let p be a condition in P ∗. Let
(Ni)i≤τν be a continuous chain of countable elementary substructures of some
large (H(θ),∈,∆) (where ∆ is a wellorder of H(θ)) such that N0 contains
ν, Ċ and p and for each i < τν , (Nj)j≤i belongs to Ni+1. For i ≤ τν let δi be
Ni ∩ ω1 and let (εin)n<ω be the ∆-least ω-sequence co�nal in δi.

Now choose (qn)n<ω to form a descending sequence of conditions in N0

extending p such that for all n, λqn is greater than ε0n and qn forces some
ordinal greater than ε0n into Ċ. Let p0 be the lower bound to the qn's obtained

by setting λp0 = δ0 and ~Cp0,ν′

δ0
= ~Dp0,ν′

δ0
= ∅ for all ν ′ < δ0. Then form p1 ≤ p0

in a similar way, with N0, p, (ε
0
n)n<ω and δ0 replaced by N1, p0, (ε

1
n)n<ω and δ1,

respectively. Continue this for τν steps to build the τν-sequence p0 ≥ p1 ≥ · · ·,
choosing lower bounds pi at limit stages i ≤ τν to obey the following:

~Dpi,ν
δi

= {δj | j < i}
~C

pτν ,ν
δτν

= {δj | j < τν}.

Then q = pτν is indeed a condition extending p which forces that ~Cν
δτν

is a

subset of Ċ. 2

Now to prove the Main Claim we perform an iteration with countable
support (Pξ | ξ < ω2) using names (Q̇ξ | ξ < ω2). The desired forcing that
satis�es the Main Claim is Pω2 , the direct limit of the Pξ, ξ < ω2.

If ~C is a (type-) guessing club sequence of length ω1 and C ⊆ ω1 is a

club, then P (~C,C) is the natural forcing for adding a club D ⊆ ω1 such that

ot(Cδ ∩∗ C) = ot(Cδ) for δ in D ∩ dom(~C). A condition in this forcing a
closed, bounded subset d of ω1 such that ot(Cδ ∩∗ C) = ot(Cδ) for all δ in

d ∩ dom(~C).
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At the �rst stage of our iteration we force with the P ∗ of Lemma 26. Let
(~Cν)ν<ω1 , ( ~D

ν)ν<ω1 be the club sequences added by this forcing. Let ~C denote

the amalgamtion of the ~Cν , i.e., the club sequence with domain
⋃

ν dom(~Cν)

whose restriction to each dom(~Cν) is ~Cν .

At each stage ξ > 0 of the iteration we pick some Pξ-name Ċξ for a club in

ω1 and we let Q̇ξ be a Pξ-name for the forcing P (~C, Ċξ). As we have assumed
CH, each Pξ, ξ < ω2 has a dense subset of size ω1 and the entire iteration is
ω2-cc. It follows that any club C ⊆ ω1 added by P has a Pξ-name for some
ξ < ω2. Moreover as we have assumed 2ω1 = ω2, we can use a bookkeeping
function to choose our names Ċξ so that every club C ⊆ ω1 added by P is

named by some Ċξ and therefore we force with P (~C,C) at some stage of the
iteration.

8.-9.Vorlesungen

The ω2-iteration P is ω-strategically closed: Recall that the �rst compo-
nent of P is the forcing P ∗. Suppose that p0 ≥ p1 ≥ · · · is an ω-sequence in
P such that for some λ, the sup of the lengths of the pn's on each component
in the union of the supports of the pn's equals λ. Then we can obtain a lower
bound q by taking the �rst component of q to have length λ + 1 while assi-
gning the empty set at λ for all of its club-sequences, and including λ into the
clubs at all later components of q. The ω-strategic closure of P now follows
from the fact that it is easy to form a strategy which generates sequences of
pn's as above.

It is also easy to verify that the sets added by the forcings P (~C,C) are
unbounded and therefore clubs; this is simply because the complement of the
domain of ~C is stationary. It follows that P forces each ~Cν to be strongly
type-guessing, as for each club C ⊆ ω1 in the extension, P explicitly adds
a club D witnessing strong type-guessing for each ~Cν and C. Of course this
is vacuous without knowing that the domain of ~Cν is stationary in the �nal
model. (The positive stages of the iteration are not proper.) An argument as
in the proof that P ∗ produces club-sequences with stationary domain veri�es
this last fact, and in fact shows that each ~Cν is a guessing club-sequence.

Our main and �nal task is now to show that if τ is perfect but not one
of the desired heights, i.e., does not equal τν for some ν < ω1, then in the P -
generic extension there is no strongly type-guessing club-sequence of height τ
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with stationary domain. Let G be P -generic and ~E a club-sequence of length
ω1 with stationary domain of perfect height τ < ω1. Choose 0 < ξ < ω2 so
that ~E belongs to V [G0] where G0 = G∩Pξ. We work in V [G0]. Let D be the
club added at stage ξ of the iteration (which witnesses strong type-guessing

for the club-sequence ~C with respect to the club Cξ) and let Ḋ be a P/G0-
name for D. Our goal is to show that if τ is not of the form τη, η < ω1, then
any condition p in P/G0 forcing that Ė is a name for a club in ω1 can be

extended to a condition q forcing that for some δ in Ė∩dom( ~E), ot(Eδ∩∗ Ḋ)
is less than τ , the ordertype of Eδ.

Let θ be large and let (Ni)i<ω1 be a continuous chain of elementary sub-
models of H(θ) such that N0 contains all relevant parameters (such as p,
τ , Ḋ and Ė). Set δi = Ni ∩ ω1 for each i < ω1 and let D0 be the club
consisting of the δi's. In the �nal model V [G], the set {δ < ω1 | δ ∈
dom(~C) → ot(Cδ ∩∗ D0) = ot(Cδ)} contains a club. As dom( ~E) is statio-

nary in the �nal model we can choose i∗ = δi∗ < ω1 in dom( ~E) such that

i∗ ∈ dom(~C) → ot(Ci∗ ∩∗ D0) = ot(Ci∗).

We show that some extension q of p of length i∗ (i.e., with all names of
clubs assigned by q on the components in its support forced to have length i∗)
forces that i∗ belongs to Ė and that ot(Ei∗∩∗ Ḋ) is less than τ , the ordertype
of Ei∗ . There are three cases.

Case 1. i∗ does not belong to dom(~C).

In this case we �nd an extension q of p which forces Ḋ to be disjoint from
Ei∗ above δ0.

As i∗ is greater than τ , it follows that we can choose an ω-sequence
i0 < i1 < · · · co�nal in i∗ such that Ei∗ ∩ δin is bounded in δin for each n.
Now build an ω-sequence p = p0 ≥ p1 ≥ · · · of conditions such that each pn+1

belongs to Nin+1 , forces some ordinal greater than δin into Ė and forces that

the least ordinal in Ḋ∩ [δin , δin+1) is greater than max(Ei∗ ∩ δin+1). Moreover
we can assume that all of the components of pn+1 in its support are forced
to have length at least δin . Then as i∗ does not belong to the domain of ~C
the sequence of pn's has a greatest lower bound q which forces that Ei∗ ∩ Ḋ
is bounded in i∗; in particular q forces that ot(Ei∗ ∩∗ Ḋ) is less than τ , as
desired.
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Case 2. i∗ belongs to dom(~C) and τ0 = ot(Ci∗) is less than τ = ot(Ei∗).

In this case we �nd an extension q of p which forces Ei∗∩Ḋ to be included
in Ci∗ above δ0.

Denote ot(Ci∗) by τ0. The desired q will have length i∗ and be obtained
as the greatest lower bound of a τ0-sequence of conditions of shorter length.
To guarantee that this lower bound q exists we must ensure that the ordinal
i∗ can be placed into all of the clubs Ḋη for η in the support of q. As i∗ now

belongs to the domain of ~C, this demands that ot(Ci∗ ∩∗ Ċη) be maximised
(i.e., equal to τ0) for each such η. In particular, the club Ḋ = Ḋξ is of the
form Ċη for some η in the support of q and therefore we must ensure that
ot(Ci∗ ∩∗ Ḋ) is maximised, while at the same time ensuring that ot(Ei∗ ∩∗ Ḋ)
is less than ot(Ei∗) = τ . In the present case the latter goal can be achieved
by simply arranging that Ei∗ ∩ Ḋ be contained in Ci∗ above δ0, as Ci∗ has
ordertype τ0 which by assumption is indeed less than τ .

Let (δij)j<τ0 increasingly enumerate D0 ∩ Ci∗ . We inductively build the
pj, j < τ0, to meet the following conditions:

1. p0 extends p and pj belongs to Nij+1 for each j.
2. For limit j, pj is the greatest lower bound of (pk)k<j.
3. Each pj+1 is the greatest lower bound of an ω-sequence of conditions in
Nij+1 and forces that δij+1

belongs to Ė.

4. For each η in the support of pj, pj+1 forces that δij+1
belongs to Ċη (where

Ċη is the club considered by the iteration at stage η).
5. Each pj+1 forces that Ei∗ ∩ Ḋ ∩ (δij , δij+1) is empty.

As in Case 1, lower bounds are easily obtained at limit stages j less than
τ0, as Ci∗ is disjoint from the domain of ~C and therefore δij does not belong

to the domain of ~C. Condition 4 implies that the pj's have a greatest lower
bound q at the �nal stage τ0, as it implies that for each η in the union of the
supports of the pj's, a �nal segment of Ci∗ ∩∗D0 is forced inside Ċη, allowing

us to put i∗ into Ḋη, the club witnessing strong type-guessing for ~C relative
to the club Ċη. Condition 3 implies that i∗ is forced into Ė. And by condition
5, q forces that Ei∗ ∩ Ḋ above δi0 is contained in D0 ∩ Ci∗ and therefore has
ordertype at most τ0 < τ .
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The conditions 1, 2 and the �rst part of 3 are easily arranged; to ful�ll
the remaining conditions, use the fact that τ = ot(Ei∗) is less than δij+1

in
order to meet the relevant dense sets in Nij+1

between adjacent elements of
Ei∗ .

Case 3. i∗ belongs to dom(~C) and τ = ot(Ei∗) is less than τ0 = ot(Ci∗).

In this case we �nd an extension q of p which forces Ḋ to be disjoint from
Ei∗ above δ0.

For any γ in Ei∗ let γ∗ denote the least element of Ei∗ greater than γ.
Also let (tk | k ∈ ω) be an increasing sequence co�nal in τ0. As τ is less
than τ0, for each k there are unboundedly many γk in Ei∗ such that the
ordertype of Ci∗ ∩∗ D0 on the interval (γk, γ

∗
k) is greater than tk. Otherwise

τ0 = ot(Ci∗∩∗D0) is bounded by tk·τ for some k, contradicting the assumption
that τ0 is a perfect ordinal greater than τ . Choose an increasing sequence of
such γk's, and for each k let Dk

0 consist of the �rst tk +1 elements of Ci∗ ∩D0

in the interval (γk, γ
∗
k).

Let (δij)j<τ0 increasingly enumerate the union of the Dk
0 's, a club in i∗.

We inductively build the pj, j < τ0, to meet the following conditions:

1. p0 extends p and pj belongs to Nij+1 for each j.
2. For limit j, pj is the greatest lower bound of (pk)k<j.
3. Each pj+1 is the greatest lower bound of an ω-sequence of conditions in
Nij+1 and forces that δij+1

belongs to Ė.

4. For each η in the support of pj, pj+1 forces that δij+1
belongs to Ċη (where

Ċη is the club considered by the iteration at stage η).
5. Each pj+1 forces that Ei∗ ∩ Ḋ ∩ (δij , δij+1) is empty.

As in Case 2, lower bounds exist at limit stages and i∗ is forced by the
�nal q into Ė. By condition 5, q forces that Ei∗ is disjoint from Ḋ above the
length of p0, and therefore has ordertype less than τ , as desired. Conditions
1-4 are easily arranged; so is condition 5 as each Dk

0 is a closed set lying
entirely in the open interval (γk, γ

∗
k).

This completes the proof that there are no unintended heights of strongly
type-guessing club sequences in the P -generic extension. 2

10.-11.Vorlesungen
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Recall that we have:

Theorem 27 There is a small forcing which forces CH together with a Σ1

wellorder of H(ω2) with parameters.

Theorem 28 Suppose that A is a subset of ω1. Then there is a small forcing
which forces CH, preserves ω1 and forces A to be de�nable over H(ω2).

We now want to combine these results to get:

Theorem 29 There is a small forcing which forces CH together with a de-
�nable wellorder of H(ω2).

Roughly speaking, in Theorem 27 we make a wellorder of H(ω2) de�nable
by coding it using �canonical function coding� by a subset of ω1, and in Theo-
rem 28 we make a subset of ω1 de�nable by coding it using �club-guessing�
by a subset of H(ω2). Now we want to combine these methods to add B ⊆ ω1

and G ⊆ H(ω2) so that:

1. B codes G using canonical function coding.
2. G codes B using club-guessing.

If we �rst add B and then add G then we have not achieved the desired result,
as we will only get a de�nable wellorder of the H(ω2) of the ground model,
not of the extension. Note that we can't do this with a standard ω2-iteration
with the ω2-cc, as then any subset of ω1 will have appeared by some initial
stage of the iteration, which makes it impossible for it to decode the generic
for the entire iteration.

We need to add B and G �simultaneously�. There is feedback: the forcing
to add G depends on B and the forcing to add B depends on G. A condition
in the desired forcing speci�es partial information about B as well as partial
information about G; this information is fully determined and does not de-
pend on the ultimate choice of generic. The resulting generic produces both
B and G with the desired feedback: B codes G and G codes B. The forcing
has features of an iteration as G is added in ω2 stages, however also has of a
product, as conditions are completely determined in the ground model.

We now review the earlier terminology regarding canonical function co-
ding and club guessing that will be needed for the construction.
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For uncountable γ < ω2, a canonical function for γ is a function fγ : ω1 →
ω1 such that for some surjection π : ω1 → γ, fγ(ν) = ot(π[ν]) for all ν < ω1.
Any two canonical functions for γ agree on a club.

A club-sequence of length λ with domain D is a sequence ~C = (Cδ | δ < λ)

where each Cδ is a subset of δ, λ ≤ ω1 and D = dom(~C) is the set of limit

δ < λ such that Cδ is a club in δ. The range of ~C is the union of the
Cδ, δ ∈ dom(~C). We say that ~C is coherent i� there is a club-sequence ~D

extending ~C to a possibly larger domain such that δ ∈ dom( ~D), γ a limit

point of Dδ implies γ ∈ dom( ~D) and Dγ = Dδ ∩ γ. We say that ~D witnesses

the coherence of ~C.

The height of a club guessing sequence ~C, if de�ned, is the unique τ such
that ot(Cδ) = τ for all δ in dom(~C). An ordinal τ is perfect i� ωτ = τ . If
X is a set of ordinals then we let X+ denote the set of elements of X which
are not limit points of X. A club sequence ~C of length ω1 with stationary
domain is strongly type guessing i� for every club C in ω1 there is a club D
in ω1 such that ot(C+

δ ∩ C) = ot(Cδ) for every δ ∈ dom(~C) ∩D.

The desired forcing P

Assume the GCH at ℵ0 and ℵ1 and �x a bookkeeping function F , i.e., a
function F : ω2 → H(ω2) such that for each a ∈ H(ω2), the set of α such
that F (α) = a is unbounded in ω2.

Choose canonical functions (fγ | ω1 ≤ γ < ω2). We assume that fγ(δ) ≥ δ
for all γ and all limit δ < ω1. Also, for distinct γ0, γ1 let Eγ0,γ1 be a club in
ω1 of limit ordinals on which fγ0 and fγ1 di�er.

Let A be a subset of ω2 such that Lω2 [A] = H(ω2) and the sequences
(fγ | γ < ω2) and (Eγ0,γ1 | γ0, γ1 < ω2) are de�nable over (H(ω2),∈, A).

Let (ηξ)ξ<ω1 increasingly enumerate the countable perfect ordinals and let
C be the set of nonzero α ≤ ω2 such that ω1 · α′ < α for all α′ < α.

We will de�ne an increasing sequence of partial orders (Pα,≤α), α ∈ C.
The desired forcing P will be (Pω2 ,≤ω2).
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Given α ∈ C and assuming that Pα′ has been de�ned for α′ < α in C,
conditions in Pα are of the form:

p = (b, C, (cγ | γ ∈ a), ((~Ci, ~Di) | i < β), (Dγ | γ ∈ a))

satisfying the following conditions, where for any ordinal α, p � α denotes
(b, C, (cγ | γ ∈ a ∩ α), ((~Ci, ~Di) | i < β), (Dγ | γ ∈ a ∩ α)):

1. a is a countable subset of
⋃

1≤ρ<α[ω1 · ρ, ω1 · ρ + β) and γ′ belongs to a
whenever γ′ ≥ ω1 and γ ∈ a is of the form ω1 · γ′ + ζ for some countable ζ.
2. C is a club in ω1 contained in

⋂
{Eγ,γ′ | γ, γ′ ∈ a, γ 6= γ′}.

3. β is a countable ordinal closed under Gödel pairing and β belongs to C.
4. b is a subset of β of ordertype β.
5. For γ ∈ a, cγ is a closed subset of β and fγ(ν) < β for ν in cγ.

6. Each ~Ci and ~Di (for i < β) is a club-sequence of length β + 1, ~Ci has a

well-de�ned perfect height and ~Di witnesses the coherence of ~Ci.
7. b is the set of ξ < β such that some ~Ci, i < β, has height ηξ. Also, the

domain of each ~Di is contained in [i + 1, ω1) and for each i, j, dom( ~Di) ∩
dom( ~Dj) = dom( ~Di) ∩ range( ~Dj) = range( ~Di) ∩ range( ~Dj) = ∅.
8. For γ ∈ a, Dγ is a closed subset of β + 1.
9. Suppose that γ belongs to a and there is a least α′ in γ∩C such that F (γ)
is a Pα′-name for a club in ω1. Then for each ν in β ∩ (max(Dγ) + 1), p � α′

decides (in the forcing Pα′) whether or not ν belongs to F (γ). Let Cγ be the
closure of the set of ν ∈ β ∩ (max(Dγ) + 1) such that p � α′ forces ν ∈ F (γ).

Then ot((Ci
δ)

+ ∩ Cγ) = height(~Ci) for each i < β and δ ∈ Dγ ∩ dom(~Ci).

Clause 9 re�ects our desire to code using strong type guessing. The ca-
nonical function coding is re�ected in our notion of extension and makes use
of components C and (cγ | γ ∈ a) above. First, for any condition p in Pα

associate in a canonical way a set A(p) contained in
⋃

1≤ρ<α[ω1 · ρ, ω1 · ρ+β)
which codes A ∩

⋃
ρ<α[ω1 · ρ, ω1 · ρ + β) on

⋃
1≤ρ<α[ω1 · ρ, ω1 · ρ + β) as well

as the components of p on
⋃

1≤ρ∈apα[ω1 · ρ, ω1 · ρ + β). Then we say that
the condition q extends p, q ≤α p, i� the following conditions hold (where if

q = (b, C, (cγ | γ ∈ a), ((~Ci, ~Di) | i < β), (Dγ | γ ∈ a)) is a condition then
bq, Cq, cqγ, a

q . . . denote b, C, cγ, a . . .):

a. Cq ⊆ Cp.
b. βp ≤ βq, ap ⊆ aq and bp = bq ∩ βp.
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c. For γ ∈ ap, cpγ = cqγ ∩ βp, cqγ \ cpγ ⊆ Cp and Dp
γ = Dq

γ ∩ (βp + 1).

d. ~Ci,p = ~Ci,1 � βp + 1 and ~Di,p = ~Di,1 � βp + 1 for all i < βp.
e. For γ ∈ ap and ν ∈ c1γ \ cpγ, fγ(ν) ∈ bq i� γ ∈ A(p).

The relation ≤α is transitive, using the fact that if q ≤α p and γ belongs
to ap then γ belongs to A(p) i� γ belongs to A(q). (The latter is veri�ed
using clause 1 in the de�nition of condition.)

The Pα's form an increasing sequence of partial orders and P = Pω2 has
size ω2. The following are straightforward:

Lemma 30 For α′ ≤ α in C, p � α′ belongs to Pα′ for each p in Pα; further-
more, Pα′ is a complete suborder of Pα.

Lemma 31 P has the ω2-cc.

Lemma 32 P is ω1-closed.

If G is P -generic then bG =
⋃
{bp | p ∈ G} codes G: Since the canonical

function coding is built into the de�nition of the forcing, we have that bG

codes A(G) =
⋃
{A(p) | p ∈ G}; from the latter we can de�ne the ~Ci(G),

~Di(G), Cγ(G), Dγ(G) (the unions of the corresponding objects associated to
p ∈ G), and this is enough to de�ne G.

The main lemma states that in V [G], bG is de�nable over (H(ω2),∈),
as the set of ξ such that there is a strong type guessing club-sequence with
stationary domain of height ηξ. The argument is similar to the one used by
Asperó to make any given subset of ω1 de�nable over H(ω2) in a forcing
extension using strong type guessing. 2

The above gives a Σ4 de�nable wellorder of H(ω2) in a small forcing
extension. It is not known if this is optimal. However Woodin showed that
if there is a measurable Woodin cardinal and CH holds then there is no Σ1

de�nable wellorder of H(ω2) with parameter ω1; in fact there is no wellorder
of the reals which is Σ1 de�nable over H(ω2) with parameter ω1.a

De�nable wellorders of H(κ+), κ large

Theorem 29 extends to all regular uncountable κ:
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Theorem 33 (F-Asperó) There is a class forcing which forces GCH, adds a
de�nable wellorder of H(κ+) for all regular uncountable κ and preserves all
supercompact cardinals as well as a proper class of n-huge cardinals for each
n.

For singular κ there is a limitation in the presence of very large cardinals.

Proposition 34 Suppose that there is an elementary embedding from L(H(λ+))
to itself �xing λ with critical point less than λ. Then there is no de�nable
wellorder of H(λ+) with parameters.

Proof of Proposition. Kunen's proof that there is no nontrivial elementary
embedding j : V → V goes as follows: Let κ be the critical point of j and
λ the supreumum of the jn(κ)'s for n ∈ ω. Then λ is the �rst �xed point of
j greater than κ. Let F be an ω-Jonsson function for λ, i.e., a function F
from [λ]ω to λ such that whenever X ⊆ λ has size λ then the range of F on
[X]ω is all of λ. It is not di�cult to construct such a function F using the
axiom of choice. Then j(F ) has the same property and j[λ] = X has size λ.
It follows that κ is of the form j(F )(s) for some s ∈ [X]ω, which is impossible
as s belongs to the range of j and κ does not.

Now suppose that j were an elementary embedding from L(H(λ+)) to
itself �xing λ with critical point κ less than λ. Then λ is at least the supremum
λ̄ of the jn(κ), n ∈ ω. Kunen's argument shows that there cannot be an ω-
Jonsson function for λ̄ in L(H(λ+)). Thus λ must equal λ̄ and there is no
ω-Jonsson function for λ in L(H(λ+)). In particular, the axiom of choice
must fail in L(H(λ+)), which implies that there is no de�nable wellorder of
H(λ+). 2

It is not known if there is a small forcing that creates a de�nable wellorder
of H(ℵω+1).

12.-13.Vorlesungen

De�nable wellorders and forcing axioms

We �rst consider de�nable wellorders of H(ω1), or equivalently, projective
wellorders of the reals. As forcing axioms imply the negation of CH, we �rst
show:

20



Theorem 35 A projective wellorder of the reals is consistent with the nega-
tion of CH.

I won't give the simplest proof of this result, but rather a proof which is
amenable to generalisation. I begin with the following easier result:

Theorem 36 It is consistent with the negation of CH that there is a wellor-
der of the reals de�nable in H(ω2).

Proof. The desired model will be obtained via an ω1-preserving, ω2-cc itera-
tion over L of length ω2 witih countable support.

Fix a sequence (Sα | α < ω2) of pairwise almost disjoint stationary subsets
of ω1. We assume that this sequence is de�nable over Lω2 . For any pair of
reals x, y let z = x ∗ y be de�ned by z = {2n | n ∈ x} ∪ {2n+ 1 | n ∈ y}. We
will force to kill CH and create a wellorder < of the reals so that:

(∗) x < y i� for some limit α, n belongs to x ∗ y i� Sα+n is not stationary.

For the sake of later applications, we will add reals using Sacks forcing, rather
than Cohen forcing. We will need a bookkeeping function, i.e., a function
F : ω2 → Lω2 (de�nable over Lω2) such that for each a ∈ Lω2 , F (α) = a for
unboundedly many α < ω2.

The iteration uses the names Qα de�ned as follows. Let Pα denote the
�rst α stages of the iteration (for α ≤ ω2) and let Gα denote the Pα-generic.
Order the reals in L[Gα] by: x <α y i� the L-least Pα-name for x (i.e., the
L-least Pα-name σx such that σGα

x = x) is less than the L-least Pα-name for
y in the canonical wellorder of L. We assume that this is de�ned in such a
way that if α < β are both limits then <α is an initial segment of <β.

For limit α, Qα is trivial unless F (α) is a Pα-name for a pair of reals x <α y.
In that case, Qα is the forcing that adds a club to the complement of Sα+n

for each n in x ∗ y. A condition in Qα is an ω-sequence (c0, c1, · · ·) of closed,
bounded subsets of ω1 such that for each n in x ∗ y, cn is disjoint from Sα+n.

For α equal to 0 or α successor, Qα is Sacks forcing.

The desired forcing is P = Pω2 .
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Lemma 37 P is ω2-cc.

Proof. This follows easily, as our ground model satis�es CH, we are using
countable support and each Qα has size ω1. 2

Lemma 38 Suppose that G is P -generic and at limit stage α < ω2 either
Qα is trivial or n does not belong to the real x∗y considered at stage α. Then
Sα+n is stationary in L[G]. In particular, ω1 is preserved.

Proof. Let p be a condition in P forcing that n does not belong to the real
x ∗ y considered at stage α of the iteration and forcing that Ċ is a P -name
for a club in ω1. We want to �nd q ≤ p and i in Sα+n such that q forces i to
belong to Ċ.

Let (Mi | i < ω1) be a continuous chain of countable elementary submo-
dels of some large Lθ such that M0 contains p, α, F and Ċ. For each i < ω1

let γi denote Mi ∩ ω1. Then S0
α+n = {i < ω1 | i = γi belongs to Sα+n} is

stationary.

Claim. There exists i in S0
α+n such that i does not belong to Sβ for any β in

Mi which di�ers from α+ n.

Proof of Claim. Otherwise for each limit i in S0
α+n choose f(i) < i such that

i belongs to Sβ for some β in Mf(i) which di�ers from α+n. By Fodor, f has
some constant value i0 on a stationary subset of S0

α+n. As Mi0 is countable,
there is a �xed β in Mi0 di�erent from α + n such that i belongs to Sβ for
stationary-many i in S0

α+n. But this contradicts the fact that Sα+n and Sβ

are almost disjoint. 2 (Claim)

Choose i as in the Claim. We want to build an ω-sequence p = p0 ≥
p1 ≥ · · · with a lower bound q forcing i to belong to Ċ. Let i0 < i1 < · · · be
an ω-sequence co�nal in i. To de�ne pn+1, choose a �nite subset Fn of the
support of pn and extend pn inside the model Mi without thinning the n-th
splitting level of pn(β) for non-limit β ∈ Fn so that pn+1 forces some ordinal
greater than in to belong to Ċ. This can be done by successively considering
the (2n)|Fn| di�erent choices of nodes on the n-th splitting levels of the trees
speci�ed by pn on the non-limit components in Fn. In addition, for limit β in
Fn, extend pn(β) to ensure that the max of this closed set is at least in. The
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Fn's should be chosen so that their union equals the union of the supports
of the pn's.

Then the sequence of pn's has a lower bound q: For non-limit α in the
union A of the supports of the pn's the pn(α)'s form a fusion sequence, so
we obtain a Sacks condition when we intersect the pn(α)'s. As A is a subset
of the model Mi, we know by the choice of i that i does not belong to Sβ

for any β in A which di�ers from α + n. Therefore for limit β in A di�erent
from α+ n we get a condition if we take the union of the pn(β)'s (which has
supremum i) and add i at the top. At component α+ n we can also put i at
the top as p = p0 forces that n does not belong to the real x ∗ y considered
at stage α of the iteration.

Finally, note that q forces i to belong to Ċ and therefore we have proved
the stationarity of Sα+n. 2 (Claim)

Corollary 39 P forces the negation of CH.

Clearly if Qα is nontrivial at a limit stage α and n does belong to the
real x ∗ y considered at stage α then Sα+n is not stationary in L[G]. Thus if
< denotes the wellorder of the reals in L[G] obtained by taking the union of
the <α's we have:

(∗) x < y i� for some limit α < ω2, Sα+n is stationary i� n belongs to x ∗ y.

As the sequence (Sα | α < ω2) is de�nable over Lω2 , this gives a wellorder in
L[G] which is de�nable over Lω2 [G] = H(ω2)

V [G]. 2

Now we prove the more di�cult result:

Theorem 40 It is consistent with the negation of CH that there is a projec-
tive (indeed Σ1

3 de�nable) wellorder of the reals.

Proof. We perform an ω2-iteration as in the previous proof, but do more at
limit stages. Recall that in the previous proof we started with L and added
a wellorder < of ω2-many reals such that:

x < y i� for some limit α < ω2, n belongs to x ∗ y i� Sα+n is nonstationary,

where (Sβ | β < ω2) is an Lω2-de�nable sequence of pairwise almost disjoint
stationary subsets of ω1. In the present proof this will be modi�ed slightly:
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(1) x < y i� for some limit α < ω2, Sα+2n is nonstationary for n in x ∗ y and
Sα+2n+1 is nonstationary for n not in x ∗ y.

This small change has the advantage that not only membership, but also
non-membership in x ∗ y is witnessed by the existence, rather than the non-
existence, of a club.

Our goal is to express the above nonstationarity in terms of quaniti�cation
over countable models. Ideally, we would like to have (1) together with the
following:

(2) If x < y then there exists a real R such that for any countable transitive
ZF− model M containing R there is a limit ordinal ᾱ < ωM

2 such that SM
ᾱ+2n

is nonstationary in M for n in x ∗ y and SM
ᾱ+2n+1 is nonstationary in M for

n not in x ∗ y,

where (SM
β | β < ωM

2 ) denotes M 's interpretation of the sequence (Sβ | β <
ω2). We show now that (1) implies the converse of (2). It follows that (1) and
(2) together give a projective wellorder of the reals, as the conclusion of (2)
is �rst-order over H(ω1).

Suppose that R is a real such that for any countable transitive ZF− model
M containing R there is a limit ordinal ᾱ < ωM

2 such that SM
ᾱ+2n is nonsta-

tionary in M for n in x ∗ y and SM
ᾱ+2n+1 is nonstationary in M for n not in

x ∗ y. By Löwenheim-Skolem this holds for arbitrary transitive ZF− models
M containing R. Consider then the model M = Lθ[R] for a large regular θ
and let α < ωM

2 = ω2 be the limit ordinal guaranteed the conclusion of (2)
for M . As (Sβ | β < ω2) is de�nable over Lω2 and θ is greater than ω2, it
follows that SM

β equals Sβ for each β < ω2. Thus Sα+2n is nonstationary inM
for n in x ∗ y and Sα+2n+1 is nonstationary in M for n not in x ∗ y. It follows
that these sets are nonstationary in the larger model L[G] and therefore by
(1), we have x < y.

We will not actually achieve (2) above, but a slight weakening of it. Say
that a transitive ZF− model M is suitable i� M � ω2 = ωL

2 exists. We will
obtain (2) restricted to suitableM . Then to establish the converse of the new
version of (2), we need only observe that as our forcing preserves cardinals,
Lθ[R] is indeed suitable for any large regular θ and any real R in the generic
extension.
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We now begin the proof. To facilitate the argument we need some extra
properties of the bookkeeping function F and of the sequence (Sβ | β < ω2)
of almost disjoint stationary subsets of ω1.

Lemma 41 Assume V = L. There is a bookkeeping function F : ω2 → Lω2

de�nable over Lω2 via a formula ϕ and a sequence (Sβ | β < ω2) of almost
disjoint stationary subsets of ω1 de�nable over Lω2 via a formula ψ such
that whenever M,N are suitable transitive ZF− models, FM , FN denote the
interpretations of ϕ in M , N , respectively, ~SM = (SM

β | β < ωM
2 ), ~SN =

(SN
β | β < ωN

2 ) denote the interpretations of ψ in M , N , respectively, and

ωM
1 = ωN

1 then FM , FN agree on ωM
2 ∩ωN

2 and ~SM , ~SN agree on ωM
2 ∩ωN

2 . In

particular, if M is suitable and ωM
1 = ω1 then FM , ~SM equal the restrictions

of F , ~S to the ω2 of M .

Proof Sketch. For the bookkeeping function de�ne F (α) = a i� via Gödel
pairing α codes a pair (α0, α1) where a has rank α0 in the natural wellorder
of the sets in L. For the almost disjoint stationary sets, let (Dγ | γ < ω1)
be the canonical Lω1-de�nable ♦ sequence, for each α < ω2 let Aα be the
L-least subset of ω1 coding α and de�ne Sα to be the set of i < ω1 such that
Di = Aα ∩ i. 2 (Lemma 41)

14.-15.Vorlesungen

Now we describe stage α of our iteration. For non-limit α < ω2 we add a
Sacks real. For limit α < ω2, we kill the stationarity of Sα+2n for n in xα ∗ yα

and of Sα+2n+1 for n not in xα ∗ yα, where xα <α yα are the reals chosen by
the bookkeeping function F at that stage. Call this forcing Q0

α and let Hα

denote the Q0
α-generic. Now let Xα ∈ L[Gα ∗ Hα] be a subset of ω1 which

codes the ordinal α, codes a level of L in which α has size at most ω1 and
codes the generic Gα ∗ Hα, which we can regard as an element of Lω2 . We
have:

(∗) If M is suitable and Xα belongs to M , then the limit ordinal α coded by
Xα is less than ωM

2 and SM
α+2n is not stationary inM for n in xα ∗yα, S

M
α+2n+1

is not stationary in M for n not in xα ∗ yα.

This is because in any such M we can decode Gα ∗ Hα from Xα inside M
and SM

α+n equals Sα+n for each n.
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Recall that we want to add a real which �re�ects� this property into all
countable, suitable models that contain it. First we force a subset Yα of ω1

which �localises� the above property in the following sense:

(∗∗) For any γ < ω1 and countable, suitable M containing Yα ∩ γ as an
element: If γ = ωM

1 then for some limit ordinal ᾱ less than ωM
2 , SM

ᾱ+2n is not
stationary in M for n in xα ∗ yα and SM

ᾱ+2n+1 is not stationary in M for n
not in xα ∗ yα.

We now describe a forcing Q1
α to create the witness Yα to (∗∗). A condition

in Q1
α is an ω1-Cohen condition r : |r| → 2 in L[Gα ∗Hα] with the following

properties:

1. The domain |r| of r is a countable limit ordinal.
2. Xα∩|r| is the even part of r, i.e., for γ < |r|, γ belongs to Xα i� r(2γ) = 1.
3. (∗∗) holds for all limit γ ≤ |r| with Yα ∩ γ replaced by r � γ, i.e.:

(∗∗)r For any limit γ ≤ |r| and countable, suitable M containing r � γ as an
element: If γ = ωM

1 then for some limit ordinal ᾱ less than ωM
2 , SM

ᾱ+2n is not
stationary in M for n in xα ∗ yα and SM

ᾱ+2n+1 is not stationary in M for n
not in xα ∗ yα.

As a warmup for a later argument, we pause now to consider the case
α = ω, assume that xω <ω yω are well-de�ned and show that the forcing
Pω ∗Q0

α ∗Q1
α preserves the stationarity of the �untouched� Sβ's, i.e., of those

Sβ's where β is not of the form ω+2n, n ∈ xω∗yω or of the form ω+2n+1, n /∈
xω ∗yω. Later we will show that the entire iteration preserves the stationarity
of those Sβ's untouched by the generic for the full ω2-iteration P .

Suppose that (p, q0, r) is a condition in Pω ∗Q0
α ∗Q1

α forcing that β is not
of the form ω + 2n, n ∈ xω ∗ yω, β is not of the form ω + 2n+ 1, n /∈ xω ∗ yω

and that Ċ is a club in ω1. We will �nd (pω, q
0
ω, rω) below (p, q0, r) forcing i

to belong to Ċ for some i in Sβ.

First note that Q1
ω satis�es the following extendibility property: Given r

and a countable limit γ greater than |r|, we can extend r to r∗ of length γ.
This is because we can take the odd part of r∗ on the interval [|r|, |r| + ω)
to code γ and to consist only of 0's on [|r| + ω, γ); then there are no new
instances of requirement 3 for being a condition to check because no ZF−

model containing r∗ � |r|+ ω can have its ω1 in the interval (|r|, γ].
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Now let (Mi | i < ω1) be a continous chain of countable elementary
submodels of some large Lθ such that M0 contains the parameters (p, q0, r),
β, Ċ, Pω ∗ Q0

ω ∗ Q1
ω and a Pω ∗ Q0

ω-name Ẋω for Xω. Let i be an element of
Sβ such that i = Mi ∩ ω1 and i does not belong to Sδ for any δ in Mi which
di�ers from β. (We argued earlier that there must be such an i, using a Fodor
argument.) Successively extend (p, q0, r) to (p0, q

0
0, r0) ≥ (p1, q

0
1, r1) ≥ · · · in

Mi so that for each �nite n the pk(n), k ∈ ω, form a fusion sequence and
if D in Mi is a dense set for the forcing Pω ∗ Q0

ω ∗ Q1
ω then for some k,

(pk, q
0
k, rk) reduces D to the k-th splitting level of �nitely many of the trees

pk(n) (i.e., if �nitely many of the trees pk(n) are restricted to some node on
their k-th splitting level, then the resulting condition (p′k, q

0
k, rk) meets D). In

particular, the condition (pk, q
0
k, rk) forces the Pω ∗ Q0

ω ∗ Q1
ω-generic to meet

D in a condition belonging to Mi. By extendibility, the max's of the q0
k's and

the domains of the rk's converge to i. And the (pk, q
0
k, rk)'s force arbitrary

large ordinals less than i into Ċ.

We want to show that the (pk, q
0
k, rk)'s have a lower bound (pω, q

0
ω, rω).

By fusion the pk's have a greatest lower bound pω. And just as in our earlier
argument, the q0

k's have a greatest lower bound q0
ω as i does not belong to Sδ

for any δ in Mi which di�ers from β. We show that the condition (pω, q
0
ω) in

Pω ∗ Q0
ω forces the union rω of the rk's to be a condition in Q1

ω. For this it
su�ces to force property (∗∗)rω when γ is equal to i, the length of rω. I.e.,
(pω, q

0
ω) must force:

(∗ ∗ ∗) For any suitable M containing rω: If i = ωM
1 then SM

ω+2n is not
stationary in M for n in xω ∗ yω and SM

ω+2n+1 is not stationary in M for
n not in xα ∗ yα.

Fix a generic Gω∗Hω below the condition (pω, q
0
ω). Then if D is a dense set for

Pω ∗Q0
ω belonging to Mi, by construction we have that (Gω ∗Hω)∩Mi meets

D. Thus not only isMi elementary in Lθ, but also (Mi[(Gω ∗Hω)∩Mi], (Gω ∗
Hω)∩Mi) is elementary in (Lθ[Gω ∗Hω], Gω ∗Hω). Let (M̄ [Ḡ ∗ H̄], Ḡ ∗ H̄) be
the transitive collapse of (Mi[(Gω ∗Hω)∩Mi], (Gω ∗Hω)∩Mi). As Xω has a
name in Mi, it follows that Xω belongs to Mi[(Gω ∗Hω) ∩Mi] and therefore
Xω ∩ i belongs to M̄ [Ḡ ∗ H̄]. As Xω codes the generic Gω ∗Hω, it ensures the
nonstationarity of Sω+2n for n in xω ∗ yω and of Sω+2n+1 for n not in xω ∗ yω

in all suitable models containing Xω as an element; it follows that Xω ∩ i
ensures the nonstationarity of SM̄

ω+2n for n in xω ∗ yω and of SM̄
ω+2n+1 for n
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not in xω ∗ yω in all suitable models containing Xω ∩ i as an element. Now
if M is any suitable model containing rω as an element such that ωM

1 = i,
M also contains Xω ∩ i as an element (as Xω ∩ i is the even part of rω) and
as ωM

1 = i = ωM̄
1 , we have SM

ω+n = SM̄
ω+n for each n; it follows that SM

ω+2n is
nonstationary in M for n in xω ∗ yω and SM

ω+2n+1 is nonstationary in M for
n not in xω ∗ yω, establishing (∗ ∗ ∗).

So the (pk, q
0
k, rk)'s have a lower bound (pω, q

0
ω, rω). This condition forces

unboundedly many ordinals less than i into Ċ and therefore forces i into Ċ,
where i belongs to Sβ. Thus we have shown that the stationarity of Sβ is
preserved by the forcing Pω ∗Q0

ω ∗Q1
ω.

16.-17.Vorlesungen

To complete stage α of the iteration, we code the Q1
α-generic Yα by a

real via the forcing Cα de�ned below. This can most easily be done using a
ccc almost disjoint coding with �nite conditions; but for the sake of future
applications we use here perfect trees to code. Note that the ground model
L[Gα ∗Hα ∗Yα] is in fact equal to L[Yα] as the even part of Yα codes Gα ∗Hα.

Inductively de�ne L-countable ordinals µi, i < ωL
1 by: µi is the least

µ >
⋃
{µj | j < i} (this condition is vacuous if i equals 0) such that Lµ[Yα ∩

i] � ZF− and Lµ � ω is the largest cardinal. (There are many µ's with
these properties, for example any µ such that Lµ[Yα ∩ i] is an elementary
submodel of Lω1 [Yα ∩ i]). A real R codes Yα below i i� for all j < i, j ∈ Yα i�
Lµj

[Yα ∩ j, R] � ZF−. For T ⊆ 2<ω a perfect tree, let |T | denote the least i
such that T ∈ Lµi

[Yα ∩ i]. A condition in Cα is a perfect tree T such that
R codes Yα below |T | whenever R is a branch through T . (Note that by
absoluteness, if T is a condition then R codes Yα below |T | even for branches
R through T in the generic extension; in particular this holds for the generic
branch.) Cα is ordered by: T0 ≤ T1 i� T0 is a subtree of T1. This is equivalent
to [T0] ⊆ [T1] where [T ] denotes the set of in�nite branches through T .

Lemma 42 (a) If T belongs to Cα and |T | ≤ i < ω1 then there is a T ∗ ≤ T
such that |T ∗| = i. (b) Cα preserves ω1.

Proof. (a) By induction on i. We may assume that |T | is less than i. If i = j+1
then we may also assume by induction that |T | equals j and hence that T
belongs to Aj = Lµj

[Yα ∩ j]. If j belongs to Yα then we take T ∗ ≤ T to
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have the property that R is PT -generic over Aj for R ∈ [T ∗], where PT is
the forcing (isomorphic to Cohen forcing) whose conditions are the elements
of T , ordered by extension. Note that T ∗ can be chosen in Ai = Lµi

[Yα ∩ i]
as Aj is a countable element of Ai. Also Lµj

[Yα ∩ j, R] � ZF− for R ∈ [T ∗],
by the PT -genericity of R ∈ [T ∗]. So T ∗ is a condition and |T ∗| = i. If j
does not belong to Yα then choose a real R0 coding a well ordering of ω of
ordertype µj, R0 ∈ Ai, and take T ∗ ≤ T to be the tree whose branches are
exactly the branches R through T such that for all n, n ∈ R0 i� R goes right
at the 2n-th splitting level of T . Then T ∗ belongs to Ai and for R ∈ [T ∗],
(R, T ) computes R0 and hence Lµj

[Yα ∩ j, R] is not a model of ZF−, since it
contains R0 as an element.

If i is a limit ordinal then choose |T | = i0 < i1 < · · · to be an ω-sequence
co�nal in i which belongs to Ai = Lµi

[Yα∩ i]. De�ne T0 ≤n T1 i� T0 ≤ T1 and
T0, T1 have the same �rst n splitting levels. Now let T0 = T and for each n
let Tn+1 ∈ Cα be least in Ain+1 such that |Tn+1| = in+1 and Tn+1 ≤n Tn.
Such Tn's exist by induction. If T ∗ =

⋂
n Tn then T ∗ ≤ T belongs to Ai and

satis�es the requirement for belonging to Cα. So T
∗ ≤ T , |T ∗| = i, as desired.

(b) We say that D ⊆ Cα is n-dense i� for all T ∈ Cα there is T ∗ ≤n T ,
T ∗ ∈ D. We show that if for each n, Dn is open and n-dense then for all
T ∈ Cα there exists T ∗ ≤ T such that T ∗ belongs to Dn for each n. It follows
that Cα preserves �co�nality > ω,� for if σ is a name for a function from ω
into Ord then for each n, Dn = {T ∈ Cα | For some �nite d, T 
 σ(n) ∈ d}
is n-dense and hence our result implies that the range of σ is covered by a
set countable in the ground model.

So suppose T belongs to Cα and Dn is open and n-dense for each n. LetM
be a countable elementary submodel of some large Lθ[Yα] containing T and
〈Dn | n ∈ ω〉 as elements and let i = M ∩ ω1. Also let i0 < i1 < · · · be an
ω-sequence co�nal in i belonging to Ai. Note that the transitive collapse of
M belongs to Ai as it satis�es i = ω1 whereas Lµi

� i is countable. So we
can choose T = T0 ≥0 T1 ≥1 T2 ≥2 · · · in Ai so that Tn+1 ∈ Dn ∩M and
|Tn+1| ≥ αn+1. Then T

∗ =
⋂

n Tn belongs to each Dn, T
∗ ≤ T and T ∗ belongs

to Cα as T ∗ belongs to Ai. 2

This completes the de�nition for limit α < ω2 of Qα = Q0
α ∗Q1

α ∗ Cα. For
non-limit α < ω2, Qα is Sacks forcing. The desired forcing P is the iteration
with countable support of these Qα's.
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Let Rα denote the Cα-generic real coding the Q
1
α-generic Yα. Then Yα∩ωM

1

can be decoded fromRα inM for any suitableM containingRα as an element.
Therefore the real Rα satis�es the following important property.

(∗)Rα For any suitable modelM containing Rα as an element, there is a limit
ordinal ᾱ < ωM

2 such that SM
ᾱ+2n is nonstationary for n in xα∗yα and SM

ᾱ+2n+1

is nonstationary for n not in xα ∗ yα.

We now show that the iteration P preserves the stationarity of the un-
touched Sβ's, i.e., for P -generic G, Sβ remains stationary except for β of the
form α+ 2n, α limit and n in xG

α ∗ yG
α or of the form α+ 2n+ 1, α limit and

n not in xG
α ∗ yG

α . Then as we have observed earlier, (∗)Rα for each α implies
that in the P -generic extension L[G], the union <G of the partial wellorders
<G

α , α < ω2 limit, has a Σ1
3 de�nition:

x <G y i� there exists a real R such that for all countable, suitable M
containing R as an element there is a limit α < ωM

2 such that SM
α+2n is

nonstationary in M for n in x ∗ y and SM
α+2n+1 is nonstationary in M for n

not in x ∗ y.

Thus to complete the proof of the theorem we only need the following.

Lemma 43 Suppose that G is P -generic. Then for β < ωL
2 not of the form

α+2n, α limit, n ∈ xG
α ∗yG

α and not of the form α+2n+1, α limit, n /∈ xG
α ∗yG

α ,
Sβ is stationary in L[G]. Moreover L and L[G] have the same cardinals.

Proof. Let p be a condition forcing that β < ωL
2 is not of the form α+ 2n, α

limit, n ∈ xG
α ∗ yG

α and not of the form α+ 2n+ 1, α limit, n /∈ xG
α ∗ yG

α , and
also forcing that Ċ is a club in ωL

1 . We want to �nd an extension q of p and
i < ωL

1 in Sβ such that q forces i to belong to Ċ.

As before let (Mi | i < ωL
1 ) be a continuous chain of countable elementary

submodels of some large Lθ such thatM0 contains all imaginable parameters,
and choose i < ωL

1 in Sβ so that i does not belong to Sδ for any δ inMi other
than β. Build an ω-sequence p = p0 ≥ p1 ≥ · · · of conditions below p such
that for any dense set D for the forcing P in Mi, some pk forces the generic
to intersect D∩Mi. Moreover ensure that for each non-limit α in the union of
the supports of the pk's, the sequence pk(α) forms a fusion sequence in Sacks
forcing and also that for each limit α in the union of the supports of the pk's,
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if we write pk(α) = (pk(α)0, pk(α)1, pk(α)2), then the sequence of pk(α)2's is
forced to form a fusion sequence in the coding forcing Cα. In addition, choose
the sequence of pk's to belong to the least Lµ in which M̄ , the transitive
collapse of Mi, is countable.

We now produce a lower bound q to the sequence of pk's, whose support
Supp(q) is the union of the supports of the pk's, by de�ning q(α) by induction
on α in Supp(q). If α is a non-limit then we take q(α) to simply be the fusion
of the pk(α)'s. Suppose then that α is a limit and q � α is already de�ned as
a condition in Pα. We want to de�ne q(α) = (q(α)0, q(α)1, q(α)2).

For q(α)0, a name for a sequence of closed sets, we take the union of the
closed sets in the pk(α)0's and put i at the top. This results in a condition
because i is forced to not belong to any of the Sα+2n, n ∈ xα ∗ yα or the
Sα+2n+1, n /∈ xα ∗ yα (because such α+ 2n, α+ 2n+ 1 belong to Mi or equal
β) and therefore a condition will indeed result if i is added at the top. Also
note that the closed sets in the pk(α)0's have maxima co�nal in i by the
construction of the pk's, so we indeed obtain closed sets when putting i at
the top.

For q(α)1 we use the same argument that we used earlier for Q1
ω. We

take q(α)1 to be the union of the pk(α)1's. Fix a generic Gα ∗ Hα below
(q � α, q(α)0); we must show that when q(α)1 is interpreted by Gα ∗Hα the
result is a condition in Q1

α (as interpreted by Gα∗Hα). By the construction of
the pk's, Mi is not only elementary in Lθ but this remains so if we introduce
Gα∗Hα as a predicate, i.e., (Mi[(Gα∗Hα)∩Mi], (Gα∗Hα)∩Mi) is elementary
in (Lθ[Gα ∗Hα], Gα ∗Hα). As Xα ⊆ ω1 codes the generic Gα ∗Hα and has a
name inMi, it follows that Xα∩ i belongs to the transitive collapse M̄ [Ḡ∗H̄]
of Mi[(Gα ∗Hα) ∩Mi]. Moreover, just as Xα ensures the nonstationarity of
the appropriate Sα+n's, Xα ∩ i ensures the nonstationary of the appropriate
SM

ᾱ+n's in any suitable M containing Xα ∩ i such that ωM
1 = i. This implies

that q(α)1, which hasXα∩i as its even part, ensures the same nonstationarity
and therefore is a condition in Q1

α.

Finally, we take q(α)2 to be the fusion of the pk(α)2's. To verify that
this is a condition in Cα we need to verify that it is forced to belong to the
structure Ai = Lµi

[Yα ∩ i]. Recall that the sequence of pk's belongs to the
least Lµ in which M̄ , the transitive collapse of Mi, is countable. It follows
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that q(α)2 is forced to belong to Lµ[Yα ∩ i] for this µ and by the de�nition of
µi, we have µ < µi. Thus q(α)2 is indeed forced to belong to Ai, as desired.

The fact that L and L[G] have the same cardinals now follows from ω1-
preservation and the ω2-cc. 2

18.-20.Vorlesungen

Our next goal is to prove the following.

Theorem 44 Relative to the consistency of a re�ecting cardinal, BPFA is
consistent with the existence of a Σ1

3 wellorder of the reals.

BPFA is the bounded forcing axiom for proper forcings. It is equivalent to
the statement that any Σ1 sentence with an element of H(ω2) as parameter
which is true in a proper forcing extension of the universe is already true. A
cardinal κ is re�ecting i� it is regular and H(κ) is Σ2 elementary in V .

Goldstern and Shelah showed that BPFA is consistent relative to a re-
�ecting cardinal by starting with a re�ecting cardinal in L and performing
a countable support κ-iteration of proper forcings of size < κ. At each stage
a proper forcing is chosen to witness a new Σ1 fact with parameter in (the
current) H(ω2). The fact that κ is re�ecting is used to show that these proper
forcings can in fact be taken to have size < κ and therefore κ will remain
re�ecting throughout the iteration (until the �nal stage). As the forcing is
proper and κ-cc, it follows that ω1 is preserved and that BPFA holds in the
resulting forcing extension.

We �rst show:

Theorem 45 Relative to the consisteny of a re�ecting cardinal, BPFA is
consistent with the existence of a wellorder of the reals which is de�nable
over H(ω2).

To prove Theorem 45 we start in the same way as Goldstern-Shelah, with
a re�ecting cardinal κ in L, and perform a countable support iteration of
length κ. A possible strategy is to code a wellorder of the reals using statio-
nary subsets of ω1, as in our previous proof. However this will destroy the
properness of the iteration, so we take another approach, based on controlling
which of certain constructible trees T have T -generic branches over L in the
�nal model.
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Lemma 46 Assume V = L. Suppose that β is regular and uncountable and
consider the tree T (β) of sequences through β+ of length less than β. Suppose

that Q is a forcing such that 22|Q|
is less than β and G is Q-generic over L.

Then:
(a) T (β), viewed as a forcing, is proper in L[G].
(b) There is a proper forcing R in L[G] of size β+ which destroys the proper-
ness of T (β); in fact, if H is R-generic over L[G] then in any ω1-preserving
outer model of L[G][H] there is no branch through T (β) which is T (β)-generic
over L.

Proof. (a) It su�ces to show that Q is proper in T (β)-generic extensions of
L. But the forcing T (β) is β-closed and therefore does not add subsets of

22|Q|
; it follows that any witness to the properness of Q in L is still a witness

to its properness in any T (β)-generic extension of L.
(b) First add β++ Cohen reals with a �nite support product over L[G], pro-
ducing L[G][H0]. Then Lévy collapse β+ to ω1 with countable conditions,
producing L[G][H0][H1]. As ccc and ω-closed forcings are proper, this is a
proper forcing extension of L[G]. Now note that in L[G][H0][H1], any β-
branch through T (β) in fact belongs to L[G][H0]: Otherwise we choose a
L[G][H0]-name ḃ for the new branch and build a binary ω-tree U of condi-
tions in the Lévy collapse, each branch of which has a lower bound, such
that distinct co�nal branches through U force di�erent interpretations of the
name ḃ. It follows that in L[G][H0], T (β) has 2ℵ0 = β+ nodes on a �xed level,
which is impossible because GCH holds in L. Thus the tree T (β) has at most
ω1-many branches in L[G][H0][H1], none of which contains ordinals co�nal in
β+ and therefore none of which is T (β)-generic over L. Also, every node of
T (β) belongs to a β-branch.

Now we use Baumgartner's general method of �specialising a tree o� a
small set of branches�.

Fact. If T is a tree of height ω1 with at most ℵ1 co�nal branches (and every
node of T belongs to a co�nal branch of T ) then there is a ccc forcing P such
that if G is P -generic over V then in any ω1-preserving outer model of V [G],
all co�nal branches through T belong to V .

Proof sketch. List the branches as (bi | i < ω1) and write T as the disjoint
union of bi(xi), where each xi is a node on bi and bi(xi) denotes the tail of bi
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starting at xi. Now add a function f with �nite conditions from {xi | i < ω1}
into ω such that if xi is below xj in T then f(xi) is di�erent from f(xj).
Baumgartner shows that this forcing is ccc. Now if b is a co�nal branch
through T distinct from the bi's in an outer model of V [f ], then b must
intersect uncountably many of the bi(xi)'s and therefore contains uncountably
many xi's. But then the f(xi)'s are distinct for these uncountably many xi's,
contradicting the fact that f maps into ω. 2 (Fact)

Now use the Fact to create a ccc extension L[G][H0][H1][H2] of L[G][H0][H1]
to ensure that T (β) (viewed as a tree of height ω1 using a co�nal ω1-sequence
through (β+)L) will have no new branches in any ω1-preserving outer model.
As no β-branch through T (β) in L[G][H0] is T (β)-generic over L and all co�-
nal branches through T (β) in an ω1-preserving outer model of L[G][H0][H1][H2] =
L[G][H] belong to L[G][H0], we are done. 2

Proof of Theorem 45. Let κ be re�ecting in L and let C enumerate the closed
unbounded subset of κ consisting of those α such that Lα is Σ2 elementary in
Lκ. (As κ is inaccessible, C is indeed unbounded in κ.) We perform a proper
iteration of length κ with countable support which is nontrivial at stages α
in C. The iteration Pα ∗Q(α) up to and including stage α will belong to Lβ

where β is the least element of C greater than α. In particular, Pα has size
less than κ for each α < κ and therefore κ remains re�ecting throughout the
iteration.

Suppose that α belongs to C; we describe the forcing Q(α), which is a
two-step iteration Q0(α) ∗Q1(α).

As Pα has size at most (α+)L, we know that the forcing T (β), consisting of
< β sequences through β+, is proper in L[Gα] when β is regular and at least
(α++++)L. In addition there is a forcing R(β) of size β+ which guarantees
that there is no T (β)-generic over L. Now let αn be (α+4(n+1))L for each
�nite n, and let T (n) denote T (αn), R(n) denote R(αn). Then both T (n)
and R(n) are proper in any extension of L[Gα] obtained by forcing with
U(0) ∗ U(1) ∗ · · · ∗ U(n− 1) where each U(i) is either T (i) or R(i).

As in the earlier proofs, let xα <α yα be a pair of reals in L[Gα] provided
by the bookkeeping function and now take Q0(α) to be the ω-iteration U(0)∗
U(1) ∗ . . . where U(n) equals T (n) if n belongs to xα ∗ yα and equals R(n)
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otherwise. This is a proper forcing and Pα ∗Q0(α) belongs to Lβ, where β is
the least element of C greater than α.

Now we choose a Σ1 sentence with parameter from L[Gα], provided by
the bookkeeping function, and ask if it holds in a proper forcing extension
of L[Gα][H0], where H0 is our Q0(α)-generic. If so, then as κ is re�ecting in
L[Gα][H0], there is such a proper forcing in Lκ[Gα][H0], and also the witness
to the Σ1 sentence can be assumed to have a name in Lκ[Gα][H0]. Let β be
the least element of C greater than α; then Lβ is Σ2 elementary in Lκ and
therefore Lβ[Gα][H0] is Σ2 elementary in Lκ[Gα][H0]. It follows that we can
choose our proper forcing Q1(α) witnessing the Σ1 sentence to be an element
of Lβ[Gα][H0], maintaining the requirement that Pα ∗ Q(α) belong to Lβ.
This completes the construction.

The iteration is proper, forces κ to be at most ω2 and is κ-cc. It follows
that κ equals ω2 in the generic extension L[G] and BPFA holds there. The
desired wellorder of the reals is de�ned by:

x < y i�
For some α in C, (x, y) = (xG

α , y
G
α ) i�

There exists α in C such that for all n, n belongs to x ∗ y i� there is a
T (αn)-generic over L in L[G].

This works because at each stage α in C and for each n, we either forced
with T (αn), thereby producing a T (αn)-generic over (more than) L in L[G],
or we forced with R(αn), which guaranteed that there can be no T (αn)-
generic over L without collapsing ω1; as ω1 is not collapsed, there is in the
latter case no T (αn)-generic over L in L[G].

Finally, note that as C is de�nable over Lκ, it follows that the above gives
a wellorder de�nable (indeed Σ3) over the H(ω2) of L[G]. 2
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