Singular Cardinal Combinatorics, Sommersemester 2010
1.-2.Vorlesungen

These lectures are based on an article of James Cummings (Notes on
Singular Cardinal Combinatorics, Notre Dame Journal, 2005). Topics covered
include diamonds, squares, club guessing, forcing axioms and PCF theory. My
intention is to follows the notes quite closely, as they are very well-written,
but I will add a few proofs which James skips and pose some Questions which
come to mind but are not answered in the article.

Diamonds

Let x be regular, uncountable and S a stationary subset of .

Ow(S): There is (S, | @ € S) such that for any X C k, X Na = S, for
stationary-many « in S.

Theorem 1 (Jensen) Assume V' = L. Then {.(S) holds for all uncountable
reqular k and all stationary S C k.

Proof. We may assume that S consists only of limit ordinals. Define S, by
induction on a € S: Let (x,¢) be the L-least pair such that

(%)q « is a subset of a.
¢ is closed unbounded in a.
For Bin SNe, x N B does not equal Sg,

if such a pair (x,c) exists; set (x,c) = (0,0) otherwise. We choose S, to be
.

Now we claim that (S, | @ € S) witnesses {,(S). If not, then let (X, C) be
the L-least pair such that

(%), X is a subset of k.
(' is closed unbounded in k.
For 8 in SN C, X N3 does not equal Sg.

Let M be an elementary submodel of some large Ly which contains x as an
element and whose intersection with « is an ordinal & < k. Then « belongs to



C' and we may in fact choose M so that « also belongs to S as S is stationary
(the set of candidates for « contains a closed unbounded subset of k). Now
let 7 : M ~ M be the transitive collapse of M and notice that 7(X,C, k)
equals (X Na,C Na,a). It follows that (X Na,C N a) is the M-least pair
satisfying (x),, therefore also the L-least pair satisfying (x),, and therefore
X Na equals S,. But as a belongs to S N C, this contradicts the choice of
X!d

A nice consequence of &, (i.e., Oy, (S) where S equals all of wy) is the
existence of a (nice) Suslin tree, i.e., an uncountable suborder 7" of <“'2 such
that

T contains o * 0,0 * 1 for each o in T
Each ¢ in T can be extended to a 7 in T of any larger countable length.
T has only countable antichains.

The levels T, of T" are build by induction, the interesting case being the
choice of limit levels (we cannot take all branches through lower levels, as
this would give uncountably many branches and therefore an uncountable
antichain). What we do is fix a $,, sequence (S, | @ < wp) and view S,
as a subset not of o but of T, by enumerating the elements of T, in a
canonical way; then form 7, by choosing branches through 7, below each of
its elements which hit S,, (if possible) and placing at level « the unions of all
of the chosen branches. Now if X is a maximal antichain in the resulting tree
T it follows by <, that X NT., equals S, for some a and therefore every
element of T, lies above an element of X; it follows that X equals X N7,
as any element of 7" of length greater than « lies above an element of T, and
therefore an element of X N7T_,.

Ow(S) implies k<" = K, because if (S, | @ € S) witnesses the former then
any bounded subset of x will be equal to some S, and there are only xk-many
such S,’s. There is a partial converse:

Theorem 2 (Gregory, Shelah) Let k = \*, X an uncountable cardinal, u =
cof \), T = {a < K | cof(a) # pu}. Assume 2<* = X and 2* = \* (this follows
from GCH). Then $(S) holds for all stationary S C T.

Actually we will prove something stronger than <$,(S). Consider:



"+(T): There is (S, | @ € T) such that S, is a size at most A subset of
P(«) for each o € T and for all X C A", X N« € S, for stationary-many «
in T
Oy (T) is the same as {)\, (T), except we strengthen the conclusion to: X N
a eS8, for all «in CNT for some club C in A\ ™.

Actually, ¢/, (S) is equivalent to {,+(S) for all S: The latter clearly
implies the former, so we need only show that a '\, (5) sequence (S, | a € 5)
can be converted into a {y+(S) sequence (S, | @ € S). We assume that the
given {1 (S) sequence in fact guesses subsets of A x A%, so it specifies for
each a < AT a sequence (S | i < A) of subsets of A x a. Now we claim
that for some i < A, (T | « € S) serves as a {y+(S) sequence, where
T: = {3 < a| (i,8) € Si}. If not, then fix for each i < X\ a pair (X;, C;)
(with X; C AT, C; club in A") such that T differs from X;Na for ain C;NS
and consider the intersection C' of the C;’s and X = {(i,a) | « € X;}. But
there is « € C'NS and i < A such that X N (A x o) = 5% and therefore X;
equals T, contradicting the choice of (X;, C).

Also note that $3. (7)) implies &, (S) for all stationary S C T'.

Proof of Theorem 2. We prove {3, (T'). Write each v < A™ as Uj<u aj where
the a$’s increase with j and have size less than . Also let (z; [ < AT) list
the bounded subsets of A ™.

For any X C A%, the set C' = {0 < A" | For all 7 < § there is i < 0
such that X N~y = z;} is club in A*. And for any o € C we can choose

(e | i < cof(ar)) below « such that the z,,’s are increasing under inclusion

and X Na = U;_cof(a) Tai-

Now suppose that « belongs to C' and cof(«) is not p. Then we can replace
the sequence (q; | i < cof(a)) by a subsequence, also of length cof(«), so that
it is contained in some single af, j < p.

Now we define
So = {z € P(a) | For some j <y and some y C af, v = {J,c, 7:}-

Using 2<% = X\ it follows that each S, has size at most A and the above shows
that it serves as a {3, (1") sequence, as desired. O



Theorem 2 is optimal in the sense that GCH does not imply {+(S) when
S equals AT NCof(\). (For example, GCH is consistent with the nonexistence
of a Suslin Tree, and therefore with the negation of ,,.) |Question: Is GCH
consistent with the failure of {$y+ (AT N Cof()\)) for all A7

The < Ideal. For a regular uncountable r, I, is the set of S C k such that
Owk(S) fails. It can be shown that this is a normal ideal on s containing the
nonstationary ideal. In L it equals the nonstationary ideal and if there are
no Suslin trees then Iy, is improper, i.e., consists of the full power set of w;.
[Question: What other possibilities are there for I, and more generally for

15,.7]
3.-4.Vorlesungen

First a remark about <{»: We showed that under GCH, <{,+(S) will hold
if S is a stationary subset of A" disjoint from the critical cofinality cof(\).
Conversely, Shelah showed that for any uncountable cardinal A in a mo-
del of GCH, one can force {,+(S) to fail for some stationary subset S of
Cof(\), preserving cofinalities and GCH. It is however open if one can force

O+ (Cof(A)) to fail for a singular A\ under GCH.
Club Guessing

Club guessing holds for k and S C & iff there exists (C, | a € S) where
C, is club in e and for all clubs C' C &, C,, is contained in C' N« for stationary
many « in S. This is a weakening of {,(5).

Theorem 3 (Shelah) For \ < k reqular with AT < k, club guessing holds
for k and any stationary S C kN Cof(\).

Proof. For E, F clubs in a define pd(E, F') = {sup(FNy) | v € E, FNy # (0}
(We “push down” E onto F'.)

Now start with an arbitrary sequence (C, | a € S) with C, club in « of
ordertype A. We define a decreasing sequence of clubs E; in x (of some length
< A1) and define (C’, | @ € Lim (E;) N S) by setting C*, = pd(C,, E; N ).
We start with Fy = k. Given E;, we assume that (C% | « € Lim (E;) N S)
fails to have the club guessing property and choose E;;; C Lim (E;) to be a
club so that for all a in E;;; NS, C? is not contained in E;; N a. For limit
A we take F\ to be the intersection of the E;, i < .
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We claim that E;,; is undefined for some i < A (and hence the theorem is
proved). Otherwise let E be the intersection of the E;’s and fix some « in
E N S. Then a belongs to Lim (E;) NS and C! = pd(C,, E; N a) for each
i < AT. For each v € C,, the sequence of suprema (sup(F; N~y) |i < AT) is
nonincreasing so must stabilise. Since C,, has ordertype A we can find ¢ < A"
large enough so that this stabilisation has occurred for every v € C,, so
C! = Ot C E;,;. But since a belongs to F;;; N S, this contradicts our
choice of F;,. O

Cummings says that there are many interesting variants of club guessing,
and refers to work of Ishiu for further information about them. [Question: Is
it consistent for Club Guessing to fail for At and Cof(\) N AT for all regular
A7

Squares

For an uncountable cardinal p, O, asserts that there exists (Cy, | o < p™, «
limit) such that each C, is a club in « of ordertype at most p and the C,’s
cohere with each other: @ € Lim (C,) implies C; = C, N a.

It is worth noting that without added strength we can impose a further
requirement on the O, sequence: If o has cofinality less than p then C, has
ordertype less than p. To achieve this, fix a club C'in p of ordertype cof(x) and
whenever ot(C,,) belongs to CU{u}, replace C, by {8 € C, | ot(C,NG) € C};
also, whenever ot(C,) does not belong to CU{u}, replace C, by C, \ (5+1),
where (3 is the largest element of C, with ot(Cjp) in C.

In L, 0, holds for every u. To kill O, for a regular p one only needs to
Lévy collapse the least Mahlo cardinal greater than p to become p™. Killing
0, for a singular p requires much stronger large cardinal hypotheses. It is
typically done by starting with a supercompact.

Proposition 4 Suppose that k is \T-supercompact, k < \. Then O, fails.

Proof. First note that if S C AT is a stationary subset of Cof(< k) N A* then
for some o < A1 of uncountable cofinality, S N « is stationary in a: Choose
a regular v < k so that S N Cof(y) is stationary. Then as + is less than the
critical point of j, it follows that j is continuous at ordinals of cofinality
and therefore j[S] is a stationary subset of a = sup(j[A*]) < j(AT). Also by



the AT supercompactness of j, j[S]| belongs to M and therefore in M there
is an @ < j(AT) such that j(S) N« is stationary. By elementarity it follows
that in V' there is o < A" such that S N « is stationary.

Now note the following general fact: If O, holds then any stationary subset of
A1 contains a nonreflecting stationary subset of AT, i.e., a stationary subset
T of At such that T'N « is nonstationary for all @« < AT of uncountable
cofinality. For, given any stationary S C AT, by Fodor we can choose a
stationary 7' C S and [ such that ot(C,) = § for all a in 7. If & < A\™ has
uncountable cofinality, then 7'M« can contain at most one limit point of C,,
by coherence, so T'N « is nonstationary in a. For future use also note that
if we set D, = C, when ot(C,) < fand D, = {y € C, | ot(C, N7y) > [}
otherwise, then we get a O, sequence (D, | o < p) with the added property
that Lim (D,) N« is disjoint from T for all a. O

By the last part of the previous proof together with our work on <, we
now get the following:

Proposition 5 Assume GCH and O,, for an uncountable cardinal jr. Then
there is a p*-Suslin tree.

Proof Sketch. By our earlier work there is a {,,+ (T") sequence for some statio-
nary T C put N Cof(v), where v < p is regular and different from cof(u), to-
gether with a 0, sequence (C,, | @ < ™) with the property that Lim (C,)Na
is disjoint from T for all a.

Now build a ¢ tree in stages, using the <+ (") sequence to guess at maximal
antichains at stages o € T', and using the O+ sequence (which “avoids 7”) to
obtain for each z in the tree and each higher tree level o a canonical branch
b(x, ) containing = cofinal in the a-th level. For o not in T all canonical
branches are continued to level o and for v in 7" only those canonical branches
which pass through the guess at a maximal antichain are continued. The “7T-
avoidance” of the O sequence is used to show that the canonical branches
b(x, ) leading to level «v are indeed cofinal. O

Weak squares

We consider the following weakening of O:



O, says that there exists (C, | @ < p*, o limit) such that each C, is a
nonempty and size < X set of clubs in «a, each of which has ordertype at
most p, and whenever C' belongs to C, and 3 is a limit point of C', we have
C N 3 belongs to Cg.

O, .+ is provable, as we can simply choose clubs of ordertype at most p
through each limit @ < u™ and take C, to consist of all intersections with «
of such clubs. Jensen showed that O, ,, also denoted by 07 and called “Weak
Square at p”, is equivalent to the existence of a special p™-Aronszajn tree,
i.e., a tree T of height u™ with levels of size at most p such that for some
f:T — p, f(x) is different from f(y) whenever z,y are comparable in T

5.-6.Vorlesungen

Proposition 6 Weak Square at p is equivalent to the existence of a special
wr-Aronszajn tree.

Proof. Suppose that (C, | o < p™, a limit) witnesses Weak Square at u. Note
that for any v < p* the set of C' N~ for C in |, C, has size at most p: If C
belongs to C, then C' N~ is either finite or the union of C'N ¢ for some limit
point of § of C together with a finite set; in the latter case C'N 9 belongs to
Cs so we get at most p possibilities. Thus for our tree we can simply take all
initial segments of elements of |, C,, ordered by end-extension, with ot as
the specialising function.

Conversely, suppose that we are given a special ut Aronszajn tree T with
specialising function f : T — pu. We will associate to each x € T of limit T-
height |z| an unbounded A, C |z| of ordertype at most p such that if § < |z|
is a limit point of A, then A, N ¢ is A, where y is the T-predecessor of x
of T-height 4. This suffices, as then we can take C, to be the closure of A,
(without |x|) for each x of limit T-height and get a Weak Square sequence
by setting C, to be the set of C, for x of T-height a.

For z € T of limit T-height define A, = {~,; | i < j,} as follows: Let y; be the
T-predecessor y of = of T-height greater than the the ~;, 7 < i, with least
possible specialising value f(y); then ~; is the T-height of y;. This definition
continues until one generates an unbounded subset of |z|, which we take to be
A,. Clearly A, has ordertype at most p. It is routine to check the coherence
property: if y is the T-predecessor of = of height vy, A limit, then A, will be
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defined in exactly the same way as A, until it becomes cofinal in the height
of y. O

Remarks. Without introducing any extra strength, we can arrange that a
Weak Square sequence (C, | « limit, & < p*) at u has the following two
additional properties: (i) For all limit o < p* there is C' € C, of ordertype
cof(a). (ii) If p is singular, then the club sets appearing in the C,’s each have
ordertype less than pu.

The extent of Square

Weak Square will hold at y if p is regular and there are only p bounded
subsets of u: If a has cofinality less than p then take C, to consist of all clubs
in « of ordertype less than u (there are only p many); if a has cofinality p
then take C, to consist of one club in «a of ordertype p.

On the other hand, GCH is not sufficient to imply O, for an uncountable
regular p: If kK > g1 is Mahlo then O, will fail after applying Coll (i, < k), the
forcing that collapses every ordinal less than x to g with conditions of size
< (and turns  into p7). The idea is that if (C,, | a limit, o < k) were a O,
sequence in the extension then using Mahloness there is a K < k regular in
the ground model such that (C, | a limit, & < &) belongs to the intermediate
model V[G] obtained by restricting the generic to Coll (i, < &); but then Cx
was added over this model by a p-closed forcing, which is impossible since

all of its initial segments belong to V[G].

Dropping GCH, Weak Square can fail at a regular u: Mitchell found a
way of turning a Mahlo x > y into p, in such a way that xk-many bounded
subsets of u are added and Weak Square will fail at p.

As we have mentioned, killing Square at a singular p is much harder and
typically uses a supercompact. In fact a strong compact x is sufficient to
imply the failure of Weak Square at any singular p of cofinality less than k.
|Question: Is a strong compact consistent with Weak Square at a singular
cardinal above it?]

Approachability and I[A]

Let s be regular and (a, | @ < k) a sequence of bounded subsets of k.
A limit ordinal v < k is approachable relative to this sequence iff there is an



unbounded A C v of ordertype cof(v) such that each proper initial segment
of A is of the form a, for some o < 7. The approachability ideal I[x] consists
of all S C & such that for some sequence (a, | @ < k) of bounded subsets
of k, almost all elements of S are approachable relative to (a, | @ < k) (i.e.,
for some club C' C k, all elements of S N C' are approachable relative to
(o | @ < K)).

The set Cof(w) Nk belongs to I[k] because we can choose as our sequence
(ao | @ < k) an enumeration of the finite subsets of k. Also note that if
A\ < K is regular and £<* equals s then there is a single “universal” sequence
(ao | @ < k) which witnesses the approachability of each subset of Cof(\)
in I[k]; any sequence (a, | @ < k) which enumerates each element of [x]<*
unboundedly often will suffice. Also under the assumption K<* = x there is a
maximal subset of Cof()) in I[k] (maximal modulo the nonstationary ideal):
take S(A\) to be the set of ordinals of cofinality A which are approachable
with respect to the universal sequence. We can refer to S(\) as the set of
“approachable points of cofinality A in x”. (In extreme cases, S(A) will be
nonstationary.)

It is also easy to see that I[x] is an ideal, because if Sy, S; belong to I[x],
witnessed by sequences (a° | a < k), (al | @ < k) and clubs Cy, Cy, then
So U Sy is witnessed to belong to I[k] by (as | @ < k) and club Cy N CY,
where as,; equals afx. The same argument shows that the diagonal union
{a | a € S; for some i < a} of sets (S; | © < k) in I[x] also belongs to
I[k], using the “join” a(nz = af, of sequences (a!, | @ < k) and the diagonal
intersection of clubs (C; | i < k) witnessing the membership of S; in I[x].

So I[k] is a normal ideal. But it need not be a proper ideal, i.e., it could
be that r itself belongs to I[k]. For example, if Weak Square holds at u then
pt belongs to I[ut]: We can witness Weak Square with a sequence (C, |
limit, @ < p*) such that each C, contains a club of ordertype cof(«). Let
(ag | B < p') enumerate |J, Cy; then almost all o < p* are approachable
relative to (ag | 5 < pt). In particular, p=* = p implies that u* belongs to
I[pt]. Without any cardinal arithmetic assumption we have:

Proposition 7 If p is reqular then Cof(< p) N p* belongs to I[u*].

To prove Proposition 9 we introduce partial squares.



7.-8.Vorlesungen
Partial Squares

In the Shelah tradition of proving weakenings of combinatorial principles
in ZFC, we look at partial squares. (This will also be useful when studying
the next topic, approachability.) Let S be a subset of {a < p* | cof(a)) = A}.
We say that S carries a partial square iff there is (C, | o € S) such that
each C, is club in « of ordertype A and whenever 3 is a common limit point
of Cy,, Cq, for two ag, a; in S, then we have C,, N 3 = C,, N .

Theorem 8 (Shelah) If A < u are reqular then {o < p* | cof(a) = A} is the
union of u sets, each of which carries a partial square.

Proof. We may assume that A is uncountable. Fix some large regular 6 and
let M be the structure (H(6), €, <g) where <y is a wellorder of H(#). For
a < p't of cofinality A and ¢ < u we let M(a, ¢) be the Skolem hull of {a}U(
in M.

For each a < p* of cofinality A choose ((«) to be the least ¢ > A such that
M (a, ¢) N is an ordinal of uncountable cofinality. Set NV, = M (o, ((«)) and
note that F, = N, N « is unbounded in .

We claim that E, is w-closed. To see this, let x C E, have ordertype w, let 3
be the sup of z and let 7 be the least element of £, \ 3. We want to show that
[ = ~. Note that as v belongs to N,, IV, contains an increasing cofinal map
f from cof() into v and f restricted to N, N cof(y) is cofinal into N, N .
Now as NV, N p is an ordinal, if cof(y) < p then the range of f is contained
in N,, and so N, N~y = E, N~ is cofinal in 7, as desired. So cof(y) equals p.
Thus cof(N, N7y) = cof(N, N ), which is impossible as cof(N, Ny) is greater
than w while cof(N, N~v) = cof(N, N F) = w.

Let D, be the closure of E, as a set of ordinals. For p,oc < p we define
S(p,o) ={a | NoNu = p, ot(D,) = o}. We show that each of these sets
carries a partial square, witnessed by clubs C,, contained in D,,.

We first show that if «, @* belong to S(p, o) and v is a common limit point of
D,. D, then D, N~ equals D, N~. If v has cofinality w then by the above
v belongs to N, N N,~; as 7y has size at most g and N, N @ equals Ny N p it
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follows that N, N~y equals N, N~. If v has uncountable cofinality then ~ is
a limit of n of cofinality w which are common limits of D, D,~; we then just
showed N, Nn = N, Nn for such n and therefore N, N~y equals N+ N .

Finally, fix C' C o a club of ordertype A and set C,, = {y € D, | ot(D,N7) €
C'}. This thinning of the D, sequence preserves coherence and therefore we
have a partial square on S(p, o), as desired. O

Now we show:
Proposition 9 If p is reqular then Cof(< ) N p* belongs to I[u*].

Proof of Proposition 9. Tt suffices to show that for each regular A < u, Cof(A)N
pt belongs to I[u*]. Recall that Cof(\) N u™ is the union of pu sets, each of
which carries a partial square. It suffices to show that if S is one of these sets
then S belongs to I[u"]. Let (C, | @ € S) be a partial square sequence on
S. For ~ a limit point of some C, let D, be C, N~ for all such o. Then the
sequence (D, | v < pu*) witnesses the approachability of S. O

Thus for regular u, the ideal I[p™] is only interesting on Cof(u). As men-
tioned earlier, Mitchell constructed a model using a Mahlo cardinal in which
Weak Square fails at w;; it can be verified that also in this model, u™ does
not belong to I[u*].

For singular u, we’ll show that I[u™] does contains stationary sets on any
cofinality (however it need not be the case that Cof()\) belongs to I[u"] for
each regular A < p). This follows from the following more general result of
Shelah:

Theorem 10 Let k < kT < 0 < X be reqular. Then there is a subset A
of Cof(k) N A which belongs to I\ such that AN o is stationary in 6 for
stationary many § in Cof(0) N X\ (and in particular A is stationary).

Proof. We use the concept of internally approachable (IA) chain. If A is a
structure (H(e), €, <,...) with € large and regular, <. a wellorder of H(e)
and ... countably many additional constants, functions and relations and ~
is a limit ordinal, then an IA chain of substructures of A of length 7 is a
continuous and increasing sequence (M; | i < ) of elementary substructures
of A such that (M, | ¢ << j) belongs to M for each j < ~. Of course for
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uncountable regular v and any subset x of A of size < 7 it is easy to build
an A chain of length ~ of substructures of A of size less than ~ containing
x as a subset.

Now let (C¢ | £ € Cof(k) N @) be a club guessing sequence, which exists
because kT is less than 6. Let (M; | ¢ < A) be an IA chain such that (C¢ |
¢ € Cof(k) N @) is a subset of My and each M; has size less than A. Let
(a; | i < A) enumerate the bounded subsets of X in (J,_, M;. The desired
set A is the set of v < A of cofinality x which are approachable relative to
the sequence (a; | i < A). We must show that A NJ is stationary in § for
stationary many ¢ € Cof(6) N .

If not then A N9 is nonstationary in § for almost all § < A of cofinality 6. It
follows that we can build an IA chain (N; | j < ) of substructures of size ¢
such that Ny contains (C¢ | £ € Cof(k) N 6) as a subset and (M; | i < ) as
an element and setting 6 = sup({J,;y N; N A), we have AN is nonstationary
in 9.

For j < 0 let a; be sup(N; N A); then the sequence of «;’s is continuous
and cofinal in 6. Also choose (3; | j < ) in Ms;y to be continuous and
cofinal in 6. Then e = {j < 6 | o; = f;} is club in 6 so by club-guessing,
C¢ is contained in e for stationary many { € Cof(k) N 6. For such a £ let
c={a;|jeC} ={0;]j€ Ce}. The proper initial segments of ¢ lie both
in Ve and in Msy,. If 2 is such a proper initial segment of c then N¢ sees that
x belongs to some M; and so x bleongs to M; for some ¢ in N¢ N A; hence x
belongs to M,,. Thus by definition of A, ¢ witnesses that a¢ belongs to A.
As this holds for stationary many &, we have shown that AN ¢ is stationary
in 0, contradiction! O

To summarise: For regular u, I[u™] contains Cof(A)Npu™ for regular A < p;
it may fail to contain Cof(u) N u™. For singular p, I[u*] contains stationary
subsets of Cof(\) Nyt for any regular A < u. For weakly inaccessible k, I[x]
contains stationary subsets of Cof(A) Nk for any regular A\ < k. |Questions:
For uncountable regular p is it possible that I[u™] contain only nonstationary
subsets of Cof(u)? For singular u is it possible that I[u™] fails to contain
Cof(A) Nt for all uncountable regular A < u? For weakly inaccessible p is
it possible that I[y] fails lto contain Cof(X\) N p for all uncountable regular
A< pu?
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9.-10.Vorlesungen
Approachability and Forcing

Shelah originally introduced approachability to answer the question of
when p-closed forcing preserves the stationarity of subsets of Cof(u). For
this purpose it is convenient to note that approachability can be formulated
in an equivalent way using elementary submodels. Let 6 denote a large re-
gular cardinal and A a structure of the form (H(0), €, <q,...) where <y is
a wellorder of H(#) and ... represents countably many additional functions,
relations and constants. Then v < k is approachable relative to A if there is
an unbounded A C v of ordertype cof(y) such that each proper initial seg-
ment of A belongs to Sk*(7) (the set of elements of H(6) which are definable
in A from parameters less than ; Sk stands for “Skolem hull”). Tt is easy to
see that S C k belongs to I[x] iff for some A as above, almost all elements
of S are approachable relative to A.

Proposition 11 Suppose that r is reqular and uncountable.

(a) If S C kN Cof(w) is stationary then countably closed forcing preserves
the stationarity of S.

(b) More generally, if S C kN Cof(p) is stationary and belongs to I[k] then
wh-closed forcing preserves the stationarity of S.

Proof. We prove (b). Let the structure A = (Hy, €, <y, ...) witness S € [[x]
for some large 6 and let P be a pu*-closed forcing, p a condition in P forcing
C to be a club in . Expand A to A* so as to include P, p, C. Now consider
the club C of all v < & such that v = kN Sk™" (7) and choose v in C'NS. Also
let A C v be unbounded of ordertype p such that all proper initial segments
of A belong to Sk*"(7). Now the point is that if we successively extend p
in u steps in the <y-least way, at step ¢ forcing an ordinal greater than the
i-th element of A into C, then the resulting conditions belong to Sk (v) by
the choice of A. Therefore a lower bound to these conditions forces that C' is
unbounded below 4. Tt follows that p has an extension forcing v € S into C,
proving that the stationarity of S is preserved. O

There is a kind of converse to this result: Suppose that x<* = k and S
is the set of points of cofinality u approachable with respect to a universal
enumeration of [k]<#. Also suppose that pu<* = p. Now consider the forcing
whose conditions are closed bounded subsets ¢ of  of ordertype less than p*
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such that ¢ N Cof(p) is contained in S and the bounded subsets of ¢ of size
less than p appear in the universal enumeration before stage max(c). Then
this forcing is p*-closed and kills the stationarity of Cof(u) N (k\ S). (We'll
see later that it is indeed possible for Cof(u) N (k\ S) to be stationary, even
when GCH holds and p = wq, k = Ny41.)

Scales, good points and exact upper bounds

Given an index set X and an ideal I on X we can order the functions
from X into Ord by: f <; g iff {z | f(x) > g(z)} € I. Define =y and <; in
the obvious way. A <; increasing sequence (f; | ¢ < «) has an ezact upper
bound (eub) iff there is an f such that f; <; f for all i and every g <; f
satisfies g <; f; for some i. If f exists then of course it is unique modulo the
ideal 1.

Suppose f : X — Ord. A scale of length o in [ [ f(x)/1 is a <; increasing
sequence (f; | i < «) in [[y f(x) which is cofinal in [[y f(z) under the
relation <;. In this case it follows that f is an eub for (f; | i < «) and
conversely, if f is an eub for (f; | ¢ < «) then (f/ | i < a) forms a scale in
[Ix f(x), where f/(x) = f;(x) if the latter is less than f(x), 0 otherwise.

Weaker then eub is lub (least upper bound). f is an lub for (f; | i < «) iff
fi <1 f for each ¢ and every function which is below f on an I-positive set
is below some f; on an I-positive set.

Also note the following: If f = (f; | i < 7) and § = (g | 7 < 9) are
cofinally interleaved in the sense that {h | h <; f; for some i} = {h | h <; g;
for some j} then fhas an eub iff § has an eub and these eub’s are equal
modulo 1.

Our goal is to use the nontriviality of the approachability ideal to build
scales, or equivalently, to build sequences with eub’s. A key concept for achie-
ving this is that of a good point. Suppose that [ is an ideal on X and
let (f; | © < 7) be <; increasing. A limit ordinal a < ~ is a good point
iff cof(a) > card(X) and there is an eub h for (f; | ¢ < «) such that
cof(h(z)) = cof(a) for all z. Equivalently: There is a pointwise increasing
sequence (h; | j < cof(ar)) cofinally interleaved modulo I with (f; | i < ).
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Theorem 12 Let card(X) < k < A with £ and X regular. Suppose that
(fi |1 <)) is a <;increasing sequence with stationarily many good points of
cofinality k. Then there exists an eub h such that cof(h(x)) > k for all x.

11.-12.Vorlesungen

Proof. First we construct an lub and then show that this lub is in fact an
eub.

Step 1. By induction we construct functions g; such that f; <; g; for all ¢
and for ji < j2, 95, <1 91> 9j» #1 9j,- Start by choosing gy to be any upper
bound, and for all j if g; fails to be an lub for (f; | i < A) we choose g;1; to
witness this failure.

For limit p set S,(z) = {g;(x) | j < p} and define / (z) = min(S,(z) \
fi(z)). We claim that for p < card(X)*, (R}, | i < A) is eventually constant
modulo /. If not, we find y good of cofinality « such that i, does not stabilise
for large i < y and fix (H, | ¢ < k) pointwise increasing and cofinally interlea-
ved with (f; | ¢ <~). The function z — min(S,(x) \ H¢(x)) cannot stabilise
for large ( < k, but this is impossible because card(S,(z)) < card(X) < k.
We now choose g, so that g, =; hZ for all large 7.

We show that this construction stops in fewer than card(X)™ steps. Sup-
pose not. For each z and each i the value of h/ () will stabilise for large limit
p < card(X)™T since the smallest value which will ever appear must turn up
at some point. So for each i < A the function hﬁt stabilises for large limit .
Thus there is an unbounded B C A and a fixed v such that for i € B, h, is
constant for limit p > v. If v < 1y < po we may choose ¢ € B large enough
so that g,, =; R}, and g,, =; hl,, yielding g,, =; g,,, contradicting the
choice of the functions g;.

So the construction halts at some stage before card(X)™*, producing an
lub g¢.

Step 2. Suppose now that our lub g from Step 1 is not an eub. Then we may
find h <; g such that the set S; = {z | fi(z) < h(x)} is I-positive for all i. We
claim that this sequence of sets is eventually constant modulo I. If not, then
we find a good point 7 of cofinality x such that S; does not stabilise modulo
I for large i < 7 and fix (H; | ¢ < k) pointwise increasing and cofinally
interleaved with (f; | i < A\). If D, = {x | H¢(z) < h(x)} then D, cannot
stabilise for large ¢, but this is impossible because D¢ decreases with ¢ and
card(X) < k.
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Let S be such that S; =; S for large i and define ¢g* so that ¢g* agrees
with h on S and with g on the complement of S. Then by construction, g*
is an upper bound for the f;’s and ¢* is below g on an I-positive set, which
is impossible since ¢ is an lub.

To finish we must check that cof(g(x)) > k for almost all z. This follows
from an argument similar to that we gave in Step 1 that hz stabilises for
large ¢. O

Remark. The converse of the above result is also true: Let C' be a cub subset
of A and build an TA chain (M | j < k) of structures of size less than x with
union M such that v = sup(M N A) belongs to C. Then the function h given

by x — sup(M N h(z)) is an eub for the f;’s with cof(h(x)) = x for each x.
Building scales, goodness and approachability

As a first application of the nontriviality of the approachability ideal and
the previous result about eub’s, we prove:

Theorem 13 There is an infinite A C w and a scale of length N1 in
[1,ca Rn/Fin.

Proof. Choose some large 6 and build an internally approachable chain (M, |
a < W,41)in (H(0), €, <y) consisting of structures of size Y, with M, NN,
an ordinal. Let g, be the <y least function which dominates modulo finite
all functions in M, N[, Nn-

Recall that I[X,, 1] contains a stationary subset of Cof(Xy,) for each finite
k. Now note the following:

Lemma 14 Let A denote (H(0), €, <g). Let S belong to I[R,11], S C Cof(Ry).
Then for almost all v in S there is an internally approachable chain (N; |
i < Ny,) of substructures of A with union N C M., such that card(N;) < Xy
for all i, sup(N NV, 1) =~ and M, € N for cofinally many o < +.

Proof of Lemma. Expand A to B by adding a predicate for a sequence of
bounded subsets of N1 witnessing that S belongs to I[R, 1] and build an
IA chain (M} | o < N,4q) of substructures of B with card(M}) = R, and
M>NR, 1 an ordinal. Also assume that (M, | o < X,;1) belongs to M. Now
choose v in S so that v = M> NN, ;. Fix a sequence (v; | j < ¥},) continuous
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and cofinal in v such that (y; [ i < j) belongs to M, for each j. Then take
N; to be the Skolem hull in M of the set of parameters {P; | j < i} where
Pj = (M, |i<j). Then the N;’s have the desired properties. O (Lemma)

Now fix a finite £ and apply the Lemma to almost all v € S to obtain the
sequence (N; | i < Ry). Define h; to be the function m — sup(NV; N R,,) and
h to be the function m — sup(N NY,,). Then h is an eub for (h; | i < Vi) as
cof(h(m)) = Xy, for all m.

We claim that (h; | ¢ < R;) and (g, | @ < 7y) are cofinally interleaved. On
the one hand, each h; is defined from the corresponding N;, so h; belongs to
M., and hence for some 3 < v, h; belongs to Mg and is dominated modulo
finite by gg. Conversely, for cofinally many o < v, M, belongs to N so g,
belongs to N; for some ¢ < N and is dominated everywhere by h;. It follows
that h is an eub for (g, | @ < 7).

Applying Theorem 12 our sequence (g, | @ < N,41) is increasing modulo
finite and for each k£ has an eub g such that gx(n) has cofinality greater
than W, for each n. Let g be an eub for (g, | @ < Ny41); it follows that for
each k the set {n | cof(g(n)) = Ny} is finite. Let A be the set of k such that
cof(g(n)) = Ny for some n. For each k € A and each n with cof(g(n))) = Ny
fix (B | i < Ny) increasing and cofinal in g(n). If we now define f,(k) to
be the least i such that g,(n) < G for all n with cof(g(n)) = W, then
the sequence of f,’s can be thinned out to give a scale of length R ,; in
[1)c4 ¥/ Fin. For future use note that if X is the set of good points for the
sequence (g, | @ < N,41) then the resulting scale is good at almost every
point in X. O

13.Vorlesung
Square principles and scale properties

Recall that a scale of length ocin [ ], f(x)/1 is a <; increasing sequence
(fi | i < ) in [],cx f(x) which is cofinal in [],_ f(2) under the relation
<7. Equivalently, f is an ezact upper bound for the sequence (f; | i < a):
fi <r f for each © < o and whenever g <; f, we have g <; f; for some 7. A
limit ordinal 8 < « is a good point of (f; | i < «) iff cof(3) > card(X) and
there is an exact upper bound f for (f; | i < ) such that cof(f(x)) = cof(53)
for each x.
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We focus now on scales of length X, in products [ ], , X, /Fin where A
is an infinite subset of w and Fin is the ideal of finite sets. We proved:

Theorem 15 There is a stationary subset X of Cof(Rg) N Ryiq in I[Ny11]
(even concentrating on a single cofinality Wy ). And for any such X there is
an A C w and a scale of length Ry 1 in [] -4 N/ Fin for which almost every
element of X is a good point.

neA

If we assume approachability, i.e., that the entire R, belongs to I[X,1],
then we can do better: we get a good scale, i.e., a scale as above for which every
element of Cof(> w)NN,, 11 is good. The reason is as follows: Theorem 15 gives
us a scale (f, | & < N,41) which is good at almost every point of uncountable
cofinality. Fix a club C such that every limit point of C' of uncountable
cofinality is good and enumerate C' as (q; | i < ®,11). Now consider the new
scale given by ¢; = f,,. If 7 has uncountable cofinality then «; is good and
we may fix an EUB h for (f, | @ < «;) such that cof(h(n)) = cof(i) for all n;
the sequence (g; | j < ¢) is cofinal in (f, | @ < ;) so h is also an EUB for
(gj | 7 <) and thus 7 is a good point for (g; | j < Ny41).

If we assume Oy , a hypothesis stronger than approachability, we can
obtain a wvery good scale. (fo | a < W,11) is very good iff for every limit
a < N, of uncountable cofinality there is a club C' C « such that for some
n, (fa(m) | @ € C) is strictly increasing for all m > n. If (C, | o < R,4q)
is a square sequence then start with an arbitrary scale (g, | o < N,q1).
We may assume that each C, has ordertype less than R,. Now construct
fa to dominate g, pointwise and arrange that for limit «, f,(m) > fs(m)
for f € Lim (C,) and for m such that ot(C,) < X,,. A similar construction
works assuming only Oy, , for some finite n.

Weak square, i.e. the principle Oy v, is sufficient to obtain a better scale,
a notion between good and very good. A scale (f, | o < N 41) is better iff
for limit a < W thre is a club C' C « such that for every § € C there
is an m such that f,(n) < fz(n) for all y € C'N G and n > m. Suppose
that (C, | @ < N, 41) is a weak square sequence and assume ot(C) < X, for
each club C in some C,. At stage a we form fo for each C' € C, by defining
fo(m) = sup{fs(m) | B € C} when ot(C) is less than X,,. Then choose f,
to dominate mod finite all fo, C' € C,.

14.-15.Vorlesungen
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Square principles and forcing axioms

We show that MM (Martin’s Maximum) implies that there is no good
scale. So MM refutes the approachability property N .1 € I[X,.1], which
can be viewed as a very weak square principle.

Theorem 16 MM implies that there is no scale which is good at almost
every point of cofinality N;.

Proof. We define a Namba-like forcing P which adds a new function to [ [ N,,.
A condition is a tree T such that each ¢ € T is a finite sequence with ¢(n) €
N, 12 N Cof(w) for n < length (¢). A condition is required to have a “stem”
s such that every ¢t € T is comparable with s and if ¢ extends s then {« |
tx o € T'} is stationary in Nlength ()12 P is ordered by inclusion.

For T},T5 in P, we say that T} is a direct extension of T,, and write
Ty <* Ty, iff T} extends T, and has the same stem. Clearly if S extends T’
then S <* T, where s is the stem of S and T consists of the elements of T’
comparable with s.

Claim 1. If 7 is a name for a countable ordinal and S is a condition then S
has a direct extension which evaluates 7.

Proof. Let s be the stem of S, of length n. If the claim fails, then for sta-
tionarily many o € N,,;5 we have s * « in S and no direct extension of Sy,
evaluating 7 (otherwise by Na-completness, S would have a direct extension
evaluating 7). Repeating this argument, we may work up the tree to build
a direct extension U of S such that for every t € U extending s, there is no
direct extension of U; evaluating 7. But this is impossible as some extension
of U evaluates 7 and is a direct extension of U; for some ¢ extending s. O

Similarly, if S has a stem of length n and 7 is a name for an element of
N,,.1 then there is a direct extension of S which evaluates 7.

Let f € [, Nn42 be the generic function added by P and let f be a
P-name for it.

Claim 2. 1f S forces ¢ < f then there is a direct extension 7" of S and a
function A in [, R,12 NV such that T" forces g < h.
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Proof. For simplicity of notation, assume that the stem of S is empty. For
each a such that (c) belongs to S choose a direct extension of S, evaluating
g(0). By Fodor we may thin out to obtain a direct extension of S evaluating
§(0). Working up the tree level by level we build a direct extension 7" of S
such that for every ¢t € T, T; evaluates ¢ (length (t)) < Niength (142 As
there are only N,, .1 nodes t of length n, it follows that T" produces a function
in the ground model bounding g. O

Claim 3. P is stationary-preserving.
16.Vorlesung

Proof of Claim 3. Fix A a stationary subset of w;, C' a name for a club and
S a condition. We find U < S and § € A such that U forces § € C. To ease
notation, assume that S is the trivial condition.

We can assign to each («) in S an ordinal v, so that for each i < wy
there are stationarily many a € wy, N Cof(w) such that v,y = 7. Now using
Claim 1, find an extension S’ of S with the same first level as S such that
Slay evaluates min(C'\ 7ay) to some ordinal §y.

Repeating this, we thin out level by level to obtain a direct extension T’
of S together with an assignment of +; and d; to t in T such that T; forces
that min(C'\ ;) = d;, and for every t and i < w; there are stationarily many
a with g = 1.

Now for each countable ¢ consider the game G5 in which the players
build a branch through 7: At round n player I chooses a nonstationary
set A, C N,.o and a countable ordinal (3, < 9; player II responds with
an ¢ Ay. Player 11 loses immediately if (o, ..., an) € T 0r Yiag,...an) < Bn
O O(ag,....an) = 0.

The game Gy is open so is determined. Let X be the set of § such that
has a winning strategy in (G5 and fix such strategies 75, 6 € X.

We claim that X is nonstationary. If not, choose a countable N elementary
in some large H(#) such that N contains all relevant parameters and § =
N Nw; belongs to X. We will describe a run of the game G5 in which player
I plays according to his (supposedly winning) strategy 75 while player 17
plays ordinals from N and never loses.
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This run is described as follows: If 11 has played «ay, ..., ai_1 then let 3
be the ordinal part of the strategy 75’s response. We consider the union over
all v € X of the nonstationary sets provided by the various strategies 7, in
response to g, ..., ax_1; this union is a nonstationary subset of V.o lying
in N, and as (3, belongs to N we may choose a suitable ay in N. The key
point is that the map s +— d, belongs to IV so the requirement d(o,,... a,) <9
is guaranteed.

Now choose ¢ in the stationary set A so that player I/ has a winning
strategy p in the game Gs. Choosing (d, | n € w) to be increasing and cofinal
in 0 we use p to thin out 7" to U <* T such that for all u € U of length n
we have 6, < 7, < d, < 6. Then U forces that ¢ is a limit point of C' and
therefore belongs to C. O

Now we show that MM kills good scales. Let A denote N,. Suppose that
(ga | & < AT) were a good scale in [],_, R, (A infinite). For simplicity we
assume that A equals w. We apply MM to the poset @ = P * Coll (wy, AT),
whose second factor is the w-closed forcing that collapses A™ to w;. Then Q
is stationary-preserving and forces:

1. cof(AT)Y) = card((AT)Y) = wy.
2. There is a function h € [, . (R,NCof(w)") which is an exact upper bound
for (go | a < (AT)Y).

In a @-generic extension we may choose for each n a countable set S, €
V' which is cofinal in h(n). We may also choose an increasing and cofinal
sequence (o | i < wq) in (AT)Y such that for each i there is H; € [], S, with
o, < HZ < Jaqq-

Now go back to V. Let C' be a club in A*. Applying MM we may obtain
countable sets S C N,, and increasing (o] | ¢ < wy) with 6 = sup; ¢} in
C, and functions H; € [, S}, such that g,r <* H <" gas,, for each i. But
then ¢ cannot be a good point, i.e., there can be no unbounded A C ¢§ and
m < w such that the sequence (g,(n) | @ € A) is strictly increasing for
n > m: For, given such an A and m, we may find an increasing sequence
(Bi | i < wi) from A and corresponding (H} |< w) from [] Sy such that
9s; <" H; <" gg,,,- But then we can fix n > m and B C w; unbounded such
that gg,(n) < Hj(n) < gp,,,(n) for all i in B. This contradicts the fact that
H? (n) belongs to the countable set .S} for each i!
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So we have shown that there are stationarily many bad points ¢ of cofi-
nality wy, as desired. O
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