
Singular Cardinal Combinatori
s, Sommersemester 20101.-2.VorlesungenThese le
tures are based on an arti
le of James Cummings (Notes onSingular Cardinal Combinatori
s, Notre Dame Journal, 2005). Topi
s 
overedin
lude diamonds, squares, 
lub guessing, for
ing axioms and PCF theory. Myintention is to follows the notes quite 
losely, as they are very well-written,but I will add a few proofs whi
h James skips and pose some Questions whi
h
ome to mind but are not answered in the arti
le.DiamondsLet κ be regular, un
ountable and S a stationary subset of κ.
♦κ(S): There is (Sα | α ∈ S) su
h that for any X ⊆ κ, X ∩ α = Sα forstationary-many α in S.Theorem 1 (Jensen) Assume V = L. Then ♦κ(S) holds for all un
ountableregular κ and all stationary S ⊆ κ.Proof. We may assume that S 
onsists only of limit ordinals. De�ne Sα byindu
tion on α ∈ S: Let (x, c) be the L-least pair su
h that
(∗)α x is a subset of α.
c is 
losed unbounded in α.For β in S ∩ c, x ∩ β does not equal Sβ,if su
h a pair (x, c) exists; set (x, c) = (∅, ∅) otherwise. We 
hoose Sα to be
x.Now we 
laim that (Sα | α ∈ S) witnesses ♦κ(S). If not, then let (X,C) bethe L-least pair su
h that
(∗)κ X is a subset of κ.
C is 
losed unbounded in κ.For β in S ∩ C, X ∩ β does not equal Sβ.Let M be an elementary submodel of some large Lθ whi
h 
ontains κ as anelement and whose interse
tion with κ is an ordinal α < κ. Then α belongs to1



C and we may in fa
t 
hoose M so that α also belongs to S as S is stationary(the set of 
andidates for α 
ontains a 
losed unbounded subset of κ). Nowlet π : M ≃ M̄ be the transitive 
ollapse of M and noti
e that π(X,C, κ)equals (X ∩ α,C ∩ α, α). It follows that (X ∩ α,C ∩ α) is the M̄ -least pairsatisfying (∗)α, therefore also the L-least pair satisfying (∗)α, and therefore
X ∩ α equals Sα. But as α belongs to S ∩ C, this 
ontradi
ts the 
hoi
e of
X! 2A ni
e 
onsequen
e of ♦ω1

(i.e., ♦ω1
(S) where S equals all of ω1) is theexisten
e of a (ni
e) Suslin tree, i.e., an un
ountable suborder T of <ω12 su
hthat

T 
ontains σ ∗ 0, σ ∗ 1 for ea
h σ in T .Ea
h σ in T 
an be extended to a τ in T of any larger 
ountable length.
T has only 
ountable anti
hains.The levels Tα of T are build by indu
tion, the interesting 
ase being the
hoi
e of limit levels (we 
annot take all bran
hes through lower levels, asthis would give un
ountably many bran
hes and therefore an un
ountableanti
hain). What we do is �x a ♦ω1

sequen
e (Sα | α < ω1) and view Sαas a subset not of α but of T<α, by enumerating the elements of T<α in a
anoni
al way; then form Tα by 
hoosing bran
hes through T<α below ea
h ofits elements whi
h hit Sα (if possible) and pla
ing at level α the unions of allof the 
hosen bran
hes. Now if X is a maximal anti
hain in the resulting tree
T it follows by ♦ω1

that X ∩ T<α equals Sα for some α and therefore everyelement of Tα lies above an element of X; it follows that X equals X ∩ T<αas any element of T of length greater than α lies above an element of Tα andtherefore an element of X ∩ T<α.
♦κ(S) implies κ<κ = κ, be
ause if (Sα | α ∈ S) witnesses the former thenany bounded subset of κ will be equal to some Sα and there are only κ-manysu
h Sα's. There is a partial 
onverse:Theorem 2 (Gregory, Shelah) Let κ = λ+, λ an un
ountable 
ardinal, µ =
of(λ), T = {α < κ | 
of(α) 6= µ}. Assume 2<λ = λ and 2λ = λ+ (this followsfrom GCH). Then ♦κ(S) holds for all stationary S ⊆ T .A
tually we will prove something stronger than ♦κ(S). Consider:2



♦′
λ+(T ): There is (Sα | α ∈ T ) su
h that Sα is a size at most λ subset of

P(α) for ea
h α ∈ T and for all X ⊆ λ+, X ∩ α ∈ Sα for stationary-many αin T .
♦∗

λ+(T ) is the same as ♦′
λ+(T ), ex
ept we strengthen the 
on
lusion to: X ∩

α ∈ Sα for all α in C ∩ T for some 
lub C in λ+.A
tually, ♦′
λ+(S) is equivalent to ♦λ+(S) for all S: The latter 
learlyimplies the former, so we need only show that a♦′

λ+(S) sequen
e (Sα | α ∈ S)
an be 
onverted into a ♦λ+(S) sequen
e (Sα | α ∈ S). We assume that thegiven ♦′
λ+(S) sequen
e in fa
t guesses subsets of λ × λ+, so it spe
i�es forea
h α < λ+ a sequen
e (Si

α | i < λ) of subsets of λ × α. Now we 
laimthat for some i < λ, (T i
α | α ∈ S) serves as a ♦λ+(S) sequen
e, where

T i
α = {β < α | (i, β) ∈ Si

α}. If not, then �x for ea
h i < λ a pair (Xi, Ci)(with Xi ⊆ λ+, Ci 
lub in λ+) su
h that T i
α di�ers from Xi∩α for α in Ci∩Sand 
onsider the interse
tion C of the Ci's and X = {(i, α) | α ∈ Xi}. Butthere is α ∈ C ∩ S and i < λ su
h that X ∩ (λ × α) = Si

α and therefore Xiequals T i
α, 
ontradi
ting the 
hoi
e of (Xi, Ci).Also note that ♦∗

λ+(T ) implies ♦′
λ+(S) for all stationary S ⊆ T .Proof of Theorem 2. We prove ♦∗

λ+(T ). Write ea
h α < λ+ as ⋃
j<µ aα

j wherethe aα
j 's in
rease with j and have size less than λ. Also let (xi | i < λ+) listthe bounded subsets of λ+.For any X ⊆ λ+, the set C = {δ < λ+ | For all γ < δ there is i < δsu
h that X ∩ γ = xi} is 
lub in λ+. And for any α ∈ C we 
an 
hoose

(αi | i < 
of(α)) below α su
h that the xαi
's are in
reasing under in
lusionand X ∩ α =

⋃
i<
of(α)

xαi
.Now suppose that α belongs to C and 
of(α) is not µ. Then we 
an repla
ethe sequen
e (αi | i < 
of(α)) by a subsequen
e, also of length 
of(α), so thatit is 
ontained in some single aα

j , j < µ.Now we de�ne
Sα = {x ∈ P(α) | For some j < µ and some y ⊆ aα

j , x =
⋃

i∈y xi}.Using 2<λ = λ it follows that ea
h Sα has size at most λ and the above showsthat it serves as a ♦∗
λ+(T ) sequen
e, as desired. 23



Theorem 2 is optimal in the sense that GCH does not imply ♦λ+(S) when
S equals λ+∩Cof(λ). (For example, GCH is 
onsistent with the nonexisten
eof a Suslin Tree, and therefore with the negation of ♦ω1

.) [Question: Is GCH
onsistent with the failure of ♦λ+(λ+ ∩ Cof(λ)) for all λ?℄The ♦ Ideal. For a regular un
ountable κ, I♦κ
is the set of S ⊆ κ su
h that

♦κ(S) fails. It 
an be shown that this is a normal ideal on κ 
ontaining thenonstationary ideal. In L it equals the nonstationary ideal and if there areno Suslin trees then I♦ω1
is improper, i.e., 
onsists of the full power set of ω1.[Question: What other possibilities are there for I♦ω1

and more generally for
I♦κ

?℄ 3.-4.VorlesungenFirst a remark about ♦: We showed that under GCH, ♦λ+(S) will holdif S is a stationary subset of λ+ disjoint from the 
riti
al 
o�nality 
of(λ).Conversely, Shelah showed that for any un
ountable 
ardinal λ in a mo-del of GCH, one 
an for
e ♦λ+(S) to fail for some stationary subset S ofCof(λ), preserving 
o�nalities and GCH. It is however open if one 
an for
e
♦λ+(Cof(λ)) to fail for a singular λ under GCH.Club GuessingClub guessing holds for κ and S ⊆ κ i� there exists (Cα | α ∈ S) where
Cα is 
lub in α and for all 
lubs C ⊆ κ, Cα is 
ontained in C∩α for stationarymany α in S. This is a weakening of ♦κ(S).Theorem 3 (Shelah) For λ < κ regular with λ+ < κ, 
lub guessing holdsfor κ and any stationary S ⊆ κ ∩ Cof(λ).Proof. For E,F 
lubs in α de�ne pd(E,F ) = {sup(F∩γ) | γ ∈ E, F∩γ 6= ∅}.(We �push down� E onto F .)Now start with an arbitrary sequen
e (Cα | α ∈ S) with Cα 
lub in α ofordertype λ. We de�ne a de
reasing sequen
e of 
lubs Ei in κ (of some length
≤ λ+) and de�ne (Ci

α | α ∈ Lim (Ei) ∩ S) by setting Ci
α = pd(Cα, Ei ∩ α).We start with E0 = κ. Given Ei, we assume that (Ci

α | α ∈ Lim (Ei) ∩ S)fails to have the 
lub guessing property and 
hoose Ei+1 ⊆ Lim (Ei) to be a
lub so that for all α in Ei+1 ∩ S, Ci
α is not 
ontained in Ei+1 ∩ α. For limit

λ we take Eλ to be the interse
tion of the Ei, i < λ.4



We 
laim that Ei+1 is unde�ned for some i < λ+ (and hen
e the theorem isproved). Otherwise let E be the interse
tion of the Ei's and �x some α in
E ∩ S. Then α belongs to Lim (Ei) ∩ S and Ci

α = pd(Cα, Ei ∩ α) for ea
h
i < λ+. For ea
h γ ∈ Cα, the sequen
e of suprema (sup(Ei ∩ γ) | i < λ+) isnonin
reasing so must stabilise. Sin
e Cα has ordertype λ we 
an �nd i < λ+large enough so that this stabilisation has o

urred for every γ ∈ Cα, so
Ci

α = Ci+1
α ⊆ Ei+1. But sin
e α belongs to Ei+1 ∩ S, this 
ontradi
ts our
hoi
e of Ei+1. 2Cummings says that there are many interesting variants of 
lub guessing,and refers to work of Ishiu for further information about them. [Question: Isit 
onsistent for Club Guessing to fail for λ+ and Cof(λ) ∩ λ+ for all regular

λ?.℄ SquaresFor an un
ountable 
ardinal µ, 2µ asserts that there exists (Cα | α < µ+, αlimit) su
h that ea
h Cα is a 
lub in α of ordertype at most µ and the Cα's
ohere with ea
h other: ᾱ ∈ Lim (Cα) implies Cᾱ = Cα ∩ ᾱ.It is worth noting that without added strength we 
an impose a furtherrequirement on the 2µ sequen
e: If α has 
o�nality less than µ then Cα hasordertype less than µ. To a
hieve this, �x a 
lub C in µ of ordertype 
of(µ) andwhenever ot(Cα) belongs to C∪{µ}, repla
e Cα by {β ∈ Cα | ot(Cα∩β) ∈ C};also, whenever ot(Cα) does not belong to C∪{µ}, repla
e Cα by Cα \ (β +1),where β is the largest element of Cα with ot(Cβ) in C.In L, 2µ holds for every µ. To kill 2µ for a regular µ one only needs toLévy 
ollapse the least Mahlo 
ardinal greater than µ to be
ome µ+. Killing
2µ for a singular µ requires mu
h stronger large 
ardinal hypotheses. It istypi
ally done by starting with a super
ompa
t.Proposition 4 Suppose that κ is λ+-super
ompa
t, κ ≤ λ. Then 2λ fails.Proof. First note that if S ⊆ λ+ is a stationary subset of Cof(< κ)∩λ+ thenfor some α < λ+ of un
ountable 
o�nality, S ∩ α is stationary in α: Choosea regular γ < κ so that S ∩ Cof(γ) is stationary. Then as γ is less than the
riti
al point of j, it follows that j is 
ontinuous at ordinals of 
o�nality γand therefore j[S] is a stationary subset of α = sup(j[λ+]) < j(λ+). Also by5



the λ+ super
ompa
tness of j, j[S] belongs to M and therefore in M thereis an α < j(λ+) su
h that j(S) ∩ α is stationary. By elementarity it followsthat in V there is α < λ+ su
h that S ∩ α is stationary.Now note the following general fa
t: If 2λ holds then any stationary subset of
λ+ 
ontains a nonre�e
ting stationary subset of λ+, i.e., a stationary subset
T of λ+ su
h that T ∩ α is nonstationary for all α < λ+ of un
ountable
o�nality. For, given any stationary S ⊆ λ+, by Fodor we 
an 
hoose astationary T ⊆ S and β su
h that ot(Cα) = β for all α in T . If α < λ+ hasun
ountable 
o�nality, then T ∩α 
an 
ontain at most one limit point of Cαby 
oheren
e, so T ∩ α is nonstationary in α. For future use also note thatif we set Dα = Cα when ot(Cα) ≤ β and Dα = {γ ∈ Cα | ot(Cα ∩ γ) > β}otherwise, then we get a 2µ sequen
e (Dα | α < µ+) with the added propertythat Lim (Dα) ∩ α is disjoint from T for all α. 2By the last part of the previous proof together with our work on ♦, wenow get the following:Proposition 5 Assume GCH and 2µ for an un
ountable 
ardinal µ. Thenthere is a µ+-Suslin tree.Proof Sket
h. By our earlier work there is a ♦µ+(T ) sequen
e for some statio-nary T ⊆ µ+ ∩ Cof(γ), where γ < µ is regular and di�erent from 
of(µ), to-gether with a 2µ sequen
e (Cα | α < µ+) with the property that Lim (Cα)∩αis disjoint from T for all α.Now build a µ+ tree in stages, using the ♦µ+(T ) sequen
e to guess at maximalanti
hains at stages α ∈ T , and using the 2µ+ sequen
e (whi
h �avoids T �) toobtain for ea
h x in the tree and ea
h higher tree level α a 
anoni
al bran
h
b(x, α) 
ontaining x 
o�nal in the α-th level. For α not in T all 
anoni
albran
hes are 
ontinued to level α and for α in T only those 
anoni
al bran
heswhi
h pass through the guess at a maximal anti
hain are 
ontinued. The �T -avoidan
e� of the 2 sequen
e is used to show that the 
anoni
al bran
hes
b(x, α) leading to level α are indeed 
o�nal. 2Weak squaresWe 
onsider the following weakening of 2:6



2µ,λ says that there exists (Cα | α < µ+, α limit) su
h that ea
h Cα is anonempty and size ≤ λ set of 
lubs in α, ea
h of whi
h has ordertype atmost µ, and whenever C belongs to Cα and β is a limit point of C, we have
C ∩ β belongs to Cβ.

2µ,µ+ is provable, as we 
an simply 
hoose 
lubs of ordertype at most µthrough ea
h limit α < µ+ and take Cα to 
onsist of all interse
tions with αof su
h 
lubs. Jensen showed that 2µ,µ, also denoted by 2
∗
µ and 
alled �WeakSquare at µ�, is equivalent to the existen
e of a spe
ial µ+-Aronszajn tree,i.e., a tree T of height µ+ with levels of size at most µ su
h that for some

f : T → µ, f(x) is di�erent from f(y) whenever x, y are 
omparable in T .5.-6.VorlesungenProposition 6 Weak Square at µ is equivalent to the existen
e of a spe
ial
µ+-Aronszajn tree.Proof. Suppose that (Cα | α < µ+, α limit) witnesses Weak Square at µ. Notethat for any γ < µ+ the set of C ∩ γ for C in ⋃

α Cα has size at most µ: If Cbelongs to Cα then C ∩ γ is either �nite or the union of C ∩ δ for some limitpoint of δ of C together with a �nite set; in the latter 
ase C ∩ δ belongs to
Cδ so we get at most µ possibilities. Thus for our tree we 
an simply take allinitial segments of elements of ⋃

α Cα, ordered by end-extension, with ot asthe spe
ialising fun
tion.Conversely, suppose that we are given a spe
ial µ+ Aronszajn tree T withspe
ialising fun
tion f : T → µ. We will asso
iate to ea
h x ∈ T of limit T -height |x| an unbounded Ax ⊆ |x| of ordertype at most µ su
h that if δ < |x|is a limit point of Ax then Ax ∩ δ is Ay where y is the T -prede
essor of xof T -height δ. This su�
es, as then we 
an take Cx to be the 
losure of Ax(without |x|) for ea
h x of limit T -height and get a Weak Square sequen
eby setting Cα to be the set of Cx for x of T -height α.For x ∈ T of limit T -height de�ne Ax = {γi | i < jx} as follows: Let yi be the
T -prede
essor y of x of T -height greater than the the γj, j < i, with leastpossible spe
ialising value f(y); then γi is the T -height of yi. This de�nition
ontinues until one generates an unbounded subset of |x|, whi
h we take to be
Ax. Clearly Ax has ordertype at most µ. It is routine to 
he
k the 
oheren
eproperty: if y is the T -prede
essor of x of height γλ, λ limit, then Ay will be7



de�ned in exa
tly the same way as Ax until it be
omes 
o�nal in the heightof y. 2Remarks. Without introdu
ing any extra strength, we 
an arrange that aWeak Square sequen
e (Cα | α limit, α < µ+) at µ has the following twoadditional properties: (i) For all limit α < µ+ there is C ∈ Cα of ordertype
of(α). (ii) If µ is singular, then the 
lub sets appearing in the Cα's ea
h haveordertype less than µ. The extent of SquareWeak Square will hold at µ if µ is regular and there are only µ boundedsubsets of µ: If α has 
o�nality less than µ then take Cα to 
onsist of all 
lubsin α of ordertype less than µ (there are only µ many); if α has 
o�nality µthen take Cα to 
onsist of one 
lub in α of ordertype µ.On the other hand, GCH is not su�
ient to imply 2µ for an un
ountableregular µ: If κ > µ is Mahlo then 2µ will fail after applying Coll (µ,< κ), thefor
ing that 
ollapses every ordinal less than κ to µ with 
onditions of size
< µ (and turns κ into µ+). The idea is that if (Cα | α limit, α < κ) were a 2µsequen
e in the extension then using Mahloness there is a κ̄ < κ regular inthe ground model su
h that (Cα | α limit, α < κ̄) belongs to the intermediatemodel V [Ḡ] obtained by restri
ting the generi
 to Coll (µ,< κ̄); but then Cκ̄was added over this model by a µ-
losed for
ing, whi
h is impossible sin
eall of its initial segments belong to V [Ḡ].Dropping GCH, Weak Square 
an fail at a regular µ: Mit
hell found away of turning a Mahlo κ > µ into µ+, in su
h a way that κ-many boundedsubsets of µ are added and Weak Square will fail at µ.As we have mentioned, killing Square at a singular µ is mu
h harder andtypi
ally uses a super
ompa
t. In fa
t a strong 
ompa
t κ is su�
ient toimply the failure of Weak Square at any singular µ of 
o�nality less than κ.[Question: Is a strong 
ompa
t 
onsistent with Weak Square at a singular
ardinal above it?℄ Approa
hability and I[λ]Let κ be regular and (aα | α < κ) a sequen
e of bounded subsets of κ.A limit ordinal γ < κ is approa
hable relative to this sequen
e i� there is an8



unbounded A ⊆ γ of ordertype 
of(γ) su
h that ea
h proper initial segmentof A is of the form aα for some α < γ. The approa
hability ideal I[κ] 
onsistsof all S ⊆ κ su
h that for some sequen
e (aα | α < κ) of bounded subsetsof κ, almost all elements of S are approa
hable relative to (aα | α < κ) (i.e.,for some 
lub C ⊆ κ, all elements of S ∩ C are approa
hable relative to
(aα | α < κ)).The set Cof(ω)∩κ belongs to I[κ] be
ause we 
an 
hoose as our sequen
e
(aα | α < κ) an enumeration of the �nite subsets of κ. Also note that if
λ < κ is regular and κ<λ equals κ then there is a single �universal� sequen
e
(aα | α < κ) whi
h witnesses the approa
hability of ea
h subset of Cof(λ)in I[κ]; any sequen
e (aα | α < κ) whi
h enumerates ea
h element of [κ]<λunboundedly often will su�
e. Also under the assumption κ<λ = κ there is amaximal subset of Cof(λ) in I[κ] (maximal modulo the nonstationary ideal):take S(λ) to be the set of ordinals of 
o�nality λ whi
h are approa
hablewith respe
t to the universal sequen
e. We 
an refer to S(λ) as the set of�approa
hable points of 
o�nality λ in κ�. (In extreme 
ases, S(λ) will benonstationary.)It is also easy to see that I[κ] is an ideal, be
ause if S0, S1 belong to I[κ],witnessed by sequen
es (a0

α | α < κ), (a1
α | α < κ) and 
lubs C0, C1, then

S0 ∪ S1 is witnessed to belong to I[κ] by (aα | α < κ) and 
lub C0 ∩ C1,where a2α+i equals ai
α. The same argument shows that the diagonal union

{α | α ∈ Si for some i < α} of sets (Si | i < κ) in I[κ] also belongs to
I[κ], using the �join� a〈α,i〉 = ai

α of sequen
es (ai
α | α < κ) and the diagonalinterse
tion of 
lubs (Ci | i < κ) witnessing the membership of Si in I[κ].So I[κ] is a normal ideal. But it need not be a proper ideal, i.e., it 
ouldbe that κ itself belongs to I[κ]. For example, if Weak Square holds at µ then

µ+ belongs to I[µ+]: We 
an witness Weak Square with a sequen
e (Cα | αlimit, α < µ+) su
h that ea
h Cα 
ontains a 
lub of ordertype 
of(α). Let
(aβ | β < µ+) enumerate ⋃

α Cα; then almost all α < µ+ are approa
hablerelative to (aβ | β < µ+). In parti
ular, µ<µ = µ implies that µ+ belongs to
I[µ+]. Without any 
ardinal arithmeti
 assumption we have:Proposition 7 If µ is regular then Cof(< µ) ∩ µ+ belongs to I[µ+].To prove Proposition 9 we introdu
e partial squares.9



7.-8.VorlesungenPartial SquaresIn the Shelah tradition of proving weakenings of 
ombinatorial prin
iplesin ZFC, we look at partial squares. (This will also be useful when studyingthe next topi
, approa
hability.) Let S be a subset of {α < µ+ | 
of(α) = λ}.We say that S 
arries a partial square i� there is (Cα | α ∈ S) su
h thatea
h Cα is 
lub in α of ordertype λ and whenever β is a 
ommon limit pointof Cα0
, Cα1

for two α0, α1 in S, then we have Cα0
∩ β = Cα1

∩ β.Theorem 8 (Shelah) If λ < µ are regular then {α < µ+ | 
of(α) = λ} is theunion of µ sets, ea
h of whi
h 
arries a partial square.Proof. We may assume that λ is un
ountable. Fix some large regular θ andlet M be the stru
ture (H(θ),∈, <θ) where <θ is a wellorder of H(θ). For
α < µ+ of 
o�nality λ and ζ < µ we let M(α, ζ) be the Skolem hull of {α}∪ζin M.For ea
h α < µ+ of 
o�nality λ 
hoose ζ(α) to be the least ζ ≥ λ su
h that
M(α, ζ)∩µ is an ordinal of un
ountable 
o�nality. Set Nα = M(α, ζ(α)) andnote that Eα = Nα ∩ α is unbounded in α.We 
laim that Eα is ω-
losed. To see this, let x ⊆ Eα have ordertype ω, let βbe the sup of x and let γ be the least element of Eα\β. We want to show that
β = γ. Note that as γ belongs to Nα, Nα 
ontains an in
reasing 
o�nal map
f from 
of(γ) into γ and f restri
ted to Nα ∩ 
of(γ) is 
o�nal into Nα ∩ γ.Now as Nα ∩ µ is an ordinal, if 
of(γ) < µ then the range of f is 
ontainedin Nα, and so Nα ∩ γ = Eα ∩ γ is 
o�nal in γ, as desired. So 
of(γ) equals µ.Thus 
of(Nα∩γ) = 
of(Nα ∩µ), whi
h is impossible as 
of(Nα ∩µ) is greaterthan ω while 
of(Nα ∩ γ) = 
of(Nα ∩ β) = ω.Let Dα be the 
losure of Eα as a set of ordinals. For ρ, σ < µ we de�ne
S(ρ, σ) = {α | Nα ∩ µ = ρ, ot(Dα) = σ}. We show that ea
h of these sets
arries a partial square, witnessed by 
lubs Cα 
ontained in Dα.We �rst show that if α, α∗ belong to S(ρ, σ) and γ is a 
ommon limit point of
Dα, Dα∗ then Dα ∩ γ equals Dα∗ ∩ γ. If γ has 
o�nality ω then by the above
γ belongs to Nα ∩Nα∗ ; as γ has size at most µ and Nα ∩ µ equals Nα∗ ∩ µ it10



follows that Nα ∩ γ equals Nα∗ ∩ γ. If γ has un
ountable 
o�nality then γ isa limit of η of 
o�nality ω whi
h are 
ommon limits of Dα, Dα∗ ; we then justshowed Nα ∩ η = Nα∗ ∩ η for su
h η and therefore Nα ∩ γ equals Nα∗ ∩ γ.Finally, �x C ⊆ σ a 
lub of ordertype λ and set Cα = {γ ∈ Dα | ot(Dα∩γ) ∈
C}. This thinning of the Dα sequen
e preserves 
oheren
e and therefore wehave a partial square on S(ρ, σ), as desired. 2Now we show:Proposition 9 If µ is regular then Cof(< µ) ∩ µ+ belongs to I[µ+].Proof of Proposition 9. It su�
es to show that for ea
h regular λ < µ, Cof(λ)∩
µ+ belongs to I[µ+]. Re
all that Cof(λ) ∩ µ+ is the union of µ sets, ea
h ofwhi
h 
arries a partial square. It su�
es to show that if S is one of these setsthen S belongs to I[µ+]. Let (Cα | α ∈ S) be a partial square sequen
e on
S. For γ a limit point of some Cα let Dγ be Cα ∩ γ for all su
h α. Then thesequen
e (Dγ | γ < µ+) witnesses the approa
hability of S. 2Thus for regular µ, the ideal I[µ+] is only interesting on Cof(µ). As men-tioned earlier, Mit
hell 
onstru
ted a model using a Mahlo 
ardinal in whi
hWeak Square fails at ω1; it 
an be veri�ed that also in this model, µ+ doesnot belong to I[µ+].For singular µ, we'll show that I[µ+] does 
ontains stationary sets on any
o�nality (however it need not be the 
ase that Cof(λ) belongs to I[µ+] forea
h regular λ < µ). This follows from the following more general result ofShelah:Theorem 10 Let κ < κ+ < θ < λ be regular. Then there is a subset Aof Cof(κ) ∩ λ whi
h belongs to I[λ] su
h that A ∩ δ is stationary in δ forstationary many δ in Cof(θ) ∩ λ (and in parti
ular A is stationary).Proof. We use the 
on
ept of internally approa
hable (IA) 
hain. If A is astru
ture (H(ǫ),∈, <ǫ, . . .) with ǫ large and regular, <ǫ a wellorder of H(ǫ)and . . . 
ountably many additional 
onstants, fun
tions and relations and γis a limit ordinal, then an IA 
hain of substru
tures of A of length γ is a
ontinuous and in
reasing sequen
e (Mi | i < γ) of elementary substru
turesof A su
h that (Mi | i <≤ j) belongs to Mj+1 for ea
h j < γ. Of 
ourse for11



un
ountable regular γ and any subset x of A of size < γ it is easy to buildan IA 
hain of length γ of substru
tures of A of size less than γ 
ontaining
x as a subset.Now let (Cξ | ξ ∈ Cof(κ) ∩ θ) be a 
lub guessing sequen
e, whi
h existsbe
ause κ+ is less than θ. Let (Mi | i < λ) be an IA 
hain su
h that (Cξ |
ξ ∈ Cof(κ) ∩ θ) is a subset of M0 and ea
h Mi has size less than λ. Let
(ai | i < λ) enumerate the bounded subsets of λ in ⋃

i<λ Mi. The desiredset A is the set of γ < λ of 
o�nality κ whi
h are approa
hable relative tothe sequen
e (ai | i < λ). We must show that A ∩ δ is stationary in δ forstationary many δ ∈ Cof(θ) ∩ λ.If not then A ∩ δ is nonstationary in δ for almost all δ < λ of 
o�nality θ. Itfollows that we 
an build an IA 
hain (Nj | j < θ) of substru
tures of size θsu
h that N0 
ontains (Cξ | ξ ∈ Cof(κ) ∩ θ) as a subset and (Mi | i < λ) asan element and setting δ = sup(
⋃

j<θ Nj ∩λ), we have A∩ δ is nonstationaryin δ.For j < θ let αj be sup(Nj ∩ λ); then the sequen
e of αj's is 
ontinuousand 
o�nal in δ. Also 
hoose (βj | j < θ) in Mδ+1 to be 
ontinuous and
o�nal in δ. Then e = {j < θ | αj = βj} is 
lub in θ so by 
lub-guessing,
Cξ is 
ontained in e for stationary many ξ ∈ Cof(κ) ∩ θ. For su
h a ξ let
c = {αj | j ∈ Cξ} = {βj | j ∈ Cξ}. The proper initial segments of c lie bothin Nξ and in Mδ+1. If x is su
h a proper initial segment of c then Nξ sees that
x belongs to some Mi and so x bleongs to Mi for some i in Nξ ∩ λ; hen
e xbelongs to Mαξ

. Thus by de�nition of A, c witnesses that αξ belongs to A.As this holds for stationary many ξ, we have shown that A ∩ δ is stationaryin δ, 
ontradi
tion! 2To summarise: For regular µ, I[µ+] 
ontains Cof(λ)∩µ+ for regular λ < µ;it may fail to 
ontain Cof(µ) ∩ µ+. For singular µ, I[µ+] 
ontains stationarysubsets of Cof(λ)∩ µ+ for any regular λ < µ. For weakly ina

essible κ, I[κ]
ontains stationary subsets of Cof(λ) ∩ κ for any regular λ < κ. [Questions:For un
ountable regular µ is it possible that I[µ+] 
ontain only nonstationarysubsets of Cof(µ)? For singular µ is it possible that I[µ+] fails to 
ontainCof(λ) ∩ µ+ for all un
ountable regular λ < µ? For weakly ina

essible µ isit possible that I[µ] fails lto 
ontain Cof(λ) ∩ µ for all un
ountable regular
λ < µ?℄ 12



9.-10.VorlesungenApproa
hability and For
ingShelah originally introdu
ed approa
hability to answer the question ofwhen µ+-
losed for
ing preserves the stationarity of subsets of Cof(µ). Forthis purpose it is 
onvenient to note that approa
hability 
an be formulatedin an equivalent way using elementary submodels. Let θ denote a large re-gular 
ardinal and A a stru
ture of the form (H(θ),∈, <θ, . . .) where <θ isa wellorder of H(θ) and . . . represents 
ountably many additional fun
tions,relations and 
onstants. Then γ < κ is approa
hable relative to A if there isan unbounded A ⊆ γ of ordertype 
of(γ) su
h that ea
h proper initial seg-ment of A belongs to SkA(γ) (the set of elements of H(θ) whi
h are de�nablein A from parameters less than γ; Sk stands for �Skolem hull�). It is easy tosee that S ⊆ κ belongs to I[κ] i� for some A as above, almost all elementsof S are approa
hable relative to A.Proposition 11 Suppose that κ is regular and un
ountable.(a) If S ⊆ κ ∩ Cof(ω) is stationary then 
ountably 
losed for
ing preservesthe stationarity of S.(b) More generally, if S ⊆ κ ∩ Cof(µ) is stationary and belongs to I[κ] then
µ+-
losed for
ing preserves the stationarity of S.Proof. We prove (b). Let the stru
ture A = (Hθ,∈, <θ, . . .) witness S ∈ I[κ]for some large θ and let P be a µ+-
losed for
ing, p a 
ondition in P for
ing
Ċ to be a 
lub in κ. Expand A to A∗ so as to in
lude P, p, Ċ. Now 
onsiderthe 
lub C of all γ < κ su
h that γ = κ∩SkA∗

(γ) and 
hoose γ in C∩S. Alsolet A ⊆ γ be unbounded of ordertype µ su
h that all proper initial segmentsof A belong to SkA∗

(γ). Now the point is that if we su

essively extend pin µ steps in the <θ-least way, at step i for
ing an ordinal greater than the
i-th element of A into Ċ, then the resulting 
onditions belong to SkA∗

(γ) bythe 
hoi
e of A. Therefore a lower bound to these 
onditions for
es that Ċ isunbounded below γ. It follows that p has an extension for
ing γ ∈ S into Ċ,proving that the stationarity of S is preserved. 2There is a kind of 
onverse to this result: Suppose that κ<µ = κ and Sis the set of points of 
o�nality µ approa
hable with respe
t to a universalenumeration of [κ]<µ. Also suppose that µ<µ = µ. Now 
onsider the for
ingwhose 
onditions are 
losed bounded subsets c of κ of ordertype less than µ+13



su
h that c ∩ Cof(µ) is 
ontained in S and the bounded subsets of c of sizeless than µ appear in the universal enumeration before stage max(c). Thenthis for
ing is µ+-
losed and kills the stationarity of Cof(µ) ∩ (κ \ S). (We'llsee later that it is indeed possible for Cof(µ)∩ (κ \ S) to be stationary, evenwhen GCH holds and µ = ω1, κ = ℵω+1.)S
ales, good points and exa
t upper boundsGiven an index set X and an ideal I on X we 
an order the fun
tionsfrom X into Ord by: f <I g i� {x | f(x) ≥ g(x)} ∈ I. De�ne =I and ≤I inthe obvious way. A <I in
reasing sequen
e (fi | i < α) has an exa
t upperbound (eub) i� there is an f su
h that fi <I f for all i and every g <I fsatis�es g <I fi for some i. If f exists then of 
ourse it is unique modulo theideal I.Suppose f : X → Ord. A s
ale of length α in ∏
X f(x)/I is a <I in
reasingsequen
e (fi | i < α) in ∏

X f(x) whi
h is 
o�nal in ∏
X f(x) under therelation <I . In this 
ase it follows that f is an eub for (fi | i < α) and
onversely, if f is an eub for (fi | i < α) then (f ∗

i | i < α) forms a s
ale in∏
X f(x), where f ∗

i (x) = fi(x) if the latter is less than f(x), 0 otherwise.Weaker then eub is lub (least upper bound). f is an lub for (fi | i < α) i�
fi ≤I f for ea
h i and every fun
tion whi
h is below f on an I-positive setis below some fi on an I-positive set.Also note the following: If ~f = (fi | i < γ) and ~g = (gj | j < δ) are
o�nally interleaved in the sense that {h | h <I fi for some i} = {h | h <I gjfor some j} then ~f has an eub i� ~g has an eub and these eub's are equalmodulo I.Our goal is to use the nontriviality of the approa
hability ideal to builds
ales, or equivalently, to build sequen
es with eub's. A key 
on
ept for a
hie-ving this is that of a good point. Suppose that I is an ideal on X andlet (fi | i < γ) be <I in
reasing. A limit ordinal α ≤ γ is a good pointi� 
of(α) > 
ard(X) and there is an eub h for (fi | i < α) su
h that
of(h(x)) = 
of(α) for all x. Equivalently: There is a pointwise in
reasingsequen
e (hj | j < 
of(α)) 
o�nally interleaved modulo I with (fi | i < α).14



Theorem 12 Let 
ard(X) < κ < λ with κ and λ regular. Suppose that
(fi | i < λ) is a <I in
reasing sequen
e with stationarily many good points of
o�nality κ. Then there exists an eub h su
h that 
of(h(x)) > κ for all x.11.-12.VorlesungenProof. First we 
onstru
t an lub and then show that this lub is in fa
t aneub.Step 1. By indu
tion we 
onstru
t fun
tions gj su
h that fi <I gj for all iand for j1 < j2, gj2 ≤I gj1 , gj2 6=I gj1 . Start by 
hoosing g0 to be any upperbound, and for all j if gj fails to be an lub for (fi | i < λ) we 
hoose gj+1 towitness this failure.For limit µ set Sµ(x) = {gj(x) | j < µ} and de�ne hi

µ(x) = min(Sµ(x) \
fi(x)). We 
laim that for µ < 
ard(X)+, (hi

µ | i < λ) is eventually 
onstantmodulo I. If not, we �nd γ good of 
o�nality κ su
h that hi
µ does not stabilisefor large i < γ and �x (Hζ | ζ < κ) pointwise in
reasing and 
o�nally interlea-ved with (fi | i < γ). The fun
tion x 7→ min(Sµ(x) \ Hζ(x)) 
annot stabilisefor large ζ < κ, but this is impossible be
ause 
ard(Sµ(x)) ≤ 
ard(X) < κ.We now 
hoose gµ so that gµ =I hi

µ for all large i.We show that this 
onstru
tion stops in fewer than 
ard(X)+ steps. Sup-pose not. For ea
h x and ea
h i the value of hi
µ(x) will stabilise for large limit

µ < 
ard(X)+ sin
e the smallest value whi
h will ever appear must turn upat some point. So for ea
h i < λ the fun
tion hi
µ stabilises for large limit µ.Thus there is an unbounded B ⊆ λ and a �xed ν su
h that for i ∈ B, hi

µ is
onstant for limit µ ≥ ν. If ν ≤ µ1 < µ2 we may 
hoose i ∈ B large enoughso that gµ1
=I hi

µ1
and gµ2

=I hi
µ2
, yielding gµ1

=I gµ2
, 
ontradi
ting the
hoi
e of the fun
tions gj.So the 
onstru
tion halts at some stage before 
ard(X)+, produ
ing anlub g.Step 2. Suppose now that our lub g from Step 1 is not an eub. Then we may�nd h <i g su
h that the set Si = {x | fi(x) ≤ h(x)} is I-positive for all i. We
laim that this sequen
e of sets is eventually 
onstant modulo I. If not, thenwe �nd a good point γ of 
o�nality κ su
h that Si does not stabilise modulo

I for large i < γ and �x (Hζ | ζ < κ) pointwise in
reasing and 
o�nallyinterleaved with (fi | i < λ). If Dζ = {x | Hζ(x) ≤ h(x)} then Dζ 
annotstabilise for large ζ, but this is impossible be
ause Dζ de
reases with ζ and
ard(X) < κ. 15



Let S be su
h that Si =I S for large i and de�ne g∗ so that g∗ agreeswith h on S and with g on the 
omplement of S. Then by 
onstru
tion, g∗is an upper bound for the fi's and g∗ is below g on an I-positive set, whi
his impossible sin
e g is an lub.To �nish we must 
he
k that 
of(g(x)) > κ for almost all x. This followsfrom an argument similar to that we gave in Step 1 that hi
µ stabilises forlarge i. 2Remark. The 
onverse of the above result is also true: Let C be a 
ub subsetof λ and build an IA 
hain (Mj | j < κ) of stru
tures of size less than κ withunion M su
h that γ = sup(M ∩ λ) belongs to C. Then the fun
tion h̄ givenby x 7→ sup(M ∩ h(x)) is an eub for the fi's with 
of(h̄(x)) = κ for ea
h x.Building s
ales, goodness and approa
habilityAs a �rst appli
ation of the nontriviality of the approa
hability ideal andthe previous result about eub's, we prove:Theorem 13 There is an in�nite A ⊆ ω and a s
ale of length ℵω+1 in∏

n∈A ℵn/F in.Proof. Choose some large θ and build an internally approa
hable 
hain (Mα |
α < ℵω+1) in (H(θ),∈, <θ) 
onsisting of stru
tures of size ℵω with Mα∩ℵω+1an ordinal. Let gα be the <θ least fun
tion whi
h dominates modulo �niteall fun
tions in Mα ∩

∏
n∈ω ℵn.Re
all that I[ℵω+1] 
ontains a stationary subset of Cof(ℵk) for ea
h �nite

k. Now note the following:Lemma 14 Let A denote (H(θ),∈, <θ). Let S belong to I[ℵω+1], S ⊆ Cof(ℵk).Then for almost all γ in S there is an internally approa
hable 
hain (Ni |
i < ℵk) of substru
tures of A with union N ⊆ Mγ su
h that 
ard(Ni) < ℵkfor all i, sup(N ∩ ℵω+1) = γ and Mα ∈ N for 
o�nally many α < γ.Proof of Lemma. Expand A to B by adding a predi
ate for a sequen
e ofbounded subsets of ℵω+1 witnessing that S belongs to I[ℵω+1] and build anIA 
hain (M∗

α | α < ℵω+1) of substru
tures of B with 
ard(M∗
α) = ℵω and

M∗
α∩ℵω+1 an ordinal. Also assume that (Mα | α < ℵω+1) belongs to M∗

0 . Now
hoose γ in S so that γ = M∗
γ ∩ℵω+1. Fix a sequen
e (γj | j < ℵk) 
ontinuous16



and 
o�nal in γ su
h that (γi | i ≤ j) belongs to M∗
γj+1 for ea
h j. Then take

Ni to be the Skolem hull in M∗
γ of the set of parameters {Pj | j < i} where

Pj = (M∗
γi
| i ≤ j). Then the Ni's have the desired properties. 2 (Lemma)Now �x a �nite k and apply the Lemma to almost all γ ∈ S to obtain thesequen
e (Ni | i < ℵk). De�ne hi to be the fun
tion m 7→ sup(Ni ∩ ℵm) and

h to be the fun
tion m 7→ sup(N ∩ℵm). Then h is an eub for (hi | i < ℵk) as
of(h(m)) = ℵk for all m.We 
laim that (hi | i < ℵk) and (gα | α < γ) are 
o�nally interleaved. Onthe one hand, ea
h hi is de�ned from the 
orresponding Ni, so hi belongs to
Mγ and hen
e for some β < γ, hi belongs to Mβ and is dominated modulo�nite by gβ. Conversely, for 
o�nally many α < γ, Mα belongs to N so gαbelongs to Ni for some i < ℵk and is dominated everywhere by hi. It followsthat h is an eub for (gα | α < γ).Applying Theorem 12 our sequen
e (gα | α < ℵω+1) is in
reasing modulo�nite and for ea
h k has an eub gk su
h that gk(n) has 
o�nality greaterthan ℵk for ea
h n. Let g be an eub for (gα | α < ℵω+1); it follows that forea
h k the set {n | 
of(g(n)) = ℵk} is �nite. Let A be the set of k su
h that
of(g(n)) = ℵk for some n. For ea
h k ∈ A and ea
h n with 
of(g(n))) = ℵk�x (βn

i | i < ℵk) in
reasing and 
o�nal in g(n). If we now de�ne fα(k) tobe the least i su
h that gα(n) < βn
i for all n with 
of(g(n)) = ℵk, thenthe sequen
e of fα's 
an be thinned out to give a s
ale of length ℵω+1 in∏

k∈A ℵk/F in. For future use note that if X is the set of good points for thesequen
e (gα | α < ℵω+1) then the resulting s
ale is good at almost everypoint in X. 2 13.VorlesungSquare prin
iples and s
ale propertiesRe
all that a s
ale of length α in ∏
x∈X f(x)/I is a <I in
reasing sequen
e

(fi | i < α) in ∏
x∈X f(x) whi
h is 
o�nal in ∏

x∈X f(x) under the relation
<I . Equivalently, f is an exa
t upper bound for the sequen
e (fi | i < α):
fi <I f for ea
h i < α and whenever g <I f , we have g <I fi for some i. Alimit ordinal β ≤ α is a good point of (fi | i < α) i� 
of(β) > 
ard(X) andthere is an exa
t upper bound f for (fi | i < β) su
h that 
of(f(x)) = 
of(β)for ea
h x. 17



We fo
us now on s
ales of length ℵω+1 in produ
ts ∏
n∈A ℵn/Fin where Ais an in�nite subset of ω and Fin is the ideal of �nite sets. We proved:Theorem 15 There is a stationary subset X of Cof(ℵk) ∩ ℵω+1 in I[ℵω+1](even 
on
entrating on a single 
o�nality ℵk). And for any su
h X there isan A ⊆ ω and a s
ale of length ℵω+1 in ∏

n∈A ℵn/Fin for whi
h almost everyelement of X is a good point.If we assume approa
hability, i.e., that the entire ℵω+1 belongs to I[ℵω+1],then we 
an do better: we get a good s
ale, i.e., a s
ale as above for whi
h everyelement of Cof(> ω)∩ℵω+1 is good. The reason is as follows: Theorem 15 givesus a s
ale (fα | α < ℵω+1) whi
h is good at almost every point of un
ountable
o�nality. Fix a 
lub C su
h that every limit point of C of un
ountable
o�nality is good and enumerate C as (αi | i < ℵω+1). Now 
onsider the news
ale given by gi = fαi
. If i has un
ountable 
o�nality then αi is good andwe may �x an EUB h for (fα | α < αi) su
h that 
of(h(n)) = 
of(i) for all n;the sequen
e (gj | j < i) is 
o�nal in (fα | α < αi) so h is also an EUB for

(gj | j < i) and thus i is a good point for (gj | j < ℵω+1).If we assume 2ℵω
, a hypothesis stronger than approa
hability, we 
anobtain a very good s
ale. (fα | α < ℵω+1) is very good i� for every limit

α < ℵω+1 of un
ountable 
o�nality there is a 
lub C ⊆ α su
h that for some
n, (fα(m) | α ∈ C) is stri
tly in
reasing for all m ≥ n. If (Cα | α < ℵω+1)is a square sequen
e then start with an arbitrary s
ale (gα | α < ℵω+1).We may assume that ea
h Cα has ordertype less than ℵω. Now 
onstru
t
fα to dominate gα pointwise and arrange that for limit α, fα(m) > fβ(m)for β ∈ Lim (Cα) and for m su
h that ot(Cα) < ℵm. A similar 
onstru
tionworks assuming only 2ℵω,ℵn

for some �nite n.Weak square, i.e. the prin
iple 2ℵω,ℵω
, is su�
ient to obtain a better s
ale,a notion between good and very good. A s
ale (fα | α < ℵω+1) is better i�for limit α < ℵω+1 thre is a 
lub C ⊆ α su
h that for every β ∈ C thereis an m su
h that fγ(n) < fβ(n) for all γ ∈ C ∩ β and n ≥ m. Supposethat (Cα | α < ℵω+1) is a weak square sequen
e and assume ot(C) < ℵω forea
h 
lub C in some Cα. At stage α we form fC for ea
h C ∈ Cα by de�ning

fC(m) = sup{fβ(m) | β ∈ C} when ot(C) is less than ℵm. Then 
hoose fαto dominate mod �nite all fC , C ∈ Cα.14.-15.Vorlesungen18



Square prin
iples and for
ing axiomsWe show that MM (Martin's Maximum) implies that there is no goods
ale. So MM refutes the approa
hability property ℵω+1 ∈ I[ℵω+1], whi
h
an be viewed as a very weak square prin
iple.Theorem 16 MM implies that there is no s
ale whi
h is good at almostevery point of 
o�nality ℵ1.Proof.We de�ne a Namba-like for
ing P whi
h adds a new fun
tion to ∏
n ℵn.A 
ondition is a tree T su
h that ea
h t ∈ T is a �nite sequen
e with t(n) ∈

ℵn+2 ∩ Cof(ω) for n < length (t). A 
ondition is required to have a �stem�
s su
h that every t ∈ T is 
omparable with s and if t extends s then {α |
t ∗ α ∈ T} is stationary in ℵlength (t)+2

. P is ordered by in
lusion.For T1, T2 in P , we say that T1 is a dire
t extension of T2, and write
T1 ≤∗ T2, i� T1 extends T2 and has the same stem. Clearly if S extends Tthen S ≤∗ Ts where s is the stem of S and Ts 
onsists of the elements of T
omparable with s.Claim 1. If τ is a name for a 
ountable ordinal and S is a 
ondition then Shas a dire
t extension whi
h evaluates τ .Proof. Let s be the stem of S, of length n. If the 
laim fails, then for sta-tionarily many α ∈ ℵn+2 we have s ∗ α in S and no dire
t extension of Ss∗αevaluating τ (otherwise by ℵ2-
ompletness, S would have a dire
t extensionevaluating τ). Repeating this argument, we may work up the tree to builda dire
t extension U of S su
h that for every t ∈ U extending s, there is nodire
t extension of Ut evaluating τ . But this is impossible as some extensionof U evaluates τ and is a dire
t extension of Ut for some t extending s. 2Similarly, if S has a stem of length n and τ is a name for an element of
ℵn+1 then there is a dire
t extension of S whi
h evaluates τ .Let f ∈

∏
n ℵn+2 be the generi
 fun
tion added by P and let ḟ be a

P -name for it.Claim 2. If S for
es ġ < ḟ then there is a dire
t extension T of S and afun
tion h in ∏
n ℵn+2 ∩ V su
h that T for
es ġ < h.19



Proof. For simpli
ity of notation, assume that the stem of S is empty. Forea
h α su
h that 〈α〉 belongs to S 
hoose a dire
t extension of S〈α〉 evaluating
ġ(0). By Fodor we may thin out to obtain a dire
t extension of S evaluating
ġ(0). Working up the tree level by level we build a dire
t extension T of Ssu
h that for every t ∈ T , Tt evaluates ġ (length (t)) < ℵlength (t)+2

. Asthere are only ℵn+1 nodes t of length n, it follows that T produ
es a fun
tionin the ground model bounding ġ. 2Claim 3. P is stationary-preserving.16.VorlesungProof of Claim 3. Fix A a stationary subset of ω1, Ċ a name for a 
lub and
S a 
ondition. We �nd U ≤ S and δ ∈ A su
h that U for
es δ ∈ Ċ. To easenotation, assume that S is the trivial 
ondition.We 
an assign to ea
h 〈α〉 in S an ordinal γ〈α〉 so that for ea
h i < ω1there are stationarily many α ∈ ω2 ∩ Cof(ω) su
h that γ〈α〉 = i. Now usingClaim 1, �nd an extension S ′ of S with the same �rst level as S su
h that
S ′
〈α〉 evaluates min(Ċ \ γ〈α〉) to some ordinal δ〈α〉.Repeating this, we thin out level by level to obtain a dire
t extension Tof S together with an assignment of γt and δt to t in T su
h that Tt for
esthat min(Ċ \ γt) = δt, and for every t and i < ω1 there are stationarily many

α with γt∗α = i.Now for ea
h 
ountable δ 
onsider the game Gδ in whi
h the playersbuild a bran
h through T : At round n player I 
hooses a nonstationaryset An ⊆ ℵn+2 and a 
ountable ordinal βn < δ; player II responds with
αn /∈ An. Player II loses immediately if (α0, . . . , αn) /∈ T or γ〈α0,...,αn〉 ≤ βnor δ〈α0,...,αn〉 ≥ δ.The game Gδ is open so is determined. Let X be the set of δ su
h that Ihas a winning strategy in Gδ and �x su
h strategies τδ, δ ∈ X.We 
laim that X is nonstationary. If not, 
hoose a 
ountable N elementaryin some large H(θ) su
h that N 
ontains all relevant parameters and δ =
N ∩ ω1 belongs to X. We will des
ribe a run of the game Gδ in whi
h player
I plays a

ording to his (supposedly winning) strategy τδ while player IIplays ordinals from N and never loses.20



This run is des
ribed as follows: If II has played α0, . . . , αk−1 then let βkbe the ordinal part of the strategy τδ's response. We 
onsider the union overall γ ∈ X of the nonstationary sets provided by the various strategies τγ inresponse to α0, . . . , αk−1; this union is a nonstationary subset of ℵk+2 lyingin N , and as βk belongs to N we may 
hoose a suitable αk in N . The keypoint is that the map s 7→ δs belongs to N so the requirement δ〈α0,...,αn〉 < δis guaranteed.Now 
hoose δ in the stationary set A so that player II has a winningstrategy ρ in the game Gδ. Choosing (δn | n ∈ ω) to be in
reasing and 
o�nalin δ we use ρ to thin out T to U ≤∗ T su
h that for all u ∈ U of length nwe have δn < γu ≤ δu < δ. Then U for
es that δ is a limit point of Ċ andtherefore belongs to Ċ. 2Now we show that MM kills good s
ales. Let λ denote ℵω. Suppose that
(gα | α < λ+) were a good s
ale in ∏

n∈A ℵn (A in�nite). For simpli
ity weassume that A equals ω. We apply MM to the poset Q = P ∗ Coll (ω1, λ
+),whose se
ond fa
tor is the ω-
losed for
ing that 
ollapses λ+ to ω1. Then Qis stationary-preserving and for
es:1. 
of((λ+)V ) = 
ard((λ+)V ) = ω1.2. There is a fun
tion h ∈

∏
n∈ω(ℵn∩Cof(ω)V ) whi
h is an exa
t upper boundfor (gα | α < (λ+)V ).In a Q-generi
 extension we may 
hoose for ea
h n a 
ountable set Sn ∈

V whi
h is 
o�nal in h(n). We may also 
hoose an in
reasing and 
o�nalsequen
e (αi | i < ω1) in (λ+)V su
h that for ea
h i there is Hi ∈
∏

n Sn with
gαi

<∗ Hi <∗ gαi+1
.Now go ba
k to V . Let C be a 
lub in λ+. Applying MM we may obtain
ountable sets S∗

n ⊆ ℵn and in
reasing (α∗
i | i < ω1) with δ = supi α

∗
i in

C, and fun
tions H∗
i ∈

∏
n S∗

n su
h that gα∗

i
<∗ H∗

i <∗ gα∗

i+1
for ea
h i. Butthen δ 
annot be a good point, i.e., there 
an be no unbounded A ⊆ δ and

m < ω su
h that the sequen
e (gα(n) | α ∈ A) is stri
tly in
reasing for
n ≥ m: For, given su
h an A and m, we may �nd an in
reasing sequen
e
(βi | i < ω1) from A and 
orresponding (H∗

ji
|< ω1) from ∏

n S∗
n su
h that

gβi
<∗ H∗

ji
<∗ gβi+1

. But then we 
an �x n > m and B ⊆ ω1 unbounded su
hthat gβi
(n) < H∗

ji
(n) < gβi+1

(n) for all i in B. This 
ontradi
ts the fa
t that
H∗

ji
(n) belongs to the 
ountable set S∗

n for ea
h i!21



So we have shown that there are stationarily many bad points δ of 
o�-nality ω1, as desired. 2
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