
Singular Cardinal Combinatoris, Sommersemester 20101.-2.VorlesungenThese letures are based on an artile of James Cummings (Notes onSingular Cardinal Combinatoris, Notre Dame Journal, 2005). Topis overedinlude diamonds, squares, lub guessing, foring axioms and PCF theory. Myintention is to follows the notes quite losely, as they are very well-written,but I will add a few proofs whih James skips and pose some Questions whihome to mind but are not answered in the artile.DiamondsLet κ be regular, unountable and S a stationary subset of κ.
♦κ(S): There is (Sα | α ∈ S) suh that for any X ⊆ κ, X ∩ α = Sα forstationary-many α in S.Theorem 1 (Jensen) Assume V = L. Then ♦κ(S) holds for all unountableregular κ and all stationary S ⊆ κ.Proof. We may assume that S onsists only of limit ordinals. De�ne Sα byindution on α ∈ S: Let (x, c) be the L-least pair suh that
(∗)α x is a subset of α.
c is losed unbounded in α.For β in S ∩ c, x ∩ β does not equal Sβ,if suh a pair (x, c) exists; set (x, c) = (∅, ∅) otherwise. We hoose Sα to be
x.Now we laim that (Sα | α ∈ S) witnesses ♦κ(S). If not, then let (X,C) bethe L-least pair suh that
(∗)κ X is a subset of κ.
C is losed unbounded in κ.For β in S ∩ C, X ∩ β does not equal Sβ.Let M be an elementary submodel of some large Lθ whih ontains κ as anelement and whose intersetion with κ is an ordinal α < κ. Then α belongs to1



C and we may in fat hoose M so that α also belongs to S as S is stationary(the set of andidates for α ontains a losed unbounded subset of κ). Nowlet π : M ≃ M̄ be the transitive ollapse of M and notie that π(X,C, κ)equals (X ∩ α,C ∩ α, α). It follows that (X ∩ α,C ∩ α) is the M̄ -least pairsatisfying (∗)α, therefore also the L-least pair satisfying (∗)α, and therefore
X ∩ α equals Sα. But as α belongs to S ∩ C, this ontradits the hoie of
X! 2A nie onsequene of ♦ω1

(i.e., ♦ω1
(S) where S equals all of ω1) is theexistene of a (nie) Suslin tree, i.e., an unountable suborder T of <ω12 suhthat

T ontains σ ∗ 0, σ ∗ 1 for eah σ in T .Eah σ in T an be extended to a τ in T of any larger ountable length.
T has only ountable antihains.The levels Tα of T are build by indution, the interesting ase being thehoie of limit levels (we annot take all branhes through lower levels, asthis would give unountably many branhes and therefore an unountableantihain). What we do is �x a ♦ω1

sequene (Sα | α < ω1) and view Sαas a subset not of α but of T<α, by enumerating the elements of T<α in aanonial way; then form Tα by hoosing branhes through T<α below eah ofits elements whih hit Sα (if possible) and plaing at level α the unions of allof the hosen branhes. Now if X is a maximal antihain in the resulting tree
T it follows by ♦ω1

that X ∩ T<α equals Sα for some α and therefore everyelement of Tα lies above an element of X; it follows that X equals X ∩ T<αas any element of T of length greater than α lies above an element of Tα andtherefore an element of X ∩ T<α.
♦κ(S) implies κ<κ = κ, beause if (Sα | α ∈ S) witnesses the former thenany bounded subset of κ will be equal to some Sα and there are only κ-manysuh Sα's. There is a partial onverse:Theorem 2 (Gregory, Shelah) Let κ = λ+, λ an unountable ardinal, µ =of(λ), T = {α < κ | of(α) 6= µ}. Assume 2<λ = λ and 2λ = λ+ (this followsfrom GCH). Then ♦κ(S) holds for all stationary S ⊆ T .Atually we will prove something stronger than ♦κ(S). Consider:2



♦′
λ+(T ): There is (Sα | α ∈ T ) suh that Sα is a size at most λ subset of

P(α) for eah α ∈ T and for all X ⊆ λ+, X ∩ α ∈ Sα for stationary-many αin T .
♦∗

λ+(T ) is the same as ♦′
λ+(T ), exept we strengthen the onlusion to: X ∩

α ∈ Sα for all α in C ∩ T for some lub C in λ+.Atually, ♦′
λ+(S) is equivalent to ♦λ+(S) for all S: The latter learlyimplies the former, so we need only show that a♦′

λ+(S) sequene (Sα | α ∈ S)an be onverted into a ♦λ+(S) sequene (Sα | α ∈ S). We assume that thegiven ♦′
λ+(S) sequene in fat guesses subsets of λ × λ+, so it spei�es foreah α < λ+ a sequene (Si

α | i < λ) of subsets of λ × α. Now we laimthat for some i < λ, (T i
α | α ∈ S) serves as a ♦λ+(S) sequene, where

T i
α = {β < α | (i, β) ∈ Si

α}. If not, then �x for eah i < λ a pair (Xi, Ci)(with Xi ⊆ λ+, Ci lub in λ+) suh that T i
α di�ers from Xi∩α for α in Ci∩Sand onsider the intersetion C of the Ci's and X = {(i, α) | α ∈ Xi}. Butthere is α ∈ C ∩ S and i < λ suh that X ∩ (λ × α) = Si

α and therefore Xiequals T i
α, ontraditing the hoie of (Xi, Ci).Also note that ♦∗

λ+(T ) implies ♦′
λ+(S) for all stationary S ⊆ T .Proof of Theorem 2. We prove ♦∗

λ+(T ). Write eah α < λ+ as ⋃
j<µ aα

j wherethe aα
j 's inrease with j and have size less than λ. Also let (xi | i < λ+) listthe bounded subsets of λ+.For any X ⊆ λ+, the set C = {δ < λ+ | For all γ < δ there is i < δsuh that X ∩ γ = xi} is lub in λ+. And for any α ∈ C we an hoose

(αi | i < of(α)) below α suh that the xαi
's are inreasing under inlusionand X ∩ α =

⋃
i<of(α)

xαi
.Now suppose that α belongs to C and of(α) is not µ. Then we an replaethe sequene (αi | i < of(α)) by a subsequene, also of length of(α), so thatit is ontained in some single aα

j , j < µ.Now we de�ne
Sα = {x ∈ P(α) | For some j < µ and some y ⊆ aα

j , x =
⋃

i∈y xi}.Using 2<λ = λ it follows that eah Sα has size at most λ and the above showsthat it serves as a ♦∗
λ+(T ) sequene, as desired. 23



Theorem 2 is optimal in the sense that GCH does not imply ♦λ+(S) when
S equals λ+∩Cof(λ). (For example, GCH is onsistent with the nonexisteneof a Suslin Tree, and therefore with the negation of ♦ω1

.) [Question: Is GCHonsistent with the failure of ♦λ+(λ+ ∩ Cof(λ)) for all λ?℄The ♦ Ideal. For a regular unountable κ, I♦κ
is the set of S ⊆ κ suh that

♦κ(S) fails. It an be shown that this is a normal ideal on κ ontaining thenonstationary ideal. In L it equals the nonstationary ideal and if there areno Suslin trees then I♦ω1
is improper, i.e., onsists of the full power set of ω1.[Question: What other possibilities are there for I♦ω1

and more generally for
I♦κ

?℄ 3.-4.VorlesungenFirst a remark about ♦: We showed that under GCH, ♦λ+(S) will holdif S is a stationary subset of λ+ disjoint from the ritial o�nality of(λ).Conversely, Shelah showed that for any unountable ardinal λ in a mo-del of GCH, one an fore ♦λ+(S) to fail for some stationary subset S ofCof(λ), preserving o�nalities and GCH. It is however open if one an fore
♦λ+(Cof(λ)) to fail for a singular λ under GCH.Club GuessingClub guessing holds for κ and S ⊆ κ i� there exists (Cα | α ∈ S) where
Cα is lub in α and for all lubs C ⊆ κ, Cα is ontained in C∩α for stationarymany α in S. This is a weakening of ♦κ(S).Theorem 3 (Shelah) For λ < κ regular with λ+ < κ, lub guessing holdsfor κ and any stationary S ⊆ κ ∩ Cof(λ).Proof. For E,F lubs in α de�ne pd(E,F ) = {sup(F∩γ) | γ ∈ E, F∩γ 6= ∅}.(We �push down� E onto F .)Now start with an arbitrary sequene (Cα | α ∈ S) with Cα lub in α ofordertype λ. We de�ne a dereasing sequene of lubs Ei in κ (of some length
≤ λ+) and de�ne (Ci

α | α ∈ Lim (Ei) ∩ S) by setting Ci
α = pd(Cα, Ei ∩ α).We start with E0 = κ. Given Ei, we assume that (Ci

α | α ∈ Lim (Ei) ∩ S)fails to have the lub guessing property and hoose Ei+1 ⊆ Lim (Ei) to be alub so that for all α in Ei+1 ∩ S, Ci
α is not ontained in Ei+1 ∩ α. For limit

λ we take Eλ to be the intersetion of the Ei, i < λ.4



We laim that Ei+1 is unde�ned for some i < λ+ (and hene the theorem isproved). Otherwise let E be the intersetion of the Ei's and �x some α in
E ∩ S. Then α belongs to Lim (Ei) ∩ S and Ci

α = pd(Cα, Ei ∩ α) for eah
i < λ+. For eah γ ∈ Cα, the sequene of suprema (sup(Ei ∩ γ) | i < λ+) isnoninreasing so must stabilise. Sine Cα has ordertype λ we an �nd i < λ+large enough so that this stabilisation has ourred for every γ ∈ Cα, so
Ci

α = Ci+1
α ⊆ Ei+1. But sine α belongs to Ei+1 ∩ S, this ontradits ourhoie of Ei+1. 2Cummings says that there are many interesting variants of lub guessing,and refers to work of Ishiu for further information about them. [Question: Isit onsistent for Club Guessing to fail for λ+ and Cof(λ) ∩ λ+ for all regular

λ?.℄ SquaresFor an unountable ardinal µ, 2µ asserts that there exists (Cα | α < µ+, αlimit) suh that eah Cα is a lub in α of ordertype at most µ and the Cα'sohere with eah other: ᾱ ∈ Lim (Cα) implies Cᾱ = Cα ∩ ᾱ.It is worth noting that without added strength we an impose a furtherrequirement on the 2µ sequene: If α has o�nality less than µ then Cα hasordertype less than µ. To ahieve this, �x a lub C in µ of ordertype of(µ) andwhenever ot(Cα) belongs to C∪{µ}, replae Cα by {β ∈ Cα | ot(Cα∩β) ∈ C};also, whenever ot(Cα) does not belong to C∪{µ}, replae Cα by Cα \ (β +1),where β is the largest element of Cα with ot(Cβ) in C.In L, 2µ holds for every µ. To kill 2µ for a regular µ one only needs toLévy ollapse the least Mahlo ardinal greater than µ to beome µ+. Killing
2µ for a singular µ requires muh stronger large ardinal hypotheses. It istypially done by starting with a superompat.Proposition 4 Suppose that κ is λ+-superompat, κ ≤ λ. Then 2λ fails.Proof. First note that if S ⊆ λ+ is a stationary subset of Cof(< κ)∩λ+ thenfor some α < λ+ of unountable o�nality, S ∩ α is stationary in α: Choosea regular γ < κ so that S ∩ Cof(γ) is stationary. Then as γ is less than theritial point of j, it follows that j is ontinuous at ordinals of o�nality γand therefore j[S] is a stationary subset of α = sup(j[λ+]) < j(λ+). Also by5



the λ+ superompatness of j, j[S] belongs to M and therefore in M thereis an α < j(λ+) suh that j(S) ∩ α is stationary. By elementarity it followsthat in V there is α < λ+ suh that S ∩ α is stationary.Now note the following general fat: If 2λ holds then any stationary subset of
λ+ ontains a nonre�eting stationary subset of λ+, i.e., a stationary subset
T of λ+ suh that T ∩ α is nonstationary for all α < λ+ of unountableo�nality. For, given any stationary S ⊆ λ+, by Fodor we an hoose astationary T ⊆ S and β suh that ot(Cα) = β for all α in T . If α < λ+ hasunountable o�nality, then T ∩α an ontain at most one limit point of Cαby oherene, so T ∩ α is nonstationary in α. For future use also note thatif we set Dα = Cα when ot(Cα) ≤ β and Dα = {γ ∈ Cα | ot(Cα ∩ γ) > β}otherwise, then we get a 2µ sequene (Dα | α < µ+) with the added propertythat Lim (Dα) ∩ α is disjoint from T for all α. 2By the last part of the previous proof together with our work on ♦, wenow get the following:Proposition 5 Assume GCH and 2µ for an unountable ardinal µ. Thenthere is a µ+-Suslin tree.Proof Sketh. By our earlier work there is a ♦µ+(T ) sequene for some statio-nary T ⊆ µ+ ∩ Cof(γ), where γ < µ is regular and di�erent from of(µ), to-gether with a 2µ sequene (Cα | α < µ+) with the property that Lim (Cα)∩αis disjoint from T for all α.Now build a µ+ tree in stages, using the ♦µ+(T ) sequene to guess at maximalantihains at stages α ∈ T , and using the 2µ+ sequene (whih �avoids T �) toobtain for eah x in the tree and eah higher tree level α a anonial branh
b(x, α) ontaining x o�nal in the α-th level. For α not in T all anonialbranhes are ontinued to level α and for α in T only those anonial branheswhih pass through the guess at a maximal antihain are ontinued. The �T -avoidane� of the 2 sequene is used to show that the anonial branhes
b(x, α) leading to level α are indeed o�nal. 2Weak squaresWe onsider the following weakening of 2:6



2µ,λ says that there exists (Cα | α < µ+, α limit) suh that eah Cα is anonempty and size ≤ λ set of lubs in α, eah of whih has ordertype atmost µ, and whenever C belongs to Cα and β is a limit point of C, we have
C ∩ β belongs to Cβ.

2µ,µ+ is provable, as we an simply hoose lubs of ordertype at most µthrough eah limit α < µ+ and take Cα to onsist of all intersetions with αof suh lubs. Jensen showed that 2µ,µ, also denoted by 2
∗
µ and alled �WeakSquare at µ�, is equivalent to the existene of a speial µ+-Aronszajn tree,i.e., a tree T of height µ+ with levels of size at most µ suh that for some

f : T → µ, f(x) is di�erent from f(y) whenever x, y are omparable in T .5.-6.VorlesungenProposition 6 Weak Square at µ is equivalent to the existene of a speial
µ+-Aronszajn tree.Proof. Suppose that (Cα | α < µ+, α limit) witnesses Weak Square at µ. Notethat for any γ < µ+ the set of C ∩ γ for C in ⋃

α Cα has size at most µ: If Cbelongs to Cα then C ∩ γ is either �nite or the union of C ∩ δ for some limitpoint of δ of C together with a �nite set; in the latter ase C ∩ δ belongs to
Cδ so we get at most µ possibilities. Thus for our tree we an simply take allinitial segments of elements of ⋃

α Cα, ordered by end-extension, with ot asthe speialising funtion.Conversely, suppose that we are given a speial µ+ Aronszajn tree T withspeialising funtion f : T → µ. We will assoiate to eah x ∈ T of limit T -height |x| an unbounded Ax ⊆ |x| of ordertype at most µ suh that if δ < |x|is a limit point of Ax then Ax ∩ δ is Ay where y is the T -predeessor of xof T -height δ. This su�es, as then we an take Cx to be the losure of Ax(without |x|) for eah x of limit T -height and get a Weak Square sequeneby setting Cα to be the set of Cx for x of T -height α.For x ∈ T of limit T -height de�ne Ax = {γi | i < jx} as follows: Let yi be the
T -predeessor y of x of T -height greater than the the γj, j < i, with leastpossible speialising value f(y); then γi is the T -height of yi. This de�nitionontinues until one generates an unbounded subset of |x|, whih we take to be
Ax. Clearly Ax has ordertype at most µ. It is routine to hek the ohereneproperty: if y is the T -predeessor of x of height γλ, λ limit, then Ay will be7



de�ned in exatly the same way as Ax until it beomes o�nal in the heightof y. 2Remarks. Without introduing any extra strength, we an arrange that aWeak Square sequene (Cα | α limit, α < µ+) at µ has the following twoadditional properties: (i) For all limit α < µ+ there is C ∈ Cα of ordertypeof(α). (ii) If µ is singular, then the lub sets appearing in the Cα's eah haveordertype less than µ. The extent of SquareWeak Square will hold at µ if µ is regular and there are only µ boundedsubsets of µ: If α has o�nality less than µ then take Cα to onsist of all lubsin α of ordertype less than µ (there are only µ many); if α has o�nality µthen take Cα to onsist of one lub in α of ordertype µ.On the other hand, GCH is not su�ient to imply 2µ for an unountableregular µ: If κ > µ is Mahlo then 2µ will fail after applying Coll (µ,< κ), theforing that ollapses every ordinal less than κ to µ with onditions of size
< µ (and turns κ into µ+). The idea is that if (Cα | α limit, α < κ) were a 2µsequene in the extension then using Mahloness there is a κ̄ < κ regular inthe ground model suh that (Cα | α limit, α < κ̄) belongs to the intermediatemodel V [Ḡ] obtained by restriting the generi to Coll (µ,< κ̄); but then Cκ̄was added over this model by a µ-losed foring, whih is impossible sineall of its initial segments belong to V [Ḡ].Dropping GCH, Weak Square an fail at a regular µ: Mithell found away of turning a Mahlo κ > µ into µ+, in suh a way that κ-many boundedsubsets of µ are added and Weak Square will fail at µ.As we have mentioned, killing Square at a singular µ is muh harder andtypially uses a superompat. In fat a strong ompat κ is su�ient toimply the failure of Weak Square at any singular µ of o�nality less than κ.[Question: Is a strong ompat onsistent with Weak Square at a singularardinal above it?℄ Approahability and I[λ]Let κ be regular and (aα | α < κ) a sequene of bounded subsets of κ.A limit ordinal γ < κ is approahable relative to this sequene i� there is an8



unbounded A ⊆ γ of ordertype of(γ) suh that eah proper initial segmentof A is of the form aα for some α < γ. The approahability ideal I[κ] onsistsof all S ⊆ κ suh that for some sequene (aα | α < κ) of bounded subsetsof κ, almost all elements of S are approahable relative to (aα | α < κ) (i.e.,for some lub C ⊆ κ, all elements of S ∩ C are approahable relative to
(aα | α < κ)).The set Cof(ω)∩κ belongs to I[κ] beause we an hoose as our sequene
(aα | α < κ) an enumeration of the �nite subsets of κ. Also note that if
λ < κ is regular and κ<λ equals κ then there is a single �universal� sequene
(aα | α < κ) whih witnesses the approahability of eah subset of Cof(λ)in I[κ]; any sequene (aα | α < κ) whih enumerates eah element of [κ]<λunboundedly often will su�e. Also under the assumption κ<λ = κ there is amaximal subset of Cof(λ) in I[κ] (maximal modulo the nonstationary ideal):take S(λ) to be the set of ordinals of o�nality λ whih are approahablewith respet to the universal sequene. We an refer to S(λ) as the set of�approahable points of o�nality λ in κ�. (In extreme ases, S(λ) will benonstationary.)It is also easy to see that I[κ] is an ideal, beause if S0, S1 belong to I[κ],witnessed by sequenes (a0

α | α < κ), (a1
α | α < κ) and lubs C0, C1, then

S0 ∪ S1 is witnessed to belong to I[κ] by (aα | α < κ) and lub C0 ∩ C1,where a2α+i equals ai
α. The same argument shows that the diagonal union

{α | α ∈ Si for some i < α} of sets (Si | i < κ) in I[κ] also belongs to
I[κ], using the �join� a〈α,i〉 = ai

α of sequenes (ai
α | α < κ) and the diagonalintersetion of lubs (Ci | i < κ) witnessing the membership of Si in I[κ].So I[κ] is a normal ideal. But it need not be a proper ideal, i.e., it ouldbe that κ itself belongs to I[κ]. For example, if Weak Square holds at µ then

µ+ belongs to I[µ+]: We an witness Weak Square with a sequene (Cα | αlimit, α < µ+) suh that eah Cα ontains a lub of ordertype of(α). Let
(aβ | β < µ+) enumerate ⋃

α Cα; then almost all α < µ+ are approahablerelative to (aβ | β < µ+). In partiular, µ<µ = µ implies that µ+ belongs to
I[µ+]. Without any ardinal arithmeti assumption we have:Proposition 7 If µ is regular then Cof(< µ) ∩ µ+ belongs to I[µ+].To prove Proposition 9 we introdue partial squares.9



7.-8.VorlesungenPartial SquaresIn the Shelah tradition of proving weakenings of ombinatorial priniplesin ZFC, we look at partial squares. (This will also be useful when studyingthe next topi, approahability.) Let S be a subset of {α < µ+ | of(α) = λ}.We say that S arries a partial square i� there is (Cα | α ∈ S) suh thateah Cα is lub in α of ordertype λ and whenever β is a ommon limit pointof Cα0
, Cα1

for two α0, α1 in S, then we have Cα0
∩ β = Cα1

∩ β.Theorem 8 (Shelah) If λ < µ are regular then {α < µ+ | of(α) = λ} is theunion of µ sets, eah of whih arries a partial square.Proof. We may assume that λ is unountable. Fix some large regular θ andlet M be the struture (H(θ),∈, <θ) where <θ is a wellorder of H(θ). For
α < µ+ of o�nality λ and ζ < µ we let M(α, ζ) be the Skolem hull of {α}∪ζin M.For eah α < µ+ of o�nality λ hoose ζ(α) to be the least ζ ≥ λ suh that
M(α, ζ)∩µ is an ordinal of unountable o�nality. Set Nα = M(α, ζ(α)) andnote that Eα = Nα ∩ α is unbounded in α.We laim that Eα is ω-losed. To see this, let x ⊆ Eα have ordertype ω, let βbe the sup of x and let γ be the least element of Eα\β. We want to show that
β = γ. Note that as γ belongs to Nα, Nα ontains an inreasing o�nal map
f from of(γ) into γ and f restrited to Nα ∩ of(γ) is o�nal into Nα ∩ γ.Now as Nα ∩ µ is an ordinal, if of(γ) < µ then the range of f is ontainedin Nα, and so Nα ∩ γ = Eα ∩ γ is o�nal in γ, as desired. So of(γ) equals µ.Thus of(Nα∩γ) = of(Nα ∩µ), whih is impossible as of(Nα ∩µ) is greaterthan ω while of(Nα ∩ γ) = of(Nα ∩ β) = ω.Let Dα be the losure of Eα as a set of ordinals. For ρ, σ < µ we de�ne
S(ρ, σ) = {α | Nα ∩ µ = ρ, ot(Dα) = σ}. We show that eah of these setsarries a partial square, witnessed by lubs Cα ontained in Dα.We �rst show that if α, α∗ belong to S(ρ, σ) and γ is a ommon limit point of
Dα, Dα∗ then Dα ∩ γ equals Dα∗ ∩ γ. If γ has o�nality ω then by the above
γ belongs to Nα ∩Nα∗ ; as γ has size at most µ and Nα ∩ µ equals Nα∗ ∩ µ it10



follows that Nα ∩ γ equals Nα∗ ∩ γ. If γ has unountable o�nality then γ isa limit of η of o�nality ω whih are ommon limits of Dα, Dα∗ ; we then justshowed Nα ∩ η = Nα∗ ∩ η for suh η and therefore Nα ∩ γ equals Nα∗ ∩ γ.Finally, �x C ⊆ σ a lub of ordertype λ and set Cα = {γ ∈ Dα | ot(Dα∩γ) ∈
C}. This thinning of the Dα sequene preserves oherene and therefore wehave a partial square on S(ρ, σ), as desired. 2Now we show:Proposition 9 If µ is regular then Cof(< µ) ∩ µ+ belongs to I[µ+].Proof of Proposition 9. It su�es to show that for eah regular λ < µ, Cof(λ)∩
µ+ belongs to I[µ+]. Reall that Cof(λ) ∩ µ+ is the union of µ sets, eah ofwhih arries a partial square. It su�es to show that if S is one of these setsthen S belongs to I[µ+]. Let (Cα | α ∈ S) be a partial square sequene on
S. For γ a limit point of some Cα let Dγ be Cα ∩ γ for all suh α. Then thesequene (Dγ | γ < µ+) witnesses the approahability of S. 2Thus for regular µ, the ideal I[µ+] is only interesting on Cof(µ). As men-tioned earlier, Mithell onstruted a model using a Mahlo ardinal in whihWeak Square fails at ω1; it an be veri�ed that also in this model, µ+ doesnot belong to I[µ+].For singular µ, we'll show that I[µ+] does ontains stationary sets on anyo�nality (however it need not be the ase that Cof(λ) belongs to I[µ+] foreah regular λ < µ). This follows from the following more general result ofShelah:Theorem 10 Let κ < κ+ < θ < λ be regular. Then there is a subset Aof Cof(κ) ∩ λ whih belongs to I[λ] suh that A ∩ δ is stationary in δ forstationary many δ in Cof(θ) ∩ λ (and in partiular A is stationary).Proof. We use the onept of internally approahable (IA) hain. If A is astruture (H(ǫ),∈, <ǫ, . . .) with ǫ large and regular, <ǫ a wellorder of H(ǫ)and . . . ountably many additional onstants, funtions and relations and γis a limit ordinal, then an IA hain of substrutures of A of length γ is aontinuous and inreasing sequene (Mi | i < γ) of elementary substruturesof A suh that (Mi | i <≤ j) belongs to Mj+1 for eah j < γ. Of ourse for11



unountable regular γ and any subset x of A of size < γ it is easy to buildan IA hain of length γ of substrutures of A of size less than γ ontaining
x as a subset.Now let (Cξ | ξ ∈ Cof(κ) ∩ θ) be a lub guessing sequene, whih existsbeause κ+ is less than θ. Let (Mi | i < λ) be an IA hain suh that (Cξ |
ξ ∈ Cof(κ) ∩ θ) is a subset of M0 and eah Mi has size less than λ. Let
(ai | i < λ) enumerate the bounded subsets of λ in ⋃

i<λ Mi. The desiredset A is the set of γ < λ of o�nality κ whih are approahable relative tothe sequene (ai | i < λ). We must show that A ∩ δ is stationary in δ forstationary many δ ∈ Cof(θ) ∩ λ.If not then A ∩ δ is nonstationary in δ for almost all δ < λ of o�nality θ. Itfollows that we an build an IA hain (Nj | j < θ) of substrutures of size θsuh that N0 ontains (Cξ | ξ ∈ Cof(κ) ∩ θ) as a subset and (Mi | i < λ) asan element and setting δ = sup(
⋃

j<θ Nj ∩λ), we have A∩ δ is nonstationaryin δ.For j < θ let αj be sup(Nj ∩ λ); then the sequene of αj's is ontinuousand o�nal in δ. Also hoose (βj | j < θ) in Mδ+1 to be ontinuous ando�nal in δ. Then e = {j < θ | αj = βj} is lub in θ so by lub-guessing,
Cξ is ontained in e for stationary many ξ ∈ Cof(κ) ∩ θ. For suh a ξ let
c = {αj | j ∈ Cξ} = {βj | j ∈ Cξ}. The proper initial segments of c lie bothin Nξ and in Mδ+1. If x is suh a proper initial segment of c then Nξ sees that
x belongs to some Mi and so x bleongs to Mi for some i in Nξ ∩ λ; hene xbelongs to Mαξ

. Thus by de�nition of A, c witnesses that αξ belongs to A.As this holds for stationary many ξ, we have shown that A ∩ δ is stationaryin δ, ontradition! 2To summarise: For regular µ, I[µ+] ontains Cof(λ)∩µ+ for regular λ < µ;it may fail to ontain Cof(µ) ∩ µ+. For singular µ, I[µ+] ontains stationarysubsets of Cof(λ)∩ µ+ for any regular λ < µ. For weakly inaessible κ, I[κ]ontains stationary subsets of Cof(λ) ∩ κ for any regular λ < κ. [Questions:For unountable regular µ is it possible that I[µ+] ontain only nonstationarysubsets of Cof(µ)? For singular µ is it possible that I[µ+] fails to ontainCof(λ) ∩ µ+ for all unountable regular λ < µ? For weakly inaessible µ isit possible that I[µ] fails lto ontain Cof(λ) ∩ µ for all unountable regular
λ < µ?℄ 12



9.-10.VorlesungenApproahability and ForingShelah originally introdued approahability to answer the question ofwhen µ+-losed foring preserves the stationarity of subsets of Cof(µ). Forthis purpose it is onvenient to note that approahability an be formulatedin an equivalent way using elementary submodels. Let θ denote a large re-gular ardinal and A a struture of the form (H(θ),∈, <θ, . . .) where <θ isa wellorder of H(θ) and . . . represents ountably many additional funtions,relations and onstants. Then γ < κ is approahable relative to A if there isan unbounded A ⊆ γ of ordertype of(γ) suh that eah proper initial seg-ment of A belongs to SkA(γ) (the set of elements of H(θ) whih are de�nablein A from parameters less than γ; Sk stands for �Skolem hull�). It is easy tosee that S ⊆ κ belongs to I[κ] i� for some A as above, almost all elementsof S are approahable relative to A.Proposition 11 Suppose that κ is regular and unountable.(a) If S ⊆ κ ∩ Cof(ω) is stationary then ountably losed foring preservesthe stationarity of S.(b) More generally, if S ⊆ κ ∩ Cof(µ) is stationary and belongs to I[κ] then
µ+-losed foring preserves the stationarity of S.Proof. We prove (b). Let the struture A = (Hθ,∈, <θ, . . .) witness S ∈ I[κ]for some large θ and let P be a µ+-losed foring, p a ondition in P foring
Ċ to be a lub in κ. Expand A to A∗ so as to inlude P, p, Ċ. Now onsiderthe lub C of all γ < κ suh that γ = κ∩SkA∗

(γ) and hoose γ in C∩S. Alsolet A ⊆ γ be unbounded of ordertype µ suh that all proper initial segmentsof A belong to SkA∗

(γ). Now the point is that if we suessively extend pin µ steps in the <θ-least way, at step i foring an ordinal greater than the
i-th element of A into Ċ, then the resulting onditions belong to SkA∗

(γ) bythe hoie of A. Therefore a lower bound to these onditions fores that Ċ isunbounded below γ. It follows that p has an extension foring γ ∈ S into Ċ,proving that the stationarity of S is preserved. 2There is a kind of onverse to this result: Suppose that κ<µ = κ and Sis the set of points of o�nality µ approahable with respet to a universalenumeration of [κ]<µ. Also suppose that µ<µ = µ. Now onsider the foringwhose onditions are losed bounded subsets c of κ of ordertype less than µ+13



suh that c ∩ Cof(µ) is ontained in S and the bounded subsets of c of sizeless than µ appear in the universal enumeration before stage max(c). Thenthis foring is µ+-losed and kills the stationarity of Cof(µ) ∩ (κ \ S). (We'llsee later that it is indeed possible for Cof(µ)∩ (κ \ S) to be stationary, evenwhen GCH holds and µ = ω1, κ = ℵω+1.)Sales, good points and exat upper boundsGiven an index set X and an ideal I on X we an order the funtionsfrom X into Ord by: f <I g i� {x | f(x) ≥ g(x)} ∈ I. De�ne =I and ≤I inthe obvious way. A <I inreasing sequene (fi | i < α) has an exat upperbound (eub) i� there is an f suh that fi <I f for all i and every g <I fsatis�es g <I fi for some i. If f exists then of ourse it is unique modulo theideal I.Suppose f : X → Ord. A sale of length α in ∏
X f(x)/I is a <I inreasingsequene (fi | i < α) in ∏

X f(x) whih is o�nal in ∏
X f(x) under therelation <I . In this ase it follows that f is an eub for (fi | i < α) andonversely, if f is an eub for (fi | i < α) then (f ∗

i | i < α) forms a sale in∏
X f(x), where f ∗

i (x) = fi(x) if the latter is less than f(x), 0 otherwise.Weaker then eub is lub (least upper bound). f is an lub for (fi | i < α) i�
fi ≤I f for eah i and every funtion whih is below f on an I-positive setis below some fi on an I-positive set.Also note the following: If ~f = (fi | i < γ) and ~g = (gj | j < δ) areo�nally interleaved in the sense that {h | h <I fi for some i} = {h | h <I gjfor some j} then ~f has an eub i� ~g has an eub and these eub's are equalmodulo I.Our goal is to use the nontriviality of the approahability ideal to buildsales, or equivalently, to build sequenes with eub's. A key onept for ahie-ving this is that of a good point. Suppose that I is an ideal on X andlet (fi | i < γ) be <I inreasing. A limit ordinal α ≤ γ is a good pointi� of(α) > ard(X) and there is an eub h for (fi | i < α) suh thatof(h(x)) = of(α) for all x. Equivalently: There is a pointwise inreasingsequene (hj | j < of(α)) o�nally interleaved modulo I with (fi | i < α).14



Theorem 12 Let ard(X) < κ < λ with κ and λ regular. Suppose that
(fi | i < λ) is a <I inreasing sequene with stationarily many good points ofo�nality κ. Then there exists an eub h suh that of(h(x)) > κ for all x.11.-12.VorlesungenProof. First we onstrut an lub and then show that this lub is in fat aneub.Step 1. By indution we onstrut funtions gj suh that fi <I gj for all iand for j1 < j2, gj2 ≤I gj1 , gj2 6=I gj1 . Start by hoosing g0 to be any upperbound, and for all j if gj fails to be an lub for (fi | i < λ) we hoose gj+1 towitness this failure.For limit µ set Sµ(x) = {gj(x) | j < µ} and de�ne hi

µ(x) = min(Sµ(x) \
fi(x)). We laim that for µ < ard(X)+, (hi

µ | i < λ) is eventually onstantmodulo I. If not, we �nd γ good of o�nality κ suh that hi
µ does not stabilisefor large i < γ and �x (Hζ | ζ < κ) pointwise inreasing and o�nally interlea-ved with (fi | i < γ). The funtion x 7→ min(Sµ(x) \ Hζ(x)) annot stabilisefor large ζ < κ, but this is impossible beause ard(Sµ(x)) ≤ ard(X) < κ.We now hoose gµ so that gµ =I hi

µ for all large i.We show that this onstrution stops in fewer than ard(X)+ steps. Sup-pose not. For eah x and eah i the value of hi
µ(x) will stabilise for large limit

µ < ard(X)+ sine the smallest value whih will ever appear must turn upat some point. So for eah i < λ the funtion hi
µ stabilises for large limit µ.Thus there is an unbounded B ⊆ λ and a �xed ν suh that for i ∈ B, hi

µ isonstant for limit µ ≥ ν. If ν ≤ µ1 < µ2 we may hoose i ∈ B large enoughso that gµ1
=I hi

µ1
and gµ2

=I hi
µ2
, yielding gµ1

=I gµ2
, ontraditing thehoie of the funtions gj.So the onstrution halts at some stage before ard(X)+, produing anlub g.Step 2. Suppose now that our lub g from Step 1 is not an eub. Then we may�nd h <i g suh that the set Si = {x | fi(x) ≤ h(x)} is I-positive for all i. Welaim that this sequene of sets is eventually onstant modulo I. If not, thenwe �nd a good point γ of o�nality κ suh that Si does not stabilise modulo

I for large i < γ and �x (Hζ | ζ < κ) pointwise inreasing and o�nallyinterleaved with (fi | i < λ). If Dζ = {x | Hζ(x) ≤ h(x)} then Dζ annotstabilise for large ζ, but this is impossible beause Dζ dereases with ζ andard(X) < κ. 15



Let S be suh that Si =I S for large i and de�ne g∗ so that g∗ agreeswith h on S and with g on the omplement of S. Then by onstrution, g∗is an upper bound for the fi's and g∗ is below g on an I-positive set, whihis impossible sine g is an lub.To �nish we must hek that of(g(x)) > κ for almost all x. This followsfrom an argument similar to that we gave in Step 1 that hi
µ stabilises forlarge i. 2Remark. The onverse of the above result is also true: Let C be a ub subsetof λ and build an IA hain (Mj | j < κ) of strutures of size less than κ withunion M suh that γ = sup(M ∩ λ) belongs to C. Then the funtion h̄ givenby x 7→ sup(M ∩ h(x)) is an eub for the fi's with of(h̄(x)) = κ for eah x.Building sales, goodness and approahabilityAs a �rst appliation of the nontriviality of the approahability ideal andthe previous result about eub's, we prove:Theorem 13 There is an in�nite A ⊆ ω and a sale of length ℵω+1 in∏

n∈A ℵn/F in.Proof. Choose some large θ and build an internally approahable hain (Mα |
α < ℵω+1) in (H(θ),∈, <θ) onsisting of strutures of size ℵω with Mα∩ℵω+1an ordinal. Let gα be the <θ least funtion whih dominates modulo �niteall funtions in Mα ∩

∏
n∈ω ℵn.Reall that I[ℵω+1] ontains a stationary subset of Cof(ℵk) for eah �nite

k. Now note the following:Lemma 14 Let A denote (H(θ),∈, <θ). Let S belong to I[ℵω+1], S ⊆ Cof(ℵk).Then for almost all γ in S there is an internally approahable hain (Ni |
i < ℵk) of substrutures of A with union N ⊆ Mγ suh that ard(Ni) < ℵkfor all i, sup(N ∩ ℵω+1) = γ and Mα ∈ N for o�nally many α < γ.Proof of Lemma. Expand A to B by adding a prediate for a sequene ofbounded subsets of ℵω+1 witnessing that S belongs to I[ℵω+1] and build anIA hain (M∗

α | α < ℵω+1) of substrutures of B with ard(M∗
α) = ℵω and

M∗
α∩ℵω+1 an ordinal. Also assume that (Mα | α < ℵω+1) belongs to M∗

0 . Nowhoose γ in S so that γ = M∗
γ ∩ℵω+1. Fix a sequene (γj | j < ℵk) ontinuous16



and o�nal in γ suh that (γi | i ≤ j) belongs to M∗
γj+1 for eah j. Then take

Ni to be the Skolem hull in M∗
γ of the set of parameters {Pj | j < i} where

Pj = (M∗
γi
| i ≤ j). Then the Ni's have the desired properties. 2 (Lemma)Now �x a �nite k and apply the Lemma to almost all γ ∈ S to obtain thesequene (Ni | i < ℵk). De�ne hi to be the funtion m 7→ sup(Ni ∩ ℵm) and

h to be the funtion m 7→ sup(N ∩ℵm). Then h is an eub for (hi | i < ℵk) asof(h(m)) = ℵk for all m.We laim that (hi | i < ℵk) and (gα | α < γ) are o�nally interleaved. Onthe one hand, eah hi is de�ned from the orresponding Ni, so hi belongs to
Mγ and hene for some β < γ, hi belongs to Mβ and is dominated modulo�nite by gβ. Conversely, for o�nally many α < γ, Mα belongs to N so gαbelongs to Ni for some i < ℵk and is dominated everywhere by hi. It followsthat h is an eub for (gα | α < γ).Applying Theorem 12 our sequene (gα | α < ℵω+1) is inreasing modulo�nite and for eah k has an eub gk suh that gk(n) has o�nality greaterthan ℵk for eah n. Let g be an eub for (gα | α < ℵω+1); it follows that foreah k the set {n | of(g(n)) = ℵk} is �nite. Let A be the set of k suh thatof(g(n)) = ℵk for some n. For eah k ∈ A and eah n with of(g(n))) = ℵk�x (βn

i | i < ℵk) inreasing and o�nal in g(n). If we now de�ne fα(k) tobe the least i suh that gα(n) < βn
i for all n with of(g(n)) = ℵk, thenthe sequene of fα's an be thinned out to give a sale of length ℵω+1 in∏

k∈A ℵk/F in. For future use note that if X is the set of good points for thesequene (gα | α < ℵω+1) then the resulting sale is good at almost everypoint in X. 2 13.VorlesungSquare priniples and sale propertiesReall that a sale of length α in ∏
x∈X f(x)/I is a <I inreasing sequene

(fi | i < α) in ∏
x∈X f(x) whih is o�nal in ∏

x∈X f(x) under the relation
<I . Equivalently, f is an exat upper bound for the sequene (fi | i < α):
fi <I f for eah i < α and whenever g <I f , we have g <I fi for some i. Alimit ordinal β ≤ α is a good point of (fi | i < α) i� of(β) > ard(X) andthere is an exat upper bound f for (fi | i < β) suh that of(f(x)) = of(β)for eah x. 17



We fous now on sales of length ℵω+1 in produts ∏
n∈A ℵn/Fin where Ais an in�nite subset of ω and Fin is the ideal of �nite sets. We proved:Theorem 15 There is a stationary subset X of Cof(ℵk) ∩ ℵω+1 in I[ℵω+1](even onentrating on a single o�nality ℵk). And for any suh X there isan A ⊆ ω and a sale of length ℵω+1 in ∏

n∈A ℵn/Fin for whih almost everyelement of X is a good point.If we assume approahability, i.e., that the entire ℵω+1 belongs to I[ℵω+1],then we an do better: we get a good sale, i.e., a sale as above for whih everyelement of Cof(> ω)∩ℵω+1 is good. The reason is as follows: Theorem 15 givesus a sale (fα | α < ℵω+1) whih is good at almost every point of unountableo�nality. Fix a lub C suh that every limit point of C of unountableo�nality is good and enumerate C as (αi | i < ℵω+1). Now onsider the newsale given by gi = fαi
. If i has unountable o�nality then αi is good andwe may �x an EUB h for (fα | α < αi) suh that of(h(n)) = of(i) for all n;the sequene (gj | j < i) is o�nal in (fα | α < αi) so h is also an EUB for

(gj | j < i) and thus i is a good point for (gj | j < ℵω+1).If we assume 2ℵω
, a hypothesis stronger than approahability, we anobtain a very good sale. (fα | α < ℵω+1) is very good i� for every limit

α < ℵω+1 of unountable o�nality there is a lub C ⊆ α suh that for some
n, (fα(m) | α ∈ C) is stritly inreasing for all m ≥ n. If (Cα | α < ℵω+1)is a square sequene then start with an arbitrary sale (gα | α < ℵω+1).We may assume that eah Cα has ordertype less than ℵω. Now onstrut
fα to dominate gα pointwise and arrange that for limit α, fα(m) > fβ(m)for β ∈ Lim (Cα) and for m suh that ot(Cα) < ℵm. A similar onstrutionworks assuming only 2ℵω,ℵn

for some �nite n.Weak square, i.e. the priniple 2ℵω,ℵω
, is su�ient to obtain a better sale,a notion between good and very good. A sale (fα | α < ℵω+1) is better i�for limit α < ℵω+1 thre is a lub C ⊆ α suh that for every β ∈ C thereis an m suh that fγ(n) < fβ(n) for all γ ∈ C ∩ β and n ≥ m. Supposethat (Cα | α < ℵω+1) is a weak square sequene and assume ot(C) < ℵω foreah lub C in some Cα. At stage α we form fC for eah C ∈ Cα by de�ning

fC(m) = sup{fβ(m) | β ∈ C} when ot(C) is less than ℵm. Then hoose fαto dominate mod �nite all fC , C ∈ Cα.14.-15.Vorlesungen18



Square priniples and foring axiomsWe show that MM (Martin's Maximum) implies that there is no goodsale. So MM refutes the approahability property ℵω+1 ∈ I[ℵω+1], whihan be viewed as a very weak square priniple.Theorem 16 MM implies that there is no sale whih is good at almostevery point of o�nality ℵ1.Proof.We de�ne a Namba-like foring P whih adds a new funtion to ∏
n ℵn.A ondition is a tree T suh that eah t ∈ T is a �nite sequene with t(n) ∈

ℵn+2 ∩ Cof(ω) for n < length (t). A ondition is required to have a �stem�
s suh that every t ∈ T is omparable with s and if t extends s then {α |
t ∗ α ∈ T} is stationary in ℵlength (t)+2

. P is ordered by inlusion.For T1, T2 in P , we say that T1 is a diret extension of T2, and write
T1 ≤∗ T2, i� T1 extends T2 and has the same stem. Clearly if S extends Tthen S ≤∗ Ts where s is the stem of S and Ts onsists of the elements of Tomparable with s.Claim 1. If τ is a name for a ountable ordinal and S is a ondition then Shas a diret extension whih evaluates τ .Proof. Let s be the stem of S, of length n. If the laim fails, then for sta-tionarily many α ∈ ℵn+2 we have s ∗ α in S and no diret extension of Ss∗αevaluating τ (otherwise by ℵ2-ompletness, S would have a diret extensionevaluating τ). Repeating this argument, we may work up the tree to builda diret extension U of S suh that for every t ∈ U extending s, there is nodiret extension of Ut evaluating τ . But this is impossible as some extensionof U evaluates τ and is a diret extension of Ut for some t extending s. 2Similarly, if S has a stem of length n and τ is a name for an element of
ℵn+1 then there is a diret extension of S whih evaluates τ .Let f ∈

∏
n ℵn+2 be the generi funtion added by P and let ḟ be a

P -name for it.Claim 2. If S fores ġ < ḟ then there is a diret extension T of S and afuntion h in ∏
n ℵn+2 ∩ V suh that T fores ġ < h.19



Proof. For simpliity of notation, assume that the stem of S is empty. Foreah α suh that 〈α〉 belongs to S hoose a diret extension of S〈α〉 evaluating
ġ(0). By Fodor we may thin out to obtain a diret extension of S evaluating
ġ(0). Working up the tree level by level we build a diret extension T of Ssuh that for every t ∈ T , Tt evaluates ġ (length (t)) < ℵlength (t)+2

. Asthere are only ℵn+1 nodes t of length n, it follows that T produes a funtionin the ground model bounding ġ. 2Claim 3. P is stationary-preserving.16.VorlesungProof of Claim 3. Fix A a stationary subset of ω1, Ċ a name for a lub and
S a ondition. We �nd U ≤ S and δ ∈ A suh that U fores δ ∈ Ċ. To easenotation, assume that S is the trivial ondition.We an assign to eah 〈α〉 in S an ordinal γ〈α〉 so that for eah i < ω1there are stationarily many α ∈ ω2 ∩ Cof(ω) suh that γ〈α〉 = i. Now usingClaim 1, �nd an extension S ′ of S with the same �rst level as S suh that
S ′
〈α〉 evaluates min(Ċ \ γ〈α〉) to some ordinal δ〈α〉.Repeating this, we thin out level by level to obtain a diret extension Tof S together with an assignment of γt and δt to t in T suh that Tt foresthat min(Ċ \ γt) = δt, and for every t and i < ω1 there are stationarily many

α with γt∗α = i.Now for eah ountable δ onsider the game Gδ in whih the playersbuild a branh through T : At round n player I hooses a nonstationaryset An ⊆ ℵn+2 and a ountable ordinal βn < δ; player II responds with
αn /∈ An. Player II loses immediately if (α0, . . . , αn) /∈ T or γ〈α0,...,αn〉 ≤ βnor δ〈α0,...,αn〉 ≥ δ.The game Gδ is open so is determined. Let X be the set of δ suh that Ihas a winning strategy in Gδ and �x suh strategies τδ, δ ∈ X.We laim that X is nonstationary. If not, hoose a ountable N elementaryin some large H(θ) suh that N ontains all relevant parameters and δ =
N ∩ ω1 belongs to X. We will desribe a run of the game Gδ in whih player
I plays aording to his (supposedly winning) strategy τδ while player IIplays ordinals from N and never loses.20



This run is desribed as follows: If II has played α0, . . . , αk−1 then let βkbe the ordinal part of the strategy τδ's response. We onsider the union overall γ ∈ X of the nonstationary sets provided by the various strategies τγ inresponse to α0, . . . , αk−1; this union is a nonstationary subset of ℵk+2 lyingin N , and as βk belongs to N we may hoose a suitable αk in N . The keypoint is that the map s 7→ δs belongs to N so the requirement δ〈α0,...,αn〉 < δis guaranteed.Now hoose δ in the stationary set A so that player II has a winningstrategy ρ in the game Gδ. Choosing (δn | n ∈ ω) to be inreasing and o�nalin δ we use ρ to thin out T to U ≤∗ T suh that for all u ∈ U of length nwe have δn < γu ≤ δu < δ. Then U fores that δ is a limit point of Ċ andtherefore belongs to Ċ. 2Now we show that MM kills good sales. Let λ denote ℵω. Suppose that
(gα | α < λ+) were a good sale in ∏

n∈A ℵn (A in�nite). For simpliity weassume that A equals ω. We apply MM to the poset Q = P ∗ Coll (ω1, λ
+),whose seond fator is the ω-losed foring that ollapses λ+ to ω1. Then Qis stationary-preserving and fores:1. of((λ+)V ) = ard((λ+)V ) = ω1.2. There is a funtion h ∈

∏
n∈ω(ℵn∩Cof(ω)V ) whih is an exat upper boundfor (gα | α < (λ+)V ).In a Q-generi extension we may hoose for eah n a ountable set Sn ∈

V whih is o�nal in h(n). We may also hoose an inreasing and o�nalsequene (αi | i < ω1) in (λ+)V suh that for eah i there is Hi ∈
∏

n Sn with
gαi

<∗ Hi <∗ gαi+1
.Now go bak to V . Let C be a lub in λ+. Applying MM we may obtainountable sets S∗

n ⊆ ℵn and inreasing (α∗
i | i < ω1) with δ = supi α

∗
i in

C, and funtions H∗
i ∈

∏
n S∗

n suh that gα∗

i
<∗ H∗

i <∗ gα∗

i+1
for eah i. Butthen δ annot be a good point, i.e., there an be no unbounded A ⊆ δ and

m < ω suh that the sequene (gα(n) | α ∈ A) is stritly inreasing for
n ≥ m: For, given suh an A and m, we may �nd an inreasing sequene
(βi | i < ω1) from A and orresponding (H∗

ji
|< ω1) from ∏

n S∗
n suh that

gβi
<∗ H∗

ji
<∗ gβi+1

. But then we an �x n > m and B ⊆ ω1 unbounded suhthat gβi
(n) < H∗

ji
(n) < gβi+1

(n) for all i in B. This ontradits the fat that
H∗

ji
(n) belongs to the ountable set S∗

n for eah i!21



So we have shown that there are stationarily many bad points δ of o�-nality ω1, as desired. 2
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