$$
\mathbb{P}_{\max }
$$

1.Vorlesung

Introduction

The beginning of the $\mathbb{P}_{\text {max }}$ story is the following result of Woodin:
Theorem 1 If $N S_{\aleph_{1}}$ is saturated and there is a measurable cardinal then δ_{2}^{1} equals \aleph_{2}.

Here NS_{κ} denotes the ideal of nonstationary subsets of κ. The word "saturated" here means " \aleph_{2}-saturated", i.e., there is no antichain of size \aleph_{2} in the quotient $\mathcal{P}\left(\omega_{1}\right) / \mathrm{NS}_{\aleph_{1}}$. The ordinal δ_{2}^{1} is the supremum of the ranks of Δ_{2}^{1} definable prewellorderings of the reals. It is not known if $\mathrm{NS}_{\aleph_{1}}$ can be saturated in the presence of CH ; by this result it cannot be if a measurable cardinal exists.

A key step in the proof of the above result is that every element of $H\left(\aleph_{2}\right)$ belongs to a "generic iterate" of a countable model of ZFC. Woodin used this to define a forcing in $L(\mathbb{R})$ called $\mathbb{P}_{\max }$ which when applied for $L(\mathbb{R})$ yields a version of $H\left(\aleph_{2}\right)$ which satisfies AC and has some restricted ${ }^{1}$ but attractive absoluteness properties.

In this course we'll follow Paul Larson's article in the Handbook of Set Theory, which presents the basics of the $\mathbb{P}_{\max }$ theory.

Iterations

Suppose that I is a normal ideal on ω_{1} containing all countable subsets of ω_{1}. "Normal" means that I is not all of $\mathcal{P}\left(\omega_{1}\right)$ and whenever A is an I-positive set (i.e. a subset of ω_{1} not belonging to I), $f: A \rightarrow \omega_{1}$ is regressive then f is constant on an I-positive set. An example is the ideal of nonstationary subsets of ω_{1}.

If we force with the quotient $\mathcal{P}\left(\omega_{1}\right) / I$ then the result is a V-ultrafilter on ω_{1} (i.e., a filter on ω_{1} which for every A in V contains either A or $\sim A$) and this ultrafilter U is V-normal (i.e., normal for functions in V).

[^0]If we form $\operatorname{Ult}(V, U)$, the ultrapower of V by U, we don't necessarily have a wellfounded model, but the canonical elementary embedding j : $V \rightarrow \operatorname{Ult}(V, U)$ has critical point ω_{1}^{V} and (identifying the wellfounded part of $\mathrm{Ult}(V, U)$ with its transitive collapse) ω_{2}^{V} is an initial segment of the ordinals of $\operatorname{Ult}(V, U)$ (as using j any subset of ω_{1}^{V} in V also belongs to $\operatorname{Ult}(V, U)$). Since I is normal:

$$
A \in U \text { iff } \omega_{1}^{V} \in j(A)
$$

for subsets A of ω_{1}^{V} in V.
Sometimes we will need a weakening of ZFC, denoted by ZFC ${ }^{\circ}$. For now we omit the details of the definition of ZFC°. The existence of transitive models of ZFC° is provable in ZFC.

Now we turn to iterated generic ultrapowers. Suppose that M is a model of $\mathrm{ZFC}^{\circ}, I \in M$ is a normal ideal on ω_{1}^{M} and $\mathcal{P}\left(\mathcal{P}\left(\omega_{1}\right)\right)^{M}$ is countable. Then there exist generics for $\left(\mathcal{P}\left(\omega_{1}\right) / I\right)^{M}$. Moreover, if $j: M \rightarrow N$ is a resulting generic ultrapower embedding then $\mathcal{P}\left(\mathcal{P}\left(\omega_{1}\right)\right)^{N}$ is also countable and so there also exist generics for $\left(\mathcal{P}\left(\omega_{1}\right) / j(I)\right)^{N}$. We can continue this process for ω_{1} stages, as in the following definition.

Definition 2 Let M be a model of $Z F C^{\circ}$, I a normal ideal on ω_{1}^{M} and $\gamma \leq$ ω_{1}. An iteration of (M, I) of length γ consists of models $\left(M_{\alpha} \mid \alpha \leq \gamma\right)$, sets $\left(G_{\alpha} \mid \alpha<\gamma\right)$ and a commuting family of elementary embeddings $\left(j_{\alpha \beta}: M_{\alpha} \rightarrow\right.$ $\left.M_{\beta} \mid \alpha \leq \beta \leq \gamma\right)$ such that

1. $M_{0}=M$
2. G_{α} is generic for $\left(\mathcal{P}\left(\omega_{1}\right) / j_{0 \alpha}(I)\right)^{M_{\alpha}}$
3. $j_{\alpha \alpha}$ is the identity
4. $j_{\alpha(\alpha+1)}$ is the ultrapower embedding induced by G_{α}
5. For limit $\beta \leq \gamma, M_{\beta}$ is the direct limit of the system $\left(M_{\alpha}, j_{\alpha \delta} \mid \alpha \leq \delta<\beta\right)$ and for $\alpha<\beta, j_{\alpha \beta}$ is the induced embedding into this direct limit.

If in the above iteration γ equals ω_{1} and each $\omega_{1}^{M_{\alpha}}$ is wellfounded then the set of these ordinals forms a club in ω_{1}. Also note that each of the embeddings $j_{\alpha \beta}$ is cofinal into the ordinals of M_{β}.

The models that appear in an iteration of (M, I) are called iterates of (M, I). In case I equals $\mathrm{NS}_{\aleph_{1}}^{M}$ then we talk about an iteration and iterates of
M. When we say that $j:(M, I) \rightarrow\left(M^{*}, I^{*}\right)$ is an iteration we mean that j is $j_{0 \gamma}$ for an iteration of (M, I) as above with $M_{\gamma}=M^{*}$ and $I^{*}=j(I)$.
(M, I) is iterable if every iterate of (M, I) is wellfounded. This is equivalent to saying that every iterate which arises through a countable iteration of (M, I) is wellfounded.

Conditions for iterability

The basic lemma which yields iterability is the following. An ideal I is precipitous if each of its generic ultrapower is wellfounded.

Lemma 3 Suppose that M is a transitive model of enough of ZFC, I is a normal precipitous ideal on ω_{1}^{M} in M. Suppose that $j:(M, I) \rightarrow\left(M^{*}, I^{*}\right)$ is an iteration of (M, I) of length $\gamma \leq \omega_{1}$ and γ belongs to M. Then M^{*} is wellfounded.

2.-3.Vorlesungen

The following provides a sufficient condition for (generic) iterability.
Lemma 4 Suppose that M is a transitive model of enough of ZFC, I is a normal precipitous ideal on ω_{1}^{M} in M. Suppose that $j:(M, I) \rightarrow\left(M^{*}, I^{*}\right)$ is an iteration of (M, I) of length $\gamma \leq \omega_{1}$ and γ belongs to M. Then M^{*} is wellfounded.

Proof. It suffices to show that iterations of length γ of $\left(H(\kappa)^{M}, I\right)$ are wellfounded for each regular κ of M greater than the M-cardinality of $\mathcal{P}\left(\mathcal{P}\left(\omega_{1}\right)\right)^{M}$, for M^{*} is the union of the $j\left(H(\kappa)^{M}\right)$ for such κ and $j \upharpoonright H(\kappa)^{M}$ results from an iteration of $\left(H(\kappa)^{M}, I\right)$.

If not, let (γ, κ, η) be the lexicographically least triple such that for some iteration $\left(N_{\alpha}, G_{\beta}, j_{\alpha \delta} \mid \beta<\gamma, \alpha \leq \delta \leq \gamma\right)$ of $\left(H(\kappa)^{M}, I\right), j_{0 \gamma}(\eta)$ is illfounded. γ is a limit ordinal because I is precipitous. The triple (γ, κ, η) is definable in M as it is the least triple (γ, κ, η) for which the existence of such an iteration is forced by the Lévy collapse to ω of sufficiently large ordinals of M. Fix such an iteration ($N_{\alpha}, G_{\beta}, j_{\alpha \delta} \mid \beta<\gamma, \alpha \leq \delta \leq \gamma$) and choose $\gamma^{*}<\gamma$, $\eta^{*}<j_{0 \gamma^{*}}(\eta)$ so that $j_{\gamma^{*} \gamma}\left(\eta^{*}\right)$ is illfounded. This is possible as both γ and η are limit ordinals. Also note that the above iteration lifts to an iteration $\left(M_{\alpha}, G_{\beta}, j_{\alpha \delta}^{*} \mid \beta<\gamma, \alpha \leq \delta \leq \gamma\right)$ of (M, I).

Now by elementarity, $\left(j_{0 \gamma^{*}}^{*}(\gamma), j_{0 \gamma^{*}}^{*}(\kappa), j_{0 \gamma^{*}}^{*}(\eta)\right)$ is the lexicographically least triple such that for some iteration of $\left(H\left(j_{0 \gamma^{*}}(\kappa)\right)^{M_{\gamma^{*}}}, j_{0 \gamma^{*}}^{*}(I)\right)$, the ordinal $j_{0 \gamma^{*}}^{*}(\eta)$ is sent by the iteration into the illfounded part. But there is a lexicographically smaller such triple: Consider the tail of the iteration $\left(N_{\alpha}, G_{\beta}, j_{\alpha \delta} \mid \beta<\gamma, \alpha \leq \delta \leq \gamma\right)$ starting at $N_{\gamma^{*}}$. This gives rise to a triple ($\gamma^{\prime}, \kappa^{\prime}, \eta^{*}$) whose first component γ^{\prime} is $\gamma-\gamma^{*}$, surely at most $j_{0 \gamma^{*}}^{*}(\gamma)$, whose second component κ^{\prime} equals $j_{0 \gamma^{*}}^{*}(\kappa)$ and whose third component η^{*} is stricly less than $j_{0 \gamma^{*}}^{*}(\eta)$. This is a contradiction.

We'll also need the following two little facts.
Lemma 5 Suppose that M is a countable transitive model of enough of ZFC and (M, I) is iterable, where $I \in M$ is a normal ideal on th ω_{1} of M. Let x be a real coding the pair (M, I). Then whenever $L_{\gamma}[x]$ models $Z F C$, iterations of (M, I) of length less than γ yields models of height less than γ.

Proof. The point is that the set of heights of models which result from a generic iteration of length δ is Σ_{1}^{1} in x together with a code for δ and therefore bounded by an ordinal admissible in x together with this code. If δ is less than γ and $L_{\gamma}[x]$ models ZFC then there is a code for δ in $L_{\gamma}[x][g]$ where g is generic for the Lévy collapse to ω of δ and therefore the heights of models which arise from a generic iteration of length δ will be less than γ.

Lemma 6 Suppose that (M, I) is iterable where M satisfies enough of ZFC. Then M is closed under \#'s for subsets of ω_{1}^{M}.

Proof. If $j:(M, I) \rightarrow\left(M_{1}, I_{1}\right)$ is a generic ultrapower of (M, I) via the $\left(\mathcal{P}\left(\omega_{1}\right) / I\right)^{M}$-generic ultrafilter G_{1} then in $M\left[G_{1}\right]$ we see that there is an elementary embedding of the $L[x]$ of M to itself for each real $x \in M$. So $M\left[G_{1}\right]$ thinks that every real of M has a $\#$ and therefore so does M (as set-forcing does not create new \#'s). Moreover, if $A \in M$ is a subset of ω_{1}^{M} then $A=j(A) \cap \omega_{1}^{M}$ is countable in M_{1} and therefore has a $\#$ in $M_{1} \subseteq$ $M\left[G_{1}\right]$, again implying that A also has a $\#$ in M. The fact that (M, I) is iterable implies that M is elementarily embeddable into a model containing all countable ordinals and therefore M 's version of $A^{\#}$ for $A \subseteq \omega_{1}^{M}$ is the correct $A^{\#}$.

$$
\mathbb{P}_{\max }
$$

We now define the $\mathbb{P}_{\max }$ forcing. When we write MA we are referring to Martin's Axiom for ccc partial orders and collections of dense sets of size ω_{1}. A condition in $\mathbb{P}_{\max }$ is a pair $((M, I), a)$ such that:

1. M is a countable transitive model of enough of ZFC + MA.
2. I is a normal ideal in M.
3. (M, I) is iterable.
4. a belongs to $\mathcal{P}\left(\omega_{1}\right)^{M}$.
5. For some real x in M, ω_{1}^{M} equals $\omega_{1}^{L[a, x]}$.
$((M, I), a) \leq((N, J), b)$ iff N belongs to $H\left(\omega_{1}\right)^{M}$ and there exists an iteration $j:(N, J) \rightarrow\left(N^{*}, J^{*}\right)$ such that:
i. $j(b)=a$.
ii. j, N^{*} belong to M.
iii. $I \cap N^{*}=J$.

4.-5.Vorlesungen

We now define the $\mathbb{P}_{\max }$ forcing. When we write MA we are referring to Martin's Axiom for ccc partial orders and collections of dense sets of size ω_{1}. A condition in $\mathbb{P}_{\max }$ is a pair $((M, I), a)$ such that:

1. M is a countable transitive model of enough of $\mathrm{ZFC}+\mathrm{MA}$.
2. I is a normal ideal in M.
3. (M, I) is iterable.
4. a belongs to $\mathcal{P}\left(\omega_{1}\right)^{M}$.
5. For some real x in M, ω_{1}^{M} equals $\omega_{1}^{L[a, x]}$.
$((M, I), a) \leq((N, J), b)$ iff N belongs to $H\left(\omega_{1}\right)^{M}$ and there exists an iteration $j:(N, J) \rightarrow\left(N^{*}, J^{*}\right)$ such that:
i. $j(b)=a$.
ii. j, N^{*} belong to M.
iii. $I \cap N^{*}=J^{*}$.

We make some remarks. (1) Suppose that $((M, I), a)$ is a condition. As M is closed under \#'s for reals, a cannot be coded by a real and is therefore unbounded in ω_{1}^{M}. It follows that if $((M, I), a)$ extends $((N, J), b)$ then the
iteration which shows this has length ω_{1}^{M}. (2) The requirement (ii) in the definition of extension implies that the ordering on conditions in transitive: If j_{0} witnesses $\left(\left(M_{1}, I_{1}\right), a_{1}\right) \leq\left(\left(M_{0}, I_{0}\right), a_{0}\right)$ and j_{1} witnesses $\left(\left(M_{2}, I_{2}\right), a_{2}\right) \leq$ $\left(\left(M_{1}, I_{1}\right), a_{1}\right)$ then $j_{1}\left(j_{0}\right)$ witnesses $\left(\left(M_{2}, I_{2}\right), a_{2}\right) \leq\left(\left(M_{0}, I_{0}\right), a_{0}\right)$. (3) The requirement of MA will be used to show that any iteration of (M, I) is uniquely determined by the image of a and therefore there is a unique iteration which witnesses that one condition extends another. The argument will be via almost disjoint coding.

Lemma 7 Let $\left((M, I)\right.$, a) be a $\mathbb{P}_{\text {max }}$ condition and A a subset of ω_{1}. Then there is at most one iteration of (M, I) for which A is the image of a, and if this iteration exists then it belongs to $L[((M, I), a), A]$.

Proof. Choose a real x such that $\omega_{1}^{M}=\omega_{1}^{L[a, x]}$. By induction on $\alpha<\omega_{1}^{M}$ choose z_{α}^{*} to be the $L[a, x]$-least real distinct from the $z_{\beta}^{*}, \beta<\alpha$, and make the z_{α}^{*} 's almost disjoint by replacing z_{α}^{*} by $z_{\alpha}=$ the set of codes for finite initial segments of z_{α}^{*}. Suppose that
$\mathcal{I}=\left(M_{\alpha}, G_{\beta}, j_{\delta \mu} \mid \alpha \leq \omega_{1}, \beta<\omega_{1}, \delta \leq \mu \leq \omega_{1}\right)$
and
$\mathcal{I}^{\prime}=\left(M_{\alpha}^{\prime}, G_{\beta}^{\prime}, j_{\delta \mu}^{\prime} \mid \alpha \leq \omega_{1}, \beta<\omega_{1}, \delta \leq \mu \leq \omega_{1}\right)$
are two iterations of (M, I) such that $j_{0 \omega_{1}}(a)=A=j_{0 \omega_{1}}^{\prime}(a)$. Then $j_{0 \omega_{1}}(Z)=$ $j_{0 \omega_{1}}^{\prime}(Z)$ as well, where Z is the sequence of $z_{\alpha}{ }^{\prime}$'s. Write the latter as $\left(z_{\alpha} \mid \alpha<\right.$ ω_{1}).

We show by induction on $\alpha<\omega_{1}$ that $G_{\alpha}=G_{\alpha}^{\prime}$, which implies that the two iterations are the same. Suppose that $G_{\beta}=G_{\beta}^{\prime}$ for $\beta<\alpha$ and we want to show $G_{\alpha}=G_{\alpha}^{\prime}$. If B is a subset of $\omega_{1}^{M_{\alpha}}$ in $M_{\alpha}=M_{\alpha}^{\prime}$ then B belongs to G_{α} iff $\omega_{1}^{M_{\alpha}}$ belongs to $j_{\alpha \alpha+1}(B)$. Since M_{α} satisfies MA, there is a real y in M_{α} such that for $\eta<\omega_{1}^{M_{\alpha}}, \eta$ belongs to B iff y, z_{η} are almost disjoint. By elementarity, $\omega_{1}^{M_{\alpha}}$ belongs to $j_{\alpha \alpha+1}(B)$ iff $y, z_{\omega_{1}^{M_{\alpha}}}$ are almost disjoint. As the latter holds also for $j_{\alpha \alpha+1}^{\prime}$ we have that G_{α} and G_{α}^{\prime} are the same. Moreover this gives a definition of the sequence of G_{α} 's in terms of $(M, I), a$ and Z and hence this sequence belongs to $L[((M, I), a), A]$.

A consequence of this lemma is that if G is $\mathbb{P}_{\max }$ generic over $L(\mathbb{R})$ then $L(\mathbb{R})[G]=L(\mathbb{R})[A]$ where A is the union of the a such that $((M, I), a)$ belongs to G for some (M, I).

We say that (M, I) is a precondition iff for some $a,((M, I), a)$ is a condition.

Lemma 8 If (M, I) is a precondition and J is a normal ideal on ω_{1} then there exists an iteration $j:(M, I) \rightarrow\left(M^{*}, I^{*}\right)$ such that $j\left(\omega_{1}^{M}\right)=\omega_{1}$ and $I^{*}=J \cap M^{*}$.

Proof. First note that if $j:(M, I) \rightarrow\left(M^{*}, I^{*}\right)$ is any iteration of (M, I) of length ω_{1} then I^{*} is contained in J. To see this, write the iteration as $\left(M_{\alpha}, G_{\beta}, j_{\delta \mu} \mid \alpha \leq \omega_{1}, \beta<\omega_{1}, \delta \leq \mu \leq \omega_{1}\right)$ and note that if E belongs to $I^{*}=j_{0 \omega_{1}}(I)$ then $E=j_{\alpha \omega_{1}}\left(E^{\prime}\right)$ for some countable α and $E^{\prime} \in j_{0 \alpha}(I)$. Then for all countable $\beta \geq \alpha, j_{\alpha \beta}\left(E^{\prime}\right) \notin G_{\beta}$ so $\omega_{1}^{M_{\beta}} \notin E$. As the set of such $\omega_{1}^{M_{\beta}}$, s forms a club, it follows that E is nonstationary and therefore belongs to J by the normality of J.

Choose a family ($A_{i \alpha} \mid i<\omega, \alpha<\omega_{1}$) of pairwise disjoint members of $\mathcal{P}\left(\omega_{1}\right) \backslash J$. (This is possible as there is no countably additive ideal on ω_{1} containing all finite sets which is ω_{1}-saturated; the proof of this fact uses Ulam matrices.) We describe an iteration ($M_{\alpha}, G_{\beta}, j_{\delta \mu} \mid \alpha \leq \omega_{1}, \beta<\omega_{1}, \delta \leq$ $\mu \leq \omega_{1}$) of (M, I) by inductively choosing the G_{β} 's. We simultaneously choose enumerations $\left(B_{i}^{\alpha} \mid i<\omega\right)$ of $\mathcal{P}\left(\omega_{1}\right)^{M_{\alpha}} \backslash j_{0 \alpha}(I)$.

Given $\left(M_{\alpha}, G_{\beta}, j_{\delta \mu} \mid \alpha \leq \gamma, \beta<\gamma, \delta \leq \mu \leq \gamma\right)$, if $\omega_{1}^{M_{\gamma}}$ belongs to $A_{i \alpha}$ for some $i<\omega$ and $\alpha \leq \gamma$ then we let G_{γ} be any $\left(\mathcal{P}\left(\omega_{1}\right) / j_{0 \gamma}(I)\right)^{M_{\gamma}}$-generic over M_{γ} which contains $j_{\alpha \gamma}\left(B_{i}^{\alpha}\right)$. If $\omega_{1}^{M_{\gamma}}$ does not belong to any $A_{i \alpha}$ for $i<\omega$, $\alpha \leq \gamma$ then we let G_{γ} be any $\left(\mathcal{P}\left(\omega_{1}\right) / j_{0 \gamma}(I)\right)^{M_{\gamma}}$-generic over M_{γ}.

Now suppose that E belongs to $\mathcal{P}\left(\omega_{1}\right)^{M_{\omega_{1}}} \backslash j_{0 \omega_{1}}(I)$. We want to show that E does not belong to J. Fix $i<\omega$ and $\alpha<\omega_{1}$ such that $E=j_{\alpha \omega_{1}}\left(B_{i}^{\alpha}\right)$. Then $\omega_{1}^{M_{\beta}}$ belongs to $j_{\alpha, \beta+1}\left(B_{i}^{\alpha}\right)$ (and therefore to E) whenever it belongs to $A_{i \alpha}$. It follows that E contains the intersection of a club with a set not in J and therefore does not belong to J.

We next show that $\mathbb{P}_{\text {max }}$ is homogeneous in the following sense: Any two $\mathbb{P}_{\text {max }}$ conditions p_{0}, p_{1} have extensions q_{0}, q_{1} such that the suborders of $\mathbb{P}_{\text {max }}$ below q_{0} and q_{1} are isomorphic.

Lemma 9 Assume that for every real x there is an inner model V_{0} containing x and a measurable cardinal κ in V_{0} whose power set in V_{0} is countable in V. (This follows from the existence of "daggers", less than the existence of two measurable cardinals.) Then $\mathbb{P}_{\text {max }}$ is homogeneous.

Proof. The hypothesis of the lemma implies that any real x belongs to the model M of some precondition (M, I) : Let V_{0} be an inner model containing x with a measurable cardinal κ whose power set in V_{0} is countable in V. Then in V there is a generic for the forcing that over V_{0} that Lévy collapses κ to become ω_{1} and then forces MA. In this generic extension there is a normal precipitous ideal on κ and therefore a precondition (M, I) with M containing x.

Now suppose that $p_{0}=\left(\left(M_{0}, I_{0}\right), a_{0}\right)$ and $p_{1}=\left(\left(M_{1}, I_{1}\right), a_{1}\right)$ are $\mathbb{P}_{\text {max }}$ conditions. Fix a precondition (N, J) such that p_{0}, p_{1} belong to $H\left(\omega_{1}\right)^{N}$. Applying the previous lemma in N, choose iterations $j_{0}:\left(M_{0}, I_{0}\right) \rightarrow\left(M_{0}^{*}, I_{0}^{*}\right)$ and $j_{1}:\left(M_{1}, I_{1}\right) \rightarrow\left(M_{1}^{*}, I_{1}^{*}\right)$ such that $I_{0}^{*}=J \cap M_{0}^{*}$ and $I_{1}^{*}=J \cap M_{1}^{*}$. Let $a_{0}^{*}=j_{0}\left(a_{0}\right), a_{1}^{*}=j_{1}\left(a_{1}\right)$ and consider the conditions $q_{0}=\left((N, J), a_{0}^{*}\right)$, $q_{1}=\left((N, J), a_{1}^{*}\right)$. Then j_{0}, j_{1} witness that q_{0}, q_{1} are extensions in $\mathbb{P}_{\text {max }}$ of p_{0}, p_{1}.

We claim that the suborders of $\mathbb{P}_{\text {max }}$ below q_{0} and q_{1} are isomorphic. Indeed, suppose that $q_{0}^{\prime}=\left(\left(N^{\prime}, J^{\prime}\right), a^{\prime}\right)$ is a condition below q_{0} and the iteration $j^{\prime}:(N, J) \rightarrow\left(N^{\prime}, J^{\prime}\right)$ witnesses this. Then $a^{\prime}=j^{\prime}\left(a_{0}^{*}\right)$ and $q_{1}^{\prime}=$ $\left(\left(N^{\prime}, J^{\prime}\right), j^{\prime}\left(a_{1}^{*}\right)\right)$ is a condition below q_{1}. Let π be the map defined on $\mathbb{P}_{\text {max }}$ below q_{0} that sends $\left(\left(N^{\prime}, J^{\prime}\right), a^{\prime}\right)$ to $\left(\left(N^{\prime}, J^{\prime}\right), j^{\prime}\left(a_{1}^{*}\right)\right)$ as above. Then π is an isomorphism onto $\mathbb{P}_{\text {max }}$ below q_{1} using the fact that iterations are uniquely determined by where they send the last component of a $\mathbb{P}_{\max }$ condition.

6.-7.Vorlesungen

$\mathbb{P}_{\text {max }}$ is countably closed
Assume that every real belongs to some $\mathbb{P}_{\max }$ precondition and suppose that for each finite $i, p_{i}=\left(\left(M_{i}, I_{i}\right), a_{i}\right)$ is a $\mathbb{P}_{\max }$ condition and $j_{i, i+1}$: $\left(M_{i}, I_{i}\right) \rightarrow\left(M_{i}^{*}, I_{i}^{*}\right)$ is an iteration witnessing $p_{i+1}<p_{i}$. We want to find a $\mathbb{P}_{\text {max }}$ condition below all of the p_{i} 's. Let $\left(j_{i k} \mid i \leq k<\omega\right)$ be the commuting family of embeddings generated by the $j_{i, i+1}$'s and $a=\cup_{i} a_{i}$. Then for each i there is a unique iteration $j_{i \omega}:\left(M_{i}, I_{i}\right) \rightarrow\left(N_{i}, J_{i}\right)$ sending a_{i} to
a and $\omega_{1}^{N_{i}}=\omega_{1}^{N_{0}}$ for all i. We would like to put the (N_{i}, J_{i}, a)'s together to get a $\mathbb{P}_{\text {max }}$ condition below each of the p_{i} 's. To do this we need to discuss "iterations" of the structure $\left(\left(N_{i}, J_{i}\right) \mid i<\omega\right)$ and prove its "iterability". Then we can easily generalise our earlier lemma about iterating to the restriction of an arbitrary normal ideal as follows.

Lemma 10 Suppose that I is a normal ideal on ω_{1}. Then there is an iteration $j^{*}:\left(\left(N_{i}, J_{i}\right) \mid i<\omega\right) \rightarrow\left(\left(N_{i}^{*}, J_{i}^{*}\right) \mid i<\omega\right)$ such that $j^{*}\left(\omega_{1}^{N_{0}}\right)=\omega_{1}$ and $J_{i}^{*}=I \cap N_{i}^{*}$ for each i.

Now to complete the proof of ω-closure, choose a $\mathbb{P}_{\max }$ precondition (M, I) such that $H\left(\omega_{1}\right)^{M}$ contains $\left(p_{i} \mid i<\omega\right)$ and apply the above lemma in M to obtain j^{*}. Then for each i the embedding $j^{*}\left(j_{i \omega}\right)$ witnesses that $\left((M, I), j^{*}(a)\right)$ is a $\mathbb{P}_{\text {max }}$ condition below p_{i} for each i.

An iteration of $\left(\left(N_{i}, J_{i}\right) \mid i<\omega\right)$ of length $\gamma \leq \omega_{1}$ consists of sequences $\left(\left(N_{i}^{\alpha}, J_{i}^{\alpha}\right) \mid i<\omega\right)(\alpha \leq \gamma)$ together with normal ultrafilters G_{α} on $\cup_{i} N_{i}^{\alpha}$ $(\alpha<\gamma)$ and a commuting family of embeddings $j_{\alpha \beta}:\left(\left(N_{i}^{\alpha}, J_{i}^{\alpha}\right) \mid i<\omega\right) \rightarrow$ $\left(\left(N_{i}^{\beta}, J_{i}^{\beta}\right) \mid i<\omega\right)$ such that
$\left(\left(N_{i}^{0}, J_{i}^{0}\right) \mid i<\omega\right)=\left(\left(N_{i}, J_{i}\right) \mid i<\omega\right)$.
$j_{\alpha, \alpha+1}$ is the embedding resulting by taking the ultrapower of the $\left(\left(N_{i}^{\alpha}, J_{i}^{\alpha}\right) \mid\right.$ $i<\omega)$ using G_{α}.
For limit $\beta,\left(\left(N_{i}^{\beta}, J_{i}^{\beta}\right) \mid i<\omega\right)$ is the direct limit of the $\left(\left(N_{i}^{\alpha}, J_{i}^{\alpha}\right) \mid i<\omega\right)$ for $\alpha<\beta$ with induced embeddings $j_{\alpha \delta}(\alpha \leq \delta<\beta)$.

We claim that any iterate of $\left(\left(N_{i}, J_{i}\right) \mid i<\omega\right)$ is wellfounded. It suffices to show that the ω_{1} of each iterate of $\left(\left(N_{i}, J_{i}\right) \mid i<\omega\right)$ is wellfounded, as for each iterate $\left(\left(N_{i}^{\alpha}, J_{i}^{\alpha}\right) \mid i<\omega\right)$ of $\left(\left(N_{i}, J_{i}\right) \mid i<\omega\right)$, the ordinal height of N_{i}^{α} is less than the least x_{i}-indiscernible greater than $\omega_{1}^{N_{0}^{\alpha}}$ where x_{i} is some real in N_{i+1}^{α} and hence must be wellfounded assuming that $\omega_{1}^{N_{0}^{\alpha}}$ is. Now we prove that the ω_{1} of each iterate is wellfounded by induction on the length of the iteration. As the limit case is immediate and the general successor case follows from the case of a single ultrapower we just consider the latter. We want to see that if G is a normal ultrafilter on $\cup_{i} N_{i}$ and j the induced ultrapower embedding then $j\left(\omega_{1}^{N_{0}}\right)=\sup _{i} \operatorname{Ord}\left(N_{i}\right)$ and is therefore wellfounded. Note that by choosing reals x_{i} in N_{i+1} with $\operatorname{Ord}\left(N_{i}\right)$ less than the least x_{i}-indiscernible greater than $\omega_{1}^{N_{0}}$, if we let $f_{i}(\alpha)$ be the least $x_{i^{-}}$ indiscernible above α then $j\left(\omega_{1}^{N_{0}}\right) \geq \sup _{i} j\left(f_{i}\right)\left(\omega_{1}^{N_{0}}\right)=\sup _{i} \operatorname{Ord}\left(N_{i}\right)$. For
the other direction, let $h: \omega_{1}^{N_{0}} \rightarrow \omega_{1}^{N_{0}}$ be a function in some N_{i}. Then the closure points of h contain a final segment of the x_{i}-indiscernibles and therefore $f_{i}>h$ on a final segment of $\omega_{1}^{N_{0}}$; it follows that $\left[f_{i}\right]_{G}>[h]_{G}$ so we get $j\left(\omega_{1}^{N_{0}}\right)=\sup _{i} \operatorname{Ord}\left(N_{i}\right)$.

Generalised Iterability

Let A be a set of reals. We say that a precondition (M, I) is A-iterable iff it is iterable, $A \cap M$ is an element of M and for any iteration $j:(M, I) \rightarrow$ $\left(M^{*}, I^{*}\right)$ we have $j(A \cap M)=A \cap M^{*}$.

We show that if AD holds in $L(\mathbb{R})$ and A is a set of reals in $L(\mathbb{R})$ then there is a $\mathbb{P}_{\text {max }}$ precondition (M, I) such that $\left(H\left(\omega_{1}\right)^{M}, A \cap M\right)$ is elementary in $\left(H\left(\omega_{1}\right), A\right)$ and (M, I) is A-iterable. For this we need the following.

Lemma 11 Assume $A D$. Then every set of ordinals belongs to an inner model in which some V-countable ordinal is measurable.

Proof. Fix a set of ordinals Z. For each increasing $f: \omega \rightarrow \omega_{1}$ let $s(f)$ be the sup of the range of f and let $F(f)$ be the filter on $s(f)$ consisting of all subsets of $s(f)$ which contain all but finitely many members of Range f. Also let $N(f)$ be the inner model $L[Z, F(f)]$, a model of choice. We claim that for some $f, F(f)$ restricted to $N(f)$ is countably complete in $N(f)$, i.e., every function from $s(f)$ to ω in $N(f)$ is constant on a set in $F(f)$. It then follows that some ordinal at most $s(f)$ is measurable in $N(f)$, which proves the lemma.

Suppose that $F(f)$ is not countably complete in $N(f)$ for each f. Notice that if the ranges of f_{0} and f_{1} are equal modulo a finite set then $F\left(f_{0}\right)$ equals $F\left(f_{1}\right)$ so the models $N\left(f_{0}\right)$ and $N\left(f_{1}\right)$, as well as their canonical wellorders, are the same. Also note that using the canonical wellorder of $N(f)$ we can choose a function G such that $G(f): s(f) \rightarrow \omega$ is a counterexample to the countable completeness in $N(f)$ of $F(f)$ for each f.

We use the following consequence of AD: For every function from the set of increasing ω-sequences through ω_{1} to the reals there is an uncountable $E \subseteq \omega_{1}$ such that this function is constant on the increasing ω-sequences through E.

Now for each increasing $f: \omega \rightarrow \omega_{1}$ let $P(f): \omega \rightarrow \omega$ be defined by $P(f)(n)=G(f)(f(n))$. Let E be an uncountable subset of ω_{1} such that P is constant on all increasing $f: \omega \rightarrow E$. Choose $i: \omega \rightarrow \omega$ such that for all increasing $f: \omega \rightarrow E, G(f)(f(n))=i(n)$ for all n. But then i must be a constant function, as if $i(n) \neq i(0)$ and we choose increasing $f, g: \omega \rightarrow E$ so that $g(m)=f(m+n)$ then $G(g)(g(0))=i(0) \neq i(n)=G(f)(f(n))=$ $G(f)(g(0))$, contradicting $F(f)=F(g)$. As i is a constant function we get that $G(f)$ is constant on a set in $F(f)$ for each increasing $f: \omega \rightarrow E$, contradicting the choice of $G(f)$.

Now we show:
Theorem 12 Assume $A D^{L(\mathbb{R})}$ and let A be a set of reals in $L(\mathbb{R})$. Then there is a $\mathbb{P}_{\text {max }}$ condition $((M, I), a)$ such that

1. $A \cap M \in M$
2. $\left(H\left(\omega_{1}\right)^{M}, A \cap M\right)$ is elementary in $\left(H\left(\omega_{1}\right), A\right)$
3. (M, I) is A-iterable
4. If M^{+}is a forcing extension of M and J is a normal precipitous ideal on $\omega_{1}^{M^{+}}$in M^{+}then $A \cap M^{+}$is an element of A^{+}and $\left(M^{+}, J\right)$ is A iterable. Moreover if $j:\left(M^{+}, J\right) \rightarrow\left(M^{*}, J^{*}\right)$ is an iteration of $\left(M^{+}, J\right)$ then $\left(H\left(\omega_{1}\right)^{M^{*}}, A \cap M^{*}\right)$ is elementary in $\left(H\left(\omega_{1}\right), A\right)$.

Proof. Assume that there is a counterexample A. By choosing A to be definable over $L_{\alpha}(\mathbb{R})$ for the least possible α, we can assume that A is Δ_{1}^{2} definable in $L(\mathbb{R})$ (relative to a real parameter). In $L(\mathbb{R})$ every Δ_{1}^{2} set is the projection of a tree on $\omega \times \mu$ for some ordinal μ and this implies that there are trees T_{0}, T_{1} such that any transitive model N with T_{0}, T_{1} as members satisfies $A \cap N \in N$ and $\left(H\left(\omega_{1}\right)^{N}, A \cap N\right)$ is elementary in $\left(H\left(\omega_{1}\right), A\right)$. Moreover if $j: N \rightarrow N^{*}$ is elementary then the same holds for N^{*} using the trees $j\left(T_{0}\right), j\left(T_{1}\right)$.

By the lemma choose an inner model N of ZFC and a countable ordinal γ such that N contains the trees T_{0}, T_{1} and γ is measurable in N. Let δ be a strongly inaccessible cardinal of N between γ and ω_{1}^{V}. If G is generic over N_{δ} for the Lévy collapse of γ to ω_{1} followed by the ccc iteration to make MA true, then we obtain an iterable precondition $\left(N_{\delta}[G], I\right)$. It suffices to show that if M^{+}is a forcing extension of $N_{\delta}[G]$ in which there is a normal precipitous ideal J on $\omega_{1}^{M^{+}}$then M^{+}and J satisfy conclusion 4 of the theorem.

Let N^{+}be the corresponding forcing extension of $N[G]$. Then $A \cap N^{+}$ belongs to N^{+}and $\left(H\left(\omega_{1}\right)^{N^{+}}, A \cap N^{+}\right)$is elementary in $\left(H\left(\omega_{1}\right), A\right)$ since T_{0}, T_{1} belong to N. Fix an iteration $j:\left(M^{+}, J\right) \rightarrow\left(M^{*}, J^{*}\right)$. This lifts to an iteration $j^{*}:\left(N^{+}, J\right) \rightarrow\left(N^{*}, J^{*}\right)$. Then $A \cap M^{*}=j\left(A \cap M^{+}\right) \in M^{*}$ and $\left(H\left(\omega_{1}\right)^{M^{*}}, A \cap M^{*}\right)$ is elementary in $\left(H\left(\omega_{1}\right), A\right)$ as N^{*} contains $j^{*}\left(T_{0}\right), j^{*}\left(T_{1}\right)$.

8.-9.Vorlesungen

We now prove one of Woodin's main theorems about the $\mathbb{P}_{\max }$ extension of $L(\mathbb{R})$.

Lemma 13 Suppose that $V=L(\mathbb{R})$ and $A D$ holds. Let G be $\mathbb{P}_{\text {max }}$-generic over $V, A_{G}=\cup\{a \mid((M, I), a)$ belongs to G for some $(M, I)\}$. Then in $V[G]$, if E is a subset of ω_{1} then there are $((M, I), a) \in G$ and $e \in \mathcal{P}\left(\omega_{1}\right)^{M}$ such that $j(e)=E$ where j is the unique iteration of (M, I) sending a to A_{G}. Moreover E is nonstationary iff we can take e to belong to I.

Proof. For the proof we need two facts. If p is a $\mathbb{P}_{\max }$ condition, J is a normal ideal on ω_{1} and B is a subset of ω_{1} then let $\mathcal{G}_{\omega_{1}}(p, J, B)$ be the game where Players I and $I I$ build a descending ω_{1}-sequence of $\mathbb{P}_{\max }$ conditions $p_{\alpha}=\left(\left(M_{\alpha}, I_{\alpha}\right), a_{\alpha}\right)$ below p where it is I 's turn to choose p_{α} if $\alpha \notin B$ and it is $I I$'s turn to choose p_{α} if $\alpha \in B$; $I I$ wins iff, letting A be the union of the a_{α} 's and $j_{\alpha}:\left(M_{\alpha}, I_{\alpha}\right) \rightarrow\left(M_{\alpha}^{*}, I_{\alpha}^{*}\right)$ the iteration of $\left(M_{\alpha}, I_{\alpha}\right)$ sending a_{α} to A, $j_{\alpha}\left(I_{\alpha}\right)=J \cap M_{\alpha}^{*}$ for all α.

The following is a straightforward generalisation of an earlier lemma.

Fact 1. Player $I I$ has a winning strategy in $\mathcal{G}_{\omega_{1}}(p, J, B)$ iff $B \notin J$.

We also need:

Fact 2. Let $p_{0}=((M, I), a)$ be a $\mathbb{P}_{\max }$ condition in G and $P \in M$ a set of $\mathbb{P}_{\max }$ conditions extended by p_{0}. Let j be the iteration of (M, I) sending a to A_{G}. Then every condition in $j(P)$ belongs to G.

Proof of Fact 2. Let $\left(M_{\alpha}, G_{\beta}, j_{\alpha \delta}^{*} \mid \alpha \leq \omega_{1}, \beta<\omega_{1}, \alpha \leq \delta \leq \omega_{1}\right)$ be the iteration given by j and fix $q=\left(\left(N_{0}, J_{0}\right), b_{0}\right)$ in $j(P)$. Fix α_{0} sich that $q \in$ $j_{0 \alpha_{0}}^{*}(P)$ and as q is extended by $j_{0 \alpha_{0}}^{*}\left(p_{0}\right)$ we can choose $j_{q} \in M_{\alpha_{0}}$ to be the
iteration of $\left(N_{0}, J_{0}\right)$ sending b_{0} to $j_{0 \alpha_{0}}^{*}(a)$. Choose $p_{1}=\left(\left(N_{1}, J_{1}\right), b_{1}\right) \in G$ such that $p_{1} \leq p_{0}$ and $\alpha_{0}<\omega_{1}^{N_{1}}$. Then $\left(M_{\alpha}, G_{\beta}, j_{\alpha \delta}^{*} \mid \alpha \leq \omega_{1}^{N_{1}}, \beta<\omega_{1}^{N_{1}}, \alpha \leq \delta \leq\right.$ $\left.\omega_{1}^{N_{1}}\right)$ is in $M_{\omega_{1}^{N_{1}}}$ and is the unique iteration of (M, I) sending a to b_{1}. Since $\left.j_{q}\left(J_{0}\right)=j_{0 \alpha_{0}}^{*} I\right) \cap j_{q}\left(N_{0}\right)$ and $j_{0 \omega_{1}^{N_{1}}}^{*}(I)=J_{1} \cap M_{\omega_{1}^{N_{1}}}$ it follows that $j_{\alpha_{0} \omega_{1}^{N_{1}}}^{*}\left(j_{q}\right)$ witnesses $q \geq p_{1}$.

Using these Facts we prove the lemma. Let τ be a $\mathbb{P}_{\text {max }}$-name for a subset of ω_{1} and let A be a set of reals coding the set of triples (p, α, i) such that $p \in \mathbb{P}_{\max }, \alpha<\omega_{1}, i \in 2$ and $p \Vdash \alpha \in \tau$ if $i=1, p \Vdash \alpha \notin \tau$ if $i=0$. Let $p=((N, J), d)$ be any condition and let (M, I) be an A-iterable precondition such that p belongs to $H\left(\omega_{1}\right)^{M}$ and $\left(H\left(\omega_{1}\right)^{M}, A \cap M\right) \prec\left(H\left(\omega_{1}\right), A\right)$.

Applying Fact 1 in M (where B is the set of countable limit ordinals) we obtain a descending ω_{1}^{M}-sequence of conditions $p_{\alpha}=\left(\left(N_{\alpha}, J_{\alpha}\right), d_{\alpha}\right)$ such that:
(1) $p_{0}=p$
(2) $p_{\alpha+1}$ decides " $\alpha \in \tau$ ".
(3) Letting D be the union of the d_{α} 's, $j_{\alpha}\left(J_{\alpha}\right)=I \cap j_{\alpha}\left(N_{\alpha}\right)$, where j_{α} is the iteration of $\left(N_{\alpha}, J_{\alpha}\right)$ sending d_{α} to D.

It follows that $((M, I), D)$ is a condition below each p_{α}. Let e be a subset of ω_{1}^{M} in M such that for each $\alpha, \alpha \in e$ iff $p_{\alpha+1} \Vdash \alpha \in \tau$. Suppose that $((M, I), D)$ belongs to a generic G^{\prime} and let $\left(M_{\alpha}, G_{\beta}^{\prime}, j_{\alpha \delta}^{\prime} \mid \alpha \leq \omega_{1}, \beta<\omega_{1}, \alpha \leq\right.$ $\left.\delta \leq \omega_{1}\right)$ be the iteration of (M, I) sending D to $A_{G^{\prime}}$. We show that $j_{0 \omega_{1}}^{\prime}$ sends e to $\tau_{G^{\prime}}$. Write $j_{0 \omega_{1}}^{\prime}\left(\left(p_{\alpha} \mid \alpha<\omega_{1}^{M}\right)\right)$ as $\left(q_{\alpha} \mid \alpha<\omega_{1}\right)$. Then for each $\gamma<\omega_{1}$, $q_{\gamma+1} \Vdash \gamma \in \tau$ iff $\gamma \in j_{0 \omega_{1}}^{\prime}(e)$ and $q_{\gamma+1} \Vdash \gamma \notin \tau$ iff $\gamma \notin j_{0 \omega_{1}}^{\prime}(e)$. By Fact 2, each q_{γ} belongs to G^{\prime} so $j_{0 \omega_{1}}^{\prime}(e)=\tau_{G^{\prime}}$.

Finally note that if $E=j(e)$ where $((M, I), a)$ belongs to G, e belongs to I and j is the iteration sending a to A_{G}, then E is disjoint from the critical sequence of the iteration j and is therefore nonstationary. Conversely, if E is nonstationary then choose a club C disjoint from E and $((M, I), a) \in G$, $e, c \in \mathcal{P}\left(\omega_{1}\right)^{M}$ such that $j(e)=E, j(c)=C$ where j is the iteration of (M, I) sending a to A_{G}; then c must be a club in M so e must belong to I.

Theorem 14 Suppose that $V=L(\mathbb{R})$ and $A D$ holds. Let G be $\mathbb{P}_{\text {max }}$-generic over V. Then in $V[G], \delta_{2}^{1}=\omega_{2}$.

Proof. (a) It suffices to show that for every $\gamma<\omega_{2}$ there is a real x such that the least x-indiscernible above ω_{1} is greater than γ. Working in the $\mathbb{P}_{\text {max }}$ extension $V[G]$, fix a wellorder π of ω_{1} of length γ. By the previous lemma we may choose a condition $((M, I), a) \in G$ and $e \in \mathcal{P}\left(\omega_{1}\right)^{M}$ such that $j(e)=\pi$, where j is the iteration of (M, I) sending a to A_{G}. Then γ is in $j(M)$ and so for any real c coding (M, I) is less than the least c-indiscernible above ω_{1}.

10.-11.Vorlesungen

Theorem 15 Suppose that $V=L(\mathbb{R})$ and $A D$ holds. Let G be $\mathbb{P}_{\text {max }}$-generic over V. Then in $V[G], N S_{\omega_{1}}$ is ω_{2}-saturated.

Proof. We show that if D is dense in $\mathcal{P}\left(\omega_{1}\right) \backslash$ NS then D contains a subset D^{\prime} of size ω_{1} whose diagonal union contains a club.

Let τ be a name for D and let A be the set of reals coding pairs (p, e) where $p=((M, I), a)$ is a $\mathbb{P}_{\text {max }}$ condition, $e \in \mathcal{P}\left(\omega_{1}\right)^{M} \backslash I$ and p forces that $j(e) \in \tau$, where j is the iteration of (M, I) sending a to A_{G}.

Let $p=((N, J), b)$ be any $\mathbb{P}_{\text {max }}$ condition and let (M, I) be an A-iterable precondition such that $p \in H\left(\omega_{1}\right)^{M}$ and $\left(H\left(\omega_{1}\right)^{M}, A \cap M\right)$ is elementary in $\left(H\left(\omega_{1}\right), A\right)$. Fix a partition $\left(B_{i}^{\alpha} \mid \alpha<\omega_{1}, i<\omega\right)$ in M of ω_{1}^{M} into I-positive sets and an injection $g: \omega_{1}^{M} \times \omega \rightarrow \omega_{1}^{M}$ in M such that $g(\alpha, i) \geq \alpha$ for all (α, i).

Working in M our aim is to build a descending ω_{1}^{M}-sequence of conditions $p_{\alpha}=\left(\left(N_{\alpha}, J_{\alpha}\right), b_{\alpha}\right)$ (with embeddings $j_{\alpha \beta}$ witnessing $\left.p_{\alpha} \geq p_{\beta}\right)$ together with enumerations $\left(e_{i}^{\alpha} \mid i \in \omega\right)$ of $\mathcal{P}\left(\omega_{1}\right)^{N_{\alpha}} \backslash J_{\alpha}$ and sets d_{α} such that $p_{0}=p$ and:
(1) $d_{\alpha} \in \mathcal{P}\left(\omega_{1}\right)^{N_{\alpha+1}} \backslash J_{\alpha+1}, p_{\alpha+1}$ forces that $j\left(d_{\alpha}\right) \in \tau$, where j is the iteration of $\left(N_{\alpha+1}, J_{\alpha+1}\right)$ sending $b_{\alpha+1}$ to A_{G}, and if $\alpha=g(\beta, i)$ for some $\beta \leq \alpha$ and $i \in \omega$, then $d_{\alpha} \subseteq j_{\beta, \alpha+1}\left(e_{i}^{\beta}\right)$.
(2) Each $B_{i}^{g(\beta, i)} \backslash j_{g(\beta, i)+1, \omega_{1}^{M}}\left(d_{g(\beta, i)}\right)$ is nonstationary.

These conditions imply that if B is the union of the b_{α} 's then for each α, $j_{\alpha}\left(J_{\alpha}\right)=I \cap j_{\alpha}\left(N_{\alpha}\right)$ where j_{α} is the iteration of (N_{α}, J_{α}) sending b_{α} to B, and $((M, I), B)$ extends each p_{α}.

Assume that we can construct the sequence as above. For each (α, i) let $d_{\alpha i}^{\prime}$ be $j_{g(\alpha, i)+1, \omega_{1}^{M}}\left(d_{g(\alpha, i)}\right)$. Then the diagonal union of $\mathcal{A}=$ the set of $d_{\alpha i}^{\prime}$'s is I-large. Thus if $((M, I), B)$ belongs to the generic G and j is the iteration of (M, I) sending B to A_{G} then the diagonal union of $j(\mathcal{A})$ contains the critical sequence and therefore a club. We claim that $j(\mathcal{A})$ is a subset of τ_{G} : Write $j\left(\left(p_{\alpha} \mid \alpha<\omega_{1}^{M}\right)\right)$ as $\left(q_{\alpha} \mid \alpha<\omega_{1}\right)$. By Fact 2, each q_{α} belongs to G and since (M, I) is A-iterable, each member of $j(\mathcal{A})$ is forced to be in τ_{G} by some q_{α}, so $j(\mathcal{A})$ is contained in τ_{G}.

It remains to construct the above sequence satisfying conditions (1) and (2). Condition (1) is easily achieved: As τ names a dense subset of $\mathcal{P}\left(\omega_{1}\right) \backslash$ NS, for each $\alpha<\omega_{1}^{M}$ there is a pair (p^{*}, d^{*}) such that $p^{*} \leq p_{\alpha}$ and (1) holds with $\left(p^{*}, d^{*}\right)$ in the role of $\left(p_{\alpha+1}, d_{\alpha}\right)$.

To achieve condition (2), fix a ladder system ($h_{\alpha} \mid \alpha<\omega_{1}, \alpha$ limit) in M (i.e., h_{α} maps ω increasingly and cofinally into α for each limit α). Assuming that the p_{α} 's have been constructed below a limit β, let $\left(\left(\left(N_{i}^{\beta}, J_{i}^{\beta}\right) \mid i<\right.\right.$ $\left.\omega), b_{\beta}^{*}\right)$ be the limit sequence corresponding to the sequence $\left(p_{h_{\beta}(i)} \mid i<\omega\right)$ and for each i let $j_{i \beta}^{\prime}$ be the unique iteration of $\left(N_{h_{\beta}(i)}, J_{h_{\beta}(i)}\right)$ sending $b_{h_{\beta}(i)}$ to b_{β}^{*}. Fix a precondition $\left(N_{\beta}, J_{\beta}\right)$ in M with $\left(\left(N_{i}^{\beta} \mid i<\omega\right), b_{\beta}^{*}\right) \in H\left(\omega_{1}\right)^{N_{\beta}}$. By an earlier lemma we can choose an iteration j_{β}^{\prime} of $\left(\left(N_{i}^{\beta}, J_{i}^{\beta}\right) \mid i<\omega\right)$ in N_{β} such that $j_{\beta}^{\prime}\left(J_{i}^{\beta}\right)=J_{\beta} \cap j_{\beta}^{\prime}\left(N_{i}^{\beta}\right)$ for each i; also require that $\omega_{1}^{N_{0}^{\beta}} \in B_{k}^{\gamma}$ for some $\gamma<\beta$ and $k<\omega$ with $g(\gamma, k)<\beta$. Then, letting i^{\prime} be the least i such that $h_{\beta}(i) \geq g(\gamma, k)$,

$$
j_{i^{\prime} \beta}^{\prime}\left(j_{g(\gamma, k)+1, h_{\beta}\left(i^{\prime}\right)}\left(d_{g(\gamma, k)}\right)\right)
$$

is in the filter corresponding to the first step of the iteration of the sequence $\left(\left(N_{i}^{\beta}, J_{i}^{\beta}\right) \mid i<\omega\right)$, ensuring (provided we let b_{β} be $\left.j_{\beta}^{\prime}\left(b_{\beta}^{*}\right)\right)$ that $\omega_{1}^{N_{0}^{\beta}} \in$ $j_{g(\gamma, k)+1, \beta}\left(d_{g(\gamma, k)}\right)$. As the set of $\omega_{1}^{N_{0}^{\beta}}$,s for limit β is a club, condition (2) is thereby satisfied.

The $\mathbb{P}_{\text {max }}$ extension of $L(\mathbb{R})$ is a model of choice:
Theorem 16 Assume $A D$ in $V=L(\mathbb{R})$ and let G be $\mathbb{P}_{\text {max }}$-generic. Then $A C$ holds in $V[G]$.

Proof. It suffices to show that in $V[G]$, the subsets of ω_{1} can be wellordered in ordertype ω_{2}.

First note that we at least have some choice in $V[G]$: By absoluteness, any $\mathbb{P}_{\max }$ condition can be α-iterated for any countable α. It follows that if $((M, I), a)$ belongs to G then (M, I) can be ω_{1}-iterated, by a density argument. Thus there is an embedding j sending ω_{1}^{M} to ω_{1}; as M satisfies choice, it contains an injection of ω_{1}^{M} into the reals of M and by applying j we get an injection of ω_{1} into the reals. This is enough to partition ω_{1} into ω_{1}-many stationary sets.

For any $\gamma<\omega_{2}$ if $f_{\gamma}: \omega_{1} \rightarrow \gamma$ is a surjection then define the "canonical function " $g_{\gamma}: \omega_{1} \rightarrow \omega_{1}$ by $g_{\gamma}(\beta)=$ ordertype $\left(f_{\gamma}[\beta]\right)$. Without choice we cannot choose the f_{γ} 's, but the g_{γ} 's are unique modulo the nonstationary ideal and so we can choose for each γ the equivalence class of g_{γ} modulo NS.

Claim. In $V[G]$, if A, B are stationary, costationary subsets of ω_{1} then $A=$ $g_{\gamma}^{-1}[B] \bmod$ NS for some γ.

Proof of Claim. We first use choice to show:
(*) If (M, I) is a precondition and $A, B \in M$ are I-positive, co- I-positive subsets of ω_{1}^{M} in M and J is a normal ideal on ω_{1} then there are an iteration $j:(M, I) \rightarrow\left(M^{*}, I^{*}\right)$ of (M, I) of length ω_{1} and an ordinal $\gamma<\omega_{2}$ such that $I^{*}=J \cap M^{*}$ and $j(A)=g_{\gamma}^{-1}[j(B)] \bmod \mathrm{NS}$.

Then given any $\mathbb{P}_{\text {max }}$ condition $p_{0}=\left(\left(M_{0}, I_{0}\right), a_{0}\right)$ forcing τ_{0}, τ_{1} to be stationary, costationary subsets of ω_{1} we can choose an A-iterable (M, I) (for an appropriate A) with $p_{0} \in H\left(\omega_{1}\right)^{M}$, and apply $(*)$ in M with the ideal I to obtain an extension $((M, I), a)$ of p_{0} forcing the conclusion of the Claim for $\tau_{0}^{G}, \tau_{1}^{G}$.

To prove $(*)$ let x be a real coding (M, I) and form an iteration of (M, I) so that at stage $\alpha^{*}=$ the least x-indiscernible greater than $\alpha, j_{0 \alpha^{*}}(B)$ belongs to $G_{\alpha^{*}}$ iff $j_{0 \alpha}(A)$ belongs to G_{α}. This is possible as A, B are both I-positive and co- I-positive. The result is that for a club of x-indiscernible $\alpha, \alpha \in j(A)$ iff $\alpha^{*} \in j(B)$ and therefore $A=g_{\gamma}^{-1}[B] \bmod$ NS, where γ is the least x indiscernible greater than $\omega_{1} . \square$ (Claim)

Obviously if $A_{0}=g_{\gamma_{0}}^{-1}[B] \bmod \operatorname{NS}, A_{1}=g_{\gamma_{1}}^{-1}[B] \bmod \operatorname{NS}$ and $A_{0} \triangle A_{1}$ is stationary, then $\gamma_{0} \neq \gamma_{1}$. Now fix a stationary, costationary B and let $\left(A_{\alpha} \mid \alpha<\omega_{1}\right)$ be a partition of ω_{1} into stationary sets. For X a subset of ω_{1} (other than \emptyset or all of ω_{1}) choose γ_{X} such that $A_{X}=g_{\gamma_{X}}^{-1}[B]$ where A_{X} is the union of the A_{α} 's for α in X. Then the function $X \mapsto \gamma_{X}$ is an injection of a set of size $\mathcal{P}\left(\omega_{1}\right)$ into ω_{2}.

12.Vorlesung

$$
\Pi_{2}\left(H\left(\omega_{2}\right)\right) \text { Invariance of the } \mathbb{P}_{\max } \text { extension }
$$

We show, assuming large cardinals, that any $\Pi_{2}\left(H\left(\omega_{2}\right)\right)$ sentence that holds in a set-forcing extension of the universe also holds in the $\mathbb{P}_{\max }$ extension of $L(\mathbb{R})$. By "sentence" we of course mean "sentence without parameters" as there are even $\Sigma_{1}\left(H\left(\omega_{2}\right)\right)$ sentences with parameters from $H\left(\omega_{2}\right)$ which can be forced over $L(\mathbb{R})[G]$ but do not hold there (just take a stationary, costationary subset of ω_{1} and add a club subset of it). However the parameter ω_{1} is allowed because any $\Pi_{2}\left(H\left(\omega_{2}\right)\right)$ sentence using it is equivalent to one without it.

We will use (but not prove) the following
Lemma 17 If δ is a Woodin cardinal then the Lévy collapse $\operatorname{Coll}\left(\omega_{1},<\delta\right)$ forces that NS is precipitous.

Theorem 18 Suppose that there is a proper class of Woodin cardinals and P is a set partial order which forces that the Π_{2} sentence φ holds in $H\left(\omega_{2}\right)$. Then φ holds in the $H\left(\omega_{2}\right)$ of the $\mathbb{P}_{\text {max }}$ extension of $L(\mathbb{R})$.

Proof. Write φ as $\exists X \forall Y \psi(X, Y)$ where ψ is Δ_{0}. It suffices to show that for every $\mathbb{P}_{\text {max }}$ condition $p=((M, I), a)$ and every $x \in H\left(\omega_{2}\right)^{M}$ there is a $\mathbb{P}_{\text {max }}$ condition $q=((N, J), b)$ extending p so that if $j:(M, I) \rightarrow\left(M^{*}, I^{*}\right)$ is the unique iteration sending a to b then

$$
H\left(\omega_{2}\right)^{N} \vDash \exists y \psi(j(x), y)
$$

Given this, for any X in the $H\left(\omega_{2}\right)$ of the $\mathbb{P}_{\text {max }}$ extension we can write X as $j(x)$ where $((M, I), a)$ belongs to the $\mathbb{P}_{\max }$-generic, $j:(M, I) \rightarrow\left(M^{*}, I^{*}\right)$ is the iteration of (M, I) taking a to A_{G} and $\psi(X, Y)$ holds in $H\left(\omega_{2}\right)^{M^{*}}$ for
some Y; but then $\psi(X, Y)$ also holds in the $H\left(\omega_{2}\right)$ of the $\mathbb{P}_{\text {max }}$ extension because ψ is Δ_{0}.

Let Z be a countable elementary submodel of a large $H(\theta)$ with $((M, I), a)$, P and δ as members where δ is a Woodin cardinal such that P belongs to $H(\delta)$. Let N be the transitive collapse of Z. We know that any forcing extension of M in which NS is precipitous is iterable with respect to its NS. Let $N\left[g_{0}\right]$ be a \bar{P}-generic extension of N where \bar{P} is the image of P under the transitive collapse of Z to N and let $j:(M, I) \rightarrow\left(M^{*}, I^{*}\right)$ be an iteration in $N\left[g_{0}\right]$ such that $I^{*}=\mathrm{NS}{ }^{N\left[g_{0}\right]} \cap M^{*}$. As φ holds in $H\left(\omega_{2}\right)^{N\left[g_{0}\right]}$ there is $y \in H\left(\omega_{2}\right)^{N\left[g_{0}\right]}$ such that $\psi(j(x), y)$ holds in $H\left(\omega_{2}\right)^{N\left[g_{0}\right]}$. In $N\left[g_{0}\right]$ the image $\bar{\delta}$ of δ under the transitive collapse of Z is Woodin; let $N\left[g_{0}\right]\left[g_{1}\right]$ be a $\operatorname{Coll}\left(\omega_{1},<\bar{\delta}\right)^{N\left[g_{0}\right]}$-generic extension of $N\left[g_{0}\right]$ and let $N^{*}=N\left[g_{0}\right]\left[g_{1}\right]\left[g_{2}\right]$ be a ccc forcing extension of $N\left[g_{0}\right]\left[g_{1}\right]$ in which MA holds. Then $\left(\left(N^{*}, \mathrm{NS}^{N^{*}}\right), j(a)\right)$ is the desired $\mathbb{P}_{\text {max }}$ condition extending p.

Remarks. (a) The previous result also holds if we replace $H\left(\omega_{2}\right)$ by $\left(H\left(\omega_{2}\right), A\right)$ for any set of reals A in $L(\mathbb{R})$.(b) Viale has pointed out the following variant of the previous theorem (perhaps also due to Woodin): Let ($*$) be the axiom that AD holds in $L(\mathbb{R})$ and $L\left(\mathcal{P}\left(\omega_{1}\right)\right)$ is a $\mathbb{P}_{\max }$ extension of $L(\mathbb{R})$. If $(*)$ holds and there is a proper class of Woodin cardinals then set-forcings which preserve ($*$) cannot affect the truth of arbitrary first-order properties of $H\left(\omega_{2}\right)$. This can be viewed as an analogue to the fact that if there is a proper class of Woodin cardinals then no set-forcing can affect the truth of first-order properties of $H\left(\omega_{1}\right)$. These results are part of a general programme of showing that the truth of certain statements about some $H(\lambda)$ is not affected by certain set-forcings which preserve the truth of certain axioms. (c) One should not hope for too much with these "truth-invariance" results. Indeed, they appear to fall apart when replacing set-forcing by class-forcing. And no large cardinal axiom is able to ensure invariance of even $\Sigma_{2}\left(H\left(\omega_{1}\right)\right)$ truth with respect to arbitrary (non-generic) extensions which satisfy it.

13.Vorlesung

Theorem 19 Suppose that NS is saturated and there is a measurable cardinal. Then $\delta_{2}^{1}=\omega_{2}$ and therefore CH fails.

Proof. Recall that δ_{2}^{1} is the supremum of the $\left(\omega_{1}^{V}\right)^{+}$of $L[R]$ for reals R.

Suppose $\alpha<\omega_{2}$. Form the structure $\mathcal{A}=(H(\mu),<,\{\alpha\})$ where $<$ is a wellorder of $H(\mu)$. Then by virtue of the measurability of μ, there is an ω-sequence $\left(i_{n} \mid n<\omega\right)$ of ordinals less than μ such that:

1. The i_{n} 's are indiscernibles for \mathcal{A}.
2. Let N be the Skolem hull of the i_{n} 's in \mathcal{A} and for any limit ordinal γ let N_{γ} be the "stretch" of N to γ indiscernibles, i.e., the structure generated from γ-many indiscernibles in the same way tha N is generated from the i_{n} 's. Then N_{γ} is wellfounded and for $\gamma_{0}<\gamma_{1}, N_{\gamma_{0}}$ is isomorphic to an initial segment of $N_{\gamma_{1}}$.

As NS is saturated it is precipitous and therefore $N \vDash$ NS is precipitous. It follows that generic iterations of (N, NS) of length less than ordertype ($N \cap$ Ord) are wellfounded. But for any limit ordinal γ, generic iterations of $(N, N S)$ lift to generic iterations of $\left(N_{\gamma}, \mathrm{NS}\right)$ and therefore generic iterations of (N, NS) of any length are wellfounded.

Claim. Let \bar{N} be the transitive collapse of N and $\bar{I}=\mathrm{NS}^{\bar{N}}$. Then there is a generic iteration $j:(\bar{N}, \bar{I}) \rightarrow\left(N^{*}, I^{*}\right)$ of length ω_{1} such that $\operatorname{Ord}\left(N^{*}\right)>\alpha$.

The Theorem follows from the Claim as if we let R be a real coding the countable model \bar{N} we see that α is less than $\left(\omega_{1}^{V}\right)^{+}$of $L[R]$.

We prove the Claim by inductively defining iterates \bar{N}_{γ} of \bar{N} together with embeddings $j_{\gamma}: \bar{N}_{\gamma} \rightarrow \mathcal{A}$. Suppose that $\bar{N}_{\gamma}, j_{\gamma}$ are defined.

Let δ_{γ} be the ω_{1} of \bar{N}_{γ} and U_{γ} the ultrafilter on δ_{γ} derived from j_{γ}, i.e., $X \subseteq \delta_{\gamma}$ belongs to U_{γ} iff $\delta_{\gamma} \in j_{\gamma}(X)$.

Then as $\mathrm{NS}^{\bar{N}_{\gamma}}$ is saturated, U_{γ} is generic for $\left(\mathcal{P}\left(\omega_{1}\right) / \mathrm{NS}\right)^{\bar{N}_{\gamma}}$: Indeed, if $\bar{A} \in \bar{N}_{\gamma}$ is a maximal antichain in this forcing then \bar{A} is a collection ($\bar{X}_{i} \mid$ $i<\delta_{\gamma}$) of stationary sets whose diagonal union contains a club in δ_{γ}, and therefore the diagonal union of $j_{\gamma}(\bar{A})=\left(X_{i} \mid i<\omega_{1}\right)$ contains a club in ω_{1}. It follows that δ_{γ} belongs to this diagonal union and therefore for some $i<\delta_{\gamma}$, δ_{γ} belongs to X_{i}. It follows that \bar{X}_{i} belongs to U_{γ}.

Now let $\bar{N}_{\gamma+1}$ be the ultrapower of N_{γ} by U_{γ} and define $j_{\gamma+1}: \bar{N}_{\gamma+1} \rightarrow \mathcal{A}$ by $j_{\gamma+1}([f])=j_{\gamma}(f)\left(\delta_{\gamma}\right)$. At limit stages we take a direct limit and embed it into \mathcal{A} in the natural way. Note that if M_{γ} denotes the range of j_{γ}, then for
each $\gamma, M_{\gamma+1}$ is the Skolem hull in \mathcal{A} of $M_{\gamma} \cup\left\{\delta_{\gamma}\right\}$. As the union M^{*} of the M_{γ} 's contains α as an element and ω_{1} as a subset, it follows that M^{*} also contains $\alpha+1$ as a subset and therefore its transitive collapse N^{*}, the direct limit of the \bar{N}_{γ} 's, has ordinal height greater than α.

The Stationary Tower

14.-15.Vorlesungen

We now switch topics from $\mathbb{P}_{\text {max }}$ to stationary tower forcing, based on Paul Larson' book on this topic. This forcing can be used to collapse the successor of a singular cardinal using less than a measurable, to show that if there is a proper class of Woodin cardinals then truth in $L(\mathbb{R})$ is invariant under set forcing and, using Martin-Steel's work on projective determinacy, show that AD in $L(\mathbb{R})$ follows from the existence of infinitely many Woodin cardinals with a measurable above.

Generalised Stationarity

If X is any nonempty set, then a subset C of $\mathcal{P}(X)$ is $C U B$ iff it is of the form $\left\{a \subseteq X \mid F\left[a^{<\omega}\right] \subseteq a\right\}$ for some $F:[X]^{<\omega} \rightarrow X$. And $S \subseteq \mathcal{P}(X)$ is stationary iff it intersects all CUB sets, i.e., iff for any $F:[X]^{<\omega} \rightarrow X$ there exists $a \in S$ such that $F\left[a^{<\omega}\right] \subseteq a$.

For any infinite cardinal $\kappa \leq$ Card (X), the set of subsets of X of cardinality κ is a stationary subset of $\mathcal{P}(X)$. If $X=\alpha$ is an ordinal of uncountable cofinality then a subset of α is also a subset of $\mathcal{P}(\alpha)$ and it is stationary in the above sense iff it is stationary in the usual sense.

Another way of expressing stationarity is in terms of structures for a countable language: $S \subseteq \mathcal{P}(X)$ is stationary iff every structure \mathcal{A} with universe X has an elementary substructure with universe in S.

The following are left as exercises.
Lemma 20 (Projection and Lifting) Suppose $X \subseteq Y$.
(a) If S is a stationary subset of $\mathcal{P}(Y)$ then $S_{X}=\{a \cap X \mid a \in S\}$ is stationary in $\mathcal{P}(X)$.
(b) If S is a stationary subset of $\mathcal{P}(X)$ then $S^{Y}=\{a \subseteq Y \mid a \cap X \in S\}$ is a stationary subset of $\mathcal{P}(Y)$.

Lemma 21 (Fodor) Suppose that $S \subseteq \mathcal{P}(X)$ is stationary and $F: S \rightarrow X$ is regressive, i.e., $F(a) \in a$ for each $a \in S$. Then there is $x \in X$ such that $F(a)=x$ for stationary-many a in S.

Now we force with the associated ideals of nonstationary sets. For any X let \mathbb{P}_{X} be the partial order of stationary subsets of $\mathcal{P}(X)$, ordered by inclusion. If G is \mathbb{P}_{X} generic then G defined an ultrafilter U on $\mathcal{P}(X)^{V}$ and we can form the ultrapower $j: V \rightarrow \operatorname{Ult}(V, U)=(M, E)$. Of course the elements of M are the equivalence classes $[f]_{U}$ of functions $f: \mathcal{P}(X) \in V$ in V. Let id denote the identity function on $\mathcal{P}(X)$. Then id "represents" $j[X]$ in M, i.e.

Lemma $22 j[X]$ equals $\left\{m \in M \mid m E[i d]_{U}\right\}$.
Proof of lemma. Suppose that x belongs to X. Then by the definition of j, $j(x)$ is $\left[c_{x}\right]_{U}$ where c_{x} is the constant function on $\mathcal{P}(X)$ with value x. Now $c_{x}(a)=x \in a=\operatorname{id}(a)$ for CUB-many $a \in \mathcal{P}(X)$ so it follows by Łos that $j(x)=\left[c_{x}\right]_{U} E[\mathrm{id}]_{U}$. Conversely, suppose that $m E[\mathrm{id}]_{U}$ and write $m=[f]_{U}$. Then $f(a) \in \operatorname{id}(a)=a$ for a set of a in U. By Fodor and genericity, there is $x \in X$ such that $f(a)=x$ for a set of a in U. but then $m=[f]_{U}=\left[c_{x}\right]_{U}=$ $j(x)$.

This lemma implies that $j[X] \cap \operatorname{Ord}^{M}=j[X \cap \operatorname{Ord}]$ is represented in M and therefore so are all of its initial segments. It follows that the ordertype of $X \cap$ Ord is represented in M and therefore belongs to the wellfounded part of M (if we identify the wellfounded part of M with its transitive collapse).

Stationary Tower Embeddings

Note that if S is a stationary subset of $\mathcal{P}(X)$ then $X=\cup S$. So we just say that S is stationary iff $\cup S$ is nonempty and S is stationary in $\mathcal{P}(\cup S)$.

Definition 23 (The Stationary Tower) Let κ be strongly inaccessible. The full stationary tower up to κ, denoted $\mathbb{P}_{<\kappa}$, consists of stationary $a \in H(\kappa)$, ordered as follows:
$b \leq a$ iff
$\cup a \subseteq \cup b$ and $b_{\cup a} \subseteq a$, i.e., $z \cap(\cup a) \in a$ for each $z \in b$.

We associate a generic elementary embedding $j: V \rightarrow(M, E)$ to a $\mathbb{P}_{<\kappa^{-}}$ generic G as follows. For each nonempty $X \in H(\kappa)$ define $U_{X}=\left\{b_{X} \mid b \in G\right.$ and $X \subseteq \cup b\}$, where as before b_{X} is the projection of b to X, i.e. the set of all $z \cap X$ for z in b.

Claim. U_{X} is an ultrafilter on $\mathcal{P}(X)^{V}$ extending the CUB filter on $\mathcal{P}(X)^{V}$. And for $X \subseteq Y, S$ belongs to U_{X} iff $S^{Y}=\{Z \subseteq Y \mid Z \cap X \in S\}$ belongs to U_{Y}.

Proof. Any CUB subset of $\mathcal{P}(X)$ is compatible with each stationary set and therefore belongs to G and hence to U_{X}. We must show that U_{X} is an ultrafilter on $\mathcal{P}(X)^{V}$. It suffices to show that if $S \subseteq \mathcal{P}(X)$ then any b can be extended to a c such that c_{X} is contained in or disjoint from S. We may assume that X is a subset of $\cup b$. Let b^{+}be set set of $z \in b$ such that $z \cap X$ belongs to S and b^{-}the set of $z \in b$ such that $z \cap X$ does not belong to S. Then b_{X}^{+}is contained in S and b_{X}^{-}is disjoint from S. Let c be b^{+}if this is stationary and otherwise b^{-}. The last claim follows easily from the definitions.

Now for each X form the ultrapower by U_{X} to get $j_{X}: V \rightarrow\left(M_{X}, E_{X}\right)$. And for $X \subseteq Y$ define $j_{X Y}: M_{X} \rightarrow M_{Y}$ by $j_{X Y}\left([f]_{U_{X}}\right)=\left[f_{Y}\right]_{U_{Y}}$ where $f_{Y}: \mathcal{P}(Y) \rightarrow V$ is defined by $f_{Y}(Z)=f(Z \cap X)$. This defines a direct system of models $\left(M_{X}, E_{X}\right)$ with embeddings. Let (M, E) denote the direct limit of this directed system and j the corresponding embedding of V into this direct limit. For each $a \in G$ and $f: \cup a \rightarrow V$ in V we let $[f]_{G}$ denote the member of M represented by f. The following is a straightforward adaptation of Lemma 22.

Fact. The identity function id_{X} on $\mathcal{P}(X)$ represents $j[X]$ in M, i.e., $j[X]=$ $\left\{b \in M \mid b E\left[\mathrm{id}_{X}\right]_{G}\right\}$.

Identify the wellfounded part of M with its transitive collapse. Then by this Fact, X and $j \upharpoonright X$ belong to M for each $X \in H(\kappa)$ and therefore $H(\kappa)$ is a subset of M. Also, as $j[X]$ is an element of M we obtain the usual description of an ultrafilter in terms of its associated ultrapower embedding: $U_{X}=\{a \subseteq \mathcal{P}(X) \mid j[X] \in j(a)\}$. Thus $a \in G$ iff $j[\cup a] \in j(a)$ and $[f]_{G}=$ $j(f)(j[\cup a])$ when f has domain $\mathcal{P}(\cup a)$.

As $j \upharpoonright H(\alpha)$ belongs to M for each cardinal $\alpha<\kappa$, it follows that $G \cap H(\alpha)=$ $\{a \in H(\alpha) \mid j[\cup a] \in j(a)\}$ also belongs to M for each cardinal $\alpha<\kappa$.

Fact. For $\alpha<\kappa, \alpha$ is represented in M by the function $f: \mathcal{P}(\alpha) \rightarrow \alpha$ given by $f(Z)=\operatorname{ot}(Z)$.

It follows that for $\beta \subseteq \cup a$:
$a \Vdash j(\alpha) \leq \beta$ iff
$\operatorname{ot}(Z \cap \beta) \geq \alpha$ for "almost all" Z in a (i.e., for some $\mathrm{CUB} C$ in $\mathcal{P}(\cup a)$, $\operatorname{ot}(Z \cap \beta) \geq \alpha$ for all Z in $a \cap C)$.

Thus a forces $j(\alpha)=\alpha$ iff $\operatorname{ot}(Z \cap \alpha)=\alpha$ for almost all Z in a.
Completely Jónsson Cardinals
κ is completely Jónsson iff it is strongly inaccessible and for each stationary $a \in H(\kappa)$, the set of $X \subseteq H(\kappa)$ such that $X \cap(\cup a) \in a$ and X has cardinality κ is stationary in $\mathcal{P}(H(\kappa))$.

Ramsey cardinals are completely Jónsson and measurable cardinals are Ramsey, so these cardinals are not very big. Also, as complete Jónsson-ness is a Π_{1}^{1} property, it follows that measurable cardinals are also limits of completely Jónsson cardinals.

Completely Jónsson cardinals are relevant for the following reason. Suppose that κ is a strongly inaccessible limit of completely Jónsson cardinals. Then any $a \in \mathbb{P}_{<\kappa}$ has an extension b forcing $j(\alpha)=\alpha$ for some $\alpha<\kappa$: Choose $\alpha<\kappa$ to be completely Jónsson and such that a belongs to $H(\alpha)$ and let b be $\{Z \subseteq H(\alpha) \mid Z \cap \alpha$ has cardinality β and $Z \cap(\cup a) \in a\}$; then b extends a and forces $j(\alpha)=\alpha$. Thus if κ is a strongly inaccessible limit of completely Jónsson cardinals, it follows that j has unboundedly many fixed points below κ. In fact κ is also a fixed point of j as it is not hard to show that j is continuous at strongly inaccessibles.

Also note that if κ is a strongly inaccessible limit of completely Jónsson cardinals then any set in the $H(\kappa)$ of $V[G]$ belongs to the wellfounded part of M, κ belongs to the wellfounded part of $M($ as $j(\kappa)=\kappa)$ and so the $H(\kappa)$ of M equals the $H(\kappa)$ of $V[G]$. Thus $j(H(\kappa))=H(\kappa)$ of $V[G]$.

Forcing Applications

Example 1. (Universality for set forcing) Suppose that there is a proper class of completely Jónsson cardinals. Let \mathbb{P}_{∞} denote the stationary tower class
forcing, using arbitrary stationary sets a as conditions. Then \mathbb{P}_{∞} is universal for set-forcing in the sense that any set forcing is a regular subforcing of \mathbb{P}_{∞}. To see this, suppose that $Q \in V$ is a set forcing and choose a cardinal α such that the power set of Q in V belongs to $H(\alpha)$. Then consider the stationary set $a=$ the set of countable subsets of $H(\alpha)$. If G is \mathbb{P}_{∞} generic over V below the condition a then $H(\alpha)^{V}$ is countable in $V[G]$. It follows that the V-power set of Q is countable in $V[G]$ and therefore there are Q-generics in $V[G]$.

Example 2. (Stretching a "core model") Again suppose that there is a proper class of completely Jónsson cardinals and let \mathbb{P}_{∞} be as in Example 1. If G is \mathbb{P}_{∞} generic over V then we get an elementary embedding from V into $V[G]$. In particular unlike L, any formula " $V=K$ " satisfied by an inner model K with a proper class of competely Jónsson cardinals is also satisfied by one of its nontrivial class generic extensions: if φ were such a formula then φ would also be true in $K[G]$ when G is \mathbb{P}_{∞} generic over K. However it must be said that $K[G]$ may fail to obey replacement when K is adjoined as an additional predicate.

16.Vorlesung

Example 3. (Generalised Namba forcing) Again suppose that there is a proper class of completely Jónsson cardinals and let $\gamma<\lambda$ be regular. Let a be $\{\alpha<\lambda \mid \operatorname{cof}(\alpha)=\gamma\}$, a stationary subset of $\mathcal{P}(\lambda)$. Suppose that a belongs to a \mathbb{P}_{∞} generic G with associated $j: V \rightarrow V[G]$. Since a belongs to G, $j[\lambda] \in j(a)$ and since a consists of ordinals, so does $j(a)$. Thus $j[\lambda]$ is an ordinal and therefore j is the identity on λ. Moreover by elementarity, $j(a)$ consists of those ordinals less than $j(\lambda)$ which have cofinality $j(\gamma)=\gamma$ in $V[G]$; so in fact $j[\lambda]=\lambda$ is an ordinal less than $j(\lambda)$ of cofinality γ in $V[G]$. As j is the identity on λ, cardinals below λ are preserved and if 2^{δ} is less than λ then no new subsets of δ are added.

For example, we could have GCH in V and with \mathbb{P}_{∞} add no new bounded subsets of \aleph_{ω} but change the cofinality of $\aleph_{\omega+1}$ to \aleph_{7}. By core model theory, such a weird effect cannot be achieved if ZFC is preserved by adding V as an additional predicate, without using more than a Woodin cardinal and probably this would need a supercompact cardinal.

Wellfoundedness

Suppose that G is $\mathbb{P}_{<\delta}$ generic with resulting embedding $j: V \rightarrow M$. We'll show that if δ is a Woodin cardinal then M is wellfounded and closed in $V[G]$ under sequences of length less than δ.

Suppose that D is a subset of $\mathbb{P}_{<\delta}$. Then $Y \prec V_{\delta+1}$ captures D iff there is $d \in D \cap Y$ such that $Y \cap(\cup d) \in d$. If D is an antichain then the choice of d is unique: if $d^{\prime} \in Y \cap D$ is distinct from d there is a function h such that no Z closed under h satisfies both $Z \cap(\cup d) \in d$ and $Z \cap\left(\cup d^{\prime}\right) \in d^{\prime}$; as h may be chosen in Y and Y is closed under such an h one cannot have $Y \cap\left(\cup d^{\prime}\right) \in d^{\prime}$. Also note that if $A \subseteq V_{\delta+2}$ and stationary-many $Y \in A$ capture the antichain D then in the forcing \mathbb{P}_{∞}, A is compatible with some $d \in D$: By Fodor we can thin A to A^{\prime} consisting of Y which capture D with the same choice of $d \in D \cap Y$; then A^{\prime} extends both A and d.

We also define $\operatorname{sp}(D)$ as follows. For sets $X \subseteq Y$, we say that Y end extends X iff $X=Y \cap V_{\alpha}$ where α is the rank of X (i.e. the least α such that X is a subset of V_{α}). Then $\operatorname{sp}(D)$ consists of all $X \prec V_{\delta+1}$ of size $<\delta$ such that $D \in X$ and there exists $Y \prec V_{\delta+1}$ such that:
(1) X is a subset of Y.
(2) Y end extends $X \cap V_{\delta}$.
(3) Y captures D.
D is semiproper iff $\operatorname{sp}(D)$ contains a club in $\mathcal{P}_{\delta}\left(V_{\delta+1}\right)$.
Lemma 24 Let η be an infinite cardinal less than δ. Suppose that for each sequence $\left(D_{\alpha} \mid \alpha<\eta\right)$ of predense subsets of $\mathbb{P}_{<\delta}$ there are arbitrarily large strongly inaccessible $\gamma<\delta$ such that $D_{\alpha} \cap \mathbb{P}_{<\gamma}$ is semiproper in $\mathbb{P}_{<\gamma}$ for all $\alpha<\eta$. Then the ultrapower (M, E) arising from a $\mathbb{P}_{<\delta}$ generic G is closed under sequences of length η in $V[G]$. In particular, this ultrapower is wellfounded.

Lemma 25 Suppose that δ is a Woodin cardinal. Then for each sequence $\left(D_{\alpha} \mid \alpha<\delta\right)$ of predense subsets of $\mathbb{P}_{<\delta}$ there are arbitrarily large strongly inaccessible $\gamma<\delta$ such that $D_{\alpha} \cap \mathbb{P}_{<\gamma}$ is semiproper in $\mathbb{P}_{<\gamma}$ for each $\alpha<\gamma$.

17.Vorlesung

Lemma 26 Let η be an infinite cardinal less than δ. Suppose that for each sequence $\left(D_{\alpha} \mid \alpha<\eta\right)$ of predense subsets of $\mathbb{P}_{<\delta}$ there are arbitrarily large strongly inaccessible $\gamma<\delta$ such that $D_{\alpha} \cap \mathbb{P}_{<\gamma}$ is semiproper in $\mathbb{P}_{<\gamma}$ for all $\alpha<\eta$. Then the ultrapower (M, E) arising from $a \mathbb{P}_{<\delta}$ generic G is closed under sequences of length η in $V[G]$. In particular, this ultrapower is wellfounded.

Lemma 27 Suppose that δ is a Woodin cardinal. Then for each sequence $\left(D_{\alpha} \mid \alpha<\delta\right)$ of predense subsets of $\mathbb{P}_{<\delta}$ there are arbitrarily large strongly inaccessible $\gamma<\delta$ such that $D_{\alpha} \cap \mathbb{P}_{<\gamma}$ is semiproper in $\mathbb{P}_{<\gamma}$ for each $\alpha<\gamma$.

Proof of Lemma 26. Fix $a_{0} \in \mathbb{P}_{<\delta}$ and a term τ for an η-sequence of ordinals in (M, E). For $\alpha<\eta$ let A_{α} be a maximal antichain of conditions a such that $a \Vdash \tau(\alpha)=[f]_{G}$ for some $f: a \rightarrow$ Ord. By the hypothesis of the lemma there is a strongly inaccessible $\gamma<\delta$ such that:
(1) $a_{0} \in V_{\gamma}, \eta<\gamma$.
(2) $A_{\alpha} \cap P_{<\gamma}$ is semiproper for each $\alpha<\eta$.

Let a be the set of $X \prec V_{\gamma+1}$ such that:
X has size less than γ.
$X \cap\left(\cup a_{0}\right) \in a_{0}$.
X captures A_{α} for each $\alpha \in X \cap \eta$ (i.e., for $\alpha \in X \cap \eta$ there is $b \in X \cap A_{\alpha}$ such that $X \cap(\cup b) \in b)$.

Claim. a is stationary in $\mathcal{P}_{\gamma}\left(V_{\gamma+1}\right)$.
Proof of Claim. Fix $H:\left[V_{\gamma+1}\right]^{<\omega} \rightarrow V_{\gamma+1}$. Since a_{0} is stationary we may choose $X_{0} \prec V_{\delta}$ of size less than γ containing all relevant parameters (including H) such that $X_{0} \cap\left(\cup a_{0}\right) \in a_{0}$. Define an elementary chain $\left(X_{\alpha} \mid \alpha \in\right.$ $\left.X_{0} \cap \eta\right)$ as follows: If $\alpha \in X_{0} \cap \eta$ is a limit ordinal then let X_{α} be the union of the $X_{\beta}, \beta \in X_{0} \cap \alpha$. At successor stages, since $A_{\alpha} \cap \mathbb{P}_{<\gamma}$ is semiproper we can choose $Y \prec V_{\delta}$ of size less than γ such that:
(1) X_{α} is a subset of Y.
(2) $Y \cap V_{\gamma}$ end-extends $X_{\alpha} \cap V_{\gamma}$.
(3) Y captures A_{α} (i.e., $Y \cap(\cup b) \in b$ for some $\left.b \in A_{\alpha} \cap Y\right)$.
(Formally speaking, we only get $Y \prec V_{\gamma+1}$ but this can be easily improved to $Y \prec V_{\delta}$.) Choose $X_{\alpha+1}$ to be such a Y. Let X be the union of the X_{α}, $\alpha \in X_{0} \cap \eta$. Then X has size less than γ and as X_{0} contains $H, X \cap V_{\gamma+1}$ is closed under H. And, for each $\alpha \in X_{0} \cap \eta$, as $X_{\alpha+1}$ captures A_{α} and $X \cap V_{\gamma}$ end-extends $X_{\alpha+1} \cap V_{\gamma}$ it follows that X captures A_{α}. Thus a is stationary in $\mathcal{P}_{\gamma}\left(V_{\gamma+1}\right)$ and the Claim is proved.

Now we define a function $f: a \rightarrow V$ that is forced to represent τ. Recall that if we define $g_{\eta}: a \rightarrow V$ by $g_{\eta}(X)=X \cap \eta$ then g_{η} represents $j[\eta]$. We define f so that for each $X \in a, f(X)$ is a function with domain $X \cap \eta$, so that $[f]_{G}$ will be a function in the ultrapower with domain $j[\eta]$. What we want to have is: $[f]_{G}(j(\alpha))=\tau_{G}(\alpha)$ for each $\alpha<\eta$. For then f represents the function from $j[\eta]$ to M given by $j(\alpha) \mapsto \tau_{G}(\alpha)$ and therefore τ_{G} belongs to M.

Fix $X \in a$ and $\alpha \in X \cap \eta$. As X captures A_{α} we can choose $b \in X \cap A_{\alpha}$ such that $X \cap(\cup b) \in b$. The choice of b is unique as A_{α} is an antichain. Now as b belongs to A_{α} we can choose f_{α} such that $b \Vdash\left[f_{\alpha}\right]_{\dot{G}}=\tau(\alpha)$ and we define:

$$
f(X)(\alpha)=f_{\alpha}(X \cap(\cup b))
$$

We claim that f works, i.e., for each $\alpha<\eta, a \Vdash[f]_{\dot{G}}(j(\alpha))=\tau(\alpha)$.
Fix $\alpha<\eta$ and G generic for $\mathbb{P}_{<\delta}, a$ an element of G. Let $\bar{a} \in G$ consist of those $X \in a$ such that $\alpha \in X$. Now each $X \in \bar{a}$ captures A_{α} with a unique $b \in A_{\alpha} \cap X$ such that $X \cap(\cup b) \in b$. By normality and the genericity of G we may fix $a_{1} \leq \bar{a}$ and $b_{1} \in A_{\alpha} \cap \mathbb{P}_{<\gamma}$ such that $a_{1} \in G$ and for all $Y \in a_{1}$, $b_{1} \in Y \cap A_{\alpha}$ and $Y \cap\left(\cup b_{1}\right) \in b_{1}$. As a_{1} extends b_{1} it follows that b_{1} belongs to G. So since $b_{1} \Vdash\left[f_{\alpha}\right]_{\dot{G}}=\tau(\alpha)$ and $f(X)(\alpha)=f_{\alpha}\left(X \cap\left(\cup b_{1}\right)\right)$ for each $X \in a_{1}$, it follows that $[f]_{G}(j(\alpha))=\tau_{G}(\alpha)$, as desired.

18.Vorlesung

Lemma 28 Suppose that δ is a Woodin cardinal. Then for each sequence $\left(D_{\alpha} \mid \alpha<\delta\right)$ of predense subsets of $\mathbb{P}_{<\delta}$ there are arbitrarily large strongly inaccessible $\gamma<\delta$ such that $D_{\alpha} \cap \mathbb{P}_{<\gamma}$ is semiproper in $\mathbb{P}_{<\gamma}$ for each $\alpha<\gamma$.

Proof of Lemma 28. Recall that δ is Woodin iff for each $f: \delta \rightarrow \delta$ there is an elementary embedding $j: V \rightarrow M$ with critical point $\gamma<\delta$ such that γ is closed under f and $V_{j(f)(\gamma)}$ is contained in M.

Now fix an $f: \delta \rightarrow \delta$ with limit ordinal values such that $\gamma<f(\gamma)$ for all $\gamma<\delta$ and for all strongly inaccessible $\gamma<\delta$ closed under f :
(a) For all $\alpha<\gamma, D_{\alpha} \cap \mathbb{P}_{<\gamma}$ is predense in $\mathbb{P}_{<\gamma}$.
(b) If $\alpha<\gamma$ is such that $D_{\alpha} \cap \mathbb{P}_{<\gamma}$ is not semiproper in $\mathbb{P}_{<\gamma}$, there exists a condition in $D_{\alpha} \cap V_{f(\gamma)}$ compatible with

$$
a=\left\{X \prec V_{\gamma+1} \mid \operatorname{card}(X)<\gamma \text { and } X \notin \operatorname{sp}\left(D_{\alpha} \cap \mathbb{P}_{<\gamma}\right)\right\} .
$$

Note that (b) is possible as since $D_{\alpha} \cap \mathbb{P}_{<\gamma}$ is not semiproper in $\mathbb{P}_{<\gamma}$ the set a above is stationary and therefore compatible with an element of D_{α} as D_{α} is predense.

Now apply Woodinness to get $j: V \rightarrow M$ with critical point $\gamma<\delta$ closed under f such that $V_{j(f)(\gamma)}$ is contained in M. We claim that γ works, i.e., $D_{\alpha} \cap \mathbb{P}_{<\gamma}$ is semiproper for all $\alpha<\gamma$. Fix such an α and suppose that $D_{\alpha} \cap \mathbb{P}_{<\gamma}$ is not semiproper. Let a be as in (b) above; thus a is stationary. Then $\mathbb{P}_{<\gamma}^{M}=\mathbb{P}_{<\gamma}$ and $j\left(D_{\alpha}\right) \cap \mathbb{P}_{<\gamma}=D_{\alpha} \cap \mathbb{P}_{<\gamma}$ is not semiproper in M so by the elementarity of j there exists $b \in j\left(D_{\alpha}\right) \cap V_{j(f)(\gamma)}^{M}$ which is compatible with $a^{M}=a$ in $j\left(\mathbb{P}_{<\delta}\right)$. Note that b is stationary in V since $V_{j(f)(\gamma)}$ is contained in M. Let c be the greatest lower bound of a, b.

We may assume that $j(\delta)=\delta$. Choose $X \prec V_{\delta}$ such that $X \cap(\cup c) \in c$ and $b, j \upharpoonright V_{\gamma+1}$ and $<$ belong to X where $<$ is a wellorder of $j\left(V_{\gamma+1}\right)$ which belongs to M. As $\cup a=V_{\gamma+1}, a$ consists of sets of size less than γ and c extends a, it follows that $X \cap V_{\gamma+1}$ has size less than γ. So $j\left(X \cap V_{\gamma+1}\right)=j\left[X \cap V_{\gamma+1}\right]$ and the latter belongs to $j(a)$ and hence not to $j\left(\operatorname{sp}\left(D_{\alpha} \cap \mathbb{P}_{<\gamma}\right)\right)$. We obtain a contradiction by obtaining a witness Y to the fact that $j\left[X \cap V_{\gamma+1}\right]$ does in fact belong to $j\left(\operatorname{sp}\left(D_{\alpha} \cap \mathbb{P}_{<\gamma}\right)\right)$.

We take Y to be the Skolem hull in $j\left(V_{\gamma+1}\right)$ of $\{b\} \cup j\left[X \cap V_{\gamma+1}\right] \cup(X \cap(\cup b))$, using the wellorder $<$ in $X \cap M$. Note that as all of these sets belong to M, so does Y. And as all of these sets are subsets of X and $j\left(V_{\gamma+1}\right)$ is an element of X, it follows that Y is a subset of X. Now Y contains $j\left[X \cap V_{\gamma+1}\right]$ and since $j\left[X \cap V_{\gamma+1}\right] \cap V_{j(\gamma)}=j\left[X \cap V_{\gamma+1}\right] \cap V_{\gamma}$, it follows that Y end-extends $j\left[X \cap V_{\gamma+1}\right]$ below $j(\gamma)$. Finally, b witnesses that Y captures $j\left(D_{\alpha} \cap \mathbb{P}_{<\gamma}\right)$ since b belongs to Y and $Y \cap(\cup b)=X \cap(\cup b) \in b$.

[^0]: ${ }^{1}$ One cannot hope for too much absoluteness. Indeed absoluteness for class forcing extensions is not possible, nor is absoluteness for set forcing extensions with regard to arbitrary sentences about $H\left(\aleph_{2}\right)$.

