
Pmax

1.Vorlesung

Introduction

The beginning of the Pmax story is the following result of Woodin:

Theorem 1 If NSℵ1 is saturated and there is a measurable cardinal then δ1
2

equals ℵ2.

Here NSκ denotes the ideal of nonstationary subsets of κ. The word �sat-
urated� here means �ℵ2-saturated�, i.e., there is no antichain of size ℵ2 in
the quotient P(ω1)/NSℵ1 . The ordinal δ1

2 is the supremum of the ranks of
∆1

2 de�nable prewellorderings of the reals. It is not known if NSℵ1 can be
saturated in the presence of CH; by this result it cannot be if a measurable
cardinal exists.

A key step in the proof of the above result is that every element of H(ℵ2)
belongs to a �generic iterate� of a countable model of ZFC. Woodin used this
to de�ne a forcing in L(R) called Pmax which when applied for L(R) yields a
version of H(ℵ2) which satis�es AC and has some restricted1 but attractive
absoluteness properties.

In this course we'll follow Paul Larson's article in the Handbook of Set
Theory, which presents the basics of the Pmax theory.

Iterations

Suppose that I is a normal ideal on ω1 containing all countable subsets of
ω1. �Normal� means that I is not all of P(ω1) and whenever A is an I-positive
set (i.e. a subset of ω1 not belonging to I), f : A → ω1 is regressive then
f is constant on an I-positive set. An example is the ideal of nonstationary
subsets of ω1.

If we force with the quotient P(ω1)/I then the result is a V -ultra�lter on
ω1 (i.e., a �lter on ω1 which for every A in V contains either A or ∼ A) and
this ultra�lter U is V -normal (i.e., normal for functions in V ).

1One cannot hope for too much absoluteness. Indeed absoluteness for class forcing

extensions is not possible, nor is absoluteness for set forcing extensions with regard to

arbitrary sentences about H(ℵ2).
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If we form Ult(V, U), the ultrapower of V by U , we don't necessari-
ly have a wellfounded model, but the canonical elementary embedding j :
V → Ult(V, U) has critical point ωV1 and (identifying the wellfounded part of
Ult(V, U) with its transitive collapse) ωV2 is an initial segment of the ordinals
of Ult(V, U) (as using j any subset of ωV1 in V also belongs to Ult(V, U)).
Since I is normal:

A ∈ U i� ωV1 ∈ j(A)

for subsets A of ωV1 in V .

Sometimes we will need a weakening of ZFC, denoted by ZFC◦. For now
we omit the details of the de�nition of ZFC◦. The existence of transitive
models of ZFC◦ is provable in ZFC.

Now we turn to iterated generic ultrapowers. Suppose that M is a model
of ZFC◦, I ∈M is a normal ideal on ωM1 and P(P(ω1))M is countable. Then
there exist generics for (P(ω1)/I)M . Moreover, if j : M → N is a resulting
generic ultrapower embedding then P(P(ω1))N is also countable and so there
also exist generics for (P(ω1)/j(I))N . We can continue this process for ω1

stages, as in the following de�nition.

De�nition 2 Let M be a model of ZFC◦, I a normal ideal on ωM1 and γ ≤
ω1. An iteration of (M, I) of length γ consists of models (Mα | α ≤ γ), sets
(Gα | α < γ) and a commuting family of elementary embeddings (jαβ : Mα →
Mβ | α ≤ β ≤ γ) such that

1. M0 = M
2. Gα is generic for (P(ω1)/j0α(I))Mα

3. jαα is the identity
4. jα(α+1) is the ultrapower embedding induced by Gα

5. For limit β ≤ γ, Mβ is the direct limit of the system (Mα, jαδ | α ≤ δ < β)
and for α < β, jαβ is the induced embedding into this direct limit.

If in the above iteration γ equals ω1 and each ωMα
1 is wellfounded then the

set of these ordinals forms a club in ω1. Also note that each of the embeddings
jαβ is co�nal into the ordinals of Mβ.

The models that appear in an iteration of (M, I) are called iterates of
(M, I). In case I equals NSMℵ1 then we talk about an iteration and iterates of
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M . When we say that j : (M, I) → (M∗, I∗) is an iteration we mean that j
is j0γ for an iteration of (M, I) as above with Mγ = M∗ and I∗ = j(I).

(M, I) is iterable if every iterate of (M, I) is wellfounded. This is equiv-
alent to saying that every iterate which arises through a countable iteration
of (M, I) is wellfounded.

Conditions for iterability

The basic lemma which yields iterability is the following. An ideal I is
precipitous if each of its generic ultrapower is wellfounded.

Lemma 3 Suppose that M is a transitive model of enough of ZFC, I is a
normal precipitous ideal on ωM1 in M . Suppose that j : (M, I) → (M∗, I∗)
is an iteration of (M, I) of length γ ≤ ω1 and γ belongs to M . Then M∗ is
wellfounded.

2.-3.Vorlesungen

The following provides a su�cient condition for (generic) iterability.

Lemma 4 Suppose that M is a transitive model of enough of ZFC, I is a
normal precipitous ideal on ωM1 in M . Suppose that j : (M, I) → (M∗, I∗)
is an iteration of (M, I) of length γ ≤ ω1 and γ belongs to M . Then M∗ is
wellfounded.

Proof. It su�ces to show that iterations of length γ of (H(κ)M , I) are well-
founded for each regular κ ofM greater than theM -cardinality of P(P(ω1))M ,
for M∗ is the union of the j(H(κ)M) for such κ and j � H(κ)M results from
an iteration of (H(κ)M , I).

If not, let (γ, κ, η) be the lexicographically least triple such that for some
iteration (Nα, Gβ, jαδ | β < γ, α ≤ δ ≤ γ) of (H(κ)M , I), j0γ(η) is illfounded.
γ is a limit ordinal because I is precipitous. The triple (γ, κ, η) is de�nable in
M as it is the least triple (γ, κ, η) for which the existence of such an iteration
is forced by the Lévy collapse to ω of su�ciently large ordinals of M . Fix
such an iteration (Nα, Gβ, jαδ | β < γ, α ≤ δ ≤ γ) and choose γ∗ < γ,
η∗ < j0γ∗(η) so that jγ∗γ(η

∗) is illfounded. This is possible as both γ and
η are limit ordinals. Also note that the above iteration lifts to an iteration
(Mα, Gβ, j

∗
αδ | β < γ, α ≤ δ ≤ γ) of (M, I).

3



Now by elementarity, (j∗0γ∗(γ), j∗0γ∗(κ), j∗0γ∗(η)) is the lexicographically
least triple such that for some iteration of (H(j0γ∗(κ))Mγ∗ , j∗0γ∗(I)), the or-
dinal j∗0γ∗(η) is sent by the iteration into the illfounded part. But there is
a lexicographically smaller such triple: Consider the tail of the iteration
(Nα, Gβ, jαδ | β < γ, α ≤ δ ≤ γ) starting at Nγ∗ . This gives rise to a
triple (γ′, κ′, η∗) whose �rst component γ′ is γ − γ∗, surely at most j∗0γ∗(γ),
whose second component κ′ equals j∗0γ∗(κ) and whose third component η∗ is
stricly less than j∗0γ∗(η). This is a contradiction. 2

We'll also need the following two little facts.

Lemma 5 Suppose that M is a countable transitive model of enough of ZFC
and (M, I) is iterable, where I ∈ M is a normal ideal on th ω1 of M . Let x
be a real coding the pair (M, I). Then whenever Lγ[x] models ZFC, iterations
of (M, I) of length less than γ yields models of height less than γ.

Proof. The point is that the set of heights of models which result from a
generic iteration of length δ is Σ1

1 in x together with a code for δ and therefore
bounded by an ordinal admissible in x together with this code. If δ is less
than γ and Lγ[x] models ZFC then there is a code for δ in Lγ[x][g] where g
is generic for the Lévy collapse to ω of δ and therefore the heights of models
which arise from a generic iteration of length δ will be less than γ. 2

Lemma 6 Suppose that (M, I) is iterable where M satis�es enough of ZFC.
Then M is closed under #'s for subsets of ωM1 .

Proof. If j : (M, I) → (M1, I1) is a generic ultrapower of (M, I) via the
(P(ω1)/I)M -generic ultra�lter G1 then in M [G1] we see that there is an
elementary embedding of the L[x] of M to itself for each real x ∈ M . So
M [G1] thinks that every real of M has a # and therefore so does M (as
set-forcing does not create new #'s). Moreover, if A ∈ M is a subset of ωM1
then A = j(A) ∩ ωM1 is countable in M1 and therefore has a # in M1 ⊆
M [G1], again implying that A also has a # in M . The fact that (M, I) is
iterable implies that M is elementarily embeddable into a model containing
all countable ordinals and therefore M 's version of A# for A ⊆ ωM1 is the
correct A#. 2

Pmax

4



We now de�ne the Pmax forcing. When we write MA we are referring to
Martin's Axiom for ccc partial orders and collections of dense sets of size ω1.
A condition in Pmax is a pair ((M, I), a) such that:

1. M is a countable transitive model of enough of ZFC + MA.
2. I is a normal ideal in M .
3. (M, I) is iterable.
4. a belongs to P(ω1)M .

5. For some real x in M , ωM1 equals ω
L[a,x]
1 .

((M, I), a) ≤ ((N, J), b) i� N belongs toH(ω1)M and there exists an iteration
j : (N, J)→ (N∗, J∗) such that:

i. j(b) = a.
ii. j,N∗ belong to M .
iii. I ∩N∗ = J .

4.-5.Vorlesungen

We now de�ne the Pmax forcing. When we write MA we are referring to
Martin's Axiom for ccc partial orders and collections of dense sets of size ω1.
A condition in Pmax is a pair ((M, I), a) such that:

1. M is a countable transitive model of enough of ZFC + MA.
2. I is a normal ideal in M .
3. (M, I) is iterable.
4. a belongs to P(ω1)M .

5. For some real x in M , ωM1 equals ω
L[a,x]
1 .

((M, I), a) ≤ ((N, J), b) i� N belongs toH(ω1)M and there exists an iteration
j : (N, J)→ (N∗, J∗) such that:

i. j(b) = a.
ii. j,N∗ belong to M .
iii. I ∩N∗ = J∗.

We make some remarks. (1) Suppose that ((M, I), a) is a condition. As
M is closed under #'s for reals, a cannot be coded by a real and is therefore
unbounded in ωM1 . It follows that if ((M, I), a) extends ((N, J), b) then the
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iteration which shows this has length ωM1 . (2) The requirement (ii) in the
de�nition of extension implies that the ordering on conditions in transitive:
If j0 witnesses ((M1, I1), a1) ≤ ((M0, I0), a0) and j1 witnesses ((M2, I2), a2) ≤
((M1, I1), a1) then j1(j0) witnesses ((M2, I2), a2) ≤ ((M0, I0), a0). (3) The re-
quirement of MA will be used to show that any iteration of (M, I) is uniquely
determined by the image of a and therefore there is a unique iteration which
witnesses that one condition extends another. The argument will be via al-
most disjoint coding.

Lemma 7 Let ((M, I), a) be a Pmax condition and A a subset of ω1. Then
there is at most one iteration of (M, I) for which A is the image of a, and if
this iteration exists then it belongs to L[((M, I), a), A].

Proof. Choose a real x such that ωM1 = ω
L[a,x]
1 . By induction on α < ωM1

choose z∗α to be the L[a, x]-least real distinct from the z∗β, β < α, and make
the z∗α's almost disjoint by replacing z∗α by zα = the set of codes for �nite
initial segments of z∗α. Suppose that

I = (Mα, Gβ, jδµ | α ≤ ω1, β < ω1, δ ≤ µ ≤ ω1)

and

I ′ = (M ′
α, G

′
β, j
′
δµ | α ≤ ω1, β < ω1, δ ≤ µ ≤ ω1)

are two iterations of (M, I) such that j0ω1(a) = A = j′0ω1
(a). Then j0ω1(Z) =

j′0ω1
(Z) as well, where Z is the sequence of zα's. Write the latter as (zα | α <

ω1).

We show by induction on α < ω1 that Gα = G′α, which implies that the
two iterations are the same. Suppose that Gβ = G′β for β < α and we want

to show Gα = G′α. If B is a subset of ωMα
1 in Mα = M ′

α then B belongs to
Gα i� ωMα

1 belongs to jαα+1(B). Since Mα satis�es MA, there is a real y in
Mα such that for η < ωMα

1 , η belongs to B i� y, zη are almost disjoint. By
elementarity, ωMα

1 belongs to jαα+1(B) i� y, zωMα1
are almost disjoint. As the

latter holds also for j′αα+1 we have that Gα and G′α are the same. Moreover
this gives a de�nition of the sequence of Gα's in terms of (M, I), a and Z and
hence this sequence belongs to L[((M, I), a), A]. 2
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A consequence of this lemma is that if G is Pmax generic over L(R) then
L(R)[G] = L(R)[A] where A is the union of the a such that ((M, I), a) belongs
to G for some (M, I).

We say that (M, I) is a precondition i� for some a, ((M, I), a) is a condi-
tion.

Lemma 8 If (M, I) is a precondition and J is a normal ideal on ω1 then
there exists an iteration j : (M, I) → (M∗, I∗) such that j(ωM1 ) = ω1 and
I∗ = J ∩M∗.

Proof. First note that if j : (M, I) → (M∗, I∗) is any iteration of (M, I)
of length ω1 then I∗ is contained in J . To see this, write the iteration as
(Mα, Gβ, jδµ | α ≤ ω1, β < ω1, δ ≤ µ ≤ ω1) and note that if E belongs to
I∗ = j0ω1(I) then E = jαω1(E

′) for some countable α and E ′ ∈ j0α(I). Then

for all countable β ≥ α, jαβ(E ′) /∈ Gβ so ω
Mβ

1 /∈ E. As the set of such ωMβ

1 's
forms a club, it follows that E is nonstationary and therefore belongs to J
by the normality of J .

Choose a family (Aiα | i < ω, α < ω1) of pairwise disjoint members of
P(ω1) \ J . (This is possible as there is no countably additive ideal on ω1

containing all �nite sets which is ω1-saturated; the proof of this fact uses
Ulam matrices.) We describe an iteration (Mα, Gβ, jδµ | α ≤ ω1, β < ω1, δ ≤
µ ≤ ω1) of (M, I) by inductively choosing theGβ's. We simultaneously choose
enumerations (Bα

i | i < ω) of P(ω1)Mα \ j0α(I).

Given (Mα, Gβ, jδµ | α ≤ γ, β < γ, δ ≤ µ ≤ γ), if ω
Mγ

1 belongs to Aiα for
some i < ω and α ≤ γ then we let Gγ be any (P(ω1)/j0γ(I))Mγ -generic over

Mγ which contains jαγ(B
α
i ). If ω

Mγ

1 does not belong to any Aiα for i < ω,
α ≤ γ then we let Gγ be any (P(ω1)/j0γ(I))Mγ -generic over Mγ.

Now suppose that E belongs to P(ω1)Mω1 \j0ω1(I). We want to show that
E does not belong to J . Fix i < ω and α < ω1 such that E = jαω1(B

α
i ). Then

ω
Mβ

1 belongs to jα,β+1(Bα
i ) (and therefore to E) whenever it belongs to Aiα.

It follows that E contains the intersection of a club with a set not in J and
therefore does not belong to J . 2

We next show that Pmax is homogeneous in the following sense: Any two
Pmax conditions p0, p1 have extensions q0, q1 such that the suborders of Pmax
below q0 and q1 are isomorphic.
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Lemma 9 Assume that for every real x there is an inner model V0 containing
x and a measurable cardinal κ in V0 whose power set in V0 is countable in V .
(This follows from the existence of �daggers�, less than the existence of two
measurable cardinals.) Then Pmax is homogeneous.

Proof. The hypothesis of the lemma implies that any real x belongs to the
modelM of some precondition (M, I): Let V0 be an inner model containing x
with a measurable cardinal κ whose power set in V0 is countable in V . Then
in V there is a generic for the forcing that over V0 that Lévy collapses κ to
become ω1 and then forces MA. In this generic extension there is a normal
precipitous ideal on κ and therefore a precondition (M, I) withM containing
x.

Now suppose that p0 = ((M0, I0), a0) and p1 = ((M1, I1), a1) are Pmax
conditions. Fix a precondition (N, J) such that p0, p1 belong to H(ω1)N .
Applying the previous lemma in N , choose iterations j0 : (M0, I0)→ (M∗

0 , I
∗
0 )

and j1 : (M1, I1) → (M∗
1 , I

∗
1 ) such that I∗0 = J ∩ M∗

0 and I∗1 = J ∩ M∗
1 .

Let a∗0 = j0(a0), a∗1 = j1(a1) and consider the conditions q0 = ((N, J), a∗0),
q1 = ((N, J), a∗1). Then j0, j1 witness that q0, q1 are extensions in Pmax of
p0, p1.

We claim that the suborders of Pmax below q0 and q1 are isomorphic.
Indeed, suppose that q′0 = ((N ′, J ′), a′) is a condition below q0 and the it-
eration j′ : (N, J) → (N ′, J ′) witnesses this. Then a′ = j′(a∗0) and q′1 =
((N ′, J ′), j′(a∗1)) is a condition below q1. Let π be the map de�ned on Pmax
below q0 that sends ((N ′, J ′), a′) to ((N ′, J ′), j′(a∗1)) as above. Then π is an
isomorphism onto Pmax below q1 using the fact that iterations are uniquely
determined by where they send the last component of a Pmax condition. 2

6.-7.Vorlesungen

Pmax is countably closed

Assume that every real belongs to some Pmax precondition and suppose
that for each �nite i, pi = ((Mi, Ii), ai) is a Pmax condition and ji,i+1 :
(Mi, Ii) → (M∗

i , I
∗
i ) is an iteration witnessing pi+1 < pi. We want to �nd

a Pmax condition below all of the pi's. Let (jik | i ≤ k < ω) be the com-
muting family of embeddings generated by the ji,i+1's and a = ∪iai. Then
for each i there is a unique iteration jiω : (Mi, Ii) → (Ni, Ji) sending ai to
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a and ωNi1 = ωN0
1 for all i. We would like to put the (Ni, Ji, a)'s together to

get a Pmax condition below each of the pi's. To do this we need to discuss
�iterations� of the structure ((Ni, Ji) | i < ω) and prove its �iterability�. Then
we can easily generalise our earlier lemma about iterating to the restriction
of an arbitrary normal ideal as follows.

Lemma 10 Suppose that I is a normal ideal on ω1. Then there is an itera-
tion j∗ : ((Ni, Ji) | i < ω) → ((N∗i , J

∗
i ) | i < ω) such that j∗(ωN0

1 ) = ω1 and
J∗i = I ∩N∗i for each i.

Now to complete the proof of ω-closure, choose a Pmax precondition (M, I)
such that H(ω1)M contains (pi | i < ω) and apply the above lemma in M to
obtain j∗. Then for each i the embedding j∗(jiω) witnesses that ((M, I), j∗(a))
is a Pmax condition below pi for each i.

An iteration of ((Ni, Ji) | i < ω) of length γ ≤ ω1 consists of sequences
((Nα

i , J
α
i ) | i < ω) (α ≤ γ) together with normal ultra�lters Gα on ∪iNα

i

(α < γ) and a commuting family of embeddings jαβ : ((Nα
i , J

α
i ) | i < ω) →

((Nβ
i , J

β
i ) | i < ω) such that

((N0
i , J

0
i ) | i < ω) = ((Ni, Ji) | i < ω).

jα,α+1 is the embedding resulting by taking the ultrapower of the ((Nα
i , J

α
i ) |

i < ω) using Gα.
For limit β, ((Nβ

i , J
β
i ) | i < ω) is the direct limit of the ((Nα

i , J
α
i ) | i < ω)

for α < β with induced embeddings jαδ (α ≤ δ < β).

We claim that any iterate of ((Ni, Ji) | i < ω) is wellfounded. It su�ces
to show that the ω1 of each iterate of ((Ni, Ji) | i < ω) is wellfounded, as
for each iterate ((Nα

i , J
α
i ) | i < ω) of ((Ni, Ji) | i < ω), the ordinal height

of Nα
i is less than the least xi-indiscernible greater than ω

Nα
0

1 where xi is

some real in Nα
i+1 and hence must be wellfounded assuming that ω

Nα
0

1 is.
Now we prove that the ω1 of each iterate is wellfounded by induction on
the length of the iteration. As the limit case is immediate and the general
successor case follows from the case of a single ultrapower we just consider
the latter. We want to see that if G is a normal ultra�lter on ∪iNi and j the
induced ultrapower embedding then j(ωN0

1 ) = supiOrd(Ni) and is therefore
wellfounded. Note that by choosing reals xi in Ni+1 with Ord(Ni) less than
the least xi-indiscernible greater than ωN0

1 , if we let fi(α) be the least xi-
indiscernible above α then j(ωN0

1 ) ≥ supi j(fi)(ω
N0
1 ) = supiOrd(Ni). For
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the other direction, let h : ωN0
1 → ωN0

1 be a function in some Ni. Then
the closure points of h contain a �nal segment of the xi-indiscernibles and
therefore fi > h on a �nal segment of ωN0

1 ; it follows that [fi]G > [h]G so we
get j(ωN0

1 ) = supiOrd(Ni).

Generalised Iterability

Let A be a set of reals. We say that a precondition (M, I) is A-iterable i�
it is iterable, A ∩M is an element of M and for any iteration j : (M, I) →
(M∗, I∗) we have j(A ∩M) = A ∩M∗.

We show that if AD holds in L(R) and A is a set of reals in L(R) then
there is a Pmax precondition (M, I) such that (H(ω1)M , A∩M) is elementary
in (H(ω1), A) and (M, I) is A-iterable. For this we need the following.

Lemma 11 Assume AD. Then every set of ordinals belongs to an inner
model in which some V -countable ordinal is measurable.

Proof. Fix a set of ordinals Z. For each increasing f : ω → ω1 let s(f) be
the sup of the range of f and let F (f) be the �lter on s(f) consisting of
all subsets of s(f) which contain all but �nitely many members of Range f .
Also let N(f) be the inner model L[Z, F (f)], a model of choice. We claim
that for some f , F (f) restricted to N(f) is countably complete in N(f), i.e.,
every function from s(f) to ω in N(f) is constant on a set in F (f). It then
follows that some ordinal at most s(f) is measurable in N(f), which proves
the lemma.

Suppose that F (f) is not countably complete in N(f) for each f . Notice
that if the ranges of f0 and f1 are equal modulo a �nite set then F (f0) equals
F (f1) so the models N(f0) and N(f1), as well as their canonical wellorders,
are the same. Also note that using the canonical wellorder of N(f) we can
choose a function G such that G(f) : s(f) → ω is a counterexample to the
countable completeness in N(f) of F (f) for each f .

We use the following consequence of AD: For every function from the set
of increasing ω-sequences through ω1 to the reals there is an uncountable
E ⊆ ω1 such that this function is constant on the increasing ω-sequences
through E.
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Now for each increasing f : ω → ω1 let P (f) : ω → ω be de�ned by
P (f)(n) = G(f)(f(n)). Let E be an uncountable subset of ω1 such that P
is constant on all increasing f : ω → E. Choose i : ω → ω such that for all
increasing f : ω → E, G(f)(f(n)) = i(n) for all n. But then i must be a
constant function, as if i(n) 6= i(0) and we choose increasing f, g : ω → E
so that g(m) = f(m + n) then G(g)(g(0)) = i(0) 6= i(n) = G(f)(f(n)) =
G(f)(g(0)), contradicting F (f) = F (g). As i is a constant function we get
that G(f) is constant on a set in F (f) for each increasing f : ω → E,
contradicting the choice of G(f). 2

Now we show:

Theorem 12 Assume ADL(R) and let A be a set of reals in L(R). Then there
is a Pmax condition ((M, I), a) such that

1. A ∩M ∈M
2. (H(ω1)M , A ∩M) is elementary in (H(ω1), A)
3. (M, I) is A-iterable
4. If M+ is a forcing extension of M and J is a normal precipitous ide-
al on ωM

+

1 in M+ then A ∩ M+ is an element of A+ and (M+, J) is A-
iterable. Moreover if j : (M+, J)→ (M∗, J∗) is an iteration of (M+, J) then
(H(ω1)M

∗
, A ∩M∗) is elementary in (H(ω1), A).

Proof. Assume that there is a counterexample A. By choosing A to be de�n-
able over Lα(R) for the least possible α, we can assume that A is ∆2

1 de�nable
in L(R) (relative to a real parameter). In L(R) every ∆2

1 set is the projection
of a tree on ω×µ for some ordinal µ and this implies that there are trees T0, T1

such that any transitive model N with T0, T1 as members satis�es A∩N ∈ N
and (H(ω1)N , A ∩ N) is elementary in (H(ω1), A). Moreover if j : N → N∗

is elementary then the same holds for N∗ using the trees j(T0), j(T1).

By the lemma choose an inner model N of ZFC and a countable ordinal
γ such that N contains the trees T0, T1 and γ is measurable in N . Let δ be a
strongly inaccessible cardinal of N between γ and ωV1 . If G is generic over Nδ

for the Lévy collapse of γ to ω1 followed by the ccc iteration to make MA true,
then we obtain an iterable precondition (Nδ[G], I). It su�ces to show that
if M+ is a forcing extension of Nδ[G] in which there is a normal precipitous
ideal J on ωM

+

1 then M+ and J satisfy conclusion 4 of the theorem.
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Let N+ be the corresponding forcing extension of N [G]. Then A ∩ N+

belongs to N+ and (H(ω1)N
+
, A ∩ N+) is elementary in (H(ω1), A) since

T0, T1 belong to N . Fix an iteration j : (M+, J)→ (M∗, J∗). This lifts to an
iteration j∗ : (N+, J) → (N∗, J∗). Then A ∩M∗ = j(A ∩M+) ∈ M∗ and
(H(ω1)M

∗
, A∩M∗) is elementary in (H(ω1), A) as N∗ contains j∗(T0), j∗(T1).

2

8.-9.Vorlesungen

We now prove one of Woodin's main theorems about the Pmax extension
of L(R).

Lemma 13 Suppose that V = L(R) and AD holds. Let G be Pmax-generic
over V , AG = ∪{a | ((M, I), a) belongs to G for some (M, I)}. Then in V [G],
if E is a subset of ω1 then there are ((M, I), a) ∈ G and e ∈ P(ω1)M such
that j(e) = E where j is the unique iteration of (M, I) sending a to AG.
Moreover E is nonstationary i� we can take e to belong to I.

Proof. For the proof we need two facts. If p is a Pmax condition, J is a
normal ideal on ω1 and B is a subset of ω1 then let Gω1(p, J, B) be the game
where Players I and II build a descending ω1-sequence of Pmax conditions
pα = ((Mα, Iα), aα) below p where it is I's turn to choose pα if α /∈ B and it
is II's turn to choose pα if α ∈ B; II wins i�, letting A be the union of the
aα's and jα : (Mα, Iα)→ (M∗

α, I
∗
α) the iteration of (Mα, Iα) sending aα to A,

jα(Iα) = J ∩M∗
α for all α.

The following is a straightforward generalisation of an earlier lemma.

Fact 1. Player II has a winning strategy in Gω1(p, J,B) i� B /∈ J .

We also need:

Fact 2. Let p0 = ((M, I), a) be a Pmax condition in G and P ∈ M a set of
Pmax conditions extended by p0. Let j be the iteration of (M, I) sending a to
AG. Then every condition in j(P ) belongs to G.

Proof of Fact 2. Let (Mα, Gβ, j
∗
αδ | α ≤ ω1, β < ω1, α ≤ δ ≤ ω1) be the

iteration given by j and �x q = ((N0, J0), b0) in j(P ). Fix α0 sich that q ∈
j∗0α0

(P ) and as q is extended by j∗0α0
(p0) we can choose jq ∈ Mα0 to be the

12



iteration of (N0, J0) sending b0 to j
∗
0α0

(a). Choose p1 = ((N1, J1), b1) ∈ G such

that p1 ≤ p0 and α0 < ωN1
1 . Then (Mα, Gβ, j

∗
αδ | α ≤ ωN1

1 , β < ωN1
1 , α ≤ δ ≤

ωN1
1 ) is in M

ω
N1
1

and is the unique iteration of (M, I) sending a to b1. Since

jq(J0) = j∗0α0
(I) ∩ jq(N0) and j∗

0ω
N1
1

(I) = J1 ∩Mω
N1
1

it follows that j∗
α0ω

N1
1

(jq)

witnesses q ≥ p1. 2

Using these Facts we prove the lemma. Let τ be a Pmax-name for a subset
of ω1 and let A be a set of reals coding the set of triples (p, α, i) such that
p ∈ Pmax, α < ω1, i ∈ 2 and p  α ∈ τ if i = 1, p  α /∈ τ if i = 0. Let
p = ((N, J), d) be any condition and let (M, I) be an A-iterable precondition
such that p belongs to H(ω1)M and (H(ω1)M , A ∩M) ≺ (H(ω1), A).

Applying Fact 1 in M (where B is the set of countable limit ordinals) we
obtain a descending ωM1 -sequence of conditions pα = ((Nα, Jα), dα) such that:

(1) p0 = p
(2) pα+1 decides �α ∈ τ �.
(3) Letting D be the union of the dα's, jα(Jα) = I ∩ jα(Nα), where jα is the
iteration of (Nα, Jα) sending dα to D.

It follows that ((M, I), D) is a condition below each pα. Let e be a subset
of ωM1 in M such that for each α, α ∈ e i� pα+1  α ∈ τ . Suppose that
((M, I), D) belongs to a generic G′ and let (Mα, G

′
β, j
′
αδ | α ≤ ω1, β < ω1, α ≤

δ ≤ ω1) be the iteration of (M, I) sending D to AG′ . We show that j′0ω1
sends

e to τG′ . Write j′0ω1
((pα | α < ωM1 )) as (qα | α < ω1). Then for each γ < ω1,

qγ+1  γ ∈ τ i� γ ∈ j′0ω1
(e) and qγ+1  γ /∈ τ i� γ /∈ j′0ω1

(e). By Fact 2, each
qγ belongs to G

′ so j′0ω1
(e) = τG′ .

Finally note that if E = j(e) where ((M, I), a) belongs to G, e belongs to I
and j is the iteration sending a to AG, then E is disjoint from the critical
sequence of the iteration j and is therefore nonstationary. Conversely, if E
is nonstationary then choose a club C disjoint from E and ((M, I), a) ∈ G,
e, c ∈ P(ω1)M such that j(e) = E, j(c) = C where j is the iteration of (M, I)
sending a to AG; then c must be a club in M so e must belong to I. 2

Theorem 14 Suppose that V = L(R) and AD holds. Let G be Pmax-generic
over V . Then in V [G], δ1

2 = ω2.

13



Proof. (a) It su�ces to show that for every γ < ω2 there is a real x such
that the least x-indiscernible above ω1 is greater than γ. Working in the
Pmax extension V [G], �x a wellorder π of ω1 of length γ. By the previous
lemma we may choose a condition ((M, I), a) ∈ G and e ∈ P(ω1)M such that
j(e) = π, where j is the iteration of (M, I) sending a to AG. Then γ is in
j(M) and so for any real c coding (M, I) is less than the least c-indiscernible
above ω1. 2

10.-11.Vorlesungen

Theorem 15 Suppose that V = L(R) and AD holds. Let G be Pmax-generic
over V . Then in V [G], NSω1 is ω2-saturated.

Proof. We show that if D is dense in P(ω1) \ NS then D contains a subset
D′ of size ω1 whose diagonal union contains a club.

Let τ be a name for D and let A be the set of reals coding pairs (p, e)
where p = ((M, I), a) is a Pmax condition, e ∈ P(ω1)M \ I and p forces that
j(e) ∈ τ , where j is the iteration of (M, I) sending a to AG.

Let p = ((N, J), b) be any Pmax condition and let (M, I) be an A-iterable
precondition such that p ∈ H(ω1)M and (H(ω1)M , A ∩M) is elementary in
(H(ω1), A). Fix a partition (Bα

i | α < ω1, i < ω) in M of ωM1 into I-positive
sets and an injection g : ωM1 × ω → ωM1 in M such that g(α, i) ≥ α for all
(α, i).

Working inM our aim is to build a descending ωM1 -sequence of conditions
pα = ((Nα, Jα), bα) (with embeddings jαβ witnessing pα ≥ pβ) together with
enumerations (eαi | i ∈ ω) of P(ω1)Nα \ Jα and sets dα such that p0 = p and:

(1) dα ∈ P(ω1)Nα+1 \Jα+1, pα+1 forces that j(dα) ∈ τ , where j is the iteration
of (Nα+1, Jα+1) sending bα+1 to AG, and if α = g(β, i) for some β ≤ α and
i ∈ ω, then dα ⊆ jβ,α+1(eβi ).

(2) Each B
g(β,i)
i \ jg(β,i)+1, ωM1

(dg(β,i)) is nonstationary.

These conditions imply that if B is the union of the bα's then for each α,
jα(Jα) = I ∩ jα(Nα) where jα is the iteration of (Nα, Jα) sending bα to B,
and ((M, I), B) extends each pα.

14



Assume that we can construct the sequence as above. For each (α, i) let
d′αi be jg(α,i)+1, ωM1

(dg(α,i)). Then the diagonal union of A = the set of d′αi's is
I-large. Thus if ((M, I), B) belongs to the generic G and j is the iteration of
(M, I) sending B to AG then the diagonal union of j(A) contains the critical
sequence and therefore a club. We claim that j(A) is a subset of τG: Write
j((pα | α < ωM1 )) as (qα | α < ω1). By Fact 2, each qα belongs to G and since
(M, I) is A-iterable, each member of j(A) is forced to be in τG by some qα,
so j(A) is contained in τG.

It remains to construct the above sequence satisfying conditions (1) and
(2). Condition (1) is easily achieved: As τ names a dense subset of P(ω1)\NS,
for each α < ωM1 there is a pair (p∗, d∗) such that p∗ ≤ pα and (1) holds with
(p∗, d∗) in the role of (pα+1, dα).

To achieve condition (2), �x a ladder system (hα | α < ω1, α limit) in M
(i.e., hα maps ω increasingly and co�nally into α for each limit α). Assuming
that the pα's have been constructed below a limit β, let (((Nβ

i , J
β
i ) | i <

ω), b∗β) be the limit sequence corresponding to the sequence (phβ(i) | i < ω)
and for each i let j′iβ be the unique iteration of (Nhβ(i), Jhβ(i)) sending bhβ(i)

to b∗β. Fix a precondition (Nβ, Jβ) in M with ((Nβ
i | i < ω), b∗β) ∈ H(ω1)Nβ .

By an earlier lemma we can choose an iteration j′β of ((Nβ
i , J

β
i ) | i < ω) in

Nβ such that j′β(Jβi ) = Jβ ∩ j′β(Nβ
i ) for each i; also require that ω

Nβ
0

1 ∈ Bγ
k

for some γ < β and k < ω with g(γ, k) < β. Then, letting i′ be the least i
such that hβ(i) ≥ g(γ, k),

j′i′β(jg(γ,k)+1, hβ(i′)(dg(γ,k)))

is in the �lter corresponding to the �rst step of the iteration of the sequence

((Nβ
i , J

β
i ) | i < ω), ensuring (provided we let bβ be j′β(b∗β)) that ω

Nβ
0

1 ∈
jg(γ,k)+1, β(dg(γ,k)). As the set of ω

Nβ
0

1 's for limit β is a club, condition (2) is
thereby satis�ed. 2

The Pmax extension of L(R) is a model of choice:

Theorem 16 Assume AD in V = L(R) and let G be Pmax-generic. Then
AC holds in V [G].
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Proof. It su�ces to show that in V [G], the subsets of ω1 can be wellordered
in ordertype ω2.

First note that we at least have some choice in V [G]: By absoluteness,
any Pmax condition can be α-iterated for any countable α. It follows that if
((M, I), a) belongs to G then (M, I) can be ω1-iterated, by a density argu-
ment. Thus there is an embedding j sending ωM1 to ω1; as M satis�es choice,
it contains an injection of ωM1 into the reals of M and by applying j we get
an injection of ω1 into the reals. This is enough to partition ω1 into ω1-many
stationary sets.

For any γ < ω2 if fγ : ω1 → γ is a surjection then de�ne the �canonical
function � gγ : ω1 → ω1 by gγ(β) = ordertype (fγ[β]). Without choice we
cannot choose the fγ's, but the gγ's are unique modulo the nonstationary
ideal and so we can choose for each γ the equivalence class of gγ modulo NS.

Claim. In V [G], if A,B are stationary, costationary subsets of ω1 then A =
g−1
γ [B] mod NS for some γ.

Proof of Claim. We �rst use choice to show:

(∗) If (M, I) is a precondition and A,B ∈M are I-positive, co-I-positive
subsets of ωM1 in M and J is a normal ideal on ω1 then there are an iteration
j : (M, I)→ (M∗, I∗) of (M, I) of length ω1 and an ordinal γ < ω2 such that
I∗ = J ∩M∗ and j(A) = g−1

γ [j(B)] mod NS.

Then given any Pmax condition p0 = ((M0, I0), a0) forcing τ0, τ1 to be sta-
tionary, costationary subsets of ω1 we can choose an A-iterable (M, I) (for
an appropriate A) with p0 ∈ H(ω1)M , and apply (∗) in M with the ideal I
to obtain an extension ((M, I), a) of p0 forcing the conclusion of the Claim
for τG0 , τ

G
1 .

To prove (∗) let x be a real coding (M, I) and form an iteration of (M, I)
so that at stage α∗ = the least x-indiscernible greater than α, j0α∗(B) belongs
to Gα∗ i� j0α(A) belongs to Gα. This is possible as A,B are both I-positive
and co-I-positive. The result is that for a club of x-indiscernible α, α ∈ j(A)
i� α∗ ∈ j(B) and therefore A = g−1

γ [B] mod NS, where γ is the least x-
indiscernible greater than ω1. 2 (Claim)
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Obviously if A0 = g−1
γ0

[B] mod NS, A1 = g−1
γ1

[B] mod NS and A04A1

is stationary, then γ0 6= γ1. Now �x a stationary, costationary B and let
(Aα | α < ω1) be a partition of ω1 into stationary sets. For X a subset of ω1

(other than ∅ or all of ω1) choose γX such that AX = g−1
γX

[B] where AX is
the union of the Aα's for α in X. Then the function X 7→ γX is an injection
of a set of size P(ω1) into ω2. 2

12.Vorlesung

Π2(H(ω2)) Invariance of the Pmax extension

We show, assuming large cardinals, that any Π2(H(ω2)) sentence that
holds in a set-forcing extension of the universe also holds in the Pmax exten-
sion of L(R). By �sentence� we of course mean �sentence without parameters�
as there are even Σ1(H(ω2)) sentences with parameters from H(ω2) which
can be forced over L(R)[G] but do not hold there (just take a stationary, co-
stationary subset of ω1 and add a club subset of it). However the parameter
ω1 is allowed because any Π2(H(ω2)) sentence using it is equivalent to one
without it.

We will use (but not prove) the following

Lemma 17 If δ is a Woodin cardinal then the Lévy collapse Coll(ω1, < δ)
forces that NS is precipitous.

Theorem 18 Suppose that there is a proper class of Woodin cardinals and
P is a set partial order which forces that the Π2 sentence ϕ holds in H(ω2).
Then ϕ holds in the H(ω2) of the Pmax extension of L(R).

Proof. Write ϕ as ∃X∀Y ψ(X, Y ) where ψ is ∆0. It su�ces to show that for
every Pmax condition p = ((M, I), a) and every x ∈ H(ω2)M there is a Pmax
condition q = ((N, J), b) extending p so that if j : (M, I) → (M∗, I∗) is the
unique iteration sending a to b then

H(ω2)N � ∃yψ(j(x), y).

Given this, for any X in the H(ω2) of the Pmax extension we can write X
as j(x) where ((M, I), a) belongs to the Pmax-generic, j : (M, I)→ (M∗, I∗)
is the iteration of (M, I) taking a to AG and ψ(X, Y ) holds in H(ω2)M

∗
for
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some Y ; but then ψ(X, Y ) also holds in the H(ω2) of the Pmax extension
because ψ is ∆0.

Let Z be a countable elementary submodel of a largeH(θ) with ((M, I), a),
P and δ as members where δ is a Woodin cardinal such that P belongs to
H(δ). Let N be the transitive collapse of Z. We know that any forcing ex-
tension of M in which NS is precipitous is iterable with respect to its NS.
Let N [g0] be a P̄ -generic extension of N where P̄ is the image of P under
the transitive collapse of Z to N and let j : (M, I) → (M∗, I∗) be an iter-
ation in N [g0] such that I∗ = NSN [g0] ∩M∗. As ϕ holds in H(ω2)N [g0] there
is y ∈ H(ω2)N [g0] such that ψ(j(x), y) holds in H(ω2)N [g0]. In N [g0] the im-
age δ̄ of δ under the transitive collapse of Z is Woodin; let N [g0][g1] be a
Coll(ω1, < δ̄)N [g0]-generic extension of N [g0] and let N∗ = N [g0][g1][g2] be a
ccc forcing extension of N [g0][g1] in which MA holds. Then ((N∗,NSN

∗
), j(a))

is the desired Pmax condition extending p. 2

Remarks. (a) The previous result also holds if we replaceH(ω2) by (H(ω2), A)
for any set of reals A in L(R). (b) Viale has pointed out the following vari-
ant of the previous theorem (perhaps also due to Woodin): Let (∗) be the
axiom that AD holds in L(R) and L(P(ω1)) is a Pmax extension of L(R). If
(∗) holds and there is a proper class of Woodin cardinals then set-forcings
which preserve (∗) cannot a�ect the truth of arbitrary �rst-order properties
of H(ω2). This can be viewed as an analogue to the fact that if there is a
proper class of Woodin cardinals then no set-forcing can a�ect the truth of
�rst-order properties of H(ω1). These results are part of a general programme
of showing that the truth of certain statements about some H(λ) is not af-
fected by certain set-forcings which preserve the truth of certain axioms. (c)
One should not hope for too much with these �truth-invariance� results. In-
deed, they appear to fall apart when replacing set-forcing by class-forcing.
And no large cardinal axiom is able to ensure invariance of even Σ2(H(ω1))
truth with respect to arbitrary (non-generic) extensions which satisfy it.

13.Vorlesung

Theorem 19 Suppose that NS is saturated and there is a measurable cardi-
nal. Then δ1

2 = ω2 and therefore CH fails.

Proof. Recall that δ1
2 is the supremum of the (ωV1 )+ of L[R] for reals R.
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Suppose α < ω2. Form the structure A = (H(µ), <, {α}) where < is
a wellorder of H(µ). Then by virtue of the measurability of µ, there is an
ω-sequence (in | n < ω) of ordinals less than µ such that:

1. The in's are indiscernibles for A.
2. Let N be the Skolem hull of the in's in A and for any limit ordinal γ
let Nγ be the �stretch� of N to γ indiscernibles, i.e., the structure generated
from γ-many indiscernibles in the same way tha N is generated from the
in's. Then Nγ is wellfounded and for γ0 < γ1, Nγ0 is isomorphic to an initial
segment of Nγ1 .

As NS is saturated it is precipitous and therefore N � NS is precipitous. It
follows that generic iterations of (N,NS) of length less than ordertype (N ∩
Ord) are wellfounded. But for any limit ordinal γ, generic iterations of
(N,NS) lift to generic iterations of (Nγ,NS) and therefore generic iterations
of (N,NS) of any length are wellfounded.

Claim. Let N̄ be the transitive collapse of N and Ī = NSN̄ . Then there is a
generic iteration j : (N̄ , Ī)→ (N∗, I∗) of length ω1 such that Ord(N∗) > α.

The Theorem follows from the Claim as if we let R be a real coding the
countable model N̄ we see that α is less than (ωV1 )+ of L[R].

We prove the Claim by inductively de�ning iterates N̄γ of N̄ together
with embeddings jγ : N̄γ → A. Suppose that N̄γ, jγ are de�ned.

Let δγ be the ω1 of N̄γ and Uγ the ultra�lter on δγ derived from jγ, i.e.,
X ⊆ δγ belongs to Uγ i� δγ ∈ jγ(X).

Then as NSN̄γ is saturated, Uγ is generic for (P(ω1)/NS)N̄γ : Indeed, if
Ā ∈ N̄γ is a maximal antichain in this forcing then Ā is a collection (X̄i |
i < δγ) of stationary sets whose diagonal union contains a club in δγ, and
therefore the diagonal union of jγ(Ā) = (Xi | i < ω1) contains a club in ω1. It
follows that δγ belongs to this diagonal union and therefore for some i < δγ,
δγ belongs to Xi. It follows that X̄i belongs to Uγ.

Now let N̄γ+1 be the ultrapower of Nγ by Uγ and de�ne jγ+1 : N̄γ+1 → A
by jγ+1([f ]) = jγ(f)(δγ). At limit stages we take a direct limit and embed it
into A in the natural way. Note that if Mγ denotes the range of jγ, then for
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each γ, Mγ+1 is the Skolem hull in A of Mγ ∪ {δγ}. As the union M∗ of the
Mγ's contains α as an element and ω1 as a subset, it follows that M∗ also
contains α+ 1 as a subset and therefore its transitive collapse N∗, the direct
limit of the N̄γ's, has ordinal height greater than α. 2

The Stationary Tower

14.-15.Vorlesungen

We now switch topics from Pmax to stationary tower forcing, based on
Paul Larson' book on this topic. This forcing can be used to collapse the
successor of a singular cardinal using less than a measurable, to show that
if there is a proper class of Woodin cardinals then truth in L(R) is invariant
under set forcing and, using Martin-Steel's work on projective determinacy,
show that AD in L(R) follows from the existence of in�nitely many Woodin
cardinals with a measurable above.

Generalised Stationarity

If X is any nonempty set, then a subset C of P(X) is CUB i� it is of
the form {a ⊆ X | F [a<ω] ⊆ a} for some F : [X]<ω → X. And S ⊆ P(X) is
stationary i� it intersects all CUB sets, i.e., i� for any F : [X]<ω → X there
exists a ∈ S such that F [a<ω] ⊆ a.

For any in�nite cardinal κ ≤ Card (X), the set of subsets of X of cardi-
nality κ is a stationary subset of P(X). If X = α is an ordinal of uncountable
co�nality then a subset of α is also a subset of P(α) and it is stationary in
the above sense i� it is stationary in the usual sense.

Another way of expressing stationarity is in terms of structures for a
countable language: S ⊆ P(X) is stationary i� every structure A with uni-
verse X has an elementary substructure with universe in S.

The following are left as exercises.

Lemma 20 (Projection and Lifting) Suppose X ⊆ Y .
(a) If S is a stationary subset of P(Y ) then SX = {a ∩ X | a ∈ S} is
stationary in P(X).
(b) If S is a stationary subset of P(X) then SY = {a ⊆ Y | a ∩X ∈ S} is a
stationary subset of P(Y ).
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Lemma 21 (Fodor) Suppose that S ⊆ P(X) is stationary and F : S → X
is regressive, i.e., F (a) ∈ a for each a ∈ S. Then there is x ∈ X such that
F (a) = x for stationary-many a in S.

Now we force with the associated ideals of nonstationary sets. For any
X let PX be the partial order of stationary subsets of P(X), ordered by
inclusion. If G is PX generic then G de�ned an ultra�lter U on P(X)V and
we can form the ultrapower j : V → Ult(V, U) = (M,E). Of course the
elements of M are the equivalence classes [f ]U of functions f : P(X) ∈ V in
V . Let id denote the identity function on P(X). Then id �represents� j[X]
in M , i.e.

Lemma 22 j[X] equals {m ∈M | mE[id]U}.

Proof of lemma. Suppose that x belongs to X. Then by the de�nition of j,
j(x) is [cx]U where cx is the constant function on P(X) with value x. Now
cx(a) = x ∈ a = id(a) for CUB-many a ∈ P(X) so it follows by �o± that
j(x) = [cx]UE[id]U . Conversely, suppose that mE[id]U and write m = [f ]U .
Then f(a) ∈ id(a) = a for a set of a in U . By Fodor and genericity, there is
x ∈ X such that f(a) = x for a set of a in U . but then m = [f ]U = [cx]U =
j(x). 2

This lemma implies that j[X] ∩OrdM = j[X ∩Ord] is represented in M
and therefore so are all of its initial segments. It follows that the ordertype of
X ∩ Ord is represented in M and therefore belongs to the wellfounded part
of M (if we identify the wellfounded part of M with its transitive collapse).

Stationary Tower Embeddings

Note that if S is a stationary subset of P(X) then X = ∪S. So we just
say that S is stationary i� ∪S is nonempty and S is stationary in P(∪S).

De�nition 23 (The Stationary Tower) Let κ be strongly inaccessible. The
full stationary tower up to κ, denoted P<κ, consists of stationary a ∈ H(κ),
ordered as follows:

b ≤ a i�
∪a ⊆ ∪b and b∪a ⊆ a, i.e., z ∩ (∪a) ∈ a for each z ∈ b.
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We associate a generic elementary embedding j : V → (M,E) to a P<κ-
generic G as follows. For each nonempty X ∈ H(κ) de�ne UX = {bX | b ∈ G
and X ⊆ ∪b}, where as before bX is the projection of b to X, i.e. the set of
all z ∩X for z in b.

Claim. UX is an ultra�lter on P(X)V extending the CUB �lter on P(X)V .
And for X ⊆ Y , S belongs to UX i� SY = {Z ⊆ Y | Z ∩X ∈ S} belongs to
UY .

Proof. Any CUB subset of P(X) is compatible with each stationary set and
therefore belongs to G and hence to UX . We must show that UX is an ul-
tra�lter on P(X)V . It su�ces to show that if S ⊆ P(X) then any b can be
extended to a c such that cX is contained in or disjoint from S. We may
assume that X is a subset of ∪b. Let b+ be set set of z ∈ b such that z ∩X
belongs to S and b− the set of z ∈ b such that z ∩X does not belong to S.
Then b+

X is contained in S and b−X is disjoint from S. Let c be b+ if this is sta-
tionary and otherwise b−. The last claim follows easily from the de�nitions.
2

Now for each X form the ultrapower by UX to get jX : V → (MX , EX).
And for X ⊆ Y de�ne jXY : MX → MY by jXY ([f ]UX ) = [fY ]UY where
fY : P(Y )→ V is de�ned by fY (Z) = f(Z∩X). This de�nes a direct system
of models (MX , EX) with embeddings. Let (M,E) denote the direct limit of
this directed system and j the corresponding embedding of V into this direct
limit. For each a ∈ G and f : ∪a→ V in V we let [f ]G denote the member of
M represented by f . The following is a straightforward adaptation of Lemma
22.

Fact. The identity function idX on P(X) represents j[X] in M , i.e., j[X] =
{b ∈M | bE[idX ]G}.

Identify the wellfounded part of M with its transitive collapse. Then by
this Fact, X and j � X belong to M for each X ∈ H(κ) and therefore H(κ)
is a subset of M . Also, as j[X] is an element of M we obtain the usual
description of an ultra�lter in terms of its associated ultrapower embedding:
UX = {a ⊆ P(X) | j[X] ∈ j(a)}. Thus a ∈ G i� j[∪a] ∈ j(a) and [f ]G =
j(f)(j[∪a]) when f has domain P(∪a).

As j � H(α) belongs toM for each cardinal α < κ, it follows that G∩H(α) =
{a ∈ H(α) | j[∪a] ∈ j(a)} also belongs to M for each cardinal α < κ.
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Fact. For α < κ, α is represented in M by the function f : P(α) → α given
by f(Z) = ot(Z).

It follows that for β ⊆ ∪a:

a  j(α) ≤ β i�
ot(Z ∩ β) ≥ α for �almost all� Z in a (i.e., for some CUB C in P(∪a),
ot(Z ∩ β) ≥ α for all Z in a ∩ C).

Thus a forces j(α) = α i� ot(Z ∩ α) = α for almost all Z in a.

Completely Jónsson Cardinals

κ is completely Jónsson i� it is strongly inaccessible and for each station-
ary a ∈ H(κ), the set of X ⊆ H(κ) such that X ∩ (∪a) ∈ a and X has
cardinality κ is stationary in P(H(κ)).

Ramsey cardinals are completely Jónsson and measurable cardinals are
Ramsey, so these cardinals are not very big. Also, as complete Jónsson-ness
is a Π1

1 property, it follows that measurable cardinals are also limits of com-
pletely Jónsson cardinals.

Completely Jónsson cardinals are relevant for the following reason. Sup-
pose that κ is a strongly inaccessible limit of completely Jónsson cardinals.
Then any a ∈ P<κ has an extension b forcing j(α) = α for some α < κ:
Choose α < κ to be completely Jónsson and such that a belongs to H(α)
and let b be {Z ⊆ H(α) | Z ∩ α has cardinality β and Z ∩ (∪a) ∈ a}; then
b extends a and forces j(α) = α. Thus if κ is a strongly inaccessible limit of
completely Jónsson cardinals, it follows that j has unboundedly many �xed
points below κ. In fact κ is also a �xed point of j as it is not hard to show
that j is continuous at strongly inaccessibles.

Also note that if κ is a strongly inaccessible limit of completely Jónsson
cardinals then any set in the H(κ) of V [G] belongs to the wellfounded part
of M , κ belongs to the wellfounded part of M (as j(κ) = κ) and so the H(κ)
of M equals the H(κ) of V [G]. Thus j(H(κ)) = H(κ) of V [G].

Forcing Applications

Example 1. (Universality for set forcing) Suppose that there is a proper class
of completely Jónsson cardinals. Let P∞ denote the stationary tower class
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forcing, using arbitrary stationary sets a as conditions. Then P∞ is universal
for set-forcing in the sense that any set forcing is a regular subforcing of P∞.
To see this, suppose that Q ∈ V is a set forcing and choose a cardinal α such
that the power set of Q in V belongs to H(α). Then consider the stationary
set a = the set of countable subsets of H(α). If G is P∞ generic over V below
the condition a then H(α)V is countable in V [G]. It follows that the V -power
set of Q is countable in V [G] and therefore there are Q-generics in V [G].

Example 2. (Stretching a �core model�) Again suppose that there is a proper
class of completely Jónsson cardinals and let P∞ be as in Example 1. If G is
P∞ generic over V then we get an elementary embedding from V into V [G].
In particular unlike L, any formula �V = K� satis�ed by an inner model K
with a proper class of competely Jónsson cardinals is also satis�ed by one of
its nontrivial class generic extensions: if ϕ were such a formula then ϕ would
also be true in K[G] when G is P∞ generic over K. However it must be said
that K[G] may fail to obey replacement when K is adjoined as an additional
predicate.

16.Vorlesung

Example 3. (Generalised Namba forcing) Again suppose that there is a proper
class of completely Jónsson cardinals and let γ < λ be regular. Let a be
{α < λ | cof (α) = γ}, a stationary subset of P(λ). Suppose that a belongs
to a P∞ generic G with associated j : V → V [G]. Since a belongs to G,
j[λ] ∈ j(a) and since a consists of ordinals, so does j(a). Thus j[λ] is an
ordinal and therefore j is the identity on λ. Moreover by elementarity, j(a)
consists of those ordinals less than j(λ) which have co�nality j(γ) = γ in
V [G]; so in fact j[λ] = λ is an ordinal less than j(λ) of co�nality γ in V [G].
As j is the identity on λ, cardinals below λ are preserved and if 2δ is less
than λ then no new subsets of δ are added.

For example, we could have GCH in V and with P∞ add no new bounded
subsets of ℵω but change the co�nality of ℵω+1 to ℵ7. By core model theory,
such a weird e�ect cannot be achieved if ZFC is preserved by adding V as
an additional predicate, without using more than a Woodin cardinal and
probably this would need a supercompact cardinal.

Wellfoundedness
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Suppose that G is P<δ generic with resulting embedding j : V → M .
We'll show that if δ is a Woodin cardinal then M is wellfounded and closed
in V [G] under sequences of length less than δ.

Suppose that D is a subset of P<δ. Then Y ≺ Vδ+1 captures D i� there is
d ∈ D ∩ Y such that Y ∩ (∪d) ∈ d. If D is an antichain then the choice of d
is unique: if d′ ∈ Y ∩D is distinct from d there is a function h such that no
Z closed under h satis�es both Z ∩ (∪d) ∈ d and Z ∩ (∪d′) ∈ d′; as h may be
chosen in Y and Y is closed under such an h one cannot have Y ∩ (∪d′) ∈ d′.
Also note that if A ⊆ Vδ+2 and stationary-many Y ∈ A capture the antichain
D then in the forcing P∞, A is compatible with some d ∈ D: By Fodor we
can thin A to A′ consisting of Y which capture D with the same choice of
d ∈ D ∩ Y ; then A′ extends both A and d.

We also de�ne sp(D) as follows. For sets X ⊆ Y , we say that Y end
extends X i� X = Y ∩Vα where α is the rank of X (i.e. the least α such that
X is a subset of Vα). Then sp(D) consists of all X ≺ Vδ+1 of size < δ such
that D ∈ X and there exists Y ≺ Vδ+1 such that:

(1) X is a subset of Y .
(2) Y end extends X ∩ Vδ.
(3) Y captures D.

D is semiproper i� sp(D) contains a club in Pδ(Vδ+1).

Lemma 24 Let η be an in�nite cardinal less than δ. Suppose that for each
sequence (Dα | α < η) of predense subsets of P<δ there are arbitrarily large
strongly inaccessible γ < δ such that Dα ∩ P<γ is semiproper in P<γ for
all α < η. Then the ultrapower (M,E) arising from a P<δ generic G is
closed under sequences of length η in V [G]. In particular, this ultrapower is
wellfounded.

Lemma 25 Suppose that δ is a Woodin cardinal. Then for each sequence
(Dα | α < δ) of predense subsets of P<δ there are arbitrarily large strongly
inaccessible γ < δ such that Dα ∩ P<γ is semiproper in P<γ for each α < γ.

17.Vorlesung
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Lemma 26 Let η be an in�nite cardinal less than δ. Suppose that for each
sequence (Dα | α < η) of predense subsets of P<δ there are arbitrarily large
strongly inaccessible γ < δ such that Dα ∩ P<γ is semiproper in P<γ for
all α < η. Then the ultrapower (M,E) arising from a P<δ generic G is
closed under sequences of length η in V [G]. In particular, this ultrapower is
wellfounded.

Lemma 27 Suppose that δ is a Woodin cardinal. Then for each sequence
(Dα | α < δ) of predense subsets of P<δ there are arbitrarily large strongly
inaccessible γ < δ such that Dα ∩ P<γ is semiproper in P<γ for each α < γ.

Proof of Lemma 26. Fix a0 ∈ P<δ and a term τ for an η-sequence of ordinals
in (M,E). For α < η let Aα be a maximal antichain of conditions a such
that a  τ(α) = [f ]G for some f : a→ Ord. By the hypothesis of the lemma
there is a strongly inaccessible γ < δ such that:

(1) a0 ∈ Vγ, η < γ.
(2) Aα ∩ P<γ is semiproper for each α < η.

Let a be the set of X ≺ Vγ+1 such that:

X has size less than γ.
X ∩ (∪a0) ∈ a0.
X captures Aα for each α ∈ X ∩ η (i.e., for α ∈ X ∩ η there is b ∈ X ∩ Aα
such that X ∩ (∪b) ∈ b).

Claim. a is stationary in Pγ(Vγ+1).

Proof of Claim. Fix H : [Vγ+1]<ω → Vγ+1. Since a0 is stationary we may
choose X0 ≺ Vδ of size less than γ containing all relevant parameters (in-
cluding H) such that X0 ∩ (∪a0) ∈ a0. De�ne an elementary chain (Xα | α ∈
X0 ∩ η) as follows: If α ∈ X0 ∩ η is a limit ordinal then let Xα be the union
of the Xβ, β ∈ X0 ∩ α. At successor stages, since Aα ∩ P<γ is semiproper we
can choose Y ≺ Vδ of size less than γ such that:

(1) Xα is a subset of Y .
(2) Y ∩ Vγ end-extends Xα ∩ Vγ.
(3) Y captures Aα (i.e., Y ∩ (∪b) ∈ b for some b ∈ Aα ∩ Y ).
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(Formally speaking, we only get Y ≺ Vγ+1 but this can be easily improved
to Y ≺ Vδ.) Choose Xα+1 to be such a Y . Let X be the union of the Xα,
α ∈ X0 ∩ η. Then X has size less than γ and as X0 contains H, X ∩ Vγ+1 is
closed under H. And, for each α ∈ X0 ∩ η, as Xα+1 captures Aα and X ∩ Vγ
end-extends Xα+1 ∩ Vγ it follows that X captures Aα. Thus a is stationary
in Pγ(Vγ+1) and the Claim is proved.

Now we de�ne a function f : a→ V that is forced to represent τ . Recall
that if we de�ne gη : a → V by gη(X) = X ∩ η then gη represents j[η]. We
de�ne f so that for each X ∈ a, f(X) is a function with domain X ∩ η, so
that [f ]G will be a function in the ultrapower with domain j[η]. What we
want to have is: [f ]G(j(α)) = τG(α) for each α < η. For then f represents
the function from j[η] to M given by j(α) 7→ τG(α) and therefore τG belongs
to M .

Fix X ∈ a and α ∈ X ∩ η. As X captures Aα we can choose b ∈ X ∩ Aα
such that X ∩ (∪b) ∈ b. The choice of b is unique as Aα is an antichain. Now
as b belongs to Aα we can choose fα such that b  [fα]Ġ = τ(α) and we
de�ne:

f(X)(α) = fα(X ∩ (∪b)).
We claim that f works, i.e., for each α < η, a  [f ]Ġ(j(α)) = τ(α).

Fix α < η and G generic for P<δ, a an element of G. Let ā ∈ G consist of
those X ∈ a such that α ∈ X. Now each X ∈ ā captures Aα with a unique
b ∈ Aα ∩ X such that X ∩ (∪b) ∈ b. By normality and the genericity of G
we may �x a1 ≤ ā and b1 ∈ Aα ∩ P<γ such that a1 ∈ G and for all Y ∈ a1,
b1 ∈ Y ∩Aα and Y ∩ (∪b1) ∈ b1. As a1 extends b1 it follows that b1 belongs to
G. So since b1  [fα]Ġ = τ(α) and f(X)(α) = fα(X ∩ (∪b1)) for each X ∈ a1,
it follows that [f ]G(j(α)) = τG(α), as desired. 2

18.Vorlesung

Lemma 28 Suppose that δ is a Woodin cardinal. Then for each sequence
(Dα | α < δ) of predense subsets of P<δ there are arbitrarily large strongly
inaccessible γ < δ such that Dα ∩ P<γ is semiproper in P<γ for each α < γ.

Proof of Lemma 28. Recall that δ is Woodin i� for each f : δ → δ there is
an elementary embedding j : V → M with critical point γ < δ such that γ
is closed under f and Vj(f)(γ) is contained in M .
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Now �x an f : δ → δ with limit ordinal values such that γ < f(γ) for all
γ < δ and for all strongly inaccessible γ < δ closed under f :

(a) For all α < γ, Dα ∩ P<γ is predense in P<γ.
(b) If α < γ is such that Dα ∩ P<γ is not semiproper in P<γ, there exists a
condition in Dα ∩ Vf(γ) compatible with

a = {X ≺ Vγ+1 | card(X) < γ and X /∈ sp(Dα ∩ P<γ)}.

Note that (b) is possible as since Dα ∩ P<γ is not semiproper in P<γ the set
a above is stationary and therefore compatible with an element of Dα as Dα

is predense.

Now apply Woodinness to get j : V → M with critical point γ < δ
closed under f such that Vj(f)(γ) is contained in M . We claim that γ works,
i.e., Dα ∩ P<γ is semiproper for all α < γ. Fix such an α and suppose that
Dα ∩ P<γ is not semiproper. Let a be as in (b) above; thus a is stationary.
Then PM<γ = P<γ and j(Dα)∩ P<γ = Dα ∩ P<γ is not semiproper in M so by
the elementarity of j there exists b ∈ j(Dα)∩V M

j(f)(γ) which is compatible with

aM = a in j(P<δ). Note that b is stationary in V since Vj(f)(γ) is contained in
M . Let c be the greatest lower bound of a, b.

We may assume that j(δ) = δ. Choose X ≺ Vδ such that X∩(∪c) ∈ c and
b, j � Vγ+1 and < belong to X where < is a wellorder of j(Vγ+1) which belongs
to M . As ∪a = Vγ+1, a consists of sets of size less than γ and c extends a,
it follows that X ∩ Vγ+1 has size less than γ. So j(X ∩ Vγ+1) = j[X ∩ Vγ+1]
and the latter belongs to j(a) and hence not to j(sp(Dα ∩ P<γ)). We obtain
a contradiction by obtaining a witness Y to the fact that j[X ∩ Vγ+1] does
in fact belong to j(sp(Dα ∩ P<γ)).

We take Y to be the Skolem hull in j(Vγ+1) of {b}∪j[X∩Vγ+1]∪(X∩(∪b)),
using the wellorder < in X ∩M . Note that as all of these sets belong to M ,
so does Y . And as all of these sets are subsets of X and j(Vγ+1) is an element
of X, it follows that Y is a subset of X. Now Y contains j[X ∩ Vγ+1] and
since j[X ∩ Vγ+1] ∩ Vj(γ) = j[X ∩ Vγ+1] ∩ Vγ, it follows that Y end-extends
j[X ∩ Vγ+1] below j(γ). Finally, b witnesses that Y captures j(Dα ∩ P<γ)
since b belongs to Y and Y ∩ (∪b) = X ∩ (∪b) ∈ b. 2
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