
HOD and the Stable Core

1.-2.Vorlesungen

Gödel invented not one, but two de�nable inner models satisfying ZFC:
L and HOD.

HOD is the inner model of hereditarily ordinal-de�nable sets. A set is
ordinal-de�nable if it is de�nable with ordinal parameters. Gödel observed:

Lemma 1 The class of ordinal-de�nable sets is de�nable as a class, without
parameters.

Proof. Use Lévy re�ection: If a set is de�nable from ordinals then it is de-
�nable in some Vα from ordinals less than α. Conversely, if a set is de�nable
in some Vα from ordinals less than α it is de�nable in V from those ordinals
less than α together with α. 2

A set is hereditarily ordinal-de�nable if not only it but also every element
of its transitive closure is ordinal-de�nable. Clearly this is also a de�nable
notion.

Proposition 2 The class HOD of all hereditarily ordinal-de�nable sets is
an inner model of ZFC.

Proof. Obviously HOD is a transitive class containing all ordinals. It is
straightforward to check each of the ZF axioms: For example, if x is in HOD
then for any formula ϕ with parameters from HOD, y = {a ∈ x | HOD �
ϕ(a)} is ordinal-de�nable since x is ordinal-de�nable and since HOD is a de-
�nable class, and the property �HOD � ϕ(a)� is an ordinal-de�nable property
of a. As y is a subset of x its transitive closure is a subset of the transitive
closure of x and therefore consists of ordinal-de�nable sets, as by assump-
tion x is hereditarily ordinal-de�nable. If x is hereditarily ordinal-de�nable
then its HOD-powerset P(x) ∩ HOD is ordinal-de�nable as HOD is a de�n-
able class, and the transitive closure of the latter consists of itself together
with the union of the transitive closures of elements of HOD; it follows that
P(x) ∩ HOD is hereditarily ordinal-de�nable.

For the Axiom of Choice note the following: We can wellorder the elements
of HOD as follows: To each x in HOD assign the least ordinal α(x) such that x
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is ordinal-de�nable in Vα(x) and the least �nite sequence ~β(x) of ordinals less

than α(x) such that x is de�nable in Vα(x) with parameters ~β(x). Then say

that x is less than y i� (α(x), ~β(x)) is less than (α(y), ~β(y)) as �nite sequences
of ordinals. This wellorder is de�nable and therefore when restricted to a set
in HOD is an element of HOD. So in HOD, every set can be wellordered. 2

Note something interesting in the last argument above: It does not show
that HOD carries a HOD-de�nable wellorder. Indeed this need not be the
case.

Fact 1. V = HOD i� there is a de�nable wellorder of V (of length Ord,
without loss of generality). For, the above shows that HOD has a V -de�nable
wellorder and conversely, if V has a de�nable wellorder then every set is
de�nable from its position in the wellorder, which is an ordinal. It follows
that to get an example where HOD has no HOD-de�nable wellorder it su�ces
to get an example where the HOD of HOD is smaller than HOD.

Fact 2. Say that a forcing P is forcing-homogeneous i� whenever G is P-
generic and p is a condition in P there is another P-generic Gp such that
V [G] = V [Gp] and p belongs to Gp. If this is the case then the HOD of V [G]
is contained in the V for each P-generic G.

Proof of Fact 2. If x is an OD set of ordinals in V [G] then choose a formula
ϕ with ordinal parameters such that α belongs to x i� V [G] � ϕ(α). But by
forcing-homogeneity this is equivalent to saying that p 
 ϕ(α) for all p ∈ P,
and therefore x belongs to V . 2

Proposition 3 The HOD of HOD can be smaller than HOD.

Proof. Add a Cohen real x to L. Then pull a MacAloon: Kill GCH at ωn i� n
belongs to x. The HOD of the resulting model L[x,G] contains x but is also
contained in L[x] by forcing-homgeneity. So the HOD of L[x,G] is L[x]. But
the HOD of L[x] is L, again by forcing-homogeneity. 2

Another way in which HOD is inferior to L is with regard to cardinal
exponentiation.

Proposition 4 Consistently, CH can fail in HOD.
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Proof. Start with L and add ω2 reals without collapsing cardinals; the result
is a model L[X] where X is a subset of ω2 in which CH fails. Now force
further in the style of MacAloon: For each ordinal α in X force 2ℵα+1 = ℵα+3

by a full-support product. Cardinals are preserved. Now look at the HOD of
the resulting model L[X][G]: As X can be read o� from the GCH pattern it
belongs to the HOD of L[X][G] and therefore CH fails in it. 2

So HOD loses the beauty contest when competing with L. But the at-
traction of HOD is that it is �close to V � in ways in which L might not
be

Here are four ways in which HOD could be �close� to V :

Genericity: V is a generic extension of HOD.

Weak Covering: For arbitrarily large cardinals α, α+ = (α+ of HOD).

Rigidity: There is no nontrivial elementary embedding from HOD to HOD.

Large Cardinal Witnessing: Any large cardinal property witnessed in V is
witnessed in HOD.

We begin with Genericity.

Genericity

A striking result of Vopenka is the following:

Theorem 5 (Vopenka) Any set of ordinals is set-generic over HOD.

Proof. Suppose that X is a subset of κ.

Consider formulas ϕ = ϕ(v) of the form �Vα � ψ(v)� where κ < α, ψ
has ordinal parameters less than α and v is a free variable. We interpret
ϕ as Sϕ = {x ⊆ κ | ϕ(x) is true}. Order these formulas by ϕ ≤ ψ i�
Sϕ ⊆ Sψ. The induced equivalence relation has only set-many (indeed 22κ-
many) equivalence classes. So we can thin out our partial order to a set-sized
partial order P in HOD. Discard the equivalence class of the formulas ϕ for
which Sϕ is empty.

3



Now to our given X ⊆ κ associate GX = {ϕ ∈ P | ϕ(X) is true}. This is
a compatible, upwards-closed subclass of P . But in fact GX is P-generic over
HOD because if A is a maximal antichain on P in HOD then the union of
the Sϕ, ϕ ∈ A must be all of P(κ) (else the complement of this union would
produce a formula incompatible with every formula in A). Clearly X belongs
to L[GX ] ⊆ HOD[GX ] as α belongs to X i� the formula Vκ+1 � α ∈ v belongs
to GX . 2

The Vopenka result is local : it talks only about sets of ordinals. It is
natural to look for a global result, stating that the entire universe V is generic
over HOD. The Stable Core was invented to accomplish this.

3.Vorlesung

Let C denotes the closed unbounded class of all in�nite cardinals β such
that H(α) has size less than β whenever α is an in�nite cardinal less than
β. (The limit cardinals in C are exactly the strong limit cardinals and under
GCH, C consists of all in�nite cardinals.) For a �nite n > 0, α is n-Admissible
i� α is a limit point of C and (H(α), H � α) satis�es Σn replacement, where
H � α is (H(β) | β < α). For α < β limit points of C, α is n-Stable in β i�
(H(α), H � α) is Σn elementary in (H(β), H � β).

Then the Stability predicate S consists of all triples (α, β, n) such that α
is n-Stable in β and β is n-Admissible.

Theorem 6 V is generic over (L[S], S) for an (L[S], S)-de�nable forcing.
The same is true with (L[S], S) replaced by (M [S], S) for any de�nable inner
model M .

The proof of Theorem 7 comes in two parts. First we show that V can be
written as L[F ] where F is a function from the ordinals to 2 which �preserves�
the Stability predicate S, in the sense that for (α, β, n) in S, α is n-Stable in
β relative to F . Then we use this function to prove the genericity of V over
M [S] for any de�nable inner model M .

I'll start with the second part, which is easier.

V is generic over the Stability predicate

4



Now �x a function F : Ord → 2 which codes V and �preserves� the
Stability predicate, i.e.

1. V = L[F ], (V, F ) satis�es replacement with a predicate for F .
2. If 0 < n < ω, α is n-Stable in β and β is n-Admissible, then α is n-Stable
in β relative to F .

We devise a forcing Q de�nable over (L[S], S) such that for some Q-
generic G, V = L[S,G] = L[G] and G is de�nable over (V, F ).

The language L is de�ned inductively as follows, where Ḟ is a unary
function symbol.

1. For each ordinal α, �Ḟ (α) = 0� and �Ḟ (α) = 1� are sentences of L.
2. If Φ is a set of sentences of L and Φ belongs to L[S], then

∧
Φ and

∨
Φ

are sentences of L.

A sentence ϕ of L is valid i� it is true when the symbol Ḟ is replaced by
any function that belongs to a set-generic extension of L[S]. This notion is
L[S]-de�nable and moreover if ϕ is a sentence of L[S] and M is any outer
model of L[S], then ϕ is valid in L[S] i� it is valid in M1.

Now let T consist of all sentences of L of the form∧
(Φ ∩H(α))→

∧
(Φ ∩H(β)),

where for some α < β and 1 < n < ω we have:

(a) Φ is Σn de�nable over H(β) ∩ L[S] using parameters from H(α) ∩ L[S].
(b) α is n-Stable in β (in V ) and β is n-Admissible (in V ).

Note that (a) implies that Φ is Σn de�nable over (H(β), H � β) (using pa-
rameters from the H(α) of V ). It follows that the sentences in T are true

1Indeed, if there is a function witnessing the non-validity of ϕ in a set-generic extension

of M then we may assume that this generic extension is M [G] where G is generic for a

Lévy collapse making ϕ countable; then L[S][G] also has a witness to the non-validity of

ϕ, by Lévy absoluteness. Conversely, if the non-validity of ϕ is witnessed in a set-generic

extension of L[S] then this will happen in L[S][G] where G is Lévy collapse generic over

L[S]. Choose a condition in the Lévy collapse forcing this and H containing this condition

which is Lévy collapse generic over M ; then the non-validity of ϕ is witnessed in M [H], a
set-generic extension of M .
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when Ḟ is interpreted as F . Also note that T is (L[S], S) de�nable, as (b) is
expressed by the Stability predicate S.

4.-5.Vorlesungen

Theorem 7 V is generic over (L[S], S) for an (L[S], S)-de�nable forcing.
The same is true with (L[S], S) replaced by (M [S], S) for any de�nable inner
model M .

The desired forcing Q consists of all sentences ϕ of L which are consistent
with T , in the sense that for no subset T0 of T is the sentence

∧
T0 →∼ ϕ

valid. The sentences in Q are ordered by: ϕ ≤ ψ i� T implies ϕ→ ψ.

Lemma 8 Q has the Ord-chain condition, i.e., any (L[S], S)-de�nable max-
imal antichain in Q is a set.

Proof. Suppose that A is an (L[S], S)-de�nable maximal antichain and con-
sider Φ = {∼ ϕ | ϕ ∈ A}. Then Φ is also (L[S], S)-de�nable. Choose n so
that Φ is Σn-de�nable over (L[S], S) and choose α to be n-Stable in Ord and
large enough so that H(α) ∩ L[S] contains the parameters in the de�nition
of Φ. Then T together with Φ∩H(α) implies Φ∩H(β) for all β greater than
α which are n-Stable in Ord and since there are arbitrarily large such β and
such β are n-Admissible, T together with Φ∩H(α) implies all of Φ. It follows
that A equals A∩H(α): Otherwise let ϕ belong to A\H(α). As ∼ ϕ belongs
to Φ it is implied by T together with Φ ∩H(α). But as A is an antichain, T
together with ϕ implies Φ ∩ H(α) and therefore T together with ϕ implies
∼ ϕ, contradicting the fact that ϕ belongs to Q. 2

Now it is easy to see that V = L[F ] = L[G] where G is Q-generic over
(L[S], S): Let G consist of all sentences in Q which are true when Ḟ is
interpreted as F . It is obvious that G intersects all maximal antichains of
Q which are sets in L[S], as if the set A is an antichain missed by G then∧
{∼ ϕ | ϕ ∈ A} is consistent with T and witnesses the failure of A to be

maximal. By Lemma 8 this gives full genericity over (L[S], S).

The above argument was carried out for the ground model L[S]. But the
same argument can be used for any ground model M [S] provided M is a
de�nable inner model; simply replace n by n− k − 1 in (a) above, where M
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is Σk-de�nable. This completes the second part of the proof of Theorem 7.
I'll now turn to the �rst part.

Forcing a Stability-preserving predicate

Our aim is to force a function F from the ordinals to 2 which codes V
(i.e., V = L[F ]) and which obeys the following.

(∗) Suppose that 0 < n < ω and α is n-Stable in β and β is n-Admissible.
Then α is n-Stable in β relative to F : (H(α), H � α, F � α) is Σn elementary
in (H(β), H � β, F � β).

To this end we de�ne by induction on β ∈ C a collection P (β) of functions
from β to 2.

If β is the least element of C then P (β) consists of all functions p : β → 2.
If β is the C-successor to α ∈ C, then P (β) consists of all functions p : β → 2
such that p � α belongs to P (α).

Suppose now that β is a limit point of C. Let P (< β) denote the union
of the P (α), α ∈ C ∩ β, ordered by extension. Assuming extendibility for
P (< β), i.e. the statement that for α0 < α1 < β in C, each q0 in P (α0) can
be extended to some q1 in P (α1), this forcing adds a generic function which
we denote by ḟ : β → 2. We say that p : β → 2 is n-generic for P (< β)
i� G(p) = {p � α | α ∈ C ∩ β} contains a condition which strongly decides
each Πn(H(β), H � β, ḟ) sentence ϕ = ∀xψ, i.e. meets every dense subset of
P (< β) of the form {q ∈ P (< β) | q 
 ϕ or q �∼ ϕ}, where �q �∼ ϕ� (q
strongly forces ∼ ϕ) means that q forces a counterexample ∼ ψ(x) to ϕ. We
de�ne P (β) to consist of all p : β → 2 which are n-generic for P (< β) for all
n such that β is n-Admissible.

Let P be the union of all of the P (β)'s, ordered by extension.

Lemma 9 Assume Extendibility for P . Suppose that G is P -generic over V
and let F be the union of the functions in G. Then V = L[F ] and (∗) holds
for F . Moreover, V satis�es replacement with F as an additional predicate.

Proof. Extendibility implies that it is dense to code any set of ordinals into
the P -generic function F , from which it follows that V is contained in L[F ].
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As F � α belongs to V for each α ∈ C it also follows that L[F ] is contained
in V and therefore L[F ] equals V .

Suppose that 0 < n < ω, α is n-Stable in β and β is n-Admissible.
The relation q 
 ϕ for q in P (< β) and Π1(H(β), H � β, ḟ) sentences ϕ
with parameters from H(β) is Π1 over (H(β), H � β): q 
 ϕ i� for all
r ≤ q and γ ∈ C with γ ≤ Dom (r) and H(γ) containing the parameters
in ϕ, (H(γ), H � γ, r) � ϕ. It then follows by induction on n ≥ 1 that the
relation q 
 ϕ for q in P (< β) and Πn(H(β), H � β, ḟ) sentences ϕ with
parameters from H(β) is Πn over (H(β), H � β) (and the same for α). As
F � α is n-generic for P (< α), it follows that any true Πn(H(α), H � α, F � α)
sentence ϕ with parameters from H(α) is forced by some condition F � α0,
α0 ∈ C ∩ α. But then as α is n-Stable in β, F � α0 also forces �ϕ holds in
(H(β), H � β, ḟ � β)�; by the n-genericity of F � β (which holds due to the
n-Admissibility of β), it follows that ϕ holds in (H(β), H � β, ḟ � β) when
ḟ � β is interpreted as the real F � β. Thus we have proved that α is n-Stable
in β relative to F .

To verify replacement relative to F , we need only observe that the above
implies that for each n, if α is n-Stable in Ord (i.e., (H(α), H � α) is Σn

elementary in (V,H)) then it remains so relative to F . 2

We now turn to extendibility for P .

Lemma 10 Suppose that α < β belong to C and p belongs to P (α). Then p
has an extension q in P (β).

Proof. By induction on β. The statement is immediate by induction if β is
not a limit point of C.

Suppose that β is a limit point of C but is not 1-Admissible. Then there
is a closed unbounded subset D of C ∩ β of ordertype less than β whose
intersection with each of its limit points γ < β is ∆1 de�nable over (H(γ), H �
γ). We can assume that both α and the ordertype of D are less than the
minimum of D. Now enumerate D as β0 < β1 < · · · and using the induction
hypothesis, successively extend p to q0 ⊆ q1 ⊆ · · · with qi in P (βi), taking
unions at limits. Note that for limit i, qi is indeed a condition because βi is
not 1-Admissible. The union of the qi's is the desired extension of p in P (β).
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Next suppose that β is n-Admissible but not n + 1-Admissible for some
�nite n > 0:

If β is a limit of n-Stables (i.e., the set of α < β which are n-Stable
in β is co�nal in β), then proceed as in the previous paragraph: Choose a
closed unbounded subset D of C ∩ β of ordertype less than β consisting of
n-Stables in β, whose intersection with each of its limit points γ < β is ∆n+1

de�nable over (H(γ), H � γ). Assume that both α and the ordertype of D
are less than the minimum of D, enumerate D as β0 < β1 < · · · and using
the induction hypothesis, successively extend p to q0 ⊆ q1 ⊆ · · · with qi in
P (βi), taking unions at limits. For limit i, qi is indeed a condition because
βi is not n+ 1-Admissible and as it is a limit of n-Stables, qi is n-generic for
P (< βi). The union of the qi's is the desired extension of p in P (β).

If β is not a limit of n-Stables then β must have co�nality ω (else by
n-Admissibility, we could �nd co�nally many n-Stables in β using the fact
that β has uncountable co�nality). It su�ces to show that any condition q
in P (< β) can be extended to strongly decide each of fewer than β-many
Πn sentences with parameters from H(β) (given this, we can extend p in ω
steps to a condition in P (β) which is n-generic). To show this, let (ϕi | i < δ)
enumerate the given collection of Πn sentences and if n > 1, let D consist of
all γ which are limits of (n− 1)-Stables in β and large enough so that H(γ)
contains both q and this enumeration. (If n = 1 then let D consist of all γ
which are limit points of C and large enough so that H(γ) contains both q
and this enumeration.) Now extend q successively to elements qi of P (γi),
where γi+1 ≥ γi is the least element of D so that either qi forces ϕi or qi+1

strongly forces ψi = the negation of ϕi (i.e. with corresponding witness to
the Σn sentence ψi), taking unions at limits. For limit i, qi is a condition as
γi is not n-Admissible but (in case n > 1) is a limit of (n− 1)-Stables. (The
failure of γi to be n-Admissible uses the fact that the set of j < i such that
qj+1 forces the negation of ϕj can be treated as a parameter in H(γi).) As β is
n-Admissible, this construction results in a sequence of qi's of length δ, whose
union it the desired extension of q deciding all of the given Πn sentences.

Finally, suppose that β is n-Admissible for every �nite n. Choose C to
be closed unbounded in β so that any γ < β which is a limit point of C
is a limit of n-Stables for every n. (Note that we may choose C to be any
co�nal ω-sequence if β has co�nality ω.) Assume that α is less than the least
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element of C and enumerate C as β0 < β1 < · · ·. Then successively extend p
to q0 ⊆ q1 ⊆ · · · with qi in P (βi), taking unions at limits, and note that for
limit i, qi is a condition because its n-genericity follows from the fact that βi
is a limit of n-Stables. The union of the qi's is the desired q. 2

This completes the proof of Theorem 7.

Remark. Instead of considering just Πn sentences but more generally Σ0Πn

sentences, i.e. sentences of the form ∃x ∈ x0ϕ where ϕ is Πn, with a corre-
spondingly stronger notion of n-generic, one can in fact further require that
F preserve all n-Admissibles. This stronger notion of n-genericity requires
that for n-Admissible β and Σ0Πn sentences of the above form, one meets
all dense sets of the form {p ∈ P (< β) | p 
 ϕ(x) for some x ∈ x0 or
p 
 ∀x ∈ x0(H(α), H � α, ḟ) �∼ ϕ(x) for some α which is (n− 1)-Stable in
β}. This is enough to ensure the preservation of n-Admissibility. And in the
problematic case where β is n-admissible but not the limit of n-Stables, one
can indeed build n-generic conditions in this stronger sense by maximising
those x ∈ xi for which ∼ ϕi(x) holds for each of a given set of Σ0Πn sen-
tences ∃x ∈ xiϕi, in the sense that in chosen wellorders <i of the xi's, those
x's include an initial segment of <i which is as long as possible.

The resulting F will then preserve not only instances of n-Stability but
also the entire Stability Predicate S.

In general the inner model L[S] may be strictly smaller than HOD: Using
Jensen coding methods one can produce a real R that is not set-generic
over L such that the Stability Predicate of L[R] is the same as the Stability
Predicate of L. By Vopenka's Theorem, the Stable Core of L[R] is a proper
inner model of HOD. Also note that the Stable Core is more absolute than
HOD, as no forcing of size less than iω will a�ect the Stability Predicate.

In fact the entire V is generic over HOD. To explain this I need to intro-
duce the Stability Predicate.

Let SL denote the class of strong limit cardinals

α in SL is n-Admissible if (H(α), SL ∩ α) satis�es Σn Replacement

For α < β in SL, α is n-Stable in β if (H(α), SL∩ α) is Σn-elementary in
(H(β), SL ∩ β)
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The Stability Predicate S consists of all triples (α, β, n) where α is n-stable
in β and β is n-Admissible.

The Stability Predicate S is de�nable and therefore (HOD, S) is a model
of ZFC.

Theorem 11 V is generic over (HOD, S).

The forcing used to prove this is de�nable over (HOD, S).
I strongly doubt that S is HOD-de�nable in general or even that V must be
generic over HOD for a HOD-de�nable forcing.

Actually V is generic over the inner model (L[S], S) called the Stable Core
which can be strictly smaller than HOD.
The Stable Core is a very useful tool for understanding HOD.

One of the milestones of core model theory is:

Weak Covering at Singulars: If α is a singular cardinal then α+ = (α+ of
�the core model�)

Does one have Weak Covering for HOD? Unfortunately:

Theorem 12 (Cummings, me, Golshani) It is consistent that α+ > (α+ of
HOD) for every in�nite cardinal α.

But there may be more to the story.

If we want to have a supercompact cardinal κ as well then the best we can
get is α+ > (α+ of HOD) for a club of α < κ. And Woodin has conjectured
that one cannot improve this to all α < κ.

An easy Corollary of the genericity of V over the Stable Core S = (L[S], S)
is the following.

Proposition 13 There is no nontrivial V -de�nable elementary embedding
from S to itself.
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Proof. Let V be generic over S via the de�nable forcing P. Then �x a
formula ϕ that (with parameters) de�nes in V a nontrivial embedding from
S to itself, and let α be the least ordinal which some condition in P forces to
be the critical point of such an embedding. But the ordinal α is S-de�nable
and therefore cannot be the critical point of any embedding from S to itself,
contradiction. 2

It follows that also (HOD, S) is rigid for V -de�nable embeddings.

But what about embeddings which are not V -de�nable?
The previous proof took advantage of the fact that the embeddings were just
as de�nable as they were elementary.

The Enriched Stable Core

I won't bore you with the de�nition, but there is a richer form S∗ of the
Stability Predicate S which is also �rst-order de�nable and can be used to
get a better rigidity result.

For simplicity, work in Morse-Kelley and note that this theory is strong
enough to build an �L-hierarchy� over V and therefore a notion of V -constructible
class.

Theorem 14 The Enriched Stable Core (L[S∗], S∗) is rigid for V -constructible
embeddings and therefore so is (HOD, S∗).

But it is still unknown whether HOD without the predicate S∗ is rigid
with respect to V -constructible embeddings.
The long-standing open conjecture is that HOD is in fact rigid for arbitrary
embeddings.

Here the news is pretty bad.

Theorem 15 (Cheng, me and Hamkins) It is consistent that there are su-
percompacts but none in HOD. One can even add to this that no supercompact
is weakly compact in HOD.
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But this doesn't quite end the story:

1. Maybe if there are very large cardinals like extendibles then there must
be supercompacts in HOD. In other words it could be that HOD does witness
large cardinal properties, but with a certain loss of strength.

2. Maybe the Stable Core does a better job of Large Cardinal Witnessing.
If so, then the Stable Core is a better choice of �canonical� inner model than
HOD.

We looked at four ways that HOD could be �close� to V (of course they
all hold if V = HOD!):

Genericity: V is a generic extension of HOD
Holds with HOD replaced by (HOD, S); open otherwise.

Weak Covering: For arbitrarily large cardinals α,
α+ = (α+ of HOD)
Fails but maybe holds if there are supercompacts.

Rigidity: There is no nontrivial elementary embedding from HOD to HOD
Holds with HOD replaced by (HOD, S∗) for V -constructible embeddings,
open otherwise.

Large Cardinal Witnessing: Any large cardinal property witnessed in V
is witnessed in HOD
Fails, but maybe holds allowing a drop in strength from V to HOD.

HOD is better than L because it is closer to V .

But L satis�es GCH!

Perhaps the biggest challenge is to get models that have the advantages
of both:

HUGE Open Problem: Is there an inner model that satis�es any of
Genericity, Weak Covering, Rigidity, or Large Cardinal Witnessing and also
satis�es GCH?

If you can do that then you can have my job.
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The End
Gödel's universe HOD of hereditarily ordinal de�nable sets is of central

interest in set theory. Like L it provides a de�nable inner model which satis�es
AC, but unlike L it is in some ways �close to V �. The property of an inner
model M being �close to V � can be described in a number of ways:

Genericity: V is a generic extension of M
Weak Covering: For arbitrarily large cardinals α, α+ = (α+ of M)
Rigidity: There is no nontrivial elementary embedding from M to M
Large Cardinal Witnessing: Any large cardinal property witnessed in V is
witnessed in M

To what extent do these properties hold when M equals HOD? A new
inner model called the Stable Core is a useful tool for studying this question.
The Stability Predicate S consists of those triples (n, α, β) where Vα is ele-
mentary in Vβ for Σn formulas. (The actual de�nition is only slightly di�erent
than this; one uses H(α) instead of Vα and restricts to �nice� α's; see my BSL
paper on the Stable Core.) In this case we say that �α is n-Stable in β�. The
Stable Core is the model (L[S], S) where S is the Stability Predicate.

Regarding Genericity we have:

Theorem. V is generic over the Stable Core (L[S], S) for a class-forcing which
is de�nable over the Stable Core. The same holds with the Stable Core re-
placed by (HOD, S).

This �ts nicely with a theorem of Vopenka which states that each set is
set-generic over HOD. We therefore have that V is locally class-generic over
(HOD, S) in the sense that it is class-generic with every set being set-generic.
(Vopenka's theorem does not apply to the Stable Core, as is shown in my
BSL paper.)

Questions 1. Must S be de�nable over HOD? Must V be generic over HOD
for a HOD-de�nable forcing?

I conjecture that the answer to both of these questions is �no�.

What about Weak Covering for HOD? The �rst result is negative:
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Theorem. (Cummings, SDF, Golshani) It is consistent that α+ is greater than
α+ of HOD for all cardinals α.

But there may be more to the story. If we want to have a supercompact
cardinal κ as well then the best we can get is α+ > (α+ of HOD) for a club
of α < κ and not for all α < κ.

Question 2. Suppose that there is a supercompact cardinal. Must there be a
cardinal α < κ such that α+ equals (α+ of HOD)?

I turn now to Rigidity. Using the above result about genericity over the
Stable Core one easily derives the following

Corollary: (HOD, S) is rigid for V -de�nable embeddings (i.e. no elementary
j : (HOD, S)→ (HOD, S) is V -de�nable other than the identity).

To do better we need the Enriched Stable Core. This is de�ned using
the Enriched Stability Predicate S∗; for the details look at my paper on the
Enriched Stable Core.

Work now in Morse-Kelley, a theory strong enough to build an �L-hierarchy�
over V and therefore a notion of V -constructible class.

Theorem. The Enriched Stable Core (L[S∗], S∗) is rigid for V -constructible
embeddings and therefore so is (HOD, S∗).

Although this is good progress, the following remains open:

Question 3. Is HOD (with no predicate) rigid for V -constructible embed-
dings? Is HOD rigid for arbitrary embeddings?

The popular belief is that the answer to these long-standing open ques-
tions is �yes�.

With regard to Large Cardinal Witnessing, the initial results are negative:

Theorem 16 (Cheng, SDF, Hamkins) It is consistent that there are super-
compacts but none in HOD. One can add to this that no supercompact is even
weakly compact in HOD.
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But again this doesn't quite end the story:

Question 4. Does the existence of a very large cardinal, like an extendible
cardinal, imply that there are supercompacts in HOD?

In other words it could be that HOD does witness large cardinal proper-
ties, but with a certain loss of strength.

It is much harder to �trick� the Stable Core than it is to �trick� HOD
(in the sense of the previous Theorem). The reason is that it is much easier
to make sets ordinal-de�nable than it is to code them into the Stability
Predicate. In fact this suggests that all of our properties (other than Weak
Covering) should also be considered for the Stable Core and not just for
HOD, as the Stable Core may exhibit better properties than HOD.

Questions 5. Is V generic over the �pure� Stable Core L[S] without the pred-
icate S? Is the Stable Core (or its Enriched version) rigid for arbitrary em-
beddings? If there is a supercompact must there be one in the Stable Core
(without further large cardinal assumptions)?

The deepest question about the Stable Core is also the most exciting: Is it
possible to produce a version of it which obeys the GCH? Core model theory
is able to do this up to the level of Woodin cardinals; what can be done at
the level of supercompacts?

Question 6. Is there a de�nable inner model (perhaps a variant of the Stable
Core) which satis�es GCH and over which V is generic? More generally, is
there a de�nable inner modelM with the GCH for which one has Genericity,
Weak Covering, Rigidity or Large Cardinal Witnessing?

The above is perhaps the simplest version of the inner model problem.

Returning brie�y to criteria in the Hyperuniverse Programme, we remark
that HOD and the Stable Core can be naturally introduced into the study of
maximality. Indeed, the violation of V = L that results from maximality can
be interpreted as saying that �not every set is predicatively-de�nable from
ordinals�. Similarly a violation of the axiom V = HOD could be expressed
by �not every set is de�nable from ordinals�. In light of Vopenka's work and
my work on the Stable Core, we must accept that every set is set-generic
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over HOD and the universe is class-generic over the Stable Core. Therefore
maximality criteria which imply that V is not generic over the Stable Core
or that some sets are not set-generic over HOD are inconsistent. But it is
consistent to assert that the entire universe V is not set-generic over the
Stable Core and that there are sets which are not set-generic over the Stable
Core and there may be maximality criteria which imply these statements.
Further investigation of the Stability predicate will enable us to formulate
such criteria and facilitate their synthesis with other desirable criteria of
maximality.

6.-7.Vorlesungen

Rigidity and the Enriched Stable Core

As V is generic over the Stable Core SC = (L[S], S) (where S is the
Stability predicate) for a de�nable forcing whose de�nable antichains are
sets, we obtain as a consequence:

Corollary 17 Any V -de�nable club contains an SC-de�nable club. And SC
is rigid for V -de�nable embeddings, i.e., there is no V -de�nable elementary
embedding of SC to itself other than the identity.

Proof: The statement about clubs follows immediately from the fact that V
is generic over SC for a de�nable forcing whose de�nable antichains are sets.

We give two proofs of rigidity for V -de�nable embeddings, as both are
useful for generalisations.

First proof.

Suppose that V is P-generic over SC for the SC-de�nable forcing P and
that there were an elementary (equivalently Σ1-elementary) embedding of
SC to itself which is Σn-de�nable over V . Let κ be the least ordinal which
is forced to be the critical point of such a Σn-de�nable embedding by some
condition in P. Then κ is SC-de�nable and therefore cannot be moved by
any elementary embedding from SC to itself, contradiction.

Second proof.
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We �rst claim that there is an SC-de�nable ♦ sequence for SC that con-
centrates on ordinals of co�nality ω and guesses SC-de�nable classes on SC-
de�nably stationary classes. More precisely, there is an SC-de�nable sequence
(Xα | α of SC-co�nality ω) such that Xα ⊆ α for each α and whenever X is
an SC-de�nable class of ordinals and C is an SC-de�nable club there is α in
C such that X ∩ α = Xα. To see this, de�ne Xα inductively as follows: Let
n be least so that some pair (Xα, Cα) is Σn-de�nable over (Lα[S], S ∩Lα[S])
and such that Xα ⊆ α, Cα is club in α and Xα ∩ ᾱ 6= Xᾱ for all ᾱ ∈ Cα. If α
does not have SC-co�nality ω or if there is no such pair then we set Xα = ∅;
otherwise we let (Xα, Cα) be the least such pair (where Σn sets are ordered
by the formulas which de�ne them and for a �xed formula by the parameters
used). We claim that the sequence (Xα | α of SC-co�nality ω) is as desired. If
not, let n be least so that some X ⊆ Ord which is Σn-de�nable over SC is not
guessed correctly anywhere on some Σn-de�nable club C ⊆ Ord; �x the least
such pair (X,C) and notice that by re�ection there is an α of SC-co�nality
ω such that X ∩ α = Xα, C ∩ α = Cα. But this is a contradiction because α
belongs to C.

Now use the ♦-sequence to produce an SC-de�nable partition (Xi | i ∈
Ord) of the ordinals of SC-co�nality ω into pieces which are SC-de�nably
stationary (i.e. which intersect each SC-de�nable club). Suppose that j :
SC → SC were elementary with critical point κ with j de�nable in V . Now
C = {α | j[α] ⊆ α} is a V -de�nable club and therefore contains an SC-
de�nable club; it follows that there is an ordinal α of SC-co�nality ω in
j((Xi | i ∈ Ord))κ such that j[α] ⊆ α and therefore j(α) = α. But then as
j(α) belongs to j((Xi | i ∈ Ord))i for some i < j(κ) it follows that α belongs
to Xi for some i < κ and therefore j(α) = α belongs to j((Xi | i ∈ Ord))i
for some i < κ; this contradicts the fact that j((Xi | i ∈ Ord)) is a partition
into disjoint pieces. 2

But what about embeddings that are not V -de�nable?

From now on we work in class theory, whose models look like (V, C) where
V consists of the sets and C consists of the classes. A reformulation of the
previous Corollary is:

Corollary 18 Suppose that (V, C) is the least model of Gödel-Bernays built
over V (i.e., C consists only of the V -de�nable classes). Also let (L[S], CS) be
the least model of Gödel-Bernays built over L[S] which has S as a class (i.e.
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CS consists only of the SC-de�nable classes). Then any club in C contains a
club in CS and SC is rigid for embeddings in C.

To obtain rigidity of the Stable Core in larger models of class theory we
put more information into the Stability Predicate.

The Enriched Stable Core

We de�ne the enriched stability predicate S∗ as follows. For β in C,
i < β+ of L(H(β)) and 0 < n < ω we say that β is (i, n)-Admissible i�
β is a limit point of C and β is Σn(Li(H(β)), H�β)-regular. If α < β are
both limit points of C, i < β+ of L(H(β)) and 0 < n then we say that α

is (i, n)-Stable in β i� H
(β,i)
n (α) ∩H(β) = H(α), where H

(β,i)
n (α) is the least

H ≺Σn (Li(H(β)), H�β) containing α as a subset.

Note that α is (0, n)-Stable in β (β is (0, n)-Admissible) i� α is n-Stable
in β (β is n-Admissible) via the earlier de�nition. We set:

S∗ = {(α, β, i, n) | α is (i, n)-stable in β and β is (i, n)-Admissible}.

SC∗ = (L[S∗], S∗), the Enriched Stable Core.

Our aim now is to show that the Enriched Stable Core is rigid for embed-
dings which are V -constructible and not necessarily V -de�nable. This notion
can be de�ned in a weak theory like Gödel-Bernays, but for simplicity I'll just
discuss it here in the context of set-sized β-models of Morse-Kelley. Recall
that a model (V, C) of Gödel-Bernays is a model of Morse-Kelley if it satis�es
class-comprehension for formulas which quantify over classes. It is a β-model
of Morse-Kelley if in addition any linear order in C which is wellfounded in
(V, C) is truly wellfounded (in the ambient universe in which (V, C) exists as
a set-sized structure).

De�nition 19 Let (V, C) be a β-model of Morse-Kelley. A class in C is V -
constructible (in (V, C)) if it belongs to Lα(V ) for some ordinal α which is
the ordertype of a wellorder in C.

Remark. In a paper with Carolin Antos we observed that if (V, C) is a β-model
of Morse-Kelley which in addition satis�es Class Bounding (∀x∃Y ϕ(x, Y )→
∃Y ∀xϕ(x, (Y )x)) then C consists of the subsets of V in a transitive model
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M+ of ZFC− (= ZFC without powerset but still with Σn bounding for every
n). Then the V -constructible classes are just those which belong to the L of
M+.

Lemma 20 (Main Lemma) Assume that (V, C) is a β-model of Morse-Kelley
in which every class is V -constructible. Then there is an SC∗-de�nable class
forcing P∗ which adds a function from Ord to 2 such that for P∗-generic
F ∗ : Ord → 2, (V [F ∗], C[F ∗])2 is a model of Morse-Kelley minus Power,
V is a de�nable inner model of (L[F ∗], F ∗) and F ∗ preserves3 the enriched
stability predicate S∗.

Before proving the Main Lemma we describe its implications for the rigid-
ity of HOD.

Theorem 21 In a β-model (V, C) of Morse-Kelley let C∗ consist of the (L[S∗], S∗)-
constructible classes, where S∗ is the enriched stability predicate. Then (L[S∗], C∗)
has an outer model (L[F ∗], C∗[F ∗]) of Morse-Kelley minus Power which is
generic over (L[S∗], C∗) for an SC∗-de�nable forcing which is ∞-cc (i.e.
whose antichains in C∗ are sets) such that V is a de�nable inner model of
(L[F ∗], F ∗). Moreover SC∗ is rigid in C∗[F ∗].

Corollary 22 In any β-model (V, C) of Morse-Kelley, any V -constructible
club contains an (L[S∗], S∗)-constructible club and SC∗ = (L[S∗], S∗) is rigid
for V -constructible embeddings. It follows that also (HOD, S∗) is rigid for
V -constructible embeddings.

Proof of Corollary 22 from Theorem 21. It su�ces to show that any V -
constructible class belongs to the C∗[F ∗] of Theorem 21. Any such class be-
longs to a model AV of KP+ �every set is constructible from V � which is an
end-extension of V . Then AV has an inner model AL[S∗] with the same prop-
erties, replacing V by L[S∗]. As V is a de�nable inner model of (L[F ∗], F ∗)
it follows that AV is contained in AL[S∗][F

∗]. But any class in AL[S∗] is L[S∗]-
constructible and so the classes of AL[S∗][F

∗] belong to C∗[F ∗]. 2
2C[F ∗] consists of those classes which are de�nable in (V [F ∗], X, F ∗) for some X ∈ C.
3I.e. for any α < β, i < β+ of L(H(β)) and 0 < n, if α is (i, n)-Stable in β and β is

(i, n)-Admissible then α is (i, n)-Stable in β and β is (i, n)-Admissible relative to F ∗. But

as Power Set fails it is important to distinguish between H(β)[F ∗] and H(β)L[F∗]; indeed

the latter may fail to exist.
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Proof of Theorem 21 from the Main Lemma. For the �rst conclusion of the
theorem of course we take F ∗ to be as in the Main Lemma and need to de�ne
an ∞-cc SC∗-de�nable forcing Q∗ for which F ∗ is generic. In analogy to the
case of the (unenriched) Stable Core we build the forcing Q∗ out of quanti�er-
free in�nitary sentences which belong to L[S∗]. Such sentences are obtained
by closing the atomic sentences �Ḟ (α) = 0�, �Ḟ (α) = 1� under in�nitary
conjunctions and disjunctions in L[S∗]. We let L∗ denote the collection of such
sentences which are consistent, i.e., which are true for some interpretation of
Ḟ in a set-generic extension of L[S∗]; this notion of consistency is de�nable
in L[S∗].

Now we introduce a certain theory T ∗, consisting of sentences of L∗. For
each α < β, i < β+ of L(H(β)) and n > 0 such that α is (i, n)-Stable
in β and β is (i, n)-Admissible, and each set Φ of sentences of L∗ ∩ H(β)
which is Σn-de�nable over (Li(H(β)L[S∗], H�β) with parameters β, p with p
in H(α)L[S∗], we put the sentence∧

(Φ ∩H(α))→
∧

Φ

into T . The forcing Q∗ consists of all sentences ϕ of L∗ which are consistent
with T (i.e.

∧
(T0∪{ϕ}) is consistent for each T0 ⊆ T , T0 ∈ L[S∗]). We order

Q∗ by ϕ ≤ ψ i� ϕ∧ ∼ ψ is not consistent with T .

The sentences in T are all true when Ḟ is interpreted as F ∗, thanks to
the fact that F ∗ preserves instances of (i, n)-Stability.

Fact 1. The forcing Q∗ is ∞-cc in C∗.

Proof of Fact 1. LetA be a maximal antichain onQ∗ which is L[S∗]-constructible
and choose a wellorder <, club D, parameter p and n > 0 that witness the
L[S∗]-constructibility of A. Let α be the least element of D; we claim that
A = A ∩ H(α) and therefore A is a set in L[S∗]. Indeed, for any β in D,
the axioms of T yield

∧
(A ∩H(α)) →

∧
(A ∩H(β)) by virtue of the (i, n)-

Stability of α in β where i = ot (<� β). As A is an antichain, A∩H(α) must
equal all of A for each β in D and as D is unbounded, A ∩H(α) equals all
of A. 2 (Fact 1 )

Let G∗ consist of all sentences of L∗ which are true when Ḟ is interpreted
as F ∗. Clearly G∗ intersects each maximal antichain A of Q∗ which is a set
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in L[S∗] as otherwise
∧
ϕ∈A ∼ ϕ would be a sentence consistent with T (and

therefore in L∗) violating the pmaximality of A. But by Fact 1, all antichains
of Q∗ in C∗ are sets in L[S∗] and so G∗ is fully Q∗-generic over (L[S∗], C∗).
This establishes the �rst conclusion of the theorem.

For the second conclusion we give two proofs. The �rst is simpler, but
appears to need Morse-Kelley in (V, C) as the background theory.

First proof.

Suppose that j : SC∗ → SC∗ is not the identity and j belongs to C∗[F ∗].
Assuming Morse-Kelley in (V, C) (and therefore Morse-Kelley minus Power
in (L[F ∗], C∗[F ∗])), we show that j can be extended to j∗ : (L[S∗], C∗) →
(L[S∗], C∗). Indeed, for each ordinal α, each class X ∈ C∗ which codes a
sequence of classes (Xi | i ∈ Ord) and each i ∈ Ord let H(α,X, i) consist of
all elements of the structure (L[S∗], {Xi | i ∈ Ord}) which are de�nable with
parameters from α ∪ {i}. We write (β, Y, j) > (α,X, i) i� β > α, X = Yk
for some k and i < β; this implies that H(β, Y, j) contains H(α,X, i) as a
substructure. The structures H(α,X, i) ordered by < form a direct system
which is isomorphic to a direct system whose elements and maps belong to
L[S∗]. We can apply j to this system Π to obtain a system j(Π) whose limit
is isomorphic to (L[S∗], C∗), using the fact that C∗ consists only of the SC∗-
constructible classes. This yields an elementary embedding j∗ : (L[S∗], C∗)→
(L[S∗], C∗) as desired.

But now we can proceed as in the �rst proof of Corollary 17: The embed-
ding j∗ is de�nable over (L[F ∗], C∗[F ∗]) and therefore generic over (L[S∗], C∗)
for an ∞-cc de�nable forcing. The least ordinal forced by some condition
in this forcing to be the critical point of such an embedding is (L[S∗], C∗)-
de�nable and therefore cannot be moved by such an embedding, a contradic-
tion.

Second proof.

We only assume that (V, C) models Gödel-Bernays, and need two facts.

Fact 2. There is an L[S∗]-de�nable ♦-sequence (Sα | α ∈ Ord) for (L[S∗], C∗)
which concentrates on strong limit cardinals of co�nality ω of L[S∗]; i.e., if
X belongs to C∗ and D is a club in C∗ then there is a strong limit cardinal α
of co�nality ω of L[S∗] such that X ∩ α = Sα.
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Proof of Fact 2. Let Sα be empty if α is not a limit point of C which in
addition is a strong limit cardinal of co�nality ω of L[S∗]. Otherwise, assum-
ing that Sβ is de�ned for β < α we take (Sα, Cα) to be the least pair in
L(H(α)L[S∗]) such that Cα is closed unbounded in α and Sα ∩ ᾱ 6= Sᾱ for ᾱ
in Cα, if it exists, (∅, ∅) otherwise. (Note that even though α has co�nality
ω, we can still talk about closed unbounded subsets of α, which indeed may
appear at a level of L(H(α)L[S∗]) before it is recognised that α is singular.)
Suppose that the resulting sequence is not the desired ♦-sequence and let
(S,D) in C∗ be a counterexample, i.e., D is a club and for limit points α of
C which are strong limit cardinals of co�nality ω of L[S∗] in D, S ∩ α 6= Sα.
Then for each α in D (which is a limit point of C and a strong limit cardi-
nal of co�nality ω of L[S∗]), the pair (Sα, Cα) was chosen as the least pair
such that Sα ∩ ᾱ 6= Sᾱ for ᾱ in Cα. But this choice of Sα is Σ1-de�nable in
Lot (<�α)(H(α)L[S∗]) for a club E of α's, where <, E belong to C∗ and wit-
ness the L[S∗]-constructibility of (S,D), and by elementarity, Sβ ∩ α = Sα,
Cβ ∩α = Cα for α < β in E. This is a constradiction as we can choose α < β
in E ∩D to be limit points of C which are strong limit cardinals of co�nality
ω of L[S∗], yielding Sβ ∩ α = Sα with α in Cβ. 2 (Fact 2.)

Fact 3. Any club in C∗[F ∗] contains a club in C∗.

Proof of Fact 3. This is because by Fact 1, (L[F ∗], C∗[F ∗]) is an∞-cc generic
extension of (L[S∗], C∗). 2 (Fact 3.)

Now for the rigidity of SC∗ in C∗[F ∗] we argue as before as follows. Using
Fact 2 we can obtain an SC∗-de�nable partition (Tα | α ∈ Ord) of the ordinals
of co�nality ω into pieces which are C∗-stationary, i.e., which intersect any
club in C∗. By Fact 3 any club in C∗[F ∗] contains a club in C∗. But now
there can be no nontrivial elementary embedding j : SC∗ → SC∗ in C∗[F ∗]:
otherwise we can choose α in j((Sα | α ∈ Ord))κ to be a �xed point of j and
derive the contradiction that α belongs to both j((Sα | α ∈ Ord))κ as well
as to j((Sα | α ∈ Ord))γ for some γ < κ. 2

Proof of the Main Lemma. The desired forcing P∗ is the �nal stage Q∗∞ of a
�nite support iteration (P∗β,Q∗β | β ∈ C ∪ {∞}). The β-th stage Q∗β of the
iteration will add a function p∗ : β → 2. If β = ω is the minimum of C then
Q∗β is the atomic forcing whose conditions are functions p∗ : ω → 2. If β is a
successor point of C and β0 is its C-predecessor then Qβ is an atomic forcing,
whose conditions consist of all p∗ : β → 2 in V [G∗β0 , G

∗(β0)] such that p∗�β0
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is Q∗β0-generic over V [G∗β0 ] (where G
∗
α, G

∗(α) denote the generics for P∗α, Q∗α
respectively for each α in C); we also require that p∗�[β0, β) belong to V ,
p∗(β0) = 1 and p∗(2γ) = 0 for all γ in (β0, β). (These latter requirements
ensure that both V and C are de�nable over (L[F ∗], F ∗) when F ∗ : Ord→ 2
is P∗-generic.)

Suppose that β is a limit point of C. Let Q∗,0β denote the set (or class if
β = ∞) of all p∗ : α → 2 in V [G∗α, G

∗(α)] where α ∈ C ∩ β and p∗�α is Q∗α-
generic over V [G∗α]; Q∗,0β is ordered by extension. If β is regular in L(H(β))

or β = ∞ then Q∗β is equal to Q∗,0β . Otherwise, proceed as follows. We say

that p∗ : β → 2 is (i, n)-generic for Q∗,0β i� G∗(p∗) = {p∗�α | α ∈ C ∩ β}
meets every dense subset of Q∗,0β of the form {q∗ ∈ Q∗,0β | q∗ 
 ϕ or q∗ 
∼ ϕ},
where ϕ is a Πn(Li(H(β)), C ∩β, ḟ) sentence with parameters from L(H(β))
(ḟ denotes the generic function with domain β). Then we take Q∗β to be the
atomic forcing whose conditions are functions p∗ : β → 2 in V [G∗β] which are

(i, n)-generic for Q∗,0β for the (fewer than β+ of L(H(β))-many) (i, n) such
that β is (i, n)-Admissible.

Lemma 23 Suppose that β belongs to C and β is either a successor point of
C or not regular in L(H(β)). Then in V [G∗β], each p∗ in Q∗,0β has an extension
in Q∗β.

Proof. By induction on β. Suppose that β is a successor point of C and let β0

be its C-predecessor. If β0 = ω is the minimum of C then it is easy to extend
any element of Q∗β0 to an element of Q∗β. If β0 is a successor point of C or

not regular in L(H(β0)) then by induction, in V [G∗β0 ] each p
∗ in Q∗,0β0 has an

extension p∗∗ in Q∗β0 ; it is then easy to extend p∗∗ further to an element of
Q∗β. If β0 is a limit point of C and is regular in L(H(β0)) then by induction

any p∗ in Q∗,0β0 has extensions in Q∗γ for arbitrarily large γ ∈ C ∩β0; it follows
that any Q∗β0-generic p

∗∗ has domain β0 and it then follows that each p∗ in

Q∗,0β0 can be extended to some Q∗β0-generic p
∗∗ in V [G∗β] (the forcing Q∗β0 is

homogeneous). It is then easy to extend p∗∗ further to an element of Q∗β in
V [G∗β].

Suppose that β is a limit point of C and is not regular in L(H(β)). Let
(i, n + 1) be least so that β is not (i, n + 1)-Admissible. First suppose that
n = 0. If i = 0 then β is not 1-Admissible and there is a closed unbounded
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subset D of C ∩ β of ordertype less than β whose successor points γ are not
regular in L(H(γ)) and whose intersection with each of its limit points γ < β
is ∆1 de�nable over (H(γ), C ∩ γ). Given α ∈ C ∩ β and a p∗ in Q∗.0β that
we want to extend into Q∗β, we can assume that both α and the ordertype
of D are less than the minimum of D. Now enumerate D as β0 < β1 < · · ·
and using the induction hypothesis, successively extend p∗ to q∗0 ⊆ q∗1 ⊆ · · ·
with q∗j in Q∗βj , taking unions at limits. Note that for limit j, q∗j is indeed a
condition because βj is not 1-Admissible. The union of the qj's is the desired
extension of p∗ in Q∗β. If i = i0 + 1 is a successor ordinal then we instead
choose D to be a closed unbounded subset of C ∩ β of ordertype less than
β whose successor points γ are not regular in L(H(γ)) and such that for
limit points γ < β of D, D ∩ γ is ∆1 de�nable over the transitive collapse
of Hβ,i0

ω (γ) = the Σω Skolem hull of γ in (Li0(H(β)), C ∩ β) and this hull
contains no ordinals between γ and β. Again we make successive extensions
of p∗ to q∗0 ⊆ q∗1 ⊆ · · · with q∗j in Q∗βj , taking unions at limits, where the βj's
increasingly enumerate D. We get a condition at limit stages using the fact
that γ is not Σ1-regular over the transitive collapse of H

β,i0
ω (γ) when it is a

limit point of D (and using re�ection to infer that the associated limit q∗j is
indeed su�ciently generic for the forcing Q∗,0γ ).

Now suppose that n is greater than 0.

If β is a limit of α which are (i, n)-Stable in β, then proceed as in the
previous paragraph: Choose a closed unbounded subset D of C ∩ β of order-
type less than β consisting of α which are (i, n)-Stable in β, whose successor
points γ are not regular in L(H(γ)) and whose intersection with each of its

limit points γ < β is ∆n+1 de�nable over the transitive collapse of H
(i,β)
n (γ).

Assume that the ordertype of D as well as the domain of the given p∗ ∈ Q∗,0β
that we wish to extend are less than the minimum of D, enumerate D as
β0 < β1 < · · · and using the induction hypothesis, successively extend p to
q0 ⊆ q1 ⊆ · · · with qj in Q∗βj , taking unions at limits. For limit j, qj is indeed

a condition because βj is not (̄i, n + 1)-Admissible, where ī is the height of

the transitive collapse of H
(i,β)
n (βj), and as it is a limit of ordinals which are

(i, n)-Stable in β, qj is (̄i, n)-generic for Q∗,0βj . The union of the qj's is the
desired extension of p∗ in Q∗β.

If β is not a limit of α which are (i, n)-Stable in β then β must have
co�nality ω (else by (i, n)-Admissibility, we could �nd co�nally many (i, n)-
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Stables in β). It su�ces to show that any condition p∗ in Q∗,0β can be extended
to decide (i.e. force or force the negation of) each of fewer than β-many
Πn(Li(H(β)), C ∩ β) sentences with parameters from H(β) (given this, we
can extend p∗ in ω steps to a condition inQ∗β which is (i, n)-generic for P∗β). To
show this, let (ϕi | i < δ) enumerate the given collection of Πn(Li(H(β)), C∩
β) sentences and if n > 1, let D consist of all γ which are limits of (i, n −
1)-Stables in β and large enough so that H(γ) contains both p∗ and this
enumeration. (If n = 1 then let D consist of all γ which are limit points of
C and large enough so that H(γ) contains both p∗ and this enumeration.)
Now extend p∗ successively to elements qj of Q∗γj , where γj+1 ≥ γj is the
least element γ of D so that γ is not regular in L(H(γ)) and either qj forces
ϕj or qj+1 forces ψj = the negation of ϕj (with corresponding witness to
the Σn sentence ψj), taking unions at limits. For limit j, qj is a condition
as γj is not (̄i, n)-Admissible but (in case n > 1) is a limit of (̄i, n − 1)-

Stables, where ī is the height of the transitive collapse of H
(i,β)
n−1 (γj). (The

failure of γj to be (̄i, n)-Admissible uses the fact that the set of j0 < j such
that qj0+1 forces the negation of ϕj0 can be treated as a parameter in H(γj).)
As β is (i, n)-Admissible, this construction results in a sequence of qj's of
length δ, whose union is the desired extension of p∗ deciding all of the given
Πn(Li(H(β)), C ∩ β) sentences. 2

Lemma 24 Suppose that G∗ is Q∗∞-generic where Q∗∞ is the class of p∗ :
α → 2 in V [G∗∞] such that α belongs to C and p∗ is Q∗α-generic. Let F ∗ :
Ord → 2 be the union of the functions in G∗. Then V is a de�nable inner
model of L[F ∗] and for any α < β, i < β+ of L(H(β)) and 0 < n < ω, if
α is (i, n)-Stable in β and β is (i, n)-Admissible then α is (i, n)-Stable in β
relative to F ∗.

Proof. It is easy to de�ne V from F ∗ as from F ∗ we can �rst identify the
elements of C and then V consists of those sets coded by F ∗ restricted to some
adjacent interval of C. Suppose that α is (i, n)-Stable in β and β is (i, n)-
Admissible. Then by the de�nition of Q∗∞, F ∗�β is (i, n)-generic for Q∗,0β and

F ∗�α is (̄i, n)-generic for P∗α where H
(i,β)
n (α) has transitive collapse of height

ī, as α is (̄i, n)-Admissible. But as the forcing relation for Πn formulas is Πn-
de�nable, this implies that α is (i, n)-Stable in β relative to F ∗, as desired.
2

Now notice that since we iterate with �nite support, the forcing P∗∞ is
∞-cc, i.e., all antichains for this forcing which belong to C are sets in V .
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It follows that Gödel-Bernays minus Power is preserved. This completes the
proof of the Main Lemma and therefore of Theorem 21. 2

Open question. Can one prove in Morse-Kelley (or even in Gödel-Bernays)
that HOD is relatively rigid for arbitrary class embeddings?

We'll show next that HOD is indeed relatively rigid for arbitrary class
embeddings, if one assumes vertical maximality, a strengthening of Morse-
Kelley.

8.-9.Vorlesungen

Relative Rigidity, #-generation and the Indiscernible Core

Our aim now is to prove the following.

Theorem 25 (Relative Rigidity Theorem) Suppose that (V, C) is a #-generated
model of Gödel-Bernays. Then for some V -de�nable class of ordinals I,
(HOD, I) is rigid for arbitrary embeddings in C.

The conclusion is that there is no elementary embedding from (HOD, E)
to itself in C other than the identity. The main thing we need to explain
is the hypothesis of #-generation. This notion �rst arose in work of mine
with Honzik where we arrived at this notion as the ultimate form of �vertical
maximality� for the universe of sets. The notion applies equally well to models
of class theory.

Re�ection with indiscernibles � vertical maximality

Let us extrapolate from the usual re�ection and see where it takes us.
It is natural to strengthen the re�ection of individual �rst-order properties
from V to some Vα to the simultaneous re�ection of all �rst-order properties
of V to some Vα, even with parameters from Vα. Thus Vα is an elementary
submodel of V . Repeating this process suggests that in fact there should be
an increasing, continuous sequence of ordinals (κi | i < ∞) such that the
models (Vκi | i <∞) form a continuous chain Vκ0 ≺ Vκ1 ≺ · · · of elementary
submodels of V whose union is all of V (where∞ denotes the ordinal height
of the universe V ).
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But the fact that for a closed unbounded class of κ's in V , Vκ can be
�lengthened� to an elementary extension (namely V ) of which it is a rank
initial segment suggests via re�ection that V itself should also have such a
lengthening V ∗. But this is clearly not the end of the story, because we can
also infer that there should in fact be a continuous increasing sequence of
such lengthenings V = Vκ∞ ≺ V ∗κ∞+1

≺ V ∗κ∞+2
≺ · · · of length the ordinals.

For ease of notation, let us drop the ∗'s and write Wκi instead of V ∗κi for
∞ < i and instead of Vκi for i ≤ ∞. Thus V equals W∞.

But which tower V = Wκ∞ ≺ Wκ∞+1 ≺ Wκ∞+2 ≺ · · · of lengthenings of
V should we consider? Can we make the choice of this tower �canonical�?

Consider the entire sequence Wκ0 ≺ Wκ1 ≺ · · · ≺ V = Wκ∞ ≺ Wκ∞+1 ≺
Wκ∞+2 ≺ · · ·. The intuition is that all of these models resemble each other in
the sense that they share the same �rst-order properties. Indeed by virtue of
the fact that they form an elementary chain, these models all satisfy the same
�rst-order sentences. But again in the spirit of �resemblance�, it should be the
case that any two pairs (Wκi1

,Wκi0
), (Wκj1

,Wκj0
) (with i0 < i1 and j0 < j1)

satisfy the same �rst-order sentences, even allowing parameters which belong
to both Wκi0

and Wκj0
. Generalising this to triples, quadruples and n-tuples

in general we arrive at the following situation:

(∗) Our approximation V to the universe should occur in a continuous elemen-
tary chain Wκ0 ≺ Wκ1 ≺ · · · ≺ V = Wκ∞ ≺ Wκ∞+1 ≺ Wκ∞+2 ≺ · · · of length
the ordinals, where the modelsWκi form a strongly-indiscernible chain in the
sense that for any n and any two increasing n-tuples~i = i0 < i1 < · · · < in−1,
~j = j0 < j1 < · · · < jn−1, the structures W~i = (Wκin−1

,Wκin−2
, · · · ,Wκi0

) and

W~j (de�ned analagously) satisfy the same �rst-order sentences, allowing pa-
rameters from Wκi0

∩Wκj0
.

But this is again not the whole story, as we would want to impose higher-
order indiscernibility on our chain of models. For example, consider the pair
of models Wκ0 = Vκ0 , Wκ1 = Vκ1 . Surely we would want that these models
satisfy the same second-order sentences; equivalently, we would want H(κ+

0 )V

and H(κ+
1 )V to satisfy the same �rst-order sentences. But as with the pair

H(κ0)V , H(κ1)V we would want H(κ+
0 )V , H(κ+

1 )V to satisfy the same �rst-
order sentences with parameters. How can we formulate this? For example,
consider κ0, a parameter in H(κ+

0 )V that is second-order with respect to
H(κ0)V ; we cannot simply require H(κ+

0 )V � ϕ(κ0) i� H(κ+
1 )V � ϕ(κ0), as
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κ0 is the largest cardinal in H(κ+
0 )V but not in H(κ+

1 )V . Instead we need to
replace the occurence of κ0 on the left side with a �corresponding� parameter
on the right side, namely κ1, resulting in the natural requirement H(κ+

0 )V �
ϕ(κ0) i� H(κ+

1 )V � ϕ(κ1). More generally, we should be able to replace
each parameter in H(κ+

0 )V by a �corresponding� element of H(κ+
1 )V and

conversely, it should be the case that, to the maximum extent possible, all
elements of H(κ+

1 )V are the result of such a replacement. This also should
be possible for H(κ++

0 )V , H(κ+++
0 )V , . . . and with the pair κ0, κ1 replaced

by any pair κi, κj with i < j.

It is natural to solve this parameter problem using embeddings, as in
the last subsection. But the di�erence here is that there is no assumption
that these embeddings are internal to V ; they need only exist in the �real
universe�, outside of V . In this way we will arrive at a principle compatible
with V = L in which the choice of embeddings is indeed �canonical�.

Thus we are led to the following.

De�nition 26 Let V be a transitive set-size model of ZFC of ordinal height
∞. We say that V is indiscernibly-generated i� there exists a continuous
sequence κ0 < κ1 < . . . of length the ordinals such that κ∞ = ∞ and com-
muting elementary embeddings πij : V → V where πij has critical point κi
and sends κi to κj. Moreover, for any i ≤ j, any element of V is �rst-order
de�nable in V from elements of the range of πij together with κk's for k in
the interval [i, j).

The last clause in the above de�nition formulates the idea that to the
maximum extent possible, elements of V are in the range of the embedding
πij for each i ≤ j; notice that the interval [κi, κj) is disjoint from this range,
but by allowing the κk's in this interval as parameters, we can �rst-order
de�nably recover everything.

Indiscernible-generation as formulated in the above de�nition does indeed
give us our advertised higher-order indiscernibility: For example, in the no-
tation of the de�nition, if ~i = i0 < i1 < . . . < in−1 and ~j = j0 < j1 <
. . . < jn−1 with i0 ≤ j0, and xk ∈ H(κ+

i0
)V for k < n then the structure

V +
~i

= (H(κ+
in−1

)V , H(κ+
in−2

)V , · · · , H(κ+
i0

)V ) satis�es a sentence with param-

eters (πi0,in−1(xn−1), . . . , πi0,i0(x0)) i� V +
~j

satis�es the same sentence with
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corresponding parameters (πi0,jn−1(xn−1), . . . , πi0,j0(x0)). There is a similar
statment with V + replaced by higher-order structures V +α for arbitrary α.

Indiscernible-generation has a clearer formulation in terms of #-generation,
which we explain next.

De�nition 27 A structure N = (N,U) is called a sharp with critical point
κ, or just a #, if the following hold:

• N is a model of ZFC− (ZFC minus powerset) in which κ is the largest
cardinal and κ is strongly inaccessible.

• (N,U) is amenable (i.e. x ∩ U ∈ N for any x ∈ N).

• U is a normal measure on κ in (N,U).

• N is iterable, i.e., all of the successive iterated ultrapowers starting with
(N,U) are well-founded, yielding iterates (Ni, Ui) and Σ1 elementary
iteration maps πij : Ni → Nj where (N,U) = (N0, U0).

We will use the convention that κi denotes the the largest cardinal of the
i-th iterate Ni.

If N is a # and λ is a limit ordinal then LP(Nλ) denotes the union of the
(Vκi)

Ni 's for i < λ. (LP stands for �lower part�.) LP(N∞) is a model of ZFC.

De�nition 28 We say that a transitive model V of ZFC is #-generated i�
for some sharp N = (N,U) with iteration N = N0 → N1 → · · ·, V equals
LP(N∞) where ∞ denotes the ordinal height of V .

Fact. The following are equivalent for transitive set-size models V of ZFC:
(a) V is indiscernibly-generated.
(b) V is #-generated.

Proof. The last clause in the de�nition of indiscernible-generation ensures
that the embeddings πij in that de�nition in fact arise from iterated ultra-
powers of the embedding π01, itself an ultrapower by the measure U0 on κ0

given by X ∈ U0 i� π01(X) contains κ0 as an element. Conversely, if (N,U)
generates V then the chain of embeddings given by iteration of (N,U) wit-
nesses that V is indiscernibly-generated. 2
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#-generation ful�lls our requirements for vertical maximality, with pow-
erful consequences for re�ection. L is #-generated i� 0# exists, so this princi-
ple is compatible with V = L. If V is #-generated via (N,U) then there are
embeddings witnessing indiscernible-generation for V which are canonically-
de�nable through iteration of (N,U). Although the choice of # that gener-
ates V is not in general unique, it can be taken as a �xed parameter in the
canonical de�nition of these embeddings. Moreover, #-generation evidently
provides the maximum amount of vertical re�ection: If V is generated by
(N,U) as LP(N∞) where ∞ is the ordinal height of V , and x is any param-
eter in a further iterate V ∗ = N∞∗ of (N,U), then any �rst-order property
ϕ(V, x) that holds in V ∗ re�ects to ϕ(Vκi , x̄) in Nj for all su�ciently large
i < j < ∞, where πj,∞∗(x̄) = x. This implies any known form of vertical
re�ection and summarizes the amount of re�ection one has in L under the
assumption that 0# exists, the maximum amount of re�ection in L.

Thus #-generation tells us what lengthenings of V to look at, namely the
initial segments of V ∗ where V ∗ is obtained by further iteration of a # that
generates V . And it fully realises the idea that M should look exactly like
closed unboundedly many of its rank initial segments as well as its �canonical�
lengthenings of arbitrary ordinal height.

In summary, we believe that #-generation is the correct formalization of
the principle of (vertical) re�ection (R), and we shall refer to #-generated
models as being vertically maximal.

Finally we apply #-generation to models of class theory. We say that
such a model (V, C) is #-generated if there is a # N = (N,U) with iteration
N = N0 → N1 → · · · such that V equals LP(N∞) and C consists of the
subsets of V in N∞+1, where ∞ denotes the ordinal height of V .

Thus not only has the ordinal height of V been maximised, but so has
the collection of its classes, both via the principle of #-generation.

On the methodology of set theory

Set theory is usually about �rst-order properties of V and the conse-
quences of certains �rst-order theories for such properties. But when studying
the rigidity problem for HOD we see that we are led to second-order prop-
erties and the need to work in class theory. This raises the obvious question
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of what form of class theory to adopt. Ideally one would like to derive con-
sequences from the weakest possible theory, namely Gödel-Bernays, but this
proves to not always be possible. Indeed, as we will see with regard to the
rigidity problem for HOD it is advantageous to work in a context that is not
even expressible within a second-order theory of classes, i.e. in the context
of #-generation.

This is not special to class theory. Indeed, it is natural to also impose
non �rst-order hypotheses when studying �rst-order features of V . Ideally we
would like to verify �rst-order consequences of �rst-order theories by showing
that any countable transitive model of a well-chosen �rst-order theory obeys
relevant �rst-order statements. But we can naturally take the position that
not all countable transitive models of the given �rst-order theory are relevant
and impose further non �rst-order restrictions on such models such as #-
generation, our formulation of vertical maximality. Of course one can then
only make conclusions about #-generated models, but it is not unreasonable
to claim that these are the most interesting models anyway.

This is the spirit behind the Relative Rigidity Theorem: HOD is relatively
rigid in all #-generated models of class theory. If one accepts #-generation
as a valid maximality principle then this is su�cient to establish the relative
rigidity of HOD as a true statement of set theory.

The indiscernible core (postponed)

Large cardinal witnessing

We now move on to the question of witnessing large cardinal properties
in HOD. This material comes from a paper of mine with Joel Hamkins and
Cheng Yong.

Question.

1. To what extent must a large cardinal in V exhibit its large cardinal
properties in HOD?

2. To what extent does the existence of large cardinals in V imply the
existence of large cardinals in HOD?
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For large cardinal concepts beyond the weakest notions the answers are
generally negative. For example, a supercompact need not be even weak
compact in HOD. There can be a proper class of supercompacts with no
supercompact in HOD. But there are some positive results: Any ω-Erd®s is
also ω-Erd®s in HOD and below an ω-Erd®s there are many weak compacts.
So a measurable in V gives a weak compact in HOD. Woodin has claimed
that a supercompact gives a measurable in HOD.

Theorem 29 If κ is a supercompact cardinal, then there is a forcing exten-
sion in which κ remains supercompact, but is not weakly compact in HOD.

Proof. Suppose that κ is a supercompact cardinal and assume GCH. By
Laver we may assume that the supercompactness of κ is preserved by < κ-
directed forcing. We now force over V to add a κ-Cohen set g. By a result of
Kunen we may factor this forcing as Add(κ, 1) ∼= S ∗T, �rst adding a weakly
homogeneous κ-Suslin tree T and then forcing with the tree:

Lemma 30 (Kunen) If κ is inaccessible, then there is a < κ-strategically
closed notion of forcing S of size κ such that forcing with S adds a weakly ho-
mogeneous κ-Suslin tree T and the combined forcing S∗T is forcing-equivalent
to the forcing Add(κ, 1) to add a Cohen subset of κ.

The key point is that S ∗ T has a < κ-closed dense subset of size κ, and all
such (nontrivial) forcing is equivalent to Add(κ, 1).

A forcing notion Q is weakly homogeneous, if for any two conditions p, q ∈
Q, there is an automorphism π of Q for which π(q) and p are compatible. It
follows that if ϕ is a statement in the forcing language involving only ground
model names x̌, and some condition p forces ϕ, then every condition forces
ϕ, since otherwise some q forces ¬ϕ, but in this case π(q) will also force ¬ϕ,
which is impossible if it is compatible with p.

Lemma 31 (Folklore) If Q is a weakly homogenenous notion of forcing
and G ⊆ Q is V -generic, then HODV [G] ⊆ HOD(Q)V . In particular, if Q is
also ordinal de�nable in V , then HODV [G] ⊆ HODV .

The point is that if A ⊆ Ord is de�ned in V [G] by α ∈ A ⇐⇒ ϕ(α, β),
then we can de�ne A in the ground model as {α | 1 
 ϕ(α̌, β̌)}, since
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conditions in a weakly homogeneous forcing cannot force di�erent outcomes
for assertions about ground model names.

Returning to the proof, we see that the extension V [g] can be viewed
as V [T ][b], where T is the generic κ-Suslin tree that is added and b is the
V [T ]-generic branch through T . Let R be the forcing in V [T ] to code T
into the GCH (or 3∗) pattern on the next κ many regular cardinals above
κ. Suppose that H ⊆ R is V [T ]-generic (which is equivalent to assuming
that H is V [g]-generic). We may view the extension V [g][H] as V [T ][H][b].
Since R is < κ-directed closed in V [T ], it is also < κ-directed closed in V [g],
since any subset of R of size less than κ in V [g] is in V [T ]. Therefore the
forcing Add(κ, 1)∗R is < κ-directed closed in V , and so our indestructibility
assumption on κ ensures that κ is supercompact in V [g][H].

We claim that κ is not weakly compact in HODV [g][H]. The tree T is
in HODV [g][H], since we explicitly forced to encode it. But since V [g][H] =
V [T ][H][b] and T is weakly homogeneous in V [T ] and hence in V [T ][H], it
follows by Lemma 31 that HODV [g][H] ⊆ V [T ][H]. Since the forcing to add
H adds no new subsets of T , it follows that T has no co�nal branches in
V [T ][H] and hence none in HODV [g][H], and so the tree property fails for κ
there, which means that κ is not weakly compact in HODV [g][H], as desired.
2

Theorem 32 There is a class forcing notion P forcing that

1. All measurable cardinals of the ground model are preserved and no new
measurable cardinals are created.

2. There are no measurable cardinals in the HOD of the extension.

3. The measurable cardinals of the ground model are not weakly compact
in the HOD of the extension.

Proof.We'll assume that there is a proper class of measurable cardinals in the
ground model V . Let V̄ = V [F ] be an extension so that the GCH holds at
every inaccessible cardinal in V̄ and every set of ordinals of V̄ is coded into the
GCH (or 3∗) pattern at, say, the triple successors δ+++ of the i-�xed points
δ = iδ, and furthermore that every measurable cardinal κ is indestructible
by forcing over V̄ with Add(κ, 1). Now, in V̄ , for each measurable cardinal κ,
consider the forcing Add(κ, 1)∗Ṙ(κ), where as previously we factor Add(κ, 1)
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into two steps Sκ ∗ Ṫκ, which �rst adds a homogeneous κ-Suslin tree Tκ and
then forces with it, and then Ṙ(κ) is the forcing in V [Tκ] that codes the
tree Tκ into the GCH pattern at the next κ many regular cardinals above
κ, starting above κ+++. Thus, Add(κ, 1) ∗ Ṙ(κ) ' Sκ ∗ (Ṙ(κ) × Ṫκ). Let
P =

∏
κ(Add(κ, 1) ∗ Ṙ(κ)) be the Easton-support product of these forcing

notions, taken over all measurable cardinals κ, and let G ⊆ P be V̄ -generic.
Our �nal model is V̄ [G], which we shall now argue is as desired.

First, we claim that every measurable cardinal κ is preserved to V̄ [G].
Since the forcing above κ is ≤ κ-closed, and the forcing R(κ) is ≤ κ-
distributive after adding the Cohen subset to κ, it su�ces to argue that
κ is measurable in the extension V̄ [Gκ][gκ], where Gκ performs the forcing at
measurable cardinals below κ and gκ ⊆ κ is the Cohen subset of κ added by
Add(κ, 1) on coordinate κ. By our indestructibility assumption on κ in V̄ ,
we know that κ remains measurable in V1 = V̄ [gκ], and so it su�ces to argue
merely that the forcing Pκ preserves the measurability of κ, forcing over V1.
And this can be done in the style of the Kunen-Paris theorem. Namely, �x in
V1 any normal ultrapower embedding j : V1 →M for which κ is not measur-
able in M , and consider j(Pκ) = Pκ × Pκ,j(κ), where Pκ,j(κ) is the rest of the
product forcing from stage κ up to j(κ) in M . Since κ is not measurable in
M , there is no forcing at coordinate κ, and so Pκ,j(κ) is ≤ κ-closed inM . Since
Mκ ⊆ M in V1 and Pκ,j(κ) has |j(2κ)|V1 = κ+ many dense subsets in M , we
may construct by diagonalization in V1 an M -generic �lter Gκ,j(κ) ⊆ Pκ,j(κ).
It follows that Gκ × Gκ,j(κ) ⊆ j(Pκ) is M -generic, and so we may lift the
embedding to j : V1[Gκ] → M [j(Gκ)], where j(Gκ) = Gκ × Gκ,j(κ), thereby
witnessing that κ is measurable in V1[Gκ] and hence also in V̄ [G], as desired.

Next, the combined forcing P̄ ∗ P admits a closure point and therefore
creates no new measurable cardinals. In particular, the three models V ⊆
V̄ ⊆ V̄ [G] have the same measurable cardinals. The same reasoning shows

that the large cardinals in V̄ [~T ], where ~T is the sequence of Suslin trees Tκ
added by Sκ at coordinate κ, are also large in V̄ .

Finally, we claim that HODV̄ [G] has no measurable cardinals. To see this,
we argue that HODV̄ [G] = V̄ [~T ]. The forward inclusion is a consequence

of the fact that
∏

κ(R(κ) × Tκ) is weakly homogeneous in V̄ [~T ], since the
coding forcing is weakly homogeneous and the trees themselves are weakly
homogeneous, and so HODV̄ [G] ⊆ V̄ [~T ] by Lemma 31. Conversely, note that
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the coding performed by F at the triple successors of the i-�xed points is
preserved to V̄ [G], since the forcing to add G does not interfere with that
coding and furthermore all i-�xed points are preserved from V̄ to V̄ [G]. It
follows that every set of ordinals in V̄ is coded into the GCH or 3∗ pattern on
such cardinals in V̄ [G], and this implies V̄ ⊆ HODV̄ [G]. Further, the trees Tκ
themselves are coded into the GCH or 3∗ pattern on the next κ-many regular
cardinals of V̄ [G], and so ~T is de�nable in V̄ [G]. Thus, V̄ [~T ] ⊆ HODV̄ [G], and

we conclude HODV̄ [G] = V̄ [~T ].

It remains to see that there are no measurable cardinals in V̄ [~T ]. Suppose

that κ is a measurable cardinal in V̄ [~T ]. By our remark two paragraphs above,
it follows that κ was measurable in V̄ and therefore is one of the coordinates
at which forcing is performed. In particular, at stage κ we added the κ-Suslin
tree Tκ, which is Suslin in V̄ [Tκ]. The forcing above κ cannot a�ect whether
Tκ is κ-Suslin, since it adds no new subsets to κ. The forcing

∏
δ<κ Sδ that

adds the trees Tδ at measurable cardinals δ < κ is absolutely κ-c.c. (meaning
it remains κ-c.c. in the forcing extension), and such forcing cannot add a

κ-branch through a κ-Suslin tree. Thus, the tree property fails for κ in V̄ [~T ]
and in particular, κ is not measurable there. So there are no measurable
cardinals in V̄ [~T ], and consequently no measurable cardinals in HODV̄ [G], as
desired. 2

An argument similar to the above shows:

Theorem 33 There is a class forcing notion P forcing that

1. All supercompact cardinals of the ground model are preserved and no
new supercompact cardinals are created.

2. There are no supercompact cardinals in the HOD of the extension.

3. The supercompact cardinals of the ground model are not weakly compact
in the HOD of the extension.

One may also ensure that the GCH holds in the extension and its HOD.

Theorem 34 It is possible to have a strong cardinal but no measurable in
HOD.
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We have shown that large cardinals can be large in V but small in HOD.
A dual question is to ask for cardinals that are large in HOD, but not in
V . A result of mine with Cummings and Golshani is that one can make
(α+)HOD < α+ for all in�nite cardinals α. Gitik has claimed that one can
improve this to get all regular cardinals inaccessible in HOD.

One could argue that the divergence between large cardinal properties in
V and HOD is not really a problem about HOD but about the possibility
of resurrecting largeness over a model where largeness has been lost with a
homogeneous forcing.

10.-11.Vorlesungen

Relative Rigidity, #-generation and the Indiscernible Core

Our aim now is to prove the following.

Theorem 35 (Relative Rigidity Theorem) Suppose that (V, C) is a #-generated
model of Gödel-Bernays. Then for some V -de�nable class of ordinals I,
(HOD, I) is rigid for arbitrary embeddings in C.

The conclusion is that there is no elementary embedding from (HOD, I)
to itself in C other than the identity. Recall that a model (V, C) of class theory
is #-generated if there is a # N = (N,U) with iteration N = N0 → N1 → · · ·
such that V equals LP(N∞) and C consists of the subsets of V in N∞+1, where
∞ denotes the ordinal height of V .

The indiscernible core (still postponed)

Woodin's work on HOD

Since I'm stuck on the indiscnerible core I'll turn to something else, name-
ly Woodin's work, which may give me some new ideas. Woodin studies HOD
in the context of very large cardinals (extendibles) and makes a conjecture
in this context.

First recall a result of Cummings, Golshani and myself (which I stated
but didn't prove):

37



Theorem 36 Assume GCH and κ supercompact. Then there is a generic
extension in which κ remains measurable and for all in�nite cardinals α < κ,

α+ is greater than (α+)HOD. In particular the Vκ of the generic extension is

a model of �α+ is greater than (α+)HOD for all in�nite cardinals α�.

In the generic extension referred to in this theorem, κ loses its supercom-
pactness and many successor cardinals are also successor cardinals in HOD.
Contrast this with the following result of Woodin.

Theorem 37 (Woodin) Suppose that δ is extendible. Then either α+ equals
α+ of HOD for all singular cardinals α > δ or all large enough regular car-
dinals are measurable in HOD.

Theorem 48 shows that Woodin's theorem really needs the existence of
extendibles. So extendibles have an impact on the relationsip between V and
HOD. Recall that δ is extendible if for all η > δ there is an elementary embed-
ding j : Vη+1 → Vj(η)+1 with critical point δ, sending δ above η. Extendibles
are supercompact with many supercompacts below them.

Woodin proves his theorem using the concept of weak extender model
for δ supercompact. An inner model N quali�es for this if for every γ > δ
there is a supercompactness measure U on Pδγ such that N ∩ Pδγ ∈ U and
U ∩N ∈ N .

Lemma 38 (a) If N is a weak extender model for δ supercompact and γ > δ
is regular in N then card(γ) = cof(γ).
(b) If N is a weak extender model for δ supercompact and γ > δ is a singular
cardinal then γ is singular in N and γ+ equals γ+ of N .

Proof. By hypothesis we have for each µ > δ a supercompactness measure
Uµ on Pδµ such that N ∩ Pδµ belongs to Uµ and Uµ ∩N belongs to N .

We �rst show that N has the δ-covering property, i.e. every set of ordinals
of size less than δ is covered by such a set in N . Suppose that x is a set of
ordinals of size less than δ and choose µ > δ so that x is a subset of µ.
By the �neness and δ-completeness of Uµ we know that the set of y in Pδµ
containing x belongs to Uµ. As N ∩ Pδµ also belongs to Uµ we can choose y
in N of size less than δ containing x, as desired.
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Now let γ > δ be regular in N . As N has δ-covering we know that cof(γ)
is at least δ.

By a theorem of Solovay there is an X ⊆ Pδγ in N such that the sup
function is injective on X and X belongs to U = Uγ. Fix a club D ⊆ γ
of ordertype cof(γ) and set A = {y ∈ Pδγ | sup(y) ∈ D}. Let j be the
ultrapower embedding given by U ; then β = sup j[γ] belongs to j(D) as
j(D) is a club in j(γ) > sup j[γ] = sup j[D] and j[D] ⊆ j(D). As U = {B |
j[γ] ∈ j(B)} it follows that A belongs to U . As U is �ne we know that

⋃
{y ∈

X ∩A | sup(y) ∈ D} is all of γ. But as the sup function is injective on X, we
see that the cardinality of γ is at most card(δ) · card(D) = card(δ) · cof(γ).
As cof(γ) is at least δ, we get card(γ) ≤ cof(γ), as desired.

(b) follows readily from (a). 2

Lemma 39 Suppose that there is a proper class of regular cardinals which
are not measurable in HOD and δ is extendible. Then HOD is a weak extender
model for δ supercompact.

Woodin's Theorem 37 now follows: If HOD is a weak extender model for δ
supercompact, then by Lemma 38 γ is singular in HOD and γ+ = γ+ of HOD
for all singular cardinals γ > δ. Otherwise by Lemma 39, all large enough
regular cardinals are measurable in HOD.

Proof of Lemma 39. Given ζ > δ we want to �nd a ζ-supercompactness
measure U on Pδζ with U ∩ HOD in HOD and Pδζ ∩ HOD in U . Pick ζ <

γ < λ < η such that 2ζ < γ, (card(Vγ))
HOD = γ, λ > 2γ is regular but not

measurable in HOD and HODVη = HOD ∩ Vη. As δ is extendible there is an
embedding j : Vη+1 → Vj(η)+1 with critical point δ, sending δ above η.

We claim that j[γ] belongs to the HOD of Vj(η) and therefore to HOD.

First note that as λ is not measurable in HOD and 2γ < λ, there is a
partition (Sα | α < γ) of Cof(ω) ∩ λ into stationary sets such that (Sα |
α < γ) belongs to HOD. Otherwise, one argues that there is a stationary
S ⊆ Cof(ω) ∩ λ in HOD which cannot be partitioned into two disjoint
stationary sets in HOD, giving that the club �lter on S restricted to HOD
witnesses the measurability of λ in HOD.
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As the HOD of Vη equals HOD∩ Vη, (Sα | α < γ) belongs to the HOD of
Vη. By elementarity we have

(S∗α | α < j(γ)) = j((Sα | α < γ)) ∈ HODVj(η) .

Set βλ = sup j[λ]. Then by an observation of Solovay,

j[γ] = {α < sup j[γ] | S∗α ∩ βλ is stationary in βλ}.

So j[γ] is in the HOD of Vj(η), as claimed.

Now let U be the ultra�lter on Pδζ derived from j. Then Pδζ ∩HOD is in
U since j[ζ] is in the HOD of Vj(η) which equals j(HOD∩Vη). And U ∩HOD
is in HOD as j � (Vγ ∩ HOD) belongs to HOD and γ > 2ζ . 2

12.-13.Vorlesungen

A little remark about Reinhardt cardinals without choice

Recall the following theorem of Kunen.

Theorem 40 Suppose that (V, C) is a model of Gödel-Bernays with the Ax-
iom of Choice. Then (V, C) is rigid: There is no elementary embedding j :
V → V in C other than the identity.

A Reinhardt cardinal is the critical point of an elementary embedding
from V to V ; Kunen's theorem says that there are no Reinhardt cardinals,
assuming AC. But it does not rule out their existence if we drop AC.

We say that a model (V, C) of class theory is extendible if there is an
elementary embedding π : (V, C)→ (V ∗, C∗) which is the identity on V such
that C = P(V ) ∩ V ∗ (and V ∗ is wellfounded). The existence of extendible
models of Gödel-Bernays follows from the existence of a weakly compact
cardinal, so is not very strong.

Lemma 41 Suppose that (V, C) is extendible, witnessed by π : (V, C) →
(V ∗, C∗), and let U be the ultra�lter on C de�ned by X ∈ U i� Ord(V ) ∈
π(X). Suppose that there exists a j : V → V in C. Then there exists such a
j whose set of �xed points does not belong to U .
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Proof. Choose j : V → V in C with least possible critical point. Now suppose
that the set of �xed points of j belongs to U and let j∗ be π(j). By the
elementarity of π, j∗ is an elementary embedding from V ∗ to V ∗ extending
j. As the set of �xed points of j belongs to U , Ord(V ) is a �xed point of j∗.
As V = V ∗

Ord(V )
and C = PV ∗(V ) are de�nable in V ∗ from the parameter

Ord(V ), (V, C) is also a �xed point of j∗. Thus j∗ restricted to (V, C) is an
elementary embedding from (V, C) to (V, C) which agrees with j on V .

Now we derive a contradiction. Let α be the critical point of j, the least
possible critical point of an elemenetary embedding V → V in C. Then α
is de�nable in (V, C). As j∗ is elementary from (V, C) to (V, C), j∗(α) must
equal α; but j∗ extends j so j∗(α) = j(α) > α. 2

The above did not use AC. So to rule out Reinhardt cardinals without
AC for extendible models of class theory, it su�ces to rule out elementary
embeddings j : V → V with few �xed points.

The enriched stable core revisited

I'll give a simpli�ed proof of the following application of the enriched
stable core.

Theorem 42 (Rigidity for V -constructible embeddings) Suppose that (V, C)
is an extendible model of Gödel-Bernays and all classes in C are V -constructible.
Then for some V -de�nable class S∗∗ of ordinals, S∗∗ = (L[S∗∗],S∗∗) is rigid
for embeddings in C.

Corollary 43 If (V, C) is extendible and all classes in C are V -constructible
then there is a V -de�nable class S∗∗ of ordinals such that (HOD,S∗∗) is rigid
in C.

Fix a witness π : (V, C)→ (V ∗, C∗) to the extendibility of (V, C). Then to
say that all classes in C are V -constructible simply means that C = P(V ) ∩
V ∗ = P(V )∩L(V )V

∗
. (I.e., all subsets of V in V ∗ in fact belong to the L(V )

of V ∗.)

The above results were proved earlier using the enriched stability pred-
icate S∗, with a rather elaborate argument. I'll now give a much simpler
argument, using a �semi-enriched� version S∗∗ of S∗.
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In V de�ne S∗∗ to consist of all triples (α, β, i) where α < β are in-
accessibles, i < (β+)L(H(β)) and α is (β, i)-stable. The latter means that
Hβ,i(α) ∩H(β) = H(α), where Hβ,i(α) is the least elementary submodel of
Li(H(β)) containing α as a subset.

Again referring to our witness π : (V, C) → (V ∗, C∗) to the extendibility
of (V, C), note that Ord(V ) is an inaccessible cardinal in V ∗ and in par-
ticular inaccessible in (L(V ))V

∗
, which we simply denote by L∗(V ). Also,

any club C ⊆ Ord(V ) in V ∗ contains an inaccessible of V . We let V +

denote H(Ord(V )+)V
∗

= LOrd(V )+(V )V
∗
and L∗(V ) denote L(V )V

∗
. Thus

C = P(V ) ∩ V + and L((V, C))V ∗ = L∗(V ).

To establish the rigidity of S∗∗ = (L[S∗∗],S∗∗) in (V, C) we aim to show
that L∗(V ), and therefore C, is included in L∗(V )[A] = (L[A])L

∗(V )[A] where
A ⊆ Ord(V ) is in turn generic over (L(S∗∗))V ∗ for an S∗∗-de�nable forcing.
Denote L∗(V )[A] simply by L∗[A] and (L(S∗∗))V ∗ simply by L∗(S∗∗). Then as
any j : S∗∗ → S∗∗ can be lifted to some j∗ : L∗(S∗∗)→ L∗(S∗∗), the existence
of a nontrivial such j in C will lead to a contradiction.

As in the case of the stability and enriched stability predicates, the gener-
icity of A over L∗(S∗∗) requires us to ensure that A preserve the stability
relationships speci�ed by the semi-enriched stability predicate S∗∗. This will
be accomplished using a reverse Easton iteration.

The forcing to add an S∗∗-preserving A ⊆ Ord(V ) that codes V

We de�ne a reverse Easton iteration P of length Ord(V )+1. The iteration
is nontrivial only at stages where are inaccessible in V ∗ (i.e. either inaccessible
in V or equal to the last stage Ord(V )). Let β be such a stage. The forcing
P(β) consists of β-Cohen conditions p such that for all inaccessible α < β,
p � α is P(α)-generic.

Lemma 44 For any inaccessible β ≤ Ord(V ), the forcing P(β) satis�es ex-
tendibility: Any condition in P(β) can be extended to any larger length less
than β. Moreover P(β) is homogeneous.

Proof. By induction on β. If β is a limit of inaccessibles then the result follows
immediately by induction. If β is the least inaccessible then P(β) is just β-
Cohen forcing, so the result is clear. Otherwise let α be the supremum of the
inaccessibles less than β.

42



Suppose that α is inaccessible. By induction P(α) is homogeneous and
from this it follows that any condition in P(< α) can be extended to a P(α)-
generic (by modifying the P(α)-generic added at stage α to agree with this
condition). Extending past α is easy as above α we just have β-Cohen forcing.
Similarly we obtain the homogeneity of P(β).

Suppose that α is singular. Then to extend a condition in P(< α) to length
α we apply induction to extend it �rst to have length above the co�nality of
α and then successively to conditions of length inside a club in α of ordertype
less than α; at limit stages we still have a condition as the associated length
is singular. Again extending past α is easy because above α we just have
β-Cohen foricng. Similarly we obtain theh homogeneity of P(β). 2

Lemma 45 The forcing P preserves co�nalities.

We won't prove this as it follows using standard arguments.

Lemma 46 Suppose that α < β ≤ Ord(V ) are inaccessible in V ∗, i <
(β+)L(H(β)) and α is (β, i)-stable. Then α is (β, i)-stable relative to A: HA,β,i(α)∩
H(β)L[A] = H(α)L[A], where HA,β,i(α) is the least elementary submodel of
(Li(H(β)L[A]), A ∩ β) containing α as a subset.

Proof. Let π : Lī(H(α))→ Li(H(β)) be the inverse of the transitive collapse
of Hβ,i(α). Then A ∩ α is generic for P(α), A ∩ β is generic for P(β) and
π sends P(α) to P(β). It follows that π is elementary relative to A, as if a
sentence holds of A∩α there is a condition in P(α) belonging to the generics
determined by both A∩ α and A∩ β which forces it in both P(α) and P(β).
2

Corollary 47 A is generic over L∗(S∗∗) for an S∗∗-de�nable forcing which
is Ord(V )-cc in L∗(S∗∗). It follows that any club in C (i.e any V -constructible
club) contains a club in L∗(S∗∗) (i.e. an L[S∗∗]-constructible club).

This Corollary is proved like the analogous claims regarding the stable and
enriched stable cores: The forcing for which A is generic consists of in�nitary
propositional sentences of L[S∗∗] which are consistent with the theory T that
documents the (β, i)-stability of α (relative to S∗∗) whenever (α, β, i) belongs
to S∗∗. The forcing is Ord(V )-cc in L∗(S∗∗) and as any maximal antichain of
size less than Ord(V ) is clearly met by (the set of sentences true about) A,
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we infer the genericity of A over L∗(S∗∗) for this forcing. The last statement
also follows from the Ord(V )-cc of the forcing. 2

We now easily infer the rigidity of S∗∗ for embeddings in C: Any such
embedding belongs to a generic extension of S∗∗ via an S∗∗-de�nable forcing.
But now consider the least ordinal forced to be the critical point of such
a generic embedding; it is L∗(S∗∗)-de�nable and therefore cannot serve as
the critical point of any embedding from L∗(S∗∗) to itself. But as Ord(V )
is inaccessible in L∗(S∗∗), any embedding from S∗∗ to itself extends to an
embedding of L∗(S∗∗) to itself, yielding the desired contradiction. (The same
argument was used in our disucssion of the enriched stable core. An alterna-
tive second argument can be given, using the fact that the set of �xed points
of any embedding in C is an ω-club which contains an ω-club in L∗(S∗∗),
together with the fact that 3Ord(V )

holds in L∗(S∗∗).

14.Vorlesung

Weak Covering for HOD

Yet another interpretation of the �closeness� of HOD to V is that α+ of
HOD equals α+ of V for many cardinals α. This is for example the case if
V does not contain 0] (using L ⊆ HOD) or if V does not contain an inner
model with a Woodin cardinal (using K ⊆ HOD, where K denotes the core
model for a Woodin cardinal).

The next result shows that we can't hope to approximate the cardinals
of V by those of (inner models of) HOD in general:

Theorem 48 Suppose GCH holds and κ is a supercompact cardinal. Then
there is a generic extension V ∗ of V in which κ remains inaccessible and for
all in�nite cardinals α < κ, (α+)HOD < α+. In particular W = V V ∗

κ is a
model of ZFC in which for all in�nite cardinals α, (α+)HOD < α+.

The proof also shows that the supercompactness of κ can be preserved,
provided we weaken the conclusion to: For a club of cardinals α < κ, (α+)HOD <
α+.

The proof of Theorem 48 makes use of supercompact Radin forcing, which
we now introduce.
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Measure sequences

Let Pκ(λ) = {x ⊆ λ : ot (x) < κ, x ∩ κ ∈ κ}, and for x ∈ Pκ(λ) set
κx = x ∩ κ and λx = ot (x).

Given x, y ∈ Pκ(λ) we de�ne the relation x ≺ y by

x ≺ y ⇔ x ⊆ y and ot (x) < y ∩ κ.

For in�nite cardinals κ < λ, let S(κ, λ) be the set of sequences w such
that lh(w) < κ, w(0) ∈ Pκ(λ) and w(α) ∈ Vκ for 0 < α < lh(w).

Given κ < λ and j : V → M witnessing that κ is λ-supercompact, we
generate a sequence as follows:

• uj(0) = j[λ].

• For α > 0, uj(α) = {X ⊆ S(κ, λ) : uj � α ∈ j(X)}.

uj(α) is de�ned as long as uj � α ∈ M . We denote the least α such that
uj � α /∈M by lh(uj).

So uj(1) = {X ⊆ S(κ, λ) : uj � 1 = {〈0, j[λ]〉} ∈ j(X)} is de�ned and can
be identi�ed with the measure U on Pκ(λ) derived from j. And if de�ned,
uj(2) = {X ⊆ S(κ, λ) : uj � 2 = {〈0, j[λ]〉, 〈1, uj(1)〉} ∈ j(X)} can be
identi�ed with a measure on Pκ(λ)×Vκ concentrating on pairs (x, ux) where
x belongs to Pκ(λ) and ux is a measure on Pκx(λx). This is because in M ,
if x denotes j[λ] then x ∩ j(κ) = κ and ot (x) = λ, so uj(1) can indeed be
identi�ed with a measure on the Px∩j(κ)(ot (x)) of M .

Similarly, if de�ned, uj(3) can be identi�ed with a measure on Pκ(λ) ×
Vκ× Vκ concentrating on triples (x, u0

x, u
1
x) where x belongs to Pκ(λ), u0

x is a
measure on Pκx(λx) and u

1
x is a measure on pairs (y, u0

y) where y belongs to
Pκx(λx) and u

0
y is a measure on Py∩κx(ot (y)).

15.Vorlesung

Measure sequences

Let Pκ(λ) = {x ⊆ λ : ot (x) < κ, x ∩ κ ∈ κ}, and for x ∈ Pκ(λ) set
κx = x ∩ κ and λx = ot (x).
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Given x, y ∈ Pκ(λ) we de�ne the relation x ≺ y by

x ≺ y ⇔ x ⊆ y and ot (x) < y ∩ κ.

For in�nite cardinals κ < λ, let S(κ, λ) be the set of sequences w such
that lh(w) < κ, w(0) ∈ Pκ(λ) and w(α) ∈ Vκ for 0 < α < lh(w).

Given κ < λ and j : V → M witnessing that κ is λ-supercompact, we
generate a sequence as follows:

• uj(0) = j[λ].

• For α > 0, uj(α) = {X ⊆ S(κ, λ) : uj � α ∈ j(X)}.

uj(α) is de�ned as long as uj � α ∈ M . We denote the least α such that
uj � α /∈M by lh(uj).

So uj(1) = {X ⊆ S(κ, λ) : uj � 1 = {〈0, j[λ]〉} ∈ j(X)} is de�ned and can
be identi�ed with the measure U on Pκ(λ) derived from j. And if de�ned,
uj(2) = {X ⊆ S(κ, λ) : uj � 2 = {〈0, j[λ]〉, 〈1, uj(1)〉} ∈ j(X)} can be
identi�ed with a measure on Pκ(λ)×Vκ concentrating on pairs (x, ux) where
x belongs to Pκ(λ) and ux is a measure on Pκx(λx). This is because in M ,
if x denotes j[λ] then x ∩ j(κ) = κ and ot (x) = λ, so uj(1) can indeed be
identi�ed with a measure on the Px∩j(κ)(ot (x)) of M .

Similarly, if de�ned, uj(3) can be identi�ed with a measure on Pκ(λ) ×
Vκ× Vκ concentrating on triples (x, u0

x, u
1
x) where x belongs to Pκ(λ), u0

x is a
measure on Pκx(λx) and u

1
x is a measure on pairs (y, u0

y) where y belongs to
Pκx(λx) and u

0
y is a measure on Py∩κx(ot (y)).

We say that u is a (κ, λ)-measure sequence if u(0) is a set of ordinals of
order type λ, κ is the least ordinal not in u(0) and u(α) is a measure on
S(κ, λ) for each 0 < α < lh(u), In this case we write (κu, λu) for (κ, λ).

Given a (κ, λ)-measure sequence u, say that j is a constructing embedding
for u if j witnesses that κ is λ-supercompact and for all α with 0 < α < lh(u)
we have that uj(α) is de�ned with uj(α) = u(α). Note that possibly u(0) 6=
uj(0) (as j[λ] is not uniquely determined by the measure j induces on Pκ(λ)).

We de�ne a the class U∞ of good measure sequences as follows:
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• U0 is the class of u such that u is a (κu, λu)-measure sequence with a
constructing embedding for some (κu, λu).

• Un+1 = {u ∈ Un : for all nonzero α < lh(u), u(α) concentrates on Un}.

• U∞ =
⋂
n<ω Un.

Note that if u ∈ U∞, then it follows from the countable completeness of
the measures in u that every measure in u concentrates on U∞.

Given a u ∈ U∞, α is called a weak repeat point for u if for all X ∈ u(α)
there exists β < α such that X ∈ u(β). A (κ, λ)-measure sequence of length
(2λ

<κ
)+ contains a weak repeat point, as the measures u(α), α > 0 live on

Pκ(λ) and the latter has only 2λ
<κ

many subsets. It follows that if GCH holds
and κ is κ++-supercompact then there is a (κ, κ+)-measure sequence u with
a weak repeat point, as a witness j to κ++-supercompactness constructs a
(κ, κ+)-measure sequence of length κ+3. The following lemma (whose proof is
not di�cult) says that with a bit more supercompactness we can also require
that u be good (i.e. belongs to U∞).

Lemma 49 Let GCH hold and let j : V → M witness that κ is κ+4-
supercompact. Then j constructs a (κ, κ+)-measure sequence u such that
u ∈ U∞ and u has a weak repeat point.

The importance of measure sequences with weak repeat points is that
Radin forcings de�ned using them preserve a degree of supercompactness.

Supercompact Radin forcing

A good pair is a pair (u,A) where u ∈ U∞, A ⊆ U∞, A ⊆ S(κu, λu) and
A is u-large, that is A ∈ u(α) for 0 < α < lh(u).

We de�ne, for each u ∈ U∞, the corresponding supercompact Radin forcing
Ru.

A condition in Ru is a �nite sequence

p = 〈(u0, A0), . . . , (ui, Ai), . . . , (un, An)〉

where:
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1. un = u.

2. Each (ui, Ai) is a good pair.

3. ui(0) ∈ Pκun (λun), for i < n.

4. ui(0) ≺ ui+1(0), for i < n− 1.

(Note that in the last item above we can't write i ≤ n− 1 as un(0) is not an
element of Pκun (λun) but rather a set of ordinals of ordertype λun that may
fail to contain un−1(0) as a subset.)

Given p ∈ Ru, p = 〈(u0, A0), . . . , (ui, Ai), . . . , (un = u,An)〉 and v ∈ U∞,
we say v appears in p, if v = ui for some i < n.

Given u ∈ U∞, let πu : u(0) → λu be the collapse map. Given v ∈ U∞
with v(0) ≺ u(0), let πv,u : λv → λu be de�ned by πv,u = πu ◦ π−1

v and let
πu(v) be obtained from v by replacing v(0) by πu[v(0)].

We now de�ne the notion of extension.

Let
p = 〈(u0, A0), . . . , (ui, Ai), . . . , (un = u,An)〉

and
q = 〈(v0, B0), . . . , (vi, Bi), . . . , (vm = u,Bm)〉

be in Ru. Then q ≤ p (q is an extension of p) i�:

1. There exist natural numbers i0 < . . . < in = m such that vik = uk and
Bik ⊆ Ak.

2. If j is such that 0 ≤ j ≤ m and j /∈ {i0, . . . , in}, and i is least such that
κvj < κui , then:

• If i = n, then vj ∈ An and for all x ∈ Bj, π−1
vj

(x) ∈ An, where
π−1
vj

(x) = 〈π−1
vj

[x(0)]〉_〈x(α) : 0 < α < lh(x)〉.
• If i < n, then vj(0) ≺ ui(0), πui(v

j) ∈ Ai and for all x ∈ Bj,
πvj ,ui(x) ∈ Ai, where πvj ,ui(x) = 〈πvj ,ui [x(0)]〉_〈x(α) : 0 < α <
lh(x)〉.
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We also de�ne q ≤∗ p (q is a direct or a Prikry extension of p) i� q ≤ p
and m = n.

Let u ∈ U∞ be a (κu, κ
+
u )-measure sequence. Below are the basic facts

about the forcing Ru.

Theorem 50 Let G be Ru-generic over V . The following hold in V [G]:

1. Let C = {v(0) : v appears in some p ∈ G}. Then C is a ≺-increasing
and continuous sequence in Pκu(κ+

u ) of order type ≤ κu. Furthermore
if lh(u) ≥ κu, then ot (C) = κu.

2. κ+
u =

⋃
C, in particular κ+

u is collapsed.

3. κC = {κv(0) : v(0) ∈ C} is a club in κu.

4. (Ru,≤) satis�es the κ++
u − c.c..

5. (Ru,≤,≤∗) satis�es the Prikry property: Given any b ∈ ro(Ru) and any
condition p ∈ Ru there exists q ≤∗ p which decides b.

We now give a factorization property of Ru.

Theorem 51 Suppose that

p = 〈(u0, A0), . . . , (ui, Ai), . . . , (un = u,An)〉 ∈ Ru

and m < n. Let

p>m = 〈(um+1, Am+1), . . . , (un = u,An)〉

and
p≤m = 〈(v0, B0), . . . , (vm−1, Bm−1), (um, πum [Am])〉

where for i < m, vi = πum(ui) and Bi = πui,um [Ai].

Then p≤m ∈ Rum , p
>m ∈ Ru and there exists

i : Ru/p→ Rum/p
≤m × Ru/p

>m

which is an isomorphism with respect to both ≤ and ≤∗.
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Theorem 52 Let G be Ru-generic. Let ~v = 〈vi : i < ot (C)〉 enumerate
{v : v appears in some p ∈ G}. Then:

1. V [G] = V [~v].

2. For every limit ordinal j < ot (C), 〈v∗i : i < j〉 is Rvj -generic over V ,
where v∗i = πvj(vi), and ~v � [j, ot (C)) is Ru-generic over
V [〈v∗i : i < j〉].

3. For every γ < κ and A ⊆ γ with A ∈ V [~v], A ∈ V [〈v∗i : i < j〉]. where
j < ot (C) is the least ordinal such that γ < κvj .

Theorem 53 Let G be Ru-generic, and let λ be a cardinal of V with λ < κu.
Then λ is collapsed in V [G] if and only if λ = (κ+

v(0))
V for some v which is

a ≺-limit element of C.

Theorem 54 Let j : V →M witness κ is κ+4-supercompact and let v ∈ U∞
be a (κ, κ+)-measure sequence constructed from j which has a weak repeat
point α. Let u = v � α and let G be Ru-generic over V . Then in V [G], κ
remains λ-supercompact, where λ = (κ+4)V = (κ+3)V [G].

Projected forcing

We de�ne a �projected supercompact Radin forcing� in such a way that
the resulting quotient forcing is su�ciently homogeneous.

Suppose (u,A) is a good pair. Let π(u,A) = (π(u), π(A)) where

• π(u) = κu
_u � [1, lh(u)).

• π(A) = {π(v) : v ∈ A}.

Also let Uπ∞ = {π(u) : u ∈ U∞}. For u ∈ U∞ set π(u(α)) = the Rudin-Keisler
projection of u(α), for α > 0. I.e., a set is large for π(u(α)) i� its inverse
image under π is large for u(α). Note that π(u(α)) 6= π(u)(α).

A good pair for projected forcing is a pair (u,A) where u ∈ Uπ∞, A ⊆ Uπ∞,
A ⊆ Vκu and A is of measure one for all π(u(α)), 0 < α < lh(u).

Remark. If (u,A) is a good pair, then (π(u), π(A)) is a good pair for projected
forcing.
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Given u ∈ Uπ∞, we de�ne the projected forcing Rπ
u.

A condition in Rπ
u is a �nite sequence

p = 〈(u0, A0), . . . , (ui, Ai), . . . , (un, An)〉

where:

1. un = u.

2. Each (ui, Ai) is a good pair for projected forcing.

3. κui < κui+1 , for all i < n.

And we de�ne the extension relation:

Let
p = 〈(u0, A0), . . . , (ui, Ai), . . . , (un = u,An)〉

and
q = 〈(v0, B0), . . . , (vi, Bi), . . . , (vm = u,Bm)〉

be in Rπ
u. Then q ≤ p (q is an extension of p) i�:

1. There exists an increasing sequence of natural numbers i0 < . . . < in =
m such that vik = uk and Bik ⊆ Ak.

2. If j is such that 0 ≤ j ≤ m and j /∈ {i0, . . . , in}, and if i is least such
that κvj < κui , then v

j ∈ Ai and Bj ⊆ Ai.

We also de�ne q ≤∗ p (q is a direct or a Prikry extension of p) i� q ≤ p
and m = n.

It is easy to see that (Rπ
u,≤) satis�es the κ+

u − c.c..

Theorem 55 Let G be Rπ
u-generic over V , and let

C = {κv : v appears in some p ∈ G}.

Then C is a club of κu. Furthermore if lh(u) ≥ κu, then ot (C) = κu,

As before we have a factorization property for Rπ
u.
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Theorem 56 Suppose that

p = 〈(u0, A0), . . . , (ui, Ai), . . . , (un = u,An)〉 ∈ Rπ
u

and m < n. Let

p>m = 〈(um+1, Am+1), . . . , (un = u,An)〉

and
p≤m = 〈(u0, A0), . . . , (um, Am)〉.

Then p≤m ∈ Rπ
um , p

>m ∈ Rπ
u and there exists

i : Rπ
u/p→ Rπ

um/p
≤m × Rπ

u/p
>m

which is an isomorphism with respect to both ≤ and ≤∗.

Weak projection

Suppose that u ∈ U∞ and consider the forcing notions Ru and Rπ
π(u). We

de�ne a map π : Ru → Rπ
π(u) in the natural way by

π(〈(u0, A0), . . . , (ui, Ai), . . . , (un, An)〉) = 〈π(u0, A0), . . . , π(ui, Ai), . . . , π(un, An)〉

In general π is not a projection map, but we show that it has a weaker
property, introduced by Foreman and Woodin.

De�nition 57 π : Q→ P is called a weak projection if

1. π(1Q) = 1P.

2. π is order preserving.

3. For all p ∈ Q there is p∗ ≤ p such that for all q ≤ π(p∗) there exists
r ≤ p such that π(r) ≤ q.

The next lemma shows that π : Q → P being a weak projection is su�-
cient to imply that Q-generics yield P-generics.

Lemma 58 Suppose π : Q → P is a weak projection and H is Q-generic
over V . Let G be the �lter generated by π[H]. Then G is P-generic over V .
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Proof. Let D be a dense open subset of P. Let E = π−1[D]. Note that E
is dense in Q: Let p ∈ Q and let p∗ ≤ p be as in 5.1(3). Let q ≤ π(p∗) be
such that q ∈ D and let r ≤ p be such that π(r) ≤ q. Then π(r) ∈ D, hence
r ∈ E.

Now let p ∈ H ∩ E. Then π(p) ∈ G ∩D, and hence G ∩D 6= ∅. 2

Let us now consider π : Ru → Rπ
π(u).

Theorem 59 π : Ru → Rπ
π(u) is a weak projection, in fact for all p ∈ Ru

there is p∗ ≤∗ p such that for all q ≤ π(p∗) we can �nd r ≤ p such that
π(r) ≤∗ q.

By weak projection we can �nd 1∗ ≤∗ 1Ru such that for all q∗ ≤ π(1∗)
there exists r ∈ Ru such that π(r) ≤ q∗. In fact we may choose 1∗ to be
1Ru . It follows that π[Ru] is dense in Rπ

π(u). Also by weak projection and the

Prikry property for Ru we have that π[Ru] satis�es the Prikry property.

By Theorem 59, π[Ru] is in fact ≤∗-dense in Rπ
π(u), so we get:

Corollary 60 Rπ
π(u) satis�es the Prikry property.

Theorem 61 Let G be Rπ
u-generic over V , and let C be as in Theorem 55.

Also let ~v = 〈vi : i < ot (C)〉 enumerate {v : v appears in some p ∈ G} such
that for i < j < ot (C), κvi < κvj . Then:

1. V [G] = V [~v].

2. For every limit ordinal j < ot (C), ~v � j is Rvj -generic over V , and
~v � [j, ot (C)) is Ru-generic over V [~v � j].

Theorem 62 Suppose γ < κ, A ⊆ γ, A ∈ V [~v]. Let i < ot (C) be the least
ordinal such that γ < κvi. Then A ∈ V [~v � j].

Theorem 63 Suppose that u ∈ Uπ∞ and let G be Rπ
u-generic over V . Then

V and V [G] have the same cardinals.

The homogeneity property

Suppose that u ∈ U∞ is a (κ, κ+)-measure sequence.
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Theorem 64 For all p, q ∈ Ru, if π(p) = π(q), then there exists q∗ compat-
ible with q such that Ru/p ' Ru/q

∗.

Corollary 65 (Weak homogeneity). Suppose p, q ∈ Ru and π(p) = π(q). If
p 
 φ(α,~γ), where α,~γ are ordinals, then it is not the case that q 
 ¬φ(α,~γ).

It follows that:

Corollary 66 Suppose that G is Ru-generic and let G
π be the �lter generated

by π[G] Then:

1. Gπ is Rπ
π(u)-generic over V .

2. HODV [G] ⊆ V [Gπ].

Now we prove the main theorem. Suppose κ is a κ+4-supercompact car-
dinal and let j : V → M witness this. Let v ∈ U∞ be a (κ, κ+)-measure se-
quence constructed from j which has a weak repeat point α and let u = v � α.
Consider the forcing notions Ru and Rπ

π(u). Let G be Ru-generic over V and

let Gπ be the �lter generated by π[G]. In summary we showed:

• κ remains λ-supercompact in V [G], where λ = (κ+4)V = (κ+3)V [G].

• κ remains λ-supercompact in V [Gπ], where λ = (κ+4)V = (κ+4)V [Gπ ].

• There exists a club C ∈ V [Gπ] of κ such that for every limit point α of
C we have (α+)V [Gπ ] = (α+)V < (α+)V [G].

By part 2 of Corollary 66 we have HODV [G] ⊆ V [Gπ], in particular for
every limit point α of C we have

(α+)HOD
V [G] ≤ (α+)V [Gπ ] = (α+)V < (α+)V [G].

Claim. Let 〈κi : i < κ〉 be an increasing enumeration of C. Working in V [G],
let Q be the reverse Easton iteration for collapsing each κi+1 to κ+

i for each
each i < κ, and let H be Q-generic over V [G]. Clearly

1. CARDV [G∗H]∩(κ0, κ) = {κ+
i : i < κ}∪{κi : i < κ, i is a limit ordinal}.

2. κ remains inaccessible in V [G ∗H].
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It also follows from a result of Dobrinen-Friedman that Q is cone homo-
geneous, that is for all p, q ∈ Q there are p∗ ≤ p, q∗ ≤ q and an isomorphism
φ : Q/p∗ → Q/q∗. Hence we have

HODV [G∗H] ⊆ HODV [G].

Finally force with P = Col(ℵ0, κ0)V [G∗H] over V [G∗H] and letK be P-generic
over V [G∗H]. It is now easily seen that κ remains inaccessible in V [G∗H∗K]
and by homogeneity of P

HODV [G∗H∗K] ⊆ HODV [G∗H].

Hence
HODV [G∗H∗K] ⊆ HODV [G∗H] ⊆ HODV [G] ⊆ V [Gπ].

Thus for all in�nite cardinals α < κ of V [G ∗H ∗K] we have

(α+)HOD
V [G∗H∗K] ≤ (α+)V [Gπ ] = (α+)V < (α+)V [G∗H∗K].

Let V ∗ = V [G ∗ H ∗ K]. Then V ∗ is the required model and the theorem
follows. 2

Remark. (a) In fact we can show that κ remains measurable.
(b) If we start with a supercompact cardinal κ, then our proof shows that
we can preserve the supercompactness of κ and have (α+)HOD < α+ for a
closed unbounded set of α < κ.

Gitik has claimed an improvement: It is consistent that all regular un-
countable cardinals are inaccessible cardinal in HOD. Is it consistent that κ
is supercompact and (α+)HOD < α+ for all cardinals α < κ? This is open
(and Woodin has conjectured a negative answer).
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