
Trees, Re�ection and Approachability

1.-2.Vorlesungen

Three combinatorial properties that have played an in�uential role in
modern set theory are the following. Let κ denote a regular, uncountable
cardinal (normally greater than ω1).

TP: The Tree Property. Any κ-tree has a κ-branch.

RP: The Re�ection Property. Certain stationary subsets S of κ re�ect to an
ordinal α with a certain uncountable co�nality (i.e. S ∩α is stationary in α).

AP: The Approachability Property. Certain stationary subsets S of κ are
approachable, i.e. there is an enumeration (ai | i < κ) of (some of the)
bounded subsets of κ such that for almost all ordinals α in S, there is a club
in α of ordertype cof(α) all of whose proper initial segments are enumerated
as ai for some i < α.

In the AP, �almost all ordinals in S� means all ordinals in S ∩C for some
club C.

The tree property is a natural generalisation of König's Tree Lemma:
An in�nite, �nitely branching tree of height ω has an in�nite branch. The
Re�ection Property was �rst studied by Jensen, who proved the equivalence
of a form of it with weak compactness, assuming V = L. The Approachability
Property was introduced by Shelah in his study of when su�ciently-closed
forcing notions preserve stationarity.

In this course I'll discuss these properties individually and then look at
how they interact. We'll arrive at the Eightfold Way Theorem, asserting that
all eight Boolean combinations of TP, RP and AP are possible at double
successor cardinals. The proof of this makes use of variants of Mitchell's
forcing to make TP hold, Kunen's trick to kill TP by adding a homogeneous
Suslin tree and resurrect it by forcing with that tree, and the forcing to add a
nonre�ecting stationary set. Also to achieve the result at the double successor
of a singular cardinal we use a �Prikry-ised� version of Mitchell's forcing to
ensure the desired properties at the double successor of a measurable cardinal
that has been made singular with Prikry forcing.
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I'll now state the Eightfold Way result more precisely. Let µ = κ+ be a
successor cardinal and simply write:

TP: µ+ has the tree property.
RP: Every stationary subset of µ+ ∩ cof(< µ) re�ects to an ordinal of co�-
nality µ.
AP: The entire set µ+ is approachable.

Theorem 1 Suppose µ = κ+ where κ<κ = κ. Then assuming a weak com-
pact above µ, each Boolean combination of TP, RP, AP holds in a generic
extension in which cardinals up to and including µ are preserved.

Theorem 2 If in the previous theorem we add the hypothesis that κ is mea-
surable, then we can in addition require that κ have co�nality ω in the generic
extension.

These theorems are not the end of the story. For example, one should
prove that the Eightfold Way can also be achieved at the double successor of
small singular cardinals like ℵω+2. And the case of successors (as opposed to
double successors) of singular strong limit cardinals is not fully understood;
in particular it is not known if it is possible to have both the TP and the AP
simultaneously at such a cardinal (or both the TP and the RP simultaneously
at ℵω+1).

The Tree Property

A tree is a partial ordering T = (T,≤T ) with the property that for each
t ∈ T , Tt = the set of ≤T -predecessors of t is well-ordered by ≤T . The α-th
level of T is Tα = {t ∈ T | Tt is well-ordered by ≤T with ordertype α}. The
height of T is the supremum of {α + 1 | Tα is nonempty}.

Let κ be an in�nite regular cardinal. T is a κ-tree i� T has height κ and
for α < κ, Tα has cardinality less than κ. A κ-tree T is κ-Aronszajn i� it has
no κ-branch, i.e., there is no subset of T well-ordered by ≤T with ordertype
κ.

κ has the tree property (TP) i� there is no κ-Aronszajn tree. ℵ0 has the
TP as by König's Lemma, a �nitely-branching tree of height ω must have an
in�nite branch. Here is a brief summary of some of the many results about
the TP:
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(Aronszajn) ω1 does not have the TP.
(Specker) More generally, if τ<τ = τ then the TP fails at τ+.
(Erdös-Tarski) A strongly inaccessible cardinal has the TP i� it is weak com-
pact.
(Mitchell) The TP can hold at ω2. More generally, if τ<τ = τ and there is a
weak compact above τ one can force the TP at τ++.
(Abraham) Given a supercompact and a weak compact above it one can force
the TP at both ω2 and ω3.
(Cummings-Foreman) Given in�nitely-many supercompacts one can force
TP at all of the ℵ2+n's, n < ω.
(Magidor-Shelah) The TP holds at the successor of the supremum of ω-many
strong compacts.
(Magidor-Shelah) Assuming hugeness, the TP can be forced at ℵω+1 with ℵω
strong limit.
(Sinapova, improving Magidor-Shelah) Assuming in�nitely-many supercom-
pacts one can force the TP at ℵω+1 with ℵω strong limit.
(Neeman) Assume in�nitely-many supercompacts one can force the TP at
every ℵ2+n, n < ω, and also at ℵω+1 with ℵω strong limit.
(Friedman-Dobrinen) Assuming a weak compact hypermeasurable one can
force the TP at the double successor of a measurable.
(Friedman-Halilovic) Assuming a weak compact hypermeasurable one can
force the TP at ℵω+2 with ℵω strong limit.
(Gitik) One can force the TP at ℵω+2 with ℵω strong limit from optimal
assumptions (weaker than a weak compact hypermeasurable).
(Fontanella-Friedman) Assuming in�nitely-many supercompacts with a weak
compact above one can force the TP to hold at both ℵω+1 and ℵω+2 simul-
taneously (ℵω is not strong limit).
(Friedman-Honzik) Assuming a strong cardinal with a measurable λ of Mitchell
order λ++ above it, one can force the TP at each ℵ2+2n, n < ω together with
ℵω strong limit and 2ℵω = ℵω+2.
(Golshani-Hayut) Assuming a Woodin for supercompactness, for any β < ω1

one can force the TP at all of the ℵω·α+1's, α < β simultaneously.

So the story goes on. The natural goal was suggested by Magidor: Get
the TP to hold simultaneously at all regular cardinals greater than ℵ1.

Now back to earth. We prove some basic facts about the TP.

Theorem 3 There is an ω1-Aronszajn tree.
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Proof. We construct an ω1-tree T whose elements are bounded, increasing,
well-ordered sequences of rational numbers, ordered by end-extension. It is
clear that such a tree has no ω1-branch, as that would give an increasing
sequence of rationals of length ω1, which is impossible.

We construct the α-th level Tα of T by induction on α < ω1. We induc-
tively maintain the following property:

(∗) Tα is countable and if x belongs to Tβ, β < α and q is a rational greater
than sup(x) then x is extended by some y ∈ Tα with sup(y) < q.

T0 consists only of the empty sequence (we take sup(∅) to be −∞). To de�ne
Tα+1 from Tα, simply extend each x ∈ Tα with each rational q > sup(x). It is
clear that property (∗) is preserved. If α is a limit ordinal then for each x in
some Tβ, β < α, and each rational q > sup(x), we extend x to x1 ⊆ x2 ⊆ · · ·
so that sup(xn) < q for each n and the levels of the xn's are co�nal in α; then
put the resulting sequence

⋃
n xn into Tα. It follows that Tα is countable and

that for each x ∈
⋃
β<α Tβ and q > sup(x), x has an extension y in Tα with

sup(y) ≤ q; by choosing q′ between q and sup(x) we can in fact guarantee
sup(y) < q, which gives (∗) for α. 2

The previous proof generalises. For an in�nite cardinal λ, let Qλ be the
set of eventually-zero λ sequences of 0's and 1's, ordered lexicographically.
Then λ can be order-preservingly embedded into any open interval of Qλ.
Now the cardinality of Qλ is λ

<λ; if this is λ, then we can replace the rationals
by Qλ in the previous proof, obtaining:

Theorem 4 If λ<λ = λ then there is a λ+-Aronszajn tree. In particular if
GCH holds and λ is regular, there is a λ+-Aronszajn tree.

The consistency strength of the existence of an uncountable κ with the
tree property is that of a weak compact (= Π1

1 re�ecting) cardinal:

Theorem 5 (1) A strongly inaccessible cardinal has the tree property i� it
is weak compact.
(2) (Jensen) If κ has the tree property then κ is weak compact in L. In
particular, weak compactness and the tree property are the same in L.
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Can ω2 have the tree property? By the above we will need to use a weak
compact cardinal and kill CH to obtain the consistency of this.

Mitchell's Forcing

Theorem 6 (Mitchell) Suppose that κ is weak compact. Then in some forc-
ing extension, κ = ω2, 2ω = ω2 and ω2 has the tree property.

Proof. Mitchell's forcing �rst adds κ-many Cohen reals (with �nite support)
and then �slowly� collapses each ordinal less than κ to ω1, using an iteration
of Lévy collapses but where the α-th Lévy collapse only uses conditions
provided by the �rst α-many Cohen reals.

More precisely, let P denote Add(ω, κ), the forcing for adding κ-many Co-
hen reals with �nite support and for each α < κ, let Pα denote the subforcing
Add(ω, α). Also let Rα denote the forcing Coll(ω1, α) of the model V [Pα].

Then the desired forcing Q consists of pairs (p, f) where p ∈ P, f is a
partial function on κ with countable domain and for each α ∈ Dom(f), f(α)
is a Pα-name for a condition in Rα. Extension is de�ned in the natural way:
(q, g) extends (p, f) i� q extends p and for all α ∈ Dom(f), q|α forces that
g(α) extends f(α).

Thus for each α < κ, a Q-generic adds a collapse of α to ω1 using condi-
tions from the model V [Pα]; it is a kind of �diagonal� Lévy collapse of each
ordinal less than κ to ω1. Q has size κ so cardinals above κ are preserved.

3.-4.Vorlesungen

Also κ itself is preserved:

Lemma 7 Q is κ-cc.

Proof. Suppose that A is a maximal antichain in Q. Using the inaccessibility
of κ, let M be an ω-closed su�ciently elementary submodel of V containing
Q, A as elements which is transitive below κ, and let α beM ∩κ. Then α has
uncountable co�nality as it is regular in M and M is ω-closed. And A ∩M
is a maximal antichain in Q∩M , by elementarity. But then A∩M is in fact
a maximal antichain in Q and therefore equals A: If q belongs to Q then q|α
belongs to M by the ω-closure of M and therefore q|α is compatible with
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some element a of A ∩M ; then q is also compatible with a. So we conclude
that maximal antichains have size less than κ. 2

More interesting is the fact that Q preserves ω1 (it is neither ccc nor
countably closed). To prove this it is helpful to use projections and term
forcing.

De�nition 8 Suppose that P and Q are arbitrary partial orders and π :
Q → P. Then π is a projection if it is order-preserving and for all q ∈ Q
and p ≤ π(q) there is q∗ ≤ q such that π(q∗) ≤ p.

Lemma 9 Suppose that π : Q→ P is a projection and H is Q-generic. Then
π[H] generates a P-generic.

Proof. Suppose that D is open dense on P. Then π−1[D] is dense on Q, as
given q ∈ Q we can choose p inD below π(q) and then q∗ ≤ q with π(q∗) ∈ D.
It follows that π[H] meets D and as π is order-preserving, any two conditions
in π[H] are compatible. So π[H] generates a P-generic. 2

Now to apply this to the current context let R consist of all conditions
(p, f) in Q where p = 1P is the trivial condition of P and order R as a suborder
of Q. De�ne the map π : P× R→ Q by sending (p, (1P, f)) to (p, f).

Lemma 10 π is a projection from P× R to Q.

Proof. π is clearly order-preserving. Suppose that (p∗, f ∗) ≤ π(p, (1P, f)) =
(p, f). De�ne f ∗∗ to have the same domain as f ∗ and such that for α ∈
Dom(f ∗), f ∗∗(α) is a Pα-name which equals f ∗(α) if this extends f(α) and
equals f(α) otherwise. Then (p∗, (1P, f

∗∗)) is a condition extending (p, (1P, f))
which projects to (p∗, f ∗∗) ≤ (p∗, f ∗). 2

Therefore by Lemma 9, a generic for P× R yields a generic for Q. So to
show that Q preserves ω1 it su�ces to show that P× R does. But recall:

Lemma 11 (Easton's Lemma) If P is ccc and R is countably closed then:
(a) R is countably distributive in V [P], i.e. any ω-sequence of ordinals in
V [P× R] belongs to V [P].
(b) P is ccc in V [R].
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Now in our context, the forcings P and R that we are using are indeed
ccc and countably closed, respectively. It then follows either from (a) or from
(b) that ω1 is preserved.

Proof of Easton's Lemma. (a) Suppose that ḟ is a P×R-name for a function
from ω into Ord and choose (p0, r0) in P × R deciding a value for ḟ(0).
Then choose (p1, r1) with r1 ≤ r0 deciding a di�erent value for ḟ(0) (note
that p0, p1 are incompatible). Continue doing this through countable ordinal
stages, noting that as R is countably closed one can take a lower bound rλ of
the ri's, i < λ, at countable limit stages λ. The induction must stop at some
countable ordinal stage with some condition r0, as the pi's form an antichain.
Then extend r0 to r1 in the same way to decide possibilities for ḟ(1). After
ω steps one arrives at a condtion r∗ in R which forces ḟ to have a P-name.
So any ω-sequence of ordinals in V [P× R] belongs to V [P].
(b) Suppose that (ṗi | i < ω1) were a R-name for an antichain on P in V [R].
Then build a descending ω1-sequence (ri | i < ω1) of conditions in R such
tha ri+1 forces a value pi for ṗi. Then the pi's form an uncountable antichain
in V , contradicting the fact that P is ccc in V . 2

Another useful fact derivable from the projection analysis is that the
forcing Q does not add new branches to certain trees.

Lemma 12 Suppose that T is a tree whose height has uncountable co�nality.
(a) If P× P is ccc then P does not add a new co�nal branch through T .
(b) If P is ω − closed and the levels of T have size less than 2ω then P does
not add a new co�nal branch through T .

Proof. (a) We show that for any uncountable regular κ, if P adds a subset x
of κ such that x|α is in the ground model for all α < κ but x itself is not in
the ground model then P× P is not ccc. It su�ces to show that P is not ccc
in V [G] where G is P-generic.

Choose a sequence of conditions (pi | i < κ) in G and an increasing
sequence (αi | i < κ) of ordinals less than κ such that pi �xes x|αi (to be a
speci�c element of V ) but does not �x x|αi+1. Then choose qi+1 extending
pi to disagree with pi about x|αi+1. But then the qi+1's form an antichain as
any condition extending qi+1 disagrees with pi+1 (and therefore with pj for
all j > i) about xi+1 and therefore cannot extend qj+1 for any j > i, as qj+1

extends pj.
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Now note that a new branch through T would yield a subset of κ = the
co�nality of the height of T not in the ground model with all proper initial
segments in the ground model, contradicting the above.

5.-6.Vorlesungen

(b) Suppose that ḃ were a P-name for a new branch through T . Build
a binary tree (ps | s ∈ 2<ω) of conditions in P such that pt extends ps
when t extends s and ps∗0, ps∗1 force di�erent values for ḃ at some level αs.
Arrange that the sup α of the αs's along any in�nite branch through 2<ω is
independent of the choice of the in�nite branch. But then as P is ω-closed,
we get 2ω many possible nodes of T on level α, contrary to hypothesis. 2

The previous �No New Branches Lemma� will be important for the proof
that the tree property holds in the Mitchell forcing extension.

We have that in V [G], where G is P -generic, κ equals ω2 and there are ω2-
many reals. For the sake of contradiction, suppose that T were a κ-Aronszajn
tree in V [G]. Let Ṫ be a name for T and assume that (the trivial condition
of) Q forces that Ṫ is κ-Aronszajn. As κ is weak compact it is Π1

1 re�ecting,
and therefore there is an α < κ such that Qα = (Q restricted to α) forces
that Ṫα = (Ṫ restricted to α) is a name for an α-Aronszajn tree in V [Gα],
where Gα denotes the Qα-generic. In particular Tα = ṪGαα is an α-Aronszajn
tree in V [Gα] and therefore has no co�nal branch in that model.

But notice the following: The tree Tα surely does have a co�nal branch
in the larger model V [G], as Tα is an initial segment of the tree T = ṪG and
so we get a co�nal branch through Tα simply by choosing any node of T at
level α and considering the co�nal branch through Tα consisting of the T -
predecessors of that node. In other words, if we factor V [G] as V [Gα][G/Gα]
then the quotient-generic G/Gα is responsible for adding a co�nal branch
through the tree Tα.

We next show that the extension from V [Gα] to V [G] = V [Gα][G/Gα]
can be achieved by a forcing which looks just like Q and therefore like Q is
the projection of a Cohen product times an ω-closed �term forcing�. This will
then imply via the No New Branches Lemma that in fact G/Gα could not
be blamed for adding a co�nal branch through Tα, the desired contradiction.
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Recall that Qα consists of conditions of the form (p, f) where p belongs
to the Cohen product Pα = Add(ω, α) and f is a countable function with
domain contained in α which to each β in its domain assigns a Pβ-name f(β)
for a condition in the Coll(ω1, α) of V [Pα]. In particular Gα, the generic for
Qα, adds a generic for Pα = Add(ω, α), which we denote by G(Pα).

We de�ne an embedding π of Q into a two-step iteration Qα ∗S. Working
in V [Gα], S consists of pairs (p, f) where p belongs to Add(ω, [α, κ)) and f is
a countable function with domain contained in [α, κ) which assigns to each β
in its domain a P[α,β)-name for a condition in the Coll(ω1, β) of V [Gα][P[α,β)].
The embedding π is de�ned by sending (p, f) inQ to the pair whose �rst entry
is (p|α, f |α) and whose second entry is (p|[α, κ), f ∗) where f ∗ has domain
Dom(f) ∩ [α, κ) and for β in its domain, f ∗(β) is the translation of the
Pβ-name f(β) into a Qα-name for a P[α,β)-name.

Lemma 13 π is an order-preserving embedding with dense range.

Proof. Clearly π is order-preserving. To see that its range is dense in Qα ∗ S,
let ((p0, f0), (p1, f1)) be a condition in the latter forcing. Let p be the union
of p0 and p1; then p belongs to P = Add(ω, κ). The domain of f1 is forced
by Qα to be countable; but as any countable set in V [Qα] is covered by a
countable set in V , we may assume that Dom(f1) is a countable set in V . And
for each β in Dom(f1), f1(β) is a Qα-name for a P[α,β)-name for a condition
in the Coll(ω1, β) of V [Gα][P[α,β)]. But as the Coll(ω1, β) of V [Gα ∗ P[α,β)] is
the same as the Coll(ω1, β) of V [Pα ∗ P[α,β)] = V [Pβ], we may regard f1(β)
as a Pβ-name for a condition in the Coll(ω1, β) of V [Pβ]. Now de�ne f with
domain Dom(f0) ∪Dom(f1) by taking f(β) to be f0(β) for β < α and to be
f1(β) for β ∈ Dom(f1), regarded as a Pβ-name. Then with these de�nitions
of p and f , π((p, f)) extends ((p0, f0), (p1, f1)), as desired. 2

It is clear that S is a forcing in V [Gα] which looks in V [Gα] just as Q
looks in V . Therefore in V [Gα] we can write S as the projection of a product
P∗ × R∗ where P∗ = Add(ω, [α, κ)) and R∗ is countably closed. Note that
2ω = ω2 = α in V [Gα]. It then follows by the No New Branches Lemma (b)
that R∗ could not add a co�nal branch through the hypothesised α-Aronszajn
tree Tα. Also, P∗ × P∗ is ccc in V [Gα] and therefore also in V [Gα][R∗], by
Easton's Lemma (b). It then follows by the No New Branches Lemma (a)
that P∗ could not add a co�nal branch through Tα over V [Gα][R∗], �nishing
the proof of Mitchell's theorem. 2
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The previous proof generalises to show that if λ < µ < κ are regular
cardinals in a model of GCH and κ is weak compact, then in some forcing
extension, cardinals up to µ are preserved and κ = µ+ = 2λ has the TP
(tree property). For example, if we take λ to be any regular cardinal and µ
to be λ+ then we get the TP at λ++. Or if we take λ to be ω and µ to be
ℵω+1 then we get the TP at ℵω+2 = 2ω. Getting the TP at ℵω+2 with ℵω
strong limit is harder and requires more than a weak compact, as it entails
the failure of GCH at a singular strong limit cardinal. Halilovi¢ and I got
this result using a �weak compact hypermeasurable�; Gitik improved this to
the weakest possible large cardinal hypothesis.

Tree Property Resurrection

Kunen introduced a clever way to kill the tree property at a weak compact
and then resurrect it with further forcing. Kunen's method will be needed
for the proof of the Eightfold Way result.

Theorem 14 (Kunen) Let κ be weak compact. Then there is a 2-step itera-
tion Q ∗ R such that κ is inacessible but not weak compact in V [Q] however
weak compact in V [Q ∗ R].

Proof. Suppose that κ is weakly compact. Let Pκ be the reverse Easton
iteration of length κ which at inaccessible α < κ adds an α-Cohen set. Let
Gκ be Pκ-generic.

Now over V [Gκ], consider the following forcing Q for adding a κ-Suslin
tree:

For an ordinal α < κ, a tree of height α + 1 or α + 1-tree is a nonempty
subtree T of 2≤α with the property that each node of T of length less than α
can be extended to a node of T of length α. If T ∗ is an α∗ + 1-tree, α∗ ≥ α,
then T ∗ extends T if T equals T ∗ ∩ 2≤α. Q consists of all α+ 1-trees, α < κ,
ordered by extension.

Claim 1. Q adds a κ-Suslin tree.

Proof. Clearly Q adds a κ-tree TQ. Our strategy to prove that TQ is κ-Suslin
is as follows: Suppose that T ∈ Q forces that Ȧ is a maximal antichain in
TQ. Set T0 = T and choose a T1 ≤ T0 of height α1 + 1 which forces that each
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node of T0 is compatible with some node in Ȧ ∩ T1. Then choose T2 ≤ T1
of height α2 + 1 which forces that each node of T1 is compatible with some
node in Ȧ ∩ T2. Continue for ω steps to get T−ω = the union of the Tn's of
height αω with the property that any of its nodes s is forced by some Tn to
be compatible with some node s∗ in Ȧ∩ T−ω . Then de�ne Tω by choosing for
each node s in T−ω a co�nal branch b(s) containing s and s∗ and taking level
αω of Tω to consist of the unions of these branches b(s). Then Tω forces that
every node of TQ of height at least αω extends a node of Ȧ on some level
< ℵω and therefore Ȧ = Ȧ ∩ T−ω has size less than κ.

The above strategy would work if Q were κ-closed, but unfortunately Q is
not κ-closed, as if T0 ≥ T1 ≥ · · · is a descending sequence of αi-trees of limit
length λ < κ, the union of the Ti's may have no path of length α = supi<λ αi
and therefore not be extendible to a condition.

But this problem is easily �xed. If in addition to the Ti's we have for each
node s ∈ Ti of length < αi a node si(s) ∈ Ti of length αi extending s such
that i < j → si(s) ⊆ sj(s) for all s ∈ Ti of length < αi, then the union sλ(s)
of the si(s)'s forms a path through the union of the Ti's of length αλ and
we can extend this union to a condition Tλ whose αλ-th level consists of the
unions sλ(s) of the si(s), i < λ, for s of length < αλ.

So if we want to hit open dense sets Di, i < λ below a condition we
can do so by building a descending λ-sequence of conditions, hitting Di at
stage i + 1 and carrying along assignments si(s) ∈ Ti for s ∈ Ti of length
< αi as above in order to facilitate the de�nition of Tβ for limit β. It follows
that the above strategy works, provided we �help� the construction of our
descending sequence of trees by simultaneously selecting branches of length
αi in Ti below each node in Ti ∩ 2<αi to facilitate the existence of a lower
bound at limit stages. 2 (Claim 1 )

7.-8.Vorlesungen

Now in the model V [Gκ][TQ] de�ne the forcing R as follows: A condition
is a pair (α, sα) where α < κ and sα is a function which assigns to each node
s ∈ TQ of length less than α a node sα(s) in TQ of length α extending s. And
(β, sβ) extends (α, sα) if β ≥ α and for s in TQ of length less than α, sβ(s)
extends sα(s).

11



Claim 2. In the model V [Gκ], the 2-step iteration Q ∗ R is equivalent to
κ-Cohen.

Proof. The forcing Q∗R has {(T, (α, sα)) | T has height α+ 1 and sα assigns
to each node s ∈ T of length < α an extension of s of length α in T} as a
dense subforcing. But this dense subforcing is κ-closed of size κ and therefore
equivalent to κ-Cohen. 2 (Claim 2 )

It follows that Pκ ∗Q ∗R is equivalent to Pκ ∗ κ-Cohen. Finally we show:

Claim 3. Pκ ∗ κ-Cohen preserves the weak compactness of κ.

Proof. Pκ ∗κ-Cohen is an iteration Pκ+1 of length κ+1 where at inaccessible
α we force with α-Cohen. Let Gκ+1 be generic for Pκ+1. We must show that
in V [Gκ+1], ifM

∗ is a < κ-closed transitive model of ZF− of size κ then there
is another such model N∗ and an elementary embedding j∗ : M∗ → N∗ with
critical point κ. We may assume that M∗ is of the form M [Gκ+1] where M is
a < κ-closed transitive model of ZF− of size κ in V (as any M∗ is an element
of one of this form).

By the weak compactness of κ in V we have an elementary embedding
j : M → N with critical point κ where N is a < κ-closed transitive model
of ZF− of size κ. We just have to show that j can be lifted to some j∗ :
M [Gκ+1] → N [Hj(κ)+1] where Hj(κ)+1 is generic over N for the iteration
j(Pκ+1). We can simply take Hκ+1 to equal Gκ+1 and then build H[κ+1,j(κ)+1]

to be any generic for the forcing j(P)[κ+1,j(κ)+1] over the model N [Hκ+1] such
that H(j(κ)) extends H(κ) = G(κ); such a generic exists because the forcing
is < κ-closed and we need only meet κ-many dense sets. 2 (Claim 3.)

Now let H be Q-generic over V [Gκ]. Then in V [Gκ][H], κ is not weakly
compact as there is a κ-Suslin tree. However after further forcing with R, we
recover the weak compactness, and therefore the tree property, at κ. 2

Can the tree property hold at ℵω+2 with ℵω strong limit? Recall that the
tree property cannot hold at κ+ if κ<κ = κ, so for this we need GCH to fail
at ℵω with ℵω strong limit, a violation of the singular cardinals hypothesis.

Halilovi¢ and I were able to get this by starting with a strong enough
cardinal κ (�weak compact hypermeasurable�), using a result of Dobrinen
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and myself to get the tree property at κ++ keeping κ measurable, and then
applying a �Prikry collapse forcing� to turn κ into ℵω, preserving the tree
property at κ++ = ℵω+2 and keeping ℵω strong limit. This approach used an
iteration of κ-Sacks forcing.

Instead I'll give a proof here using an appropriate variant of Mitchell
forcing, as this will be useful later when we combine the TP with the RP
and AP.

First consider the easier problem of getting the TP at κ++ for some
singular strong limit cardinal κ of co�nality ω (not necessarily for κ = ℵω).
The idea is to start with a model V where κ is measurable, λ > κ is weakly
compact and κ remains measurable after forcing with P = Add(κ, λ). Any
model in which κ is a �Laver-prepared supercompact� has this property, as
in such models the supercompactness of κ is preserved by any further κ-
directed closed forcing such as P. (Actually much less than supercompactness
is needed, we only need that κ is �weakly compact hypermeasurable�, as
veri�ed by Halilovi¢ and myself using Woodin's �surgery� method.)

Then we apply a Prikry-ised version of Mitchell's forcing, de�ned as fol-
lows: Fix a normal measure U on κ in V [G(P)] where G(P) is P-generic over
V . For α < λ let G(Pα) denote the restriction of G(P) to Add(κ, α). We
say that α is good if Uα (= U restricted to the model V [G(Pα)]) belongs
to V [G(Pα)]) and is a normal measure there. The set of good α < λ forms
an unbounded subset of λ which contains all of its limit points of co�nality
greater than κ.

Recall that a condition in ordinary Mitchell (to get the TP at κ++ for
regular κ) was a pair (p, f) where p belongs to P and f is a function of size
at most κ which for inaccessible α < λ chooses a Pα-name for a condition in
Coll(κ+, α) of the model V [Pα]. A condition in Q = Prikry-ised Mitchell is a
triple (p, r, f) where (p, r) belongs to P∗Prikry(U) and f is a function of size
at most κ which chooses for good, inaccessible α < λ a Pα ∗Prikry(Uα)-name
for a condition in Coll(κ+, α).

As beforeQ = Prikry-ised Mitchell is λ-cc and therefore λ is not collapsed.
Also, in analogy with ordinary Mitchell forcing, Q is the projection of a
product (Add(κ, λ) ∗ Prikry(U)) × R where R is κ+-closed. As Add(κ, λ) ∗
Prikry(U) has the κ+-cc and does not add bounded subsets of κ, it follows
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by Easton's Lemma that cardinals up to and including κ+ are preserved.
Cardinals between κ+ and λ are collapsed to κ+ so after forcing with Q, λ
becomes κ++. And by virtue of the use of Prikry(U), κ becomes a strong
limit cardinal of co�nality ω.

Now we want to verify the TP at κ++ in the Q-generic extension. As be-
fore, for good inaccessible α,Q is equivalent toQα∗S, whereQα isQ restricted
to α and S is the quotient forcing, which is the projection of the product of
the Add*Prikry quotient (P ∗ Prikry(U))/G(Qα) = (P ∗ Prikry(U))/G(Pα ∗
Prikry(Uα)) with a κ+-closed forcing. By the earlier No New Branches Lem-
ma, it then su�ces to show:

Lemma 15 Let T denote the quotient (P ∗ Prikry(U))/G(Pα ∗ Prikry(Uα)).
Then T× T has the κ+-cc.

9.-10.Vorlesungen

Proof. Recall that the above quotient T consists of those conditions (q, (t, B))
in P∗Prikry(U) which are compatible with every condition inG(Pα∗Prikry(Uα)).

First we show that T is κ+-cc; a similar argument will show that its square
is also κ+-cc. Suppose not and let (p, (s, A)) be a condition in Pα∗Prikry(Uα)
which forces that ((qi, (ti, Bi)) | i < κ+) is an antichain in T. Each ti is
an initial segment of s and each qi|α is extended by p, as otherwise some
extension of (p, (s, A)) forces (qi, (ti, Bi)) out of the quotient T. And for each
i, as (qi, (ti, Bi)) is compatible with (p, (s, A)) we can choose (q−i∪p, (s, B∗i ))
extending both (qi, (ti, Bi)) and (p, (s, A)). However note that (qi∪p, (s, B∗i ))
need not be forced into T. Let q∗i denote qi ∪ p.

We can thin the set of (q∗i , (s, B
∗
i ))'s to ensure that the q∗i 's are pairwise

compatible.

Now choose any two distinct i and j and consider (q∗i , (s, B
∗
i )) and (q∗j , (s, B

∗
j )).

These conditions have the obvious lower bound (q∗i ∪ q∗j , (s, B∗i ∩ B∗j )) in
P∗Prikry(U), however once again we don't know that this condition is forced
into T; for this we would like that for each �nite x contained in s ∪A, some
extension of q∗i ∪ q∗j forces that x is contained in B∗i ∩ B∗j . But consider the
partition f : [κ]<ω → 2 de�ned by f(x) = 0 i� q∗0 ∪ q∗1 can be extended to
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force x into B∗i ∩ B∗j ; this partition has a measure one homogeneous set A∗.
As B∗i ∩B∗j has measure one, f takes the value 0 on A∗. Thus the condition
((p, (s, A∗)) forces that (q∗i ∪ q∗j , (s, B∗i ∩ B∗j )) belongs to T and this contra-
dicts the assumption that (p, (s, A)) forces (qi, (t, Bi)) and (qj, (t, Bj)) to be
incompatible.

Now suppose that we instead work not with T but with T2 and therefore
must consider pairs ((q0i , (t

0
i , B

0
i )), (q

1
i , (t

1
i , B

1
i ))) for i < κ+. As before we can

choose (q0,∗i , (s, B0,∗
i ))'s and (q1,∗i , (s, B1,∗

i ))'s to witness compatibility with
(p, (s, A)) and thin out the set of pairs to ensure that the q0,∗i 's are pairwise
compatible and the q1,∗i 's are pairwise compatible. Then choose distinct i
and j and form the pair with �rst component (q0,∗i ∪ q

0,∗
j , (s, B0,∗

i ∩ B
1,∗
j ))

and second component (q1,∗i ∪ q
1,∗
j , (s, B1,∗

i ∩B
1,∗
j )); as before we can choose a

measure one homogeneous set A∗ to ensure that some extension (p, (s, A∗))
of (p, (s, A)) forces this pair into T2, yielding a contradiction that proves the
lemma. 2

Remark. The proof above actually shows that given κ+-many conditions in
T and α < κ, α-many of these conditions have a common lower bound. The
same applies to T2.

Re�ection

Recall that we want to study the interaction between the tree property
and two other properties, re�ection and approachability. We take a look now
at re�ection.

Suppose that µ is an uncountable regular cardinal and S is a stationary
subset of µ+ consisting of ordinals of co�nality less than µ. Then S re�ects
if there is an ordinal α < λ of co�nality µ such that S ∩α is stationary in α.
Stationary re�ection holds at µ+ if every such S re�ects.

To obtain re�ection at µ+ we begin with a weak compact cardinal λ
greater than µ and then apply a forcing (such as Mitchell forcing) to turn λ
into µ+.

Theorem 16 (a) Suppose that λ is weak compact. Then for every stationary
subset S of λ there is an inaccessible α < λ such that S ∩ α is stationary in
α.
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(b) However, the latter form of re�ection at an inaccessible does not imply
weak compactness.

Proof. (a) Suppose that S is a stationary subset of λ. The statement that
λ is inaccessible and S is stationary is Π1

1. So by Π1
1 re�ection, There is an

inaccessible α < λ such that S ∩ α is stationary in α.
(b) We use Kunen resurrection. Recall that we can get a sequence of models
V ⊆ V [T ] ⊆ V [T,B] where λ is weak compact in V , T is a λ-Suslin tree in
V [T ] and λ is again weak compact in V [T,B] (resurrection of weak compact-
ness). Moreover these three models share the same bounded subsets of λ and
the forcing that adds B over V [T ] is λ-cc. Now suppose that S is a stationary
subset of λ in V [T ] (where λ is not weak compact). If S remains stationary
in V [T,B] then S re�ects in that model, as λ is weak compact there, and
therefore also in V [T ], as V [T ] and V [T,B] have the same bounded subsets
of λ. So it su�ces to prove:

Lemma 17 Suppose that S is a stationary subset of λ and P is a λ-cc forc-
ing. Then S remains stationary in V [P].

Proof of Lemma. We show that any club (in λ) in V [P] contains a club in V .
Suppose that Ċ is a name for a club in λ and for each α < λ choose a maximal
antichain Aα in P of conditions choosing a value for the α-th element of Ċ.
By the λ-cc there are fewer than λ-many possibilities for the α-th element
of Ċ for each α < λ. Now let C consist of those α < λ such that if β is less
than α then the possibilities for the β-th element of Ċ are all less than α.
Then C is forced to be contained in the set of limit points of Ċ and therefore
is forced to be a subset of Ċ.

This completes the proof of the Theorem. 2

Next we show how to get stationary re�ection at the successor µ+ of a
regular cardinal µ.

Theorem 18 Assume GCH and suppose that λ is weak compact, µ < λ
is regular and P is the forcing Coll(µ,< λ) for turning λ into µ+. Then
stationary re�ection holds at µ+ in V [P].

Proof. Suppose that Ṡ is a P-name for a stationary subset of λ consisting of
ordinals of co�nality less than µ. Then by Π1

1 re�ection there is some α < µ+
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which is inaccessible in V such that Ṡα ∩ α is stationary in α in the model
V [Pα], where Ṡα is the restriction of the name Ṡ to Pα = Coll(µ,< α). We
are done if we can show that Ṡα remains stationary in the larger model V [P].
Let Pα denote the tail forcing Coll(µ, [α, λ)) for collapsing ordinals at least
α to µ. Note that α is the µ+ of the model V [Pα].

In V [Pα] build a continuous chain (Mi | i < µ+) of su�ciently elementary
submodels of size less than µ+ containing p and Ċ which are transitive below
µ+ with the property that for each i, (Mj | j ≤ i) belongs to Mi+1 and Mi+1

is µ-closed. Also assume that theMi's are endowed with wellorders so that it
makes sense to talk about �the least element of Mi� with any given property.
As Sα is stationary we can choose a limit i of co�nality less than µ such that
Mi ∩ µ belongs to Sα. Let (iη | η < cof(i)) be increasing, continuous and
co�nal in i. Now build a descending sequence of conditions (pj | j < cof(i))
below p such that pj belongs to Mij+1 and pij+1 forces some ordinal greater

than Mij ∩ µ+ into Ċ. Then the greatest lower bound of the pj's forces that

Sα intersects Ċ, showing that the stationarity of S is preserved. 2

11.-12.Vorlesungen

Approachability

The proof of the previous result concerning re�ection after the Lévy col-
lapse of a weak compact raises a general question:

Question. Suppose that λ is regular and S is a stationary subset of λ consist-
ing of ordinals of co�nality ν. Is the stationarity of S preserved by ν+-closed
forcing?

Shelah gave a fairly thorough answer to this question: Roughly speaking,
the stationarity of S will be preserved by arbitrary ν+-closed forcings i� S
belongs to the approachability ideal.

Let θ denote a large regular cardinal and A a structure of the form
(H(θ),∈, <θ, . . .) where<θ is a wellorder ofH(θ) and . . . represents countably
many additional functions, relations and constants. Then γ < λ is approach-
able relative to A if there is an unbounded A ⊆ γ of ordertype cof(γ) such
that each proper initial segment of A belongs to SkA(γ) (the set of elements
of H(θ) which are de�nable in A from parameters less than γ; Sk stands for
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�Skolem hull�). Then S ⊆ λ belongs to the approachability ideal I[λ] i� for
some A as above, almost all elements of S are approachable relative to A
(where �almost all� means �on a club�).

Proposition 19 Suppose that λ is regular and uncountable. If S ⊆ λ ∩
Cof(ν) is stationary and belongs to I[λ] then ν+-closed forcings preserve the
stationarity of S.

Proof. Let the structure A = (Hθ,∈, <θ, . . .) witness S ∈ I[λ] for some large
θ and let P be a ν+-closed forcing, p a condition in P forcing Ċ to be a club
in λ. Expand A to A∗ so as to include P, p, Ċ. Now consider the club C of all
γ < λ such that γ = λ ∩ SkA∗

(γ) and choose γ in C ∩ S. Also let A ⊆ γ be
unbounded of ordertype ν such that all proper initial segments of A belong
to SkA

∗
(γ). Now the point is that if we successively extend p in ν steps in

the <θ-least way, at step i forcing an ordinal greater than the i-th element
of A into Ċ, then the resulting conditions belong to SkA

∗
(γ) by the choice of

A. Therefore a lower bound to these conditions forces that Ċ is unbounded
below γ. It follows that p has an extension forcing γ ∈ S into Ċ, proving that
the stationarity of S is preserved. 2

For our purposes the main fact we need about the approachability ideal
is the following, which we state without proof:

Fact. If λ = µ+ with µ regular then λ ∩ Cof(< µ) belongs to I[λ].

Armed with the above information, we can verify that we get stationary
re�ection in the Mitchell and Prikry-ised Mitchell models.

Proposition 20 Let M denote the Mitchell collapse to turn a weak compact
λ into κ++, obtaining the tree property at κ++. Then stationary re�ection
holds in V [M]: For every stationary subset S of κ++ consisting of ordinals
of co�nality at most κ there is α < κ++ of co�nality κ+ such that S ∩ α is
stationary. And the same holds for the Prikry-ised version of Mitchell forcing.

Proof. As in the case of the Lévy collapse we let Ṡ be a M-name for a
stationary subset of λ consisting of ordinals of co�nality at most κ and apply
weak compactness to get an inaccessible α < λ so that Mα, the Mitchell
forcing below α, forces Ṡα, the restriction of the name Ṡ to α, to be stationary.
Work in the model V [G(Mα)] where G(Mα) is Mα-generic and let Sα denote
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the interpretation of Ṡα. We need only show that Sα remains stationary after
forcing with the Mitchell quotient M/G(Mα). Recall that this quotient is the
projection of the product of the κ+-cc forcing Add(κ, [α, λ)) and a κ+-closed
term forcing T. As Sα consists of ordinals of co�nality at most κ, it belongs to
I[α] and therefore by the Fact mentioned above, its stationarity is preserved
by the κ+-closed forcing T. After forcing with T, α gets co�nality κ+ and by
Easton's lemma, Add(κ, [α, λ)) is still κ+-cc. So again the stationarity of Sα
is preserved.

The same proof applies to Prikry-ised Mitchell, as (after a harder argu-
ment) it is again the case that the quotient is the projection of the product
of a κ+-cc and a κ+-closed forcing. 2

Note that even though approachability holds on Cof(≤ κ) in the Mitchell
model where κ++ has the tree property, it is not clear whether it holds on
Cof(κ+). In fact we'll see that Cof(κ+) ∩ κ++ does belong to I[κ++] for the
usual version of Mitchell forcing, but there is a variant, which still gives the
tree property and re�ection at κ++, but for which approachability fails on
Cof(κ+) ∩ κ++. Again, the same applies to Prikry-ised Mitchell.

A further remark about stationary re�ection

We used a weak compact to get stationary re�ection at ω2. Actually,
Harrington-Shelah improved this:

Theorem 21 Suppose that κ is Mahlo. Then in a forcing extension, κ equals
ω2 and stationary re�ection holds at ω2, i.e. for every stationary subset S of
ω2 consisting of ordinals of co�nality ω, S ∩α is stationary for some α < ω2

of co�nality ω1.

Proof sketch. First apply P = Coll(ω1, < κ) to turn κ into ω2 with a Lévy
collapse. Then iterate for ω3 steps with supports of size at most ω1 where at
each step β one chooses a subset Xβ of Cof(ω) ∩ ω2 which does not re�ect
(i.e. such that Xβ ∩ α is nonstationary for all α < ω2 of co�nality ω1) and
then adds a club disjoint from Xβ using bounded closed conditions disjoint
from Xβ. Let Q denote this latter iteration. The desired forcing is P ∗Q.

P ∗Q is ω3-cc, so the key lemma is that Q is ω2-distributive, i.e. does not
add new ω1-sequences of ordinals, over V [P]. This completes the argument,
as in the �nal model any subset X of ω2 appears at some stage β < ω3 and
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if it does not re�ect has its stationarity killed. ω1 and cardinals at least κ
are preserved as P is ω-closed and κ-cc, and Q is an ω2-distributive, ω3-cc
forcing in V [P].

Let G be P-generic. Suppose that in V [G] we are given ω1-many dense sets
(Di | i < ω1) on Q and a condition q in Q. We want to extend q to meet all
of the Di's. Using the Mahloness of κ in V , let M be an ω-closed elementary
submodel of some large H(θ)V [G] containing all the relevant information such
that κ̄ = M∩κ is the ω2 of V [Ḡ], where P̄ denotes the forcing P restricted to κ̄
and Ḡ = G∩P̄ is P̄-generic. Also let Q̄ denote the image ofQ when transitively
collapsing M to M̄ . Then it su�ces to show that Q̄ is (equivalent to) an ω2-
closed forcing in V [Ḡ], as then we can form an ω1-descending sequence of
conditions hitting the Di's, and take a lower bound.

Note that it su�ces to work with proper initial segments Qβ of the
iteration Q, as any maximal antichain in Q is contained in Qβ for some
β < κ+ = ω3. Now we argue inductively: To know that Q̄β is (equivalent
to) an ω2-closed forcing in V [Ḡ], it su�ces to know that for γ < β in M ,
X̄γ = Xγ ∩ κ̄ is nonstationary in V [Ḡ][Q̄γ], because then we can form the
ω2-closed dense subset consisting of conditions which on component γ̄ have
max in C̄γ, where the latter is a club disjoint from X̄γ. And to complete
the (double) induction we can verify the nonstationarity of X̄β using the ω2-
closure of Q̄β: We build a generic for this forcing with a lower bound q∗ and
note that q∗ forces X̄β = Xβ ∩ κ̄ to be nonstationary (by the de�nition of
the Xβ's). We know inductively that Qβ is ω2-distributive in V [G] so X̄β is
nonstationary already in V [G] and therefore as the forcing P̄∗ Q̄β is a regular
subforcing of V [P] with an ω-closed quotient, X̄β is already nonstationary in
V [Ḡ][Q̄β], completing the induction. 2

13.-14.Vorlesungen

The Eightfold Way

Let µ be a regular uncountable cardinal. Then we consider all eight
Boolean combinations of the following three properties of µ+.

TP (Tree Property): There is no µ+-Aronszajn tree.
RP (Re�ection Property): If S is a stationary subset of µ+ ∩ Cof(< µ) then
S re�ects, i.e. S ∩ α is stationary in α for some α < µ+ of co�nality µ.
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AP (Approachability Property): µ+ belongs to the approachability ideal I[µ+],
i.e. there exists a list (xi | i < µ+) of bounded subsets of µ+ such that almost
all α < µ+ are approachable relative to ~x, i.e. there is a club c in α all of
whose proper initial segments belong to {xi | i < α}.

Theorem 22 Let κ be a regular cardinal with κ<κ = κ and let µ be κ+. Then
(given a weak compact above κ) for each Boolean combination Φ of TP, RP
and AP there is a generic extension preserving cardinals up to µ in which Φ
holds. If κ is measurable then we can also ensure that κ has co�nality ω in
these generic extensions.

Below we establish the �rst conclusion (where κ need not be measur-
able) and later observe that our arguments also work to handle the second
conclusion.

Easiest Cases

Suppose that we add a κ+-Cohen set. Then we preserve cardinals up to
µ = κ+ and get 2κ = κ+, hence µ<µ = µ. From this it follows that there is a
µ+-Aronszajn tree and therefore TP fails at µ+. Also we have AP:

Lemma 23 Suppose that µ<µ = µ. Then AP holds at µ+.

Proof. The hypothesis implies that (µ+)<µ = µ+ so we can list all subsets of
µ+ of size less than µ as ~x = (xi | i < µ+). As µ<µ = µ there are club-many
α < µ+ so that all bounded subsets of α of size < µ are listed as xi for some
i < α. Suppose that c is a club in such an α of ordertype cof(α); then each
proper initial segment of c is a bounded subset of α of size < µ and therefore
we see that α is approachable relative to ~x for club-many α's. 2

So by adding a µ-Cohen set we get both ∼ TP and AP. To get ∼ RP we
then force a non-re�ecting stationary set:

Lemma 24 Suppose that λ is regular and uncountable. Then there is a forc-
ing P that adds no bounded subsets of λ and adds a subset S of λ such that
S∩α is nonstationary for each α < λ of uncountable co�nality and S∩Cof(δ)
is stationary for each regular δ < λ.
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Proof. We force with �everywhere nonstationary� bounded subsets of λ: A
condition in P is p : |p| → 2 where |p| < λ and for all α ≤ |p| of uncountable
co�nality, p(ᾱ) = 0 for club-many ᾱ < α. Clearly S = {β < λ | p(β) = 1
for some p ∈ G} (where G is the generic) has the property that S ∩ α is
nonstationary for each α < λ; we must check that P does not add bounded
subsets of λ and that S ∩ Cof(δ) is stationary for each regular δ < λ.

Suppose that p is a condition, δ < λ is regular, (Di | i < δ) are dense and
Ċ is a name for a club in λ. We show that p can be extended to meet all of
the Di's and to force some ordinal in Ċ of V -co�nality δ into S ∩ Ċ.

Let (Mi | i < δ) be a continuous chain of elementary submodels of some
large (H(θ), <θ) (where <θ is a wellorder of H(θ)) such that Mi ∩ λ = λi is
an ordinal and (Mj | j ≤ i) belongs to Mi+1 for each i < δ. We also assume
that M0 contains all of the relevant parameters (p, Ċ, (Di | i < δ), ...). Then
we can build a descending sequence (pi | i < δ) of conditions below p such
that pi is an element of Mi+1 for each i and pi+1 both belongs to Di and
forces some ordinal at least λi to belong to Ċ. To ensure that we can take
lower bounds at limits, we also require that pi take the value 0 at λi; this
ensures that pi =

⋃
j<i pj takes the value 0 on a closed unbounded subset of

λi for limit i. Extend the union of the pi, i < δ, to a function of length λδ + 1
by assigning the value 1 at λδ to ensure that λδ belongs to S. Then this is a
condition extending p which meets all of the Di, i < δ, and forces λδ into Ċ.
2

Analogously to Kunen's result that λ-Cohen is equivalent to a two-step
iteration where one adds a λ-Suslin tree and then adds branches to it, we
have the following result, which we'll need later:

Lemma 25 Let P be the forcing above to add a nonre�ecting stationary sub-
set S of the uncountable cardinal λ, where λ<λ = λ. Let Q be the forcing that
adds a club disjoint from S using bounded, closed conditions disjoint from S.
Then P ∗Q is equivalent to λ-Cohen forcing.

Proof. Consider the dense subset of P ∗ Q consisting of pairs (p, c) where p
belongs to P, c is closed and bounded, |p| = max(c) and p takes the value 0
on c. This dense subset is λ-closed and as λ<λ = λ, it has size λ. It follows
that P ∗Q is equivalent to λ-Cohen forcing. 2
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Case 1: ∼ TP, AP and ∼ RP. We add a κ+-Cohen set to guarantee ∼ TP
and AP at µ+ = κ++. Then add a nonre�ecting stationary set S to µ+ to
get ∼ RP. The latter forcing does not add subsets of µ and therefore we still
have µ<µ = µ and therefore ∼ TP and AP.

Case 2: ∼ TP, AP and RP. Again we add a κ+-Cohen set to guarantee
∼ TP and AP. Now assuming that we have a weak compact λ greater than
κ, we follow Baumgartner and use Coll(µ,< λ) to ensure the RP at µ+. As
this forcing does not add bounded subsets of µ we still have µ<µ = µ and
therefore ∼ TP and AP.

15.Vorlesung

The Eightfold Way

Less easy cases

Case 3: TP, AP and RP.

We verify these in the standard Mitchell model. Recall that this model
is obtained by starting with κ < λ, κ = κ<κ and λ weak compact and using
Mitchell's forcing Q to turn λ into κ++ and obtain the TP at κ++. Conditions
in Q are pairs (p, f) where p belongs to Add(κ, λ) and f is a function of size at
most κ whose domain consists of inaccessible α between κ and λ, and where
f(α) is an Add(κ, α)-name for a condition in the Coll(κ+, α) of V [Add(κ, α)].
We have veri�ed that TP and RP hold in Mitchell's model; we now verify
that AP does too.

To do so we make just a very small modi�cation to Mitchell's forcing: We
allow the domains of the f 's to consist of arbitrary strong limit cardinals less
than λ of co�nality greater than κ, not only of inaccessibles between κ and
λ.

Now note that for strong limit α < λ of co�nality greater than κ the
forcing Q adds a function gα from κ+ co�nally into α such that gα|i belongs
to V [Add(κ, α)] for each i < κ+. This is because it adds a Coll(κ+, α)-generic
over V [Add(κ, α)]. And if ~x = (xi | i < λ) is a list of all size at most κ subsets
of λ, then for almost all strong limit α < λ of co�nality greater than κ (i.e.
for all such in a club), the size at most κ subsets of α in V [Add(κ, α)] are

23



exactly the (xi | i < α). It follows that we get approachability relative to ~x
for almost all ordinals less than κ++ = λ of co�nality κ+. Approachability
for ordinals of co�nality at most κ follows from Shelah's general result that
Cof(≤ κ) ∩ κ++ must belong to I[κ++].

Case 4: TP, AP and ∼ RP. Consider the two-step iteration Q∗R where Q is
the (mild variant of) Mitchell forcing above and R is the forcing that adds a
nonre�ecting stationary subset S of κ++ (i.e. S is a stationary set of ordinals
of co�nality at most κ such that S ∩ α is not stationary in α for α < κ++ of
uncountable co�nality). Clearly ∼ RP holds in V [Q ∗ R]. Also AP holds in
this model as it is upwards-absolute to models that don't change cardinals.
It remains to verify TP.

Our strategy is to �rst show that the TP holds in V [Q ∗ Add(κ++, 1)]
where Add(κ++, 1) is κ++-Cohen forcing. Then we use:

Lemma 26 Suppose κ<κ = κ and 2κ = κ++. Let S be a nonre�ecting sta-
tionary subset of κ++ and T a κ++-tree. Then the forcing S that kills the
stationarity of S does not add a new co�nal branch through T .

This lemma implies that TP holds in V [Q ∗ R], as if T were a κ++-
Aronszajn tree in this model, the lemma implies that T is still κ++-Aronszajn
in V [Q ∗ R ∗ S] = V [Q ∗ Add(κ++, 1)], contradicting the fact that the TP
holds in this last model.

Proof of Lemma. Suppose that ḃ were an S-name for a new co�nal branch
through T . Choose M to be an elementary submodel of some large H(θ)
which is < κ-closed of size κ+ and whose intersection with κ++ is an ordinal
α of co�nality κ+. Also assume that M contains all relevant parameters.

As S is non-re�ecting we may choose a club C in α of ordertype κ+

disjoint from S. Now build a tree of conditions (qs | s ∈ 2<κ) in S together
with a tree of nodes (ts | s ∈ 2<κ) such that:

(a) qs, ts are in M for all s.
(b) qs forces that ts lies on ḃ.
(c) max(qs) belongs to C.
(d) If s∗ extends s then qs∗ ≤ qs and ts∗ is a node extending ts.
(e) For all s, ts∗0 and ts∗1 are incomparable in T .
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The construction is straightforward using the facts that M is < κ-closed,
C is disjoint from S and ḃ is forced to be a new branch through T .

Now for each x ∈ 2κ we get a condition qx below the qx|i, i < κ, and then

can extend qx to rx deciding where ḃ hits level α = M ∩κ++ of T . This gives
2κ = κ++-many distinct nodes on level α of T , contradicting the fact that T
is a κ++-tree. 2

Remark. The same proof yields a similar result when κ is singular of co�nality
ω: Suppose that κ is singular of co�nality ω, 2κ = κω = κ++, S is a non-
re�ecting stationary subset of κ++, T is a κ++-tree and S is the forcing that
kills the stationarity of S. Then S does not add a new co�nal branch through
T . This is needed to handle Case 4 when κ is made singular of co�nality ω
using Prikry forcing.

16.-17.Vorlesungen

To complete Case 4 we have to show that the TP holds at κ++ in V [Q ∗
Add(κ++, 1)]. To obtain this we have to modify Mitchell forcing Q again,
to a forcing which we call Q∗. The idea is to �fold into� Q approximations
Add(α, 1) to Add(λ, 1) for inaccessible α < λ. This will enable us to verify
the TP in the same way as for Q, by writing the quotients as the projection
of nice products.

Recall that conditions in Q are pairs (p, f) where p belongs to Add(κ, λ)
and f is a function of size at most κ which at strong limit α < λ of co�-
nality greater than κ in its domain assigns an Add(κ, α)-name f(α) for a
condition in Coll(κ+, α). Now we add a third component: Conditions in Q∗
are triples (p, f, q) where (p, f) belongs to Q and q is a function with Easton
domain which at inaccessible α < λ assigns a Q∗α-name for a condition q(α)
in Add(α, 1) (where Q∗α denotes the inductively-de�ned set of triples (p̄, f̄ , q̄)
in Q∗ such that p̄ belongs to Add(κ, α) and f̄ , q̄ have domains contained in
α).

By Easton domain we mean that the domain of f is bounded below any
inaccessible, including λ. Thanks to this restriction the forcing Q∗ is λ-cc and
therefore preserves λ.

We now verify the TP in V [Q∗∗Add(λ, 1)]. Let G(Q∗)∗g beQ∗∗Add(λ, 1)-
generic and suppose that T were a λ-Aronszajn tree in V [G(Q∗) ∗ g]. Using
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the weak compactness of λ, choose an inaccessible α < λ such that T |α is
an α-Aronszajn tree in V [G(Q∗|α) ∗ g|α] where G(Q∗|α) is the restriction
of G(Q∗) to the forcing Q∗|α. Now T |α has a branch in V [G(Q∗) ∗ g] (as
any node of T at level α determines such a branch) and since Add(λ, 1) does
not add bounded subsets of λ, T |α has a branch in V [G(Q∗)]. We can view
V [G(Q∗)] as a Q∗/G(Q∗|α) ∗ g|α)-generic extension of V [G(Q∗|α) ∗ g|α)], as
the forcing Q∗ adds a generic for Add(α, 1) over V [G(Q∗|α)]. Note that the
tree T |α lives in the model V [G(Q∗|α) ∗ g|α)].

Now apply Avraham's trick using term-forcings to argue that the quotient
Q∗/G(Q∗α)∗g|α is the projection of a product Add(κ, [α, λ))×T×R where T
and R are κ+-closed. And the square of Add(κ, [α, λ)) is κ+-cc, so by earlier
lemmas, the quotient Q∗/G(Q∗|α) ∗ g|α) cannot add a branch through T |α,
a contradiction.

Remark.Of course in the last step of the above proof we know that Add(κ, [α, λ))
is in fact κ+-Knaster, but in the case of Prikry-ised Mitchell we only get that
the square is κ+-cc, which su�ces for the desired contradiction.

This completes Case 4 of the Eightfold Way.

We are left with the 4 cases in which AP fails. For these cases we need a
variant of Mitchell forcing Q+ which kills the AP. A condition in Q+ is a pair
(p, f) as in Q where p belongs to Add(κ, λ) and f is a function of size at most
κ which for α < λ in its domain assigns an Add(κ, α)-name for a condition
in Coll(κ+, α); however now we require that the domain of f consist solely of
successor inaccessibles (i.e. inaccessibles which are not limits of inaccessibles)
less than λ.

The proofs of TP and RP at λ = κ++ in V [Q+] are just as with the
standard Mitchell forcing Q. The only signi�cant di�erence between Q and
Q+ is that the former gives approachability whereas the latter does not.

To see this, �rst note that in V [G(Q+)] there is a largest subset S of
λ∩Cof(κ+) in the approachability ideal I[λ] (modulo clubs): De�ne S to be
the set of α of co�nality κ+ such that there is a club c in α of ordertype κ+

all of whose proper initial segments belong to V [G(Add(κ, α))]. If (xi | i < λ)
witnesses that T is a subset of λ∩Cof(κ+) in I[λ] then for almost all α < λ of
co�nality κ+, all xi of size at most κ with i < α belongs to V [G(Add(κ, α))]
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and therefore T is contained in S modulo a club. And S is witnessed into I[λ]
by any sequence (xi | i < λ) which enumerates the size at most κ subsets of
λ.

So to show that approachability fails, it su�ces to �nd a stationary subset
B of λ ∩ Cof(κ+) which is disjoint from S. We take B to be the stationary
set of α < λ such that α is a limit of inaccessibles and 2κ = κ++ = α in
V [Q+|α].

Claim. B is disjoint from S.

Proof of Claim. Suppose that α belongs to B. If α also belongs to S then there
is a club c in α of ordertype κ+, all of whose proper initial segments belongs
to V [G(Add(κ, α))]. Equivalently, there is an increasing, co�nal function g
from κ+ into α such that for i < κ+, g|i belongs to V [G(Q+|α)]. Of course
g itself does not belong to this model as α is κ++ there. So the function g is
added over V [G(Q+|α)] by the quotient forcing Q+/G(Q+|α).

Now note that α is a limit of inaccessibles and therefore not in the domain
of f for any condition (p, f) in Q+. So if we let x denote G(Add(κ, λ))(α),
the κ-Cohen with index α added by G(Add(κ, λ)), then α is still κ++ in
V [G(Q+|α) ∗ x] and g is added by the quotient Q+/G(Q+|α) ∗ x. (I.e., a
κ-Cohen is added over V [G(Q+|α)] before α gets collapsed.)

Now as before the quotient Q+/G(Q+|α)∗x is the projection of a product
Add(κ, [α+1, λ))×T where T is a κ+-closed forcing. First note that T cannot
add g over V [G(Q+|α) ∗ x], as if ġ were a T-name for g then we could build
a tree of height κ of conditions in T such that lower bounds of distinct
branches force di�erent information about ġ; then a lower bound of some
branch of this tree forces that x can be calculated from ġ|i for some i < κ+,
contradicting the hypothesis that ġ|i is forced to belong to V [G(Q+|α)]. But
also Add(κ, [α+1, λ)) cannot add g over V [G(Q+|α)∗x∗G(T)], as its square
is κ+-cc. So α cannot belong to S. 2

We can now handle the ∼ AP cases.

Case 5. ∼ AP, TP, RP.
Force with Q+.
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Csae 6. ∼ AP, ∼ TP, RP.
First prepare with a reverse Easton iteration that adds an α-Cohen set to
inaccessible α < λ; the point of this is that if we then add a λ-Cohen we
ensure the weak compactness of λ. Also, even if we don't add the λ-Cohen,
λ is nonetheless Mahlo.

Now force with T×Q+ where T adds a λ-Suslin tree. This kills the TP, as
the λ-Suslin tree added by T has no co�nal branch after forcing with Q+ as
(Q+)2 is λ-cc. As λ is still Mahlo after forcing with T, we also see that ∼ AP
holds (as the argument that Q+ kills the AP only used the Mahloness of λ).
To see that the RP holds, note that if we force to add a branch through the
tree added by T, the three-step iteration is equivalent to Add(λ, 1)×Q+ and
as λ is weakly compact after forcing with Add(λ, 1), we get the RP in this
model. It follows that we also have the RP in the smaller model V [T×Q+], as
the forcing to add a branch is λ-cc and therefore preserves stationary subsets
of λ.

Case 7. ∼ AP, TP, ∼ RP.
Force with Q+ ∗ S where S adds a nonre�ecting stationary set. Clearly we
get ∼ RP. And as S is stationary-preserving (it is a regular subforcing of
λ-Cohen, which is λ-closed), the witness to ∼ AP added by Q+ is still sta-
tionary, so we have ∼ AP. Finally, note that Q+ was designed to ensure the
TP after forcing with λ-Cohen and as the forcing to kill the stationarity of
the set added by S does not add branches through λ-trees, we also have the
TP in V [Q+ ∗ S].

Case 8. ∼ AP, ∼ TP, ∼ RP.
Force with Q+ × S × T where S adds a nonre�ecting stationary subset of λ
and T adds a λ-Suslin tree. This can be viewed as an iteration in any order
so we get ∼ RP and ∼ TP. As λ is still Mahlo after forcing with S × T we
also get ∼ AP.

This completes the Eightfold Way.

18.Vorlesung

The Eightfold Way: Further work

We showed that any Boolean combination of AP, TP and RP can be
forced to hold at κ++ when κ is regular and there is a weak compact cardinal
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above κ. Moreover, if κ is measurable, we can simultaneously make κ singular
of co�nality ω.

There is more work to be done. Note that the consistency strength of TP
is a weak compact, but of RP and ∼ AP only a Mahlo.

Question 1. In the ∼ TP cases, can one get by with just a Mahlo instead of
a weak compact above κ?

For ∼ TP, AP and ∼ RP we can simply force GCH at κ and then add a
nonre�ecting stationary subset of κ++.

For ∼ TP, ∼ AP and ∼ RP, we can force with the product T × Q∗ × S
where T adds a λ-Suslin tree, Q∗ is our version of Mitchell which kills AP
and S adds a nonre�ecting stationary subset of λ. We can view this as a
three-step iteration in any order, so we easily get ∼ TP and ∼ RP. We also
get ∼ AP as λ is still Mahlo after forcing with T× S.

For ∼ TP, AP and RP we force GCH at κ and then apply the Harrington-
Shelah forcing to get RP. As we still have the GCH at κ we have ∼ TP and
AP.

I'm not sure how to do the remaining case, ∼ TP, ∼ AP and RP from
just a Mahlo. We can �rst force RP at λ keeping λ Mahlo and then, if λ is
not weak compact, continue by forcing with Q∗. Then we have ∼ TP and
∼ AP. What is missing is a proof that we still have RP.

Question 2. If κ is hypermeasurable can we also get the co�nality of κ to be
ω1 in the Eightfold Way?

This might not be easy, as we have to generalise our analysis of Cohen
followed by Prikry quotients to Cohen followed by Magidor quotients, where
Magidor forcing is the analogue of Prikry forcing for getting co�nality ω1.

Question 3. What can be said about the Eightfold Way at successors of
weakly inaccessibles and at successors of singulars?

There is evidence that not all eight Boolean combinations of AP, TP and
RP are consistent at the successor of a singular cardinal.
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Question 4. Can one achieve the Eightfold Way for adjacent double-successors
of regulars simultaneously and independently (Sixtyfourfold Way)?

So ends our discussion of the Eightfold Way. We'll now turn to something
completely di�erent. (The only thing in common with the Eightfold Way is
that the next topic was also explored by the same AIM group: Cummings,
Magidor, Rinot, Sinapova and myself.)

Ordinal de�nability at singulars

We prove the following result of Shelah.

Theorem 27 Suppose that κ is singular of uncountable co�nality. Then for
some subset x of κ, all subsets of κ belong to HODx, the class of sets which
are hereditarily de�nable from ordinals and x.

Proof. Let κ be a strong limit cardinal of uncountable co�nality µ. Let x be
a subset of κ such that in L[x] one �nds an enumeration (tη | η < κ) of all
elements of H(κ) as well as a sequence (αi | i < µ) co�nal in κ.

To each set X ⊆ κ we associate the function fX : µ→ κ, where fX(i) = η
for the unique η such that X ∩ αi = tη. Note that if X, Y are distinct then
fX , fY di�er on a �nal segment of µ. De�ne an ordering ≺ of the subsets of κ
by X ≺ Y i� fX(i) is less than fY (i) on a �nal segment of µ. As µ is greater
than ω, this order is wellfounded.

For any ordinal α let Rα denote the subsets of κ of ≺-rank α. If X, Y
are distinct elements of Rα then fX(i) > fY (i) for co�nally-many i < µ,
else X ≺ Y . We claim that Rα has size at most 2µ and hence size less than
κ. If not, then let (Xj | j < (2µ)+) be distinct elements of Rα and de�ne
a colouring c of pairs from (2µ)+ by c(j0, j1) = i for the least i such that
fXj0 (i) > fXj1 (i). By the Erd®s-Rado Theorem, c has a homogeneous set of
ordertype µ+, which is impossible as even a homogeneous set of ordertype ω
yields an in�nite descending sequence of ordinals.

Now de�ne a wellorder ≺α of Rα: Let Aα be the union of the Range(fX)
for X ∈ Rα. Then Aα has size at most 2µ × µ < κ and let gα be the order-
preserving bijection between Aα and its ordertype. Then for X in Rα, gα ◦fX
is an element of H(κ) and we order Rα by X ≺α Y i� gα ◦ fX appears before
gα ◦ fY in the enumeration (tη | η < κ) of H(κ).
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Putting together the wellorders ≺α yields a wellorder of the subsets of κ
which is de�nable from x. And each subset of κ appears as the β-th element
of this wellorder for some ordinal β and therefore is de�nable from x together
with an ordinal, i.e. belongs to HODx. 2
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