
The Hyperuniverse

1.Vorlesung

The Hyperuniverse H is the collection of all countable transitive models
of ZFC

The Hyperuniverse is interesting for 3 reasons:

• Much of set theory is about building transitive models of ZFC.
• By Löwenheim-Skolem, the �rst-order properties of these models all appear
in models of the Hyperuniverse.
• The Hyperuniverse is closed under all techniques for building new countable
transitive models from old ones and therefore provides the broadest range of
possibilities for natural interpretations of set theory.

The Hyperuniverse is also a tool for understanding set-theoretic truth
through the The Hyperuniverse Programme. The general idea of this pro-
gramme is the following:

• Elements of the Hyperuniverse provide possible pictures of V which mirror
all possible �rst-order properties of V .
• We can formulate natural criteria for preferred elements of the Hyperuni-
verse based on their status within the Hyperuniverse as a whole.
• Under the assumption that �rst-order properties of the real universe are
mirrored by preferred elements of the Hyperuniverse, we can regard the �rst-
order properties shared by these preferred universes as being �true� in V .

In this course we will however deal only with the the mathematical aspects
of the Hyperuniverse. This work raises numerous issues in forcing, de�nabil-
ity, large cardinals, determinacy and in�nitary logic.

But �rst we have to clear up one point: Consistently with ZFC, the Hy-
peruniverse is empty! For a rich theory we therefore impose the assumption
that every real belongs to a transitive model of ZFC. This assumption is
rather modest from a mathematical point of view (it is much weaker than an
inaccessible in consistency strength) yet it su�ces to yield a robust structure.
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Structural Features of the Hyperuniverse

I'll sometimes use the word �universe� to mean element of H, i.e. a count-
able transitive model of ZFC.

Let's start with some simple observations about extensions of universes.
First we need a pair of de�nitions.

De�nition 1 Suppose that M is a universe. A width-extension of M is a
universe containing M with the same ordinals as M . A height extension of
M is a universe N containing M such the same Vα's as M for α an ordinal
of M .

Thus if N is a height extension of M , either M equals N or M equals
V N
β where β = Ord(M).

Proposition 2 (a) There is an element of H which is smallest under inclu-
sion.
(b) Every universe has continuum-many width-extensions.
(c) There are universes with no proper height-extensions.
(d) If there is a universe with an inaccessible cardinal then there is one with
a proper height-extension.

Proof. (a) Let M be any universe. By Gödel the L of M is also a universe
and equals Lβ where β = Ord(M). Thus Lα where α is least so that Lα is a
universe is contained in all universes.
(b) Let M be a universe and consider P = Cohen forcing. As M is countable
there are reals which are P-generio overM , and in fact we can build a perfect
set of such P-generics: List the dense subsets of P which belong to M as
(Dn | n < ω) and de�ne Cohen conditions (ps | s ∈ 2<ω) so that ps∗0, ps∗1
are incompatible extensions of ps hitting Dn where n is the length of s. Any
in�nite branch b through 2<ω yields a Cohen-generic by taking the union of
the corresponding conditions ps for s a �nite initial segment of b. If b0, b1 are
distinct then we get distinct Cohen generics. It follows that we get continuum-
many distinct Cohen width-extensionsM [b] as there are continuum-many b's
and each width-extension contains only countably many b's. [Remark: With
more care one can arrange that distinct b's aremutually-generic and therefore
any two M [b]'s are distinct.]
(c) Suppose that the universe M has a proper height-extension N . Then in
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N we can take a countable elementary submodel ofM and form its transitive
collapse. AsM is uncountable in N (indeed it has size a strong limit cardinal
of N) this transitive collapse witnesses that M is not the smallest universe.
So the smallest universe has no proper height-extension.
(d) If M has an inaccessible κ then the universe V M

κ has a proper height-
extension, namely M . 2

Remark. Our background assumption that every real belongs to a universe is
not su�cient to obtain the conclusion of (d) above. Indeed, this assumption
holds if there is an uncountable transitive model of ZFC containing all of the
reals but to obtain a proper height-extension one needs a universe with a Vα
satisfying ZFC, a stronger property.

2.,3.Vorlesungen

Other notions of width-extension.

Let M,N be universes of the same ordinal height.

M is an inner model of N i� N is a width-extension of M
M is a strong inner model of N i� in addition N satis�es replacement for
formulas with M as an additional unary predicate
M is a de�nable inner model of N i� in addition M is N -de�nable

Clearly �inner model� and �de�nable inner model� are transitive notions.

Proposition 3 The notion of �strong inner model� is not transitive, and
therefore the three notions of inner model are distinct.

Proof. Start with V0 � V = L. Let C0, C1 be generic over V0 for∞-Cohen, the
forcing that adds a Cohen class of ordinals. Also arrange that C0, C1 agree
except on a co�nal subset of Ord(V0) of ordertype ω. Force over (V0, C0) to
add an ℵ2×α+1-Cohen generic for α in C0, using an Easton product. This is
the model V1. Then force over (V1, C0) to add an ℵ2×α+1-Cohen generic for
all α not in C0 using an Easton product de�ned in V0; this is the model V2.
(Note that V2 is generic over V0 for the Easton product of the ℵ2×α+1-Cohen
forcings for all α.) Finally, force over (V2, C1) to add an ℵ2×α+2-Cohen generic
for α in C1; this is the model V3.
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Then (V2, V1) and (V3, V2) are models of ZFC but both C0 and C1 are
de�nable in (V3, V1) so the latter is not a model of ZFC. 2

Universes M,N are compatible if they have a common width-extension.

Proposition 4 There are incompatible universes of the same ordinal height.

Proof. Let C be a real coding α. Build reals A,B which are Cohen generic
over Lα and have the following property: Let (kn | n ∈ ω) enumerate the
places where A,B di�er in increasing order; then A(kn) = 0 i� n belongs to
C. Then Lα[A], Lα[B] are incompatible universes, as C ≤T (A,B). 2

A universe M of height α is a node for comparability i� every universe
of height α is comparable with M , i.e., either contains M or is contained in
M . M is a node for compatibility i� every universe of height α is compatible
with M .

Obviously Lα is a node for comparability.

Proposition 5 Suppose that M is a universe of height α which is a node
for comparability. Then M equals Lα.

Proof. There is an uncountable set of reals X such that any two distinct
elements of X are mutually Cohen over Lα. If M is contained in Lα[R] for
two distinct R in X then M = Lα. Otherwise M must contain all but one
element of X, contradicting its countability. 2

Open Question: Is Lα the only node for compatibility of height α? I.e., if M
is a universe of height α which is compatible with all universes of height α,
must M equal Lα?

Proposition 6 Suppose that M has height α and contains an in�nite subset
A of ω which is sparse over Lα, i.e., such that for any f : ω → ω in Lα the
interval (n, f(n)) is disjoint from A for in�nitely many n in A. Then M is
not a node for compatibility.

Proof. Using A we can build a Cohen real R so that R codes any real (such
as a code for α) on A. Then Lα[R] and M are incompatible universes.
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Here are the details. Suppose that A is sparse over Lα. Let R be a real
that codes α; we will code R into the pair (A,C) where C is Cohen over
Lα. Suppose that D is dense for Cohen forcing and belongs to Lα. Consider
the function f in Lα that given n chooses the least f(n) so that any Cohen
condition of length n+ 1 has an extension in D of length at most f(n). As A
is sparse we can choose n in A so that f(n) is less than the least element of
A greater than n. De�ne the Cohen condition p to be 0 up to and including
n, extend it to a Cohen condition q in D of length at most f(n) and then
extend q to p0 with 0's up to length n∗, where for some k, n∗ is the k-th
element of A and k codes a �nite initial segment of the real R; �nally p has
length n∗+ 1 and assigns the value 1 at n∗. Then repeat this for all dense D
in Lα, ensuring that if the resulting Cohen generic C assigns 1 on the k-th
element of A then k codes a �nite initial segment of R (and this happens
for in�nitely many k). Then using C and A we can recover in�nitely many
initial segments of R and therefore all of R. 2

Corollary 7 If M has height α and contains a function f : ω → ω that is
unbounded over Lα (i.e. not dominated by a function in Lα), then M is not
a node for compatibility.

Proof (Lyubomyr). It su�ces to show that the hypothesis implies that M
contains a set which is sparse over Lα (and therefore the existence of an
unbounded function is equivalent to the existence of a sparse set).

Aassume that f is strictly increasing and let A be the range of f . We claim
that A is sparse over Lα. Let g : ω → ω in Lα be strictly increasing and such
that g(0) > 0; we need to show that the set C = {n | g(f(n)) < f(n+ 1)} is
in�nite. Set h(0) = g(0) and h(k+1) = g(h(k)) for all k. (So h(n) = gn+1(0).)
We show that the set B = {k | [h(k), h(k+1))∩A = ∅} is in�nite. Otherwise
there exists k0 ∈ ω such that A ∩ [h(k), h(k + 1)) 6= ∅ for all k ≥ k0, which
implies f(n) ≤ h(n+ k0 + 1) for all n, contradicting the unboundedness of f
over Lα.

Now pick any k ∈ B and �nd nk ∈ ω such that f(nk) < h(k) < h(k+1) ≤
f(nk+1). Then g(f(nk)) < g(h(k)) = h(k+1) ≤ f(nk+1), and hence nk ∈ C.
Since the map k 7→ nk is injective, C is in�nite. 2

Jensen coding and minimality

Universes have width-extensions of a special form.
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Theorem 8 (Jensen) Suppose that M is a universe of height α. Then M
has a width-extension of the form Lα[R] for some real R. Moreover, if M
satis�es GCH then H(γ)M is de�nable over Lγ[R] for each cardinal γ of M .

A universe M is minimal over a real i� for some real R, M is the least
universe (of any ordinal height) containing R.

Theorem 9 Every universe has a width-extension which is minimal over a
real.

Proof. In light of Jensen's theorem we may assume that M is of the form
Lα[R]. Now force a club C of cardinals γ such that Lγ[R] does not satisfy
ZFC. Then collapse cardinals to ensure that all limit cardinals belong to C
and apply Jensen's theorem again. The result is a model of the form Lα[R′]
in which ZFC fails in Lγ[R

′] for all cardinals γ. 2

Now use:

Theorem 10 (R.David-SDF) Suppose that N = Lα[R] is a model of ZFC,
ϕ is a Σ1 formula with parameter R and N � ϕ(γ) for every cardinal γ of
N . Then for some real S, Lα[S] is a width-extension of N satisfying ϕ(δ) for
every δ such that Lδ[S] models ZF−.

Apply this to the model Lα[R′] and the formula ϕ(γ) ≡ (Lγ[R] 2 ZFC).
This gives a real S such that ZFC fails in Lδ[R] for all δ and therefore Lα[S]
is the least universe containing the real S. 2

4.,5.Vorlesungen

Truth in Universes

Until now we have compared universes under the relation of inclusion.
We now extend this comparison to take into account what �rst-order (and
certain second-order) properties hold in them.

A universe M of height α is α-characterisable i� for some sentence ϕ, M
is the unique universe of height α satisfying ϕ.

Theorem 11 Suppose that M is α-characterisable. Then: (a) M is an ele-
ment of Lβ where β is the least admissible greater than α. (b) If in addition
α is a cardinal in Lβ, then M must equal Lα.
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Proof. (a) Let ϕ witness that M is α-characterisable. Let Lβ denote the
admissible fragment of Lω1ω determined by the admissible set Lβ. Let ψ be
the sentence in this fragment given by:

ZFC + ϕ
∀x(x is an ordinal i�

∨
γ<α x = γ̄) (where γ̄ is a constant symbol denoting γ)

Then ψ is consistent and complete, and therefore has a model which is an
element of Lβ; this is the unique model of ϕ of height α.
(b) If α is a cardinal in Lβ then all bounded subsets of α in Lβ belong to Lα
and therefore M is contained in Lα. 2

A universe M is characterisable i� for some sentence ϕ, M is the unique
universe satisfying ϕ (of any height). I mention the following without proof
(as its proof is quite lengthy and technical).

Theorem 12 There is a characterisable M of height the minimal model of
ZFC which does not satisfy V = L.

Absoluteness

In light of Theorem 11 we expect that a universe can be enlarged while
preserving some of its �rst-order properties. Suppose that N is a width-
extension of the universe M . A sentence ϕ with parameters in M is absolute
beween M and N i� its truth value in M is the same as its truth value in N .
An important case of such absoluteness is:

Theorem 13 (Lévy-Shoen�eld Absoluteness) Suppose that ϕ is Σ1 with real
parameters from M and N is a width-extension of M . Then ϕ is absolute
between M and N .

Proof. It is easy to see that Σ1 formulas are upwards-persistent, i.e. if M
satis�es ϕ then so must N . Conversely, if N satis�es ϕ then by Löwenheim-
Skolem we can assume that the witness x to ϕ = ∃xψ(x) in N is hereditarily
countable and is in fact a real. But then we can form a tree T on ω×ωN1 such
that T has an in�nite branch and if (x, b) is an in�nite branch through T then
x codes a countable transitive model of ψ(S) for some real S and b con�rms
that this model is well-founded. But T is de�nable in M and therefore has
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an in�nite branch in M by the absoluteness of well-foundedness for binary
relations. The result is a real R in M witnessing ψ(R). 2

Can we extend Lévy-Shoen�eld absoluteness to include uncountable pa-
rameters? Clearly not, because if for example the parameter is ωM1 then in
some width-extension N we have that ωM1 is countable and this is expressible
as a Σ1 sentence with parameter ωM1 .

The obvious restriction to avoid this problem is to add the requirement
that N preserves ω1, i.e. ω

N
1 = ωM1 . However even with this restriction we

cannot extend Lévy-Shoen�eld in this way:

Theorem 14 There is a Σ1 formula with parameter ωM1 and real parameters
from M which is true in a width-extension of M but false in M .

Proof. Suppose not. First consider the sentence: �There is a real R such that
for α < ω1, Lα[R] is not a model of ZFC�. This is Σ1 in the parameter ω1 and
holds in any width-extension of M which is minimal over some real. (By an
earlier result, there exist such width-extensions.) So it holds in M . Choose
a real R in M such that Lα[R] is not a model of ZFC for M -countable α.
(Remark: By Löwenheim-Skolem there is in fact no ordinal α ofM such that
Lα[R] is a model of ZFC, but we will not need this here.) In particular ωM1
is not inaccessible in M and therefore for some real S in M , every ordinal
which is countable inM is also countable in L[S]M . For α a countable ordinal
of M let fα be the L[S]-least surjection of ω onto α and for each n choose
an ordinal αn such that fα(n) = αn for all α in a subset Xn of ωM1 which is
stationary in M .

Now for each n, M has a width-extension in which ω1 is preserved and
Xn contains a club. And this is expressible by a Σ1 formula with parameters
S and ωM1 . Therefore in M each Xn contains a club and therefore there is a
single club C contained in all of the Xn's. But then the surjection fα is the
same for all α ∈ C, contradiction. 2

The previous negative result still leaves the possibility of extending Lévy-
Shoen�eld absoluteness to Σ1 formulas with parameter ω1 (and no real pa-
rameters) for width-extensions which preserve ω1.

M satis�es Lévy(ω1) i� whenever a Σ1 formula with parameter ωM1 has a
solution in an ω1-preserving width-extension of M then it has a solution in
M .

8



Theorem 15 Assuming large cardinals, there exists anM satisfying Lévy(ω1).

Proof. We use both PD and Jensen coding. For any real R let M(R) denote
the minimal model of ZFC containing R. Using PD choose a real R such that
if R is recursive in S then M(R) and M(S) have the same �rst-order theory.

We claim that M(R) satis�es Lévy(ω1). Indeed, suppose that ϕ is a Σ1

formula with parameter ωM1 and N is a width-extension of M(R) which
preserves ω1 and in which ϕ is true. Let α be the ordinal height of M(R) =
the ordinal height of N . Apply Jensen coding to produce a real S such that
N is contained in Lα[S] and N is a Σn-de�nable class in Lα[S] for some n.
By further coding we can ensure that Lα[S] is the minimal model containing
S. It is a fact about these codings that ω1 is preserved when enlarging N to
Lα[S]. We may also assume that R is recursive in S.

Thus in M(S) the following is true: �There is a Σn-de�nable inner model
with the correct ω1 in which ϕ is true�. By the choice of R, this sentence is
also true inM(R). But then ϕ is true inM(R) as it is true in an inner model
of M(R) with the correct ω1. 2

6.,7.Vorlesungen

More absoluteness

Consider the following natural strengthening of Lévy(ω1).

M satis�es Lévy(ω1, ω2) i� whenever a Σ1 formula with parameters ωM1 , ω
M
2

has a solution in an ω1-preserving and ω2-preserving width-extension of M
then it has a solution in M .

Open question.Assuming large cardinals is there anM satisfying Lévy(ω1, ω2)?

The variants of Lévy absoluteness we've been considering are special cases
of a much broader question.

Absoluteness question. Is there a universeM such that wheneverN is a width-
extension ofM of a certain type and ϕ is a Σ1 formula with parameters from
M of a certain type, we have that M and N agree on the truth-value of ϕ?

Note the restriction to width-extensions �of a certain type�. In the case of
abasoluteness with parameter ω1 we have seen that it is su�cient to restrict to
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ω1-preserving extensions, and clearly such a rsetriction is necessary. Another
natural rsetriction is to cardinal-preserving width-extensions. What other
restrictions on width-extensions arise in the study of absoluteness?

De�nition 16 Suppose that N is a width-extension of M . Then M globally
covers N i� for some M-regular κ, if f : α→ M belongs to N then there is
g : α → M in M such that f(i) ∈ g(i) and g(i) has M-cardinality < κ for
all i < α. In this case we also say that M globally κ-covers N .

Remark. If M globally κ-covers N then it is easy to see that any regular
cardinal of M of size at least κ is also regular in N . Also, in the de�nition
of global covering, it su�ces to consider functions from ordinals to ordinals,
using the fact that every set can be wellordered.

Theorem 17 (a) There is a universeM which satis�es Σ1 absoluteness with
subsets of ωM1 in M as parameters (and therefore with reals in M and ωM1 as
parameters) for width-extensions which it globally ω1-covers.
(b) Assuming large cardinals, there is a universe M which satis�es Σ1 abso-
luteness with subsets of ωM1 in M as parameters (and therefore with reals in
M and ωM1 as parameters) for width-extensions which it globally covers and
which preserve the stationarity of subsets of ωM1 .

How does global covering facilitate absoluteness? The answer is revealed
by the following.

Theorem 18 (Bukovsky) (a) M globally covers N i� N is a set-generic
extension of M .
(b) M globally κ-covers N i� N is a κ-cc set-generic extension of M .

Given Bukovsky's Theorem we can easily explain why Theorem 17 is true.
For (a), take M to be a model of MAω1 , Martin's axiom for ccc forcings and
size ω1 collections of dense sets. Then it is easy to see that if a Σ1 formula ϕ
with a subset of ωM1 as parameter holds in a P-generic extension where P is a
ccc set-forcing, it must hold inM , as it su�ces to meet ω1-many dense subsets
of P to ensure the truth of ϕ. By Bukovsky, M witnesses (a). For (b) the
argument is the same if we can chooseM to satisfy MM, Martin's Maximum,
which asserts that one can meet ω1-many dense sets for a set-forcing which
prserves stationary subsets of ω1. MM is known to be consistent relative to
large cardinals, so again by Bukovsky we obtain (b).
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Remark. In the above, MM can be replaced by the weaker BMM, Bound-
ed Martin's Maximum, which only requires meeting ω1-many maximal an-
tichains of size ω1. Whereas MM appears to require a supercompact, BMM
can be forced from just a Woodin cardinal.

Proof of Bukovsky's Theorem. First the easy direction: Suppose that N is
a κ-cc set-generic extension of M . We verify that M globally κ-covers N .
Suppose that f : α → M belongs to N , let ḟ be a name for f and assume
that the trivial condition forces that ḟ is a total function from α into M . For
each i < α let Xi be a maximal antichain of conditions deciding a value for
ḟ(i) and let g(i) consist of the values of ḟ(i) forced by the various conditions
in Xi. Then g : α→M is a function in M such that g(i) has size < κ in M
and the trivial condition forces ḟ(i) ∈ g(i) for each i < α; so we have shown
that the trivial condition forces the conclusion of global κ-covering for the
function f .

It follows that if N is a P-generic extension of M by some forcing P then
M globally covers N : just take κ to be larger than any antichain in the forcing
P. So we have proved the directions right-to-left in (a) and (b).

Now we turn to the harder direction. Suppose that M globally κ-covers
N . We will produce a κ-cc set-forcing P such that N is a P-generic extension
of M .

First note that it su�ces to assume that N is of the form M [A] where
A is a set of ordinals: Assume that we have the result in this case and now
let N be any width-extension of M which M globally κ-covers. Choose a set
of ordinals A in N such that M [A] contains all subsets of (2<κ)N in N . By
assumption M [A] is a κ-cc set-forcing extension of M . But we claim that
M [A] must equal all of N : Otherwise choose some set of ordinals B in N
so that M [A][B] is larger than M [A]. As M globally κ-covers N it follows
that M [A] globally κ-covers N (as in global κ-covering it su�ces to consider
functions from ordinals to ordinals) and therefore M [A] globally κ-covers
M [A][B]. By assumption M [A][B] is a κ-cc set-generic extension of M [A],
which is larger than M [A]. But by choice of A, M [A] contains all subsets of
(2<κ)N of N and therefore all subsets of (2<κ)M [A] of M [A]. This contradicts
the following general fact:

Fact. Suppose that P is a non-atomic κ-cc forcing in M (i.e. no P-generic
over M belongs to M). Then P adds a new subset of (2<κ)M over M .
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To prove the Fact, assume that P is a non-atomic complete Boolean al-
gebra and using the κ-cc form a non-atomic complete subalgebra P0 of size
(2<κ)M , by closing {0, 1} under size < κ meets and joins as well as com-
plements and a function which produces incompatible conditions below any
nonzero condition. Then a P-generic also adds a P0-generic, and the latter is
a new subset of (2<κ)M .

OK, so suppose now that M globally κ-covers N = M [A] for some set
of ordinals A. Choose an M -cardinal λ = λ<κ such that A is a subset of λ.
We'll show that N is a generic extension of M by a κ-cc forcing of size λ.

The language LQF,λκ (M)

The formulas of LQF,λκ (M) are de�ned inductively by:

1. Basic formulas α ∈ Ȧ, α /∈ Ȧ for α < λ.

2. If Φ ∈M is a size < κ set of formulas then so are
∨

Φ and
∧

Φ.

As λ = λ<κ there are only λ-many formulas. We de�ne an ordering of
LQF,λκ (M) as follows:

B ⊆ λ satis�es ϕ i� ϕ is true when Ȧ is replaced by B.

For ϕ, ψ in LQF,λκ (M):

ϕ ≤ ψ i� i� for all B ⊆ λ (in a set-generic extension of M), if B satis�es ϕ
then B also satis�es ψ.

The above is expressible in M and by Lévy absoluteness, ϕ ≤ ψ in M i�
ϕ ≤ ψ in all width-extensions of M .

Now recall that M globally κ-covers N . Let f be a choice function in N
on nonempty subsets Φ of LQF,λκ (M) in M such that:

If A satis�es some ψ ∈ Φ then A satis�es f(Φ) ∈ Φ.

(If A satis�es no ψ ∈ Φ then f(Φ) can be any element of Φ.) Using a wellorder
in M we can regard f as a function from some ordinal into M . Apply global
κ-covering to get g in M so that for all nonempty subsets Φ of LQF,λκ (M) in
M , g(Φ) ⊆ Φ has size < κ and f(Φ) ∈ g(Φ).
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Consider the following set of formulas T in LQF,λλ+ (M) (de�ned just like
LQF,λκ (M), but using size at most λ conjunctions and disjunctions):

T = {(
∨

Φ→
∨
g(Φ)) | Φ ⊆ LQF,λκ (M), Φ ∈M}

Let P be the forcing whose conditions are formulas ϕ of LQF,λκ (M) such that
some B satis�es all formulas of T ∪ {ϕ} (i.e. ϕ is �consistent with T �).

Claim 1. P is κ-cc.

Proof. Suppose that Φ is a maximal antichain in P. We show that g(Φ) = Φ,
and therefore Φ has size < κ. It su�ces to show that for any ϕ ∈ Φ there
is some element ψ of g(Φ) such that T ∪ {ϕ, ψ} is consistent. Choose any
B ⊆ λ which satis�es T ∪ {ϕ} (this is possible because ϕ belongs to P and
therefore T ∪ {ϕ} is consistent). As T includes the formula

∨
Φ→

∨
g(Φ) it

follows that B also satis�es
∨
g(Φ) and therefore ψ for some ψ ∈ g(Φ). So B

satis�es T ∪ {ϕ, ψ} and therefore this set of formulas is consistent. 2

Claim 2. Let G(A) be the set of ϕ ∈ P such that A satis�es ϕ. Then G(A) is
P-generic over M .

Proof. Suppose that Φ is a maximal antichain in P. By Claim 1, Φ has size less
than κ, so

∨
Φ is a formula in LQF,λκ (M). Now T ∪ {∼

∨
Φ} is inconsistent,

as otherwise ∼
∨

Φ violates the maximality of Φ. As A satis�es the formulas
in T it follows that A satis�es

∨
Φ and therefore some some element of Φ.

So G(A) meets Φ. 2

It now follows that M [A] is a P-generic extension of M , as M [A] =
M [G(A)]. This completes the proof of Bukovsky's Theorem. 2

8.,9.Vorlesungen

A re�nemenent of Bukovsky's Theorem

Is there a similar characterisation with �κ-cc� replaced by �size at most
κ�?

M κ-decomposes N i� every subset ofM in N is the union of at most κ-many
subsets, each of which belongs to M .
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Theorem 19 N is a size at most κ forcing extension of M i� M globally
κ+-covers and κ-decomposes N .

Proof. For the easy direction, suppose that N = M [G] where G is P-generic
and P has size at most κ. As P is κ+-cc it follows that M globally κ+-covers
N . To show that M κ-decomposes N , suppose that X ∈ N is a subset of
M and choose Y ∈ M that covers X. Let Ẋ be a name for X and for each
p ∈ G forcing that Y covers Ẋ let Xp consist of those x ∈ Y such that p
forces x ∈ Ẋ. Then the Xp's give the desired κ-decomposition of X.

Conversely, suppose that M globally κ+-covers and κ-decomposes N . By
Bukovsky's Theorem, N is a P-generic extension of M for some P which is
κ+-cc. We want to argue that P is equivalent to a forcing of size at most κ.
We may assume that P is in fact a complete κ+-cc Boolean algebra which we
write as B.

Write N as M [G] where G is B-generic over M . Take a B-name for a
κ-decomposition Ġ =

⋃
i<κ Ġi of Ġ, where each Ġi is forced to belong to

M . For each i < κ let Xi be a maximal antichain of conditions in B which
decide a speci�c value in M for Ġi. For each p in Xi let p(Ġi) denote the
value of Ġi forced by p and b(p) the meet of the conditions in p(Ġi); b(p) is a
nonzero Boolean value because if Gp is generic below p then Gp must contain
a condition below each element of p(Ġi). Let D be the set of b(p) for p in the
union of the Xi's. The following Claim completes the proof.

Claim. D is dense in B.

Proof of Claim. If q belongs to P then some r below q forces that q belongs o
Ġi for some i; we can assume that r extends some element p of Xi. But then
q is extended by b(p) ∈ D. 2

Question 1. In Theorem 19, can �globally κ+-covers� be eliminated or replaced
by �globally λ-covers for some λ�? It can be shown that the latter is possible
if one adds the requirement that M just κ+-covers N , i.e. that subsets of M
of size at most κ in N are covered by sets of size at most κ in M .

Question 2. Is there a similar characterisation for κ-closed set-generic exten-
sions?

Bukovsky for class forcing

14



The proof of Bukovsky's theorem suggests some interesting results con-
cerning class forcing.

The main part of the proof was to show that if N = M [A] where A
is a set of ordinals in N and M globally κ-covers N then N is a κ-cc set-
generic extension of M . Now let's explore what happens if instead A is a
class of ordinals in N so that N = M [A] and N with predicates for M and
A satis�es ZFC.

Now we form the big language LQF,∞∞ de�ned by:

1. Basic formulas α ∈ Ȧ, α /∈ Ȧ for all ordinals α.

2. If Φ ∈M is any set of formulas then so are
∨

Φ and
∧

Φ.

In analogy to the Bukovsky proof we would like to form a class T of
sentences in LQF,∞∞ so that if P consists of those sentences in LQF,∞∞ which
are consistent with T (ordered in the natural way) then A is P-generic over
(M [T ], T ) for the (M [T ], T )-de�nable forcing P. We want to choose T so
that P will satisfy the ∞-cc, i.e. so that all (M [T ], T )-de�nable antichains
are sets in M [T ]. For simplicity assume that M satis�es V = L, so that
N = M [A] = L[A] where the symbol L is being used here for L in the sense
of N .

First I'll describe a way to achieve this if we allow T to depend not just
on the model N = L[A] but on the predicate A. Then I'll indicate how to
do this in such a way that T depends only on N , giving rise to the stability
predicate and the stable core.

De�ne the A-stability predicate as follows:

S(A) = {(n, α, β) | n < ω, α < β are strong limit cardinals of N = L[A] and
(H(α)N , A ∩ α) is Σn elementary in (H(β)N , A ∩ β)}.

We remark that S(A) is de�nable over (N,A) and in fact for any strong
limit cardinal β of N and k < n, any Σk-de�nable subset of H(β)L[S(A)] with
a predicate for S(A) ∩ β is Σn-de�nable over H(β)N with a predicate for
A ∩ β.

We form the theory T in the LQF,∞∞ of L[S(A)] as follows:
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T consists of all axioms of the form∧
(Φ ∩H(α)N)→

∧
(Φ ∩H(β)N),

where for some n, Φ ∩ H(β)L[S(A)] is Σk de�nable over H(β)L[S(A)] with a
predicate for S(A) ∩ β and parameters from H(α)L[S(A)] for some k < n and
(n, α, β) belongs to S(A).

Note that by the above remark and the de�nition of S(A), the axioms
in T are all true when Ȧ is interpreted as A. Moreover, T is de�nable over
(L[S(A)], S(A)). Let P be the class of sentences of the LQF,∞∞ of L[S(A)]
which are consistent with T , ordered by ϕ ≤ ψ i� every B satisfying T ∪{ϕ}
also satis�es ψ.

Claim. (a) Any (L[S(A)], S(A))-de�nable maximal antichain on P is an ele-
ment of L[S(A)].
(b) G(A) = {ϕ | ϕ is true when Ȧ is interpreted as A} is P-generic over
(L[S(A)], S(A)) for (L[S(A)], S(A))-de�nable maximal antichains.

Proof. (a) Suppose that X is an (L[S(A)], S(A))-de�nable maximal antichain
on P and choose k so that this de�nition is Σk. Choose n > k; then X is
Σn-de�nable over (N,A). Choose α strong limit so that (H(α)N , A∩α) is Σn-
elementary in (N,A) and contains the parameters in the (L[S(A)], S(A)) de�-
nition ofX. Note that if β > α also has this property then (n, α, beta) belongs
to the predicate S(A). But then if Φ consists of the negations of the sentences
in X, the theory T contains the axioms

∧
(Φ ∩ H(α)N) →

∧
(Φ ∩ H(β)N)

for unboundedly many β in Ord(N) and therefore any formula in which is
T -incompatible with all formulas in X ∩H(α)N is also T -incompatible with
all formulas in X, showing that X = X ∩H(α)N is a set in L[S(A)].
(b) As in the Bukovsky proof, it is clear that G(A) is generic for maximal an-
tichains which belong to L[S(A)]; by (a) these are all of the (L[S(A)], S(A))-
de�nable maximal antichains. 2

To summarise: If N = L[A] where A is a class of ordinals then N is an
∞-cc class-generic extension of (L[S(A)], S(A)) where S(A) is the A-stability
predicate. A similar argument shows that if N = M [A] where A is a class of
ordinals then N is an ∞-cc class-generic extension of (L[S(M,A)], S(M,A))
where S(M,A) is the (M,A)-stability predicate, consisting of triples (n, α, β)
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where α < β are strong limit cardinals in N and (H(α)N ,M ∩H(α)N , A∩α)
is Σn-elementarry in (H(β)N ,M ∩H(β)N , A ∩ β).

Note that the A-stability predicate depends on A and therefore the inner
model (L[S(A)], S(A)) over which N = L[A] is class-generic is not �canon-
ical�, as if L[A] = L[B] it does not follow that S(A) equals S(B). Can we
show that N is in fact class-generic over a �canonical� inner model with an
N -de�nable wellorder?

To obtain a positive answer, de�ne an improved A-stability predicate as
follows. Again suppose that N = L[A] where A ⊆ Ord(N) and (N,A) is a
model of ZFC. For �nite n, a strong limit cardinal α of N is n-Admissible if
H(α)N satis�es Σn-replacement. We de�ne S+(A) to consist of all (n, α, β)
where n is �nite, α < β are n-Admissible strong limit cardinals of N and
(H(α)N , A ∩ α) is Σn-elementary in (H(β)N , A ∩ β). The only di�erence
between S+(A) and S(A) is the further requirement of n-Admissibility. As
with S(A) we have that G(A) is P+-generic over (L[S+(A)], S+(A)) where
P+ is de�ned using S+(A) just as P was de�ned using S(A).

Theorem 20 Let S+ denote S+(∅). Then there exists an A ⊆ Ord(N)
such that N = L[A] and S+(A) = S+. Therefore N is class-generic over
(L[S+], S+). The latter is called the �stable core� of N .

Note that S+ is N -de�nable and therefore L[S+] is contained in the HOD
of N . As before we can similarly work with S+(M,A) for any inner model
M and by working with S+(HOD, ∅) we infer that N is a class-generic ex-
tension of (HOD, S+), the inner model HOD with an additional N -de�nable
predicate.

The classA of the theorem is forced overN with initial segments which are
�su�ciently-generic� and as a result of this genericity preserve S+ up to their
length. The key lemma states that conditions can be extended aribitrarily,
and this is where the condition of n-Admissibility is needed. The desired class
A is obtained by forcing over N with these conditions.

10.,11.Vorlesungen

A converse to the Stable Core Theorem

Recall:
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Theorem 21 (Stable Core Theorem) Let S+ denote the improved stability
predicate, consisting of all (n, α, β) such that α < β are n-Admissible strong
limit cardinals and H(α) is Σn elementary in H(β). Then V = L[S+, G]
where G is generic over (L[S+], S+) for a de�nable forcing with the ∞-cc.

There is a partial converse to this result. First note that the above con-
clusion still holds if we replace S+ by any predicate S ′ contained in S+ such
that for each n there is an unbounded class X of α with H(α) Σn elementary
in V and (n, α, β) in S ′ for all α < β in X. Say that such a predicate S ′ is
stability capturing.

Theorem 22 If V = M [G] where G is generic for a forcing de�nable over an
inner model (M,A) with the∞-cc then there is an (M,A)-de�nable predicate
S ′ such that for some (V,G)-de�nable club C, S ′ � C is stability capturing.

Thus the de�nability in (M,A) of the Stability Predicate of V is �close�
to being equivalent to the statement that V is a de�nable∞-cc class-generic
extension of (M,A).

Proof of Theorem 22. If P is the forcing of the hypothesis then we take C to
be the club of α such that G∩H(α) meets all maximal antichains on P∩H(α)
which belong to H(α). For S ′ we take all (n, α, β) where all Σn+1-de�nable
maximal antichains on P ∩H(α) belong to H(α) (same for β). As P has the
∞-cc it follows that S ′ is stability capturing. 2

Another version of Bukovsky for class forcing arises if we consider models
of Morse-Kelley Class Theory MK:

Theorem 23 Suppose that (M, CM) ⊆ (N, CN) are models of MK with glob-
al choice and CM is de�nable in (N, CN) (by a formula which quanti�es
over classes). Then each class in CN belongs to a class-generic extension
of (M, CM) via an ∞-cc class forcing i�:
(∗) For any (N, CN)-de�nable function f from CM to M there is an (M, CM)-
de�nable function g from CM to M such that f(x) ∈ g(x) for each x ∈ CM .

The proof is similar to that of the original Bukovsky theorem. If we go
one type further to hyperclass theory, then the formulation of the result is
even simpler (as instead of de�nable functions one can talk about functions
that exist as hyperclasses).
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Height-extensions and #-Generation

Recall that N is a height-extension of M if N contains M and V N
α = V M

α

for ordinals α in M . So either M = N or M = (Vβ)N for some β.

We'll use the notation M ≤ N for N is a height-extension of M and
M < N for N is a proper height-extension of M .

As we have pointed out, there are universes M with no proper height-
extension, such as the minimal model. Of those with proper height-extensions
there are two types:

Proposition 24 (a) (Under mild assumptions) there are universes with height
extensions of arbitrarily large countable height.
(b) There are universes with proper height extensions but where there is a
countable bound on the heights of such extensions.
(c) If M carries a de�nable wellorder and has a proper height-extension then
M has a least one.

Proof. (a) Suppose that ω1 is L-inaccessible. Then there is an elementary
ω1-chain of elementary submodels of Lω1 and the elements of this chain are
wellordered by height-extension.
(b) Let β be least so that Lβ models ZFC and some α < β also models ZFC.
Then β is countable in Lβ+2 and therefore has no height-extension. So Lα
has a proper height extension but none of height greater than β.
(c) If N is a proper height-extension of M then N contains Lα(M) where α
is the height of N , and if M has a de�nable wellorder then this is a model of
ZFC. So the least proper height-extension of M is of this form. 2

We turn now to height-absoluteness. In analogy with the case of width-
absoluteness we state:

Weak Height-absoluteness.M has height-extensions of arbitrarily large count-
able height and if a Σ1 formula with parameters from M holds in some
N > M then it holds in some N̄ < M containing those parameters.

This is indeed quite weak:

Proposition 25 Suppose that M has height extensions of arbitrarily large
countable height and for unboundedly many cardinals α in M , H(α)M is a
model of ZFC. Then M satis�es weak height-absoluteness.
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Proof. Suppose M < N and let ϕ be a Σ1 formula with parameters from M .
Choose α in M so that the parameters in ϕ belongs to H(α+)M = H(α+)N .
Then by Σ1 re�ection, ϕ holds in H(α+)M and therefore also in H(β)M where
β > α and H(β)M is a model of ZFC. 2

To obtain more height absoluteness we allow parameters that do not
belong to M . Vaguely speaking:

Height-absoluteness. M has height-extensions of arbitrarily large countable
height and if a Σ1 formula with parameters from some N > M holds in N
then it holds in some N̄ < M with �corresponding� parameters.

The meaning of �corresponding� parameters must be clari�ed.

First consider the case of parameters in N > M which are subsets of M .

Proposition 26 Suppose that M < N and Ord(M) is regular (and therefore
inaccessible) in N . Then if ϕ is a Σ1 formula with a subset X of M as
parameter which holds in N , then for some M̄ < N̄ < M , ϕ(X ∩ M̄) holds
in N̄ .

Thus in this case the parameter �corresponding� to X is simply the in-
tersection of X with M̄ , an initial segment of X.

Proof. If ϕ(X) holds in N , then using the regularity of Ord(M) in N , we can
form a Σ1 elementary submodel H of N containing X as an element whose
intersection with M is some M̄ < M . Let H̄ be the transitive collapse of
H. Then H̄ satis�es ϕ(X ∩ M̄). As Ord(M) is regular in N , there is some
N̄ < M which contains H̄ and then ϕ(X ∩ M̄) also holds in N̄ . 2

But we run into a new problem if we try to consider parameters in N > M
which are not subsets of M but instead sets of subsets of M . Suppose that
S is such a parameter and N satis�es the Σ1 formula ϕ with parameter S.
We want to assert that for some M̄ < N̄ < M , ϕ holds in N̄ for a parameter
S̄ �corresponding to� S, which should be a set of subsets of M̄ . But it is not
clear what S̄ should be; we cannot just take S̄ = {X ∩ M̄ | X ∈ S} for
some M̄ < M as for example ϕ(S) could assert that S is the set of bounded
subsets of Ord(M) in which case the latter parameter will contain subsets of
Ord(M̄) which are unbounded in Ord(M̄).
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An option that dates back to work of V. Marshall and Magidor is to
instead take S̄ to be the image of S under the transitive collapse of an ele-
mentary submodel of (enough of) N whose intersection with M is transitive.
Following this route leads us to supercompactness:

To clarify matters, think of subsets of M as elements of H(κ+)N . So
now our parameter S is a subset of H(κ+)N and we can form the structure
(H(κ+)N ,S). A special case of our Σ1 formula ϕ(S) is one which asserts that
this structure satis�es some �rst-order property.

De�nition 27 κ is subcompact if for any S ⊆ H(κ+) there are M̄ < M =
H(κ), S̄ ⊆ H(κ̄+) and elementary π : (H(κ̄+), S̄)→ (H(κ+),S) with critical
point κ̄ sending κ̄ to κ.

So we can use subcompactness to provide a version of height-absoluteness
with parameters contained in H(κ+). More generally, for α any cardinal
greater than κ, de�ne α-subcompact in a similar way, replacing (H(κ+),S)
and (H(κ̄+), S̄) by (H(α),S) and (H(ᾱ), S̄) and requiring ᾱ < κ. Then this
provides a version of height-absoluteness with parameters contained in H(α).

Theorem 28 The following are equivalent:
(a) κ is α-subcompact for all α.
(b) κ is supercompact.

Idea of Proof. For simplicity assume GCH and we show that for regular κ < α,
if κ is β-subcompact for a large enough β then it is α-supercompact, and if
κ is α-supercompact then it is also α-subcompact.

Suppose that κ is β-subcompact for a large β. Then apply β-subcompactness
to the structure (H(β),S) where S is just {α}. We then get an elementary
π : (H(β̄), {ᾱ}) → (H(β), {α}) with critical point κ̄, sending κ̄ to κ. But
the range π[ᾱ] of π on ᾱ belongs to H(β) so we get a supercompactness
measure U on Pκ̄ᾱ de�ned by X ∈ U i� π[ᾱ] belongs to π(X); moreover this
measure is in the domain of π. So κ̄ is ᾱ-supercompact and by elementarity
κ is α-supercompact.

Conversely, suppose that κ is α-supercompact and let π : V →M witness
this. Then for any S ⊆ H(α), π restricted to (H(α),S) belongs to M . So
M sees that there is π : (H(α),S) → (H(π(α)), π(S)) with critical point
κ < π(κ) sending κ to π(κ) and so by elementarity, V sees that there is some
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π̄ : (H(ᾱ), S̄)→ (H(α),S) with critical point some κ̄ less than κ, sending κ̄
to κ . So κ is α-subcompact. 2

So if M < N and Ord(M) is aupercompact in N we have a version of
height-absoluteness between M and N that applies to any Σ1 formula with
any parameter from N .

Have we solved the problem of height-absoluteness? I don't think so, for
several reasons.

One problem is that the replacement of the parameter S by the �corre-
sponding parameter� S̄ is not �canonical�, i.e. it depends on the choice of
embedding π. There are apparently many witnesses π to subcompactness,
yielding unrelated �corresponding parameters�.

Second, height-absoluteness should be a property of height and not of
width. So there should be initial segments of L which ful�ll this property. Of
course this will not be the case if we insist on supercompactness.

Third, and this is an issue for all strong forms of height-absoluteness, we
would like the height-absoluteness of M to be independent of N . We cannot
expect that Ord(M) is supercompact in all of its height-extensions, but is it
well-motivated to only consider height-extensions in which this is the case?

So we take a di�erent approach to the problem of height-absoluteness,
extrapolating on the usual form of re�ection provable in ZF . This leads to
the theory of #-generation.

12.,13.Vorlesungen

#-generation

Before embarking on our analysis of height-absoluteness we should take
note of the following: No �rst-order statement ϕ can be adequate to fully
capture such absoluteness. This is simply because a �rst-order statement true
in M will re�ect to one of its rank initial segments and we are then naturally
led from ϕ to the stronger �rst-order statement �ϕ holds both in M and in
some rank initial-segment satisfying ZFC�.
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But how do we capture height-absoluteness with a non �rst-order axiom?
We do this via a detailed analysis of the relationship between M and its
height-extensions and height-restrictions (i.e. its rank initial-segments).

To save on notation, we'll use the symbol V not for the entire universe of
sets but for the countable universe that we have been calling M . Thus we'll
freely write Vα instead of V V

α .

A special case of height-absoluteness is re�ection, which says that proper-
ties of V �trasnfer� or �re�ect� to rank initial segments Vκ. Standard re�ection
tells us that a single �rst-order property of V with parameters will hold in
some Vκ which contains those parameters. It is natural to strengthen this
to the simultaneous re�ection of all �rst-order properties of V to some Vκ,
allowing arbitrary parameters from Vκ. Thus we have re�ected V to a Vκ
which is an elementary submodel of V .

Repeating this process leads us to an increasing, continuous sequence of
ordinals (κi | i <∞), whee∞ denotes the ordinal height of V , such that the
models (Vκi | i <∞) form a continuous chain Vκ0 ≺ Vκ1 ≺ · · · of elementary
submodels of V whose union is all of V .

Let C be the set of the κi's, a proper class of V . We can apply re�ection
to V with C as an additional predicate to infer that properties of (V,C) also
hold of some (Vκ, C ∩κ). But the unboundedness of C is a property of (V,C)
so we get some (Vκ, C ∩ κ) where C ∩ κ is unbounded in κ and therefore κ
belongs to C. As a corollary, properties of V in fact hold in some Vκ where
κ belongs to C. It is convenient to formulate this in its contrapositive form:
If a property holds of Vκ for all κ in C then it also holds of V .

Now note that for all κ in C, Vκ can be lengthened (height-extended) to
an elementary extension (namely V ) of which it is a rank-initial segment. By
the contrapositive form of re�ection of the previous paragraph, V itself also
has such a lengthening (height-extension) V ∗.

But this is clearly not the end of the story. For the same reason we can
also infer that there is a continuous increasing sequence of such lengthenings
V = Vκ∞ ≺ V ∗κ∞+1

≺ V ∗κ∞+2
≺ · · · of length ω1 For a further ease of notation,

let us drop the ∗'s and write Wκi instead of V ∗κi for ∞ < i and instead of Vκi
for i ≤ ∞. Thus V equals W∞.
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But which tower V = Wκ∞ ≺ Wκ∞+1 ≺ Wκ∞+2 ≺ · · · of lengthenings of
V should we consider? Can we make the choice of this tower canonical?

Consider the entire sequence Wκ0 ≺ Wκ1 ≺ · · · ≺ V = Wκ∞ ≺ Wκ∞+1 ≺
Wκ∞+2 ≺ · · ·. The intuition is that all of these models resemble each other
in the sense that they share the same �rst-order properties. Indeed by virtue
of the fact that they form an elementary chain, these models all satisfy the
same �rst-order sentences. But again in the spirit of �resemblance�, the fol-
lowing should hold: For i0 < i1 regard (Wκi1

,Wκi0
) as the structure (Wκi1

,∈)
together with Wκi0

as a unary predicate. Then it should be the case that any
two such pairs (Wκi1

,Wκi0
), (Wκj1

,Wκj0
) (with i0 < i1 and j0 < j1) satis-

fy the same �rst-order sentences, even allowing parameters which belong to
both Wκi0

and Wκj0
. Generalising this to triples, quadruples and n-tuples in

general we arrive at the following situation:

(∗) V occurs in a continuous elementary chain Wκ0 ≺ Wκ1 ≺ · · · ≺ V =
Wκ∞ ≺ Wκ∞+1 ≺ Wκ∞+2 ≺ · · · of length ∞ +∞, where the models Wκi

form a strongly-indiscernible chain in the sense that for any n and any two
increasing n-tuples ~i = i0 < i1 < · · · < in−1, ~j = j0 < j1 < · · · < jn−1, the
structures W~i = (Wκin−1

,Wκin−2
, · · · ,Wκi0

) and W~j (de�ned analagously)
satisfy the same �rst-order sentences, allowing parameters from Wκi0

∩Wκj0
.

We are getting closer to the desired axiom of #-generation. Surely we can
impose higher-order indiscernibility on our chain of models. For example, con-
sider the pair of models Wκ0 = Vκ0 , Wκ1 = Vκ1 . We can require that these
models satisfy the same second-order sentences; equivalently, we require that
H(κ+

0 )V and H(κ+
1 )V satisfy the same �rst-order sentences. But as with the

pair H(κ0)V , H(κ1)V we would want H(κ+
0 )V , H(κ+

1 )V to satisfy the same
�rst-order sentences with parameters. How can we formulate this? For exam-
ple, consider κ0, a parameter in H(κ+

0 )V that is second-order with respect
to H(κ0)V ; we cannot simply require H(κ+

0 )V � ϕ(κ0) i� H(κ+
1 )V � ϕ(κ0),

as κ0 is the largest cardinal in H(κ+
0 )V but not in H(κ+

1 )V . Instead we need
to replace the occurence of κ0 on the left side with a �corresponding� pa-
rameter on the right side, namely κ1, resulting in the natural requirement
H(κ+

0 )V � ϕ(κ0) i� H(κ+
1 )V � ϕ(κ1). More generally, we should be able to

replace each parameter in H(κ+
0 )V by a �corresponding� element of H(κ+

1 )V .
It is natural to solve this problem of �corresponding parameters� using em-
beddings.
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De�nition 29 A structure N = (N,U) is called a # with critical point κ,
or just a #, if the following hold:
(a) N is a model of ZFC− (ZFC minus powerset) in which κ is both the
largest cardinal and strongly inaccessible.
(b) (N,U) is amenable (i.e. x ∩ U ∈ N for any x ∈ N).
(c) U is a normal measure on κ in (N,U).
(d) N is iterable, i.e., all of the successive iterated ultrapowers starting with
(N,U) are well-founded, yielding iterates (Ni, Ui) and Σ1 elementary iteration
maps πij : Ni → Nj where (N,U) = (N0, U0).

We let κi denote the largest cardinal of the i-th iterate Ni. Also, LP(Ni

denotes the Vκi of Ni (LP stands for lower part.) LP(Ni) is a model of ZFC.

De�nition 30 We say that a transitive model V of ZFC is #-generated i�
there is N = (N,U), a # with iteration N = N0 → N1 → · · ·, such that V
equals LP(N∞) where ∞ denotes the ordinal height of V .

#-generation ful�lls our requirements for height-absoluteness, with pow-
erful consequences for re�ection. L is #-generated i� 0# exists, so this princi-
ple is compatible with V = L. If V is #-generated via (N,U) then there are
elementary embeddings from V to V which are canonically-de�nable through
iteration of (N,U): In the above notation, any order-preserving map from the
κi's to the κi's extends to such an elementary embedding. If π : V → V is any
such embedding then we obtain not only the indiscernibility of the structures
H(κ+

i ), for all i but also of the structures H(κ+α
i ) for any α < κ0 and more.

Moreover, #-generation evidently provides the maximum amount of height-
absoluteness: If V is generated by (N,U) as LP(N∞) where ∞ is the ordinal
height of V , and x is any parameter in a further iterate V ∗ = N∞∗ of (N,U),
then any �rst-order property ϕ(V, x) that holds in V ∗ re�ects to ϕ(Vκi , x̄) in
Nj for all su�ciently large i < j <∞, where πj,∞∗(x̄) = x. This implies any
known form of height-absoluteness and summarizes the amount of re�ection
one has in L under the assumption that 0# exists, the maximum amount of
re�ection that L can have. This is reinforced by Jensen's #-generated coding
theorem which states that if V is #-generated then V can be coded into a
#-generated model L[x] for a real x where the given # which generates V
extends to the natural generator x# for the model L[x].

From this we can conclude that #-generated models have all of the large
cardinal and re�ection properties that L has when 0# exists.
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#-generation also answers our question about which canonical tower of
lengthenings of V to look at in height-absoluteness, namely the further lower
parts of iterates of any # that generates V . And #-generation fully realizes
the idea that V should look exactly like closed unboundedly many of its rank
initial segments as well as its canonical lengthenings of arbitrary countable
ordinal height.

In summary, #-generation stands out as a compelling formalization of
the principle of height-absoluteness. It is not �rst-order (we have argued that
no optimal height-absoluteness principle can be), however it is second-order
in a very restricted way: For a countable V , the property of being a # that
generates V is expressible by quantifying universally over the models Lα(V )
as α ranges over the countable ordinals.

14.,15.Vorlesungen

We have argued that #-generation is the optimal formulation of abso-
luteness in height (height-maximality). But can we strengthen the claim that
there are #-generated models? For example, is L #-generated, or equivalent-
ly, does 0# exist?

We'll see now that the existence of 0# in fact follows from the generalised
form of Lévy absoluteness that we considered earlier. Recall:

M satis�es Lévy(ω1) i� whenever a Σ1 formula with parameter ωM1 has a
solution in an ω1-preserving width-extension of M then it has a solution in
M .

Theorem 31 Assuming large cardinals, there exists anM satisfying Lévy(ω1).

We now show:

Theorem 32 Assume Lévy(ω1). Then 0# exists.

A more sophisticated proof, due to Welch and myself, shows that this
conclusion can be strengthened to �There are measurable cardinals in inner
models of arbitrarily high Mitchell order�.

Proof. Suppose that M is a universe satisfying that 0# does not exist. We
show that there is a Σ1

3 sentence (in 2nd order arithmetic) true in a class-
forcing extension of M (satisfying ZFC) which does not hold in M . Now any
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Σ1
3 sentence can be translated into a Σ1 sentence with parameter ω1: If ϕ is

Π1
2 then:

∃xϕ(x) i�
∃x(Lω1 [x] � ϕ(x) i�
∃x∃T (T � ϕ(x) and T = Lω1 [x],

and the last sentence above is Σ1 with parameter ω1.

The proof is based on the following result concerning L-de�nable parti-
tions:

Theorem 33 There exists an L-de�nable function n : L-Singulars→ ω such
that if M satis�es 0# does not exist:

1. For some k, M |= {α | n(α) ≤ k} is ∆2-stationary.

2. For each k there is a generic extension of M in which {α | n(α) ≤ k}
is not ∆2-stationary.

Remark. �∆2-stationary in M � means: intersects every closed unbounded
class of ordinals which is ∆2(M)-de�nable with parameters.

Proof. We de�ne n(α). Let 〈Cα | α L-singular〉 be an L-de�nable �-sequence:
Cα is closed unbounded in α, ordertype Cα < α and ᾱ ∈ limCα → Cᾱ =
Cα ∩ ᾱ. Let ot Cα denote the ordertype of Cα. If ot Cα is L-regular then
n(α) = 0. Otherwise n(α) = n(ot Cα) + 1.

1 is clear, as otherwise there is a closed unbounded C ⊆ L-regulars de�n-
able in M , contradicting the Covering Theorem and the hypothesis that 0#

does not exist in M .

Now we prove 2. Fix n ∈ ω. In M let P consist of closed, bounded p ⊆
ORD such that α ∈ p→ α L-regular or n(α) ≥ n+ 1, ordered by p ≤ q i� p
end extends q.

We claim that P is ∞-distributive in M . Suppose that p ∈ P and 〈Dα |
α < κ〉 is a de�nable sequence of open dense subclasses of P , κ regular. We
wish to �nd q ≤ p, q ∈ Dα for all α < κ. Let C be the class of all strong
limit cardinals β such that Dα ∩ Vβ is dense in P ∩ Vβ for all α < κ, a closed
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unbounded class of ordinals. It su�ces to show that C ∩ {β | n(β) ≥ n+ 1}
has a closed subset of ordertype κ+1, for then p can be successively extended
κ times meeting the Dα's, to conditions with maximum in {β | n(β) ≥ n+1};
the �nal condition (at stage κ) extends p and meets each Dα.

Lemma 34 Suppose m ≥ k, α is regular and C is a closed set of ordertype
α+m + 1, consisting of ordinals greater than α+m (where α+0 = α, α+(p+1) =
(α+p)+). Then C∩{β | n(β) ≥ k} has a closed subset of ordertype α+(m−k)+1.

Proof. By induction on k. Suppose k = 0. Let β = maxC. Then β is singular
and hence singular in L. So Cβ is de�ned and lim(Cβ ∩ C) is a closed set
of ordertype α+m + 1 consisting of L-singulars. So lim(Cβ ∩ C) ⊆ C ∩ {γ |
n(γ) ≥ 0} satis�es the lemma.

Suppose the lemma holds for k and let m + 1 ≥ k + 1, C a closed set
of ordertype α+(m+1) + 1 consisting of ordinals greater than α+(m+1). Let
β = maxC. Then Cβ is de�ned and D = lim(Cβ ∩ C) is a closed set of
ordertype α+(m+1) + 1. Let β̄ = (α+m + α+m + 1)st element of D. Then
D̄ = {ot Cγ | γ ∈ D, (α+m + 1)st element of D ≤ γ ≤ β̄} is a closed set
of ordertype α+m + 1 consisting of ordinals greater than α+m. By induction
there is a closed D̄0 ⊆ D̄∩{γ | n(γ) ≥ k} of ordertype α+(m−k) + 1. But then
D0 = {γ ∈ D | ot Cγ ∈ D̄0} is a closed subset of C ∩ {γ | n(γ) ≥ k + 1} of
ordertype α+(m−k)+1. As α+(m−k) = α+((m+1)−(k+1)) we are done. 2 (Lemma)

By the lemma, C ∩ {β | n(β) ≥ n} has arbitrary long closed subsets
for any n, for any closed unbounded C ⊆ ORD. It follows that P is ∞-
distributive. Now to prove 2, we apply the forcing P to M , producing C
witnessing the nonstationarity of {α | n(α) ≤ n}, and then follow this with
the forcing to code 〈M,C〉 by a real, making C ∆2-de�nable. Of course this
will not produce 0# as every successor to a strong limit cardinal is preserved
in the coding. 2

Proof of the Theorem. We use David's trick. Let ϕn be the sentence: ∃R∀α(If Lα[R] |=
ZF− then Lα[R] |= β a limit cardinal → β L-regular or n(β) ≥ n). (This is
equivalent to a Σ1

3 sentence as it is of the form ∃Rψ(R) where ψ(R) is Π1 in
the sense of Lévy and hence equivalent to a Π1

2 formula.) By Theorem (2) and
cardinal collapsing (to guarantee that limit cardinals β are either L-regular or
satisfy n(β) ≥ n), M has a generic extension L[R] |= β a limit cardinal →
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β L-regular or n(β) ≥ n. Using David's trick we can in fact obtain ϕn in
L[R]. 2

A variant of Lévy(ω1)

We show that an interesting variant of Lévy(ω1) is in fact equivalent to
the existence of 0#.

Let's say that P is an ω1-forcing if it is a forcing with universe ω1. We
consider statements of the following form:

(∗) If P is a constructible ω1-forcing and for each p ∈ P there is a P-generic
over L containing p in an ω1-preserving width-extension of V then there is a
P-generic over L in V .

As with Lévy(ω1) the above asserts that if a certain type of property holds
in an ω1-preserving width-extension of V then it already holds in V . If (∗)
holds then we say that V is L-saturated for ω1-forcings.

Theorem 35 The following are equivalent:

(a) V is L-saturated for ω1-forcings.
(b) 0# exists.

Proof. (a) → (b) The existence of 0# is equivalent to the statement that
every stationary constructible subset of ω1 contains a CUB subset. Now use
the following:

Fact. (Baumgartner) If X is a stationary constructible subset of ω1 then
there is a forcing P ∈ L of L-cardinality ω1 which preserves cardinals over
V and adds a CUB subset to X. (P adds a CUB subset of X using ��nite
conditions�.)

(b)→ (a) Assume that 0# exists and suppose that P is a constructible forc-
ing of L-cardinality ω1 such that every condition in P belongs to a generic
in an ω1-preserving extension of V . We will show that there is a P -generic
in V . Assume that the universe of P is exactly ω1. Let P be of the form
t(~i, ω1, ~∞) where ~i < ω1 < ~∞ is a �nite increasing sequence of indiscernibles
and t is an L-term. We claim that if ~i < k0 < k1 are countable indiscernibles
and Gk0 is Pk0-generic over L then there is Gk1 containing Gk0 which is Pk1-
generic over L, where Pk = t(~i, k, ~∞). If not, then player I wins the open
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game G(k0, k1, Gk0) where I chooses constructible dense subsets of Pk1 and II
responds with increasingly strong conditions meeting these dense sets which
are compatible with all conditions in Gk0 . The latter is a property of the
model L[Gk0 ]. Let p ∈ Pk0 be a condition forcing that I wins G(k0, k1, Gk0).
Then p forces that I wins G(k2, k3, Gk2), where k2 < k3 are any indiscernibles
≥ k0 and Gk2 denotes the Pk2-generic. But now let G be a P -generic contain-
ing p in an ω1-preserving extension of V . As G preserves ω1 over V , there
are indiscernibles k2 < k3 with k0 ≤ k2 such that G ∩ k2 is Pk2-generic and
G∩Pk3 is Pk3-generic, so clearly player II has a winning strategy in the game
G(k2, k3, G ∩ Pk2), in contradiction to the choice of p.

Now it is easy to build a P -generic: List the countable indiscernibles greater
than ~i as j0 < j1 < j2 < · · · and inductively choose Pjα-generic Gα such that
α < β implies Gα ⊆ Gβ. At the �rst step, Gj0 is an arbitrary Pj0-generic.
By the previous paragraph there is no di�culty at the successor steps, where
one extends Gjα to Gjα+1 . At limit stages λ, the Pjλ-genericity of the union
Gjλ of the Gjα , α < λ, follows by indiscernibility. The desired P -generic is
the union of the Gjα , α < ω1. 2

16.,17.Vorlesungen

The existence of (slightly more than) 0# also gives a strong form of L-
saturation for class forcing. Work now in Gödel-Bernays class theory.

Suppose that 0# exists and say that a forcing P is an L-forcing if for some
A ⊆ L, P is (L,A)-de�nable and (L,A) satis�es ZFC. The existence of 0#

implies that all such A are de�nable in L[0#] with ordinal parameters.

A cardinal κ is α-Erd®s if whenever C is a club in κ and f : [C]<ω → κ
is regressive (i.e. f(a) < min(a) for all a) then for some subset x of C of
ordertype α, f is constant on [x]n for each n. We say that Ord is α-Erd®s if
this holds when C is a club in Ord and f is a class function.

Theorem 36 Suppose that 0# exists and Ord is ω + ω-Erd®s. If P is an
L-forcing de�nable over (L,A) � ZFC which has a generic (over (L,A)),
then there is such a generic G which is de�nable in a set-forcing extension
of L[0#]. Moreover the model L[G] is #-generated.

I.e., with slightly more than the existence of 0#, we have that, modulo
set-forcing, L[0#] is �saturated� for L-forcings.
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One would like to have a converse to this result, stating that if the universe
is �saturated� for L-forcings modulo set-forcing, then 0# exists. For this it
would su�ce to have a version of Baumgartner's forcing to add a club to
ω1 with �nite conditions that applies to large stationary classes (such as
the �square-sequence dropping� classes {α | n(α) ≥ k} discussed earlier).
Unfortunately, with the present state of knowledge, there are ways of adding
clubs to ω2 with �nite conditions, but not to ω3 and surely not to Ord.

One would also like to eliminate the assumption of an ω+ω-Erd®s cardinal
in Theorem 36, however something more than just the existence of 0# is
needed for the last conclusion of the Theorem, regarding #-generation:

Theorem 37 Suppose that 0# exists andM is a proper inner model of L[0#].
Then in M , for every ordinal α there is an α-Mahlo cardinal. But if there
are no inaccessibles in L[0#], there is a proper inner model of L[0#] in which
no cardinal α is α-Mahlo.

If M is an inner model of L[0#] in which no cardinal α is α-Mahlo then
M cannot be #-generated, as #-generation implies the existence of such
cardinals. So even if L is #-generated, there can be class-generic extensions
of L which are inner models of L[0#] but not #-generated.

Corollary 38 Assume that 0# exists. Then:
(a) There are L-forcings with no generic.
(b) There can be L-forcings with generics but no #-generated generic (i.e.
no generic G such that L[G] is #-generated).
(c) If there is an ω + ω-Erd®s cardinal then every L-forcing with a generic
has a #-generated generic.

For an example of (a) above, consider a forcing that adds a club through
the L-singulars. This has no generic as I = the class of Silver indiscernibles
is a club consisting of L-regulars.

However most �nice� L-forcings do have #-generated generics assuming
just the existence of 0#, provided that they are of �reverse Easton� type.
To explain the distinction between �reverse Easton� and �forward Easton�
forcings consider the following.
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Proposition 39 Suppose κ is L-regular and let P(κ) denote κ-Cohen forcing
in L.
(a) If κ has co�nality ω in L[0#] then P(κ) has a generic over L.
(b) If κ has uncountable co�nality in L[0#] then P(κ) has not generic over
L.

Proof. Let jn denote the �rst n Silver indiscernibles ≥ κ.

(a) We use the fact that P(κ) is κ-distributive in L. Let κ0 < κ1 < . . .
be an ω-sequence in L[0#] co�nal in κ. Then any D ⊆ P (κ) in L belongs to
Hull(κn∪jn) for some n, where Hull denotes Skolem hull in L. As Hull(κn∪jn)
is constructible of L-cardinality < κ we can use the κ-distributivity of P (κ)
to choose p0 ≥ p1 ≥ . . . successively below any p ∈ P (κ) to meet all dense
D ⊆ P (κ) in L.

(b) Note that in this case κ ∈ Lim I, as otherwise κ = ∪{κn|n ∈ ω} where
κn = ∪(κ ∩ Hull(κ̄ + 1 ∪ jn)) < κ, κ̄ = max(I ∩ κ), and hence κ has L[0#]-
co�nality ω. Suppose G ⊆ P(κ) were P(κ)-generic over L. For any p ∈ P(κ)
let α(p) denote the domain of p. De�ne p0 ≥ p1 ≥ . . . in G so that α(pn+1) ∈ I
and pn+1 meets all denseD ⊆ P(κ) in Hull(α(pn)∪jn). Then p = ∪{pn|n ∈ ω}
meets all dense D ⊆ P(κ) in Hull(α ∪ j) where α = ∪{α(pn)|n ∈ ω} ∈ I,
j = ∪{jn|n ∈ ω}. But then p is P(α)-generic over L, as every constructible
dense D̄ ⊆ P(α) is of the form D ∩ P(α) for some D as above. So p is not
constructible, contradicting p ∈ G. 2

It follows that in the presence of 0# there can be no generic for the Easton
product which adds an α-Cohen set to each L-regular α. However we can have
generics for the reverse Easton iteration of α-Cohen. Recall that this is the
iteration (Pα | α ∈ Ord) where for L-regular α, Pα+1 = Pα ∗ α-Cohen, using
Easton support (i.e. for L-inaccessible α, conditions are trivial on a �nal
segment of α).

Theorem 40 Assume that 0# exists. Then there is a generic over L for the
reverse Easton iteration of α-Cohen.

Proof. Recall that P(< α) has a dense subset of L-cardinality ≤ (α+)L for
each α. By induction on i ∈ I we de�ne G(≤ i) = G(< i)∗G(i) to be P(≤ i)-
generic over L, where P(≤ i) = P(< i) ∗ P(i), the �rst i + 1 stages in the
iteration de�ning P. We will have: i ≤ j in I −→ G(j) extends G(i); this will
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enable us to get through limit stages. For i = min I, take G(≤ i) to be any
P(≤ i)-generic in L[0#]. If G(≤ i) has been de�ned and i∗ is the I-successor
to i, then write P(< i∗) as P(≤ i)∗P[i+1, i∗) and as P(≤ i)  P[i+1, i∗) is i+-
closed we can select G[i+ 1, i∗) to be P[i+ 1, i∗)G(≤i)-generic over L[G(≤ i)]
(the collection of dense sets that must be met is the countable union of
subcollections of size i in L[G(≤ i)], using the Hull(i∪jn)'s as in the previous
proof). Then G(< i∗) = G(≤ i) ∗ G[i + 1, i∗) is P(< i∗)-generic over L. We
also choose G(i∗) to be P(i∗)G(<i∗)-generic over L[G(< i∗)], extending the
condition G(i) in this forcing.

For i ∈ Lim I take G(< i) to be ∪{G(< j)|j ∈ I ∩ i}, as in the previous
proof G(< i) is P(< i)-generic over L. And we take G(i) = ∪{G(j)|j ∈
I ∩ i}, which by our construction extends each G(j), j ∈ I ∩ i. Again we get
genericity for G(≤ i) from that of G(≤ j), j ∈ I ∩ i, as G(< i), G(i) extend
G(< j), G(j) respectively for each j ∈ I ∩ i. 2

But for #-generation we want more.

De�nition 41 A class A ⊆ L preserves indiscernibles if I is a class of
indiscernibles for the structure 〈L[A], A〉.

Note that if G is P-generic and preserves indiscernibles then L[G] is #-
generated, with generating # equal to Li0 [G], where i0 is the least indis-
cernible.

Theorem 42 Assume that 0# exists. Then there is a generic over L for the
reverse Easton iteration of α-Cohen which preserves indiscernibles.

Proof. It su�ces to build H ⊆ Liω which is P(< iω)-generic over Liω and such
that t(j1 . . . jn) ∈ H i� t(j′1 . . . j

′
n) ∈ H whenever j1 < . . . < jn, j

′
1 < . . . < j′n

belong to I ∩ iω, iω = ωth indiscernible. For then de�ne t(k1 . . . kn) ∈ G i�
t(i1 . . . in) ∈ H, i1 < . . . < in the �rst n indiscernibles. This is well-de�ned
using the above property of H. And G is P-generic over L: It su�ces to
consider predense D ∈ L as P has the ∞-chain condition. Now write D ∈ L
as s(l1 . . . lm), l1 < . . . < lm in I, and then D = s(i1 . . . im) is predense on
P(< iω). If p̄ = t(i1 . . . in) ∈ H meets D then p = t(l1 . . . lm, lm+1 . . . ln) meets
D, where lm < lm+1 < . . . < ln belong to I. Also p ∈ G by de�nition of G.
Finally, note that if k1 < . . . < km < l1 < . . . < lm and l1, . . . , lm are in Lim I,
k1, . . . , km in I then for any ϕ, 〈L[G], G〉 � ϕ(k1 . . . km) ←→ ϕ(l1 . . . lm) by
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the Truth Lemma and the fact that G obeys the same invariance property
that characterized H. So I is a class of indiscernibles for 〈L[G], G〉.

Now we build H. Let H2 ⊆ P(< i2) be a P(< i2)-generic in L[0#] and
H1 = H2 ∩ P(< i1). We must now de�ne H3 ⊆ P(< i3) to be P(< i3)-generic
so that t(i1,~j) ∈ H2 i� t(i2,~j) ∈ H3, where ~j is an increasing sequence from
I − iω. Note that H2(i1), a subset of i1 generic over L[H1], is a condition in
the i2-Cohen forcing de�ned over L[H2]; choose H3(i2) to be a generic for
this forcing extending H2(i1). Now note that for each n there is tn(i1,~jn) =
pn ∈ H2 which reduces all predense D ⊆ P(< i2) in Hull(i1 ∪ {i1, k1 . . . kn})
below i1, where iω ≤ k1 < . . . < kn belong to I, using the i+1 -distributivity of
P(> i1)H2(≤i1) in L[H2(≤ i)]. So if we de�ne H ′3 = {tn(i2,~jn)|n ∈ ω} we have
that H ′3 reduces all predense D ⊆ P(< i3), D ∈ L below i2. So the desired
H3 can be de�ned by H3 = {p ∈ P(< i3)|p(≤ i2) ∈ H3(≤ i2), p compatible
with H ′3}. By construction, t(i1,~j) ∈ H2 i� t(i2,~j) ∈ H3. Note that H3 was
uniquely determined by this last condition, once a choice of H3(i2) was made.

H4 is uniquely determined by P(< i4)-genericity and the condition t(i1, i2,~j) ∈
H3 i� t(i2, i3,~j) ∈ H4, as the forcing to add H3(i2) is i+1 -distributive (and the
forcing to add H3(> i2) is i+2 -distributive). We must check that t(i1, i3,~j) ∈
H4 i� t(i2, i3,~j) ∈ H4. Now any condition inH4 is extended by one of the form
p = (p0, p1) where p0 ∈ H4(≤ i3) and p1 = t(i3,~j), as such p reduce all dense
D ⊆ P(< i4),D ∈ L below i3. So it su�ces to show that t(i1, i3,~j) ∈ H4(≤ i3)
i� t(i2, i3,~j) ∈ H4(≤ i3). By de�nition of H4 we have t(i2, i3,~j) ∈ H4(≤ i3)
i� t(i1, i2,~j) ∈ H3(≤ i2). But the latter implies that t(i1, i2,~j) = t(i1, i3,~j)
and as H3(≤ i2) extends H2(≤ i1) we have that H4(≤ i3) extends H3(≤ i2).
So t(i1, i2,~j) ∈ H3(≤ i2) i� t(i1, i2,~j) ∈ H4(≤ i3) i� t(i1, i3,~j) ∈ H4(≤ i3).

In general de�neHm+3 by the condition t(im, im+1,~j) ∈ Hm+2 i� t(im+1, im+2,~j) ∈
Hm+3. As above we get that Hm+3 is P(< im+3)-generic and t(i1 . . . im+1,~j) ∈
Hm+2 i� t(i1 . . . im, im+2,~j) ∈ Hm+3. Finally let H = ∪{Hm|m ∈ ω}. Then H
is P(< iω)-generic over L and for any k1 < . . . < kl+2 < ~j in I, kl+2 < iω ≤ ~j
we have t(k1 . . . kl+1,~j) ∈ H i� t(k1 . . . kl, kl+2,~j) ∈ H. This is enough to

imply that t(~k0) ∈ H i� t(~k1) ∈ H whenever ~k0, ~k1 are increasing sequences
from I ∩ iω. 2

18.,19.Vorlesungen

The MK Hyperuniverse

The Hyperuniverse we have been disucssing is the set of all countable
transtiive models of ZFC. But one can also associate a Hyperuniverse to
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theories other than ZFC, such as the class theory MK. This is the theory
with both sets and classes, where the sets obey ZFC plus replacement and
comprehension for formulas which quantify over classes as well as global
choice (the existence of a class which wellorders the sets). Then:

The MK-Hyperuniverse = the set of countable transitive models (M, C) of
MK

We've seen that a useful fact about the usual Hyperuniverse is the fact
that any ZFC-universeM has a width-extension which is minimal, i.e. which
is the smallest universe containing some real. Our aim now is to develop a
similar result for MK-universes.

To obtain this result we need to develop a theory of forcing over MK-
universes where the conditions are classes, and not sets, as so-called �hyper-
class forcing�. It turns out that the most e�ective way of doing this is to
associate to an MK-universe an associated �companion� model of ZFC− =
ZFC\ Powerset.

If (M, C) is an MK-universe then we associate to it the transitive set M+

consisting of the union of all transitive sets �coded� by a class in C. Without
going into the details of this �coding�, a transitive set t is coded by a class
T ∈ C if T is a wellfounded tree on a subclass of M which is isomorphic to
the transitive closure of {t} with the ∈-relation, once nodes with isomorphic
subtrees below them are identi�ed with each other. For this coding it is useful
to assume that (M, C) is a β-model, which means that any relation in C which
appears wellfounded in (M, C) is in fact wellfounded in the real world.

It is our wish that the �companion� model M+ be a model of ZFC−.
For this we need to assume that (M, C) satis�es more than MK, namely the
theory MK∗, which adds to MK the scheme of class-bounding :

If for each set x there is a class Y such that ϕ(x, Y ) then there is a single
class Z such that for all x there is a y such that ϕ(x, (Z)y)

where ϕ can be second-order with class parameters and (Z)y, the �y-th slice
of Z� is the set of z such that (y, z) ∈ Z. Using Global Choice it is not hard to
show that class-bounding is equivalent over MK to class-choice, which says:
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If for each set x there is a class Y such that ϕ(x, Y ) then there is a single
class Z such that for all x, ϕ(x, (Z)x).

Now we have a nice way of translating between β-models of the second-
order theory MK∗ and models of a �rst-order theory. The axioms of SetMK∗

are:

ZFC− (including the Bounding Principle)
There is a strongly inaccessible cardinal κ
κ is the largest cardinal (i.e. every set can be mapped injectively into κ)

Theorem 43 (a) Suppose that (M, C) is a β-model of MK∗. Then M+ as
de�ned above is a transitive model of SetMK∗ such that if κ is the largest
cardinal of M+ then M = V M+

κ and C consists of the subsets of M in M+.
(b) Suppose that M+ is a transitive model of SetMK∗ with largest cardinal
κ. Then (M, C) is a β-model of MK∗ where M = V M+

κ and C consists of all
subsets of κ in M+.
(c) The above transformations (M, C) 7→ M+ andM+ 7→ (M, C) are inverses
to each other.

De�nable Hyperclass Forcing and MK∗∗

To width-expand a β-model (M, C) of MK to a minimal one (i.e. the least
β-model of MK containing some real) requires use of an (M, C)-de�nable
forcing whose conditions are classes. Our strategy is to replace (M, C) by
M+ and then view this forcing as an M+-de�nable class-forcing, applying
techniques of class-forcing to the ZFC− modelM+. But there is one more re-
maining di�culty here, which can be illustrated by considering the following
example:

Example. Suppose that M satis�es ZFC− and consider the class forcing P in
M whose conditions are functions from an ordinal to 2, ordered by extension.
Suppose that G is P-generic over M . Then do M and M [G] have the same
sets, i.e. is P ∞-distributive for de�nable sequences of dense classes?

The answer would appear to be �yes�, as the forcing P is clearly∞-closed
in M . But the di�culty in extending a given condition p to meet even ω-
many dense classes (Dn | n < ω) is the need for a suitable form of dependent
choice to choose p = p0 ≥ p1 ≥ · · · where pn+1 meets Dn.
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Given a β-model (M, C) of MK∗ we would like to apply the above forcing
to the companion transitive model M+ of ZFC−; but to successfully do so
we would like M+ to satisfy (for �rst-order ϕ):

De�nable κ-DC: If for all x there is a y such that ϕ(x, y) then for any x
there is a function f with domain κ such that f(0) = x and for all i > 0,
ϕ(f � i, f(i)).

To obtain the κ-DC in M+ in turn requires us to strengthen the axioms
MK∗ by adding (for second-order ϕ):

De�nable DC for Classes: If for each class X there is a class Y such that
ϕ(X, Y ) then for any class X there exists a class Z such that (Z)0 = X and
for all ordinals i > 0, ϕ(Z � i, (Z)i),

where as before (Z)i = {x | (i, x) ∈ Z} and Z � i = {(j, x) | j < i and
(j, x) ∈ Z}. The theory MK∗∗ is MK∗ together with DC for Classes. It is
easy to verify that if (M, C) is a β-model of MK∗∗ then the associated M+

satis�es SetMK∗∗ and conversely, if starting with M+ satisfying SetMK∗∗ we
derive a β-model (M, C) of MK∗ then in fact this latter model satis�es MK∗∗.

OK, so now we are �nally ready to start forcing over M+. Let κ∗ denote
the ordinal height of M+.

Step 1. We force over M+ to get a SetMK∗∗-model of the form Lκ∗ [A] where
A is a subset of κ∗.

The forcing to produce A is simply the forcing mentioned earlier to add
a Cohen class A of ordinals to M+. The assumption of κ-DC is needed to
show that this forcing is de�nably distributive and therefore does not add
new sets. By genericity any set of ordinals in M+ appears in Lκ∗ [A]. We still
have a model of SetMK++ with largest cardinal κ.

An important point however is the de�nability of the forcing relation,
which follows from the special nature of the forcing: To determine if p forces
σ ∈ τ for two names σ and τ , we simply see if σq ∈ τ q for all extensions q of
p of length greater than the ranks of σ and τ . In other words, forcing equals
truth for atomic sentences and long enough conditions.

37



Step 2. By forcing we �reshape� A into another A′, without adding sets, so
that for no α between κ and κ∗ does (Lα[A′], A′ ∩ α) satisfy ZFC−.

A condition is an initial segment of such an A′ of length less than κ∗.
One must show that this forcing is de�nably distributive, which is a special
argument using su�ciently elementary submodels.

Step 3. We code A′ into a subset X of κ, so that M+ is now contained in
Lκ∗ [X] and there is no α between κ and κ∗ such that Lα[X] satis�es ZFC−.

This is almost disjoint coding. The fact that A′ is �reshaped� makes this
possible. The forcing has small de�nable antichains (they are all sets) and
the proof that the forcing relation is de�nable for �pretame� class forcings
over models of ZFC can be adapted here, replacing use of the V -hierarchy
by the (L[A′], A′)-hierarchy.

Step 4. We add a club C of strong limit cardinals less than κ such that if κ̄
belongs to C then there is no model of ZFC− of the form Lα[X ∩ κ̄] in which
κ̄ is strongly inaccessible.

This uses the fact that since there is no ZFC− model Lα[X] with α < κ∗

in which κ is strongly inaccessible, the set of κ̄ as above is �fat-stationary�.
So we are shooting a club through a fat-stationary set.

Step 5. We arrange that all limit cardinals less than κ belong to C using an
Easton product of collapse forcings.

Step 6. We apply Jensen coding to get a model Lκ∗ [x] for some real x in
which ZFC− holds, κ is strongly inaccessible and for no cardinal κ̄ ≤ κ is
there an α < κ∗ such that Lα[x] satis�es ZFC− and in which κ̄ is strongly
inaccessible. We still have a model of ZFC− thanks to the good behaviour of
Jensen coding.

Step 7. Finally, we add a real y which ensures the above property of x not
only at each cardinal less than or equal to κ but also at each ordinal less
than or equal to κ, using a method due to David and myself.

That does it: Now we have a real y such that M+ is contained in Lκ∗ [y]
and the latter is the least transitive model of SetMK containing y. This is
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also a model of SetMK∗∗ and it follows that the MK∗∗-model derived from
Lκ∗ [y] is the least β-model of MK containing y.

20.Vorlesung

Minimality in the GB Hyperuniverse

Theorem 44 Suppose that (M, C) is a countable model of GB (Gödel-Bernays
class theory). Then (M, C) has an extension (M∗, C∗) with the same ordinals
which for some real x is the smallest transitive model of GB containing x.

Proof. The proof is unusual in that in the �rst step we force over a very �bad�
ground model to code the elements of C into a single class, preserving GB.
The proof then �nishes in a standard way by applying the variant of Jensen
coding needed to create minimal universes.

List the elements of C as A0, A1, . . ., in an ω-sequence. We associate clubs
C0, C1, . . . to this sequence as follows:

C0 = the club of α < Ord(M) such that V M
α is Σ1 elementary in M .

C1 = the club of α < Ord(M) such that V M
α is Σ2 elementary in M relative

to the predicate (A0, C0).

In general, Cn+1 = the club of α < Ord(M) such that V M
α is Σn+2 elementary

in M relative to the predicate (A0, A1, . . . , An, C0, . . . , Cn).

And for each n let C+
n denote the successor elements of Cn.

Our goal is to force a class function F : Ord(M)→ 2 which codes An at
su�ciently large elements of C+

n and preserves ZFC over M . More precisely:

1. For each n and su�ciently large i < Ord(M), i belongs to An i� the value
of F at the i-th element of C+

n is equal to 1.

2. (M,A) satis�es ZFC.

We take F to be generic over (M,A0, A1, . . .) for the forcing P consisting
of pairs (p, n) where |p| is an ordinal < Ord(M), p : |p| → 2 and n ∈ ω. When
extending (p, n) to (q, k) we require that k is at least n and condition 1 above
holds at all ordinals α which belong both to some C+

m, m ≤ n and to the
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domain of q \ p. Note that the ground model (M,A0, A1, . . .) may not satisfy
ZFC. However we force over this ground model with P anyway. The result
is a function F : Ord(M) → 2 such that each An is de�nable over (M,F )
with parameters. But we need a special argument for the preservation of ZFC
when adding F to M .

Lemma 45 For each n let Pn be the forcing consisting of conditions (p, n)
in P with second coordinate n. Then any predense sublcass D of Pn which is
Σn-de�nable over (M,A0, . . . , An, C0, . . . , Cn) is also predense in P.

Proof. We want to extend a given (p, k) ∈ P below some (q, n) in D. We may
sssume that k is at least n. Extend p so that |p| is a limit point of Ck. Then
extend (p, n) to a (q, n) extending an element of D of least possible length.
As D is Σn-de�nable over (M,A0, . . . , An, C0, . . . , Cn), the length of q is less
than the least element of Cn+1 greater than |p|. It follows that (q, k) extends
both (p, k) and (q, n) ∈ D. 2

By the Lemma, our P-generic F is also Pn-generic over the ground model
(M,A0, . . . , An, C0, . . . , Cn) for Σn-de�nable dense classes. As the forcing Pn
preserves full replacement over this ground model (and Pn is ∆1-de�nable
over this ground model, adding no new sets) it follows that F preserves Σn

replacement over (M,A0, . . . , An, C0, . . . , Cn) and therefore Σn replacement
over M , for each n. Thus F preserves ZFC over M .

So we have enlarged (M, C) to a GB-model (M, C∗) where C∗ consists just
of the classes de�nable over (M,F ). Now to �nish the proof, apply Jensen
coding to enlarge this further to a GB-model of the form (LM [x0], C∗∗) where
x0 is a real and C∗∗ are the classes de�nable over LM [x0]. Then apply the
Beller-David result to enlarge LM [x0] one last time to the least transitive
GB-model conataining some real x. 2

Remark. By further forcing we can enlarge the minimal model LM [x] above
to a pointwise-de�nable model, by forcing V = HOD using a generic iteration
and coding x into the GCH pattern on the ℵn's. In this model every set is
de�nable from ordinals, every ordinal is de�nable from x and x is de�nable.
But it is not known if one can enlarge to a pointwise-de�nable model also
satisfying V = L[x] for some real x.
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