
Set Theory1. Basi
sWe begin with a summary (omitting proofs) of the basi
s of Zermelo-Fraenkel Set Theory with the Axiom of Choi
e (ZFC).Language of ZFCThe only nonlogi
al symbol is a binary symbol ∈ for denoting set-theoreti
membership. This is 
ombined with the usual logi
al symbols of a �rst-orderlanguage to form formulas. We also introdu
e the usual abbreviations for
∃xϕ, ϕ ∧ ψ, ϕ ∨ ψ . . ., as well as:

∃!xϕ abbreviates ∃x∀y(ϕxy ↔ x = y)Axioms of ZF (= ZFC without the Axiom of Choi
e)1. Extensionality: Two sets are equal i� they have the same elements. For-mally, ∀x∀y(x = y ↔ ∀w(w ∈ x↔ w ∈ y)).2. Empty Set: ∅ exists. Formally, ∃x∀y(y /∈ x).3. Pairing: {x, y} exists. Formally, ∀x∀y∃z∀w(w ∈ z ↔ (w = x ∨ w = y)).4. In�nity: There is a set whi
h 
ontains ∅ and is 
losed under the operation
u 7→ u ∪ {u}. Formally, ∃x(∅ ∈ x ∧ ∀y(y ∈ x → y ∪ {y} ∈ x)), where
y ∪ {y} ∈ x abbreviates ∃z(z ∈ x ∧ ∀w(w ∈ z ↔ (w ∈ y ∨ w = y))).5. Union: For any set x, ∪x = {z | z ∈ w for some w ∈ x} exists. Formally,
∀x∃y∀z(z ∈ y ↔ ∃w ∈ x(z ∈ w)).6. Power Set: P(x) = {y | y ⊆ x} exists. Formally, ∀x∃y∀z(z ∈ y ↔ y ⊆ x),where y ⊆ x abbreviates ∀w(w ∈ y → w ∈ x).7. Repla
ement S
heme: If ϕ(x, y) is a formula that de�nes a fun
tion thenits range on any set exists. Formally:
∀x∃!yϕ(x, y)→ ∀a∃b∀y(y ∈ b↔ ∃x ∈ aϕ(x, y))where ϕ is any formula whose free variables in
lude x, y but not a, b.8. Foundation: ∈ is a well-founded relation. Formally, ∀x(x 6= ∅ → ∃y ∈
x∀z ∈ x(z /∈ y)).The following are two important 
onsequen
es of the ZF axioms.Comprehension Prin
iple. For any set a and formula ϕ(x) one 
an form theset {x ∈ a | ϕ(x)}. Formally:

∀a∃b∀x(x ∈ b↔ (x ∈ a ∧ ϕ(x)))1



where ϕ is any formula whose free variables in
lude x but not a, b.Bounding Prin
iple. If ϕ(x, y) de�nes a total relation then for any a there isa b su
h that {〈x, y〉 | ϕ(x, y) ∧ y ∈ b} is a total relation on a. Formally:
∀x∃yϕ(x, y)→ ∀a∃b∀x ∈ a∃y ∈ bϕ(x, y)where ϕ is any formula whose free variables in
lude x, y but not a, b.We dis
uss some te
hni
alities 
on
erning fun
tions and 
artesian pro-du
ts. For any two sets x, y de�ne the ordered pair 〈x, y〉 to be the set

{{x}, {x, y}}. A simple exer
ise is to show that 〈x, y〉 = 〈x′, y′〉 i� x = x′and y = y′. It follows from the Pairing axiom that 〈x, y〉 exists for any x, y.A fun
tion is a set f whose elements are ordered pairs with the property:If 〈x, y〉 and 〈x, y′〉 are elements of f then y = y′. In ZF we 
an de�ne thenotion of fun
tion as well as: Dom(f) (domain of f), Ran(f) (range of f),
f ↾ x (restri
tion of f to x). Also, for any two sets a, b de�ne the 
artesianprodu
t of a, b to be a× b = {〈x, y〉 | x ∈ a ∧ y ∈ b}. A simple exer
ise is toshow (using Union, Power Set and Comprehension) that a× b exists for anytwo sets a, b.We 
an now introdu
e the �nal axiom of ZFC:Axiom of Choi
e (AC). If every element of x is nonempty then there is afun
tion whi
h sele
ts a unique element from ea
h element of x. Formally,
∀y ∈ x(y 6= ∅)→ ∃f(f is a fun
tion ∧ Dom(f)= x ∀y ∈ x(f(y) ∈ y)).ZFC = ZF with the additional axiom AC.Ordinals
〈x,≤〉 is a linear ordering (lo) if it obeys:

a ≤ a
a ≤ b ∧ b ≤ a→ a = b
a ≤ b ≤ c→ a ≤ cFor all a, b: a ≤ b ∨ b ≤ a

〈x,≤〉 is a well-ordering (wo) if it also obeys:
y ⊆ x, y 6= ∅ → y has a ≤-least element; i.e., ∃a ∈ y∀b ∈ y(a ≤ b).Cantor 
lassifed the well-orderings. If 〈x,≤x〉 is a wo then an intial seg-ment of 〈x,≤x〉 is a wo 〈x′,≤x′〉 where:2



x′ ⊆ x
a ∈ x′, b ≤x a→ b ∈ x′For a0, a1 ∈ x

′, a0 ≤x′ a1 i� a0 ≤x a1.And 〈x′,≤ ′
x〉 is a proper intial segment of 〈x,≤x〉 if in addition x′ 6= x.Comparability of WO's. If 〈x,≤x〉 and 〈y,≤y〉 are wo's then exa
tly one ofthe following is true:1. 〈x,≤x〉 is isomorphi
 to a proper initial segment of 〈y,≤y〉.2. 〈y,≤y〉 is isomorphi
 to a proper initial segment of 〈x,≤x〉.3. 〈x,≤x〉 and 〈y,≤y〉 are isomorphi
.Cantor showed that every wo is isomorphi
 to a unique wo of a spe
ialkind. 〈x,≤x〉 is a quasi-ordinal i� it is a wo and <x= ∈ restri
ted to x =

{〈y, z〉 | y, z ∈ x∧ y ∈ z}. A quasi-ordinal 〈x,≤x〉 is an ordinal if in addition
x is transitive: a ∈ b ∈ x→ a ∈ x.Comparability of Ordinals. If α, β are ordinals then α ∈ β, β ∈ α or α = β.Notation. If α, β are ordinals then we write α < β for α ∈ β, α ≤ β for
α < β or α = β and ORD for the 
lass of all ordinals.Ordinal Fa
ts(a) An element of an ordinal is an ordinal.(b) ∅ is an ordinal.(
) If α is an ordinal then so is α ∪ {α}, the least ordinal greater than α.(d) If x is a set of ordinals then ∪x is also an ordinal, the supremum of x inthe well-ordering of ordinals.For natural numbers n de�ne 0 = ∅, n + 1 = n ∪ {n} = {0, 1, . . . , n}.The least in�nite ordinal is denoted by ω and is equal to {0, 1, . . .}. α is asu

essor ordinal if it is of the form β ∪ {β} for some ordinal β; the latter isalso written as β + 1. α is a limit ordinal if it is not 0 and is not a su

essorordinal. The least in�nite ordinal ω is an example.Classi�
ation of wo's. Every wo is isomorphi
 to an ordinal.Indu
tion generalises from the natural numbers to the ordinal numbers:Leastness Prin
iple for ORD.
∃αϕ(α)→ ∃α(ϕ(α) ∧ ∀β < α ∼ ϕ(β)).3



Trans�nite Indu
tion.
(ϕ(0) ∧ ∀α(∀β < αϕ(β)→ ϕ(α)))→ ∀αϕ(α).Using trans�nite indu
tion we 
an de�ne addition and multipli
ation onordinal numbers:
α + 0 = α
α + (β + 1) = (α + β) + 1
α + λ = ∪{α + β | β < λ}, λ limit
α · 0 = 0
α · (β + 1) = (α · β) + α
α · λ = ∪{α · β | β < λ}, λ limitNote: 1 + ω = ω 6= ω + 1; 2 · ω = ω 6= ω · 2 = ω + ω.von Neumann Hierar
hy
V0 = ∅
Vα+1 = P(Vα)
Vλ = ∪{Vα | α < λ}, λ limitEa
h Vα is transitive, α ≤ β → Vα ⊆ Vβ and α ∈ Vα+1. The fun
tion
F (α) = Vα is de�nable.von Neumann's Theorem. Every set is an element of some Vα.The Rank of a set x is the least ordinal α su
h that x belongs to Vα+1.CardinalsUsing the Axiom of Choi
e (AC) one 
an prove:Theorem 1.1. For every set X there exists ≤X su
h that 〈X,≤X〉 is a wo.Corollary 1.2. For every set X there is an ordinal α and a bije
tion f : X ↔
α.De�nition. A 
ardinal if an ordinal κ su
h that α < κ→ there is no inje
tivefun
tion f : κ→ α. 4



Remark. If β is not a 
ardinal then there is α < β and a bije
tive fun
tion
f : β ↔ α: If f : β → α, α < β is inje
tive, then 
hoose g : 〈 Range(f),∈〉 ≃
〈ᾱ,∈〉, and repla
e f by g ◦ f .De�nition. Card X = 
ardinality of X is the unique 
ardinal κ su
h thatthere is a bije
tion f : X ↔ κ.Cantor's Theorem. For any set X, Card P(X) > Card X.Proof. Otherwise there is a surje
tive f : X → P(X). But 
onsider the set
Y = {A ∈ X | a /∈ f(a)}. Then f(y) 6= Y for all a ∈ X, as otherwise wewould have a ∈ Y i� a /∈ Y . 2So there is no largest 
ardinal and every set is in bije
tive 
orresponden
ewith a unique 
ardinal. De�ne:
ℵ0 = ω
ℵα+1 = least 
ardinal greater than ℵα
ℵλ = ∪{ℵα | α < λ} for limit λ.These are the in�nite 
ardinals. For whi
h α do we have Card P(ω) = ℵα?We shall dis
uss this later.De�nition. If κ is a 
ardinal then κ+ is the least 
ardinal greater than κ. Asu

essor 
ardinal is a 
ardinal of the form κ+ for some κ; a limit 
ardinal isa nonzero 
ardinal that is not a su

essor 
ardinal. The limit 
ardinals are
ℵ0 together with ℵλ for limit ordinals λ.Cardinal Arithmeti
If κ, λ are 
ardinals then the 
ardinal sum and produ
t κ + λ, κ · λ arethe 
ardinalities of the ordinal sum and produ
t κ + λ, κ · λ.Theorem 1.3. For nonzero 
ardinals κ, λ, not both �nite:
κ+ λ = κ · λ = max(κ, λ).So addition and multipli
ation of 
ardinals is not very interesting. Howe-ver 
ardinal exponentiation is very interesting, as we will now see.De�nition. For 
ardinals κ, λ, κλ is the 
ardinality of the set {f | f : λ→ κ}.5



For example, 2ℵ0 = 2ω is the 
ardinality of the set of fun
tions f from thenatural numbers N into {0, 1}. Of 
ourse this is the same as the 
ardinalityof P(N). It is also the same as the 
ardinality of the set of real numbers:Proposition 1.4. The set of real numbers has 
ardinality 2ℵ0 .What is 2ℵ0? It turns out that this question 
annot be answered in ZFC.Gödel: If ZFC is 
onsistent then so is ZFC + 2ℵ0 = ℵ1.Cohen: If ZFC is 
onsistent then so is ZFC + 2ℵ0 = ℵ2.The Continuum Hypothesis (CH) is the statement that 2ℵ0 = ℵ1. Thusit follows that both CH and ∼ CH are 
onsistent with ZFC (assuming of
ourse that ZFC is 
onsistent). There is a similar situation at other in�nite
ardinals. The Generalised Continuum Hypothesis (GCH) is the statementthat 2κ = κ+ for every in�nite 
ardinal κ. Gödel's work also showed thatthe GCH is 
onistent with ZFC. But the general behaviour of the fun
tion
κ 7→ 2κ is very di�
ult to determine. For example, we have:Silver: If 2α = α+ for every α < κ = ℵℵ1

then 2κ = κ+.And there are results stating that Silver's result does not hold with ℵℵ1repla
ed by ℵω. However there is some restri
tion in the latter 
ase:Shelah: If 2ℵn < ℵω for every �nite n then 2ℵω < ℵℵ4
.The Lévy Hierar
hyThe ∆0 formulas form the least set of formulas 
ontaining the atomi
formulas x ∈ y, x = y and 
losed under ∼,∧ and bounded quanti�
ation

∀x ∈ y. Now de�ne:
Σ0 = Π0 = ∆0A Σn+1 formula is one of the form ∃x1 · · · ∃xmϕ, where ϕ is ΠnA Πn+1 formula is one of the form ∀x1 · · · ∀xmϕ, where ϕ is Σn.De�nability of Σn Satisfa
tion. For ea
h n there is a formula Satn(i, s) su
hthat if i = #ϕ, ϕ is Σn and s is a fun
tion with domain i+ 1 then:ZF− ⊢ Satn(i, s)↔ ϕ(s(0), . . . , s(i))6



(where if ϕ has free variables x0, . . . , xj then ϕ(s(0), . . . , s(i)) is obtainedfrom ϕ by repla
ing xk by s(k)).Tarski observed that ther is no formula Sat(i) su
h that if i = #ϕ, ϕan arbitrary senten
e then ZF− ⊢ Sat(i) ↔ ϕ. The same applies to anyre
ursive theory 
ontaining ZF−.Using the previous result we 
an formulate the Re�e
tion Prin
iples. Theexpression
M ≺n Vmeans that for Σn formulas ϕ(x1, . . . , xm) and a1, . . . , am ∈M :

M � ϕ(a1, . . . , am) i� ϕ(a1, . . . , am) is true.Theorem 1.5. For ea
h n, ZF proves the n-th Re�e
tion Prin
iple RPn:
∀α∃β > α Vβ ≺n V .The Universe of Constru
tible SetsGödel's universe of 
onstru
tible sets is de�ned via the following hierar
hy:

L0 = ∅
Lα+1 = Def Lα
Lλ = ∪{Lα | α < λ} for limit ordinals λ.We say that x is 
onstru
tible if for some ordinal α, x ∈ Lα. This is oftenabbreviated as �x ∈ L�, where L = ∪{Lα | α ∈ ORD}, but it is importantto keep in mind that L is not a set, but what 
an be referred to as a �proper
lass� of sets.We need to know that this hierar
hy is de�nable in an �absolute� way,in the following sense. Let ZF− be the �nite subtheory of ZF obtained byrestri
ting the Repla
ement s
heme to formulas with only 100 quanti�ers.Fa
t. If M,N are transitive sets and both 〈M,∈〉 and 〈N,∈〉 are models ofZF− then for every ordinal α ∈ M ∩ N , LMα = LNα , where LMα , LNα are theinterpretations of Lα in M,N , respe
tively.We now show that in a 
ertain sense, L is a �model� of ZF. For ea
hformula ϕ, de�ne a formula ϕL as follows:7



(x ∈ y)L = (x ∈ y)
(x = y)L = (x = y)
(ϕ ∧ ψ)L = (ϕL ∧ ψL)
(∼ ϕ)L =∼ (ϕL)
(∀xϕ)L = ∀x(x ∈ L→ ϕL).Then ϕ expresses the property �ϕ is true in L�. We have:Theorem 1.6. ZF ⊢ ϕL for ea
h axiom ϕ of ZF.Corollary 1.7. Let V = L be the senten
e ∀x(x ∈ L). Then assuming thatZF is 
onsistent, the theory ZF + V = L is also 
onsistent.Proof of Corollary from Theorem. Suppose that ZF + V = L were in
onsi-stent. Then ZF ⊢∼ (V = L). By the Theorem, ZF proves ϕL whenever ϕ isan axiom of ZF, and therefore ZF proves ϕL whenever ϕ is a theorem of ZF.So ZF proves (∼ (V = L))L. But
(∼ (V = L))L =∼ ((V = L)L) =∼ (∀x(x ∈ L))L =∼ ∀x(x ∈ L→ x ∈ L)whi
h is the negation of a valid senten
e. It follows that ZF is in
onsistent,against our hypothesis. 2Proof of Theorem. ϕL is easy to 
he
k when ϕ is an axiom of ZF, ex
eptfor the Power Set Axiom and Repla
ement. For example if ϕ is the UnionSet Axiom, we must only show that if x ∈ L then ∪x is in L, for then byabsoluteness (∪x)L = ∪x. But if x belongs to Lα then ∪x = {y | y is anelement of an element of x} is de�nable over Lα, and therefore belongs to
Lα+1.For Power Set: Suppose that x belongs to Lα and de�ne PL(x) to be
{y ∈ L | y ⊆ x}. We must show that PL(x) belongs to some Lβ . De�ne afun
tion f : PL(x) → ORD by f(y) = the least ordinal γ su
h that y ∈ Lγ .By the Repla
ement axiom there is an ordinal β su
h that PL(x) ⊆ Lβ, andtherefore PL(x) ∈ Def Lβ = Lβ+1.For Repla
ement: Suppose that x belongs to L and f : x → L is an
L-de�nable fun
tion. We want to show that there is an ordinal α su
h thatRange f belongs to Lα. If f is Σn-de�nable in L then it is enough to �ndan ordinal α su
h that Lα ≺n L, Range f ⊆ Lα and the parameters in theformula that de�nes f belong to Lα. Using the Re�e
tion Prin
iple we 
an8




hoose su
h an α, with Lα ≺n L repla
ed by Vα ≺m V for anym. By 
hoosing
m large enough we get LVα ≺n L and therefore by absoluteness Lα ≺n L. 2One of Gödel's famous results is that if ZF is 
onsistent then so is ZFC =ZF + AC. By the previous 
orollary, any statement provable in the theoryZF+ V = L is 
onsistent with ZF, so this follows from:Theorem 1.8. ZF+ V = L ⊢ AC.

9



2. Hyper�ne Stru
ture TheoryNames and Lo
ationsFor any α ∈ ORD, ϕ(u,~v) a �rst�order formula with n+ 1 free variables,and ~x a sequen
e from Lα of length n, let I(α, ϕ, ~x) denote {y ∈ Lα | Lα |=
ϕ(y, ~x)}. Thus we 
an think of the above triples (α, ϕ, ~x) as names forelements of L. A 
entral idea in our theory is to also view (α, ϕ, ~x) as alo
ation for the stru
ture L(α,ϕ,~x) in the �ne hierar
hy with an asso
iated hulloperation L(α,ϕ,~x){·} whi
h approximates the usual Skolem hull operation onsubsets of Lα. Before we de�ne these notions we �rst dis
uss the orderingof names (=lo
ations) and prove a 
ondensation result for �
onstru
tibly�
losed� subsets of Lα.Well-order names and 
onstru
tible sets in the standard way as follows:Consider ∈�formulae built using ¬, ∧, ∨ and the existential quanti�er ∃.We agree that every formula ϕ has a distinguished variable used for the
I�operation and for existential quanti�
ations. When we write ϕ(u, ~x), weintend that u is distinguished in ϕ; then ∃uϕ with any 
hoi
e of distinguishedvariable is a new permitted formula. Let ϕ0, ϕ1, ϕ2, . . . be an ω�ordering ofpermitted formulas, subformulas appearing earlier, whi
h we assume to be�xed throughout this arti
le.We take <0 to be the va
uous ordering on L0 = ∅. If <α is de�ned asa wellordering of Lα then order sequen
es from Lα by ~x <lex

α ~y i� ~x islexi
ographi
ally less then ~y, using <α on the 
omponents of ~x and ~y. Names
(β, ϕ, ~x) where β ≤ α are ordered by:
(β, ϕm, ~x) <̃ (γ, ϕn, ~y) i�
(β < γ) ∨
(β = γ ∧m < n) ∨
(β = γ ∧m = n ∧ ~x <lex

β ~y).And for y ∈ Lα+1 letN(y) denote the <̃ �least (β, ϕ, ~x) su
h that I(β, ϕ, ~x) =
y. Then de�ne y <α+1 z i� N(y) <̃N(z). Finally for limit λ set <λ=⋃
α<λ <α. Thus we obtain a wellordering <L=

⋃
α∈ORD <α of L and awellordering <̃ of names (α, ϕ, ~x) used to denote elements of L.By an α�lo
ation we understand a lo
ation s of the form s = (α, ϕ, ~x).The <̃ �smallest α�lo
ation is (α, ϕ0,~0) with ~0 a ve
tor of 0's of appropriatelength. The <̃ �su

essor of s is denoted by s+.10



Constru
tible Operations and Basi
 Constru
tible Closures.The basi
 
onstru
tible operations are I and N as de�ned above and aSkolem fun
tion:(Interpretation)For a name (α, ϕ, ~x), set I(α, ϕ, ~x) = {y ∈ Lα | Lα |= ϕ(y, ~x)}.(Naming)For y ∈ L, let N(y) be the <̃ �least name (α, ϕ, ~x) su
h that I(α, ϕ, ~x) = y.(Skolem Fun
tion)For a name (α, ϕ, ~x), let S(α, ϕ, ~x) be the <L� least y ∈ Lα su
h that Lα |=
ϕ(y, ~x), and set S(α, ϕ, ~x) = 0 if su
h a y does not exist.As we do not assume that α is a limit ordinal and therefore do not havepairing, we make the following nonstandard de�nition.De�nition. For X ⊆ L and ~x a �nite sequen
e we write ~x ∈ X if ea
h
omponent of ~x belongs to X. If (α, ϕ, ~x) is a name we write (α, ϕ, ~x) ∈ Xto mean that α ∈ X and ~x ∈ X.A set or 
lass X ⊆ L is 
onstru
tibly 
losed, written X ⊳ L, i� X is 
losedunder I, N and S, i.e.,

(α, ϕ, ~x) ∈ X −→ I(α, ϕ, ~x) ∈ X and S(α, ϕ, ~x) ∈ X,

y ∈ X −→ N(y) ∈ X.For X ⊆ L let L{X} denote the ⊆�smallest Y ⊇ X su
h that Y ⊳ L.Clearly ea
h Lα is 
onstru
tibly 
losed.Proposition 2.1. Let X be 
onstru
tibly 
losed and let π:X ∼= M be theMostowski 
ollapse of X onto the transitive set M . Then there is an ordinal
α su
h that M = Lα, and π preserves I, N , S and <L:

π: (X,∈, <L, I, N, S) ∼= (Lα,∈, <L, I, N, S).Proof. We prove this for X ⊆ Lγ , by indu
tion on γ. The 
ases γ = 0 and
γ limit are easy. Let γ = β + 1 and X ⊆ Lβ+1 but X * Lβ. Closure under
N and I implies that X = {I(β, ϕ, ~x) | ~x from X ∩ Lβ}. Indu
tively let
π:X ∩ Lβ ∼= Lα. Closure under S and the fa
t that β belongs to X imply11



that X ∩ Lβ is elementary in Lβ. It follows that π extends to π̃:X ∼= Lα+1.Preservation of I, N , S and <L follows also from the elementarity of X ∩Lβin Lβ. 2The Hyper�ne Hierar
hy.De�nition. Let s be a lo
ation, s = (α, ϕm, ~x). Set
Ls = (Lα,∈, <L, I, N, S, S

Lα

ϕ0
, SLα

ϕ1
, . . . , SLα

ϕm
↾ ~x, ∅, ∅, . . .)where SLα

ϕ (~y) = S(α, ϕ, ~y), SLα
ϕm

↾ ~x is the restri
ted Skolem fun
tion SLα
ϕm

↾

{~y | ~y <lex
α ~x} and ∅, ∅, . . . are empty fun
tions.

(Ls | s is a lo
ation) is the hyper�ne 
onstru
tible hierar
hy.Ea
h stru
ture of the hyper�ne hierar
hy possesses an asso
iated hulloperator.De�nition. Let s = (α, ϕm, ~x) be a lo
ation. A set Y ⊆ Lα is 
losed in Ls,written Y ⊳ Ls, if Y is an algebrai
 substru
ture of Ls, i.e., if Y is 
losedunder I, N , S, SLα
ϕ0
, SLα

ϕ1
,. . ., SLα

ϕm
↾ ~x.For a set X ⊆ Lα let Ls{X} be the ⊆�smallest set Y su
h that Y ⊳ Ls and

Y ⊇ X. We 
all Ls{X} the Ls�hull of X.The hyper�ne hierar
hy is a very slow growing hierar
hy whi
h nonethe-less satis�es full 
ondensation. This is the basis for its appli
ations to �nestru
ture theory.Condensation. Let s = (α, ϕm, ~x) be a lo
ation and suppose X is a set su
hthat X ⊳ Ls. Then there is a unique isomorphism
π: (X,∈, <L, I, N, S, S

Lα
ϕ0
, SLα

ϕ1
, . . . , SLα

ϕm
↾ ~x, ∅, . . .) ∼=

Ls = (Lα,∈, <L, I, N, S, S
Lα
ϕ0
, SLα

ϕ1
, . . . , SLα

ϕm
↾ ~x, ∅, . . .).Proof. Let π:X ∼= Lα be given by Proposition 1. Note that X is ϕi�elementary in Lα for i ≤ m, sin
e X is 
losed under the Skolem fun
tionsfor every proper subformula of ϕi. Hen
e π−1:Lα → Lα is ϕi�elementary for

i ≤ m. Let r = (α, ϕi, ~w) be a lo
ation su
h that π−1(r) := (α, ϕi, π
−1(~w)) <̃

(α, ϕm, ~x). Then z := SLα
ϕi

(π−1(~w)) belongs to X and Lα |= ϕi(z, π
−1(~w)) i�

Lα |= ϕi(π(z), ~w). Moreover, if there is z ∈ Lα su
h that Lα |= ϕi(z, ~w), then12



π(z) is the <L�minimal su
h element, be
ause z <L π(z) and Lα |= ϕi(z, ~w)imply Lα |= ϕi(π
−1(z), π−1(~w)) and π−1(z) <L z, 
ontradi
ting the de�nitionof Sϕi

. Hen
e
π(z) = π(SLα

ϕi
(π−1(~w))) = SLα

ϕi
(~w)as required. The lo
ation s of the 
ondensed stru
ture is de�ned as the <̃ �smallest stri
t upper bound of all r su
h that π−1(r) <̃ s and s = <̃ � sup{r |

π−1(r) <̃ s}. 2Usually, we shall have m = m in the proposition, ex
ept when for every
~w ∈ Lα of the right length

π−1(~w) <lex ~x.In that 
ase we have m = m+ 1 and ~x = ~0, i.e., s = (α, ϕm+1,~0) and
Ls = (Lα,∈, <L, I, N, S, S

Lα
ϕ0
, SLα

ϕ1
, . . . , SLα

ϕm
, ∅, . . .)observing that SLα

ϕm+1
↾ ~0 = ∅.The 
ondensation situation in proposition 2 is often written as π:X ∼= Ls.The slow growth of the Ls �hierar
hy is expressed by a �niteness propertywhi
h says that at su

essor lo
ations essentially only one more point entersthe hulling pro
ess, and by 
ontinuity properties saying that at limit lo
ationswe just 
olle
t results of previous pro
esses.Finiteness Property. Let s = (α, ϕ, ~x) be an α�lo
ation. Then there exists

z ∈ Lα su
h that for any X ⊆ Lα:
Ls+{X} ⊆ Ls{X ∪ {z}}.Proof. The expansion from Ls to Ls+ provides us with at most one newSkolem value in forming hulls, namely SLα

ϕ (~x). Take this SLα
ϕ (~x) to be z. 2Monotoni
ity. (i) Suppose that s0 and s1 are α�lo
ations su
h that s0 ≤̃ s1.Then Ls0{X} ⊆ Ls1{X} for all X ⊆ Lα.(ii) Suppose that α0 and α1 are ordinals su
h that α0 < α1. If s0, s1 are α0�and α1�lo
ations, respe
tively, and X ⊆ Lα0

then Ls0{X} ⊆ Ls1{X ∪{α0}}.Proof. Clear from the de�nitions. 2 13



For the 
ontinuity property we have to distinguish among three kinds oflimit lo
ations:Continuity.(a) If α is a limit ordinal, s = (α, ϕ0,~0), and X ⊆ Lα then
Ls{X} = L{X} =

⋃

β<α

L(β,ϕ0,~0)
{X ∩ Lβ}.(b) If s = (α + 1, ϕ0,~0) and X ⊆ Lα then

Ls{X ∪ {α}} ∩ Lα = L{X ∪ {α}} ∩ Lα

=
⋃
{Lr{X} | r is an α�lo
ation}.(
) If s = (α, ϕ, ~x) is a <̃ �limit, s 6= (α, ϕ0,~0), and X ⊆ Lα then

Ls{X} =
⋃
{Lr{X} | r is an α�lo
ation, r <̃ s}.Proof. (a) is 
lear from the de�nitions sin
e the hull operators 
onsideredonly use the fun
tions I, N , S.(b) The �rst equality is 
lear. The other is proved by two in
lusions.(⊇) If z is an element of the right hand side, z is obtained from elements of

X by su

essive appli
ations of I, N , S and SLα
ϕn

for n < ω. Sin
e SLα
ϕn

(~y) =
S(α, ϕn, ~y), z is also obtainable from elements of X ∪{α} using only the I,Nand S operations. Hen
e z belongs to the left hand side.(⊆) Conversely, 
onsider z ∈ L{X ∪ {α}} ∩ Lα. There is a �nite sequen
e
omputing z in L{X ∪ {α}}:

y0, y1, . . . , yk = zsu
h that ea
h yj is an element of X ∪ {α} or yj is obtained from {yi | i < j}by using I, N , S:
yj = I(β, ϕn, ~y) or yj = S(β, ϕn, ~y) or yj is a 
omponent of N(y)for some β, ~y, y ∈ {yi | i < j}.We show by indu
tion on j ≤ k:if yj ∈ Lα then yj ∈ U =

⋃
{Lr{X} | r is an α�lo
ation}.14



Case 1: yj ∈ X ∪ {α}. Then our 
laim is obvious.Case 2: yj = I(β, ϕn, ~y) (as in the �rst of the three ways of obtaining yj from
~y ∈ {yi | i < j}, displayed above). If β < α, then β, ~y ∈ U by the indu
tionhypothesis and hen
e yj ∈ U . If β = α, then ~y ∈ U by the indu
tionhypothesis. Setting

ψ(v, ~w) = ∀u (u ∈ v ←→ ϕn(u, ~w))with distinguished variable v we obtain yj = SLα

ψ (~y) ∈ U .Case 3: yj = S(β, ϕn, ~y) (the se
ond way of obtaining yj). If β < α, then
β, ~y ∈ U and yj ∈ U . If β = α, then ~y ∈ U and yj = SLα

ϕn
(~y) ∈ U .Case 4: yj is a 
omponent of N(yi) for some i < j (the third way of obtaining

yj).Case 4.1: yi ∈ Lα. Then yi ∈ U by the indu
tion hypothesis. As U is 
losedunder N , we get N(yi) ∈ U , i.e., ea
h 
omponent of N(yi) belongs to U .Case 4.2: yi ∈ Lα+1 \ Lα. Then yi = α, or yi = I(α, ψ, ~y) for some ~y ∈
{yh | h < i}. Sin
e α = I(α, �u is an ordinal�, ∅), we may assume the latter.
N(yi) will be of the form (α, χ, (c0, . . . , cm−1)). We obtain c0 in U as follows:If

χ0(v0, ~w) = ∃v1 . . .∃vm−1∀u (χ(u, v0, v1, . . . , vm−1)←→ ψ(u, ~w))with distinguished variable v0 then c0 = SLα
χ0

(~y) ∈ U , sin
e, indu
tively,
~y ∈ U . We obtain c1 in U as follows: If

χ1(v1, ~w) = ∃v2 . . .∃vm−1∀u (χ(u, v0, v1, . . . , vm−1)←→ ψ(u, ~w))with distinguished variable v1 then c1 = SLα
χ1

(c0
⌢~y) ∈ U . Pro
eeding likethis we see that yj ∈ U .(
) is again obvious from the de�nitions. 2This 
ompletes our list of basi
 properties of the hull operations asso
iatedwith the hyper�ne hierar
hy. They are su�
ient to establish Jensen's SquarePrin
iple in L, whi
h we 
onsider next.A Proof of SquareTheorem 2.2. (Jensen) Assume V = L. There exists a sequen
e 〈Cβ |

β singular 〉 su
h that(i) Cβ is 
losed unbounded in β 15



(ii) Cβ has ordertype less than β(ii) if β is a limit point of Cβ then β is singular and Cβ = Cβ ∩ β.Proof. Let β be singular. The following 
laim gives a reformulation of thesingularity of β:Claim 1. There is a lo
ation s = (γ, ϕ, ~x), γ ≥ β, and a �nite set p ⊆ Lγsu
h that
{β < β | β = β ∩ Ls{β ∪ p}}is bounded in β.Proof. Choose α less than β and a fun
tion f :α → β 
o�nally. Choose

γ ∈ ORD su
h that f ∈ Lγ . Set p = {f} and s = (γ, ϕn+1,~0) where n isa natural number 
hoosen su
h that ϕn ≡ v0 = v1(v2) with distinguishedvariable v0. If α ≤ β < β then
β ∩ Ls{β ∪ p} ⊇ β ∩ Ls{α ∪ p} ⊇ f ′′α.Hen
e β ∩ Ls{β ∪ p} is 
o�nal in β, and so β ∩ Ls{β ∪ p} 6= β.Let s = s(β) be <̃ �minimal satisfying Claim 1, together with the �nite set

p ⊆ Lγ . We show that s is a <̃ �limit whi
h 
an be ni
ely approximatedfrom below.Claim 2. s is a limit lo
ation.Proof. Assume that s = r+. By the Finiteness Property there exists a z ∈ Lγsu
h that if β is less than β then
Ls{β ∪ p} ⊆ Lr{β ∪ p ∪ {z}}.So

{β < β | β = β ∩ Lr{β ∪ p ∪ {z}}} ⊆ {β < β | β = β ∩ Ls{β ∪ p}}.Hen
e {β < β | β = β ∩Lr{β ∪ p∪ {z}}} is bounded in β, 
ontradi
ting theminimality of s.Claim 3. s 6= (β, ϕ0,~0). 16



Proof. Assume that s = (β, ϕ0,~0). Choose β0 less than β su
h that p ⊆ Lβ0
.If β0 ≤ β < β then

β ⊆ β ∩ Ls{β ∪ p} ⊆ β ∩ L{β ∪ p} ⊆ β ∩ Lβ = β,
ontradi
ting the fa
t that s and p satisfy the requirements in Claim 1.Claim 4. s 6= (γ, ϕ0,~0) for limit γ.Proof. Assume that there is a limit ordinal γ su
h that s = (γ, ϕ0,~0). Choose
γ0 less than γ su
h that p ⊆ Lγ0 and γ0 ≥ γ, and set s0 = (γ0, ϕ0,~0). Then

{β < β | β = β ∩ Ls0{β ∪ p}} ⊆ {β < β | β = β ∩ Ls{β ∪ p}}.Hen
e {β < β | β = β ∩ Ls0{β ∪ p}} is bounded below β, 
ontradi
ting theminimality of s.In de�ning Cβ we shall 
onsider three spe
ial 
ases and a generi
 
ase. Inthe spe
ial 
ases, β will have 
o�nality ω and we 
an pi
k any ω�sequen
e
o�nal in β as Cβ.Spe
ial Case 1. s = (α + 1, ϕ0,~0) for some α.Every element of Lα+1 
an be �named� by α and �nitely many elements of
Lα. So we may assume that p is of the form p = q ∪ {α} with q ⊆ Lα.De�ne a stri
tly in
reasing sequen
e (βn | n < ω) of ordinals less than βre
ursively: Let

β0 = max{β < β | β = β ∩ Ls{β ∪ p}} < β.Given βn 
hoose βn+1 greater than βn least su
h that
βn+1 = β ∩ L(α,ϕn,~0)

{βn+1 ∪ q}.Sin
e s = (α, ϕn,~0) <̃ (α+1, ϕ0,~0), the de�nition of s implies that βn+1 existsbelow β. Let βω =
⋃
n<ω βn. Then

β ∩ Ls{βω ∪ p} = β ∩ Ls{βω ∪ q ∪ {α}}

= β ∩
⋃
{Lr{βω ∪ q} | r is an α�lo
ation}

=
⋃

n<ω

β ∩ L(α,ϕn,~0)
{βω ∪ q}17



=
⋃

n<ω

β ∩ L(α,ϕn,~0)
{βn+1 ∪ q}

=
⋃

n<ω

βn+1 = βω;the se
ond equality uses Continuity (b), the third and fourth use the mo-notoni
ity property of our hulls. Now by the de�nition of β0 we must have
βω = β. Hen
e setting

Cβ = {βn | n < ω}we get a 
o�nal subset of β. This �nishes Spe
ial Case 1.Now assume that s = (γ, ϕ, ~x) 6= (γ, ϕ0,~0).Claim 5. There is a �nite p ⊆ Lγ su
h that Ls{β ∪ p} = Lγ .Proof. By Condensation, there are a unique fun
tion π and a unique lo
ation
s su
h that π:Ls{β ∪p} ∼= Ls. Then we have Ls = Ls{β∪p} where p = π′′p.As π ↾ β = id, we 
an 
on
lude that β ∩ Ls{β ∪ p} = β ∩ Ls{β ∪ p} holdsfor all β less than β. Hen
e

{β < β | β = β ∩ Ls{β ∪ p}} = {β < β | β = β ∩ Ls{β ∪ p}}is bounded below β. Then s = s by the <̃ �minimality of s, and so Ls =
Ls{β ∪ p} = Lγ .Let <∗ be the 
anoni
al wellorder of �nite subsets of L derived from <L:
p0 <

∗ p1 ←→ p0 6= p1 and the <L-maximal element of p0△ p1 belongs to p1.Choose a <∗-minimal p(β) ⊆ Lγ su
h that p(β) satis�es Claim 5. Sin
e inparti
ular the old parameter p is generated by β ∪ p(β) we haveClaim 6. {β < β | β = β ∩ Ls{β ∪ p(β)}} is bounded below β. Let β0 < βbe the maximum of this set.By Claim 6, p(β) satis�es the requirements in Claim 1 and we may denote
p(β) by p without danger of 
onfusion.We have to examine whi
h lo
ations below s are 
omputed in Ls{X}: for
Y ⊆ Lγ we write r = (γ, ψ, ~y) ǫ Y if ~y ∈ Y . We say that a subset Y of Lγis bounded below s, if there is s0 <̃ s su
h that if r <̃ s and r ǫ Y , then r <̃ s0.The <̃ -least su
h s0 is 
alled the <̃ -least upper bound of Y below s. Notethat if in addition Y = Ls{Z} then we get Ls{Z} = Ls0{Z}.18



Spe
ial Case 2. Ls{α ∪ p} is bounded below s for every α < β.De�ne a stri
tly in
reasing sequen
e (βn | n < ω) of ordinals less than βre
ursively: Let β0 be de�ned as in Claim 6. Given βn, set
βn+1 =

⋃
(β ∩ Ls{(βn + 1) ∪ p}).By Spe
ial Case 2, there is r <̃ s su
h that

Ls{(βn + 1) ∪ p} = Lr{(βn + 1) ∪ p}.The minimality of s implies that β ∩ Lr{(βn + 1) ∪ p} 
annot be 
o�nal in
β, and so βn+1 is less than β. Let βω =

⋃
n<ω βn. Then

βω ⊆ β ∩ Ls{βω ∪ p} ⊆
⋃

n<ω

β ∩ Ls{(βn + 1) ∪ p} ⊆
⋃

n<ω

βn+1 = βω,and sin
e βω is greater than β0 we have βω = β. Hen
e setting
Cβ = {βn | n < ω}we get a 
o�nal subset of β. This �nishes Spe
ial Case 2.Now assume that Ls{α0 ∪ p} is unbounded below s for some α0 less than

β. Choose α0 = α0(β) least with this property. We would like to use α0 tosteer the singularisation of β and obtain ordertype(Cβ) ≤ max{α0, ω} < β.If α0 is neither a limit ordinal nor zero we have to look for another steeringordinal. In this 
ase we write α0 = α′
0 + 1, and we 
hoose a least α1 = α1(β)less than α0 su
h that

Ls{α1 ∪ p ∪ {α
′
0}}is unbounded below s. If α1 = α′

1 +1, then we 
hoose a least α2 = α2(β) lessthan α1 su
h that
Ls{α2 ∪ p ∪ {α

′
0, α

′
1}}is unbounded below s. Continuing this way we �nd a natural number k =

k(β) su
h that α = α(β) = αk(β) is a limit ordinal or zero.Spe
ial Case 3. α = 0.One easily sees that Ls{p ∪ {α′
0, . . . , α

′
k−1}} is a 
ountable set. Sin
e α = 0,it is unbounded below s. So s has �
o�nality ω� in the ordering of lo
ations19



and we 
an �nd a stri
tly in
reasing sequen
e (sn | n < ω) of γ�lo
ations
onverging towards s. De�ne a stri
tly in
reasing sequen
e (βn | n < ω) ofordinals less than β re
ursively: Let β0 be de�ned as in Claim 6. Given βn,
hoose βn+1 greater than βn minimal su
h that
βn+1 = β ∩ Lsn+1

{βn+1 ∪ p}.

βn+1 exists, sin
e sn+1 <̃ s. Let βω =
⋃
n<ω βn. Then

βω =
⋃

n<ω

βn+1 =
⋃

n<ω

β ∩ Lsn+1
{βn+1 ∪ p} = β ∩ Ls{βω ∪ p},hen
e the de�nition of β0 implies βω = β. Setting

Cβ = {βn | n < ω}we get a 
o�nal subset of β. This �nishes Spe
ial Case 3.So, �nally, we arrive at the general 
ase:General Case. s = (γ, ϕ, ~x) 6= (γ, ϕ0,~0), and Ls{α ∪ p ∪ {α′
0, . . . , α

′
k−1}} isunbounded below s where α is a limit ordinal less than β.De�ne sequen
es (βi(β) | i ≤ α) and (si | 0 < i ≤ α) re
ursively: Let β0 < βbe de�ned as in Claim 6. For ea
h 0 < i ≤ α let si be the <̃ �least upperbound of Ls{i ∪ p ∪ {α′

0, . . . , α
′
k−1}} below s, and let βi = βi(β) be the leastordinal greater than β0 su
h that

βi = β ∩ Lsi
{βi ∪ p ∪ {α

′
0, . . . , α

′
k−1}}.If i < α then βi < β be
ause si <̃ s; also sα = s, βα = β andClaim 7. If 0 < i < j < α then si ≤̃ sj and βi ≤ βj .Claim 8. {βi | i < α} is 
losed unbounded in β.Proof. Let α ≤ α be a limit ordinal. We only have to show that βα =

⋃
i<α βiand sin
e βα ≥ βi for i < α it su�
es to see that

⋃

i<α

βi =
⋃

i<α

β ∩ Lsi
{βi ∪ p ∪ {α

′
0, . . . , α

′
k−1}}

= β ∩ Lsα
{
⋃

i<α
βi ∪ p ∪ {α

′
0, . . . , α

′
k−1}}20



so that ⋃
i<α βi satis�es the de�ning property of βα.

Cβ will now be de�ned as an endsegment of su
h βi's for whi
h importantelements of the pre
eding 
onstru
tion are visible below βi or si. Let I(β)be the set of those ordinals i that satisfy the following properties (1) � (5):(1) 0 < i < α, and if l ≤ k then βi ≥ α′
l.(2) si is a γ�lo
ation.(3) j < βj for i ≤ j < α.(4) If l < k and t is the <̃ �least upper bound of Ls{α′

l ∪ p∪ {α
′
0, . . . , α

′
l−1}}below s then si >̃ t.(5) If β < γ then β ∈ Lsi

{βi ∪ p}.Using the following fa
ts (i) � (iv) the reader 
an easily show that thereis i0 less than α su
h that an ordinal i less than α satis�es the 
onditions(1) � (5) if and only if i > i0, i.e., I(β) is a �nal segment of α.(i) Ls{α ∪ p ∪ {α′
0, . . . , α

′
k−1}} is unbounded below s.(ii) α < β and β =

⋃
{βi|i < α} where (βi | i < α) is (weakly) in
reasing.(iii) Ls{α′

l ∪ p ∪ {α
′
0, . . . , α

′
l−1}} is bounded below s for all l ≤ k.(iv) If β < γ then β ∈ Ls{β ∪ p} = Lγ .So set
Cβ = {βi | i ∈ I(β)}.Claim 9. Cβ is 
losed unbounded in β and ordertype(Cβ) ≤ α < β.This 
ompletes the de�nition of the system 〈Cβ | β singular〉, and we areleft with proving the 
oheren
e property. Fix β less than β su
h that β isa limit point of Cβ. We have to show that β is singular and Cβ = Cβ ∩ β.

β falls under the General Case, as ordertype(Cβ) > ω. Let α be the leastordinal η su
h that β = βη. Then α is a limit ordinal and β is singular sin
e
cf(βα) ≤ α < βα. By 
ondensation there is an isomorphism

π:Lsα
{β ∪ p} ∼= Ls.Let q = π′′p and γ = α(s̄).Claim 10. π ↾ β = id. If s is a β�lo
ation then s is a β�lo
ation while if s isa γ�lo
ation and γ > β then π(β) = β.21



Proof. If γ > β then β ∈ Lsα
{β ∪ p} and β = β ∩ Lsα

{β ∪ p}.Claim 11. s = s(β).Proof. If β0 < δ < β then δ 6= β ∩ Lsα
{δ ∪ p ∪ {α′

0 . . . α
′
k−1}} and therefore

δ 6= β ∩ Ls{δ ∪ q ∪ {α
′
0 . . . α

′
k−1}}. It follows that s(β) ≤̃ s.Conversely if r <̃ s and q is a �nite subset of Lα(r) then π−1(r) <̃ si and

π−1′′q ⊆ Lsi
{βi ∪ p} for su�
iently large i less than α, sin
e the si's areunbounded below sα, the βi's are unbounded in β and Ls{β ∪ q} = Lα(s). As

βi = β ∩ Lsi
{βi ∪ p} we get βi = β ∩ Lr{βi ∪ q} for βi's 
o�nal in β and so

r <̃ s(β). Therefore s ≤̃ s(β).Claim 12. β does not fall under Spe
ial Case 1.Claim 13. q = p(β).Proof. As Ls{β ∪ q} = Lγ , we get q ≥∗ p(β). Assume q >∗ p(β). As
p(β) satis�es the requirements in Claim 5 at β, we get q ⊆ Ls{β ∪ p(β)},hen
e p = π−1 ′′q ⊆ Ls{β ∪ π

−1 ′′p(β)}. So π−1 ′′p(β) <∗ p = π−1 ′′q and
π−1 ′′p(β) satis�es the requirements in Claim 5, 
ontrary to the minimal
hoi
e of p = p(β).Now Lsα

{α ∪ p} = Ls{α ∪ p} is unbounded below sα. Hen
e Ls{α ∪ q} isunbounded below s, and α < β. Hen
eClaim 14. β does not fall under Spe
ial Case 2.Claim 15. If j < k then αj(β) = αj(β).Proof. By indu
tion on j < k.By de�nition, αj(β) is the smallest ν s.t. Ls{ν∪p∪{α′
i | i < j}} is unboundedbelow s. Now Ls{α∪p∪{α

′
0, . . . , α

′
k−1}} is unbounded below sα, so Ls{α∪q∪

{α′
0, . . . , α

′
k−1}} is unbounded below s. Hen
e Ls{αj(β)∪q∪{α′

0, . . . , α
′
j−1}}is unbounded below s, as α∪{α′

j . . . α
′
k−1} ⊆ αj(β). Conversely, the de�nitionof I(β) implies that Ls{α′

j ∪ p∪{α
′
0, . . . , α

′
j−1}} is bounded below s by some

s′ <̃ sα, hen
e by some lo
ation in Lsα
{β∪p}. So Ls{α′

j ∪q∪{α
′
0, . . . , α

′
j−1}}is bounded below s by some lo
ation less than s. So αj(β) = αj(β).Claim 16. αk(β) = α. 22



Proof. The set Ls{α ∪ q ∪ {α′
0, . . . , α

′
k−1}} is unbounded below s. If we take

α′ less than α, then Lsα
{α′∪p∪{α′

0, . . . , α
′
k−1}} is bounded below sα, by theminimality of α. So we have αk(β) = α.Claim 17. β does not fall under Spe
ial Case 3,sin
e α 6= 0. So we are again in the General Case.Claim 18. If i < α then βi(β) = βi(β).Proof. By de�nition, β0 = β0(β) is the largest δ less than β su
h that

δ = β ∩ Ls{δ ∪ p}. From the de�nition of β = βα we infer that β0 is thelargest δ less than β su
h that δ = β ∩ Lsα
{δ ∪ p}. As Lsα

{β∪p} ∼= Ls{β∪q}by a map whi
h is the identity on β, we see that β0 is the largest δ less than
β su
h that δ = β ∩ Ls{δ ∪ q}, whi
h is the de�nition of β0(β).Now 
onsider 0 < i < α. Then
si(β) is the <̃ �least upper bound of Ls{i ∪ p ∪ {α′

0, . . . , α
′
k−1}} below s.By the de�nition of sα we get that

si(β) is the <̃ �least upper bound of Lsα
{i ∪ p ∪ {α′

0, . . . , α
′
k−1}} below sα.Moreover,

si(β) is the <̃ �least upper bound of Ls{i ∪ q ∪ {α′
0, . . . , α

′
k−1}} below s.Now βi(β) is the minimal ordinal greater than β0 su
h that

βi(β) = β ∩ Ls′{βi(β) ∪ p ∪ {α′
0, . . . , α

′
k−1}}for all s′ <̃ sα(β) with s′ ǫ Lsα

{i∪p∪{α′
0 . . . α

′
k−1}}, and βi(β) is the minimalordinal greater than β0 su
h that

βi(β) = β ∩ Ls′{βi(β) ∪ q ∪ {α′
0, . . . , α

′
k−1}}for all s′ <̃ s with s′ ǫ Ls{i ∪ q ∪ {α′

0 . . . α
′
k−1}}. By the above and the fa
tthat π ↾ β = id we have βi(β) = βi(β) as required.Now one easily 
he
ks that ea
h ordinal i less than α satis�es the de�ningproperties of I(β) (
f. (1) � (5) above) if and only if it satis�es the 
orre-sponding de�ning properties of I(β). So we get I(β) = I(β) ∩ α, and thisimmediately implies the 
oheren
e property. 223



3. Set-For
ingThe method of for
ing provides a way to 
onstru
t extensions of Gödel'smodel L. Cohen invented this method to demonstrate the unprovability ofthe 
ontinuum hypothesis (CH) in ZFC and of the axiom of 
hoi
e (AC)in ZF; as AC, CH hold in L we obtain in this way two striking examplesof unde
idable propositions. Cohen's method was extended by Solovay toprovide a very general and powerful te
hnique for enlarging any transitiveZFC modelM , given the 
hoi
e of a pre-ordering (i.e., re�exive and transitivebinary relation) P ∈M .Let M be a transitive model of ZF, either a set or a 
lass. The 
ase thatinterests us most is when M is L, but the for
ing method does not requiresu
h a restri
tion. Let P ∈ M be a pre-ordering; our plan is to do thefollowing:1. We de�ne what it means for G ⊆ P to be P -generi
 over M .2. We des
ribe, for ea
h G ⊆ P , a transitive M [G] ⊇M ∪ {G}.3. We prove that if G is P -generi
 over M then M [G] is a model of ZFand, assuming AC holds in M , that AC holds in M [G].
P -Generi
 SetsWe assume that P = (P,≤) has a greatest element, whi
h we 
all 1P . Wethink of p ≤ q as meaning �p is at least as strong as q.�De�nition. p, q are 
ompatible if for some r, r ≤ p and r ≤ q. D ⊆ P isdense if ∀p∃q(q ≤ p and q ∈ D). G ⊆ P is P -generi
 over M if:1. p, q ∈ G −→ p, q are 
ompatible.2. p ≥ q ∈ G −→ p ∈ G.3. D ⊆ P,D dense, D ∈M −→ G ∩D 6= ∅.
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Assumption. We assume that for ea
h p ∈ P there exists G ⊆ P, p ∈ G, G
P -generi
 over M .Our Assumption is va
uous if M is 
ountable as we 
an list the dense
D ∈M as D0, D1, . . ., de�ne p0 = p, pn ≥ pn+1 ∈ Dn and take G = {p|pn ≤ pfor some n}.The Extension M [G]We de�ne M [G] to 
onsist of sets whi
h have �names� in M , interpretedusing G.A name is a set σ ∈ M 
onsisting of pairs 〈τ, p〉 where τ is a name and
p ∈ P . Equivalently, a name is an element of ∪{Nameα|α ∈ ORD(M)}where Name0 = ∅, Nameα+1 = All subsets of Nameα × P in M , Nameλ =
∪{Nameα|α < λ} for limit λ.The interpretation of the name σ is σG = {τG|〈τ, p〉 ∈ σ, p ∈ G}. Then
M [G] = {σG|σ a name}.Lemma 3.1. Suppose 1P ∈ G ⊆ P .1. M ⊆M [G], G ∈M [G],2. M [G] is transitive, ORD(M [G]) = ORD(M).3. If M ∪ {G} ⊆ N , N a model of ZF then M [G] ⊆ N .Proof.1. For a ∈ M de�ne â = {〈b̂, 1P 〉|b ∈ a} and then âG = a. Also G = γGwhere γ = {〈p̂, p〉|p ∈ P}.2. If a ∈ σG ∈ M [G] then by de�nition a = τG ∈ M [G] for some τ ;so M [G] is transitive. By indu
tion on Rank σ = least α su
h that

σ ∈ Nameα+1, it follows that the von Neumann rank of σG is at mostRank σ ∈ ORD(M). So ORD(M [G]) ⊆ ORD(M).3. For ea
h α ∈ ORD(M), the indu
tive de�nition of σG for Rank σ < α
an be 
arried out in N . 2 25



De�nition. Suppose p belongs to P , ϕ(v1 . . . vn) is a formula and σ1 . . . σn arenames. We write p 
 ϕ(σ1 . . . σn), p for
es ϕ(σ1 . . . σn), i� whenever G ⊆ Pis P -generi
 over M and p ∈ P , we have M [G] � ϕ(σG1 . . . σ
G
n ). And we write

P 
 ϕ(σ1 . . . σn) for 1P 
 ϕ(σ1 . . . σn).The key to for
ing is to establish the De�nability and Truth lemmas.The De�nability lemma, mu
h like Gödel's Completeness Theorem equatingnon
onstru
tive semanti
al validity with semi
onstru
tive synta
ti
al prova-bility, says that the for
ing relation is M-de�nable for ea
h ϕ (as a propertyof p, σ1 . . . σn). The Truth lemma says that P -generi
 G are in fa
t �generi
�in the intuitive sense: If ϕ(σG1 . . . σ
G
n ) is true in M [G] then for some p ∈ G,it is true in every M [H ], H P -generi
 and 
ontaining p.De�nability Lemma. For any ϕ, the relation �p 
 ϕ(σ1 . . . σn)� is de�nablein M .Truth Lemma. If G is P -generi
 overM thenM [G] � ϕ(σG1 . . . σ

G
n )←→ ∃p ∈

G (p 
 ϕ(σ1 . . . σn)).Our proof strategy for these lemmas is indire
t: We de�ne a relation 
∗for whi
h the De�nability Lemma is 
lear, prove the Truth Lemma for 
∗and �nally show 
=
∗.De�nition of 
∗. We say that D ⊆ P is dense ≤ p if ∀q ≤ p∃r(r ≤ q, r ∈ D).1. p 
∗ σ ∈ τ i� {q|∃〈π, r〉 ∈ τ su
h that q ≤ r, q 
∗ σ = π} is dense ≤ p.2. p 
∗ σ = τ i� for all 〈π, r〉 ∈ σ ∪ τ , p 
∗ (π ∈ σ ←→ π ∈ τ).3. p 
∗ ϕ ∧ ψ i� p 
∗ ϕ and p 
∗ ψ.4. p 
∗∼ ϕ i� ∀q ≤ p(∼ q 
∗ ϕ).5. p 
∗ ∀xϕ i� for all names σ, p 
∗ ϕ(σ).Note that 
ir
ularity is avoided in (a), (b) as max(Rank σ,Rank τ) goesdown (in at most three steps) when these de�nitions are applied. Also allquanti�ers in (a), (b) are bounded, as P is a set, so the above de�nition 
anbe 
arried out in M and the De�nability Lemma does hold for 
∗.26



Te
hni
al Lemma.1. p 
∗ ϕ, q ≤ p −→ q 
∗ ϕ.2. If {q|q 
∗ ϕ} is dense ≤ p then p 
∗ ϕ.3. If ∼ p 
∗ ϕ then ∃q ≤ p (q 
∗∼ ϕ).Proof.1. Clear, by indu
tion on ϕ, as dense ≤ p −→ dense ≤ q.2. Again by indu
tion on ϕ. The proof uses the following fa
ts: If {q|Dis dense ≤ q} is dense ≤ p then D is dense ≤ p; if {q|q 
∗∼ ϕ} is dense
≤ p then ∀q ≤ p(∼ q 
∗ ϕ), using (a).3. Immediate by (b). 2We are ready to prove the Truth Lemma for 
∗.Lemma 3.2. For G P -generi
 over M :

M [G] � ϕ(σG1 . . . σ
G
n )←→ ∃p ∈ G(p 
∗ ϕ(σ1 . . . σn)).Proof. By indu
tion on ϕ.

σ ∈ τ :(−→) If σG ∈ τG then 
hoose 〈π, r〉 ∈ τ su
h that σG = πG and r ∈ G.By indu
tion we 
an 
hoose p ∈ G, p ≤ r, p 
∗ σ = π. Then p 
∗ σ ∈ τ .
(←−) If p ∈ G, {q|∃〈π, r〉 ∈ τ su
h that q ≤ r, q 
∗ σ = π} = D isdense ≤ p then by generi
ity we 
an 
hoose q ∈ G, 〈π, r〉 ∈ τ su
h that
q ≤ r, q 
∗ σ = π; then by indu
tion σG = πG and as r ≥ q ∈ G we get
r ∈ G and hen
e by de�nition of τG, πG ∈ τG. So σG ∈ τG.

σ = τ :(−→) Suppose σG = τG. Consider D = {p| Either p 
∗ σ = τ or forsome 〈π, r〉 ∈ σ∪τ , p 
∗∼ (π ∈ σ ←→ π ∈ τ)}. Then D is dense, usingthe de�nition of p 
∗ σ = τ . By generi
ity there is p ∈ G ∩D and byindu
tion it must be that p 
∗ σ = τ . (←−) Suppose p ∈ G, p 
∗ σ = τ .Then by indu
tion, πG ∈ σG ←→ πG ∈ τG for all 〈π, r〉 ∈ σ ∪ τ . So
σG = τG. 27



ϕ ∧ ψ : Clear by indu
tion, using the fa
t that p, q ∈ G −→ ∃r ∈ G(r ≤ pand r ≤ q).
∼ ϕ : Clear by indu
tion, using the density of {p|p 
∗ ϕ or p 
∗∼ ϕ}.
∀xϕ :(−→) Suppose M [G] � ∀xϕ. As in the proof of (−→) for σ = τ ,there is p ∈ G su
h that either p 
∗ ∀xϕ or for some σ, p 
∗∼ ϕ(σ).By indu
tion the latter is impossible so p 
∗ ∀xϕ. (←−) Clear byindu
tion. 2Lemma 3.3. 
∗ = 
.Proof. p 
∗ ϕ(σ1 . . . σn) −→ p 
 ϕ(σ1 . . . σn). And ∼ p 
∗ ϕ(σ1 . . . σn) −→
q 
∗∼ ϕ(σ1 . . . σn) for some q ≤ p −→ ∼ p 
 ϕ(σ1 . . . σn) using our Assump-tion about the existen
e of generi
s. 2ZFC and Co�nalities in M [G]Theorem 3.4. If G is P -generi
 over M then M [G] is a model of ZF. If Msatis�es AC then so does M [G].Proof. As M [G] is transitive and 
ontains ω, it is a model of all ZF axiomswith the possible ex
eption of pairing, union, power and repla
ement.For pairing, given σG1 , σG2 
onsider σ = {〈σ1, 1

P 〉, 〈σ2, 1
P 〉}. Then σG =

{σG1 , σ
G
2 }.For union, given σG 
onsider π = {〈τ, p〉|p 
 τ ∈ ∪σ, Rank τ < Rank σ}.By the Truth Lemma, πG = (∪σG)∩{τG|Rank τ < Rank σ}. As any elementof ∪σG is of the form τG,Rank τ < Rank σ we get πG = ∪σG.For power, given σG 
onsider π = {〈τ, p〉|p 
 τ ⊆ σ, Rank τ ≤ Rank σ}.Then πG = P(σG) ∩ {τG|Rank τ ≤ Rank σ}. Now suppose that τG ⊆ σG,with no restri
tion on Rank τ . Form the name τ ∗ by repla
ing ea
h 〈τ0, p〉 ∈ τby all of the 〈τ ∗0 , q〉 su
h that Rank τ ∗0 < Rank σ, q ≤ p, q 
 τ ∗0 = τ0. ThenRank τ ∗ ≤ Rank σ and τ ∗G = τG sin
e if 〈τ0, p〉 ∈ τ , p ∈ G then τG0 ∈ σGand hen
e there is q ≤ p, q ∈ G, q 
 τ0 = τ ∗0 where Rank τ ∗0 < Rank σ;
onversely, if q ≤ p, q 
 τ ∗0 = τ0 and q ∈ G then p ∈ G and τ ∗G0 = τG0 . So we
on
lude that πG = P(σG) ∩M [G].For repla
ement, given f : σG −→ M [G], f de�nable (with parameters)in M [G] 
onsider πα = {〈τ, p〉|Rank τ < α and for some σ0, Rank σ0 <Rank σ, p 
 σ0 ∈ σ∧f(σ0) = τ}. Then πGα = Range (f)∩{τG|Rank τ < α}.28



Now 
hoose α ∈ ORD(M) so large that if p ∈ P , Rank σ0 < Rank σ and
p 
 f(σ0) = τ for some τ , then there is su
h a τ of Rank < α. This ispossible by repla
ement in M . Then πGα = Range (f).Finally if M satis�es AC, we 
an well-order σG in M [G] by �rst 
hoosinga well-ordering of names of Rank < Rank σ in M , and then 
omparing
x, y ∈ σG by 
omparing the least names σx, σy su
h that σGx = x, σGy = y. 2It does not follow that M,M [G] have the same 
ardinals. We now turnto 
onditions on P whi
h guarantee that 
ardinals (indeed, 
o�nalities) arepreserved. Assume that AC holds in M and hen
e also in M [G].De�nition. An anti
hain is a set A ⊆ P su
h that p 6= q in A −→ p, q arein
ompatible. For regular, un
ountable κ, P is κ-

 (κ-
hain 
ondition) ifevery anti
hain has 
ardinality < κ.Lemma 3.5. If P is κ-

 in M and 
of (α) ≥ κ in M then 
of (α) ≥ κin M [G].Proof. It su�
es to show that if f : β −→ γ belongs toM [G] then there is g :
β −→ P (γ) inM su
h that for ea
h β0 < β, f(β0) ∈ g(β0), Card (g(β0)) < κin M . Let σG = f and de�ne g by g(β0) = {γ0 < γ|p 
 σ is a fun
tion and
σ(β̂0) = γ̂0, for some p}. 2De�nition. If D ⊆ P and p ∈ P then we say that p meets D if p ≤ q ∈ D forsome q. For regular, un
ountable κ, P is κ-distributive if whenever p ∈ Pand 〈Di|i < β〉 are dense subsets of P, β < κ then ∃q ≤ p (q meets ea
h Di).Lemma 3.6. If P is κ-distributive inM and 
of (α) ≥ κ inM then 
of (α) ≥ κin M [G].Proof. It su�
es to show that if f : β −→ γ, β < κ belongs to M [G] thenit belongs to M . Let σG = f and note that for ea
h β0 < β, Dβo = {q| Forsome γ0 < γ, q 
 σ a total fun
tion −→ σ(β̂0) = γ̂0} is dense. If p ∈ G,
p 
 σ total and p meets ea
h Dβ0

then f(β0) = unique γ0, p 
 σ(β̂0) = γ̂0;so f ∈M . 2There is one more 
ondition for 
o�nality preservation to 
onsider, whi
his best motivated by an example. Suppose that κ is regular and that theground model M is L. Let P 
onsist of all fun
tions p on I = {0}∪ All29



in�nite 
ardinals < κ su
h that for all α ∈ I, p(α) is a bounded subset of α+(we take 0+ = ω). Order P by p ≤ q ←→ For ea
h α ∈ I, q(α) is an initialsegment of p(α). For ina

essible κ, P is neither κ+-

 nor κ+-distributive,yet �
o�nality > κ� is preserved when for
ing with P . This is be
ause P is
∆-distributive at κ, a 
on
ept that we now de�ne.De�nition. Let κ be regular. We say that d ⊆ P is predense ≤ p if q ≤ p −→ qis 
ompatible with an element of d. If D ⊆ P is dense then p α+-redu
es Dif there exists d ⊆ D, Card (d) ≤ α+, d predense ≤ p. P is ∆-distributive at
κ if whenever 〈Di|i < κ〉 are dense subsets of P and p ∈ P , there is q ≤ p, q
i+-redu
es Di for ea
h i. (We take i+ = ω for �nite i.)Lemma 3.7. If P is ∆-distributive at κ in M and 
of (α) ≥ κ+ in M then
of (α) ≥ κ+ in M [G].Proof. It su�
es to show that if f : κ −→ γ belongs to M [G] then thereis g : κ −→ P(γ) in M su
h that Card (g(i)) ≤ κ, f(i) ∈ g(i) for ea
h
i < κ. Let σG = f and note that Di = {p| For some γ̄ < γ, p 
 σ total
−→ σ(̂i) = ˆ̄γ} is dense for ea
h i. Let p ∈ G, p 
 σ total, p i+-redu
es Di forea
h i. Then the desired g is g(i) = {γ̄ < γ|q 
 σ(̂i) = ˆ̄γ for some q ≤ p}. 2Corollary 3.8. If for some κ, P is either both κ-distributive and κ+-

, orboth ∆-distributive at κ and κ++-

 then P preserves 
o�nalities.The above Lemmas are the basi
 tools for proving 
o�nality preservation.GCH PreservationGiven that 
o�nalities are preserved, we 
an ask what further 
onditionswe need on P to guarantee that GCH, if true inM , will remain true inM [G]for P -generi
 G. The basi
 fa
t is the following.Lemma 3.9. If M � 2κ = κ+, P ∈M and either P is κ+-distributive or P is
κ+-preserving, Card (P ) ≤ κ+ then G P -generi
 over M −→ M [G] � 2κ =
κ+.Proof. This is 
lear if P is κ+-distributive as then P(κ) inM [G] = P(κ) inM .Now if P is a κ+-preserving for
ing of 
ardinality ≤ κ+ 
hoose f : P

1−1
−→ κ+and let Pα = f−1[α] for α < κ+. If σG ⊆ κ then there is α < κ+ su
h that30



for all i < κ, i ∈ σG ←→ ∃p ∈ Pα ∩ G(p 
 î ∈ σ). Thus σG is uniquelydetermined by α, 〈Si|i < κ〉 where α < κ+, Si = {p ∈ Pα|p 
 î ∈ σ} andhen
e in M [G] there are at most κ+-many su
h σG. 2Cohen's ResultsTheorem 3.10. If ZF is 
onsistent then so is ZFC+ ∼ CH.Proof. First suppose that ZF has a 
ountable transitive model N ; then sodoes ZFC for we 
an take M = (L)N . Now take P ∈ M to 
onsist of all
p : Fp −→ 2, Fp a �nite subset of ω × ℵM2 , ordered by p ≤ q ←→ p extends
q as a fun
tion. If G is P -generi
 over M (su
h G exist by the assumptionthatM is 
ountable) then ∪G : ω×ℵM2 −→ 2, sin
e for ea
h (n, α) ∈ ω×ℵM2the set D = {p|(n, α) ∈ Fp} is dense. Also α < β < ℵM2 −→ Gα 6= Gβ where
Gα(n) = (∪G)(n, α). So M [G] � ZFC + 2ℵ0 ≥ ℵM2 . Thus to get ∼ CH in
M [G] we only need ℵM2 = ℵ

M [G]
2 , whi
h will follow if we 
an show that P is

ℵ1-

 in M .Claim. P is ℵ1-

 in M .Suppose A were an un
ountable anti
hain and 
hoose F maximal so that
F ⊆ Fp for un
ountably many p ∈ A. We may assume that p ↾ F is 
onstantfor p ∈ A. But then for any p ∈ A 
hoose p 6= q ∈ A su
h that Fq ∩ Fp = Fand we see that p, q are 
ompatible, 
ontradi
tion.Now to prove the Theorem noti
e the following: The above shows that ifZFn+17(= ZF with only Σn+17 Repla
ement) has a 
ountable transitive modelthen so does ZFn + AC+ ∼ CH. But in ZF we 
an prove that ZFn+17 hasa 
ountable transitive model, so if ZF + AC+ ∼ CH were in
onsistent wewould get an in
onsisten
y in ZF. 2Theorem 3.11. If ZF is 
onsistent then so is ZF+ ∼ AC.Proof. As in the previous Theorem, it will su�
e to show that if ZF+V = Lhas a 
ountable transitive modelM then so does ZF+ ∼ AC. Let P ∈M bethe pre-ordering of all p : Fp −→ 2 where Fp is a �nite subset of ω×ω, orderedby p ≤ q ←→ p extends q. If G is P -generi
 over M then ∪G : ω × ω −→ 2and n 6= m −→ Gn 6= Gm where Gn(i) = (∪G)(i, n).For any m,n ∈ ω de�ne πmn : P −→ P as follows: if p ∈ P then πmn(p)agrees with p ex
ept it sends (i,m) to p(i, n) and (i, n) to p(i,m). Then31



Gmn = {πmn(p)|p ∈ G} is P -generi
 over M and M [G] = M [Gmn]. It followsthat if f : ω −→ S = {Gn|n ∈ ω} is de�nable in M [G] with parameters from
M ∪ {S,G0, G1, . . .} then Range (f) is �nite: If the formula ϕ de�ning fdoes not have f(k) = Gm as a parameter, 
hoose p ∈ G, p 
 f is a fun
tion,
f(k) = Gm; then for large enough n ≥ m, p and πmn(p) are 
ompatible andtogether for
e f(k) to equal both Gm and Gn, 
ontradi
tion.Let N = ∪{t ∈ M [G]|t transitive and x ∈ t −→ x is de�nable in M [G]with parameters from M ∪ {S,G0, G1, . . .}}. We have shown that f : ω −→
S, f ∈ N −→ Range (f) �nite and 
learly S ∈ N . So we need only show that
N is a model of ZF. Note that N is a transitive, de�nable (with parameter
G) sub
lass of M [G], sin
e by the Re�e
tion Prin
iple, N = ∪{t ∈ M [G]|ttransitive and x ∈ t −→ for some α ∈ ORD(M), x is de�nable in V

M [G]
αwith parameters from M ∪ {S,G0, G1, . . .}}. The axioms of extensionality,foundation, empty and in�nity obviously hold in N . Pairing and union holdas these are de�nable operations and the transitive 
losure (TC) of {x, y} is

TC{x} ∪ TC{y}, TC(∪x) ⊆ TC(x). For power, use the de�nability of N toget x ∈ N −→ P (x) ∩ N ∈ N . Finally, for repla
ement use repla
ement in
M [G] and the de�nability of N . 2Iterated Set-For
ingFirst we 
onsider two-step iteration.Let P be a notion of for
ing and (̇Q) a P -name su
h that 1P 
 Q̇ is apre-ordering. There is a notion of for
ing P ∗Q̇ with the property that for
ingwith P ∗ Q̇ is the same as �rst for
ing with P and then in the extension by
P for
ing with Q̇. We de�ne:
P ∗ Q̇ = {(p, q) | p ∈ P , Rank q < Rank Q̇ and p 
 q ∈ Q̇}
(p0, q0) ≤ (p1, q1) i� p0 ≤ p1 and p0 
 q0 ≤ q1.Then P ∗ Q̇ is a pre-ordering, 
alled the two-step iteration of P and Q̇.Lemma 3.12. Let G be P -generi
 over V and Q = Q̇G, a notion of for
ing in
V [G]. If H is Q-generi
 over V [G] then

G ∗H = {(p, q) ∈ P ∗ Q̇ | p ∈ G and pG ∈ H}is P ∗ Q̇-generi
 over V and V [G ∗H) = V [G][H ].32



Proof. If D ∈ V [G] is dense on P ∗ Q̇ then de�ne D1 = {qG | (p, q) ∈ D forsome p ∈ G}.Claim. D1 is dense in Q = Q̇G.To prove the Claim, suppose that qG belongs to Q, Rank q < Rank Q̇. Con-sider the set {p ∈ P | For some q1, p 
 q1 ≤ q0 and (p, q1) ∈ D}. Sin
e D isdense in P ∗ Q̇, it follows that the latter set is dense in P . By the generi
ityof G there is p ∈ G belonging to this set and therefore qG has an extensionin D1.Now sin
e D1 is dense and belongs to V [G] it follows from the generi
ity of
H that there is q ∈ H belonging to D1. But then there is p ∈ G su
h that
(p, q) belongs to D and to P ∗ Q̇, as desired. 2Lemma 3.13. Let K be P ∗ Q̇-generi
 over V . Then the set G = {p ∈ P |
(p, q) ∈ K for some q} is P -generi
 over V and the set H = {qG | (p, q ∈ Kfor some p} is Q = Q̇G-generi
 over V [G]. Moreover K = G ∗H .Proof. If D ∈ V is dense on P then D1 = {(p, q) | p ∈ D} is dense on P ∗ Q̇and it follows that D ∩G is nonempty. And, if D ∈ V [G] is dense on Q wemay 
hoose a name Ḋ su
h that ḊG = D and 1P 
 Ḋ is dense in Q̇. Then
{(p, q) ∈ P ∗ Q̇ | p 
 q ∈ Ḋ} is dense in P ∗ Q̇ and it follows that H ∩D isnonempty. The equality K = G ∗H is 
lear, using the 
ompatibility of K.
2 It follows from the Lemmas that V [G ∗H ] = V [G][H ].Lemma 3.14. Let κ be regular. If P has the κ-

 and 1P 
 Q̇ has the κ-

then P ∗ Q̇ has the κ-

.Proof. Assume that (pα, qα), α < κ are mutually in
ompatible. Let G be
P -generi
 over V and Z = {α | pα ∈ G}. Whenever α and β belongs to Z,we have that qGα and qGβ are in
ompatible in Q = Q̇G. As Q has the κ-

 in
V [G] it follows that Z has 
ardinality less than κ in V [G]. But as P has the
κ-

 in V it follows that for some γ < κ, 1P 
 Z is a subset of γ; but this
ontradi
ts the fa
t that pγ 
 γ ∈ Z. 2Now we turn to trans�nite iterations. We shall introdu
e sequen
es 〈Pβ |
β < α〉 of for
ing notions so that Pβ+1 = Pβ ∗ Q̇β for β < α. At limits wewill take �dire
t limits�. 33



De�nition. Let α be a nonzero ordinal. Pα is an iteration of length α with�nite support i� it is a set of α-sequen
es with the following properties:(i) If α = 1 then for some for
ing notion Q0, P1 is the set of all sequen
es
〈p(0)〉 of length 1, where p(0) ∈ Q0. And 〈p(0)〉 ≤ 〈q(0)〉 i� p(0) ≤ q(0).(ii) If α = β + 1 then Pβ = {p ↾ β | p ∈ Pα} is an iteration of length β andthere is some name Q̇β su
h that 1Pβ 
 Q̇β is a for
ing notion and:
p ∈ Pα i� p ↾ β ∈ Pβ and 1Pβ 
 p(β) ∈ Q̇β

p ≤ q in Pα i� p ↾ β ≤ q ↾ β in Pβ and p ↾ β 
 p(β) ≤ q(β).(iii) If α is a limit ordinal then for all β < α, Pβ = {p ↾ β | p ∈ Pα} is aniteration of length β and:
p ∈ Pα i� p ↾ β ∈ Pβ for all β < α and
1Pβ 
 p(β) = 1Q̇β for all but �nitely many β < αAlso: p ≤ q in Pα i� p ↾ β ≤ q ↾ β in Pβ for all β < α.Notation. ≤β denotes the ordering of Pβ, 
β denotes the for
ing relation of
Pβ and 
β ϕ denotes 1Pβ 
β ϕ. An easy exer
ise is the following.Fa
t. If G is Pα-generi
 over V then for β < α, G ↾ β = {p ↾ β | p ∈ G} is
Pβ-generi
 over V .Theorem 3.15. Let Pα result from the iteration of �nite support of 〈Q̇β | β <
α〉. If 
β Q̇β has the ℵ1-

 for ea
h β < α then Pα has the ℵ1-

.Proof. By indu
tion on α. If α = β + 1 then Pα = Pβ ∗ Q̇β and the resultfollows from our earlier Lemma. Now suppose that α is a limit ordinal andfor ea
h p ∈ Pα let supp (p) denote the support of p, i.e. the set of β < αsu
h that p(β) 6= 1Pβ .Case 1. 
of α 6= ℵ1. Let W ⊆ Pα be a set of size ℵ1. Sin
e 
of α 6= ℵ1 thereis a β < α and Z ⊆W of size ℵ1 su
h that supp (p) ⊆ β for all p ∈ Z. Then
{p ↾ β | p ∈ Z} is a set of size ℵ1 in Pβ and sin
e by indu
tion Pβ has the
ℵ1-

 there are p and q in Z su
h that p ↾ β and q ↾ β are 
ompatible in Pβ.But then p and q are 
ompatible. So W is not an anti
hain.Case 2. 
of α = ℵ1. Let 〈αξ | ξ < ℵ1〉 be a 
ontinuous in
reasing sequen
ewith limit α and W = {pξ | ξ < ℵ1} a subset of Pα of size ℵ1. For ea
h limit
ξ < ℵ1 there is γ(ξ) < ξ su
h that supp (p)∩αxi ⊆ αγ(ξ). By Fodor's Theoremthere is a stationary S ⊆ ℵ1 and some γ < ℵ1 su
h that supp (pξ)∩ αξ ⊆ αγ34



for all ξ ∈ S. Also we 
an 
onstru
t an un
ountable set Z ⊆ S so that forany ξ < η in Z, supp (pξ) ⊆ αη.Now 
onsider the set {pξ ↾ αγ | ξ ∈ Z}. This is an un
ountable subset of
Pαγ and so there are ξ < η in Z su
h that pξ ↾ αγ and pη ↾ αγ are 
ompatible.Let q ∈ Pαγ be stronger than both of these 
onditions. Now de�ne r ∈ Pα asfollows.
r(i) = q(i) if i < α
r(i) = pξ(i) if αγ ≤ i < αη
r(i) = pη(i) if αη ≤ i < α.Then r is stronger than both pξ and pη and therefore pξ and pη are 
ompatible.So W is not an anti
hain. 2Suslin's ProblemSuslin asked whether there is a 
omplete, dense linear ordering withoutendpoints, without an un
ountable set of pairwise disjoint intervals and notisomorphi
 to the real line. It turned out the answer is Yes in L, but theanswer is No in an extension of L obtainable through iteration with �nitesupport.An equivalent version of Suslin's question is the following: Is there aSuslin Tree? The latter is an un
ountable partially-ordered set (T,<T ) su
hthat the prede
essors of ea
h element of T are well-ordered by <T and (T,<T )has no un
ountable 
hain or anti
hain.Noti
e that a Suslin tree is a partial-ordering and therefore 
an be used asa for
ing notion. If T is a Suslin tree with the property that ea
h t ∈ T hasun
ountably many extensions in T , then for
ing with T adds an ℵ1-bran
hthrough T and therefore T will not be Suslin in the generi
 extension.Theorem 3.16. In L, there is an iteration with �nite support P of length ℵ2su
h that if G is P -generi
 over L then in L[G] there are no Suslin trees.Proof. We 
onstru
t P as the iteration of 〈Q̇α | α < ℵ2〉 where at ea
h stage

α Q̇α is ℵ1-

. Thus P is also ℵ1-

 and all 
o�nalities are preserved.We de�ne Q̇α by indu
tion on α < ℵ2. Fix a fun
tion π mapping ℵ2 onto
ℵ2 × ℵ2 so that if π(α) = (β, γ) then β, γ ≤ α. Assuming for the moment35



that Pα is an ℵ1-

 for
ing of size ≤ ℵ1, it follows 
α 2ℵ1 = ℵ2 and thereforethere at most ℵ2 nonisomorphi
 Suslin trees in a Pα-generi
 extension. Sin
e
Pα is ℵ1-

 there are at most ℵ2 Pα-names for Suslin trees. Let π(α) be
(β, γ). Then Q̇α is de�ned to be the γ-th Pβ-name for a Suslin tree.We assuimed that Pα is an ℵ1-

 for
ing of size ≤ ℵ1 for ea
h α < ℵ2.We now prove this indu
tively. Clearly it holds for limit stages sin
e we aretaking dire
t limits. At the su

essor stage Pα+1 = Pα ∗ Q̇α we have 
 Q̇αhas 
ardinality ℵ1, as Q̇α is a name for a Suslin tree. Every name for anelement of Q̇α 
an be represented as a fun
tion from an anti
hain of Pα into
ℵ1, and sin
e Pα is ℵ1-

 there are at most ℵℵ0

1 = ℵ1 su
h names. It followsthat Pα+1 has size at most ℵ1.Now we 
laim that there are no Suslin trees in a P -generi
 extension L[G].Let Gα denote G ↾ Pα for ea
h α < ℵ2.Claim. If X is a subset of ℵ1 in L[G] then X ∈ L[Gα] for some α < ℵ2.Proof of Claim. A name for X is determined by an ℵ1-sequen
e of maximalanti
hains, and therefore by the ℵ1-

, by a name of size ℵ1.Now suppose there were a Suslin tree in L[G]. Then there would bea Suslin tree T with the property that ea
h t ∈ T has un
ountably manyextensions in T . By the Claim we 
an assume that T belongs to L[Gα] forsome α < ℵ2 and therefore by 
onstru
tion at some stage β of the iteration,we for
e with T . But then T is not Suslin in L[G], 
ontradi
tion. 2Countable Support IterationIterations with 
ountable support are de�ned just like iterations with �nitesupport, but with the 
ondition at limit stages α given as follows:
p ∈ Pα i� p ↾ β ∈ Pβ for all β < α and
1Pβ 
 p(β) = 1Q̇β for all but 
ountably many β < α.This type of iteration is needed when one wishes to use for
ings whi
h arenot ℵ1-

. Typi
ally one performs an iteration of length ℵ2, using for
ings ofsize ℵ1. To show that 
ardinals above ℵ1 are preserved one uses:36



Proposition 3.17. Let P be a 
ountable support iteration of length ℵ2 su
hthat for β < ℵ2, P ↾ β has a dense subset of size at most ℵ1. Then P hasthe ℵ2-

.Proof. If 〈pξ | ξ < ℵ2〉 are 
onditions in P then there is a stationary set
S ⊆ ℵ2 
onsisting of ordinals of un
ountable 
o�nality su
h that for ξ ∈ S,supp (pξ) ∩ ξ is bounded by a �xed ordinal γ < ℵ2. But then we 
an 
hoosetwo 
onditions pξ and pη whose restri
tions to γ are 
ompatible and whosesupports above γ are disjoint. It follows that these 
onditions are 
ompatibleand therefore the original sequen
e 
annot enumerate the elements of ananti
hain. 2How does one show that ℵ1 is preserved in a 
ountable support iterati-on? Shelah isolated a 
ondition on the for
ings used in the iteration, 
alledproperness, whi
h guarantees preservation of ℵ1 and is preserved through
ountable support iteration.De�nition. P is proper i� player II has a winning strategy in the followinggame: Player I begins by sele
ting a 
ondition p and 
hoosing a name Ȧ0for a 
ountable set of ordinals. Player II 
hooses an ordinal β0. At the n-thmove, I plays a name Ȧn for a 
ountable set of ordinals and II plays anordinal βn. Now II wins the game i� for some q ≤ p :

(∗) q 
 For all n and α in Ȧn, α = βk for some k.Noti
e that if II has a winning strategy in the above game, then every
ountable set of ordinals in a P -generi
 extension of V is a subset of a setof ordinals whi
h is 
ountable in V . Thus properness implies that ℵ1 ispreserved.Theorem 3.18. Let Pγ be a 
ountable support iteration of length γ of Q̇β ,
β < γ su
h that for every β < γ, 
β Q̇β is proper. Then Pγ is proper.Proof. We a
tually prove something stronger than stated, to fa
ilitate anindu
tive argument. A winning strategy σ for II in the properness gameis good i� for every sequen
e of moves p, Ȧ0, . . ., Ȧn, . . . of player I, σprodu
es a sequen
e 〈βn | n ∈ ω〉 su
h that for some q ≤ p obeying (∗)above: supp (q) ⊆ {βn | n ∈ ω}. 37



Claim. (a) For all η < γ, 
η II has a good winning strategy in the propergame for Pηγ = {p ↾ [η, γ) | p ∈ Pγ}.(b) Suppose that γ has 
o�nality ω and 〈γn | n ∈ ω〉 is an in
reasing sequen
e
o�nal in γ. Let R0 = Pγ0 and Ṙn+1 = Pγnγn+1
for ea
h n ∈ ω. Then P isequivalent to the ω-iteration of the Ṙn's.To treat the 
ase of the Claim (a) when γ is a su

essor ordinal we need:Lemma 3.19. Suppose that P is proper and 
P Q̇ proper. Then P ∗ Q̇ isproper.Proof of Lemma. It is not di�
ult to show that in the de�nition of properness,we 
an equally well use the game where I plays names for single ordinals,rather than 
ountable sets of ordinals. We shall prove the lemma using thismodi�ed version of the game.Let σ be a winning strategy for II in the game on P and let τ̇ be su
h that


P τ̇ is a winning strategy for II on Q̇. We des
ribe a winning strategy for
II on P ∗Q̇: Player I starts by sele
ting a 
ondition (p, q̇) ∈ P ∗Q̇ and a name
α̇0 for an ordinal. We des
ribe II's response, an ordinal γ0. The P ∗ Q̇-name
α̇0 
an be identi�ed with a P -name for a Q̇ name. Apply II's strategy τ̇ inthe Q̇-game where I begins with q̇ and α̇0. Let β̇0 be II's response. Now
onsider the game on P and use σ to respond when I plays p and β̇0. Theresult is γ0.At the nth move, I plays a P ∗ Q̇-name α̇n. Identify α̇n with a P -name for a
Q̇-name and apply τ̇ to get β̇n. Now in the game on P we use σ to produ
ean ordinal γn, when I plays β̇n as his nth move.Sin
e τ̇ is a winning strategy we have

p 
P ∃q
′ ≤ q̇, q′ 
Q ∀n∃m α̇n = β̇m.Therefore there is a q̇′ su
h that p 
 q̇′ ≤ q̇ and

(p, q̇) 
 ∀n∃m α̇n = β̇m.Sin
e σ is a winning strategy, there is p′ ≤ p su
h that
p′ 
 ∀m∃k β̇m = γk.38



Putting this together we get
(p′, q̇′) 
 ∀n∃k α̇n = γk,and therefore the strategy des
ribed above is a winning strategy for II inthe game on P ∗ Q̇. This proves the Lemma.Noti
e that the proof of the Lemma shows that if II has a good winningstrategy in the game on Pηγ and 
ηγ Q̇γ is proper, then II has a good winningstrategy in the game on Pηγ+1, the su

essor step in the proof of the Claim,part (a).Now we prove the Claim, part (a) for limit γ. It su�
es to prove it when

η = 0: When η < γ is arbitrary, we will be able to 
arry out the same proof ina generi
 extension via Pη, be
ause by the Claim, part (b), Pηγ is a 
ountablesupport iteration of proper for
ings in this generi
 extension.If γ has 
o�nality ω, �x an in
reasing ω-sequen
e 〈γi | i < ω〉 
o�nal in γ.Player I starts the game on Pγ by sele
ting p ∈ Pγ and a Pγ-name α̇0. If γhas un
ountable 
o�nality we 
hoose some γ0 < γ and 
onsider R0 = Pγ0 .(Otherwise γ0 has already been 
hosen.) Let p0 = p ↾ γ0. There are R0-names α̇0
0 and ṡ0 su
h that p0 
R0

ṡ0 ≤ p ↾ [γ0, γ) and (p0, ṡ0) 
 α̇0
0 = α̇0. Westart the game on R0 by letting I play p0 and an R0-name for the 
ountableset {α̇0}∪ supp (ṡ0). Player II uses a good winning strategy σ0 to return anordinal β0. This is II's �rst move in the game on Pγ.At the nth move I 
hooses a Pγ-name α̇n. If γ has un
ountable 
o�nality we
hoose some γn ∈ (γn−1, γ) greater than βn−1. Let Ṙn = Pγn−1γn . Let ṗn bea name for a 
ondition in Ṙn so that 〈p0, . . . , ṗn−1〉 
 ṗn = ṡn−1 ↾ [γn−1, γn).There are R0 ∗ · · · ∗ Ṙn-names α̇nn and ṡn su
h that 〈p0, . . . , ṗn〉 
 ṡn ∈ Pγnγ ,

ṡn ≤ ṡn−1 ↾ [γn, γ) and (〈p0, . . . , ṗn〉, ṡn) 
 α̇n = α̇nn. We start the game on
Ṙn by letting I play ṗn and Ȧnn, where Ȧnn = {α̇nn} ∪ supp (ṡn).
II uses a good winning strategy σ̇n to play α̇n−1

n . Then we 
ontinue the
Ṙn−1-game by letting I play α̇n−1

n , to whi
h II responds α̇n−2
n . And so on,until II plays (by σ0 in the R0-game) an ordinal βn.It remains to show that the strategy des
ribed above is a good winningstrategy for II in the Pγ-game. Let γ∞ = limn γn and S = {βn | n ∈ ω}. We39




an obtain a sequen
e p = 〈q̇n | n ∈ ω〉 in the ω-iteration of the Ṙn's su
hthat q ≤ 〈ṗn | n ∈ ω〉 and
q 
 ∀n∃k α̇nn = βk.Sin
e the σ̇n are good winning strategies, it follows that R and Pγ∞ areequivalent for
ings, and that q is a 
ondition in Pγ∞ with supp q ⊆ S. Letus identify q with q ∗ 〈111 · · ·〉 ∈ Pγ (if γ∞ < γ). Sin
e S ⊆ γ∞ and for every

n, q ↾ n 
 supp ṡn ⊆ S, we have
q ≤ (〈p0, . . . , ṗn〉, ṡn).It follows that q ≤ p, q 
 ∀n∃k α̇n = βk and supp q ⊆ S. Hen
e the strategygiven is a good winning strategy, as desired. This proves the Claim, part (a).We now prove the Claim, part (b). Let γ = limn γn and let Pγ be theproper iteration of length γ of 〈Q̇ξ | ξ < γ〉. For ea
h n let Ṙn = Pγn−1γn(and R0 = Pγ0). Let R be the ω-iteration of the Ṙn. We want to show that

R and Pγ are equivalent for
ings. For any p ∈ Pγ let r = 〈rn | n ∈ ω〉 where
rn = p ↾ [γn−1, γn). Thus Pγ embeds into R; it su�
es to show that Pγembeds into R densely.Thus let r = 〈ṙn | n ∈ ω〉 be a 
ondition in R. We wish to �nd p ∈ Psu
h that p ≤ r. By the indu
tion hypothesis, ea
h Ṙn has a good winningstrategy σ̇n. We use these good strategies to produ
e p.Play the proper games on the Ṙn simultaneously for all n ∈ ω. The gameon Ṙn begins with the 
ondition ṙn. The moves of I are names for 
ountablesets of ordinals; the moves of II are a

ording to the strategy σ̇n.At step 0, start the game for R0. I plays r0 and a name Ȧ0

0 for thesupport of ṙ1. II responds with β0. At step 1 we start the game on Ṙ1 inan R0-generi
 extension. I plays ṙ1 and a name Ȧ1
1 for the support of ṙ2. IIresponds with α̇0

1. Continue the game on R0: I plays α̇0
1 and II respondswith β1. At step n, we start the game on Ṙn in a R0 ∗ · · · ∗ Rn−1-generi
extension. I plays ṙn and a name Ȧnn for the support of ṙn+1. II respondswith α̇n−1

n . Then, playing the game on Ṙn−1, I plays α̇n−1
n and II respondswith α̇n−2

n . And so on, until II plays βn in the game on R0.Sin
e the σ̇n are good winning strategies there exists a 
ondition q = 〈q̇n |
n ∈ ω〉 ∈ R, stronger than 〈ṙn | n ∈ ω〉, su
h that for ea
h n, q ↾ n for
es:
q̇n 
 ∀α played by I ∃β played by II su
h that α = β, and40



the support of q̇n is in
luded in the set of all ordinals played by II.Let S{βn | n ∈ ω}. It follows jthat for every n, q ↾ n 
 supp (q̇n) ⊆ S. We
on
lude the proof by 
onstru
ting a 
ondition p ∈ Pγ so that p = q (underthe embedding of P into R). This we do by indu
tion on ξ < γ: If ξ /∈ S welet p(ξ) = 1 and if ξ ∈ S then we let p(ξ) be the 
ondition ṫ ∈ Q̇ξ so that
p ↾ ξ 
 ṫ = q̇n(ξ), where n is the unique n for whi
h γn−1 ≤ ξ < γn. For ea
h
n we have p ↾ γn−1 
 p ↾ [γn−1, γn) = q̇n and so p = q. 2The Borel Conje
tureProperness 
an be used to establish the 
onsisten
y of Borel's Conje
ture
on
erning sets of strong measure 0. Let X be a subset of [0, 1]. X has strongmeasure 0 if for every sequen
e 〈ǫn | n ∈ ω〉 of positive reals there exists asequen
e 〈In | n ∈ ω of intervals with length In ≤ ǫn su
h that X ⊆ ∪nIn.Borel 
onje
tured that strong measure 0 sets are in fa
t 
ountable. This
ontradi
ts CH, but Laver proved the 
onsisten
y of Borel's Conje
ture usinga 
ountable support iteration of Laver for
ing.Laver for
ing is de�ned as follows. A set p ⊆ ω<ω is a tree i� it is 
losedunder initial segments. A tree p is a Laver tree i� for some s ∈ p (
alled thestem of p):1. For all t ∈ p either t ⊆ s or s ⊆ t.2. For all t ∈ p extending s the set S(t) = {a | t∗a ∈ p} (the set of su

essorsof t in p) is in�nite.Laver for
ing 
onsists of all Laver trees, partially ordered by in
lusion. If Gis generi
 then f =

⋃
{s | s is the stem of some p ∈ G} is a fun
tion from ωinto ω, a Laver real. It is easy to show that V [G] = V [f ].By an earlier Proposition, if we iterate Laver for
ing for ℵ2 steps over L,we will have the ℵ2-

 and therefore preserve all 
o�nalities greater than ℵ1.To show that this iteration preserves 
o�nality ω1 it su�
es to show thatLaver for
ing is proper.Lemma 3.20. Laver for
ing is proper.Proof. De�ne the relations ≤n as follows. Consider a 
anoni
al enumerationof ω<ω in whi
h s appears before t when s ⊆ t and s ∗ a appears before

s ∗ (a + 1) for a ∈ ω. If p is a Laver tree then part of p above the stem is41



isomorphi
 to ω<ω and so we have a 
anoni
al enumeration of it 〈spi | i ∈ ω〉,where sp0 is the stem of p. Note that if q ≤ p and sqn = spm then n ≤ m. Wede�ne:
q ≤n p i� p and q have the same stem and spi = sqi for all i ≤ n.It is easy to show that if p0 ≥0 p1 ≥1 p2 ≥2 . . . then p =

⋂
n pn is a Lavertree, 
alled the fusion of the fusion sequen
e 〈pn | n ∈ ω〉.Fa
t. If p 
 α̇ ∈ ORD then there are q ≤n p and a 
ountable A ⊆ ORD su
hthat q 
 α̇ ∈ A.Proof of Fa
t. We assume that n = 0, as the proof for general n is almostthe same. If p is a Laver tree, n ∈ ω, q ≤ p and the stem of t is maximalamong {sp0, . . . , spn} then

r = q ∪ {u ∈ p | u * t and t * u}is a Laver tree ≤n p, 
alled the n-amalgamation of q into p. This has theobvious generalisation to the amalgamation of {q1, . . . , qk} into p when the
qi extend p and their stems are all the maximal nodes among {sp0, . . . , spn}(for a uniquely determined n).We 
onstru
t a fusion sequen
e 〈pn | n ∈ ω〉 with p0 = p and �nite sets
An so that the fusion of this sequen
e for
es α̇ ∈ ⋃

nAn. At stage n wealready have pn. Let t1, . . . , tk be all the maximal nodes among spn

0 , . . . , s
pn
n .For ea
h i ∈ {1, . . . , k} if there exists qi ≤ pn with stem ti and an ordinal αinso that qi 
 α̇ = αin then we 
hoose su
h qi and αin. Let An be the 
olle
tionof all the αin 
hosen and let pn+1 be the amalgamation of {q1, . . . , qk} into

pn. (If qi did not exist, then we take it to be the 
olle
tion of nodes in pn
ompatible with ti.) We have pn+1 ≤n pn.Let p∞ be the fusion of the pn's and A =
⋃
nAn. To prove that p∞ 


α̇ ∈ A, let q ≤ p∞. There are a 
ondition q̄ ≤ q and α ∈ ORD su
hthat q̄ 
 α̇ = α. Let n be large enough so that the stem of q̄ is among
K = {spn

0 , . . . , s
pn
n }. There is t ∈ q̄ that is a maximal node in K and thereforeone of the nodes 
onsidered at stage n, say t = ti. Let r 
onsist of those nodesof q̄ whi
h are 
ompatible with t. As r and α satisfy the requirements for
hoosing qi in the de�nition of pn+1 we indeed have 
hosen qi and αin. Be
ause

r ≤ qi it must be the 
ase that α = αin and so r 
 α̇ ∈ A. So by a densityargument, p∞ 
 α̇ ∈ A. This proves the Fa
t.42



Now we 
an show that II wins the proper game for Laver for
ing (in theversion where I plays a 
ondition p and names for single ordinals, II plays
ountable sets of ordinals and II wins i� there is q ≤ p whi
h for
es all thenames to be in the union of the sets played). At the start of the game let
I sele
t p0 and the ordinal name α̇0. By the Fa
t there is p1 ≤0 p0 and a
ountable B0 su
h that p1 
 α̇ ∈ B0. At the nth move, when I plays α̇nthere are pn+1 ≤n pn and a 
ountable set Bn with pn+1 
 α̇n ∈ Bn. Then thefusion of the pn's veri�es that II wins the game. 2The Main Lemma needed to verify that Borel's Conje
ture holds in theLaver model (obtained via an ℵ2-iteration of Laver for
ing over L) is thefollowing.Main Lemma. If GCH holds in V and X is an un
ountable set of reals in Vthen X does not have strong measure 0 in V [G] where G is generi
 over Vfor the ℵ2-iteration of Laver for
ing.We 
ontent ourselves with a proof of the following simpler version.Theorem 3.21. If GCH holds in V and X is an un
ountable set of reals in Vthen X does not have strong measure 0 in V [G] where G is generi
 over Vfor (a single appli
ation of )Laver for
ing.Proof. We show that if f is the Laver real and ǫn = I/f(n) then for some
n0, X 
annot be 
overed by intervals of lengths ǫn0

, ǫn0+1, . . ..Lemma 3.22. Let p 
 ϕ1 ∨ · · · ∨ ϕk. Then there is q ≤ p with the same stemas p su
h that p 
 ϕi for some i.Proof of Lemma 3.22. Re
all that for t ∈ p, S(t) denotes the set of a ∈ ω su
hthat t ∗ a belongs to p. Let s be the stem of p and assume that the Lemmafails. Then there are only �nitely many a ∈ S(s) su
h that some q ≤0 p ↾ s∗ahas the desired property. By removing these �nitely many nodes and theirextensions, we get p1 ≤0 p. For ea
h s ∗ a ∈ p1 there are only �nitely many
b ∈ S(s ∗ a) su
h that some q ≤0 p1 ↾ s ∗ a ∗ b has the desired property.By removing all su
h b and their extensions we get p2 ≤1 p1. Continue inthis way to form a fusion sequen
e with limit r. Then if t ∈ r there is no
q ≤0 r ↾ t with the desired property. But then no extension of r for
es any
ϕi, a 
ontradi
tion. 43



Lemma 3.23. Let p be a 
ondition with stem s and ẋ a name for a real. Thenthere is q ≤0 p and a real u su
h that for every ǫ > 0, for all but �nitelymany a ∈ S(s),
q ↾ s ∗ a 
 |ẋ− u| < ǫ.Proof of Lemma 3.23. Let {tn | n ∈ ω} be an enumeration of {s ∗ a |

a ∈ S(s)}. For ea
h n we 
an 
hoose qn ≤0 p ↾ tn and an interval Jn =
[m/n, (m + 1)/n] so that qn 
 ẋ ∈ Jn. There is a sequen
e 〈kn | n ∈ ω〉 sothat the Jkn's form a de
reasing sequen
e 
onverging to a unique real u. Let
q = ∪nqkn . Then q is as desired.Lemma 3.24. Let p be a 
ondition with stem s and let 〈ẋn | n ∈ ω〉 be asequen
e of names for reals. Then thre is q ≤0 p and a set of reals {ut | t ∈ q,
t ⊇ s} su
h that for every ǫ > 0 and every t ∈ q extending s, for all but�nitely many a ∈ S(t):

q ↾ t+ a 
 |ẋk − ut| < ǫ.where k = length t− length s.Proof of Lemma 3.24. By repeated appli
ation of Lemma 3.23. First weget p1 ≤0 p and us. Then for every immediate su

essor t of s in p1 weget qt ≤0 p1 ↾ t and ut; let p2 = ∪tqt. Continue to get a fusion sequen
e
p ≥0 p1 ≥1 p2 ≥2 . . . and let q = ∩npn.We are now ready to prove the Theorem. Let X ∈ V be a subset of [0, 1]and p 
 X has strong measure 0. We show that X is 
ountable. Let s bethe stem of p, of length n. Let f be the Laver real. Consider the sequen
e
ǫk = 1/f(k), k ≥ n. There exists a sequen
e of intervals İk, k ≥ n of length
ǫk so that X ⊆ ⋃

k≥n İk. For ea
h k ≥ n let ẋk be the 
enter of Ik.Let q ≤0 p be a 
ondition obtained by Lemma 3 applied to p and 〈ẋk |
k ≥ n〉 and let {ut | t ∈ q, q ⊇ s} be the resulting reals. We shall show that
X ⊆ {ut | t ∈ q, q ⊇ s}.Let v /∈ {ut | t ∈ q, q ⊇ s}. Sin
e p 
 X ⊆

⋃
k≥n İk it su�
es to �ndsome r ≤ q su
h that r 
 v /∈ İk for all k ≥ n. We 
onstru
t r by indu
tionon the levels of q; at stage k ≥ n we guarantee that r 
 v /∈ İk.The �rst step is as follows: Let ǫ = (1/2)·|v−us|. For all but �nitely many

a ∈ S(s), q ↾ s∗a 
 |ẋn−us| < ǫ. Also, for ea
h a, q ↾ s∗a 
 ḟ(n) = a and so
q ↾ s+a 
 ǫ̇n = 1/a; thus, for all but �nitely many a, q ↾ s∗a 
 ´ẋn−v| > ǫ̇n,44



i.e., q ↾ s∗a 
 v /∈ İn. Thus, by removing �nitely many immediate su

essorsof s we ensure that r 
 v /∈ İn. We 
ontinue in this way to get r ≤ q su
hthat r 
 v /∈
⋃
k≥n İk. 2
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4. Class For
ingUnder the assumption of �large 
ardinal axioms� it 
an be shown thatthere are reals that are not generi
 over L for set-for
ing. The standardexample is the real 
alled 0#, whi
h 
auses dramati
 e�e
ts when added to
L: In L[0#] all su

essor L-
ardinals are 
ollapsed and indeed the 
ardinalsof L[0#] are indis
ernible in L.Solovay asked if 0# provides the only 
ounterexample to the universalityof set-for
ing over L. For our present purposes we 
an pose his question asfollows:Is it 
onsistent that for some real R, L and L[R] have the same 
ardinals but
R belongs to no set-generi
 extension of L?The positive answer to this question was provided by Jensen, who de-veloped a powerful new type of for
ing, in whi
h a generi
 real is 
reatedby for
ing over L with a 
lass partial-ordering. We shall next develop thegeneral theory of 
lass-for
ing and establish this result of Jensen.LetM be a transitive set or 
lass satisfyingg ZF, and A ⊆ M . We say that
〈M,A〉 is a model of ZF ifM is a model of ZF and the s
heme of repla
ementholds in M for formulas whi
h mention A as a predi
ate. In addition werequire 〈M,A〉 to be a ground model, whi
h means that 〈M,A〉 satis�es:
V = L(A) = ∪{L(A ∩ Vα)|α ∈ ORD}. Any ZF model 〈M,A〉 is easilymodi�ed to a ground model 〈M,A∗〉 (with the same de�nable predi
ates) bytaking A∗ to be {〈0, x〉|x ∈ A}∪{〈1, VM

α 〉|α ∈ ORD(M)}. This �minimality�property of M relative to A is needed to guarantee that M is de�nable as apredi
ate in all of its extensions 〈M [G], A,G〉.A partial ordering P is a 
lass for
ing forM (or anM-for
ing) if for someground model 〈M,A〉, P (with its ordering) is de�nable with parameters over
〈M,A〉. Assume that this is the 
ase and that P has a greatest element 1P .De�nition. G ⊆ P is P -generi
 over 〈M,A〉 i�:
p, q ∈ G −→ p, q are 
ompatible.
p ≥ q ∈ G −→ p ∈ G.If D ⊆ P is dense and 〈M,A〉-de�nable (with parameters) then G ∩D 6= ∅.46



We make the same Assumption as before, that for ea
h p ∈ P there exists
G su
h that p ∈ G and G is P -generi
 over 〈M,A〉. (This is provable when
M is 
ountable.) We will dis
uss (and dispense with) this Assumption later.De�ne names and M [G] as before. We have the following:Lemma 4.1. (a)M ⊆M [G] andM [G] is transitive, ORD(M [G]) = ORD(M).(b) G∩Vα ∈M [G] for ea
h α ∈ ORD(M) and ifM ⊆ N, 〈N , G〉 is amenableand N is a model of ZF then M [G] ⊆ N and M is de�nable over 〈N,A〉.Proof. (a) Exa
tly as before.(b) For ea
h α ∈ ORD(M), G ∩ Vα = γGα where γα = {〈p̂, p〉|p ∈ P ∩ Vα}, so
G∩Vα ∈M [G]. Under the assumptions on N we 
an de�ne σG as an elementof N , for ea
h name σ; M is de�nable over 〈N,A〉 as it equals L(A)N . 2De�ne 
 and 
∗ as before. We would like to 
arry out the earlier argu-ment to show that the Truth and De�nability lemmas hold for 
. But weimmediately run into trouble: We do not know that the De�nability lemmaholds for 
∗. The problem is in (a), (b) of the de�nition of 
∗:(a) p 
∗ σ ∈ τ i� {q|∃〈π, r〉 ∈ τ su
h that q ≤ r, q 
∗ σ = π} is dense ≤ p.(b) p 
∗ σ = τ i� for all 〈π, r〉 ∈ σ ∪ τ , p 
∗ (π ∈ σ ←→ π ∈ τ) i� for all
〈π, r〉 ∈ σ ∪ τ , {q|q 
∗ (π ∈ σ ∧ π ∈ τ) or q 
∗ (π /∈ σ ∧ π /∈ τ)} is dense ≤ p.As P may now be a proper 
lass these 
lauses involve unbounded quan-ti�ers, and therefore lead to de�nitions of p 
∗ σ ∈ τ, p 
∗ σ = τ whosequanti�er 
omplexity may in
rease with the ranks of σ, τ .By introdu
ing a further 
ondition on P we 
an 
ontrol the quanti�er
omplexity of the relations p 
∗ σ ∈ τ , p 
∗ σ = τ and therefore obtain theDe�nability lemma for 
∗. In the dis
ussion below, �de�nable� always means�de�nable with parameters� unless we say otherwise.Pretameness Condition. P is pretame i� whenever 〈Di|i ∈ a〉 is an 〈M,A〉-de�nable sequen
e of dense 
lasses, a ∈ M and p ∈ P then there is q ≤ pand 〈di|i ∈ a〉 ∈M su
h that di ⊆ Di and di is predense ≤ q for ea
h i.Proposition. Suppose that for ea
h p ∈ P there is G ⊆ P su
h that p ∈ G, Gis P -generi
 over 〈M,A〉 and 〈M [G], A,G〉 is a model of ZF− Power . Then
P is pretame. 47



Proof. Given 〈Di|i ∈ a〉 and p as in the statement of pretameness 
hoose Gsu
h that p ∈ G, G P -generi
 over 〈M,A〉 and 
onsider f(i) = least rank ofan element of G ∩ Di. If pretameness failed for p, 〈Di|i ∈ a〉 then for every
q ≤ p and α ∈ ORD(M) there would be r ≤ q and i ∈ a with r in
ompatiblewith ea
h element of Di ∩ Vα. But then by generi
ity, no ordinal of M 
anbound the range of f , so repla
ement fails in 〈M [G], A,G,M〉. As 〈M,A〉 isa ground model, repla
ement fails in 〈M [G], A,G〉. 2Thus pretameness is ne
essary for a reasonable notion of 
lass for
ing. Wenow prove the De�nability lemma for 
∗ assuming pretameness. By formulawe now mean a formula in the language of set theory with the addition of theunary predi
ate symbols A,G. Of 
ourse 〈M [G], A,G〉 � A(σG) i� σG ∈ A,
〈M [G], A,G〉 � G(σG) i� σG ∈ G. And extend the de�nition of 
∗ by adding:(f) p 
∗ A(σ) i� p 
∗ σ ∈ âα, where aα = A ∩ Vα, α = Rank σ + 1.(g) p 
∗ G(σ) i� p 
∗ σ ∈ γα, where γα = {〈p̂, p〉|p ∈ P∩Vα}, α = Rank σ+1.Theorem 4.2. If P is pretame then for any formula ϕ, the relation �p 
∗

ϕ(σ1 . . . σn)� of p, σ1 . . . σn is 〈M,A〉-de�nable.Proof. It su�
es to show that the relations p 
∗ σ ∈ τ and p 
∗ σ = τ are
〈M,A〉-de�nable, for then we may indu
t on teh stru
ture of ϕ. Note that bymodifying A if ne
essary, we may assume that the relations �x = V M

α ,� �p, qare 
ompatible,� �d is predense below p,� as well as (P,≤), are ∆1-de�nableover 〈M,A〉.Using pretameness we shall de�ne a fun
tion F from pairs (p, σ ∈ τ),
(p, σ = τ) into M su
h that:(a) F (p, σ ∈ τ) = (i, d) where d ∈ M is a nonempty subset of P (≤ p) =
{q ∈ P | q ≤ p} and either (i = 1 and q 
∗ σ ∈ τ for q ∈ d) or (i = 0 and
q 
∗ σ /∈ τ for q ∈ d).(b) The same holds for σ = τ , σ 6= τ instead of σ ∈ τ, σ /∈ τ .(
) F is Σ1-de�nable over 〈M,A〉.Given this we 
an de�ne p 
∗ σ ∈ τ by: p 
∗ σ ∈ τ i� for all q ≤ p,
F (q, σ ∈ τ) = (1, d) for some d. This holds be
ause p 
∗ σ ∈ τ i� {q|q 
∗

σ ∈ τ} is dense ≤ p. Similarly we 
an de�ne p 
∗ σ = τ .Now de�ne F by indu
tion on σ ∈ τ , σ = τ . We 
onsider the two 
asesseparately. 48



σ ∈ τGiven p, sear
h for 〈π, r〉 ∈ τ and q ≤ p, q ≤ r su
h that F (q, σ =
π) = (1, d) for some d. If su
h exist, let F (p, σ ∈ τ) = (1, e) where e is theunion of all su
h d whi
h appear by the least possible stage α (i.e., this Σ1property is true in 〈V M

α , A ∩ V M
α 〉, α least). If not then for ea
h 〈π, r〉 ∈ τ ,

D(π, r) = ∪{d| For some q ≤ r, F (q, σ = π) = (0, d)} ∪ {q|q in
ompatiblewith r} is dense below p. So also sear
h for 〈d(π, r)|〈π, r〉 ∈ τ〉 ∈ M and
q ≤ p su
h that d(π, r) ⊆ D(π, r) for ea
h 〈π, r〉 and ea
h d(π, r) is predense
≤ q; if this latter sear
h terminates then set F (p, σ ∈ τ) = (0, e), where e
onsists of all su
h q witnessed by the least possible stage α. One of thesesear
hes must terminate (by pretameness) and hen
e F (p, σ ∈ τ) is de�nedand either of the form (1, e) where q ∈ e −→ q ≤ p, q 
∗ σ ∈ τ , or of theform (0, e) where q ∈ e −→ q ≤ p, q 
∗∼ (σ ∈ τ).
σ = τGiven p, sear
h for 〈π, r〉 ∈ σ ∪ τ and q ≤ p, q ≤ r su
h that for some
i, d, q′ and e, F (q, π ∈ σ) = (i, d), q′ ∈ d, F (q′, π ∈ τ) = (1 − i, e). If thissear
h terminates then set F (p, σ = τ) = (0, f) where f is the union ofall su
h e whi
h appear by the least possible stage α. If this sear
h failsthen for ea
h 〈π, r〉 ∈ σ ∪ τ , D(π, r) = ∪ {e| For some q ≤ r, some i, d, q′,
F (q, π ∈ σ) = (i, d), q′ ∈ d, F (q′, π ∈ τ) = (i, e)} ∪ {q|q is in
ompatiblewith r} is dense ≤ p. So also sear
h for 〈d(π, r)|〈π, r〉 ∈ σ ∪ τ〉 ∈ M and
q ≤ p su
h that for ea
h 〈π, r〉, d(π, r) ⊆ D(π, r) and d(π, r) is predense
≤ q. If this latter sear
h terminates then q 
∗ σ = τ for all su
h q and let
F (p, σ = τ) = (1, f), where f 
onsists of all su
h q ≤ p witnessed to obeythe above by the least stage α. 2The previous Theorem was proved independently by M. Stanley. Theauthor does not know if the assumption of pretameness is ne
essary for thisresult.Now that we have the De�nability lemma for 
∗ we 
an prove the Truthlemma for 
∗ as we did before; the two new 
lauses (f), (g) 
ause no di�
ulty.Then we infer that 
=
∗ as before.Pretameness is su�
ient to verify that ZF− Power is preserved:Lemma 4.3. If P is pretame andG is P -generi
 over 〈M,A〉 then 〈M [G], A,G〉is a model of ZF− Power . If M is a model of AC then so is M [G].49



Proof. This is exa
tly as before, ex
ept for the veri�
ations of repla
ement,union. For repla
ement, suppose f : σG −→ M [G], f de�nable (with pa-rameters) in 〈M [G], A,G〉 and 
hoose p ∈ G, p 
 f is a total fun
tionon σ. Then for ea
h σ0 of Rank < Rank σ, D(σ0) = {q| For some τ ,
q 
 σ0 ∈ σ −→ f(σ0) = τ} is dense ≤ p. Thus by pretameness we get thatfor ea
h q ≤ p there is r ≤ q and α ∈ ORD(M) su
h that Dα(σ0) = {s|s ∈ Vαand for some τ of Rank < α, s 
 σ0 ∈ σ −→ f(σ0) = τ} is predense ≤ r forea
h σ0 of Rank < Rank σ. By generi
ity there is q ∈ G and α ∈ ORD(M)su
h that q ≤ p, Dα(σ0) is predense ≤ q for ea
h σ0 of Rank < Rank σ. ThusRange (f) = πG where π = {〈τ, r〉|Rank τ < α, r ∈ Vα, r 
 τ ∈ Range (f)}.So Range (f) ∈M [G].For union, given σG 
onsider π = {〈τ, p〉 | p 
 τ ∈ ∪σ}. This is nota set, but for ea
h α we may 
onsider πα = π ∩ V M

α . By repla
ement in
〈M [G], A,G〉, πGα is 
onstant for su�
iently large α ∈ ORD(M). For su
h αwe have πGα = ∪σG. 2Thus pretameness is equivalent to ZF− Power preservation. P is tame i�
P is pretame and in addition 1P for
es the Power Set Axiom. Thus tamenessis equivalent to ZF preservation. ExamplesWe des
ribe the four basi
 examples of tame 
lass for
ing: Easton, LongEaston, Reverse Easton and Amenable for
ing.We now �x our ground model 〈M,A〉 to just be 〈L, ∅〉, and maintainthe Assumption that for ea
h for
ing P 
onsidered, P -generi
 
lasses exist
ontaining any given 
ondition in P (where P -generi
 means P -generi
 over
〈L, ∅〉). We shall later 
onsider the question of generi
 
lass existen
e andwill show how to eliminate this Assumption, when establishing �rst-orderproperties of P -generi
 
lass.Easton For
ingEaston extended Cohen's independen
e proof for CH to all regular 
ardi-nals, showing that the fun
tion f(κ) = 2κ 
an exhibit any reasonable behaviorfor regular κ. To do so he developed a 
lass for
ing for adding generi
 subsetsto all regular κ simultaneously. We des
ribe here a version of his te
hnique,where we expli
itly add only one generi
 subset to ea
h regular κ, therebypreserving GCH. 50



A 
ondition in P is a fun
tion p : α(p) −→ L where α(p) ∈ ORD andfor α < α(p), p(α) = ∅ unless α is in�nite and regular, in whi
h 
ase p(α) ∈
2<α = {f : β −→ 2|β < α}. In addition we require that p has Eastonsupport whi
h means that for ina

essible κ, {α < κ|p(α) 6= ∅} is bounded in
κ. Extension is de�ned by: p ≤ q i� α(p) ≥ α(q), α < α(q) −→ p(α) extends
q(α). The key to analyzing P is to observe that for ea
h in�nite regular κ,
P is isomorphi
 to P (≤ κ) × P (> κ), where P (≤ κ) = {p ↾ [0, κ]|p ∈ P},
P (> κ) = {p ↾ (κ,∞)|p ∈ P}, ordered in the natural way. Note that P (≤ κ)is κ+-

 (indeed has 
ardinality κ) and P (> κ) is κ+-distributive (indeed is
κ+-
losed: de
reasing κ-sequen
es of 
onditions have lower bounds).Long Easton For
ingThis is like Easton for
ing, ex
ept we drop the Easton support require-ment. There are two types of Long Easton for
ing, depending upon whetheror not the for
ing is trivial at ina

essibles. We begin with the simpler 
ase,
alled Long Easton for
ing at Su

essors. We treat ω as a su

essor 
ardinalin this dis
ussion: 0+ = ω.A 
ondition in P is a fun
tion p : α(p) −→ L, α(p) ∈ ORD where p(α) = ∅unless α is a su

essor 
ardinal, in whi
h 
ase p(α) ∈ 2<α. Extension isde�ned by p ≤ q i� α(p) ≥ α(q) and for ea
h α < α(q), p(α) extends q(α).For any in�nite regular κ we 
an fa
tor P as P (≤ κ)×P (> κ) and P (> κ) is
κ+-distributive. However if κ is ina

essible, P (≤ κ) = P (< κ) is not κ+-

.Now we 
onsider (unrestri
ted) Long Easton for
ing, where we rede�ne
P so as to allow p(α) ∈ 2<α for any in�nite regular α, not just su

essor
ardinals. Then for any in�nite su

essor 
ardinal κ we 
an fa
tor P as
P (≤ κ) × P (> κ) and the analysis of Easton for
ing shows that P is tameand preserves �
o�nality > κ� for su

essor 
ardinals κ. However P is not
o�nality-preserving in general. A 
ardinal κ is Mahlo if κ is ina

essible and
{α < κ|α ina

essible} is stationary in κ.Theorem 4.4. Suppose G is P -generi
 over L and κ is L-regular. Then
(κ+)L[G] = (κ+)L i� κ is not Mahlo in L.Proof. Let G = 〈Gα|α in�nite, regular〉 be P -generi
. For ea
h α < κ
onsider Aα ⊆ κ de�ned by: β ∈ Aα ←→ α ∈ Gβ .Claim. Suppose κ is Mahlo. Then {Aα|α < κ} ⊆ L but for no γ < (κ+)L dowe have {Aα|α < κ} ⊆ Lγ . 51



Proof of Claim. For any α < κ and 
ondition p, we 
an extend p to q so that
α < κ̄ < κ, κ̄ regular −→ p(κ̄) has length greater than α. Thus Aα is for
edto belong to L.Given γ < (κ+)L and a 
ondition p, de�ne f(κ̄) = length(p(κ̄)) for regular
κ̄ < κ. As κ is Mahlo, f has stationary domain and hen
e by Fodor'sTheorem we may 
hoose α < κ su
h that length(p(κ̄)) is less than α forstationary many regular κ̄ < κ. Then p 
an be extended so that Aα isguaranteed to be distin
t from the κ-many subsets of κ in Lγ .Thus κ+ is 
ollapsed if κ is Mahlo. Conversely, if κ is not Mahlo, then
hoose a CUB C ⊆ κ 
onsisting of 
ardinals whi
h are not ina

essible (wemay assume that κ is a limit 
ardinal). Suppose that 〈Dα|α ∈ C〉 is ade�nable sequen
e of dense 
lasses. Given p we 
an su

essively extend p(≥
α+), α ∈ C so that {q ≤ p|q, p agree ≥ α+, q ∈ Dα} is predense ≤ p. Thereis no di�
ulty in obtaining a 
ondition at a limit stage less than κ pre
iselybe
ause 
onditions are trivial at limit points of C. Thus we have shown that
P (< κ)×P (> κ) preserves κ+ as κ-many dense 
lasses 
an be simultaneouslyredu
ed to predense subsets of size < κ. Finally P ≃ P (< κ)×P (> κ)×P (κ)and P (κ) preserves κ+ as it has size κ. 2Remark. Full 
o�nality-preservation does hold for Thin Easton for
ing, de-�ned like Long Easton for
ing but with the requirement that for ina

essible
κ, {α < κ|p(α) 6= ∅} is nonstationary in κ.Reverse Easton For
ingOur third 
lass for
ing example is a type of iteration of set for
ings �rst
onsidered by Silver. De�ne the iteration 〈P (< i)|i ≤ ∞〉 in L by: P (< 0) =
{∅}, the trivial for
ing; P (≤ i) ≃ P (< i) ∗P (i) where P (i) is (a formula for)the trivial for
ing unless i ≥ ω is regular, in whi
h 
ase P (i) is (a formulafor) the for
ing 2<i = {p : α −→ 2|α < i}, ordered by extension; for i limitwe take P (< i) = Inverse Limit 〈P (< j)|j < i〉 if i is singular and Dire
tLimit 〈P (< j)|j < i〉 if i is regular (or if i =∞).Fa
t 1. For ea
h i < ∞, P (≤ i) has a dense subordering whi
h is a set of
ardinality ≤ i+ (by 
onvention, 0+ = ω).Fa
t 2. For κ regular and in�nite, P (≤ κ) is κ+-

.52



We now state the Fa
toring Property. For α ≤ β ≤ ∞ we let P [α, β) be(a formula for) the iteration of length β−α stages de�ned just like P , ex
eptbeginning at index α and ending after β − α stages. Then P (< α) ∗ P [α, β)
onsists of pairs (p, q) where p ∈ P (< α) and q is a P (< α)-name for a
ondition in the iteration P [α, β).Fa
t 3. (Fa
toring Property) P (< β) is isomorphi
 to P (< α) ∗ P [α, β).Fa
t 4. For κ regular and in�nite, P (≤ κ) 
 P [κ + 1,∞) is κ+-
losed(des
ending sequen
es of length ≤ κ have lower bounds).These are all the fa
ts needed to establish tameness and 
o�nality-preservationfor P = Dire
t Limit 〈P (< i)|i <∞〉.Amenable Class For
ingOur fourth and �nal basi
 example of 
lass for
ing is where one has κ-distributivity for every κ. Tameness and preservation of 
o�nalities followeasily. Note that in this 
ase one adds a generi
 
lass but no new sets, soGCH preservation is trivial.A simple example is P = all fun
tions p : α −→ 2, α ∈ ORD, orderedby extension. Another is P = all 
losed sets of ordinals, ordered by endextension.We pose the question: For whi
h 
lass for
ings P de�ned in L 
an we
onstru
t P -generi
 
lasses? We will make sense of this question using Silver'stheory of indis
ernibles for L, whi
h will lead us to some unexpe
ted answers.Constru
tion of Generi
 ClassesRe
all that we imposed the Assumption that P -generi
 
lasses exist forany 
lass for
ing de�ned over a ground model 〈M,A〉. This is true when Mis 
ountable, but not in general. We now drop this Assumption and studyin detail, for the 
ase of for
ings de�ned over L, the problem of generi
 
lassexisten
e. We will see that there is a natural 
ondition, L-rigidity, sharedby all tame 
lass-generi
 extensions of L and if this property fails in V thenthere is a least inner model in whi
h it fails, L[0#]. We then use L[0#] toprovide a 
riterion for de
iding whi
h 
lass for
ings P de�ned over L havegeneri
 
lasses, by de�ning su
h a P to be relevant if it has a generi
 de�nable53



in L[0#]. Finally, we determine whi
h of the basi
 
lass-for
ing examples arerelevant, using properties of the L-indis
ernibles provided by 0#.First we must verify that if a P -generi
G exists then the model 〈M [G], A,G〉does behave as earlier des
ribed under the various hypotheses on P dis
ussedthere. This is not immediate as we in fa
t do need the Assumption to provesome of the basi
 fa
ts about 
 su
h as the fa
t that 
 and 
∗ 
oin
ide, aswell as the De�nability and Truth lemmas for 
. However note the following:Proposition 4.5. Suppose ϕ is a �rst-order property true in 〈M [G], A,G〉whenever M is 
ountable and G is P -generi
 over 〈M,A〉 for a for
ing Pde�nable over 〈M,A〉. Then ϕ is true for all su
h 〈M [G], A,G〉, without theassumption that M is 
ountable.Proof. Given an arbitrary 〈M [G], A,G〉 let 〈M̄ [Ḡ], Ā, Ḡ〉 be the transitive
ollapse of a su�
iently elementary 
ountable submodel and apply the hy-pothesis about ϕ and elementarity to 
on
lude that ϕ holds in 〈M [G], A,G〉.
2 Thus when establishing �rst-order properties of 〈M [G], A,G〉 for P -generi

G, we may in fa
t use our earlier Assumption. Consequently:Theorem 4.6. If P is one of the basi
 examples of 
lass for
ing over L (Easton,Long Easton at Su

essors, Reverse Easton, Amenable) then P is tame andpreserves both 
o�nalities and the GCH.RigidityWhi
h for
ings P de�ned in L have generi
 
lasses? Of 
ourse if V = Lthen for no nontrivial P does there exist a P -generi
 
lass, however we de
larethis hypothesis to be too restri
tive. A ne
essary 
ondition for every p ∈ Pto belong to a P -generi
, as we have seen, is that P be tame, and for anysu
h P it is 
onsistent that a P -generi
 
lass exists. However, the possibilitythat a P -generi
 
lass exist for every tame P whi
h is L-de�nable withoutparameters is ruled out by the following result.Proposition 4.7. There exist tame for
ings P0, P1 whi
h are L-de�nable wi-thout parameters su
h that if G0, G1 are P0, P1-generi
 over L, respe
tively,then 〈L[G0, G1], G0, G1〉 is not a model of ZF .54



Proof. For any ordinal α, let n(α) be the least n su
h that Lα is not a modelof Σn-repla
ement, if su
h an n exists. Let S0 = {α|n(α) exists and is even}.
P0 
onsists of all 
losed p su
h that p ⊆ S0, ordered by p ≤ q i� q is an initialsegment of p.Note that S0 is unbounded in ORD: Given α, let β be least su
h that
β > α and Lβ � Σ1-Repla
ement. Then n(β) = 2 so β ∈ S0. If G0 ⊆ P0is P0-generi
 over L then ∪G0 is therefore a 
losed unbounded sub
lass ofORD 
ontained in S0. To show that P0 is tame, it su�
es to show that it is
κ-distributive for every L-regular κ : If 〈Di|i < κ〉 is an L-de�nable sequen
eof 
lasses dense on P0 and p ∈ P0 then 
hoose n odd so that 〈Di|i < κ〉 is
Σn de�nable and 
hoose 〈αi|i < κ〉 to be �rst κ-many α su
h that Lα is
Σn-elementary in L and κ, p, x ∈ Lα where x is the de�ning parameter for
〈Di|i < κ〉. We 
an de�ne p ≥ p0 ≥ p1 ≥ . . . so that pi+1 meets Di andmax(pi) = αi, using the Σn-elementarity of Lαi

in L. As n(αi) = n + 1 and
n+ 1 is even, we may de�ne pλ to be ∪{pi|i < λ} ∪ {αλ} for limit λ ≤ κ andwe see that q = pκ ≤ p meets ea
h Di.Now de�ne P1 in the same way, but using S1 = {α|n(α) is de�ned andodd}. Then P1 is also tame yet if G0, G1 are P0, P1-generi
 over L (respe
-tively) then ∪G0,∪G1 are disjoint CUB sub
lasses of ORD. 2So we need a 
riterion for 
hoosing L-de�nable for
ings for whi
h we 
anhave a generi
. Our approa
h is to isolate a �property of trans
enden
e� (#)su
h that:(a) In tame 
lass-generi
 extensions of L, (#) fails.(b) If (#) is true in V then there is a least inner model L(#) satisfying (#).Then our 
riterion for generi
 
lass existen
e is: P has a generi
 i� it hasone de�nable over L(#).De�nition. An amenable 〈L,A〉 is rigid if there is no nontrivial elementaryembedding 〈L,A〉 −→ 〈L,A〉. L is rigid if 〈L, ∅〉 is rigid.We shall take (#) to be: L is not rigid. First we demonstrate property(b) above, i.e., that there is a least model in whi
h L is not rigid (if there isone at all).Theorem 4.8 If L is not rigid then there exists a CUB 
lass C of ordinalswhi
h are L-indis
ernible: If ϕ is an n-ary formula, α1 . . . αn and β1 . . . βnare in
reasing n-tuples from C then L � ϕ(α1 . . . αn)←→ ϕ(β1 . . . βn).55



Proof. We need a lemma.Lemma 4.9. Suppose there exists j : L −→ L. Then there exists su
h a
j whi
h is de�nable (with parameters) and su
h that every 
ardinal λ of
L-
o�nality greater than κ satisfying λ̄ < λ −→ Card (λ̄κ)L < λ is a �xedpoint of j, where κ = 
rit (j) = least α su
h that j(α) 6= α. (�
rit � standsfor �
riti
al point�.)Proof of Lemma. We use the ultrapower 
onstru
tion. De�ne an ultra�lter Uon P(κ)∩L by: X ∈ U i� κ ∈ j(X). Then there is an elementary embedding
k : L −→ Ult (L,U) where Ult (L,U) is the ultrapower Lκ/U de�ned usingfun
tions f : κ −→ L whi
h belong to L. Thus an element of Ult (L,U) is
[f ] = {g : κ −→ L|g ∈ L and for some X ∈ U , α ∈ X −→ g(α) = f(α)},with E = ∈-relation of Ult (L,U) de�ned in the natural way: [f ]E[g] i�
{α|f(α) ∈ g(α)} ∈ U .The map [f ] 7−→ j(f)(κ) gives an elementary embedding from Ult (L,U)into L and hen
e Ult (L,U) is well-founded and isomorphi
 to L. If h :Ult (L,U) ≃ L then j∗ = h ◦ k : L −→ L is de�nable with parameters κ, U .If λ has L-
o�nality greater than κ then k (and hen
e j∗) is 
ontinuous at λsin
e any 
onstru
tible f : κ −→ λ is bounded by the 
onstant fun
tion cλ̄with value λ̄ for some λ̄ < λ (hen
e [f ]E[cλ] −→ [f ]E[cλ̄] for some λ̄ < λ).But if [f ]E[cλ̄] then {[g]|[g]E[f ]} has size at most Card (λ̄κ)L, and if this issmaller than λ then j∗[λ] ⊆ λ and hen
e by 
ontinuity j∗(λ) = λ.If L is not rigid then there is j : L −→ L with 
riti
al point κ su
h thatevery limit 
ardinal of 
o�nality > κ is a �xed point of j. It follows that if
F = {α|α a limit 
ardinal of 
o�nality > κ} then κ /∈ Hull(κ∪F ) where Hulldenotes the Skolem hull in L.For any 
lass of ordinals G let G∗ denote {α ∈ G|α = ordertype (α∩G)}.Then de�ne indu
tively: F0 = F , Fα+1 = (Fα)

∗, Fλ = (
⋂
{Fα|α < λ})∗ forlimit λ. For any α,Hα denotes Hull(κ ∪ Fα). And 〈κα|α ∈ ORD〉 is de�nedby: κ0 = κ, κα+1 = min(Hα − κ), κλ = ∪{κα|α < λ} for limit λ.Claim 1. For every α, κα < κα+1.Proof. We may assume that α is not 0. As κα+1 belongs to Hull(κ ∪ Fα)it is a �xed point of the isomorphism L ≃ H<α = Hull(κ ∪ ⋂
{Fβ|β < α}).But H<α ∩ [κ, κα) = ∅, so κα is not a �xed point of this isomorphism, using

κ < κα. 56



Claim 2. Let παβ:L ≃ Hull(κα∪Fβ). Then παβ �xes κγ when γ < α or when
γ is a su

essor ordinal > β + 1. Also παβ(κα) = κβ+1.Proof. γ < α −→ κγ < κα, so 
learly παβ �xes κγ. If β + 1 < γ, γ su

essorthen κγ ∈ Hull(κ ∪ Fγ−1), so κγ is a �xed point of παβ .As κβ+1 ∈ Hull(κα∪Fβ) = H , we have κα ≤ παβ(κα) ≤ κβ+1. Conversely,suppose that κα ≤ δ < κβ+1, δ ∈ H ; we derive a 
ontradi
tion. Write
δ = t(~ξ, ~η) where the 
omponents of ~ξ are less than κα and the 
omponentsof ~η belong to Fβ. Choose ᾱ+1 ≤ α least so that the 
omponents of ~ξ are lessthan κᾱ+1. Then L � ∃~ξ with 
omponents < κᾱ+1(κᾱ+1 ≤ t(~ξ, ~η) < κβ+1).Let π:L ≃ Hull(κ ∪ Fᾱ). Then π(κ) = κᾱ+1, π(~η) = η, π(κβ+1) = κβ+1. So
L � ∃~ξ with 
omponents < κ(κ ≤ t(~ξ, ~η) < κβ+1), 
ontradi
ting the de�ntionof κβ+1.Now for any two in
reasing n-tuples α1 . . . αn and β1 . . . βn with αn < β1we 
an obtain π:L −→ L su
h that π(καi

) = κβi+1 for all i, by taking
πα1β1

◦ . . . ◦ παnβn. This implies that C = {κα|α ∈ ORD} is a 
lass of
L-indis
ernibles. 2Now we introdu
e 0#. As before, Hull denotes Skolem hull in L.Theorem 4.10. Suppose L is not rigid. Then there is a unique CUB 
lass sensethat L = Hull(I). Moreover I is unbounded in every un
ountable 
ardinaland if 0# = First-Order theory of 〈L,∈, i1, i2, . . .〉 (where the �rst ω elements
i1, i2, . . . of I are introdu
ed as 
onstants) then we have the following:(a) 0# ∈ L[I], I is ∆1(L[0#]) in the parameter 0# and I is unbounded in αwhenever Lα[0#] � Σ1 repla
ement.(b) 0#, viewed as a real, is the unique solution to a Π1

2 formula (i.e., a formulaof the form ∀x∃yψ, where x, y vary over reals and ψ is arithmeti
al).(
) If f : I −→ I is in
reasing, f 6= identity then there is a unique j : L −→ Lextending f with 
riti
al point in I, and every j : L −→ L is of this form.(d) If 〈L,A〉 is amenable then A is ∆1(L[0#]), 〈L,A〉 is not rigid and a �nalsegment of I is a 
lass of 〈L,A〉-indis
ernibles.Remarks. (i) As I is 
losed and is unbounded in every un
ountable 
ardinalit follows that every un
ountable 
ardinal belongs to I and 0# = First-Order theory of 〈L,∈,ℵ1,ℵ2, . . .〉. (ii) The Σ1
2-absoluteness of L implies thatthe unique solution to a Σ1

2 formula is 
onstru
tible; so in a sense (b) is57



best possible. (iii) I is a 
lass of strong indis
ernibles: If ~i,~j are in
reasingtuples from I of the same length and x < min(~i), min(~j) then for any ϕ,
L � ϕ(x,~i) ←→ ϕ(x,~j). In fa
t the proof below shows that any unbounded
lass I of L-indis
ernibles su
h that I ∩ Lim I 6= ∅ is ne
essarily a 
lass ofstrong indis
ernibles.Proof. There exists a CUB 
lass C of L-indis
ernibles. Let π : Hull(C) ≃ Land we see that I = π[C] is a CUB 
lass of generating L-indis
ernibles.Note that α ∈ I −→ Lα ≺ L and therefore L = Σ1-Hull(I). For any Σ1

ϕ(x, y1 . . . yn) let tϕ be the term µxϕ(x, y1 . . . yn), intended to name the L-least x su
h that L � ϕ(x, y1 . . . yn), if it exists, and 0 otherwise. Then
L is des
ribed as the Ehrenfeu
ht-Mostowski model 
onsisting of all terms
tϕ(j1 . . . jn) (with j1 . . . jn ∈ I substituting for the variables y1 . . . yn), withterms identi�ed as di
tated by Thy〈L,∈, i1, i2, . . .〉 = First-Order theory of
〈L,∈, i1, i2, . . .〉. Thus I is uniquely determined by Thy 〈L,∈, i1, i2, . . .〉. Butif I∗ is another CUB 
lass of generating L-indis
ernibles we get I ∩I∗ in�nite(and in fa
t CUB), hen
e Thy〈L,∈, i1, i2, . . .〉 = Thy〈L,∈, i∗1, i∗2, . . .〉. So Iis unique. Also note that I is a 
lass of strong L-indis
ernibles in the sensethat x < min(~i),min(~j), ~i and ~j of the same length from I implies that
L � ϕ(x,~i) ←→ ϕ(x,~j) for any formula ϕ; if not then we get ~i < min(~j)with {x < min(~i)|L � ϕ(x,~i)} 6= {x < min(~i)|L � ϕ(x,~j)} and min(~i) alimit point of I. But then we 
an get ~i < ~j0 < ~j1 < . . . of length ORD with
α < β −→ {x < i0|L � ϕ(x,~jα)} 6= {x < i0|L � ϕ(x,~jβ)}; this is absurdbe
ause there are only set-many 
hoi
es for subsets of i0.It follows from the strong indis
ernibility of I that t(~i,~j) < min(~j) im-plies t(~i,~j) < I-su

essor to max(~i). Hen
e for all i ∈ I ∪ {0}, Hull(i ∪
{i, j1, j2 . . .}) ⊇ Li∗ where i < i∗ ≤ j1 < j2 < . . . are ω-many elements of I,
i∗ = I-su

essor to i. So Card (Li∗) = Card (i) and it follows that un
oun-table 
ardinals belong to Lim I. Moreover if i ∈ Lim I then Li = Hull(I ∩ i)and Li is isomorphi
 to the natural Ehrenfeu
ht-Mostowski model built from
I ∩ i, using 0# = Thy 〈L,∈, i1, i2, . . .〉 to determine when to identify twoterms tϕ0

(~i0), tϕ1
(~i1). We now verify (a)�(d).(a) Clearly 0# ∈ L[I] as 0# = Thy 〈Liω ,∈, i1, i2, . . .〉 where in = nthindis
ernible. If α is 0#-admissible (i.e., Lα[0#] � Σ1 repla
ement) then forany limit λ < α, Liλ ≃ Ehrenfeu
ht-Mostowski modelM(0#, λ) built from λindis
ernibles and therefore belongs to Lα[0#], as Σ1-repla
ement gives us theMostowski 
ollapse. So α = iα = αth indis
ernible and λ 7−→ 〈Liλ , {iβ|β <

λ}〉 is ∆1(Lα[0
#]). Hen
e I is ∆1(L[0#]) (with parameter 0#).58



(b) 0# = Thy 〈L,∈, i1, i2, . . .〉 has the property that for every 
ountablelimit λ,M(0#, λ) is well-founded and if π : M(0#, λ) ≃ Liλ , π(βth indis
erni-ble inM(0#, λ)) = iβ then {iβ|β < λ} is CUB in iλ. This is a Π1
2 property asit says ∀ relation R on ω (R a well-ordering −→ M(0#, <R) is well-foundedand is a model of ϕ) where ϕ is �rst-order. But if 0∗ obeys this property then

M(0∗,ORD) ≃ L and 0∗ = Thy 〈L,∈, i∗1, i∗2 . . .〉 where I∗ = {i∗β|β ∈ ORD} isa CUB 
lass of generating L-indis
ernibles. We have seen that I = I∗ andso 0∗ = 0#.(
) If f : I −→ I is in
reasing, f 6= identity then de�ne j : L −→ L by
j (tϕ(j1 . . . jn)) = tϕ(f(j1) . . . f(jn)). This is well-de�ned sin
e I is a 
lass of
L-indis
ernibles. j must be the identity on i = the 
riti
al point of f = theleast i, f(i) > i, as tϕ(j1 . . . jn, k1 . . . km) = tϕ(j1 . . . jn, f(k1) . . . f(km)) when
tϕ(j1 . . . jn, k1, . . . km) < k1. So the 
riti
al point of j = the 
riti
al point of
f belongs to I. Clearly j is unique, given f . If j : L −→ L is arbitrary then
α = the 
riti
al point of j belongs to I, as α = 
riti
al point of j∗ where
j∗(i) = i for unboundedly many i ∈ I and thus if α /∈ I we get α = tϕ(x,~i),
x < α <~i, j∗(~i) = ~i and thus j∗(α) = α, 
ontradi
ting α = 
riti
al point of
j∗. Now note that if i ∈ I then j(i) is the 
riti
al point of some j∗ : L −→ Las i /∈ Hull(i∪(I−(i+1))) implies j(i) /∈ Hull(j(i)∪J) where J = j[I−(i+1)]so k : L ≃ Hull(j(i) ∪ J) has 
riti
al point j(i). So j(i) ∈ I.(d) If 〈L,A〉 is amenable then for ea
h i ∈ I we may write A ∩ i =

tϕi
(~ji, i, ~ki) where ~ji < i < ~ki are all from I. By Fodor's Theorem (ϕi,~ji)is 
onstant on an unbounded sub
lass of I and hen
e by indis
ernibility wemay assume that A ∩ i = tϕ(~j, i,~ki) for all i ∈ I, i > max(~j) where the
hoi
e of ~ki ∈ I − (i + 1) does not matter. Thus I − (max(~j) + 1) is a
lass of 〈L,A〉-indis
ernibles and A is ∆1(L[0#]) in parameters ~j, 0#. We get

j : 〈L,A〉 −→ 〈L,A〉 by shifting I above ~j. 2In 
ase the 
on
lusion of this Theorem holds (i.e. in 
ase L is not rigid)we say that �0# exists� and refer to I as the Silver Indis
ernibles. Note thatif L is not rigid then L[0#] is the smallest inner model in whi
h L is not rigid.The next theorem shows that L is rigid in its tame 
lass-generi
 extensi-ons.Theorem 4.11. Suppose that G is P -generi
 over 〈L,A〉 and P is tame. Then
L[G] |= 0# does not exist. 59



Proof. Suppose p0 ∈ P, p0 
 I = Silver indis
ernibles is unbounded and i < jin I −→ Li ≺ Lj. Suppose that p ≤ p0, p 
 α̂ ∈ I. Then Lα ≺ L as this istrue in any P -generi
 extension 〈L[G], A,G〉, p ∈ G. (By Löwenheim-Skolemwe 
an assume that su
h a G exists for the sake of this argument.) Thusan L-Satisfa
tion predi
ate is de�nable over 〈L,A〉 as L |= ϕ(x) i� for some
p ∈ P below p0, some α with x ∈ Lα, p 
 ϕ(x̂) is true in Lα. This is a
ontradi
tion if A = ∅, for then L-satisfa
tion would be L-de�nable. Butnote that for any A su
h that 〈L,A〉 is amenable we 
an apply the sameargument, using the fa
t that 〈Lα, A∩ Lα〉 ≺ 〈L,A〉 for α in a �nal segmentof I.The previous result was proved independently by A. Beller.The most important su�
ient 
ondition for the existen
e of 0# is expres-sed by Jensen's Covering Theorem, to whi
h we turn next. A set X is 
overedin L if there is a 
onstru
tible Y su
h that X ⊆ Y , Card Y = Card X.Covering Theorem. Suppose there exists an un
ountable set of ordinals whi
his not 
overed in L. Then 0# exists.Using this result we 
an show:Theorem 4.12. Ea
h of the following is equivalent to the existen
e of 0#:(a) L is not rigid.(b) Some un
ountable set of ordinals is not a subset of a 
onstru
tible set ofthe same 
ardinality.(
) Some singular 
ardinal is regular in L.(d) κ+ 6= (κ+)L for some singular 
ardinal κ.(e) Every 
onstru
tible subset of ω1 either 
ontains or is disjoint from a
losed, unbounded subset of ω1.(f) There exists j : Lα −→ Lβ , 
rit (j) = κ, κ+ ≤ α.(g) There exists j : Lα −→ Lβ , 
rit (j) = κ, (κ+)L ≤ α, α ≥ ω2.Proof. It is straightforward to show that these all follow from the existen
e of
0#. Also (a) implies the existen
e of 0# by an earlier result. Conditions (
),(d) ea
h easily imply (b), and we get 0# from (b) by the Covering Theorem.Condition (e) implies (a), sin
e L −→ L ≃ Ult (L,U), where U 
onsists ofall 
onstru
tible subsets of ω1 
ontaining a 
losed unbounded subset. To seethat (f) implies the existen
e of 0#, de�ne an ultra�lter U on 
onstru
tible60



subsets of κ by: X ∈ U i� κ ∈ j(X). Then Ult (L,U) is well-founded, for ifnot then by Löwenheim-Skolem there would be an in�nite des
ending 
hainin Ult (Lκ+ , U) whi
h 
ontradi
ts κ+ ≤ α.Finally we show that (g) implies the existen
e of 0#. De�ne U as beforeby: X ∈ U i� κ ∈ j(X). First suppose that κ is at least ω2. We shallargue that U is 
ountably 
omplete, i.e. that if 〈Xn|n ∈ ω〉 belong to U then
∩{Xn|n ∈ ω} is nonempty. (This gives 0# as it implies that Ult (L,U) iswell-founded.) By the Covering Theorem, there is F ∈ L of 
ardinality ω1su
h that Xn ∈ F for ea
h n. Then as we have assumed that κ ≥ ω2, F has
L-
ardinality less than κ. We may assume that F is a subset of P(κ) ∩ L,and hen
e as α is an L-
ardinal, F belongs to Lα and there is a bije
tion
h : F ←→ γ for some γ < κ, h ∈ Lα. But then F ∗ = {X ∈ F |κ ∈ j(X)}belongs to Lα as X ∈ F ∗ ←→ κ ∈ j(h−1)(h(X)) and F ∗ has nonemptyinterse
tion as j(F ∗) = Range (j ↾ F ∗) and κ ∈ ∩j(F ∗). Thus {Xn|n ∈ ω}has nonempty interse
tion sin
e it is a subset of F ∗. If κ is less than ω2 thenwe have α ≥ ω2 ≥ κ+ so we have a spe
ial 
ase of (f). 2The author does not know if �ω2� 
an be repla
ed by �ω1� in (g) of theprevious theorem.Relevant For
ingWe showed that L is rigid in its tame 
lass generi
 extensions and that if
L is not rigid then there is a least inner model L[0#] in whi
h L is not rigid.We now use these fa
ts to provide a 
riterion for generi
 
lass existen
e for
lass for
ings over L.De�nition. A for
ing P de�ned over a ground model 〈L,A〉 is relevant ifthere is a G P -generi
 over 〈L,A〉 whi
h is de�nable (with parameters) over
L[0#]. P is totally relevant if for ea
h p ∈ P the same is true for P (≤ p) = Prestri
ted to 
onditions extending p.Assume that 0# exists. Then any L[0#]-
ountable P ∈ L is totally re-levant, as there are only 
ountably many 
onstru
tible subsets of P (usingthe fa
t that ω1 is ina

essible in L). Note that this in
ludes the 
ase of anyfor
ing P ∈ L de�nable in L without parameters.The situation is far less 
lear for un
ountable P ∈ L. The next resulttreats the 
ase of κ-Cohen for
ing. 61



Proposition 4.13. Suppose κ is L-regular and let P (κ) denote κ-Cohen for
ingin L: Conditions are 
onstru
tible p : α −→ 2, α < κ and p ≤ q i� p extends
q.(a) If κ has 
o�nality ω in L[0#] then P (κ) is totally relevant.(b) If κ has un
ountable 
o�nality in L[0#] then P (κ) is not relevant.Proof. Let jn denote the �rst n Silver indis
ernibles ≥ κ.(a) We use the fa
t that P (κ) is κ-distributive in L. Let κ0 < κ1 < . . .be an ω-sequen
e in L[0#] 
o�nal in κ. Then any D ⊆ P (κ) in L belongs toHull(κn∪jn) for some n, where Hull denotes Skolem hull in L. As Hull(κn∪jn)is 
onstru
tible of L-
ardinality < κ we 
an use the κ-distributivity of P (κ)to 
hoose p0 ≥ p1 ≥ . . . su

essively below any p ∈ P (κ) to meet all dense
D ⊆ P (κ) in L.(b) Note that in this 
ase κ ∈ Lim I, as otherwise κ = ∪{κn|n ∈ ω}where κn = ∪(κ ∩ Hull(κ̄ + 1 ∪ jn)) < κ, κ̄ = max(I ∩ κ), and hen
e κ has
L[0#]-
o�nality ω. Suppose G ⊆ P (κ) were P (κ)-generi
 over L. For any
p ∈ P (κ) let α(p) denote the domain of p. De�ne p0 ≥ p1 ≥ . . . in G sothat α(pn+1) ∈ I and pn+1 meets all dense D ⊆ P (κ) in Hull(α(pn) ∪ jn).Then p = ∪{pn|n ∈ ω} meets all dense D ⊆ P (κ) in Hull(α ∪ j) where
α = ∪{α(pn)|n ∈ ω} ∈ I, j = ∪{jn|n ∈ ω}. But then p is P (α)-generi
 over
L, as every 
onstru
tible dense D̄ ⊆ P (α) is of the form D ∩ P (α) for some
D as above. So p is not 
onstru
tible, 
ontradi
ting p ∈ G. 2As a 
onsequen
e we see that the basi
 
lass for
ing examples of Eastonand Long Easton for
ing are not relevant. However, we 
an res
ue thesefor
ings by restri
ting to su

essor 
ardinals, thereby not adding κ-Cohensets for κ of un
ountable L[0#]-
o�nality. Easton for
ing at Su

essors isde�ned as follows: Conditions are 
onstru
tible p : α(p) −→ L where for
α < α(p), p(α) = ∅ unless α is a su

essor 
ardinal of L, in whi
h 
ase
p(α) ∈ α-Cohen for
ing; we also require that if α is L-ina

essible then
{β < α|p(β) 6= ∅} is bounded in α. Extension is de�ned in the naturalway: p ≤ q i� p(α) extends q(α) for ea
h α < α(q). Long Easton for
ingat Su

essors is obtained from Easton for
ing at Su

essors by dropping thesupport 
ondition.Theorem 4.14. Let P be Easton for
ing at Su

essors, the basi
 exampleof Reverse Easton for
ing or Long Easton for
ing at Su

essors. Then P istotally relevant. 62



Indis
ernible PreservationThough we have shown Easton at Su

essors and Reverse Easton to betotally relevant, we 
an further ask for a generi
 
lass that preserves indis
er-nibles. This is important in the 
ontext of Jensen 
oding, as we 
an only
ode a 
lass by a real (in L[0#]) if the 
lass preserves (a periodi
 sub
lass ofthe) indis
ernibles.It is too mu
h to ask that every 
ondition p be in
luded in a generi
 
lassthat preserves indis
ernibles, as p itself may not (only 2ℵ0 sub
lasses of L
an).De�nition. A 
lass A ⊆ L preserves indis
ernibles if I is a 
lass of indis
er-nibles for the stru
ture 〈L[A], A〉.Theorem 4.15. For ea
h of Easton at Su

essors, Reverse Easton, Thin Ea-ston at Su

essors, Coherent Easton at Su

essors and Long Easton at Su
-
essors there is a generi
 
lass G that preserves indis
ernibles.The Coding TheoremThe 
lass for
ings dis
ussed in the previous two 
hapters provide examplesof set-theoreti
 universes whi
h neither 
ontain 0# nor are obtainable byfor
ing over L by the traditional method of for
ing, with sets of 
onditions.Noti
e however that these universes are �lo
ally set-generi
� over L: Ea
h oftheir sets belongs to an intermediate set-generi
 extension of L.Solovay posed three questions the solutions to whi
h require use of a newkind of for
ing, where sets are produ
ed using a 
lass of for
ing 
onditions.Jensen developed this te
hnique to prove his Coding Theorem, whi
h saysthat any universe 
an be 
lass-generi
ally extended to one of the form L[R], Ra real. We now introdu
e the Solovay questions and prove a spe
ial 
ase of theCoding Theorem, in whi
h we assume that 0# is not present in the universeto be 
oded.Three Questions of SolovaySolovay's three problems ea
h demand the existen
e of a real that neither
onstru
ts 0#, nor is in a set-generi
 extension of L.63



De�nition. If x, y are sets of ordinals then we write x ≤L y for x ∈ L[y] and
x <L y for x ≤L y, y �L x.The Generi
ity Problem. Does there exist a real R <L 0# su
h that R doesnot belong to a set-generi
 extension of L?It was to a�rmatively answer this question that Jensen proved his CodingTheorem. Roughly speaking he showed that if G is generi
 for Easton for
ingat Su

essors and G preserves indis
ernibles then there is a real R <L 0#,obtained by 
lass for
ing over 〈L[G], G〉, su
h that L[G] ⊆ L[R] and G isde�nable over L[R]. Then R does not belong to a set-generi
 extension of Las L[G] is not in
luded in any set-generi
 extension of L.Solovay's se
ond problem 
on
erns de�nability of reals.De�nition. R is an Absolute Singleton if for some formula ϕ,R is the uniquesolution to ϕ in every inner model 
ontaining R.Shoen�eld's Absoluteness Theorem states that if ϕ is Π1

2 (i.e., of the form
∀R∃Sψ, ψ arithmeti
al) then ϕ(R) ←→ M � ϕ(R) where M is any innermodel 
ontaining R. Thus any Π1

2-Singleton (i.e., the unique solution to a
Π1

2 formula) is an Absolute Singleton; 0# is an example. Also 0 is triviallyan example. Solovay asked if there are any examples lying stri
tly betweenthese two.The Π1
2-Singleton Problem. Does there exists a real R, 0 <L R <L 0# su
hthat R is a Π1

2-Singleton?Note that it follows from the Covering Theorem (relative to R) that if
R <L 0# then R# ∈ L[0#] where R# is de�ned relative to L[R] the waywe de�ned 0# relative to L. In parti
ular Lℵ1

[R] is elementary in L[R] andtherefore if R is in a P -generi
 extension of L, P ∈ L then there is su
h a Pin Lℵ1
. As ℵ1 is ina

essible in L, there are only 
ountably-many subsets of

P in L and therefore we 
an build a P -generi
 
ontaining any 
ondition in P .So we 
on
lude that if R is a non
onstru
tible real in a P -generi
 extensionof L then R 
annot be a Π1
2-Singleton, as there must be other P -generi
extensions with reals R′ 6= R satisfying any Π1

2 formula satis�ed by R. Thisis why the Π1
2-Singleton Problem requires Jensen's method: An a�rmativeanswer to the Π1

2-Singleton Problem implies an a�rmative answer to theGeneri
ity Problem. 64



Solovay's third problem 
on
erns Admissibility Spe
tra. Let T be asubtheory of ZF and R a real. The T -spe
trum of R, ΛT (R), is the 
lass ofall ordinals α su
h that Lα[R] � T . A general problem is to 
hara
terize thepossible T -spe
tra of reals for various theories T . An important spe
ial 
aseis when T = T0 = (ZF without the Power Set Axiom and with Repla
ementrestri
ted to Σ1 formulas). We may refer to T0 as �admissibility theory,� as anordinal α is R-admissible if and only if it is ω or belongs to the T0-spe
trumof R. We refer to the T0- spe
trum of R as the admissibility spe
trum of Rand denote it by Λ(R).There are some basi
 fa
ts whi
h limit the possibilities for Λ(R): First, if
R belongs to a set-generi
 extension of L then Λ(R) 
ontains Λ− β for someordinal β, where Λ = Λ(0). This is be
ause if α ∈ Λ, P ∈ Lα then Lα[G] � T0for P -generi
 G. Se
ond, if 0# ≤L R then Λ(R) − β ⊆ L-ina

essibles forsome β. This is be
ause if 0# ∈ Lβ[R] then every α in Λ(R)− β is in Λ(0#)and hen
e is a Silver indis
ernible.Thus to get a nontrivial admissibility spe
trum for R without 0# we needJensen's methods. An ordinal is re
ursively ina

essible if it is admissibleand also the limit of admissibles.The Admissibility Spe
trum Problem. Does there exist a real R ≤L 0# su
hthat Λ(R) = the re
ursively ina

essible ordinals?Of 
ourse we must in fa
t have R <L 0# as otherwise Λ(R) is too small.The Coding Theorem without 0#We prove the following result of Jensen.Theorem 4.16. Suppose that A ⊆ ORD and 〈L[A], A〉 is a model of ZFC +GCH + 0# does not exist. Then there is an 〈L[A], A〉-de�nable 
lass for
ing
P su
h that if G ⊆ P is P -generi
 over 〈L[A], A〉:(a) 〈L[A,G], A,G〉 is a model of ZFC + GCH.(b) L[A,G] = L[R] for some real R and A,G are de�nable over L[R] fromthe parameter R.(
) L[A] and L[R] have the same 
o�nalities.The proof makes use of the following 
onsequen
e of the Covering Theo-rem. 65



Fa
t. Assume that 0# does not exist. If j : Lα −→ Lβ is Σ1-elementary,
α ≥ ω2 and κ = 
riti
al point of j then α < (κ+)L.We make the following assumption about the predi
ate A: If Hα, α anin�nite L[A]-
ardinal, denotes {x ∈ L[A] | transitive 
losure (x) has L[A]-
ardinality < α} then we assume that Hα = Lα[A]. This is easily arrangedusing the fa
t that the GCH holds in L[A].The basi
 idea of the proof is simple. Let Card denote all in�nite L[A]-
ardinals. Also Card + = {α+ | α ∈ Card } and Card ′ = all un
ountablelimit 
ardinals. If a ⊆ α++, α ∈ Card we 
an attempt to �
ode� a by b ⊆ α+as follows. We asso
iate a subset bξ of α+ to ea
h ξ < α++ and design b sothat ξ ∈ a i� b, bξ are almost disjoint, i.e. have interse
tion bounded in α+.There is a natural for
ing Ra for doing this, invented by Solovay. A 
onditionin Ra is a pair (p, p̄) where p is a bounded subset of α+ and p̄ 
onsists ofat most α-many bξ's with ξ ∈ a. When extending (p, p̄) to (q, q̄), q mustend-extend p, q̄ must 
ontain p̄ and q − p must be disjoint from all bξ in p̄.Of 
ourse the for
ing Ra does not really 
ode a by a subset of α+ withoutsome assumptions about the bξ's. For example ea
h bξ should be almostdisjoint from the union of α-many other bξ's; this is easy to arrange. Moreseriously, we need to know how to �nd bξ in L[a ∩ ξ] in a uniform way, sothat a 
an be indu
tively re
overed from our generi
 b ⊂ α+. The latter ispossible only if ξ < α++ −→ L[a ∩ ξ] � Card (ξ) ≤ α+. If this fails then wemust �rst �reshape� a to make it true, by for
ing with bounded subsets of
α++ whi
h do have this property up to their supremum.It is not 
lear that the for
ing for the purpose of reshaping a is 
ardinal-preserving unless we 
an apply it in L[c], where c is an already-reshapedsubset of α+++. Jensen's solution to this problem is to both reshape A∩ α+and 
ode A∩ α+ into a subset of α, for all α simultaneously. Then in e�e
t,the for
ing to reshape A∩α+ takes pla
e in L[c] where c is a reshaped subsetof α++ that 
odes L[A].As suggested in the previous paragraph there is a for
ing analogous to Rafor 
oding a reshaped a ⊆ α+ into a subset of α, for α a limit 
ardinal. Thusif we 
ombine all of these for
ings we obtain a single for
ing P for 
oding Aby a real. A 
ondition is of the form p = 〈(pα, p

∗
α) | α ∈ Card , α ≤ α(p)〉where pα is a (reshaped) bounded subset of α+, p∗α is the �restraint� imposedon pα to ensure that pα+ is 
oded, and where for α ∈ Card ′ we require that

〈pᾱ | ᾱ ∈ Card ∩ α〉 
ode pα. 66



Proof of Theorem 4.16. Let α belong to Card.De�nition. (Strings) Sα 
onsists of all s : [α, |s|) −→ 2, α ≤ |s| < α+ su
hthat |s| is a multiple of α and for all η ≤ |s|, Lδ[A∩ α, s ↾ η] � Card (η) ≤ αfor some δ < (η+)L ∪ ω2.Thus for α equal to ω or ω1, elements of Sα are �reshaped� in the naturalsense, but for α ≥ ω2 we insist that s ∈ Sα be �qui
kly reshaped� in that
η ≤ |s| be 
ollapsed relative to A∩ α, s ↾ η before the next L-
ardinal. Thiswill be important when we use ∼ 0# to establish 
ardinal-preservation, viathe above-mentioned Fa
t. The requirement that |s| be a multiple of α isa te
hni
al 
onvenien
e. Elements of Sα are 
alled �strings�. Note that weallow the empty string ∅α ∈ Sα, where |∅α| = α. For s, t in Sα we write s < tfor s ≤ t, s 6= t.De�nition. (Coding Stru
tures) For s ∈ Sα de�ne µ<s, µs indu
tively by:
µ<∅α = α, µ<s = ∪{µt | t < s} for s 6= ∅α and µs = least limit of limitordinals µ > µ<s su
h that Lµ[A ∩ α, s] � s ∈ Sα. And As = Lµs [A ∩ α, s].Thus by de�nition, when α ≥ ω2 there is δ < µs su
h that Lδ[A ∩ α, s] �Card (|s|) ≤ α and Lµs � Card (δ) ≤ |s|. The requirement �limit of limitordinals� on µs is a te
hni
al 
onvenien
e.De�nition. (Coding Apparatus) For α > ω, s ∈ Sα, i < α let Hs(i) = Σ1Skolem hull of i ∪ {A ∩ α, s} in As and f s(i) = ordertype (Hs(i) ∩ ORD).For α ∈ Card +, bs = Range (f s ↾ Bs) where Bs = {i < α | i = Hs(i) ∩ α}.Note that if s < t belong to Sα then Range f s, Range f t are almostdisjoint in the sense that their interse
tion is bounded in α. The 
hoi
e of
f s ↾ Bs rather than f s is a te
hni
al 
onvenien
e.Using the above we will 
onstru
t a tame, 
o�nality-preserving for
ing
P for 
oding 〈L[A], A〉 by a subset Gω of ω1 whi
h is reshaped in the sensethat proper initial segments of (the 
hara
teristi
 fun
tion of) Gω belong to
Sω. Then as Gω 
an be 
oded into a real by a 


 for
ing of size ω1 by theSolovay te
hnique mentioned earlier, the theorem follows.De�nition. (A Partition of the Ordinals) Let B,C,D,E denote the 
lassesof ordinals 
ongruent to 0, 1, 2, 3 mod 4, respe
tively. For any ordinal α, αBdenotes the αth element of B, when B is listed in in
reasing order and forany set of ordinals X, XB denotes {αB | α ∈ X}. Similarly for C,D,E.67



De�nition. (The Su

essor Coding) Suppose α ∈ Card and s ∈ Sα+ . A
ondition in Rs is a pair (t, t∗) where t ∈ Sα, t∗ ⊆ {bs�η | η ∈ [α+, |s|)} ∪ |t|,Card (t∗) ≤ α. Extension of 
onditions is de�ned by: (t0, t
∗
0) ≤ (t1, t

∗
1) i�

t0 ⊆ t1, t∗1 ⊆ t∗0 and:1. |t1| ≤ γB < |t0|, γ ∈ b
s�η ∈ t∗1 −→ t0(γ

B) = 0 or s(η).2. |t1| ≤ γC < |t0|, γ = 〈γ0, γ1〉, γ0 ∈ A ∩ t
∗
1 −→ t0(γ

C) = 0.In (b) above, 〈·, ·〉 is an L-de�nable pairing fun
tion on ORD so thatCard (〈γ0, γ1〉) = Card γ0 + Card γ1 in L for in�nite γ0, γ1. An Rs-generi
over As is determined by a fun
tion T : α+ −→ 2 su
h that s(η) = 0 i�
T (γB) = 0 for su�
iently large γ ∈ bs�η and su
h that for γ0 < α+ : γ0 ∈ Ai� T (〈γ0, γ1〉

C) = 0 for su�
iently large γ1 < α+.Now we 
ome to the de�nition of the limit 
oding, whi
h in
orporates theidea of �
oding delays.� Suppose s ∈ Sα, α ∈ Card ′ and p = 〈(pβ, p
∗
β) | β ∈Card ∩ α〉 where pβ ∈ Sβ for ea
h β ∈ Card ∩ α. A natural de�nition of�p 
odes s� would be: For η < |s|, pβ(f s�η(β)) = s(η) for su�
iently large

β ∈ Card ∩α. There are a number of problems with this de�nition however.First, to avoid 
on�i
t with the Su

essor Coding we should use f s�η(β)Dinstead of f s�η(β). Se
ond, to lessen 
on�i
t with 
odings at β ∈ Card ′ ∩ αwe only require the above for β ∈ Card + ∩ α. However there are stilldi�
ulties in making sure that the 
oding of s is 
onsistent with the 
odingof pβ by p ↾ β for β ∈ Card ′ ∩ α.We introdu
e 
oding delays to fa
ilitate extendibility of 
onditions. Therough idea is to 
ode not using f s�η(β)D, but instead just after the leastordinal ≥ f s�η(β)D where pβ takes the value 1. In addition, we �pre
ode� sby a subset of α, whi
h is then 
oded with delays by 〈pβ | β ∈ Card ∩ α〉;this �indire
t� 
oding further fa
ilitates extendibility of 
onditions.De�nition. Suppose α ∈ Card , X ⊆ α, s ∈ Sα. Let µ̃s be de�ned just as wede�ned µs but with the requirement �limit of limit ordinals� repla
ed by theweaker 
ondition �limit ordinal�. Then note that Ãs = Lµ̃s [A ∩ α, s] belongsto As, 
ontains s and Σ1Hull(α∪ {A∩α, s}) in Ãs = Ãs. Now X pre
odes sif X is the Σ1 theory of Ãs with parameters from α ∪ {A ∩ α, s}, viewed asa subset of α.De�nition. (Limit Coding) Suppose s ∈ Sα, α ∈ Card ′ and p = 〈(pβ, p
∗
β) |

β ∈ Card ∩ α〉 where pβ ∈ Sβ for ea
h β ∈ Card ∩ α. We wish to de�ne68



�p 
odes s�. First we de�ne a sequen
e 〈sγ | γ ≤ γ0〉 of elements of Sα:Let s0 = ∅α. For limit γ ≤ γ0, sγ = ∪{sδ | δ < γ}. Now suppose sγ isde�ned and let f sγ
p (β) = least δ ≥ f sγ (β) su
h that pβ(δD) = 1, if su
h a

δ exists. If for 
o�nally many β ∈ Card + ∩ α, f
sγ
p (β) is unde�ned, then set

γ0 = γ. Otherwise de�ne X ⊆ α by: δ ∈ X i� pβ((f sγ
p (β) + 1 + δ)D) = 1 forsu�
iently large β ∈ Card + ∩ α. If Even (X) pre
odes an element t of Sαextending sγ su
h that At 
ontains X and f sγ

p , then set sγ+1 = t. Otherwiselet sγ+1 be sγ ∗XE, if f sγ
p belongs to Asγ∗XE ; if not, then again γ0 = γ. Now

p exa
tly 
odes s if s = sγ for some γ ≤ γ0 and p 
odes s if s ≤ sγ for some
γ ≤ γ0.Note that the Su

essor Coding only restrains pβ from taking 
ertainnonzero values, so there is no 
on�i
t between the Su

essor Coding andthese delays. The advantage of delays is that they give us more 
ontrolover where the limit 
oding takes pla
e, thereby enabling us to avoid 
on�i
tbetween the limit 
odings at di�erent 
ardinals.De�nition. (The Conditions) A 
ondition in P is a sequen
e p = 〈(pα, p

∗
α) |

α ∈ Card , α ≤ α(p)〉 where α(p) ∈ Card and:1. pα(p) belongs to Sα(p) and p∗α(p) = ∅.2. For α ∈ Card ∩ α(p), (pα, p
∗
α) belongs to Rp

α+ .3. For α ∈ Card ′, α ≤ α(p), p ↾ α belongs to Apα and exa
tly 
odes pα.4. For α ∈ Card ′, α ≤ α(p) if α is ina

essible in Apα then there exists aCUBC ⊆ α, C ∈ Apα su
h that p∗β = ∅ for β ∈ C.For α ∈ Card , P<α denotes the set of all 
onditions p su
h that α(p) < α.Conditions are ordered by: p ≤ q i� α(p) ≥ α(q), p(α) ≤ q(α) in Rpα+ for
α ∈ Card ∩α(p)∩ (α(q) + 1) and pα(p) extends qα(p) if α(q) = α(p). Also for
s ∈ Sα, ω < α ∈ Card , P s denotes P<α together with all p ↾ α for 
onditions
p su
h that α(p) = α, pα(p) ≤ s. To order 
onditions in P s, �rst de�ne p+for p in P s as follows: p+ = p for p ∈ P<α; for p ∈ P s − P<α, p+ ↾ α = pand p+(α) = (s ↾ η, ∅) where η is least su
h that p ∈ P s�η. Now p ≤ q in P si� p+ ≤ q+ in P . Finally, P<s = ∪{P s�η | η < |s|} ∪ P<α.It is worth noting that (3) above implies that f pα dominates the 
odingof pα by p ↾ α, in the sense that f pα stri
tly dominates ea
h f pα�η

p�α , η < |pα|69



on a tail of Card +∩α. The purpose of (d) is to guarantee that extendibilityof 
onditions at (lo
al) ina

essibles is not hindered by the Su

essor Coding(see the proof of Extendibility below).We now embark on a series of lemmas whi
h together show that P pre-serves 
o�nalities and that if G is P -generi
 over 〈L[A], A〉 then for somereshaped X ⊆ ω1, L[A,G] = L[X] and A is L[X]-de�nable from the parame-ter X.Distributivity for Rs Suppose α ∈ Card , s ∈ Sα+ . Then Rs is α+-distributivein As: If 〈Di | i < α〉 ∈ As is a sequen
e of dense subsets of Rs and p ∈ Rsthen there is q ≤ p su
h that q meets ea
h Di.Proof. Choose µ < µs to be a large enough limit ordinal su
h that p, 〈Di |
i < α〉 and A<s belong to A = Lµ[A∩α

+, s]. Let 〈αi | i < α〉 enumerate the�rst α elements of {β < α+ | β = α+ ∩ Σ1Hull of(β ∪ {p, 〈Di | i < α〉,A<s})in A}.Now write p as (t0, t
∗
0) and su

essively extend p to (ti, t

∗
i ) for i ≤ α asfollows: (ti+1, t

∗
i+1) is the least extension of (ti, t

∗
i ) meeting Di su
h that: (a)

t∗i+1 
ontains {bs�η | η ∈ Hi ∩ [α+, |s|)} where Hi = Σ1Hull ofαi ∪ {p, 〈Di |
i < α〉,A<s} in A. (b) If bs�η ∈ t∗i , s(η) = 1 then ti+1(γ

β) = 1 for some
γ ∈ bs�η, γ > |ti|. (
) If γ0 /∈ A, γ0 < |ti| then ti+1(〈γ0, γ1〉

C) = 1 for some
γ1 > |ti|.The lemma redu
es to:Claim. (tλ, t

∗
λ) = greatest lower bound to 〈(ti, t∗i ) | i < λ〉 exists for limit

λ ≤ α.Proof of Claim. We must show that tλ = ∪{ti | i < λ} belongs to Sα. Notethat 〈ti | i < λ〉 is de�nable over Hλ = transitive 
ollapse of Hλ and by
onstru
tion, tλ 
odes Hλ de�nably over Lµ̄λ
[tλ], where µ̄λ = height of Hλ.So tλ is reshaped, as |tλ| is de�nably singular over Lµ̄λ

[tλ]. By the Fa
t,
µ̄λ < (|tλ|

+)L if α ≥ ω2. So tλ belongs to Sα. 2The next lemma illustrates the use of 
oding delays.Extendibility for P s. Suppose that α is a limit 
ardinal, s belongs to Sα, and
p ∈ P s. Suppose also that X ⊆ α belongs to As. Then there exists q ≤ p in
P s su
h that X ∩ β ∈ Aqβ for ea
h β ∈ Card ∩ α.70



Proof. By indu
tion on α. Let Y ⊆ α be 
hosen so that Even(Y ) pre
odes
s and Odd(Y ) is the Σ1 theory of A with parameters from α ∪ {A ∩ α, s},where A is an initial segment of As of limit height large enough to extend
Ãs and 
ontain X, p. For β ∈ Card ∩ α let Aβ be the transitive 
ollapseof Hβ = Σ1Hull(β ∪ {A ∩ α, s}) in A and suppose that β is large enoughso that Hβ 
ontains p. If Hβ ∩ α = β then Even (Y ∩ β) pre
odes sβ ∈ Sβwhere sβ is the pre-image of s under the natural embedding Aβ −→ A. If
Hβ ∩ α 6= β then |pβ| < (β+)Aβ , in whi
h 
ase f pβ is dominated by thefun
tion g(γ) = (γ+)Aγ on a �nal segment of Card + ∩ β.Now de�ne q as follows: If Even(Y ∩ β) pre
odes sβ ∈ Sβ, then qβ = sβ .For other β ∈ Card ′ ∩ α, qβ = pβ ∗ (Y ∩ β)E. For β ∈ Card + ∩ α, qβ =
pβ ∗~0 ∗ 1 ∗ (Y ∩ β)D where ~0 has length g(β).As g ↾ β and Y ∩ β are de�nable over Aβ for β ∈ Card ′ ∩ α we get
g ↾ β, Y ∩ β ∈ Asβ when Even (Y ∩ β) pre
odes sβ ∈ Sβ . Also g ↾ β, Y ∩ β ∈
Aqβ for other β ∈ Card ′ ∩ α as Odd (Y ∩ β) 
odes Aβ. And note that forsu�
iently large β ∈ Card ′ ∩ α, g ↾ β dominates f pβ on a �nal segment ofCard + ∩ β (and hen
e q ↾ β exa
tly 
odes qβ), unless Even (Y ∩ β) pre
odes
sβ and sβ = pβ, in whi
h 
ase q ↾ β exa
tly 
odes qβ = sβ be
ause p ↾ β does.So we 
on
lude that for su�
iently large β ∈ Card ′ ∩ α, q ↾ β exa
tly
odes qβ and X ∩ β ∈ Aqβ . Apply indu
tion on α to obtain this for all
β ∈ Card ′∩α. Finally, note that the only problem in verifying q ≤ p is thatthe restraint p∗β may prevent us from making the extension qβ of pβ when
qβ = sβ and Even (Y ∩ β) pre
odes sβ. But property (4) in the de�nition of
ondition guarantees that p∗β = ∅ for β in a CUBC ⊆ α, C ∈ As. We mayassume that C ∈ A and hen
e for su�
iently large β as above we get β ∈ Cand hen
e p∗β = ∅. So q ≤ p on a �nal segment of Card ∩ α, and we mayagain apply indu
tion to get q ≤ p everywhere. 2We 
ome now to the veri�
ation of distributivity for P s. Before we 
anstate and prove this property we need some preliminary de�nitions.De�nition. Suppose i < β ∈ Card andD ⊆ P s, s ∈ Sβ+. D is i+-predense on
P s if ∀p ∈ P s∃q ∈ P s(q ≤ p, q meets D and q ↾ i+ = p ↾ i+). X ⊆ Card ∩β+is thin if for ea
h ina

essible γ ≤ β, X ∩γ is not stationary in γ. A fun
tion
f : Card ∩ β+ −→ V is small if for ea
h γ ∈ Card ∩ β+, Card (f(γ)) ≤ γand Support (f) = {γ ∈ Card ∩ β+ | f(γ) 6= ∅} is thin. If D ⊆ P s ispredense and p ∈ P s, γ ∈ Card ∩ β+ we say that p redu
es D below γ if forsome δ ≤ γ in Card +, every q ≤ p 
an be extended to r ≤ q su
h that r71



meets D and r ↾ [δ, β] = q ↾ [δ, β]. Finally, for p ∈ P s, f small, f in As wede�ne Σp
f to 
onsist of all q ≤ p in P s su
h that whenever γ ∈ Card ∩ β+,

D ∈ f(γ), and D is predense on P pγ+ , we have that q redu
es D below γ.Distributivity for P s. Suppose s ∈ Sβ+ , β ∈ Card .1. If 〈Di | i < β〉 ∈ As, Di i
+-dense on P s for ea
h i < β and p ∈ P s thenthere is q ≤ p su
h that q meets ea
h Di.2. If p ∈ P s, f small, f in As then there exists q ≤ p, q ∈ Σp

f .Proof. We demonstrate 1 and 2 by a simultaneous indu
tion on β. If β = ωor belongs to Card + then by indu
tion, 1 and 2 redu
e to the following: If
S is a 
olle
tion of β-many predense subsets of P s, S ∈ As then {q ∈ P s |
q redu
es ea
h D ∈ S below β} is dense on P s. The latter follows, sin
e P sfa
tors as Rs ∗ Q where Rs 
 Q is β+-

, and hen
e any p ∈ P s 
an beextended to q ∈ P s su
h that Dq = {r | r ∪ q(β) meets D} is predense
≤ q ↾ β for ea
h D ∈ S.Now suppose that β is ina

essible. We �rst show that 2 holds for f ,provided f(β) = ∅. First sele
t a CUB C ⊆ β in As su
h that γ ∈ C →
f(γ) = ∅ and extend p so that f ↾ γ, C ∩ γ belong to Apγ for ea
h γ ∈Card ∩ β+. Then we 
an su

essively extend p on [β+

i , βi+1] in the L[A]-least way so as to meet Σp
f on [β+

i , βi+1], where 〈βi | i < β〉 is the in
reasingenumeration of C. At limit stages λ, we still have a 
ondition, as the sequen
eof �rst λ extensions belongs to Apβλ . The �nal 
ondition, after β steps, is anextension of p in Σp
f .Now we prove 1 in this 
ase. Suppose p ∈ P s and 〈Di | i < β〉 ∈ As and

Di is i+-dense on P s for ea
h i < β. Let µ0 < µs be a large enough limitordinal so that 〈Di | i < β〉, p and µ̃s belong to Lµ0
[A∩ β+, s]. For i < β, µidenotes µ0 + ω · i < µs. For any γ we let Hi(γ) denote Σ1Hull(γ ∪ {〈Di | i <

β〉, p, µ̃s, s, A ∩ β+}) in Lµi
[A ∩ β+, s].Let fi : Card ∩β → V be de�ned by: fi(γ) = Hi(γ) if i < γ ∈ Hi(γ) and

fi(γ) = ∅ otherwise. Then ea
h fi is small in As and we indu
tively de�ne
p = p0 ≥ p1 ≥ · · · in P s as follows: pi+1 = L[A]-least q ≤ pi su
h that:(a) q(β) meets all predense D ⊆ Rs, D ∈ Hi(β).(b) q meets Σpi

fi
and Di.(
) q ↾ i+ = pi ↾ i+. 72



For limit λ ≤ β we take pλ to be the greatest lower bound to 〈pi | i < λ〉,whose existen
e is guaranteed by the following Claim.Claim. pλ is a 
ondition in P s, where pλ(γ) = (∪{piγ | i < λ},∪{piγ
∗
| i < λ})for ea
h γ ∈ Card ∩ β+.Suppose that γ belongs to Hλ(γ)∩β. First we verify that pλγ = ∪{piγ | i <

λ} belongs to Sγ. Let H̄λ(γ) be the transitive 
ollapse of Hλ(γ) and write
H̄λ(γ) as Lµ̄[Ā, s̄], P̄ = image of P s ∩ Hλ(γ) under transitive 
ollapse, β̄ =image of β under 
ollapse. Also write P̄ as R̄s̄ ∗ P Ḡβ̄ where Ḡ denotes an
R̄s̄-generi
 (just as P s fa
tors as Rs ∗ PGβ , Gβ denoting an Rs-generi
).Now the 
onstru
tion of the pi's (see 
onditions (a), (b)) was designedto guarantee: (i) Ḡβ̄ = {p̄ ∈ Rs̄ | p̄ is extended by some p̄i(β̄), i < λ} is
Rs̄-generi
 over H̄λ(γ), where p̄i = image of pi under 
ollapse, and (ii) Forea
h δ̄ in (Card + of H̄λ(γ)), γ < δ̄ < β̄, {p̄ | p̄ is extended by some p̄i ↾

[γ, δ̄) in P̄ p̄i
δ̄

γ } is P̄ Ḡδ̄
γ -generi
 over AḠδ̄ = ∪{Ap̄

i
δ̄ | i < λ}, where P̄ Ḡδ̄

γ =

∪{P̄
p̄i

δ̄
γ | i < λ} and P̄

p̄i
δ̄

γ denotes the image under 
ollapse of P pi
δ

γ = {q ↾

[γ, δ) | q ∈ P pi
δ}, δ̄ = image of δ under 
ollapse.Note. We do not ne
essarily have property (ii) above for δ̄ = β̄, and this isthe sour
e of our need for ∼ 0# in this proof.By indu
tion, we have the distributivity of P t for t ∈ Sδ, δ ∈ Card + ∩ β,and hen
e that of P̄ t̄ for t̄ ∈ S̄δ̄, δ̄ ∈ (Card + of H̄λ(γ)), δ̄ < β̄. So the �weak�generi
ity of the pre
eding paragraph implies that:(d) Lµ̄[A ∩ γ, pλγ ] � |pλγ | is Σ1-singular.Also:(e) Lβ̄ [A ∩ γ, pλγ ] � |pλγ | is a 
ardinal.Thus pλγ ∈ Sγ (by (d)) provided we 
an show that when γ ≥ ω2, µ̄ <

(|pλγ |
+)L. But H̄λ(γ)

∼
→ Hλ(γ) gives a Σ1-elementary embedding with 
riti
alpoint |pλγ |, so by the Fa
t, this is true.The key point is that we also get pλ ↾ γ ∈ Ap

λ
γ , sin
e pλ ↾ γ is de�nableover H̄λ(γ) and we de�ned Apλ

γ to be large enough to 
ontain H̄λ(γ), sin
e
Lβ̄ � |pλγ| is a 
ardinal by (e) and β̄ is a 
ardinal of Lµ̄.73



The previous argument applies also if γ = β, using the distributivity of
Rs, or if γ = β ∩Hλ(γ), using the fa
t that pλβ 
ollapses to pλγ . If γ < γ∗ =
min(Hλ(γ) ∩ [γ, β)) then we 
an apply the �rst argument to get the resultfor γ∗, and then the se
ond argument to get the result for γ.Finally, to prove the Claim we must verify the restraint 
ondition 4 inthe de�nition of P . Suppose γ is ina

essible and for i < λ let Ci be theleast CUB subset of γ in Api

γ disjoint from {γ̄ < γ | piγ̄
∗
6= ∅}. If λ < γ then

∩{Ci | i < λ} witnesses the restraint 
ondition for pλ at γ. If γ < λ then therestraint 
ondition for pλ at γ follows by indu
tion on λ. And if γ = λ then
∆{Ci | i < λ} witnesses the restraint 
ondition for pλ at γ, where ∆ denotesdiagonal interse
tion.Thus the Claim and therefore 1 is proved in 
ase β is ina

essible. Toverify 2 in this 
ase, note that as we have already proved 2 when f(β) = ∅,it su�
es to show: If 〈Di | i < β〉 ∈ As is a sequen
e of dense subsets of P sthen every p ∈ P s 
na be extended to q ∈ P s that redu
es ea
h Di below
β. But using 1 we see that D∗

i = {q | q redu
es Di below i+} is i+-dense forea
h i < β, so again by 1 there is q ≤ p redu
ing Di below i+ for ea
h i.We are now left with the 
ase where β is singular. The proof of 1 
anbe handled using the ideas from the ina

essible 
ase as follows. Choose
〈βi | i < λ0〉 to be a 
ontinuous and 
o�nal sequen
e of 
ardinals < β,
λ0 < β0. As before, we �rst we argue that p ∈ P s 
an be extended to meet
Σp
f for any small f in As provided f(β) = ∅: Extend p if ne
essary so that forea
h γ ∈ Card ∩ β+, f ↾ γ and {βi | βi < γ} belong to Apγ . Now perform a
onstru
tion like the one used in the ina

essible 
ase, su

essively extending

p this time on [β0, βi
+] so as to meet Σp

f on [β0, βi
+] as well as Σpi

fi
's de�nedon [β0, βi

+], to guarantee that pλ is a 
ondition for limit λ ≤ λ0. Note thatea
h extension is made on a bounded initial segment of [β0, β) and thereforeby indu
tion Σp
f ,Σ

pi

fi

an be met on these intervals. The result is that p 
anbe extended to meet Σp

f on a �nal segment of Card ∩ β and therefore byindu
tion 
an be extended to meet Σp
f . Se
ond, use the density of Σp

f when
f(β) = ∅ to 
arry out the proof of 1 as we did in the ina

essible 
ase. Andagain, the general 
ase of 2 follows from 1. This 
ompletes the proof. 2The argument of the previous lemma also shows:Lemma 4.17. P is ∆-distributive at κ for all regular κ.Thus P is tame and preserves 
o�nalities. As L[A,G] = L[X] where74



X ⊆ ω1, we also have GCH-preservation. This 
ompletes the proof of theCoding Theorem in the ∼ 0# 
ase.Theorem 4.18. Let P be the for
ing used above, when A = ∅. Then there isa 
lass G whi
h is P -generi
 over L, whi
h is de�nable in L[0#] and whi
hpreserves indis
ernibles.Proof. For any indis
ernible i let jn be the �rst n indis
ernibles ≥ i. Thende�ne sn ∈ Si+ and pn ∈ P sn indu
tively, meeting the following 
onditions:
s0 = ∅ and pn is the trivial 
ondition. sn+1 = πi(p

n)i+ where πi : L→ L is anelementary embedding with 
riti
al point i, and pn+1 is the least q ≤ pn in P snmeeting Σpn

fn
where for β ∈ Card ∩i+, fn(β) = Hull(β∪jn) if β ∈ Hull(β∪jn)and fn(β) = ∅ otherwise. (When β = i we take pnβ+ to be sn.) Let Gi

0 = {p | pis extended by some pn}.
Gi

0 need not be P sn-generi
 over Asn as all 
onditions in Gi
0 have emptyrestraint at indis
ernibles < i. But noti
e that for i0 < i1 < · · · < in ≤ i in

I, Gi0
0 ∪ · · · ∪G

in
0 is a 
ompatible set of 
onditions. We take Gi to be {p | pis extended by q0 ∧ · · · ∧ qn for some 
hoi
e of ql ∈ Gil

0 , i0 < · · · < in ≤ iin I}. Now we 
laim that Gi is P sn-generi
 over Asn for ea
h n. Indeed, if
D is predense on P sn and belongs to Asn, D ∈ Hull({k0, · · · , km} ∪ jn) with
k0 < · · · < km < i in I then pn+1 redu
es D below k+

m, pn+2 redu
es D below
k+
m−1, · · · and eventually we get pn+m+2 in Gi meeting D.It follows that Gi(< i) = Gi∩P i is generi
 over Li (for Li-de�nable densesets) and hen
e G is P -generi
 over L where G = ∪{Gi(< i) | i ∈ I}. Clearly
G preserves indis
ernibles. 2Corollary 4.19 (to proof). If A ⊆ ORD preserves indis
ernibles and L[A]satis�es GCH then there is a real R ∈ L[A, 0#] su
h that R preserves in-dis
ernibles and A is de�nable in L[R]. If L[A] � GCH then L[A], L[R] havethe same 
o�nalities.In fa
t, it is possible to 
hara
terize those A ⊆ ORD whi
h are 
oded byreals R su
h that 0# 6≤L R:De�nition. For α, β < ω1, β 6= 0 let Iα,β = {iα+β·γ | γ ∈ ORD} where
〈iα | α ∈ ORD〉 is the in
reasing enumeration of I.Corollary 4.20. If A ⊆ ORD and for some α, β < ω1 the 
lass Iα,β forms agenerating 
lass of indis
ernibles for 〈L[A], A〉 then A is de�nable in L[R] forsome real R su
h that 0# /∈ L[R]. 75



One 
an use the pre
eding Corollary to show that A ⊆ ORD is de�nablein L[R] for some real R, 0# /∈ L[R] i� Iα,β forms a 
lass of indis
erniblesfor 〈L[A], A〉 for some α, β < ω1, β 6= 0. Moreover there are reals R su
hthat IR = Iα,β, for any α, β < ω1, β 6= 0 (where IR denotes the Silverindis
ernibles for L[R]).Solution to the Generi
ity ProblemTheorem 4.21. (Jensen) There is a real R <L 0# that is not set-generi
over L.Proof. Take R ∈ L[0#] to result from applying the proof of the CodingTheorem to the ground model 〈L, ∅〉, obtaining a generi
 G 
oded by R. Notethat in L[G] = L[R] there are P (κ+)-generi
 sets for ea
h in�nite su

essor
L-
ardinal κ+, where P (κ+) = κ+-Colen for
ing. In a P -generi
 extensionof L, where P ∈ L, there 
an be no κ+-Cohen set where κ = L-
ardinality
(P ). So L[R] is not a set-generi
 extension of L. 2Note also that R as in the previous Theorem 
an be 
hosen to preserveboth L-
o�nalities and indis
ernibles.The other two Solovay problems, the Π1

2-Singleton and AdmissibilitySpe
trum problems, also have positive solutions via further elaborations onthe 
oding method.
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4.5 More about 0#So far we have examined the following topi
s, using the indi
ated te
hni-ques.1. Constru
tibility: Fine stru
ture theory, developed to study the generalisedSuslin problem.2. Set For
ing over L: Iterated for
ing with �nite and 
ountable support,developed to study the Suslin problem and the Borel 
onje
ture.3. Class For
ing over L: The 
oding method, developed to study generi
ityover L.Next we 
ame to 0#, whi
h we introdu
ed to organise the study of 
lassfor
ing. Soon we will generalise 0# to a �# operation�, whi
h will lead usto inner models for large 
ardinals. But �rst we take a 
loser look at themotivation for introdu
ing 0# in the �rst pla
e.It will be 
onvenient to work not with the usual theory ZFC, but with anappropriate 
lass theory. This allows us to dis
uss 
lasses whi
h are notne
essarily de�nable. For an inner modelM , a 
lass A belongs to M i� A∩xbelongs to M for every set x in M .
V = L is not a theorem of 
lass theory: The for
ing method allows us to
onsistently enlarge L to models L[G] 6= L where G is a 
lass that is P -generi
over L for some L-for
ing P , i.e., some partial ordering P that belongs to L.Assume that generi
 extensions of L do exist, and let us see what impli
ationsthis has for the nature of the set-theoreti
 universe.De�nition. A 
lass C of ordinals is CUB (
losed and unbounded) i� it is aproper 
lass of ordinals whi
h 
ontains all of its limit points. A 
lass X ofordinals is large i� it 
ontains a CUB sub
lass.Largeness is not absolute: It is possible that a 
lass X belonging to L is notlarge but be
omes large after expanding the universe by for
ing.De�nition. A 
lass X is potentially large i� it is large in a generi
 extensionof the universe. 77



Can the universe be CUB-
omplete over L in the sense that every 
lass whi
hbelongs to L and is potentially large is already large? Yes, if 0# exists, asthen ea
h 
lass of ordinals belonging to L either 
ontains or is disjoint froma CUB 
lass. We now show that this in fa
t leads to a 
hara
terisation of
0#.Theorem 1. There exists a sequen
e Xn, n ∈ ω of 
lasses su
h that:1. Ea
h Xn belongs to L and indeed the relation �α belongs to Xn� isde�nable in L.2. Xn ⊇ Xn+1 for ea
h n and ea
h Xn is potentially large.3. If ea
h Xn is large then 0# exists and therefore the universe is CUB-
omplete over L.Thus we have the following pi
ture: Let n be least so that Xn is not large,if su
h a �nite n exists, and n = ∞ otherwise. If n is �nite then n 
an bein
reased by going to a generi
 extension of the universe, further in
reasedby going to a further generi
 extension, and so on. The only alternative isthat the universe is CUB-
omplete over L, i.e., that 0# exists.Proof of Theorem 1. We show the following:
(∗) There exists an L-de�nable fun
tion n : L-Singulars→ ω su
h that if Mis an inner model, 0# /∈M :(a) For some k, M � {α | n(α) ≤ k} is stationary.(b) For ea
h k there is a generi
 extension of M in whi
h 0# does not existand {α | n(α) ≤ k} is non-stationary.�Stationary in M� means �interse
ts every CUB 
lass whi
h belongs to
M�.We de�ne n(α). Let 〈Cα | α L-singular〉 be an L-de�nable �-sequen
e:
Cα is 
losed unbounded in α, ordertype Cα < α and ᾱ ∈ limCα → Cᾱ =
Cα ∩ ᾱ. Let ot Cα denote the ordertype of Cα. If ot Cα is L-regular then
n(α) = 0. Otherwise n(α) = n(ot Cα) + 1.(a) is 
lear, as otherwise (using the fa
t that we are working in a su�
ient-ly strong 
lass theory) there is a 
losed unbounded C ⊆ L-regulars amenableto M , 
ontradi
ting the Covering Theorem and the hypothesis that 0# doesnot belong to M . 78



Now we prove (b). Fix n ∈ ω. In M let P 
onsist of 
losed, bounded p ⊆ORD su
h that α ∈ p→ α L-regular or n(α) ≥ n+ 1, ordered by p ≤ q i� pend extends q.We 
laim that P is ∞-distributive in M . Suppose that p ∈ P and 〈Dα |
α < κ〉 is a de�nable sequen
e of open dense sub
lasses of P , κ regular. Wewish to �nd q ≤ p, q ∈ Dα for all α < κ. Let C be the 
lass of all stronglimit 
ardinals β su
h that Dα ∩ Vβ is dense in P ∩ Vβ for all α < κ, a 
losedunbounded 
lass of ordinals. It su�
es to show that C ∩ {β | n(β) ≥ n+ 1}has a 
losed subset of ordertype κ+1, for then p 
an be su

essively extended
κ+1 times meeting theDα's, to 
onditions with maxima in {β | n(β) ≥ n+1};the �nal 
ondition (at stage κ) extends p and meets ea
h Dα.Lemma. Suppose m > k, α > ω is regular and C is a 
losed set of or-dertype α+m + 1, 
onsisting of ordinals greater than α+m (where α+0 = α,
α+(p+1) = (α+p)+). Then C∩{β | n(β) ≥ k} has a 
losed subset of ordertype
α+(m−k−1) + 1.Proof of Lemma. We shall use the following easy 
onsequen
e of the CoveringTheorem.If 0# does not exist, β ≥ ω2 and 
of β < Card β then β is singular in L.We prove the lemma by indu
tion on k. Suppose k = 0. Let β be the
(α+(m−1) + 1)st element of C. Then β is L-singular sin
e it is at least ω2and its 
o�nality (= α+(m−1)) is less than its 
ardinality (≥ α+m). Similarly,ea
h element of Lim(C∩β) is L-singular and therefore Lim(C∩β) is a 
losedsubset of C ∩ {β | n(β) ≥ 0} of ordertype α+(m−1) + 1, as desired.Suppose that the lemma holds for k and let m + 1 > k + 1, C a 
losedset of ordertype α+(m+1) + 1 
onsisting of ordinals greater than α+(m+1). Let
β be the (α+m + α+m + 1)st element of C. β is L-singular as it is at least ω2and its 
o�nality is less than its 
ardinality; so Cβ is de�ned. Let β̄ be the
(α+m + 1)st element of C. Then C̄ = {ot Cγ | γ ∈ C ∩ LimCβ ∩ [β̄, β]} is a
losed set of ordertype α+m + 1 
onsisting of ordinals greater than α+m. Byindu
tion there is a 
losed D̄ 
ontained in C̄ ∩ {γ | n(γ) ≥ k} of ordertype
α+(m−k−1) + 1. But then D = {γ ∈ C ∩ LimCβ | ot Cγ ∈ D̄} is a 
losedsubset of C ∩{γ | n(γ) ≥ k+ 1} of ordertype α+(m−k−1) +1. As m− k− 1 =
(m+ 1)− (k + 1)− 1 we are done. 79



By the lemma, C ∩ {β | n(β) ≥ n + 1} has arbitrary long 
losed subsetsfor any n, for any 
losed unbounded C ⊆ ORD. It follows that P is ∞-distributive. Now to prove (b), we apply the for
ing P to M , produ
ing Cwitnessing the nonstationarity of {α | n(α) ≤ n}. Of 
ourse this will notprodu
e 0# as no sets are added. This 
ompletes the proof of (∗). Theorem1 now follows, as we may take Xn to be {α | Either α is regular in L or
n(α) ≥ n}.We 
onje
ture another way to obtain 0# through for
ing, motivated bythe following result.Theorem 2. Assume slightly more than 
lass theory (pre
isely: ORD is ω+ω-Erd®s, de�ned below). If 0# exists, P is L-de�nable without parameters andthere exists a P -generi
, then there exists a P -generi
 de�nable in L[0#]. If
P is L-de�nable with parameters and there exists a P -generi
, then thereexists a P -generi
 de�nable in a set-generi
 extension of L[0#] (indeed, inany extension of L[0#] in whi
h those parameters are 
ountable).Thus the inner model L[0#] is saturated with respe
t to L-de�nable for-
ings. If 0# exists, then it 
an be shown that any inner model whi
h issaturated in this sense must 
ontain L[0#]. (Reason: The L-de�nable for-
ing to add a CUB sub
lass to Xn using 
onstru
tible, 
losed subsets of Xnhas a generi
 in L[0#]. Thus if 0# exists, ea
h Xn has a CUB sub
lass in anyinner model whi
h is saturated in the above sense, and therefore this innermodel 
ontains 0#.) A stronger 
laim would be the following.Conje
ture. If the universe is saturated with respe
t to L-de�nable for
ingsin the sense of Theorem 2 then 0# exists.To prove this Conje
ture it would su�
e to show that for Xn as in Theo-rem 1, not only does Xn 
ontain a CUB sub
lass in a generi
 extension ofthe universe, but this 
an be a

omplished via an L-de�nable for
ing. Thisis reminis
ent of the following.Theorem (Baumgartner). Suppose that X is a 
onstru
tible subset of ω1and X is stationary. Then there is a 
onstru
tible set-for
ing P whi
h addsa CUB subset to X.The P in this Theorem is a for
ing whi
h adds a CUB subset to X using��nite 
onditions�. Is there a version of this result with ω1 repla
ed by ORD,
X repla
ed by Xn from Theorem 1? 80



We now turn to the proof of Theorem 2.De�nition. Let A = 〈V,∈, . . .〉 be a stru
ture for a 
ountable language.
I ⊆ ORD is a good set of indis
ernibles for A i� γ ∈ I −→ I − γ is a set ofindis
ernibles for 〈A, α〉α<γ.De�nition. ORD is α-Erd®s i� whenever A = 〈V,∈, . . .〉 is a stru
ture for a
ountable language, and C is CUB there exists I ⊆ C, ot I = α su
h that Iis a good set of indis
ernibles for A.The proof of Theorem 2 makes use of periodi
 sub
lasses of the Silverindis
ernibles.De�nition. Let I = 〈iγ | γ ∈ ORD〉 be the in
reasing enumeration of theSilver indis
ernibles. For any ordinals λ0 and λ (λ > 0) de�ne Iλ0,λ = {iα | αof the form λ0 + λ · β, β ∈ ORD}. An L-de�nable for
ing P is λ0, λ-periodi
i� in a set-generi
 extension of V , there is a P -generi
 G su
h that Iλ0,λ is a
lass of indis
ernibles for 〈L[G],∈, G〉.Fa
t. If P is λ0, λ-periodi
 then P has a generi
 in a set-generi
 extension of
L[0#].Proof Sket
h. Assume that P is L-de�nable without parameters. Considera set-generi
 extension M of L[0#] in whi
h λ0 and λ are 
ountable. Builda tree in M , a bran
h through whi
h produ
es a generi
 G0 for P ∩ Liλ0+λ·ωrelative to whi
h Iλ0,λ ∩ iλ0+λ·ω is a good set of indis
ernibles. As P is λ0, λ-periodi
, this tree has a bran
h, therefore a bran
h in M , and the resulting
G0 
an be �stret
hed� to a generi
 for P . If P is L-de�nable with parameters,then we require that those parameters be 
ountable in M .Proof of Theorem 2. Fix a P -generi
 G and assume that P is L-de�nablewithout parameters. We shall 
onstru
t another P -generi
 G∗ su
h that forsome λ0 and λ, Iλ0,λ is a 
lass of indis
ernibles for 〈L[G∗],∈, G∗〉. Let X bea good set of indis
ernibles for 〈L[0#, G],∈, G〉 of ordertype ω+ ω su
h that
α ∈ X −→ 〈Lα[0

#, G], G〉 is an elementary submodel of 〈L[0#, G], G〉. (Werefer to this last 
ondition as the �stability� of α relative to 0#, G.)Sele
t a 
anoni
al enumeration of the L-de�nable open dense sub
lassesof P : Thus let 〈Dn|n ∈ ω〉 be a sequen
e of predi
ates su
h that ea
h
Dn(x, α1 . . . αn) is de�nable over L, {x ∈ L | Dn(x, α1 . . . αn)} is an open81



dense sub
lass of P for ea
h α1 < . . . < αn in ORD and every L-de�nableopen dense sub
lass of P is of this form for some n, for some α1 < . . . < αn in
I. We may also assume that {〈n, x, ~α〉|Dn(x, ~α)} is de�nable in L relative toa satisfa
tion predi
ate for L. For α1 < . . . < αn in ORD we abuse notationand write D(α1 . . . αn) for {x ∈ L|Dn(x, α1, . . . αn)}. Also let D∗(α1 . . . αn) =

∩{D(~β)|~β ⊆ ~α}.Now we 
onstru
t an ω-sequen
e of terms with Silver indis
ernible para-meters whi
h we will use to de�ne G∗.For j0 ∈ X 
hoose the least tj0(~k0(j0), j0, ~k1(j0)) in D(j0) ∩ G, where tj0is a Skolem term for L,~k0(j0) < j0 < ~k1(j0) is an in
reasing sequen
e ofSilver indis
ernibles. By the good-indis
ernibility of X, tj0 = t0, ~k0(j0) = ~k0are �xed. Thus we 
an write t0(~k0, j0, ~k1(j0)) ∈ D(j0) ∩ G for j0 ∈ X. Bythe stability relative to 0#, G of the elements of X we have: j0 < j1 in
X −→ ~k1(j0) < j1.Next for j0 < j1 inX 
hoose the least tj0,j1(~k1

0(j0, j1), j0,
~k1

1(j0, j1), j1,
~k1

2(j0, j1))in D∗(~k0, j0, ~k1(j0), j1, ~k1(j1)) ∩ G. By the good-indis
ernibility of X we 
anwrite the above term with Silver indis
ernible parameters as t1(~k1
0, j0,

~k1
1(j0), j1,

~k1
2(j0, j1)).However, we want to argue that ~k1

2(j0, j1) 
an be 
hosen independently of
j0. To arrange this, �rst note that tj0,j1(~k1

0(j0, j1), j0,
~k1

1(j0, j1), j1,
~k1

2(j0, j1))= tj0,j1(
~k1

0(j0, j1), j0,
~k1

1(j0, j1), j1,
~k1

2,0(j0, j1), ~∞) where the latter is indepen-dent of the 
hoi
e of the Silver indis
ernibles ~∞ above ~k1
2,0(j0, j1) and where

(~k1
0(j0, j1),

~k1
1(j0, j1),

~k1
2,0(j0, j1)) is the least sequen
e of ordinals su
h that thisterm with parameters belongs to D∗(~k0, j0, ~k1(j0), j1, ~k1(j1))∩G∩Lmin ~∞. Bythe good-indis
ernibility ofX we 
an write this as t1(~k1

0, j0,
~k1

1(j0), j1,
~k1

2,0(j0, j1), ~∞).Note that (~k1
0,
~k1

1(j0),
~k1

2,0(j0, j1)) is de�nable in 〈L[G], G〉 from ~∞, ~k0, j0,~k1(j0), j1, ~k1(j1)and therefore ~k1
2,0(j0, j1) is de�nable in 〈L[G], G〉 from ~∞, ~k1(j1) and para-meters ≤ j1.Lemma. ~k1

2,0(j0, j1) is independent of j0.Proof. Enumerate the �rst ω + 1 elements of X in in
reasing order as
j0 < j1 < . . . < j = (ω + 1)st element of X and for any m,n let ~k(jn, j) (m)denote the m-th element of ~k1

2,0(jn, j). If the Lemma fails then for some �xed
m, ~k(j0, j)(m) < ~k(j1, j)(m) < . . . forms an in
reasing ω-sequen
e of Silverindis
ernibles with supremum ℓ ∈ I. By the remark immediately pre
edingthis Lemma, ℓ has 
o�nality ≤ j in L[G]. By Covering between L and L[G], ℓ82



has 
o�nality < (j+ in L[G]) in L. This 
ontradi
ts the following.Claim. j+ in L[G] = j+ in L.Proof of Claim. If not then in L[G] there is a CUB C ⊆ j su
h that C isalmost 
ontained in ea
h CUB 
onstru
tible D ⊆ j. But I ∩ j is the inter-se
tion of 
ountably many su
h D and therefore as j is regular (in L[G, 0#])we get that C is almost 
ontained in I; so 0# belongs to L[G], 
ontradi
tion.This proves the Claim and hen
e the Lemma.Thus we 
an write t1(~k1
0, j0,

~k1
1(j0), j1,

~k1
2(j1)) ∈D

∗(~k0, j0, ~k1(j0), j1, ~k1(j1))∩

G for j0 < j1 in X. By modifying the term t1 we may assume that ~k1
1(j0) =

~k1
2(j0) for j0 6= min(X). Also we 
an assume that ~k0 ⊆ ~k

1
0,
~k1(j0) ⊆ ~k

1
1(j0) for

j0 ∈ X and moreover that the stru
ture 〈~k1
1(j0), <〉 with a unary predi
atefor ~k1(j0) has isomorphism type independent of j0 ∈ X.We obtain t2 in a similar way: thus,

t2(~k
2
0, j0,

~k2
1(j0), j1,

~k2
1(j1), j2,

~k2
1(j2)) ∈ D

∗(~k1
0, j0,

~k1
1(j0), j1,

~k1
1(j1), j2,

~k1
1(j2))∩Gfor j0 < j1 < j2 in X and ~k1

0 ⊆ ~k2
0,
~k1

1(j0) ⊆ ~k2
1(j0), 〈~k2

1(j0), <〉 with unarypredi
ates for ~k1
1(j0),

~k1(j0) has isomorphism type independent of j0. Conti-nue in this way to de�ne tn(~kn0 , j0, ~kn1 (j0), . . . , jn, ~k
n
1 (jn)) for ea
h n and for

j0 < . . . < jn in X. (The analogous version of the Lemma uses the �rst ω+nelements of X.)Let iλ0
= minX and λ = ordertype (

⋃
n

~kn1 (j0)) for j0 ∈ X, an ordinalindependent of the 
hoi
e of j0.We may assume that λ is a limit ordinal and in a generi
 extension where
λ0 is 
ountable we may arrange that ⋃

n

~kn0 = I ∩ iλ0
. Also note that I − iλ0

isa 
lass of indis
ernibles for L. Now in V [g], where g is a Lévy 
ollapse of iλ0to ω, 
arry out the above 
onstru
tion, arranging that ⋃
n

~kn0 = iλ0
. For anySilver indis
ernible iδ de�ne ~kn1 (iδ) ⊆ I ∩ (iδ, iδ+λ) so that 〈I ∩ (iδ, iδ+λ), <〉with a predi
ate for ~kn1 (iδ) is isomorphi
 to 〈⋃

n

~kn1 (j0), <

〉 with a predi
atefor ~kn1 (j0), for iλ0
< j0 ∈ X. De�ne:

G∗ = {p ∈ P | p is extended by some tn(~kn0 , iλ1
, ~kn1 (iλ1

), . . . iλn ,
~kn1 (iλn)) where

λ0 ≤ λ1 < . . . < λn are of the form λ0 + λ · α, α ∈ ORD}.83



Using the indis
ernibility of I − iλ0
we see that G∗ is 
ompatible and meetsevery L-de�nable open dense 
lass on P . Thus P is λ0, λ-periodi
. Thisproves Theorem 2.
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5. Extender ModelsIf we are willing to a

ept the existen
e of 0#, then we surely should alsoadmit the existen
e of 0##, whi
h relates to the model L[0#] in the same wayas 0# relates to L. Indeed, through iteration of a suitable �# operation�, weare led to models mu
h larger than L, whi
h 
an satisfy strong large 
ardinalaxioms. These are 
alled extender models.How do we de�ne a # operation? We have said that the existen
e of
0# is equivalent to the non-rigidity of L, i.e., to the existen
e of a nontri-vial elementary embedding from L to itself. Let us use this as a basis forgeneralisation. Suppose that M is an inner model satisfying ZFC and let
π : M →M be a nontrivial elementary embedding from M to itself.Theorem 1. (Kunen) Suppose π : M →M is a nontrivial elementary embed-ding. Then for some x ∈M , π ↾ x does not belong to M .Proof of Theorem. First we prove the following Lemma.Lemma 2. Let λ be an in�nite 
ardinal su
h that 2λ = λℵ0 . There exists afun
tion F : λω → λ su
h that whenever A is a subset of λ of 
ardinality λand γ < λ, there exists some s ∈ Aω su
h that F (s) = γ.Proof of Lemma 2. Let 〈(Aα, γα) | α < 2λ〉 be an enumeration of all pairs
(A, γ) where γ < λ and A is a subset of λ of 
ardinality λ. By indu
tion on
α < 2λ 
hoose sα ∈ λω so that sα ∈ Aωα and sα 6= sβ for β < α. De�ne F (s)to be γα if s = sα for some α, F (s) = 0 otherwise. This fun
tion F has thedesired property, proving Lemma 2.Our next lemma lists some general fa
ts about elementary embeddingsbetween inner models.Lemma 3. Suppose that π : M → N is an elementary embedding of innermodels with 
riti
al point κ. Then κ is a regular 
ardinal of M and HM

κ+ is
ontained in N . If HN
κ is 
ontained in M then κ is ina

essible in M .Proof of Lemma 3. If κ were singular in M then 
hoose γ < κ and a 
o�nal

f : γ → κ in M . Then π(f) is 
o�nal in π(κ), but π(f) = f so κ 
annot bethe 
riti
al point of π. If X is a subset of κ in M , then X = π(X) ∩ κ so85



X belongs to N . As any element of HM
κ+ is 
oded by a subset of κ in M , itfollows that N 
ontains ea
h element of HM

κ+ as well.Suppose that HN
κ is 
ontained in M . If κ is not ina

essible in M then
hoose γ < κ and a surje
tion f : 2γ → κ in M . Then π(f) is a surje
tionfrom 2γ of N onto π(κ). By hypothesis 2γ of N = 2γ of M and therefore

κ = Range f = Range π(f) = π(κ), a 
ontradi
tion. This proves Lemma 3.Now to prove the Theorem: Let κ be the 
riti
al point of π and de�ne κ0 = κ,
κn+1 = π(κn). Let λ be the limit of the κn's. We shall show that π ↾ λ doesnot belong toM . Otherwise, λ has 
o�nality ω inM and therefore π(λ) = λ.Also by Lemma 3 κ (and therefore ea
h κn) is a strong limit 
ardinal of M .Therefore λ is a strong limit 
ardinal of 
o�nality ℵ0 inM and hen
e 2λ = λℵ0in M . Let S be the range of π on λ, a subset of λ of M-
ardinality λ.By Lemma 2 (applied inM) there is a fun
tion F : λω → λ inM su
h that
M satis�es: The range of F on Aω is all of λ, for ea
h A ⊆ λ of 
ardinality
λ. By the elementarity of π and the fa
t that π(λ) = λ, the same holds for
π(F ). Applying this to the set S = Range (π ↾ λ) we obtain s ∈ Sω in Msu
h that π(F )(s) = κ. But s belongs to the range of π, as it equals π(t),where t(n) = π−1(s(n)) for ea
h n; it follows that κ belongs to the range of
π. This 
ontradi
ts the fa
t that κ is the 
riti
al point of π. 2How small 
an x satisfying the previous Theorem be? Let κ be the 
riti
alpoint of π. Of 
ourse π ↾ HM

κ belongs to M , as this is just the identity on
HM
κ . And if x belongs to HM

κ+ then again π ↾ x belongs toM , as if f : x→ κis an inje
tion, we have:
y ∈ x→ π(y) = π(f−1(f(y))) = π(f−1)(π(f(y))) = π(f)−1(f(y)).So the least natural 
andidate for x satisfying the Theorem is HM

κ+, where κis the 
riti
al point of π.Embeddings π : M → M where π ↾ HM
κ+ belongs to M give rise to verystrong large 
ardinal properties.De�nition. κ is measurable i� κ is the 
riti
al point of a π : V → M . κis α-strong i� κ is the 
riti
al point of a π : V → M su
h that α ≤ π(κ)and every bounded subset of α belongs to M . κ is strong i� κ is α-strongfor every α. If f : κ → κ then κ is f -strong i� κ is the 
riti
al point of a

π : V → M su
h that every bounded subset of π(f)(κ) belongs to M . δ86



is Woodin i� for ea
h f : δ → δ there is a κ < δ 
losed under f whi
h is
f ↾ κ-strong. κ is superstrong i� κ is the 
riti
al point of a π : V → M su
hthat every bounded subset of π(κ) belongs to M .To analyse these properties we introdu
e the notion of extender.De�nition. The extender derived from π : M → N (where M,N are innermodels of ZFC) is the restri
tion Eπ = π ↾ HM

κ(π)+ , where κ(π) is the 
riti
alpoint of π. An extender on M is an extender derived from some embedding
π : M → N . A # for M is an extender derived from some π : M → N where
HM
π(κ(π)) = HN

π(κ(π)).Thus extenders on M are restri
tions of embeddings of M . Conversely,ea
h extender on M gives rise to a 
anoni
al embedding of M , of whi
h it isa restri
tion.Theorem 4. Suppose that E is an extender onM , with 
riti
al point κ. Thenthere is a unique πE : M → NE su
h that E is the extender derived from πEand every element of NE is of the form πE(f)(a) for some f : HM
κ → M in

M and a in HNE

πE(κ).Proof (The Ultrapower Constru
tion). Consider pairs (f, a) where f : HM
κ →

M belongs toM and a ∈ E(HM
κ ). We say that (f, a) and (g, b) are equivalent,written (f, a) =∗ (g, b), i� (a, b) belongs to E({(u, v) ∈ HM

κ | f(u) = g(v)})and (f, a) belongs to (g, b), written (f, a) ∈∗ (g, b), i� (a, b) belongs to
E({(u, v) ∈ HM

κ | f(u) ∈ g(v)}). We write [f, a] for the =∗ equivalen
e
lass of (f, a) and de�ne N∗ to be the stru
ture whose universe 
onsists ofthese =∗ equivalen
e 
lasses, together with the (indu
ed) relation ∈∗ on theseequivalen
e 
lasses. By a straightforward indu
tion (using the axiom of 
hoi-
e inM for the quanti�er 
ase) we have: 〈N∗,∈∗〉 � ϕ([f1, a1], . . . , [fn, an]) i�
(a1, . . . , an) belongs to E({(u1, . . . , un) ∈ H

M
κ |M � ϕ(f1(u1), . . . , fn(un))}).Using this we obtain an elementary embedding π∗

E : M → N∗ de�ned by
π∗
E(x) = [fx, 0], where fx is the fun
tion on HM

κ with 
onstant value x.Now suppose that E is derived from π : M → N . Then 〈N∗,∈∗〉 �

ϕ([f1, a1], . . . , [fn, an]) i� (a1, . . . , an) belongs to E({(u1, . . . , un) ∈ HM
κ |

M � ϕ(f1(u1), . . . , fn(un))}) i� (a1, . . . , an) belongs to {(v1, . . . , vn) ∈ H
N
π(κ) |

N � ϕ(π(f1)(v1), . . . , π(fn)(vn))}, so we get an elementary embedding k∗ :
〈N∗,∈∗〉 → 〈N,∈〉 de�ned by k∗([f, a]) = π(f)(a). The embedding π is the
omposition k∗ ◦ π∗

E . Note that the range of k∗ in
ludes all of HN
E(κ) sin
e87



HN
E(κ) = E(HM

κ ) and for ea
h a ∈ E(HM
κ ), k∗([id, a]) = a (where id is theidentity on HM

κ ); also the range of k∗ in
ludes E(κ) = k∗([fκ, 0]).A 
onsequen
e of the existen
e of k∗ : 〈N∗,∈∗〉 → 〈N,∈〉 is that 〈N∗,∈∗〉is extensional, well-founded, set-like (i.e. for any [f, a] ∈ N∗ some set providesrepresentatives to all of the equivalen
e 
lasses [g, b] ∈∗ [f, a]) and thereforeisomorphi
 to a transitive stru
ture 〈NE,∈〉. Write i : 〈N∗,∈∗〉 ≃ 〈N,∈〉.Then de�ne k = k∗ ◦ i−1 and πE = i◦π∗
E. Then π = k ◦πE and as Range k =Range k∗ in
ludes HN

E(κ) ∪ {E(κ)}, it follows that k−1 is the identity on
HN
E(κ)∪{E(κ)} and therefore k is the identity on HNE

E(κ)+ (whi
h is 
ontainedin, but not ne
essarily equal toHN
E(κ)+). For x ∈ HM

κ+ we have πE(x) ∈ HNE

E(κ)+and therefore π(x) = k ◦πE(x) = πE(x). It follows that the extender derivedfrom πE is the same as that derived from π, namely E. As ea
h elementof the range of k is of the form π(f)(a) for some f : HM
κ → M in Mand some a in HN

E(κ), it follows that ea
h element of NE is of the form
k−1◦π(f)(a) = πE(f)(a) for some f : HM

κ → M inM and a inHN
E(κ) = HNE

E(κ).So πE : M → NE has the desired properties. The uniqueness of πE is 
lear,as if we began with an embedding π : M → N also satisfying the desiredproperties, the above 
onstru
tion produ
es k : NE → N with π = k ◦ πE , kequal to the identity on HNE

E(κ) and therefore as ea
h element of N is of theform π(f)(a) = k ◦ πE(f)(k(a)) = k(πE(f)(a)) for some a ∈ HNE

E(κ) it followsthat k is onto, and therefore the identity. 2Remarks. (a) We write NE as Ult (M,E). It follows from the ultrapower
onstru
tion that the notion of extender is �rst-order. Indeed, E is an exten-der on M i� E is an elementary embedding E : HM
κ+ → N0 = ∪(Range E)with 
riti
al point κ and the stru
ture 〈N∗,∈∗〉 resulting from the ultrapower
onstru
tion using E and M is well-founded.(b) Note that if E is an extender on M with 
riti
al point κ then for anyordinal α, πE(α) has 
ardinality at most that of (αHκ of M) × (HπE(κ) ofUlt (M,E)), as ea
h ordinal less than πE(α) is represented in Ult (M,E)by a pair (f, a) where f : HM

κ → α belongs to M and a belongs to HπE(κ)of Ult (M,E). Also πE(α) = ∪πE [α] whenever α has M-
o�nality greaterthan the M-
ardinality of HM
κ . It follows that if α > πE(κ) is a strong limit
ardinal of M-
o�nality greater than 2<κ then α is a �xed point of πE .(
) If α is ina

essible in M then E ∈ HM

α is an extender on M i� E is anextender on HM
α : If N∗ from the ultrapower 
onstru
tion is not well-founded,then this is witnessed by a sequen
e [fn+1, an+1] ∈

∗ [fn, an], n ∈ ω. Su
h a88



witness exists not only in M , but also in HM
α , as we may assume that thefun
tions fn take ordinal values less than α.Theorem 5. If κ is measurable, α-strong, strong, f -strong, Woodin or super-strong, respe
tively then this is witnessed by embeddings of the form πE forsome extender E on V . Thus these properties are �rst-order.Proof. If π witnesses the α-strength of κ then so does πE , where E is derivedfrom π, sin
e by de�nition α must be less than or equal to π(κ). The sameholds for f -strength, as π(f)(κ) is less than π(κ) for f : κ → κ. As measu-rability, strength, Woodinness and superstrength 
an be de�ned in terms of

α-strength and f -strength, these properties are all witnessed by embeddingsof the form πE and therefore are �rst-order sin
e the notion of extender is�rst-order. 2For our next result it will be useful to 
onsider the following variant ofthe ultrapower 
onstru
tion: Suppose that π : M → N has 
riti
al point κand α is a 
ardinal of N , κ < α ≤ π(κ). Then de�ne N∗
α just like N∗, butonly using pairs (f, a) where a belongs to HN

α . We obtain a well-founded,set-like and extensional stru
ture 〈N∗
α,∈

∗〉, isomorphi
 to a transitive 
lass
NE,α, with 
anoni
al embeddings πE,α : M → NE,α and kα : NE,α → N ,
kα = id on HN

α . Thus if π : V → N witnesses the α-strength of κ, so does
πE,α. We de�ne the 
utba
k of E to α, written E ↓ α, to be the extenderderived from the embedding πE,α. As ea
h ordinal less than (E ↓ α)(κ) isrepresented by a pair (f, a) where f : HM

κ → κ, a ∈ HN
α , it follows that

(E ↓ α)(κ) has 
ardinality 2<α and therefore so does E ↓ α. The true lengthof E is the least α su
h that E ↓ α = E.Let us say that a property P (κ) is stronger than a property Q(κ) i� theexisten
e of a κ satisfying P (κ) implies the existen
e of a transitive set whi
his a ZFC-model and in whi
h there is a κ̄ satisfying Q(κ̄).Theorem 6. Superstrength is stronger thanWoodinness, Woodinness is stron-ger than strength and strength is stronger than measurability.Proof. Suppose that κ is superstrong via the embedding π and let E be theextender derived from π. We 
laim that κ is witnessed to be Woodin usingextenders in Hκ, and therefore is Woodin in the ZFC-model Hπ(κ). If not,pi
k a fun
tion f : κ→ κ su
h that no κ̄ < κ 
losed under f is witnessed to89



be f ↾ κ̄-strong by an extender in Hκ. Then κ is not witnessed to be f -strongin M = Ult (V,E) using extenders in Hπ(κ). But by superstrength E ↓ αbelongs to M for ea
h α less than π(κ), and in parti
ular for α = π(f)(κ)+.Thus E ↓ π(f)(κ)+ witnesses the f -strength of κ in M , 
ontradi
tion.Suppose that δ is Woodin. We 
laim that some κ < δ is strong in theZFC-model Hδ. If not, then de�ne f(κ) = (2<g(κ))+ where g(κ) is least sothat κ is not g(κ)-strong in Hδ, and therefore not g(κ)-strong in V . Applythe Woodinness of δ to obtain κ 
losed under f whi
h is f ↾ κ-strong, via anembedding π : V → M . By elementarity κ is not π(g)(κ)-strong in M . Butif E is the extender derived from π, we have E ↓ (π(g)(κ)) ∈ M , witnessingthe π(g)(κ)-strength of κ in M , 
ontradi
tion.Suppose that κ is strong. We 
laim that there is a measurable 
ardinalless than κ and therefore the ZFC-model Hκ satis�es that there exists ameasurable 
ardinal. Suppose not and let π : V → M witness the (2κ)+-strength of κ. Then κ is not measurable in M . But if E is the extenderderived from π, we have E ↓ κ+ ∈ M , witnessing the measurability of κ in
M , 
ontradi
tion. 2Let us now return to our dis
ussion of Kunen's Theorem. Suppose that
π : M → M and let E be the extender derived from π. Then πE : M →Ult (M,E) has the property that M and Ult (M,E) have the same boundedsubsets of E(κ), where κ is the 
riti
al point of π. Thus if E belonged to
M , we would have a superstrong 
ardinal in M . The same applies to any
#-embedding forM , i.e., to any embedding π : M → N su
h thatM,N havethe same bounded subsets of π(κ), κ = the 
riti
al point of π. Therefore:

M has a superstrong 
ardinal i� M 
ontains a sharp for itself.Superstrength is essentially the strongest large 
ardinal property whi
h 
anbe witnessed by an extender embedding. Indeed, if E is an extender on Vand πE : V → Ult (V,E) = M is the resulting ultrapower embedding, then
E 
annot belong to M , as E maps κ+ 
o�nally into E(κ)+ of M , where κis the 
riti
al point of E. As E belongs to Hπ(κ)+ it follows that whereas Mmight 
ontain all bounded subsets of π(κ), it 
annot 
ontain all subsets of
π(κ), as some of them 
ode E itself, whi
h does not belong to M .
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#-IterationsGödel's universe L provides a 
anoni
al inner model of V whi
h satis�esnot only ZFC, but also GCH. Is there a similar result for the theory ZFC +there exists a superstrong 
ardinal?Inner Model Conje
ture. Suppose that there is a superstrong 
ardinal. Thenthere is an inner model satisfying ZFC + GCH in whi
h there is a superstrong
ardinal.We might try to prove this 
onje
ture as follows. Assume that there is awell-ordering of the universe. (If there is no su
h well-ordering, then we 
aneasily add one by for
ing without 
reating new sets.) Let κ be superstrongin V , witnessed by the embedding π : V → M ; thus Eπ is a # for V . Set
M0 = L. Now π ↾ M0 maps M0 to M0 and therefore M0 has a #. Let
M1 = M0[E0] where E0 is the least sharp for M0. Indu
tively, ifMi has beende�ned then π ↾ Mi maps Mi into Ni = π(Mi) =

⋃Range π ↾ Mi. Perhaps
π ↾ Mi witnesses that Mi has a sharp. De�ne Mi+1 to be Mi[Ei] where Eiis the least sharp for Mi. Take an appropriate limit at limit stages. Thenat some least stage ∞, M∞ must 
ontain a sharp for itself, and therefore asuperstrong 
ardinal. If we 
an arrange that ea
h Mi satisfy the GCH, thenwe have established the Inner Model Conje
ture.There are many di�
ulties with the above sket
h. As a start, we assumesomewhat more than a superstrong and 
arry out the above 
onstru
tion,ignoring the important problem of ensuring the GCH.De�nition. Suppose that A is a 
lass. We say that κ is A-strong i� for ea
h
ardinal α there exists π : V → M with 
riti
al point κ su
h that α ≤ π(κ)and A∩Hα = π(A)∩Hα (= π(A∩Hκ)∩Hα). κ is A-superstrong i� for ea
h
ardinal α there exists π : V → M with 
riti
al point κ su
h that α ≤ π(κ)and A ∩Hπ(κ) = π(A) ∩Hπ(κ) (= π(A ∩Hκ) ∩Hπ(κ)). V is super-Woodin i�for ea
h 
lass A there is a κ whi
h is A-superstrong.

κ is supersolid i� there is π : V → M with 
riti
al point κ su
h that M
ontains all bounded subsets of π(κ) and in addition π(κ) is regular. κ ishyperstrong i� there is π : V → M with 
riti
al point κ su
h thatM 
ontainsall subsets of π(κ).Proposition 7. Hyperstrength > Supersolidity > Super-Woodinness.91



Proof Sket
h. Suppose that κ is hyperstrong, witnessed by π : V → M . As
κ is Mahlo, it follows that π(κ) is also Mahlo, as π(κ) is Mahlo in M and
M 
ontains all subsets of π(κ). We 
laim that some κ̄ < κ is supersolid in
Vκ. Otherwise κ is not supersolid in V M

π(κ) = Vπ(κ). But as κ is Mahlo in
M , there exists a regular δ < π(κ) su
h that only ordinals less than δ arerepresented in Ult (V,Eπ) by a pair (f, a) where a belongs to Vδ. It followsthat Eπ ↓ δ is an extender sending κ to δ, witnessing the supersolidity of κin Vπ(κ), 
ontradi
tion.Suppose that κ is supersolid, witnessed by the embedding π : V → M .Then we 
laim that Vκ is super-Woodin (with respe
t to all subsets of Vκ). Ifnot, 
hoose A ⊂ Vκ su
h that no κ̄ < κ is A-superstrong in Vκ. Then κ is not
π(A)-superstrong in V M

π(κ) = Vπ(κ). But for CUB-many δ < π(κ), Eδ = Eπ ↓ δwitnesses the superstrength of κ and moreover Eδ(A ∩ κ) = Eδ(π(A) ∩ κ) =
π(A) ∩ Eδ(κ) so in fa
t the Eδ's witnesses the π(A)-superstrength of κ in
Vπ(κ), 
ontradi
tion. 2We also need one more simple fa
t. If π : M → N then we de�ne the
riti
al image of π, written 
rim π, to be π(κ), where κ is the 
riti
al pointof π. If E is the extender derived from π we also write 
rim E for 
rim π.Proposition 8. Suppose that V is super-Woodin. Then for every 
lass A andevery CUB 
lass of ordinals C there exists a κ ∈ C whi
h is witnessed to be
A-superstrong via embeddings with 
riti
al image in C.Proof. Suppose that κ is A,C-superstrong. For any 
ardinal α 
hoose π :
V → M with 
riti
al point κ su
h that α ≤ π(κ) and A ∩ Hπ(κ), C ∩ π(κ)are the same as π(A) ∩Hπ(κ), π(C) ∩ π(κ). We may also assume that someelement of C lies between κ and π(κ) for ea
h su
h π. But then C∩κ must beunbounded in κ and therefore κ belongs to C. Also π(C) ∩ π(κ) = C ∩ π(κ)is unbounded in π(κ) so π(κ) belongs to C. 2Assume now that V is super-Woodin. Then every inner model M has a
#: Choose π : V → N with 
riti
al point κ su
h that M ∩Hπ(κ) agrees with
π(M) ∩Hπ(κ). Then π ↾ M : M → π(M) provides a # for M . The fa
t thatboth 
rit π and 
rim π 
an be 
hosen from any CUB 
lass of ordinals will beused a bit later.As suggested above, a # iteration is, roughly speaking, a sequen
eM0,M1, . . .of inner models where: 92



M0 = L
Mi+1 = Mi[Ei], where Ei is a # for Mi

Mλ = the limit of 〈Mi | i < λ〉 for limit λ.The type of model that arises through su
h an iteration is 
alled an extendermodel and is of the form L[E] where E = 〈Eα | α ∈ ORD〉 is a sequen
e ofextenders (for appropriate models). For any extender E we de�ne the indexof E, written ind E, to be ∪(Range E ∩ORD).De�nition. An extender sequen
e is a sequen
e E = 〈Eν | ν ∈ ORD〉 su
hthat for all ν, Eν is either empty or an extender on L[E ↾ ν] su
h that:1. ν = ind Eν .2. Let κ be the 
riti
al point of Eν . The Eν preserves E ↾ ν: if π is the
anoni
al embedding L[E ↾ ν] → Ult (L[E ↾ ν], Eν ] then E ↾ ν = π(E ↾ ν) ↾

ν.An extender model is a stru
ture LE = 〈L[E], E〉 where E is an extendersequen
e.To 
arry out our indu
tive de�nition of extender models we must 
onsiderwell-orderings of length greater than ORD. To formalise this it is 
onvenientto work in a strengthened 
lass theory. We shall assume:
(∗) There is a relation E on V su
h that V ∗ = 〈V,E〉 is a model of ZFC−with an element isomorphi
 to 〈V,∈〉.Fix su
h a V ∗ and let < be the well-ordering of its ordinals. An element ofthe �eld of < is 
alled a hyperordinal and we order hyperordinals using <.Then our desired de�nition of the extender modelsMi is by indu
tion on thehyperordinal i. Fix also a well-ordering of V belonging to V ∗ to be used inthis indu
tion.We explain now what is done at su

essor stages. Suppose that M = LEis an extender model and suppose that F is an extender on M with 
riti
alpoint κ, ν = ind F , F [E ↾ κ] = E ↾ F (κ), HM

κ ⊆ L[E ↾ κ] and HM
F (κ) ⊆

L[E ↾ F (κ)]. Then M [F ] is de�ned to be the extender model with extendersequen
e E∗, where E∗
σ = Eσ for σ < F (κ), E∗

σ = F [E ↾ (κ+ of M)]σ for
F (κ) ≤ σ < ν, E∗

ν = F and E∗
σ = ∅ for ν < σ.At limit stages we have: 93



De�nition. Suppose that 〈Mi | i < λ〉 is a sequen
e of extender models with
orresponding extender sequen
es Ei, i < λ. Then the limit of the Mi's,
lim〈Mi | i < λ〉, is the extender model LE where E is de�ned by: Eν = ∅unless Ei ↾ ν + 1 = Ej ↾ ν + 1 for all su�
iently large i, j < λ, in whi
h 
ase
Eν is the 
ommon value of (Ei)ν for su�
iently large i < λ.Theorem 9. Assume that V is super-Woodin and isomorphi
 to an elementof some ZFC− model V ∗ = 〈V,E〉. Fix a well-ordering of V in V ∗ and let <denote the well-ordering of the ordinals of V ∗, 
alled hyperordinals. De�ne asequen
e of extender models Mi = LEi , i a hyperordinal, as follows:
M0 = L, with (E0)ν = ∅ for all ν
Mi+1 = Mi[Fi] where Fi is the least # for Mi su
h that if κi is the 
riti
alpoint of Fi then Fi(Ei ↾ κi) = Ei ↾ Fi(κi), HMi

κi
⊆ L[Ei ↾ κi] and HMi

Fi(κi)
⊆

L[Ei ↾ Fi(κi)]

Mλ = lim〈Mi | i < λ〉 for limit hyperordinals λ.Then Mi is de�ned for all i and for some hyperordinal ∞, M∞ � There is asuperstrong 
ardinal.Proof. Suppose that Mi is de�ned and we wish to show that Fi exists. ByProposition 8 there exists an embedding π : V → M with 
riti
al point κsu
h that π(Ei ↾ κ) = Ei ↾ π(κ), HMi
κ ⊆ L[Ei ↾ κ] and HMi

π(κ) ⊆ L[Ei ↾ π(κ)].Then Eπ is a 
andidate for Fi.Now suppose that no Mi has a superstrong 
ardinal.We show by indu
tion that for ea
h ordinal α, 
rim Fi ≥ α for su�
ientlylarge i (where 
rim Fi = Fi(κi), the 
riti
al image of Fi). Suppose thatthis is true for α and we wish to show that 
rim Fi > α for su�
ientlylarge i. Choose i0 so that 
rim Fi ≥ α for i ≥ i0. If 
rim Fi > α for all
i ≥ i0 then we are done. Otherwise 
hoose i1 ≥ i0 su
h that 
rim Fi1 = α.We 
laim that 
rim Fj > ind Fi1 for all j > i1. Otherwise let i2 > i1 beleast so that 
rim Fi2 ≤ ind Fi1 . Then Fi1 belongs to the model Mi2 andtherefore ind Fi1 < α+ of Mi2 . It follows that 
rim Fi2 is at most α as it isan ina

essible 
ardinal of Mi2 . By 
hoi
e of i0, in fa
t 
rim Fi2 equals α.Now by de�nition, HMi2

α is 
ontained in L[Ei2 ↾ α] whi
h equals L[Ei1 ↾ α] asall Fi, i1 ≤ i ≤ i2, preserve Ei up to α and therefore Ei ↾ α does not 
hangebetween i1 and i2. Thus Mi2 
ontains the extender Fi1 and all boundedsubsets of α = 
rim Fi1 belong to Ult (Mi2 , Fi1). (The latter is well-founded94



as it embeds into Ult (V, F ∗
i1
), where Fi1 is the restri
tion to Mi1 of the V -extender F ∗

i1
.) Thus Fi1 witnesses the superstrength of its 
riti
al point κi1in Mi2 , 
ontrary to hypothesis.As 
rim Fi is eventually at least α for any ordinal α, it follows that Fi iseventually unde�ned, in 
ontradi
tion to the �rst paragraph of the proof. 2How 
an we ensure that the inner models Mi of the previous theoremsatisfy GCH? A natural way is to enfor
e the Gödel property :Gödel Property. Suppose that V = LE is an extender model. If X is a subsetof the in�nite 
ardinal κ then X belongs to LEκ+.In our indu
tive de�nition of theMi's, we begin withM0 = L, whi
h satis�esthe Gödel property by virtue of Gödel's proof of the GCH in L. Now supposethat Mi satis�es the Gödel property and we wish to maintain this propertywhen de�ning Mi+1. Write Mi+1 = Mi[Fi], where Fi has index νi. As Fi 
anbe 
oded by a subset of 
rim Fi = Fi(
rit Fi), it follows by Gödel's argumentthat the Gödel property holds for κ ≥ 
rim Fi. Also if κ is less than 
rim Fiand X is a subset of κ in Mi, then sin
e the Gödel property holds for X in

Mi it also holds for X inMi+1, as Mi+1 agrees withMi up to 
rim Fi and κ+of Mi+1 is at least κ+ of Mi. Now let X be a bounded subset of 
rim Fi in
Mi+1−Mi and 
hoose ν su
h that X belongs to LEi+1

ν . Then ν is at least νi.For simpli
ity let us assume that X = R is a subset of ω. We would like toguarantee the Gödel property for R in Mi+1. Of 
ourse the di�
ulty is that
R does not appear until stage ν, whi
h may be un
ountable in Mi+1.So 
onsider H = the Skolem hull of {R} in LEi+1

ν . Then H is 
ountableand R belongs to the 
ountable stru
ture M i+1 = the transitive 
ollapse of
H . We repla
eMi+1 by M∗

i+1, the extender model obtained by adding emptylevels to the top of M i+1. We have the Gödel property for M∗
i+1, as thismodel is of the form L[S] for some real S.But we must show that this new indu
tive de�nition 
onverges to a modelof a superstrong. For this purpose we need to know that when �hulling down�to form M i+1, not too mu
h information is lost. In parti
ular we would liketo know that we still have all the reals present in Mi. The 
ru
ial propertyneeded is the following:

(∗) Suppose that H is a 
ountable elementary submodel of N = L
Ei+1

ν . Thenthe reals in H form an initial segment of the reals in N .95



Currently, the only known te
hnique for proving (∗) is to use the theoryof iteration and 
omparison. Suppose that M = LEα is an initial segmentof an extender model. We 
an use our earlier ultrapower 
onstru
tion toform Ult (M,F ) whenever F is an extender on M (i.e., derived from someembedding M → N). By taking repeated ultrapowers and taking dire
tlimits at limit stages, we from an iteration of M . In an iteration, we allowourselves to trun
ate the 
urrent iterate Mi of M , by repla
ing Mi by oneof its proper initial segments. We 
onsider iterable M , whi
h give rise towell-founded iterates, with only �nitely many trun
ations o

uring in anyiteration. When iterating the reals do not 
hange, ex
ept when trun
ationo

urs, when a �nal segment of the reals may be lost.Comparison says the following:Comparison. Suppose that M,N are iterable. Then either some iterate M∗of M without trun
ations is an initial segment of an iterate N∗ of N , orvi
e-versa.It follows from Comparison that if M,N are iterable then either the reals of
M form an initial segment of the reals of N , or vi
e-versa. This yields (∗):Let H = the transitive 
ollapse of H . Then either the reals of H form aninitial segment of the reals of N = L

Ei+1

ν or vi
e-versa. But as the reals of Hequal the reals of H ⊆ N , the former must hold, as desired.Unfortunately obtaining iterable extender models is problemati
 and hasnot yet been 
arried out to the level of a superstrong 
ardinal. One does havethe desired theory at the level of a Woodin 
ardinal, and therefore the innermodel 
onje
ture has been proven, if one repla
es �superstrong� by �Woodin�in its statement.
2 in Extender ModelsFor an extender model LE to serve as a good analogue of L in the large
ardinal 
ontext, it would be uesful to know that not only GCH, but alsoJensen's 2 prin
iple holds in su
h a model. S
himmerling and Zeman esta-blished this result for the extender models whi
h are known to satisfy GCH.We now dis
uss some of the ideas behind this proof.Suppose that V = LE is an extender model and �x an un
ountable 
ardi-nal κ. We would like to prove the following version of 2 for ordinals between

κ and κ+: 96



2κ. There exists 〈Cν | κ < ν < κ+, ν limit〉 su
h that Cν is CUB in ν, Cνhas ordertype ≤ κ and ν̄ ∈ LimCν → Cν̄ = Cν ∩ ν̄.Let's begin by re
alling some of the ideas behind the proof of this prin
iplein L. It su�
es to de�ne the Cν for limit ordinals ν < κ+ su
h that Lν � κis the largest 
ardinal, as the set of su
h ν forms a CUB subset of κ+. Let
ν be su
h a limit ordinal and 
hoose β(ν) ≥ ν least so that ν ⊆ the ΣnSkolem hull of κ ∪ {p} in Lβ(ν) for some n and some parameter p ∈ Lβ(ν).We assume that n = 1, β(ν) is a limit ordinal and that p = p(ν) is least inthe maximum-di�eren
e ordering ≤∗ of �nite sets of ordinals: p ≤∗ q i� thelargest ordinal in (q − p) ∪ (p− q) belongs to q. For any α < κ we 
onsider
Hα = the Σ1 Skolem hull of α∪{p(ν)} in Lβ(ν), as well as βα = sup(Hα∩β(ν))and να = sup(Hα ∩ ν). The rough idea is to de�ne Cν to be the 
olle
tion ofthose να whi
h are less than ν.One must verify 
oheren
e: ν̄ ∈ LimCν → Cν̄ = Cν ∩ ν̄. Choose α sothat ν̄ = να. The key step is to show:
Lβ(ν̄) is the transitive 
ollapse of H = the Σ1 Skolem hull of ν̄ ∪ {p(ν)} in
Lβα.Then one also veri�es that p(ν̄) is the image of p(ν) under the 
ollapsingmap, and ultimately that 
oheren
e holds. In the L-
ontext we ne
essarilyhave that H is isomorphi
 to Lβ̄ for some β̄, by 
ondensation, and then one
an argue that β̄ equals β(ν̄). The di�
ulty in the LE-
ontext is that Hneed not be of the form LE

β̄
, in 
ases where Eβ(ν) is nonempty.Let us take a 
loser look at this last point. Suppose that F = Eβ(ν) isan extender with 
riti
al point γ < κ. Thus F is a fun
tion from (Hγ+ of

LEβ(ν)) = Hγ+ 
o�nally into LEβ(ν). Typi
ally, βα < β(ν) and therefore F ∩LEβαis only partially de�ned on Hγ+ . This means that the transitive 
ollapse of
H is a stru
ture LĒ

β̄
with a fun
tion F̄ = Ēβ̄ at the top whi
h is not anextender, but a fun
tion mapping a proper subset of Hγ+ 
o�nally into LĒ

β̄
.Su
h a fun
tion is 
alled an extender fragment, as its domain is smaller thanit should be.This suggests that when de�ning Cν̄ we should not use the usual 
ollapsingstru
ture LEβ(ν̄), but rather an appropriate �fragment stru
ture� asso
iatedto ν̄, in order to obtain 
oheren
e. But what fragment stru
ture do we
hoose? It turns out that all 
andidates LĒ

β̄
for the fragment stru
ture have97



the following property: The ultrapower of LĒ
β̄
by the extender fragment Ēβ̄ isequal to the usual 
ollapsing stru
ture LEβ(ν̄). Thus we are led to an analysisof the di�erent ways in whi
h the usual 
ollapsing stru
ture LEβ(ν̄) 
an beobtained via a fragment ultrapower.The possible fragments are parametrised by pairs (µ, q), where µ is a
ardinal less than κ and q is an initial segment of the standard parameter

p = p(ν̄). (Thus we view p as a �nite set of ordinals, and q is of the form p∩δfor some ordinal δ.) A fragment is asso
iated to (µ, q) provided X(µ, q) = the
Σ1 Skolem hull of µ∪{p−q} in LEβ(ν̄) does not interse
t the interval [µ,max q];in this 
ase the asso
iated fragment is π ↾ (Hµ+ of X̄(µ, q)) where X̄(µ, q) isthe transitive 
ollapse of X(µ, q) and π is the inverse to the 
ollapsing map.We are interested in strong fragments whi
h have the additional propertythat X(µ, q) and the same hull with p − q repla
ed by p have the samesubsets of µ after transitive 
ollapse.For any q we 
onsider D(q) = {µ | (µ, q) gives rise to a strong fragment}.This is 
losed and bounded in κ. Finally 
onsider the smallest initial segment
q = q(ν̄) of p su
h that D(q) is nonempty and the largest element µ = µ(ν̄)of the asso
iated D(q). The desired fragment is the one asso
iated to thispair (µ(ν̄), q(ν̄)). S
himmerling-Zeman prove 
oheren
e for this 
hoi
e offragment.
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6. Set For
ing over Extender ModelsSingular CardinalsFirst we re
all the following 
onsequen
e of Jensen's Covering Theorem.Theorem 1. Suppose that 0# does not exist. Then the GCH holds at allsingular strong limit 
ardinals.Proof. Suppose that κ is a singular strong limit 
ardinal and let λ be the
o�nality of κ. Then 2κ = κλ. As every subset of κ of 
ardinality λ is
ontained in a 
onstru
tible one of 
ardinality at most λ+, κλ is at most
κ+ · 2λ

+

= κ+. 2We will show that the 
on
lusion of this theorem 
an be violated if weassume the existen
e of large 
ardinals. First we need a method for makinga 
ardinal singular without 
ollapsing it.Prikry For
ingTheorem 2. Let κ be a measurable 
ardinal. Then there is a generi
 extensionin whi
h the 
o�nality of κ is ω and no 
ardinals are 
ollapsed. Moreover,no bounded subsets of κ are added.Proof. Let U be the ultra�lter on κ derived from an embedding π : V → Mwith 
riti
al point κ. I.e., U is the 
olle
tion of subsets of κ de�ned by
A ∈ U i� κ ∈ π(A).Let P 
onsist of all pairs p = (s, A) where s is a �nite subset of κ and Abelongs to U . Extension is de�ned by
(s, A) ≤ (t, B) i�(i) t is an initial segment of s(ii) A is a subset of B(iii) s− t ⊆ B.Two 
onditions with the same �rst 
omponent are 
ompatible, sin
e U is a�lter. Thus P has the κ+-

 and therefore all 
ardinals greater than κ arepreserved by P . 99



Let G be P -generi
. Then κ has 
o�nality ω in V [G], as ⋃
{s | (s, A) ∈ Gfor some A} is an unbounded subset of κ of ordertype ω.It remains only to show that P does not add new bounded subsets of κ.The proof is based on two lemmas.Lemma 3. Suppose that f : [κ]<ω → 2, where [κ]<ω denotes the set of �nitesubsets of κ. Then there exists A ∈ U su
h that for ea
h n, f is 
onstant on

[A]n, the set of subsets of A of size n.Proof of Lemma 3. First note that U is a normal ultra�lter, i.e., if Ai belongsto U for ea
h i < κ then so does ∆{Ai | i < κ} = {i < κ | i ∈ Aj for all j < i}.This is be
ause by hypothesis κ belongs to π(Ai) = (π(〈Ai | i < κ〉))i forea
h i < κ, and therefore κ belongs to ∆ π({Ai | i < κ}) = π(∆{Ai | i < κ}).Now by indu
tion on n we show that there exists A ∈ U su
h that fis 
onstant on [A]n. This is 
lear for n = 1, sin
e U is an ultra�lter. If itholds for n then for ea
h i < κ 
hoose Ai ∈ U su
h that fi is 
onstant on
[Ai]

n, where fi is de�ned on κ− (i+ 1) by fi(α1, . . . , αn) = f(i, α1, . . . , αn).Let A∗ = ∆{Ai | i < κ} and 
hoose A ⊆ A∗ in U su
h that fi has thesame 
onstant value on [Ai]
n for ea
h i ∈ A. Then f is 
onstant on [A]n+1,
ompleting the indu
tion.Now by interse
ting sets An ∈ U su
h that f is 
onstant on [An]

n for ea
h
n, we get the desired set A ∈ U . 2Lemma 4. Let ϕ be a senten
e of the for
ing language and (s0, A0) a 
ondi-tion. Then there exists A ⊆ A0 in U su
h that (s0, A) de
ides ϕ.Proof of Lemma 4. We may assume that minA0 > max s0. Let S+ be theset of s ∈ [A0]

<ω su
h that (s0 ∪ s, A) 
 ϕ for some A ⊆ A0 and S− the setof s ∈ [A0]
<ω su
h that (s0 ∪ s, A) 
∼ ϕ for some A ⊆ A0. By Lemma 3,
hoose A ∈ U su
h that for ea
h n, either [A]n ⊆ S+, [A]n ⊆ S− or [A]n isdisjoint from S+ ∪ S−.We 
laim that (s0, A) de
ides ϕ. If not then there are (s0∪s, B), (s0∪t, C)extending (s0, A) whi
h for
e ϕ,∼ ϕ, respe
tively. We may assume that sand t have the same length n. But then s ∈ S+, t ∈ S− and therefore [A]ninterse
ts both S+ and S−, 
ontrary to the 
hoi
e of A. 2Now suppose that (s, A) 
 σ is a subset of λ < κ. For ea
h i < λ, 
hoose

Ai ⊆ A su
h that (s, Ai) de
ides the senten
e i ∈ σ. Then (s, A∗) for
es that100



σ is in the ground model, where A∗ =
⋂
iAi. This 
ompletes the proof ofTheorem 2. 2Our strategy to obtain a singular strong limit 
ardinal where GCH fails isnow as follows. We will show that the GCH 
an fail at a measurable 
ardinal

κ. Then by applying Prikry for
ing to κ, we obtain a singular strong limit
ardinal of 
o�nality ω where the GCH fails.First we state a general lemma whi
h 
an be used to extend an embedding
k : M → N to a generi
 extension of M .Proposition 5. Let k : M → N be an elementary embedding between ZFCmodels, P ∈ M , G P -generi
 over M and let H be k(P )-generi
 over N .If k[G] ⊆ H then there exists k∗ : M [G] → N [H ] extending k su
h that
k(G) = H .Proof. If k[G] ⊆ H de�ne k∗ by k∗(σG) = k(σ)H . This is well-de�ned,as if σG = τG then there is p ∈ G su
h that p 
 σ = τ and therefore
k(p) 
 k(σ) = k(τ), yielding k(σ)H = k(τ)H , sin
e k(p) belongs to H .Similarly k∗ is elementary. As k sends a standard P -name for an element of
M to a standard k(P )-name for the image of that element, it follows that k∗extends k. Similarly, as k sends a standard P -name for the generi
 G to astandard k(P )-name for the generi
 H , we get k(G) = H . 2Theorem 6. Suppose that it is 
onsistent to have GCH and a 
ardinal κ whi
his κ++-strong. Then it is 
onsistent to have the GCH fail at a measurable
ardinal.Proof. Suppose that V satis�es GCH and has a κ whi
h is κ++-strong,witnessed by an embedding π : V → M . We may assume that M is theultrapower of V by an extender E with 
riti
al point κ, and that E equals
E ↓ κ++. Thus every element ofM is of the form π(f)(a), where f : Hκ → Vand a ∈ Hκ++. Note that M is 
losed under κ-sequen
es, as if for ea
h i < κ,
mi ∈M is represented as π(fi)(ai), we 
an represent 〈mi | i < κ〉 by π(f)(a)where f(〈xj | j < i〉) = 〈fj(xj) | j < i〉 and a = 〈ai | i < κ〉. Also sin
e Hκ++is 
ontained in M , we have that κ++ = κ++ of M .Let U be E ↓ κ+, the �measure� derived from E, and πU : V → N =Ult (V, U) the ultrapower embedding given by U . Using the same argument101



as used above for M , N is 
losed under κ-sequen
es. Also π = k ◦ πU where
k : N →M is given by k(πU (f)(a)) = π(f)(a) for a ∈ Hκ+ .Let λ be the κ++ of N . Sin
e the GCH holds at κ, λ < κ++ = κ++ of
M . It follows that λ is the 
riti
al point of k : N → M . Every element of
M is of the form π(f)(a) for some a ∈ Hκ++. Now π(f)(a) = (k(πU(f)) ↾

Hκ++)(a) = k(πU (f) ↾ HN
λ )(a). Therefore every element of M is of the form

k(g)(a) for some a ∈ Hκ++ and some g ∈ N whose domain has N -
ardinality
λ. Our goal is to extend the embedding π to a generi
 extension of V inwhi
h 2κ = κ++ and in whi
h this extension of π is de�nable. We shall �rstshow how to extend π to the natural reverse Easton extension of V in whi
h
2κ = κ++, and then extend this embedding on
e more to a further generi
extension in whi
h this se
ond extension of π is de�nable.Let P = Pκ+1 be the reverse Easton iteration where at stage α ≤ κ,
Pα+1 = Pα ∗ Qα, where Qα is trivial unless α is ina

essible, in whi
h 
ase
Qα = Add (α, α++)V [Gα], the for
ing to add α++ subsets to α with 
ondi-tions of size less than α. We use Easton supports, taking dire
t limits atina

essibles and inverse limits elsewhere.Let G be Pκ-generi
 over V and let g be Qκ-generi
 over V [G]. Our�rst step is to extend π and πU to V [G]. Thus we must 
hoose generi
sfor π(Pκ) = π(P )π(κ) and πU(Pκ) = πU(P )πU (κ) 
ontaining π[G] and πU [G],respe
tively. Up to stage κ, the iterations P , πU (P ) and π(P ) are all thesame: Pκ = πU(P )κ = π(P )κ.Lemma 7. π(P )κ+1 = Pκ+1.Proof. This is be
ause V and M have the same Hκ++. 2Lemma 8. πU(P )κ+1 = Pκ ∗Q

∗
κ where Q∗

κ is the Add (κ, λ) of V [G].Proof. Clearly Q∗
κ is the Add (κ, λ) of N [G]. But V and N have the same

Hκ+ and λ has 
o�nality greater than κ; therefore N , V have the same size
< κ subsets of λ and N [G], V [G] have the same size < κ subsets of λ. 2Let g0 equal g ∩Q∗

κ. Then g0 is Q∗
κ-generi
 over V [G] and therefore alsoover N [G]. As N is 
losed under κ-sequen
es and Pκ ∗ Q

∗
κ has the κ+-

,it follows that V [G][g0] � N [G][g0] is 
losed under κ-sequen
es (sin
e every

κ-sequen
e in V [G][g0] has a name in V of size κ).102



Let R0 = PN
κ+1,πU (κ) be the fa
tor for
ing to prolong G ∗ g0 to a generi
for πU (Pκ). We may build H0 in V [G][g0] whi
h is R0-generi
 over N [G][g0],using the fa
t that R0 is κ+-
losed in N [G][g0], has 
ardinality κ+ in V [G][g0]and V [G][g0] � N [G][g0] is 
losed under κ-sequen
es.Sin
e k has 
riti
al point λ > κ, k[G] = G and we 
an lift k : N → Mto k : N [G] → M [G]. Also, k[g0] = g0 ⊆ g and so we may lift again to get

k : N [G][g0]→M [G][g].Let R = PM
κ+1,π(κ). We 
laim that H = {r ∈ R | k(r0) ≤ r for some

r0 ∈ H0} is R-generi
 over M [G][g]. To see this, note that ea
h open dense
D ⊆ R in M [G][g] is of the form k(f)(a) for some f ∈ N [G][g0] with domainof size λ. We may assume that f(x) is open dense on R0 for ea
h x ∈ Dom f ,and sin
e R0 is λ+-
losed in N [G][g0], we may 
hoose r0 ∈ H0 belonging toea
h f(x), x ∈ Dom f . It follows that k(r0) ∈ H belongs to D.Thus we have now extended the original π, πU and k to embeddings
π : V [G] → M [G][g][H ], πU : V [G] → N [G][g0][H0] and k : N [G][g0][H0] →
M [G][g0][H ] so that π = k ◦ πU . These embeddings are de�nable in V [G][g].Now we try to lift π to V [G][g]. Let S0 = πU(Qκ) = Add (πU (κ), πU(κ)++)of N [G][g0][H0]. Noti
e that S0 has 
ardinality κ++, so we 
annot 
hoosean S0-generi
 the way we 
hose an R0-generi
. Instead we must for
e over
V [G][g] with S0.Lemma 9. S0 is κ+-
losed and κ++-Knaster in V [G][g0]. (P is κ-Knaster i�for every κ-sequen
e of 
onditions 〈pα | α < κ〉 there is an unbounded X ⊆ κsu
h that pα, pβ are 
ompatible for all α, β ∈ X.)Proof. κ+-
losure follows be
ause V [G][g0] � N [G][g0][H0] is 
losed under
κ-sequen
es and N [G][g0][H0] � S0 is κ+-
losed. Let 〈pα | α < κ++〉 be asequen
e of 
onditions in S0 and represent pα as πU (fα)(aα) where aα ∈ Hκ+and fα : Hκ → Qκ, fα ∈ V [G]. Then for some unbounded X ⊆ κ++,
fα(y), fβ(y) are 
ompatible for all y ∈ Hκ and aα = aβ , for all α, β ∈ X. Itfollows that pα, pβ are 
ompatible for all α, β ∈ X. 2Lemma 10. S0 is κ+-distributive and κ++-

 in V [G][g].Proof. V [G][g] is a generi
 extension of V [G][g0] via a for
ing whi
h is iso-morphi
 to Qκ, whi
h is κ+-

 in V [G][g0]. As S0 is κ+-
losed in V [G][g0], itfollows that it is κ+-distributive in V [G][g].103



The produ
t of a κ++-Knaster for
ing and a κ++-

 for
ing is κ++-

. Soas S0 is κ++-Knaster in V [G][g0] and Qκ is κ++-

 (in fa
t κ+-

) in V [G][g0]it follows that S0×Qκ is κ++-

 in V [G][g0]. Thus sin
e V [G][g] is a generi
extension of V [G][g0] via a for
ing isomorphi
 to Qκ, it follows that S0 is
κ++-

 in V [G][g]. 2By Lemma 10, if we for
e with S0 over V [G][g] we preserve 
ardinals. Let
h0 be S0-generi
 over V [G][g].Just as we 
ould obtain anR-generi
 (overM [G][g])H = {r ∈ R | k(r0) ≤
r for some r0 ∈ H0}, we 
an obtain an S-generi
 (over M [G][g][H ]) h = {s ∈
S | k(s0) ≤ s for some s0 ∈ h0}, where S = π(Qκ) = Add (π(κ), π(κ)++)of M [G][g][H ]. Our wish is to extend π to an embedding from V [G][g] to
M [G][g][H ][h], but we have to �rst guarantee that π[g] ⊆ h.Let f = ∪g : κ × κ++ → 2 be the fun
tion 
orresponding to the generi

g. Then ∪π[g] is the fun
tion f ∗ : κ× π[κ++] → 2 de�ned by f ∗(α, π(β)) =
f(α, β). We have to modify h to h∗ so that ea
h q∗ in h∗ is 
ompatible with
f ∗. For any q ∈ h let q∗ be de�ned by altering q on Dom q ∩ (κ × π[κ++])to agree with f ∗. We 
laim that q∗ belongs to M [G][g][H ], and thereforebelongs to S. Write q = π(f)(a) where a belongs to Hκ++ and f : Hκ → Qκbelongs to V [G]. (Of 
ourse Hκ, denotes the Hκ of V [G] and Qκ denotes theAdd (κ, κ++) of V [G].) If (α, π(β)) belongs to Dom q then (α, β) belongs toDom f(x) for some x ∈ Hκ, so {(α, β) | (α, π(β)) ∈ Dom q} is 
ontained in
Z0 =

⋃
xDom f(x) ∈ V [G]. As Z0 has size at most κ and Pκ is κ-

, thereis Z ∈ V , Z0 ⊆ Z ⊆ κ × κ++ of size at most κ. Then Z belongs to M and

π ↾ Z also belongs to M . Using q, g, π ↾ Z we 
an de�ne q∗, and therefore q∗belongs to M [G][g][H ].Lemma 11. h∗ = {q∗ | q ∈ h} is S-generi
 over M [G][g][H ].Proof. Suppose that D is open dense on S, D ∈ M [G][g][H ]. For any q ∈ Sde�ne N(q) to be the set of r ∈ S with the same domain as q whi
h disagreewith q on a set of size at most κ. Then E = {q | N(q) ⊆ D} is dense on S,using the π(κ)-
losure of S. Choose q in E∩h. Then q∗ belongs to N(q) andtherefore to D. It follows that h∗ interse
ts D. 2As π[g] ⊆ h∗ we may lift π to an embedding V [G][g] → M [G][g][H ][h∗].And as before, by taking I = {p | π(p0) ≤ p for some p0 ∈ h0}, weobtain a π(S0)-generi
 over M [G][g][H ][h∗], and therefore an embedding104



V [G][g][h0] → M [G][g][H ][h∗][I] whi
h is de�nable in V [G][g][h0], as desi-red. 2Remark. The hypothesis of Theorem 6 
an be weakened slightly. The aboveproof only needed an embedding π : V → M with 
riti
al point κ, whereGCH holds in V , M is 
losed under κ-sequen
es and for some fun
tion f ,
π(f)(κ) = κ++. (f does not have to be the fun
tion f(α) = α++.) Gitikshowed that this weaker statement is equi
onsistent with the statement thatfor some κ and every A ⊆ κ+, there is an embedding π : V → M with
riti
al point κ su
h that A belongs to M , and also equi
onsistent with thestatement that GCH fails at a measurable 
ardinal.Regularity PropertiesWe show that if there is a Woodin limit of Woodin 
ardinals then every setof reals in L(R), the smallest inner model 
ontaining all the reals, is Lebesguemeasurable. The 
onsisten
y of the latter statement is rather weak, followingfrom the 
onsisten
y of the existen
e of an ina

essible 
ardinal:Theorem 12. (Solovay) Suppose that δ is ina

essible and G is generi
 forColl(ω,< δ), the for
ing with �nite 
onditions that makes ea
h ordinal lessthan δ 
ountable. Then in V [G], every set of reals in L(R) is Lebesguemeasurable.We shall show that if there is a Woodin limit of Woodin 
ardinals, then L(R)elementarily embeds into L(R)V [G] where G is as in Theorem 12. It followsthat every set of reals in L(R) is Lebesgue measurable.De�nition. Suppose that c ⊆ P(u). Then c is CUB on u i� c 
onsists of theuniverses of all substru
tures of a �xed stru
ture for a 
ountable languagewith universe u. s ⊆ P(u) is stationary on u i� s ∩ c 6= ∅ for ea
h CUB
c ⊆ P(u), i.e., i� every stru
ture for a 
ountable language with universe uhas a substru
ture with universe in s. The stationary tower for
ing Q = Qδ,where δ is an ina

essible 
ardinal, 
onsists of all pairs (u, s) where u ∈ Vδis transitive and s ⊆ Pω(u) = {x ⊆ u | x is 
ountable} is stationary on u,ordered by:
(u, s) ≤ (v, t) i� u ⊇ v and s ↾ v = {x ∩ v | x ∈ s} ⊆ t.105



If G is Q-generi
 then G assigns an ultra�lter Gu on Pω(u) to ea
h u: Gu =
{s | (u, s) ∈ G}.The main fa
t that we need to prove is that if δ is Woodin and G is
Q-generi
 then δ is a 
ardinal of V [G]. It turns out that every ordinal lessthan δ is 
ountable in V [G] and therefore it will be enough to show that δhas un
ountable 
o�nality in V [G].The following is a version of Fodor's Lemma in this 
ontext.Fodor's Lemma. Suppose that s is stationary on u and f : s → u su
h that
f(x) ∈ x for ea
h x ∈ s. Then there is a stationary s′ ⊆ s su
h that f is
onstant on s′.Proof. If not, then for ea
h v ∈ u 
hoose a cv whi
h is CUB on u su
hthat f(x) 6= v whenever x ∈ c. Let c be the diagonal interse
tion of the cv:
c = {x | x ∈ cv for all v ∈ x}. Then c is CUB, so by the stationarity of sthere is x ∈ s ∩ c. But this means that f(x) 6= v for all v ∈ x, 
ontradi
tingthe hypothesis on f . 2Re
all that ∆ ⊆ Q is predense below p ∈ Q i� every extension of p is
ompatible with an element of ∆. To show that δ has un
ountable 
o�nalityin V [G], it su�
es to show:
(∗) If ∆i, i ∈ ω are dense on Q and p ∈ Q then there exists κ < δ and q ≤ psu
h that ∆i ∩Qκ is predense below q for ea
h i, where Qκ = Q ∩ Vκ.Write p = (up, sp). We say that a set x 
aptures ∆ i� there is (u, s) ∈ x ∩∆su
h that x ∩ u ∈ s. A 
ondition p 
aptures ∆ i� every x ∈ sp 
aptures ∆.Proposition 13. If q 
aptures ∆ then ∆ is predense below q.Proof. Suppose that r ≤ q. Then for ea
h x ∈ sr, x ∩ uq ∈ sq and hen
e
x ∩ uq 
aptures ∆. For ea
h su
h x 
hoose (ux, sx) ∈ x ∩ uq ∩ ∆ su
h that
x ∩ uq ∩ ux ∈ sx. As uq is transitive, x ∩ uq ∩ ux = x ∩ ux for su
h x. ByFodor there is a �xed (u, s) and a stationary s′ ⊆ sr su
h that for all x ∈ s′:
(u, s) ∈ x∩∆ and x∩ u ∈ s. Thus (ur, s

′) extends both r and (u, s) ∈ ∆, so
r is 
ompatible with an element of ∆. 2106



Thus to obtain (∗) it su�
es show that there is q ≤ p whi
h 
apturesea
h ∆i ∩Qκ, i ∈ ω. For this we need that ea
h ∆i ∩Qκ 
an be 
aptured bymany sets in Vκ, in the following sense.De�nition. ∆∩Qκ is semiproper i� for CUB-many 
ountable x ⊆ Vκ+1 thereis a 
ountable z ∈ Vκ su
h that:(i) z 
aptures ∆ ∩Qκ: There is (u, s) ∈ ∆ ∩ z su
h that z ∩ u ∈ s.(ii) z end-extends x ∩ Vκ, i.e., x ∩ Vκ = z ∩ Vα for some α < κ.(iii) z is x-
losed : If c ∈ x is CUB on Vκ then z belongs to c.Proposition 14. Suppose that p ∈ Qκ and ea
h ∆i ∩Qκ is semiproper. Thenthere exists q ≤ p su
h that q 
aptures ea
h ∆i ∩Qκ.Proof. Set q = (Vκ, t) where t = {x ⊆ Vκ | x ∩ up ∈ sp and x 
aptures ea
h
∆i ∩Qκ}. It su�
es to show that t is stationary.For ea
h i let ci be CUB on Vκ+1 witnessing that ∆i ∩ Vκ is semiproper(i.e, the CUB set of 
ountable x in the statement of semiproperness 
an be
hosen to be the 
ountable elements of ci). Let c be the interse
tion of the
ci. Now suppose that b is CUB on Vκ and we show that t has an elementwhi
h belongs to b. Choose x0 ∈ c su
h that x0 ∩ up ∈ sp; this is possibleas sp is stationary and therefore interse
ts c ↾ up = {x ∩ up | x ∈ c}. Alsorequire that p, b and c ↾ Vκ belong to x0.Let z0 = x0 ∩ Vκ. Applying the semiproperness of ∆0 ∩ Qκ, 
hoose z1end-extending z0 to 
apture ∆0 ∩ Qκ and to be x0-
losed. As c ↾ Vκ ∈ x0and z1 is x0-
losed, it follows that z1 ∈ c ↾ Vκ and therefore z1 = x1 ∩ Vκfor some x1 ∈ c. Similarly, 
hoose z2 end-extending z1 to 
apture ∆1 ∩ Qκand to be x1-
losed; then z2 = x2 ∩ Vκ for some x2 ∈ c. Continue, getting
z0 ⊆ z1 ⊆ · · · with union z. Note that z ∩ up = z0 ∩ up ∈ sp sin
e p ∈ z0and z end-extends z0. Thus z belongs to t, and sin
e b belongs to x0 and zis x0-
losed, z belongs to b, as desired. 2Re
all that κ < δ is A-strong below δ i� for ea
h α < δ there exists
π : V → M with 
riti
al point κ su
h that π(κ) > α, Vα ⊆M and π(A)∩Vα =
A∩Vα. δ is Woodin i� for any A ⊆ Vδ there exists a κ < δ whi
h is A-strongbelow δ. 107



Lemma 15. Let κ < α < δ, α ina

essible, π : V → M with 
riti
al point
κ, π(κ) > α, Vα ⊆ M , π(∆) ∩ Vα = ∆ ∩ Vα where ∆ ∩ Qα is predense on
Qα = Q ∩ Vα. Then ∆ ∩Qκ is semiproper.Proof. If not, then s = {x ⊆ Vκ+1 | There is no x-
losed z ∈ Vκ su
h that
z end extends x ∩ Vκ and 
aptures ∆} is stationary, and therefore (Vκ+1, s)is a 
ondition in Qα. Choose (u, s′) ∈ ∆ ∩ Vα 
ompatible with (Vκ+1, s). We
an 
hoose (Vβ, t) ≤ (u, s′), (Vκ+1, s) where β is less than α and (u, s′) ∈ Vβ.Now 
hoose x ∈ t to 
ontain (u, s′) and to belong to π(c) ↾ Vβ for ea
h
c ∈ x∩Vκ+1 whi
h is CUB on Vκ. Thus x = x∗∩Vβ for some x∗ ∈ π(Vκ) whi
his π(x ∩ Vκ+1)-
losed. Sin
e (Vβ, t) ≤ (Vκ+1, s), it follows that x ∩ Vκ+1 ∈ s.Applying π, we have that π(x ∩ Vκ+1) ∈ π(s). Using the de�nition of π(s),there is no π(x∩Vκ+1)-
losed z ∈ π(Vκ) su
h that z end extends π(x∩Vκ) =
x ∩ Vκ and 
aptures π(∆). But 
onsider z = x∗ ∈ π(Vκ). x∗ is π(x ∩ Vκ+1)-
losed and end-extends x ∩ Vκ. Also x∗ 
aptures π(∆), sin
e x 
ontains
(u, s′) ∈ ∆ ∩ Vα = π(∆) ∩ Vα and x∗ ∩ u = x ∩ u ∈ s′ sin
e (Vβ, t) ≤ (u, s′).This is a 
ontradi
tion. 2Corollary 16. Suppose that δ is Woodin. Then δ has un
ountable 
o�nalityin V [G] for Q-generi
 G.Proof. By Proposition 14 it su�
es to show that if p ∈ Q and ∆i, i ∈ ω aredense on Q then there exists q ≤ p and κ < δ su
h that q ∈ Qκ and ea
h
∆i ∩ Qκ is semiproper. To prove this, apply the Woodinness of δ to obtain
κ < δ su
h that p ∈ Qκ and κ is A-strong below δ, where A is the join of the
∆i's. Then apply Lemma 15 where α < δ is 
hosen so that ea
h ∆i ∩Qα ispredense on Qα. 2Suppose that G is Q-generi
. Then we 
an form an ultrapower Ult (V,G)as follows:
D = {(u, f) | f : P(u)→ V , f ∈ V }
(u, f) ∼ (v, g) i� {x ⊆ u ∪ v | f(x ∩ u) = g(x ∩ v)} ∈ Gu∪v.
(u, f)E(v, g) i� {x ⊆ u ∪ v | f(x ∩ u) ∈ g(x ∩ v)} ∈ Gu∪v.Ult (V,G) has universeD/ ∼ and membership relationE on the∼-equivalen
e
lasses [u, f ].We have: Ult (V,G) � ϕ([u1, f1], . . . , [un, fn]) i� {x ⊆ u | V � ϕ(f1(x ∩
u1), . . . , fn(x ∩ un))} ∈ Gu, where u = ∪iui. Thus we get an elementaryembedding σ : V → Ult (V,G) de�ned by: σ(x) = [∅, cx] where cx(∅) = x.108



Assume that δ is Woodin and that G is Q-generi
 over V .Lemma 17. (a) Identify the well-founded part of Ult (V,G) with its transitive
ollapse. Then every element of Vδ[G] belongs to Ult (V,G) and is 
ountablein Ult (V,G). All reals of V [G] belong to Ult (V,G).(b) In fa
t, Ult (V,G) is well-founded.Proof. (a) Suppose that u ∈ Vδ is transitive. By Fodor's Lemma, [u, id]represents σ[u] in Ult (V,G), and therefore u, the transitive 
ollapse of σ[u],belongs to Ult (V,G). Thus Vδ ⊆ Ult (V,G). Also, as V � x is 
ountable, forea
h x ∈ Gu, we have that Ult (V,G) � [u, id] = σ[u] is 
ountable and there-fore u, the transitive 
ollapse of σ[u], is also 
ountable in Ult (V,G). Finally,
s ∈ Gu i� [u, id]Eσ(s), so as σ ↾ PP(u) belongs to Ult (V,G), it follows that
Gu belongs to Ult (V,G). Thus Vδ[G] ⊆ Ult (V,G). As every ordinal lessthan δ is 
ountable in Ult (V,G) and hen
e in V [G], δ is regular in V [G].Thus every real in V [G] belongs to Vδ[G] and therefore to Ult (V,G).(b) Suppose that 〈τn | n ∈ ω〉 is for
ed by some 
ondition in Q to be a de-s
ending sequen
e of ordinals in Ult (V,G). For simpli
ity, we assume thatthis 
ondition is the weakest 
ondition of Q. Then for ea
h n, the set of (u, s)su
h that for some fn(u,s) : Pω(u)→ ORD in V , (u, s) 
 τn = [u, fn(u,s)] is denseon Q. Choose q ∈ Q whi
h 
aptures ea
h ∆n. For ea
h x ∈ sq and ea
h n,
hoose some (u, s) ∈ ∆n∩x su
h that x∩u ∈ s and set fn(x) = fn(u,s)(x∩u).We 
laim that for ea
h n, fn+1(x) ∈ fn(x) for CUB-many x ∈ sq. Other-wise, t = {x ∈ sq | f

n+1(x) /∈ fn(x)} is stationary, by Fodor we 
an 
hoose
(un, sn) ∈ ∆n, (un+1, sn+1) ∈ ∆n+1 su
h that x∩un ∈ sn, x∩un+1 ∈ sn+1 and
fn(x) = fn(un,sn)(x∩un), fn+1(x) = fn+1

(un+1,sn+1)
(x∩un+1) for all x in a stationa-ry t′ ⊆ t and then (uq, t

′) 
∼ (τn+1 = [un+1, f
n+1
(un+1,sn+1)

] E [un, f
n
(un,sn)] = τn),
ontradi
ting our hypothesis about the τn's. If x ∈ sq belongs to the inter-se
tion of the CUB sets witnessing fn+1(x) < fn(x), then we get an in�nitedes
ending sequen
e of ordinals, 
ontradi
tion. 2To prove that every set of reals in L(R) is Lebesgue measurable, we onlyneed one more fa
t.Lemma 18. Suppose that δ is not only Woodin but also the limit of Woodin
ardinals. Suppose that G is Qδ-generi
. Then every real in V [G] is generi
over V for a for
ing of size less than δ.Proof. For any ina

essible κ < δ de�ne:109



t = {x ⊆ Vκ+1 | x is 
ountable and 
aptures all predense ∆ ⊆ Qκ in x}.Assuming that κ is Woodin, we show that t is stationary. Let c be CUB on
Vκ+1 and assume that for x ∈ c, x ∩ Vα ∈ b whenever α, b ∈ x, b is CUBon Vα. The latter 
ondition is a CUB 
ondition, so 
an be assumed withoutloss of generality. Now let x0 be an arbitrary element of c. If x0 belongsto t then we are done. Otherwise 
hoose a predense ∆0 ⊆ Qκ in x0 not
aptured by x0 and 
hoose γ < δ in x0 whi
h is ∆0-strong below κ. Then
∆0 ∩Qγ is semiproper so for CUB-many 
ountable x ⊆ Vγ+1 we may 
hoose
z ∈ Vγ end-extending x ∩ Vγ whi
h 
aptures ∆0 ∩Qγ and is x-
losed. Thereis su
h a CUB 
olle
tion of x's in x0 so it follows that su
h a z exists for
x = x0 ∩ Vγ+1, by our assumption about c. Choose su
h a z1 and let x1 bethe smallest element of c su
h that z1 ∪ x0 ⊆ x1. Then x1 ∩ Vγ = z1, usingthe x0-
losure of z1. If x1 belongs to t then we are done. Otherwise repeatthe above for some predense ∆1 ⊆ Qκ in x1 not 
aptured by x1, produ
ing z2and x2. We 
an 
ontinue in this way, arranging that every predense ∆ ⊆ Qκin ∪{xi | i ∈ ω} is 
onsidered, resulting in x = ∪{xi | i ∈ ω} su
h that x ∈ t.Thus if κ is Woodin, (Vκ+1, t) is a 
ondition, where t is de�ned as above.Similarly, for any (u, s) ∈ Qκ, {x ∈ t | x ∩ u ∈ s} is stationary and therefore
(u, s) is 
ompatible with (Vκ+1, t).Now we 
laim that G ∩ Qκ is Qκ-generi
 for all Q-generi
 G 
ontaining
(Vκ+1, t). It su�
es to show that ea
h q ≤ (Vκ+1, t) is 
ompatible with ea
hpredense ∆ ⊆ Qκ. To see this, 
onsider s′ = {x ∈ sq | ∆ ∈ x} and form the
ondition q′ = (uq, s

′) ≤ q. As q′ ≤ (Vκ+1, t), x∩Vκ+1 ∈ t for ea
h x ∈ s′, andin parti
ular x ∩ Vκ+1 
aptures ∆ for ea
h x ∈ s′. Thus q′ 
aptures ∆ andtherefore is 
ompatible with a 
ondition in ∆. It follows that q is 
ompatiblewith a 
ondition in ∆, as desired.Thus if δ is a limit of Woodin 
ardinals, {p ∈ Qδ | For some κ < δ,
p 
 G∩Vκ is Qκ-generi
} is dense. Thus G∩Vκ isQκ-generi
 for unboundedlymany κ < δ, proving that every element of Vδ[G], and hen
e any real in V [G],is generi
 over V for a for
ing of size less than δ. 2Theorem 19. Suppose that δ is a Woodin limit of Woodin 
ardinals. Thenthere exists an elementary embedding L(R) → L(R)V [H] where H is V -generi
 for Coll(ω,< δ). Therefore, every set of reals in L(R) is Lebesguemeasurable. 110



Proof. Let G be Q-generi
 over V , where Q = Qδ, the stationary towerfor
ing. Then there is an elementary embedding V → Ult (V,G) where
δ = ω1 of V [G] and Ult (V,G), V [G] have the same reals. Also every realin V [G] belongs to a generi
 extension of V by a for
ing of size less than δ.Now in a generi
 extension of V [G] in whi
h δ is 
ountable, we 
an de�ne asequen
e G0 ⊆ G1 ⊆ · · · of length ω where Gn ∈ V [G] is generi
 over V forColl(ω,< δn), the δn's form a 
o�nal, in
reasing ω-sequen
e of V -ina

essiblesless than δ and ea
h real in V [G] belongs to some V [Gn]. If H is the union ofthe Gn's then V [H ] is generi
 over V for Coll(ω,< δ) and the reals of V [H ]are pre
isely the reals of V [G].Thus we have an elementary embedding L(R)→ (L(R) of Ult (V,G)) =
(L(R) of V [G]) = (L(R) of V [H ]), where H is Coll(ω,< δ)-generi
 over V .By Theorem 12, every set of reals in (L(R) of V [H ]) is Lebesgue measurableand therefore this also holds for L(R). 2.
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