Set Theory
1. Basics

We begin with a summary (omitting proofs) of the basics of Zermelo-
Fraenkel Set Theory with the Axiom of Choice (ZFC).

Language of ZFC

The only nonlogical symbol is a binary symbol € for denoting set-theoretic
membership. This is combined with the usual logical symbols of a first-order
language to form formulas. We also introduce the usual abbreviations for
Jxp, o A, V..., as well as:

Jlzp abbreviates JrxVy(py < = = y)

Axioms of ZF (= ZFC without the Axiom of Choice)

1. Extensionality: Two sets are equal iff they have the same elements. For-
mally, VaVy(z =y < Yw(w € © — w € y)).

2. Empty Set: () exists. Formally, 32Vy(y ¢ x).

3. Pairing: {z,y} exists. Formally, VaVy3zVw(w € z < (w =2V w = y)).
4. Infinity: There is a set which contains () and is closed under the operation
u — uw U {u}. Formally, Jz(0) € 2 AVy(y € * — y U {y} € x)), where
yU{y} € x abbreviates 3z(z € z AVw(w € z — (w € y Vw =y))).

5. Union: For any set =, Ur = {2 | z € w for some w € x} exists. Formally,
VedyVz(z € y < Jw € z(z € w)).

6. Power Set: P(z) ={y |y C «} exists. Formally, Ve3yVz(z € y < y C x),
where y C x abbreviates Yw(w € y — w € z).

7. Replacement Scheme: If ¢(x,y) is a formula that defines a function then
its range on any set exists. Formally:

Vedlyp(x,y) — YadbVy(y € b — Jz € ap(z,y))

where ¢ is any formula whose free variables include z,y but not a, b.
8. Foundation: € is a well-founded relation. Formally, Vz(x # 0 — Jy €
vz € x(z ¢ y)).

The following are two important consequences of the ZF axioms.

Comprehension Principle. For any set a and formula ¢(z) one can form the
set {x € a | p(x)}. Formally:

Va3 (z € b (z € a A p(x)))
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where ¢ is any formula whose free variables include « but not a, b.

Bounding Principle. If ¢(z,y) defines a total relation then for any a there is
a b such that {(z,y) | p(z,y) Ay € b} is a total relation on a. Formally:

Vedye(x,y) — YadbVz € ady € bp(z,y)
where ¢ is any formula whose free variables include z,y but not a, b.

We discuss some technicalities concerning functions and cartesian pro-
ducts. For any two sets z,y define the ordered pair (z,y) to be the set
{{z},{z,y}}. A simple exercise is to show that (z,y) = («/,¢/) iff z = 2’
and y = y/. It follows from the Pairing axiom that (x,y) exists for any x,y.
A function is a set f whose elements are ordered pairs with the property:
If (x,y) and (z,y’) are elements of f then y = y'. In ZF we can define the
notion of function as well as: Dom(f) (domain of f), Ran(f) (range of f),
f | = (restriction of f to z). Also, for any two sets a,b define the cartesian
product of a,b to be a x b= {(z,y) | € a Ay € b}. A simple exercise is to
show (using Union, Power Set and Comprehension) that a x b exists for any
two sets a, b.

We can now introduce the final axiom of ZFC:

Axiom of Choice (AC). If every element of x is nonempty then there is a
function which selects a unique element from each element of x. Formally,

Vy € x(y #0) — 3f(f is a function A Dom(f)=z Vy € z(f(y) € y)).
ZFC = ZF with the additional axiom AC.
Ordinals

(x,<) is a linear ordering (lo) if it obeys:
a<a
a<bAb<a—a=0b
a<b<c—a<ec
For all a,b: a <bVb<a
(x,<) is a well-ordering (wo) if it also obeys:
y Cx,y # 0 — y has a <-least element; i.e., Ja € yVb € y(a < D).

Cantor classifed the well-orderings. If (x, <,) is a wo then an intial seg-
ment of (x,<,) is a wo (2, <,/) where:

2



T Cux
acr,b<,a—bex
For ag,a; € o', ag <y a; iff ag <, a;.

And (o', <) is a proper intial segment of (z, <,) if in addition 2’ # x.

Comparability of WO’s. If (z, <,) and (y, <,) are wo’s then exactly one of
the following is true:

1. (z, <,) is isomorphic to a proper initial segment of (y, <,).

2. (y, <,) is isomorphic to a proper initial segment of (z, <,).

3. (z, <) and (y, <,) are isomorphic.

Cantor showed that every wo is isomorphic to a unique wo of a special
kind. (z,<,) is a quasi-ordinal iff it is a wo and <,= € restricted to x =
{{y,2) |y,z € x ANy € z}. A quasi-ordinal (z, <,) is an ordinal if in addition
x is transitive: a €Eb € x — a € .

Comparability of Ordinals. If o, 3 are ordinals then o € 3, € a or a = (5.

Notation. If «, § are ordinals then we write a <  for a € (3, a < 3 for
a < fora=/and ORD for the class of all ordinals.

Ordinal Facts

(a) An element of an ordinal is an ordinal.

(b) 0 is an ordinal.

(c) If « is an ordinal then so is o U {a}, the least ordinal greater than a.
(d) If z is a set of ordinals then Uz is also an ordinal, the supremum of x in
the well-ordering of ordinals.

For natural numbers n define 0 = ¢, n +1 = nU {n} = {0,1,...,n}.
The least infinite ordinal is denoted by w and is equal to {0,1,...}. aisa
successor ordinal if it is of the form 5 U {3} for some ordinal 3; the latter is
also written as §+ 1. « is a limit ordinal if it is not 0 and is not a successor
ordinal. The least infinite ordinal w is an example.

Classification of wo’s. Every wo is isomorphic to an ordinal.
Induction generalises from the natural numbers to the ordinal numbers:

Leastness Principle for ORD.
Jap(a) — Jalp(a) AVE < a~p(B)).
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Transfinite Induction.
(p(0) AVa(VB < ap(B) — p(a))) — Vap(a).

Using transfinite induction we can define addition and multiplication on
ordinal numbers:

a+0=a«a

a+(B+1)=(a+8)+1

a+A=U{a+F|F <A}, Alimit

a-0=0

a-(B+1)=(a-f)+a

a-A=U{a-g|F <A}, Alimit
Note: l+w=w#w+ L2 w=w#w-2=w+w.

von Neumann Hierarchy

Vo=10

Vor1 = P(Va)

Vi =U{V, | @ < A}, A limit

Each V,, is transitive, « < 8 — V, C Vg and a € V,4;. The function
F(a) =V, is definable.

von Neumann’s Theorem. Every set is an element of some V.

The Rank of a set x is the least ordinal « such that = belongs to V1.
Cardinals

Using the Axiom of Choice (AC) one can prove:
Theorem 1.1. For every set X there exists <y such that (X, <y) is a wo.

Corollary 1.2. For every set X there is an ordinal a and a bijection f : X «
a.

Definition. A cardinal if an ordinal k such that @ < k — there is no injective
function f : Kk — a.



Remark. If  is not a cardinal then there is o < (8 and a bijective function
f:Be a If f:5— a, a<[isinjective, then choose g : ( Range(f), €) ~
(@, €), and replace f by go f.

Definition. Card X = cardinality of X is the unique cardinal s such that
there is a bijection f: X < k.

Cantor’s Theorem. For any set X, Card P(X) > Card X.

Proof. Otherwise there is a surjective f : X — P(X). But consider the set
Y={Ae€ X |a¢ f(a)}. Then f(y) # Y for all a € X, as otherwise we
would have a € YViffa ¢ Y. O

So there is no largest cardinal and every set is in bijective correspondence
with a unique cardinal. Define:

NO = Ww
N, = least cardinal greater than ¥,
Ny = U{R, | o < A} for limit .

These are the infinite cardinals. For which o do we have Card P(w) = N,7
We shall discuss this later.

Definition. If s is a cardinal then x* is the least cardinal greater than x. A
successor cardinal is a cardinal of the form ™ for some x; a limit cardinal is
a nonzero cardinal that is not a successor cardinal. The limit cardinals are
Ny together with X, for limit ordinals \.

Cardinal Arithmetic

If k, A are cardinals then the cardinal sum and product K + A\, kK - A are
the cardinalities of the ordinal sum and product k + A, k- A.

Theorem 1.3. For nonzero cardinals x, A, not both finite:
K+ A= kK-A=max(k,\).

So addition and multiplication of cardinals is not very interesting. Howe-
ver cardinal exponentiation is very interesting, as we will now see.

Definition. For cardinals k, \, 5* is the cardinality of the set {f | f: A — k}.
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For example, 2% = 2¢ is the cardinality of the set of functions f from the
natural numbers N into {0,1}. Of course this is the same as the cardinality
of P(N). It is also the same as the cardinality of the set of real numbers:

Proposition 1.4. The set of real numbers has cardinality 2%°.
What is 2%0? It turns out that this question cannot be answered in ZFC.

Godel: If ZFC is consistent then so is ZFC + 280 = ;.
Cohen: If ZFC is consistent then so is ZFC 4 2% = R,.

The Continuum Hypothesis (CH) is the statement that 2% = X;. Thus
it follows that both CH and ~ CH are consistent with ZFC (assuming of
course that ZFC is consistent). There is a similar situation at other infinite
cardinals. The Generalised Continuum Hypothesis (GCH) is the statement
that 2¢ = kT for every infinite cardinal x. Godel’s work also showed that
the GCH is conistent with ZFC. But the general behaviour of the function
k — 2" is very difficult to determine. For example, we have:

Silver: If 2¢ = ot for every o < k = Wy, then 27 = ™.

And there are results stating that Silver’s result does not hold with Ry,
replaced by N,. However there is some restriction in the latter case:

Shelah: If 2% < X, for every finite n then 2% < Ny, .
The Lévy Hierarchy

The Ay formulas form the least set of formulas containing the atomic
formulas x € y,z = y and closed under ~, A and bounded quantification
Vz € y. Now define:

20 = HQ = AQ
A ¥, 41 formula is one of the form 3z - - - Jx,,¢, where ¢ is 11,
A 11,4, formula is one of the form Vz; - - -Vx,,p, where ¢ is 3,,.

Definability of 3,, Satisfaction. For each n there is a formula Sat, (i, s) such
that if i = #¢, ¢ is 2, and s is a function with domain 7 + 1 then:

ZF~ b Sat,(i,s) < ¢(s(0), ..., s(i))



(where if ¢ has free variables zg,...,x; then (s(0),...,s(7)) is obtained
from ¢ by replacing xy by s(k)).

Tarski observed that ther is no formula Sat(:) such that if i = #p, ¢
an arbitrary sentence then ZF~ F Sat(i) < ¢. The same applies to any
recursive theory containing ZF ™.

Using the previous result we can formulate the Reflection Principles. The
expression

M=,V

means that for 3, formulas ¢(x1,...,2,,) and a4,...,a,, € M:
ME p(ay,...,any) iff p(ay,..., ay,) is true.

Theorem 1.5. For each n, ZF proves the n-th Reflection Principle RP,,:
Vadf > a Vg <, V.

The Universe of Constructible Sets

Godel’s universe of constructible sets is defined via the following hierarchy:

LO = (Z)
Lot1 = Def L,
Ly =U{Ly | @ < A} for limit ordinals A.

We say that x is constructible if for some ordinal a, x € L,. This is often
abbreviated as “z € L”, where L = U{L,, | « € ORD}, but it is important
to keep in mind that L is not a set, but what can be referred to as a “proper
class” of sets.

We need to know that this hierarchy is definable in an “absolute” way,
in the following sense. Let ZF~ be the finite subtheory of ZF obtained by
restricting the Replacement scheme to formulas with only 100 quantifiers.

Fact. If M, N are transitive sets and both (M, €) and (N, €) are models of
ZF~ then for every ordinal « € M NN, LY = LY where LY LY are the
interpretations of L, in M, N, respectively.

We now show that in a certain sense, L is a “model” of ZF. For each
formula ¢, define a formula ¢, as follows:

7



(z €yl = (z €y)
(z=y)r=(x=y)

(e AY) = (oL A1)

(~ )L =~ (¥L)

(Vxp), =Vo(xr € L — @)

Then ¢ expresses the property “p is true in L”. We have:
Theorem 1.6. ZF - ¢, for each axiom ¢ of ZF.

Corollary 1.7. Let V = L be the sentence Vz(z € L). Then assuming that
ZF is consistent, the theory ZF + V = L is also consistent.

Proof of Corollary from Theorem. Suppose that ZF + V = L were inconsi-
stent. Then ZF F~ (V = L). By the Theorem, ZF proves ¢, whenever ¢ is
an axiom of ZF, and therefore ZF proves ¢, whenever ¢ is a theorem of ZF.
So ZF proves (~ (V = L)).. But

(~(V=L)p=~(V=L))=~Mx(xel)),=~Ve(zre€L—-zxzel)

which is the negation of a valid sentence. It follows that ZF is inconsistent,
against our hypothesis. O

Proof of Theorem. ¢ is easy to check when ¢ is an axiom of ZF, except
for the Power Set Axiom and Replacement. For example if ¢ is the Union
Set Axiom, we must only show that if + € L then Ux is in L, for then by
absoluteness (Uz)X = Uz. But if = belongs to L, then Ur = {y | y is an
element of an element of x} is definable over L,, and therefore belongs to
La+1.

For Power Set: Suppose that x belongs to L, and define Pr(z) to be
{y € L |y C z}. We must show that Pr(z) belongs to some Lg. Define a
function f : Pr(x) — ORD by f(y) = the least ordinal v such that y € L,.
By the Replacement axiom there is an ordinal 3 such that Py (z) C Lg, and
therefore Pr(z) € Def Lg = Lg;.

For Replacement: Suppose that x belongs to L and f : x — L is an
L-definable function. We want to show that there is an ordinal « such that
Range f belongs to L,. If f is ¥, -definable in L then it is enough to find
an ordinal « such that L, <, L, Range f C L, and the parameters in the
formula that defines f belong to L,. Using the Reflection Principle we can



choose such an «, with L, <,, L replaced by V,, <,, V for any m. By choosing
m large enough we get L'> <, L and therefore by absoluteness L, <, L. O

One of Godel’s famous results is that if ZF is consistent then so is ZFC =
ZF + AC. By the previous corollary, any statement provable in the theory
ZF +V = L is consistent with ZF, so this follows from:

Theorem 1.8. ZF +V = L AC.



2. Hyperfine Structure Theory
Names and Locations

For any a € ORD, ¢(u, ¥) a first-order formula with n + 1 free variables,
and ¥ a sequence from L, of length n, let I(«, ¢, ) denote {y € L, | Lo, =
o(y,7)}. Thus we can think of the above triples («, ¢, ) as names for
elements of L. A central idea in our theory is to also view (a,p,7) as a
location for the structure L, , ) in the fine hierarchy with an associated hull
operation L, z{-} which approximates the usual Skolem hull operation on
subsets of L,. Before we define these notions we first discuss the ordering
of names (=locations) and prove a condensation result for “constructibly—
closed” subsets of L,,.

Well-order names and constructible sets in the standard way as follows:
Consider €—formulae built using =, A, V and the existential quantifier 4.
We agree that every formula ¢ has a distinguished variable used for the
I-operation and for existential quantifications. When we write ¢(u, Z), we
intend that u is distinguished in ¢; then Jup with any choice of distinguished
variable is a new permitted formula. Let g, 1, @9, ... be an w—ordering of
permitted formulas, subformulas appearing earlier, which we assume to be
fixed throughout this article.

We take <( to be the vacuous ordering on Ly = ). If <, is defined as
a wellordering of L, then order sequences from L, by ¥ <! i iff 7 is
lexicographically less then ¢/, using <, on the components of # and . Names

(8, ¢, ) where 8 < a are ordered by:

(B, om, &) < (7, @, §) iff
(B<7)V
(B=~7Am<n)V
(B=yAm=nAT<g 7).

And for y € L,y q let N(y) denote the < —least (3, o, &) such that (3, ¢, 7) =

y. Then define y <,y z iff N(y)<N(z). Finally for limit X\ set <,=
Uacr <a- Thus we obtain a wellordering <;= |J,.ORp <a« of L and a
wellordering < of names (o, ¢, ¥) used to denote elements of L.

By an a-location we understand a location s of the form s = (o, ¢, ©).
The <-smallest a—location is (a, g, 0) with 0 a vector of 0’s of appropriate
length. The <-successor of s is denoted by s.
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Constructible Operations and Basic Constructible Closures.

The basic constructible operations are I and N as defined above and a
Skolem function:

(Interpretation)

For a name (a, p, %), set I(a, p, %) ={y € Lo | Lo = ¢(y,Z)}.

(Naming)

For y € L, let N(y) be the <-least name (o, ¢, ¥) such that I(a, p, T) = y.
(Skolem Function)

For a name (o, ¢, 7), let S(a, ¢, ¥) be the <;—least y € L, such that L, |=
©(y, %), and set S(a, ¢, Z) = 0 if such a y does not exist.

As we do not assume that « is a limit ordinal and therefore do not have
pairing, we make the following nonstandard definition.

Definition. For X C L and ¥ a finite sequence we write & € X if each
component of Z belongs to X. If (o, ¢, ¥) is a name we write (o, ¢, 7) € X
to mean that o € X and ¥ € X.

A set or class X C L is constructibly closed, written X < L, iff X is closed
under I, N and 9, i.e.,

(,0,7) € X — I(a,p,7) € X and S(a, ¢, T) € X,
yeX — N(y)eX.

For X C L let L{X} denote the C—smallest Y O X such that Y < L.
Clearly each L, is constructibly closed.

Proposition 2.1. Let X be constructibly closed and let 7: X = M be the
Mostowski collapse of X onto the transitive set M. Then there is an ordinal
« such that M = L, and 7 preserves I, N, S and <p:

T (X, €,<,I,N,S) = (La,€,<1,I,N,S).

Proof. We prove this for X C L., by induction on 7. The cases v = 0 and
~ limit are easy. Let v = 8+ 1 and X C Lgyy but X ¢ Lg. Closure under
N and I implies that X = {I(8,¢,Z) | & from X N Lg}. Inductively let
m: X NLg = L, Closure under S and the fact that 5 belongs to X imply
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that X N Lg is elementary in Lg. It follows that 7 extends to m: X = L,4;.
Preservation of I, N, S and <, follows also from the elementarity of X N Lg
in Lﬁ. O

The Hyperfine Hierarchy.

Definition. Let s be a location, s = («, ¢, Z). Set

Ls = (La7€7<L7[7 N7 57 SLa SLQ

wo ' M1 0"

Sk 1 2,0,0,..)

where S’ (7) = S(a, ¢, ¥), SLe | 7 is the restricted Skolem function Si2 |
{7| 7 <&} and 0,0,... are empty functions.

(Ls | s is a location) is the hyperfine constructible hierarchy.

Each structure of the hyperfine hierarchy possesses an associated hull
operator.

Definition. Let s = («, ¢m, Z) be a location. A set Y C L, is closed in Ly,
written Y < L, if Y is an algebraic substructure of Ly, i.e., if Y is closed
under I, N, S, Ske Gla Sﬁgl [ Z.

wo? M1 e
For a set X C L, let Ly{X} be the C—smallest set Y such that Y < L, and

Y O X. We call Ly{X} the L;-hull of X.

The hyperfine hierarchy is a very slow growing hierarchy which nonethe-
less satisfies full condensation. This is the basis for its applications to fine
structure theory.

Condensation. Let s = (a, ¢m, ) be a location and suppose X is a set such
that X < L,. Then there is a unique isomorphism

m(X,€,<1,I,N, S, Ske, SLa .. SLe [ 7,0,...) =

P07 M1
_ Ly Qla Ly =
Lg—(La7€7<L7[,N7S7S(PO,S¢I,...7S(Pm 'z, 0,...).

Proof. Let m: X = L4 be given by Proposition 1. Note that X is ¢;,—
elementary in L, for ¢« < m, since X is closed under the Skolem functions
for every proper subformula of ¢;. Hence 7=1: Ly — L, is ¢;—elementary for
i <m. Let r = (@, ¢;, @) be a location such that 771(r) := (a, ¢;, 7 H(w0)) <
(@, m, ). Then z := Ske(n(w)) belongs to X and L, = ¢i(z, 7~ (0)) iff
Lz = ¢i(m(2), ). Moreover, if there is Z € Lz such that Ly = ¢;(Z, W), then
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7(z) is the <;-minimal such element, because zZ <; 7(z) and Lz = ¢;(Z, W)
imply L, | pi(771(Z), 77} (@)) and 7—1(Z) <, 2, contradicting the definition
of S,,. Hence

m(2) = m(Sgr (7~ (w))) = S ()

as required. The location 5 of the condensed structure is defined as the < -
smallest strict upper bound of all 7 such that 771(r) <s and 3 = <—sup{r |
i r)<s}. O

Usually, we shall have . = m in the proposition, except when for every
W € Lg of the right length

(W) <! 7.
In that case we have m=m + 1 and T =0, i.e., 5 = (@, Pmt1, 6) and
Ls = (La, €, <1, I,N, S, S5, Sk7, ..., Sk=.0,..)
observing that S£i+1 10 =0.

The condensation situation in proposition 2 is often written as m: X = Ls.

The slow growth of the Lz —hierarchy is expressed by a finiteness property
which says that at successor locations essentially only one more point enters
the hulling process, and by continuity properties saying that at limit locations
we just collect results of previous processes.

Finiteness Property. Let s = («, ¢, Z) be an a—location. Then there exists
z € L, such that for any X C L,:

Lo {X} C LA{X U{z}}.

Proof. The expansion from L, to L+ provides us with at most one new
Skolem value in forming hulls, namely SL«(Z). Take this Sk (Z) to be z. O

Monotonicity. (i) Suppose that sy and s; are a—locations such that s, < 5.
Then Ly, {X} C Ly, {X} for all X C L,.

(ii) Suppose that g and «; are ordinals such that oy < ay. If 59, 57 are ag—
and a;-locations, respectively, and X C L, then Ly {X} C Ly, {X U{ap}}.

Proof. Clear from the definitions. O
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For the continuity property we have to distinguish among three kinds of
limit locations:

Continuity.
(a) If a is a limit ordinal, s = («a, ¢, 0), and X C L, then

L{X} = L{X} = | Ligp5{X N Ls}.

[B<a

(b) If s = (v +1,¢00,0) and X C L, then

LAX U{a}}NL, = L{XU{a}}NL,
= U{LT{X} | 7 is an a—location}.

(c) If s = (v, p, &) is a < -limit, 5 # (v, @, 0), and X C L, then

LAX} = J{LAX} | ris an a-location, r < s}.

Proof. (a) is clear from the definitions since the hull operators considered
only use the functions I, N, S.

(b) The first equality is clear. The other is proved by two inclusions.

(D) If z is an element of the right hand side, z is obtained from elements of
X by successive applications of I, N, S and Sﬁg for n < w. Since Sé;j (¥) =
S(a, ¢n,y), z is also obtainable from elements of X U{«} using only the I, N
and S operations. Hence z belongs to the left hand side.

(C) Conversely, consider z € L{X U {a}} N L,. There is a finite sequence
computing z in L{X U {a}}:

Yo, Y1, -+ s Y = <

such that each y; is an element of X U {a} or y; is obtained from {y; |7 < j}
by using I, N, S:

vy =18, ¢n,y) or y;=2S5(0,¢ny) or y,isacomponent of N(y)

for some 8, 7,y € {ui| i < j}.
We show by induction on j < k:

if y; € L, then y; € U = U{LT{X} |  is an a-location}.
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Case 1: y; € X U{a}. Then our claim is obvious.

Case 2: y; = 1(B, ¢n,Y) (as in the first of the three ways of obtaining y; from
y € {y;|i < j}, displayed above). If 3 < «, then (3,4 € U by the induction
hypothesis and hence y; € U. If 8 = «, then ¥ € U by the induction
hypothesis. Setting

Y(v, W) =Vu (u € v — p,(u, W))

with distinguished variable v we obtain y; = Si“(jf) eU.

Case 3: y; = S(B,¢n,Y) (the second way of obtaining y;). If § < «, then
B,yeUandy; € U. If § = a, then g € U and y; = Sk (y) € U.

Case 4: y; is a component of N(y;) for some i < j (the third way of obtaining
Y5)-

Case 4.1: y; € L,. Then y; € U by the induction hypothesis. As U is closed
under N, we get N(y;) € U, i.e., each component of N(y;) belongs to U.
Case 4.2: y; € Loy1 \ Lo. Then y; = a, or y; = I(«a,,y) for some ¢ €
{yn|h < i}. Since a = I(a,“u is an ordinal”, (), we may assume the latter.
N(y;) will be of the form («, x, (co, .., ¢m-1)). We obtain ¢ in U as follows:
If

Xo(vo, W) = Fvy ... vy Vu (x(u, vo, V1, . . ., V1) > P (u, W))

with distinguished variable vy then ¢ = Sﬁg(gj’) € U, since, inductively,
iy € U. We obtain ¢; in U as follows: If

—

X1(v1, W) = Fvg ... Fugpm1Vu (x(u, Vo, V1, -+« s V1) < Y (u, W))

with distinguished variable v; then ¢; = St (co™9) € U. Proceeding like
this we see that y; € U.

(c) is again obvious from the definitions. O

This completes our list of basic properties of the hull operations associated
with the hyperfine hierarchy. They are sufficient to establish Jensen’s Square
Principle in L, which we consider next.

A Proof of Square

Theorem 2.2. (Jensen) Assume V' = L. There exists a sequence (Cj |
0 singular ) such that
(i) Cj is closed unbounded in 3
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(ii) Cp has ordertype less than 3 B
(i) if 3 is a limit point of Cs then 3 is singular and Cg5 = Cj N 3.

Proof. Let 8 be singular. The following claim gives a reformulation of the
singularity of (:

Claim 1. There is a location s = (v, ¢,Z), v > 3, and a finite set p C L,
such that

{B<p13=pNnLABUDP}}
is bounded in j.

Proof. Choose « less than ( and a function f:a — 3 cofinally. Choose
v € ORD such that f € L,. Set p = {f} and s = (7, Pny1,0) where n is
a natural number choosen such that ¢, = vy = vi(vy) with distinguished
variable vy. If @ < 3 < 3 then

BNLABUP} 2 BN L{aUp} D fra.
Hence 3N Ly{3 U p} is cofinal in 3, and so 3N L{3Up} # 3.

Let s = s(3) be <-minimal satisfying Claim 1, together with the finite set
p C L,. We show that s is a <-limit which can be nicely approximated
from below.

Claim 2. s is a limit location.

Proof. Assume that s = r*. By the Finiteness Property there exists a z € L,
such that if 7 is less than (§ then

L{BUp} C LA{BUpU{z}}.
So
{(B<B|B=0NnLABUpU{z}}} C{B<B|B=0BNLABUp}}

Hence {3 < 3|8 =BNL{3UpU{z}}}is bounded in 3, contradicting the
minimality of s.

Claim 3. s # (ﬁ,(po,ﬁ).
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Proof. Assume that s = (3, vy, 0). Choose 3 less than 3 such that p C Lg,.
If 5y < 8 < [ then

BCBNLABUP CANL{BUPL C BN L =7,
contradicting the fact that s and p satisfy the requirements in Claim 1.
Claim 4. s # (7, o, 0) for limit .

Proof. Assume that there is a limit ordinal y such that s = (7, o, 0). Choose

5,

Yo less than « such that p C L., and vy > v, and set so = (70, ¢0,0). Then

{(B<B|B8=08NnL{BUp}} C{B<B|B8=0NLA{BUP}}.

Hence {3 < 3| B = 3N Ly, {FUp}} is bounded below 3, contradicting the
minimality of s.

In defining C3 we shall consider three special cases and a generic case. In
the special cases, § will have cofinality w and we can pick any w—sequence
cofinal in # as Cj.

Special Case 1. s = (a + 1, ¢, 0) for some a.

Every element of L,.; can be “named” by « and finitely many elements of
L. So we may assume that p is of the form p = qU {a} with ¢ C L.
Define a strictly increasing sequence (3, | n < w) of ordinals less than
recursively: Let

Bo=max{B < B |B=08NL{BUP}} <p.

Given (3, choose (3,1 greater than (3, least such that
Bot1 = BN L, 51811 U g}t

Since s = («, @y, 6) < (a+1, ¢y, 6), the definition of s implies that (3, exists
below 3. Let 8, =, #n- Then

BNLAB.Up} = BNLA{B UqU{a}}
= AN U{Lr{ﬁw Ugq} | ris an a—location}
= U BN L(awn,ﬁ){ﬁw U q}

n<w
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= U pN L(a7%,6){ﬁn+1 Ugq}

n<w

= U Br1 = Bu;

n<w

the second equality uses Continuity (b), the third and fourth use the mo-
notonicity property of our hulls. Now by the definition of 3, we must have
0B, = (. Hence setting

Cs={B,|n <w}
we get a cofinal subset of 3. This finishes Special Case 1.

Now assume that s = (v, ¢, Z) # (7, ©o,0).
Claim 5. There is a finite p C L., such that L,{3Up} = L.

Proof. By Condensation, there are a unique function 7 and a unique location
§ such that m: L{fUp} = Ls. Then we have Lz = Lz{fUDp} where p = 7"p.
As 7 | 3 = id, we can conclude that 3N L{3Up} = B3N Ls{BUP} holds
for all 3 less than 3. Hence

{B<BlB=pNLA{BUR} ={B<B|B=5NLA{BUp}}

is bounded below 3. Then 3 = s by the <-minimality of s, and so L, =
LA{BUP} = L,.

Let <* be the canonical wellorder of finite subsets of L derived from <j:
po <* p1 <— po # p1 and the <p-maximal element of py A p; belongs to p;.
Choose a <*-minimal p(3) C L, such that p(3) satisfies Claim 5. Since in
particular the old parameter p is generated by 3 U p((3) we have

Claim 6. {3 < 3|8 = BN LABUp(B)}} is bounded below 3. Let 3y < 3

be the maximum of this set.

By Claim 6, p(() satisfies the requirements in Claim 1 and we may denote
p(B) by p without danger of confusion.

We have to examine which locations below s are computed in L,{X}: for
Y C L, we write r = (v,¢,y) e Y if y € Y. We say that a subset Y of L,
is bounded below s, if there is sy < s such that if r < s and r € Y, then r < sq.
The <-least such sq is called the <-least upper bound of Y below s. Note
that if in addition Y = L{Z} then we get L{Z} = L, ,{Z}.
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Special Case 2. Ly{a U p} is bounded below s for every a < f.

Define a strictly increasing sequence (3, | n < w) of ordinals less than
recursively: Let 3y be defined as in Claim 6. Given (3, set

Barr = BN LAB. + 1) Up}).

By Special Case 2, there is r < s such that

L{(Bn+1)Up} = LA(B, +1)Up}.

The minimality of s implies that 5N L,.{(5, + 1) Up} cannot be cofinal in
B, and so (3,41 is less than 3. Let 3, = |, #n- Then

B CANLAB, Up} € | BNLAB. +1)Up} C | Bosr = B

n<w n<w

and since (3, is greater than 3, we have 3, = (3. Hence setting

Cs={B,|n <w}
we get a cofinal subset of 3. This finishes Special Case 2.

Now assume that Ls{ag U p} is unbounded below s for some o less than
B. Choose ag = ap(3) least with this property. We would like to use aq to
steer the singularisation of § and obtain ordertype(Cjs) < max{ag,w} < .
If g is neither a limit ordinal nor zero we have to look for another steering
ordinal. In this case we write oy = o, + 1, and we choose a least oy = ()
less than «q such that

Lfar UpU {ap})

is unbounded below s. If oy = of + 1, then we choose a least ay = an(3) less
than oy such that

L{as UpU{ay, ai}}

is unbounded below s. Continuing this way we find a natural number k£ =
k(B) such that o = () = a(f) is a limit ordinal or zero.

Special Case 3. a = 0.

One easily sees that Li{p U {ay,...,a}_;}} is a countable set. Since oo = 0,
it is unbounded below s. So s has “cofinality w” in the ordering of locations
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and we can find a strictly increasing sequence (s, | n < w) of y-locations
converging towards s. Define a strictly increasing sequence (3, | n < w) of
ordinals less than (3 recursively: Let 3, be defined as in Claim 6. Given [,
choose (3,11 greater than (3, minimal such that

Bus1 = BN L, {Bnr1 Up}.

Bns1 exists, since s,41 <s. Let B, = U, B Then

ﬁw = U ﬁn+1 = U ﬁ N Lsn+1{ﬁn+1 Up} = ﬁ N Ls{ﬁw Up}7

n<w n<w

hence the definition of 3, implies 3, = 3. Setting

Cs=A{B,|n <w}
we get a cofinal subset of 3. This finishes Special Case 3.

So, finally, we arrive at the general case:

General Case. s = (v, ¢, 7) # (7,4,00,5), and L{aUpU{aj,...,a,_,}} is
unbounded below s where « is a limit ordinal less than (.

Define sequences (5;(0) | ¢ < ) and (s; | 0 < i < ) recursively: Let Gy < (8
be defined as in Claim 6. For each 0 < i < « let s; be the < -least upper
bound of L{iUpU{ay,...,a,_,}} below s, and let 3; = 3;(5) be the least
ordinal greater than [, such that

Bi=08NL,AABUpU{ag,...,a, 1}}
If i < o then 3; < 3 because s; < s; also s, = s, 3, = 3 and
Claim 7. If 0 < i < j < o then s;<s; and 3 < 3.
Claim 8. {f3; | i < a} is closed unbounded in S.

Proof. Let @ < a be a limit ordinal. We only have to show that 8z = |,
and since 5z > ; for i < @ it suffices to see that

Uﬁz = UﬁmLsi{ﬁiUpu{a,m"'?a;c—l}}

i<a i<a

= ﬁ N Lsa{Ui<a ﬁz Up U {046, cee ,Oé;g,l}}
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so that | J,_5 f; satisfies the defining property of (5.

Cp will now be defined as an endsegment of such f;’s for which important
elements of the preceding construction are visible below ; or s;. Let I(()
be the set of those ordinals ¢ that satisfy the following properties (1) — (5):

(1) 0 <i<a,and if [l <k then 3; > ay.

(2) s; is a y—location.

(3) j < pjfori<j<a.

(4) If I < k and ¢ is the < -least upper bound of L,{cjUpU{ay,...,a] }}
below s then s; > t.

(5) If B < then B € L,,{; Up}.

Using the following facts (i) — (iv) the reader can easily show that there
is ip less than « such that an ordinal ¢ less than « satisfies the conditions
(1) — (5) if and only if i > iy, i.e., I(/3) is a final segment of «.

(i) L{aUpU{ay,...,a)_;}} is unbounded below s.

(ii) a < B and B = J{Bi]i < a} where (5; | i < «) is (weakly) increasing,.
(%ii) L{ayUpuUd{ag,...,a;_4}} is bounded below s for all I < k.

(iv) If < then g € L{BUp} = L.,.

So set

Cg={0i i€ 1(0)}

Claim 9. Cj is closed unbounded in 3 and ordertype(Cp) < a < 3.

This completes the definition of the system (Cps | 3 singular), and we are
left with proving the coherence property. Fix [ less than 3 such that 3 is
a limit point of C5. We have to show that 3 is singular and Cz =0CgN B.
B falls under the General Case, as ordertype(Cjs) > w. Let @ be the least
ordinal 7 such that 3 = B3,- Then @ is a limit ordinal and 3 is singular since
cf(Bz) < @ < (5. By condensation there is an isomorphism

m L, {BUp} = Ls.
Let ¢ = 7"p and 7 = «a(3).

Claim 10. 7 | f=id. If sis a f-location then s is a B-location while if s is
a y-location and v > (3 then 7(3) = f.
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Proof. If v > B then 3 € L,_{BUp} and B = BN L,_{BUp}.

Claim 11. 5 = s().

Proof. If By < § < Bthen § # B3N L,_{0UpU{a)...a} ,}} and therefore
§#BNLs{6UqU{al... o _,}}. Tt follows that s(5) <.

Conversely if <3 and g is a finite subset of L, then 77'(r)<s; and
7 1"q C L, {3 Up} for sufficiently large i less than @, since the s;’s are
unbounded below sg, the ;s are unbounded in 3 and Lg{3Uq} = Lo). As

Bi = BN Ly {B: Up} we get 3; = BN L.{B3; Ug} for B;’s cofinal in 3 and so

r < s(3). Therefore 5< s(3).
Claim 12. 3 does not fall under Special Case 1.

Claim 13. ¢ = p(f3).

Proof. As Ly{BUq} = Ly, we get ¢ >* p(B). Assume q >* p(B). As
p(3) satisfies the requirements in Claim 5 at 3, we get ¢ C Lg{3 U p(5)},
hence p = 77'"q C LB U7 "p(B)}. So n1"p(B) <* p = m~ "¢ and
7~ "p(B3) satisfies the requirements in Claim 5, contrary to the minimal
choice of p = p(B).

Now L,_{aUp} = L{@U p} is unbounded below s5. Hence L{a U ¢} is
unbounded below 3, and @ < /3. Hence

Claim 14. 3 does not fall under Special Case 2.

Claim 15. If j < k then o;(8) = «o;(5).

Proof. By induction on j < k.

By definition, () is the smallest v s.t. Ly{rvUpU{a}|i < j}} is unbounded
below s. Now Li{aUpU{cy,...,a)_,}} is unbounded below sz, so Ls{aUqU
{ag, - -+, }} is unbounded below 5. Hence Lg{a;(8)UqU{ag, ..., o) }}
is unbounded below 3, as @U{c’; ... a;_,} € a;(). Conversely, the definition
of I(3) implies that L,{a;UpU{ag,...,a ;}} is bounded below s by some
s’ < sz, hence by some location in L, _{BUp}. So Ls{a,UqU{ay, ...,/ i}}
is bounded below 5 by some location less than 3. So a;(8) = a;(3).

Claim 16. ax(5) = a.
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Proof. The set Lz{aUqU{ay,...,a}_;}} is unbounded below 5. If we take
o' less than @, then L,_{o/UpU{ay,...,a}_;}} is bounded below s4, by the

minimality of @. So we have a4 (3) = @.
Claim 17. 3 does not fall under Special Case 3,

since @ # 0. So we are again in the General Case.

Claim 18. If i < @ then 3;(3) = 3:(3).

Proof. By definition, Gy = [y(/) is the largest § less than [ such that
§ = BN Ly{6Up}. From the definition of 3 = B4 we infer that 3, is the
largest, & less than 3 such that § = 3N L, {0 Up}. As L,_{BUp} = Ls{BUq}
by a map which is the identity on (3, we see that 3 is the largest & less than
B such that § = 3N Ls{d U ¢}, which is the definition of 3y(5).

Now consider 0 < 7 < @. Then

s;(B) is the <-least upper bound of L,{i UpU{ay,...,a) 1}} below s.
By the definition of sz we get that
s;((3) is the < -least upper bound of L,_{i UpU {aj,...,a} ,}} below sz.
Moreover,

s:(B) is the < -least upper bound of Lg{i UqU {a},...,a, ;}} below 3.
Now f3;(3) is the minimal ordinal greater than (3, such that

ﬁz(ﬁ) = ﬁ N Ls/{ﬁz(ﬁ) Up U {0467 R O[;cfl}}

for all 8’ < sz(8) with s’ € L, {iUpU{a)...a}_,}}, and B;(3) is the minimal
ordinal greater than [, such that

Bi(B) = BN Ly {B6i(B) UqU {ag, - .., o)1 }}
for all ' <5 with 5 € Ly{i UqU {a} ...} ,}}. By the above and the fact

that 7 [ 8 = id we have 3;(3) = 3:(5) as required.
Now one easily checks that each ordinal ¢ less than @ satisfies the defining
properties of I(3) (cf. (1) — (5) above) if and only if it satisfies the corre-

sponding defining properties of (). So we get I(5) = I(f) N @, and this
immediately implies the coherence property. O
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3. Set-Forcing

The method of forcing provides a way to construct extensions of Godel’s
model L. Cohen invented this method to demonstrate the unprovability of
the continuum hypothesis (CH) in ZFC and of the axiom of choice (AC)
in ZF; as AC, CH hold in L we obtain in this way two striking examples
of undecidable propositions. Cohen’s method was extended by Solovay to
provide a very general and powerful technique for enlarging any transitive
ZFC model M, given the choice of a pre-ordering (i.e., reflexive and transitive
binary relation) P € M.

Let M be a transitive model of ZF, either a set or a class. The case that
interests us most is when M is L, but the forcing method does not require
such a restriction. Let P € M be a pre-ordering; our plan is to do the
following:

1. We define what it means for G C P to be P-generic over M.
2. We describe, for each G C P, a transitive M[G] 2 M U {G}.

3. We prove that if G is P-generic over M then M[G] is a model of ZF
and, assuming AC holds in M, that AC holds in M[G].
P-Generic Sets

We assume that P = (P, <) has a greatest element, which we call 17. We
think of p < ¢ as meaning “p is at least as strong as ¢.”

Definition. p,q are compatible if for some r, r < pand r < ¢q. D C P is
dense if Vp3q(q < p and q € D). G C P is P-generic over M if:

1. p,q € G — p, q are compatible.
2.p>qe G —ped.

3. DC P,D dense, De M — GND #.
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Assumption. We assume that for each p € P there exists G C P,p € G, G
P-generic over M.

Our Assumption is vacuous if M is countable as we can list the dense
D € M as Dy, Dy, ..., define pg = p, pn > pusr1 € D, and take G = {p|p, <p
for some n}.

The Extension M[G]

We define M[G] to consist of sets which have “names” in M, interpreted
using G.

A name is a set 0 € M consisting of pairs (7, p) where 7 is a name and
p € P. Equivalently, a name is an element of U{Name,|ao € ORD(M)}
where Namey = (), Name,; = All subsets of Name, x P in M, Namey =
U{Name,|a < A} for limit A.

The interpretation of the name o is 0% = {7%|(,p) € o,p € G}. Then
MI[G] = {c%|c a name}.

Lemma 3.1. Suppose 1¥ € G C P.
1. M C M[G], G € M[G],
2. M|[G] is transitive, ORD(M[G]) = ORD(M).
3. f MU{G} C N, N amodel of ZF then M[G] C N.

Proof.

1. For a € M define d = {(b,17)|b € a} and then a¢ = a. Also G = ¢
where v = {{(p, p)|p € P}.

2. If a € 0% € M[G] then by definition a = 7¢ € M|G] for some T;
so MIG] is transitive. By induction on Rank o = least a such that

o € Name,1, it follows that the von Neumann rank of ¢ is at most
Rank 0 € ORD(M). So ORD(M[G]) € ORD(M).

3. For each a € ORD(M), the inductive definition of 0 for Rank o < «
can be carried out in N. O
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Definition. Suppose p belongs to P, ¢(v; ...v,) is a formula and oy . .. 0, are
names. We write p I- ¢(oy...0,),p forces p(oy ...0y,), iff whenever G C P
is P-generic over M and p € P, we have M[G] F p(c¢...0%). And we write
Pk o(oy...0,) for 17 1F @(oy ... 0n).

The key to forcing is to establish the Definability and Truth lemmas.
The Definability lemma, much like Gédel’s Completeness Theorem equating
nonconstructive semantical validity with semiconstructive syntactical prova-
bility, says that the forcing relation is M-definable for each ¢ (as a property
of p,o1...0,). The Truth lemma says that P-generic G are in fact “generic”
in the intuitive sense: If p(of ...0%) is true in M[G] then for some p € G,
it is true in every M[H|, H P-generic and containing p.

Definability Lemma. For any ¢, the relation “p I ¢(oy ...0,)” is definable
in M.

Truth Lemma. If G is P-generic over M then M[G] E p(o{ ...0%) «— Tp €
G (plFp(or...on)).

Our proof strategy for these lemmas is indirect: We define a relation IF
for which the Definability Lemma is clear, prove the Truth Lemma for I
and finally show [F=IF.

Definition of IF. We say that D C P is dense < p if Vg < par(r < ¢,r € D).
L. plF o eriff {¢g|3(m,r) € 7 such that ¢ < r,qIF 0 = 7} is dense < p.
2. plFo=riffforall (m,r) ecUT, pIF (T €0 — TET).
3. plF oAYiff plF ¢ and p IF .
4. plF~ piff Vg < p(~ qIF ).
5. pIF Vo iff for all names o, p IF (o).

Note that circularity is avoided in (a), (b) as max(Rank o, Rank 7) goes
down (in at most three steps) when these definitions are applied. Also all
quantifiers in (a), (b) are bounded, as P is a set, so the above definition can
be carried out in M and the Definability Lemma does hold for IF.
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Technical Lemma.

L plFp,qg<p—qlFo.

2. If {q|q I ¢} is dense < p then p I .

3.

If ~pIF @ then 3¢ < p (qIF~ @).

Proof.

1.

2.

Clear, by induction on ¢, as dense < p — dense < q.

Again by induction on ¢. The proof uses the following facts: If {¢|D
is dense < ¢} is dense < p then D is dense < p; if {¢|q IF'~ ¢} is dense
< p then Vg < p(~ ¢ I ¢), using (a).

Immediate by (b). O

We are ready to prove the Truth Lemma for [F.

Lemma 3.2. For G P-generic over M:

M[GIE p(cf...0%) «—— Tp e GpIF ploy...0,)).

n

Proof. By induction on ¢.

o €1 :(—) If 0% € 79 then choose (r,r) € 7 such that ¢ = 7% and r € G.

By induction we can choose p € G, p<r,plF o=mx. ThenplF o € 1.
(«—) If p € G,{q|3(m,r) € 7 such that ¢ < r, g IF o0 =7} = D is
dense < p then by genericity we can choose ¢ € G, (m,r) € 7 such that
g <r,qlF o= then by induction 0® = 7% and as r > ¢ € G we get
r € G and hence by definition of 7¢, 7% € 7¢. So ¢¢ € 7€.

o =7 :(—) Suppose 0% = 7¢. Consider D = {p| Either p I ¢ = 7 or for

some (m,r) € cUT, plF~ (1 € 0 «— 7w € 7)}. Then D is dense, using
the definition of p I ¢ = 7. By genericity there is p € G N D and by
induction it must be that p IF* o = 7. («—) Suppose p € G, p IF 0 = 7.
Then by induction, 7¢ € ¢% «— 7¢ € 7¢ for all (r,r) € cUT. So

o% =19,
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@ A1 Clear by induction, using the fact that p,¢g € G — Ir € G(r < p
and r < q).

~ ¢ : Clear by induction, using the density of {p[p IF* ¢ or p IF'~ ¢}.

Vre :(—) Suppose M[G| E Vxp. As in the proof of (—) for 0 = 7,
there is p € G such that either p IF Vzp or for some o,p IF'~ (o).
By induction the latter is impossible so p IF Vzp. («—) Clear by
induction. O

Lemma 3.3. IFF = IF.

Proof. p IF w(oy...0,) — pIF @(o1...0,). And ~ p IF p(oy...0,) —
qIF~ p(oy...0,) for some ¢ < p — ~ pl- p(oy...0,) using our Assump-
tion about the existence of generics. O

ZFC and Cofinalities in M|G|

Theorem 3.4. If G is P-generic over M then M][G] is a model of ZF. If M
satisfies AC then so does M|[G].

Proof. As M|[G] is transitive and contains w, it is a model of all ZF axioms
with the possible exception of pairing, union, power and replacement.

For pairing, given 0% ¢§ consider o = {(0y,1F), (09,1F)}. Then 0% =
{of, 05}

For union, given ¢ consider m = {(7,p)|p IF 7 € Uo, Rank 7 < Rank o}.
By the Truth Lemma, 7¢ = (Us%)N{7r%|Rank 7 < Rank ¢}. As any element
of Uo? is of the form 7¢, Rank 7 < Rank o we get 7% = Uo©.

For power, given 0@ consider 7 = {(7, p)|p IF 7 C o, Rank 7 < Rank o}.
Then 7¢ = P(c%) N {r%Rank 7 < Rank o}. Now suppose that 7¢ C o,
with no restriction on Rank 7. Form the name 7* by replacing each (1, p) € 7
by all of the (77, ¢q) such that Rank 77 < Rank 0,q < p,q IF 77 = 75. Then
Rank 7* < Rank o and 7*¢ = 7¢ since if (r9,p) € 7, p € G then 7§ € 0¢
and hence there is ¢ < p, ¢ € G, ¢ IF 79 = 7§ where Rank 77 < Rank o;
conversely, if ¢ < p,q - 70 = 79 and ¢ € G then p € G and 3¢ = 7§. So we
conclude that 7% = P(¢%) N M[G].

For replacement, given f : 0¢¢ — MJ[G], f definable (with parameters)
in M[G] consider 7, = {(r,p)|Rank 7 < « and for some oy, Rank oy <
Rank o,p 09 € o A f(0p) = 7}. Then 7¢ = Range (f) N {7%|Rank 7 < a}.
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Now choose v € ORD(M) so large that if p € P, Rank 0y < Rank ¢ and
p Ik f(oo) = 7 for some 7, then there is such a 7 of Rank < «. This is
possible by replacement in M. Then 7¢ = Range (f).

Finally if M satisfies AC, we can well-order ¢ in M[G] by first choosing
a well-ordering of names of Rank < Rank ¢ in M, and then comparing
x,y € ¢ by comparing the least names o, oy such that ¢ =, 05 =y. O

It does not follow that M, M[G] have the same cardinals. We now turn
to conditions on P which guarantee that cardinals (indeed, cofinalities) are
preserved. Assume that AC holds in M and hence also in M[G].

Definition. An antichain is a set A C P such that p # ¢ in A — p,q are
incompatible. For regular, uncountable x, P is k-cc (k-chain condition) if
every antichain has cardinality < k.

Lemma 3.5. If P is k-cc in M and cof (o) > k in M then cof (o) > &
in M[G].

Proof. It suffices to show that if f : 5 — 7 belongs to M[G] then there is g :
B — P(7v) in M such that for each Gy < 3, f(Bo) € g(0o), Card (g(5)) < K
in M. Let 0% = f and define g by g(8) = {70 < 7|p IF o is a function and

o(Bo) = Ao, for some p}. O

Definition. If D C P and p € P then we say that p meets D if p < q € D for
some ¢. For regular, uncountable x, P is k-distributive if whenever p € P
and (D;]i < [3) are dense subsets of P, 5 < k then 3¢ < p (¢ meets each D;).

Lemma 3.6. If P is k-distributive in M and cof («) > kin M then cof () > &
in M[G].

Proof. It suffices to show that if f : 5 — ~, # < k belongs to M[G] then
it belongs to M. Let ¢ = f and note that for each 8y < 3, Dg, = {q| For
some vy < 7, ¢ IF o a total function — o(8) = 4o} is dense. If p € G,

p Ik o total and p meets each Dg, then f(8;) = unique 7o, p IF o(5o) = Ho;
so feM. O

There is one more condition for cofinality preservation to consider, which

is best motivated by an example. Suppose that k is regular and that the
ground model M is L. Let P consist of all functions p on I = {0}U All
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infinite cardinals < x such that for all « € I, p(«) is a bounded subset of o™
(we take 07 = w). Order P by p < ¢ «— For each o € I, ¢(«) is an initial
segment, of p(«). For inaccessible k, P is neither k*-cc nor k" -distributive,
yet “cofinality > " is preserved when forcing with P. This is because P is
A-distributive at x, a concept that we now define.

Definition. Let s be regular. We say that d C P is predense < pifqg <p — ¢
is compatible with an element of d. If D C P is dense then p a™-reduces D
if there exists d C D, Card (d) < o™, d predense < p. P is A-distributive at
r if whenever (D;|i < k) are dense subsets of P and p € P, there is ¢ < p,q
it-reduces D; for each i. (We take i" = w for finite i.)

Lemma 3.7. If P is A-distributive at x in M and cof (o) > k™ in M then
cof (o) > kTt in M[G].

Proof. Tt suffices to show that if f : K — 7 belongs to M[G] then there
is g : Kk — P(y) in M such that Card (g(i)) < k, f(i) € g(i) for each
i < k. Let 0% = f and note that D; = {p| For some ¥ < v, p I- o total
— (i) = A} is dense for each 7. Let p € G, p IF o total, p it-reduces D; for
each i. Then the desired ¢ is ¢(i) = {7 < 7|¢IF o(i) = 7 for some ¢ < p}. O

Corollary 3.8. If for some k, P is either both x-distributive and x*-cc, or
both A-distributive at x and kT '-cc then P preserves cofinalities.

The above Lemmas are the basic tools for proving cofinality preservation.
GCH Preservation

Given that cofinalities are preserved, we can ask what further conditions
we need on P to guarantee that GCH, if true in M, will remain true in M|[G]|
for P-generic G. The basic fact is the following.

Lemma 3.9. If M F 2% = k™, P € M and either P is kT -distributive or P is
kT -preserving, Card (P) < kT then G P-generic over M — M[G] E 2" =

kT,

Proof. This is clear if P is k"-distributive as then P (k) in M[G] = P(k) in M.

Now if P is a x*-preserving forcing of cardinality < x* choose f : P ~— x*+
and let P, = f~!a] for a < k*. If 0¥ C k then there is o < x* such that
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for alli < K, i € 0 «— Ip € P,NG(p - i € o). Thus 0 is uniquely
determined by «, (S;|i < k) where a < k¥, S; = {p € PuJp IF ¢ € o} and
hence in M[G] there are at most x*-many such ¢“. O

Cohen’s Results
Theorem 3.10. If ZF is consistent then so is ZFC+ ~ CH.

Proof. First suppose that ZF has a countable transitive model N; then so
does ZFC for we can take M = (L)". Now take P € M to consist of all
p: F, — 2, F}, a finite subset of w x X} ordered by p < g «— p extends
q as a function. If G is P-generic over M (such G exist by the assumption
that M is countable) then UG : w x R} — 2, since for each (n, a) € w x XY
the set D = {p|(n,a) € F,} is dense. Also a < 8 < RY — G, # G5 where
Go(n) = (UG)(n,a). So M[G] F ZFC + 2% > R¥. Thus to get ~ CH in
M][G] we only need ®Y = R)€l which will follow if we can show that P is
Ny-cc in M.

Claim. P is Nj-cc in M.

Suppose A were an uncountable antichain and choose F' maximal so that
F C F, for uncountably many p € A. We may assume that p | F' is constant
for p € A. But then for any p € A choose p # ¢ € A such that F, N F, = F
and we see that p, ¢ are compatible, contradiction.

Now to prove the Theorem notice the following: The above shows that if
ZF,117(= ZF with only ¥,,, 17 Replacement) has a countable transitive model
then so does ZF,, + AC+ ~ CH. But in ZF we can prove that ZF, 17 has
a countable transitive model, so if ZF + AC+ ~ CH were inconsistent we
would get an inconsistency in ZF. O

Theorem 3.11. If ZF is consistent then so is ZF+ ~ AC.

Proof. As in the previous Theorem, it will suffice to show that if ZF+V = L
has a countable transitive model M then so does ZF+ ~ AC. Let P € M be
the pre-ordering of all p : F}, — 2 where F}, is a finite subset of w xw, ordered
by p < ¢ «— p extends q. If G is P-generic over M then UG : w X w — 2
and n # m — G, # G, where G,,(i) = (UG)(i,n).

For any m,n € w define m,,, : P — P as follows: if p € P then 7,,,(p)
agrees with p except it sends (i,m) to p(i,n) and (i,n) to p(i,m). Then
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Grin = {mmn(p)|p € G} is P-generic over M and M[G| = M[G,,,]. Tt follows
that if f:w — S ={G,|n € w} is definable in M[G] with parameters from
M U {S,Gy,Gq, ...} then Range (f) is finite: If the formula ¢ defining f
does not have f(k) = G,, as a parameter, choose p € G,p Ik f is a function,
f(k) = G,,; then for large enough n > m, p and 7,,,(p) are compatible and
together force f(k) to equal both G,, and G,,, contradiction.

Let N = U{t € M[G]|t transitive and 2 € t — x is definable in M[G]
with parameters from M U {5, Gy, Gy, ...}}. We have shown that f:w —
S, f € N — Range (f) finite and clearly S € N. So we need only show that
N is a model of ZF. Note that N is a transitive, definable (with parameter
G) subclass of M|[G], since by the Reflection Principle, N = U{t € M[G]|t
transitive and = € t — for some a € ORD(M), z is definable in v
with parameters from M U {S,Gq, G1,...}}. The axioms of extensionality,
foundation, empty and infinity obviously hold in /N. Pairing and union hold
as these are definable operations and the transitive closure (7°C) of {z,y} is
TC{z} UTC{y}, TC(Uz) C TC(x). For power, use the definability of N to
get t € N — P(xz) N N € N. Finally, for replacement use replacement in
M|G] and the definability of N. O

Iterated Set-Forcing
First we consider two-step iteration.

Let P be a notion of forcing and (Q) a P-name such that 17 IF Q is a
pre-ordering. There is a notion of forcing P*() with the property that forcing
with P % Q is the same as first forcing with P and then in the extension by
P forcing with Q. We define:

PxQ={(p.q) | pe€ P, Rank ¢ < Rank Q and p I ¢ € Q}
(Po, q0) < (p1, @) iff po < p1 and po IF g0 < g1

Then P % Q is a pre-ordering, called the two-step iteration of P and Q

Lemma 3.12. Let G be P-generic over V and Q = Q°, a notion of forcing in
VI[G]. If H is Q-generic over V[G] then

GxH={(p,q) e P+xQ|peGandpecH}

is P * Q-generic over V and V[G x H) = V[G][H].
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Proof. If D € V[G] is dense on P * @ then define D; = {¢% | (p,q) € D for
some p € G}.

Claim. D; is dense in Q = Q°.

To prove the Claim, suppose that ¢¢ belongs to @, Rank ¢ < Rank Q Con-
sider the set {p € P | For some ¢, pIF ¢1 < gy and (p,q1) € D}. Since D is
dense in P x @, it follows that the latter set is dense in P. By the genericity
of G there is p € G belonging to this set and therefore ¢ has an extension
in Dl.

Now since Dy is dense and belongs to V[G] it follows from the genericity of
H that there is ¢ € H belonging to D;. But then there is p € G such that
(p, q) belongs to D and to P x (), as desired. O

Lemma 3.13. Let K be P % Q-generic over V. Then the set G = {pe P
(p,q) € K for some ¢} is P-generic over V and the set H = {¢“| (pge K
for some p} is Q = Q%-generic over V[G]. Moreover K = G * H.

Proof. If D € V is dense on P then Dy = {(p,q) | p € D} is dense on P * Q)
and it follows that D N G is nonempty. And, if D € V|[G] is dense on Q) we
may choose a name D such that D¢ = D and 1¥ I+ D is dense in ). Then
{(p,q) € P+xQ | plF qe D} is dense in P Q and it follows that H N D is
nonempty. The equality K = G % H is clear, using the compatibility of K.
O

It follows from the Lemmas that V|G x H] = V[G|[H].

Lemma 3.14. Let s be regular. If P has the x-cc and 17 IF @ has the s-cc
then P x () has the r-cc.

Proof. Assume that (pa,q.), @ < k are mutually incompatible. Let G be
P-generic over V and Z = {a | p, € G}. Whenever o and 3 belongs to Z,
we have that ¢ and qg are incompatible in Q = Q. As Q has the s-cc in
V[G] it follows that Z has cardinality less than x in V[G]. But as P has the
k-cc in V it follows that for some v < x, 17 IF Z is a subset of 7; but this
contradicts the fact that p, IFy € Z. O

Now we turn to transfinite iterations. We shall introduce sequences (P |
B < «) of forcing notions so that Py = Pz * Qg for § < . At limits we
will take “direct limits”.
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Definition. Let a be a nonzero ordinal. P, is an iteration of length o with
finite support iff it is a set of a-sequences with the following properties:

(i) If @« = 1 then for some forcing notion @y, P is the set of all sequences
(p(0)) of length 1, where p(0) € Qo. And (p(0)) < (q(0)) iff p(0) < ¢(0).

(ii) If o = B+ 1 then P3 = {p | B | p € P.} is an iteration of length 3 and
there is some name Qg such that 175 |- Qg is a forcing notion and:

pe€ P, iffp| B € Pgand 17 I p(3) € Qg

p<qin P iff p [ 8<q[Bin Psandp |3 p(B) <q(B)

(iii) If «v is a limit ordinal then for all < a, Ps={p | B | p € P,} is an
iteration of length 3 and:

pe P,iff p| 8 € Pgforall 5 <aand

175 I+ p(B) = 195 for all but finitely many 3 <

Also: p<qin P, iff p [ 5 <q | fin Pg for all 8 < a.

Notation. <g denotes the ordering of P, I3 denotes the forcing relation of
Ps and |5 ¢ denotes 175 k5 . An easy exercise is the following.

Fact. If G is P,-generic over V then for f < a, G| 8={p [ [ |pe€ G} is
Pgs-generic over V.

Theorem 3.15. Let P, result from the iteration of finite support of Qs 8 <
a). If k5 Q3 has the R;-cc for each § < « then P, has the N;-cc.

Proof. By induction on a. If @« = 3+ 1 then P, = Pp * Qﬁ and the result
follows from our earlier Lemma. Now suppose that « is a limit ordinal and

for each p € P, let supp (p) denote the support of p, i.e. the set of § < «
such that p(3) # 15.

Case 1. cof a # Ny. Let W C P, be a set of size N;. Since cof a # Ny there
isa < aand Z C W of size Xy such that supp (p) C g for all p € Z. Then
{p T 08| pe Z}is aset of size Xy in Py and since by induction Ps has the
N;-cc there are p and ¢ in Z such that p [ # and ¢ [ 3 are compatible in Pj3.
But then p and ¢ are compatible. So W is not an antichain.

Case 2. cof @ = R;. Let (a¢ | £ < Ry) be a continuous increasing sequence
with limit & and W = {p¢ | £ < N;} a subset of P, of size R;. For each limit
£ <Ny thereisy(£) < & such that supp (p)Nawi C o). By Fodor’s Theorem
there is a stationary S C N; and some v < Ny such that supp (pe) Nae C a,
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for all £ € S. Also we can construct an uncountable set Z C S so that for
any £ < nin Z, supp (pe) C a,.

Now consider the set {p¢ [ o, | £ € Z}. This is an uncountable subset of
P, and so there are £ < 7 in Z such that p¢ | o, and p, [ a,, are compatible.
Let q € P, be stronger than both of these conditions. Now define r € P, as
follows.

r(i) =q(i) ifi < «
r(i) = pe(t) if oy < i< ay
r(i) = py(3) if a;; < i < .

Then r is stronger than both p¢ and p, and therefore p; and p, are compatible.
So W is not an antichain. O

Suslin’s Problem

Suslin asked whether there is a complete, dense linear ordering without
endpoints, without an uncountable set of pairwise disjoint intervals and not
isomorphic to the real line. It turned out the answer is Yes in L, but the
answer is No in an extension of L obtainable through iteration with finite
support.

An equivalent version of Suslin’s question is the following: Is there a
Suslin Tree? The latter is an uncountable partially-ordered set (7', <r) such
that the predecessors of each element of T" are well-ordered by <7 and (T, <r)
has no uncountable chain or antichain.

Notice that a Suslin tree is a partial-ordering and therefore can be used as
a forcing notion. If T" is a Suslin tree with the property that each ¢ € T" has
uncountably many extensions in 7', then forcing with 7" adds an N;-branch
through 7" and therefore 7" will not be Suslin in the generic extension.

Theorem 3.16. In L, there is an iteration with finite support P of length Ny
such that if G is P-generic over L then in L[G] there are no Suslin trees.

Proof. We construct P as the iteration of (Qa | @ < Ny) where at each stage
IFo Qu is Ni-cc. Thus P is also ¥i-cc and all cofinalities are preserved.

We define @, by induction on a < N,. Fix a function = mapping R, onto
Ny x Ry so that if 7(a) = (5,7) then 5, v < a. Assuming for the moment
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that P, is an N;-cc forcing of size < Ny, it follows Ik, 2%t = R, and therefore
there at most Ny nonisomorphic Suslin trees in a P,-generic extension. Since
P, is Ny-cc there are at most Ny P,-names for Suslin trees. Let m(«) be
(3,7). Then Q, is defined to be the y-th Ps-name for a Suslin tree.

We assuimed that P, is an Rj-cc forcing of size < Ny for each a < N,.
We now prove this inductively. Clearly it holds for limit stages since we are
taking direct limits. At the successor stage P, = P, Qa we have I Qa
has cardinality N, as Q, is a name for a Suslin tree. Every name for an
element of Qa can be represented as a function from an antichain of P, into
Ny, and since P, is N;-cc there are at most Nkfo = N; such names. It follows
that P, has size at most N;j.

Now we claim that there are no Suslin trees in a P-generic extension L[G].
Let G, denote G | P, for each o < N,.

Claim. If X is a subset of R; in L|G] then X € L|G,] for some a < N,.

Proof of Claim. A name for X is determined by an N;-sequence of maximal
antichains, and therefore by the Ni-cc, by a name of size N;.

Now suppose there were a Suslin tree in L[G]. Then there would be
a Suslin tree T" with the property that each ¢ € T has uncountably many
extensions in 7. By the Claim we can assume that 7" belongs to L[G,] for
some o < Ny and therefore by construction at some stage 3 of the iteration,
we force with 7. But then 7" is not Suslin in L|G], contradiction. O

Countable Support Iteration

Iterations with countable support are defined just like iterations with finite
support, but with the condition at limit stages « given as follows:

pEPaiﬁ'pfﬁgPﬁforallﬁ<aand
17 | p(B) = 19¢ for all but countably many 3 < a.

This type of iteration is needed when one wishes to use forcings which are

not N;-cc. Typically one performs an iteration of length Ny, using forcings of
size N;. To show that cardinals above N; are preserved one uses:
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Proposition 3.17. Let P be a countable support iteration of length N, such
that for § < Ny, P | 3 has a dense subset of size at most N;. Then P has
the Noy-cc.

Proof. If (pe | £ < Ny) are conditions in P then there is a stationary set
S C N, consisting of ordinals of uncountable cofinality such that for £ € S,
supp (pe) N & is bounded by a fixed ordinal v < N,. But then we can choose
two conditions pe and p, whose restrictions to v are compatible and whose
supports above 7y are disjoint. It follows that these conditions are compatible
and therefore the original sequence cannot enumerate the elements of an
antichain. O

How does one show that N; is preserved in a countable support iterati-
on? Shelah isolated a condition on the forcings used in the iteration, called
properness, which guarantees preservation of ¥; and is preserved through
countable support iteration.

Definition. P is proper iff player I has a winning strategy in the following
game: Player I begins by selecting a condition p and choosing a name A,
for a countable set of ordinals. Player 11 chooses an ordinal y. At the n-th
move, [ plays a name A, for a countable set of ordinals and IT plays an
ordinal 3,. Now /] wins the game iff for some g < p :

(%) ¢ IF For all n and o in A, a = 3 for some k.

Notice that if /1 has a winning strategy in the above game, then every
countable set of ordinals in a P-generic extension of V' is a subset of a set
of ordinals which is countable in V. Thus properness implies that N is
preserved.

Theorem 3.18. Let P, be a countable support iteration of length ~ of Qﬁ,
B < «y such that for every 8 <, IFg Qg is proper. Then P, is proper.

Proof. We actually prove something stronger than stated, to facilitate an
inductive argument. A winning strategy o for /] in the properness game
is good iff for every sequence of moves p, Ao, ..., A,, ... of player I, o
produces a sequence (3, | n € w) such that for some ¢ < p obeying (%)
above: supp (¢) C {8, | n € w}.
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Claim. (a) For all n < =, I, I1 has a good winning strategy in the proper
game for P, ={p [ [n,7) | p € P,}.

(b) Suppose that + has cofinality w and (v, | n € w) is an increasing sequence
cofinal in v. Let Ry = P,, and R,,y1 = P,,,,, for each n € w. Then P is
equivalent to the w-iteration of the R,’s.

To treat the case of the Claim (a) when ~ is a successor ordinal we need:

Lemma 3.19. Suppose that P is proper and IFp Q proper. Then P % Q is
proper.

Proof of Lemma. It is not difficult to show that in the definition of properness,
we can equally well use the game where I plays names for single ordinals,
rather than countable sets of ordinals. We shall prove the lemma using this
modified version of the game.

Let o be a winning strategy for I in the game on P and let 7 be such that
IFp 7 is a winning strategy for /1 on Q. We describe a winning strategy for
IT on PxQ: Player I starts by selecting a condition (p, ¢) € P*Q and a name
& for an ordinal. We describe I1’s response, an ordinal 7p. The P x (Q)-name
& can be identified with a P-name for a Q name. Apply II’s strategy 7 in
the Q-game where I begins with ¢ and do. Let 3y be II’s response. Now
consider the game on P and use o to respond when I plays p and 3. The
result is 7p.

At the nth move, I plays a P % Q-name ¢v,. Identify d,, with a P-name for a
(Q-name and apply 7 to get ﬁn Now in the game on P we use o to produce
an ordinal v,, when I plays 3, as his nth move.

Since 7 is a winning strategy we have
plkp 3¢ <, ¢ ko ¥n3Im G, = B
Therefore there is a ¢’ such that p IF ¢/ < ¢ and
(p,4) IF Yn3Im o, = Bin.
Since o is a winning strategy, there is p’ < p such that

P - Ym3k B =
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Putting this together we get
(pla q,) = Vndk an = Yk,

and therefore the strategy described above is a winning strategy for /71 in
the game on P x (). This proves the Lemma.

Notice that the proof of the Lemma shows that if /1 has a good winning
strategy in the game on P, and I, @), is proper, then I] has a good winning
strategy in the game on P, 1, the successor step in the proof of the Claim,

part (a).

Now we prove the Claim, part (a) for limit ~. It suffices to prove it when
1n = 0: When n < ~ is arbitrary, we will be able to carry out the same proof in
a generic extension via P,, because by the Claim, part (b), P, is a countable
support iteration of proper forcings in this generic extension.

If v has cofinality w, fix an increasing w-sequence (7; | i < w) cofinal in 7.

Player I starts the game on P, by selecting p € P, and a P,-name c¢y. If v
has uncountable cofinality we choose some vy < 7 and consider Ry = P,,.
(Otherwise 7o has already been chosen.) Let pg = p [ 70. There are Ry-
names & and $g such that py IFg, S0 < p [ [Y0,7) and (po, $0) IF &) = dg. We
start the game on R, by letting I play py and an Ry-name for the countable
set {ap} Usupp ($o). Player /1 uses a good winning strategy oy to return an
ordinal . This is II’s first move in the game on P,.

At the nth move I chooses a P,-name ¢,. If 7 has uncountable cofinality we
choose some 7, € (vV,-1,7) greater than 3,_;. Let R, = P, ... Let p, be

a name for a condition in R,, so that (Poy s Dn1) F P = S$n1 | Y1, Vn)-
There are Ry * - - - R,-names &;. and §,, such that (po,...,p,) IF 5, € P, -,

50 < Sno1 | [m,y) and ((Po, - - -, Pn), 5n) IF & = ;. We start the game on
R, by letting I play p,, and A}, where A” = {a”} Usupp ($,).

IT uses a good winning strategy ¢, to play &"~!. Then we continue the
R, _1-game by letting I play &', to which IT responds ¢" 2. And so on,
until 77 plays (by op in the Ry-game) an ordinal 3,.

It remains to show that the strategy described above is a good winning
strategy for IT in the P,-game. Let v, = lim, v, and S = {3, | n € w}. We
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can obtain a sequence p = (¢, | n € w) in the w-iteration of the R,’s such
that ¢ < (p, | n € w) and

g - Yn3k & = By

Since the ¢, are good winning strategies, it follows that R and P, are
equivalent forcings, and that ¢ is a condition in P, with supp ¢ € S. Let
us identify ¢ with ¢ (111---) € P, (if 70 < 7). Since S C 74 and for every
n, q¢ [ nl-supp $, C .S, we have

q S <<p07 cee 7pn>78n)

It follows that ¢ < p, ¢ IF Vn3k &, = [ and supp ¢ C S. Hence the strategy
given is a good winning strategy, as desired. This proves the Claim, part (a).

We now prove the Claim, part (b). Let v = lim, v, and let P, be the
proper iteration of length v of (Q¢ | & < 7). For each n let R, = P,,_,..
(and Ry = P,,). Let R be the w-iteration of the R,. We want to show that
R and P, are equivalent forcings. For any p € P, let r = (r,, | n € w) where
Tn = P | [Yn-1,7). Thus P, embeds into R; it suffices to show that P,
embeds into R densely.

Thus let » = (7, | n € w) be a condition in R. We wish to find p € P
such that p < r. By the induction hypothesis, each R, has a good winning
strategy o,. We use these good strategies to produce p.

Play the proper games on the R, simultaneously for all n € w. The game
on Rn begins with the condition 7,. The moves of I are names for countable
sets of ordinals; the moves of I1 are according to the strategy o,.

At step 0, start the game for Ry. [ plays ro and a name Ag for the
support of 7. I responds with 3,. At step 1 we start the game on Ry in
an Ry-generic extension. [ plays r; and a name A} for the support of r5. I1
responds with &. Continue the game on Ry: I plays & and IT responds
with (1. At step n, we start the game on R, in a Rg * - - - % R,_;-generic
extension. [ plays 7, and a name AZ for the support of 7,,1. II responds
with ¢"~!. Then, playing the game on Rn,l, I plays ¢"~! and IT responds
with ¢"~2. And so on, until /T plays 3, in the game on Rj.

Since the &, are good winning strategies there exists a condition g = (g, |
n € w) € R, stronger than (7, | n € w), such that for each n, ¢ [ n forces:

Gn IF Ya played by I 306 played by I1 such that o = 3, and
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the support of ¢, is included in the set of all ordinals played by 1.

Let S(8, | n € w}. It follows jthat for every n, ¢ [ n IF supp (¢,) € S. We
conclude the proof by constructing a condition p € P, so that p = ¢ (under
the embedding of P into R). This we do by induction on £ < : If £ ¢ S we
let p(¢) = 1 and if € € S then we let p(¢) be the condition ¢ € Qg so that
p | EIFt= ¢, (&), where n is the unique n for which ~,_; < ¢ < v,. For each

n we have p [ v, 1 IFp [ [Yn-1,7) = ¢n and so p = ¢. O
The Borel Conjecture

Properness can be used to establish the consistency of Borel’s Conjecture
concerning sets of strong measure 0. Let X be a subset of [0, 1]. X has strong
measure 0 if for every sequence (e, | n € w) of positive reals there exists a
sequence (I, | n € w of intervals with length [, < ¢, such that X C U, I,.
Borel conjectured that strong measure 0 sets are in fact countable. This
contradicts CH, but Laver proved the consistency of Borel’s Conjecture using
a countable support iteration of Laver forcing.

Laver forcing is defined as follows. A set p C w<¥ is a tree iff it is closed
under initial segments. A tree p is a Laver tree iff for some s € p (called the

stem of p):

1. For all t € p either t C s or s C t.
2. For all £ € p extending s the set S(t) = {a | t*xa € p} (the set of successors
of ¢ in p) is infinite.

Laver forcing consists of all Laver trees, partially ordered by inclusion. If G
is generic then f = J{s | s is the stem of some p € G} is a function from w
into w, a Laver real. It is easy to show that V|G| = V[f].

By an earlier Proposition, if we iterate Laver forcing for Xy steps over L,
we will have the No-cc and therefore preserve all cofinalities greater than Nj.
To show that this iteration preserves cofinality w; it suffices to show that
Laver forcing is proper.

Lemma 3.20. Laver forcing is proper.

Proof. Define the relations <,, as follows. Consider a canonical enumeration
of w<¥ in which s appears before ¢t when s C ¢ and s * a appears before
s*(a+1) for a € w. If pis a Laver tree then part of p above the stem is
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isomorphic to w<“ and so we have a canonical enumeration of it (s¥ | i € w),
where sj is the stem of p. Note that if ¢ < p and s? = sP, then n < m. We
define:

q <, p iff p and ¢ have the same stem and s¥ = s! for all i < n.

It is easy to show that if pg >¢ p1 >1 p2 =2 ... then p = ﬂnpn is a Laver
tree, called the fusion of the fusion sequence (p, | n € w).

Fact. If p IF & € ORD then there are ¢ <,, p and a countable A C ORD such
that ¢ IF & € A.

Proof of Fact. We assume that n = 0, as the proof for general n is almost
the same. If p is a Laver tree, n € w, ¢ < p and the stem of ¢ is maximal
among {sf, ..., s} then

r=qU{uep|lugtandtZ u}

is a Laver tree <, p, called the n-amalgamation of q into p. This has the
obvious generalisation to the amalgamation of {qi,...,qx} into p when the
¢; extend p and their stems are all the maximal nodes among {sf, ..., s
(for a uniquely determined n).

We construct a fusion sequence (p, | n € w) with py = p and finite sets
A, so that the fusion of this sequence forces & € J, A,. At stage n we
already have p,. Let t1,...,t; be all the maximal nodes among sb", ..., sP.
For each ¢ € {1,...,k} if there exists ¢; < p, with stem ¢; and an ordinal o,
so that ¢; IF & = ! then we choose such ¢; and of. Let A, be the collection
of all the ! chosen and let p,,; be the amalgamation of {q,...,q} into
pn (If ¢; did not exist, then we take it to be the collection of nodes in p,
compatible with ¢;.) We have p,11 <, pn.

Let po be the fusion of the p,’s and A = (J,, A,. To prove that p, IF
a € A, let ¢ < ps. There are a condition ¢ < ¢ and a € ORD such
that ¢ IF @ = «. Let n be large enough so that the stem of ¢ is among
K ={s§",...,st»}. Thereis ¢ € g that is a maximal node in K and therefore
one of the nodes considered at stage n, say t = t;. Let r consist of those nodes
of ¢ which are compatible with . As r and « satisfy the requirements for
choosing ¢; in the definition of p,,; we indeed have chosen ¢; and of,. Because
r < ¢; it must be the case that a = o, and so r IF @ € A. So by a density
argument, p. IF & € A. This proves the Fact.
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Now we can show that /7 wins the proper game for Laver forcing (in the
version where [ plays a condition p and names for single ordinals, I1 plays
countable sets of ordinals and /1 wins iff there is ¢ < p which forces all the
names to be in the union of the sets played). At the start of the game let
I select py and the ordinal name &y. By the Fact there is p; <g po and a
countable By such that p; IF & € By. At the nth move, when I plays &,
there are p,.1 <, p, and a countable set B,, with p,., IF &, € B,. Then the
fusion of the p,’s verifies that II wins the game. O

The Main Lemma needed to verify that Borel’s Conjecture holds in the
Laver model (obtained via an Ns-iteration of Laver forcing over L) is the
following.

Main Lemma. If GCH holds in V and X is an uncountable set of reals in V'
then X does not have strong measure 0 in V[G] where G is generic over V'
for the Ny-iteration of Laver forcing.

We content ourselves with a proof of the following simpler version.

Theorem 3.21. If GCH holds in V' and X is an uncountable set of reals in V
then X does not have strong measure 0 in V[G] where G is generic over V
for (a single application of )Laver forcing.

Proof. We show that if f is the Laver real and ¢, = I/f(n) then for some
ng, X cannot be covered by intervals of lengths €,,, €441, - - -

Lemma 3.22. Let p I ¢y V---V k. Then there is ¢ < p with the same stem
as p such that p IF ¢; for some 1.

Proof of Lemma 3.22. Recall that for ¢t € p, S(t) denotes the set of a € w such
that ¢ * a belongs to p. Let s be the stem of p and assume that the Lemma,
fails. Then there are only finitely many a € S(s) such that some ¢ < p [ s*xa
has the desired property. By removing these finitely many nodes and their
extensions, we get p; <o p. For each s x a € p; there are only finitely many
b € S(s*a) such that some ¢ <o p; | s* a*b has the desired property.
By removing all such b and their extensions we get p, <; p;. Continue in
this way to form a fusion sequence with limit . Then if ¢ € r there is no
q <o r | t with the desired property. But then no extension of r forces any
©;, a contradiction.
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Lemma 3.23. Let p be a condition with stem s and # a name for a real. Then
there is ¢ <o p and a real u such that for every ¢ > 0, for all but finitely
many a € S(s),

qls*xalk|t—u|l<e

Proof of Lemma 3.23. Let {t, | n» € w} be an enumeration of {s % a |
a € S(s)}. For each n we can choose ¢, <o p [ t, and an interval J, =
[m/n, (m + 1)/n] so that ¢, IF & € J,. There is a sequence (k, | n € w) so
that the Jy, ’s form a decreasing sequence converging to a unique real u. Let
q = Unqk, - Then g is as desired.

Lemma 3.24. Let p be a condition with stem s and let (&, | n € w) be a
sequence of names for reals. Then thre is ¢ <, p and a set of reals {u, | t € g,
t O s} such that for every € > 0 and every t € ¢ extending s, for all but
finitely many a € S(t):

glt+alk |z —ul <e
where k& = length ¢ — length s.

Proof of Lemma 3.24. By repeated application of Lemma 3.23. First we
get p1 <o p and ug. Then for every immediate successor ¢t of s in p; we
get ¢ <o p1 | t and uy; let po = Usq. Continue to get a fusion sequence
p >0 p1 =1 P2 =2 ... and let ¢ = Nypy.

We are now ready to prove the Theorem. Let X € V' be a subset of [0, 1]
and p IF X has strong measure 0. We show that X is countable. Let s be
the stem of p, of length n. Let f be the Laver real. Consider the sequence
ex = 1/f(k), k > n. There exists a sequence of intervals I, k > n of length
e, so that X C -, fk. For each k£ > n let £, be the center of [j.

Let ¢ <o p be a condition obtained by Lemma 3 applied to p and (i |
k> n) and let {u; | t € q, ¢ D s} be the resulting reals. We shall show that
X CH{u [t €q, q2 s}

Let v ¢ {u, |t € ¢, ¢ 2 s}. Since p - X C |, I it suffices to find
some r < ¢ such that r IF v ¢ fk for all £ > n. We construct r by induction
on the levels of ¢; at stage k > n we guarantee that r |- v ¢ I.

The first step is as follows: Let € = (1/2)-|v—us|. For all but finitely many
a€S(s),q| s*alr|i,—u,| < e Also, for each a, ¢ | s*a - f(n) = a and so
q | s+alk €, = 1/a; thus, for all but finitely many a, ¢ [ sxa lF "%, —v| > é,,
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ie,q|sxalkvé¢ I,. Thus, by removing finitely many immediate successors
of s we ensure that r |- v ¢ I,. We continue in this way to get r < ¢ such
that v IFv ¢ s, Ik O
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4. Class Forcing

Under the assumption of “large cardinal axioms” it can be shown that
there are reals that are not generic over L for set-forcing. The standard
example is the real called 07, which causes dramatic effects when added to
L: In L[0¥] all successor L-cardinals are collapsed and indeed the cardinals
of L[0#] are indiscernible in L.

Solovay asked if 0% provides the only counterexample to the universality
of set-forcing over L. For our present purposes we can pose his question as
follows:

Is it consistent that for some real R, L and L|R] have the same cardinals but
R belongs to no set-generic extension of L?

The positive answer to this question was provided by Jensen, who de-
veloped a powerful new type of forcing, in which a generic real is created
by forcing over L with a class partial-ordering. We shall next develop the
general theory of class-forcing and establish this result of Jensen.

Let M be a transitive set or class satisfyingg ZF, and A C M. We say that
(M, A) is a model of ZF if M is a model of ZF and the scheme of replacement
holds in M for formulas which mention A as a predicate. In addition we
require (M, A) to be a ground model, which means that (M, A) satisfies:
V = L(A) = U{L(ANV,)|la € ORD}. Any ZF model (M, A) is easily
modified to a ground model (M, A*) (with the same definable predicates) by
taking A* to be {(0,z)|z € A} U{(1,VM)|a € ORD(M)}. This “minimality”
property of M relative to A is needed to guarantee that M is definable as a
predicate in all of its extensions (M|[G], A, G).

A partial ordering P is a class forcing for M (or an M -forcing) if for some
ground model (M, A), P (with its ordering) is definable with parameters over
(M, A). Assume that this is the case and that P has a greatest element 17.

Definition. G C P is P-generic over (M, A) iff:
p,q € G — p, q are compatible.

p>qeG—pedG.
If D C P is dense and (M, A)-definable (with parameters) then G N D # ().
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We make the same Assumption as before, that for each p € P there exists
G such that p € G and G is P-generic over (M, A). (This is provable when
M is countable.) We will discuss (and dispense with) this Assumption later.

Define names and M[G] as before. We have the following:

Lemma4.1. (a) M C M|[G] and M[G] is transitive, ORD(M[G]) = ORD(M).
(b) GNV,, € M[G] for each « € ORD(M) and if M C N, (N, () is amenable
and N is a model of ZF then M[G] C N and M is definable over (N, A).

Proof. (a) Exactly as before.

(b) For each a € ORD(M), G NV, = ~& where v, = {(p,p)|p € PNV, }, so
GNV, € M|G]. Under the assumptions on N we can define o as an element
of N, for each name o; M is definable over (N, A) as it equals L(A)N. O

Define I and I as before. We would like to carry out the earlier argu-
ment to show that the Truth and Definability lemmas hold for I-. But we
immediately run into trouble: We do not know that the Definability lemma
holds for IF. The problem is in (a), (b) of the definition of IF:

(a) pIF o € 7iff {¢|3(m,r) € 7 such that ¢ < r, qIF 0 =7} is dense < p.

(b) pIF o = 7 iff for all (m,r) € cUT, pIF (m € 0 «— 7 € 71) iff for all
(myryeoUTt, {qlqIF (r€oAmeT)orql (mr¢oAnm¢r)}isdense < p.

As P may now be a proper class these clauses involve unbounded quan-
tifiers, and therefore lead to definitions of p IF ¢ € 7,p ¥ ¢ = 7 whose
quantifier complexity may increase with the ranks of o, 7.

By introducing a further condition on P we can control the quantifier
complexity of the relations p IF o € 7, p I ¢ = 7 and therefore obtain the
Definability lemma for IF. In the discussion below, “definable” always means
“definable with parameters” unless we say otherwise.

Pretameness Condition. P is pretame iff whenever (D;|i € a) is an (M, A)-
definable sequence of dense classes, a € M and p € P then there is ¢ < p
and (d;|i € a) € M such that d; C D; and d; is predense < ¢ for each 1.

Proposition. Suppose that for each p € P there is G C P such that p € G, G
is P-generic over (M, A) and (M[G], A, G) is a model of ZF — Power . Then
P is pretame.
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Proof. Given (D;|i € a) and p as in the statement of pretameness choose G
such that p € G, G P-generic over (M, A) and consider f(i) = least rank of
an element of G N D;. If pretameness failed for p, (D;|i € a) then for every
g <pand a € ORD(M) there would be r < g and ¢ € a with r incompatible
with each element of D; NV,. But then by genericity, no ordinal of M can
bound the range of f, so replacement fails in (M[G], A,G, M). As (M, A) is
a ground model, replacement fails in (M[G], A, G). O

Thus pretameness is necessary for a reasonable notion of class forcing. We
now prove the Definability lemma for ¥ assuming pretameness. By formula
we now mean a formula in the language of set theory with the addition of the
unary predicate symbols A, G. Of course (M[G], A, G) E A(c®) iff 0% € A,
(M[G], A,G) E G(c%) iff % € G. And extend the definition of I by adding:

(f) pIF A(o) iff p IF 0 € G4, where a, = ANV, o = Rank o + 1.
(g) pIF G(o)iff pIF o € 74, where v, = {(p,p)|p € PNV, }, & = Rank 0+1.

Theorem 4.2. If P is pretame then for any formula ¢, the relation “p I
o(o1...0,)" of p,oy ..o, is (M, A)-definable.

Proof. It suffices to show that the relations p I o € 7 and p IF ¢ = 7 are
(M, A)-definable, for then we may induct on teh structure of . Note that by
modifying A if necessary, we may assume that the relations “z = VM " “p ¢
are compatible,” “d is predense below p,” as well as (P, <), are A;-definable
over (M, A).

Using pretameness we shall define a function F' from pairs (p,o € 1),
(p,0 = 7) into M such that:

(a) F(p,o € 7) = (i,d) where d € M is a nonempty subset of P(< p) =
{q € P|q<p}andeither (i=1and ¢ o € 7 for ¢ € d) or (i = 0 and
qIF o ¢ 7 for g € d).

(b) The same holds for 0 = 7, 0 # 7 instead of 0 € 7,0 ¢ 7.

(c) F is ¥;-definable over (M, A).

Given this we can define p I o € 7 by: p IF o € 7 iff for all ¢ < p,
F(q,0 € 7) = (1,d) for some d. This holds because p IF o € 7 iff {q|q IF
o € 7} is dense < p. Similarly we can define pIF o = 7.

Now define F' by induction on ¢ € 7, 0 = 7. We consider the two cases
separately.
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Given p, search for (m,r) € 7 and ¢ < p, ¢ < r such that F(q,0 =
7) = (1,d) for some d. If such exist, let F'(p,0 € 7) = (1,e) where e is the
union of all such d which appear by the least possible stage a (i.e., this ¥;
property is true in (VM AN VM) « least). If not then for each (m,r) € 7,
D(m,r) = U{d| For some q < r, F(q,0 = m) = (0,d)} U {¢|q incompatible
with r} is dense below p. So also search for (d(m,r)|(m,7) € 7) € M and
q < p such that d(m,r) C D(rm,r) for each (m,r) and each d(m,r) is predense
< ¢; if this latter search terminates then set F(p,o € 7) = (0,¢), where e
consists of all such ¢ witnessed by the least possible stage a. One of these
searches must terminate (by pretameness) and hence F(p,o € 1) is defined
and either of the form (1,e) where ¢ € e — ¢ < p, ¢ IF ¢ € 7, or of the
form (0,e) where g € e — g < p,qIF~ (0 € 7).

oc=T

Given p, search for (m,r) € c U7t and ¢ < p,q < r such that for some
i,d,q and e, F(q,m € 0) = (i,d),q € d,F(¢’,m € 7) = (1 —i,e). If this
search terminates then set F(p,oc = 7) = (0, f) where f is the union of
all such e which appear by the least possible stage «. If this search fails
then for each (m,r) € c U7, D(m,r) = U {e| For some ¢ < r, some i,d, ¢,
F(qg,m € o) = (i,d),q € d, F(¢,m € 7) = (i,e)} U{q|q is incompatible
with 7} is dense < p. So also search for (d(m,r)|(m,7) € cUT) € M and
g < p such that for each (m,r), d(w,r) C D(m,r) and d(m,7) is predense
< ¢. If this latter search terminates then ¢ I o0 = 7 for all such ¢ and let
F(p,o = 1) = (1, f), where f consists of all such ¢ < p witnessed to obey
the above by the least stage a. O

The previous Theorem was proved independently by M. Stanley. The
author does not know if the assumption of pretameness is necessary for this
result.

Now that we have the Definability lemma for [ we can prove the Truth
lemma for IF as we did before; the two new clauses (f), (g) cause no difficulty.
Then we infer that IF=IF as before.

Pretameness is sufficient to verify that ZF — Power is preserved:

Lemma4.3. If P is pretame and G is P-generic over (M, A) then (M[G], A, G)
is a model of ZF — Power . If M is a model of AC then so is M[G].
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Proof. This is exactly as before, except for the verifications of replacement,
union. For replacement, suppose f : 0 — M][G], f definable (with pa-
rameters) in (M[G], A,G) and choose p € G, p IF f is a total function
on o. Then for each oy of Rank < Rank o, D(0g) = {¢q| For some 7,
qlF o9 € 0 — f(op) = 7} is dense < p. Thus by pretameness we get that
for each ¢ < p thereis r < g and a € ORD(M) such that D, (oq) = {s|s € V,
and for some 7 of Rank < a, sk 09 € 0 — f(0g) = 7} is predense < r for
each oy of Rank < Rank o. By genericity there is ¢ € G and a € ORD(M)
such that ¢ < p, D,(09) is predense < ¢ for each oy of Rank < Rank o. Thus
Range (f) = 7% where 7 = {(r,7)|Rank 7 < a,r € V,,r I 7 € Range (f)}.
So Range (f) € M[G].

For union, given ¢“ consider 7 = {(r,p) | p IF 7 € Us}. This is not
a set, but for each o we may consider 7, = = N VM. By replacement in
(M[G], A, G), 7€ is constant for sufficiently large o € ORD(M). For such «
we have 7¢ = Us®. O

G

Thus pretameness is equivalent to ZF— Power preservation. P is tame iff
P is pretame and in addition 1¥ forces the Power Set Axiom. Thus tameness
is equivalent to ZF preservation.

Ezramples

We describe the four basic examples of tame class forcing: Easton, Long
Easton, Reverse Easton and Amenable forcing.

We now fix our ground model (M, A) to just be (L,()), and maintain
the Assumption that for each forcing P considered, P-generic classes exist
containing any given condition in P (where P-generic means P-generic over
(L,0)). We shall later consider the question of generic class existence and
will show how to eliminate this Assumption, when establishing first-order
properties of P-generic class.

Easton Forcing

Easton extended Cohen’s independence proof for CH to all regular cardi-
nals, showing that the function f(x) = 2" can exhibit any reasonable behavior
for regular k. To do so he developed a class forcing for adding generic subsets
to all regular x simultaneously. We describe here a version of his technique,
where we explicitly add only one generic subset to each regular s, thereby
preserving GCH.
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A condition in P is a function p : a(p) — L where a(p) € ORD and
for a < a(p), p(a) = 0 unless « is infinite and regular, in which case p(«a) €
2<* = {f : B — 2|8 < a}. In addition we require that p has FEaston
support which means that for inaccessible , {a < k|p(«) # 0} is bounded in
k. Extension is defined by: p < ¢ iff a(p) > a(q), o < a(q) — p(«a) extends
¢(a). The key to analyzing P is to observe that for each infinite regular ,
P is isomorphic to P(< k) x P(> k), where P(< k) = {p [ [0,k]|p € P},
P(> k) ={p | (k,00)|p € P}, ordered in the natural way. Note that P(< k)
is k*-cc (indeed has cardinality k) and P(> k) is kT-distributive (indeed is
kT -closed: decreasing r-sequences of conditions have lower bounds).

Long Faston Forcing

This is like Easton forcing, except we drop the Easton support require-
ment. There are two types of Long Easton forcing, depending upon whether
or not the forcing is trivial at inaccessibles. We begin with the simpler case,
called Long Easton forcing at Successors. We treat w as a successor cardinal
in this discussion: 0t = w.

A condition in P is a function p : a(p) — L, a(p) € ORD where p(a) = ()
unless « is a successor cardinal, in which case p(a) € 2<®. Extension is
defined by p < ¢ iff a(p) > a(q) and for each a < a(q), p(a) extends g(«).
For any infinite regular x we can factor P as P(< k) x P(> k) and P(> k) is
kT-distributive. However if  is inaccessible, P(< k) = P(< k) is not x*-cc.

Now we consider (unrestricted) Long Easton forcing, where we redefine
P so as to allow p(a) € 2<% for any infinite regular «, not just successor
cardinals. Then for any infinite successor cardinal x we can factor P as
P(< k) x P(> k) and the analysis of Easton forcing shows that P is tame
and preserves “cofinality > k” for successor cardinals k. However P is not
cofinality-preserving in general. A cardinal x is Mahlo if x is inaccessible and
{a < k|a inaccessible} is stationary in .

Theorem 4.4. Suppose G is P-generic over L and x is L-regular. Then
(kt)HE = (k*)F iff & is not Mahlo in L.

Proof. Let G = (G,|a infinite, regular) be P-generic. For each a < &
consider A, C k defined by: € A, «— a € Gp.

Claim. Suppose « is Mahlo. Then {A,|a < k} C L but for no v < (k)" do
we have {A,|a <k} C L,.

51



Proof of Claim. For any a < k and condition p, we can extend p to ¢ so that
a < k < R,k regular — p(k) has length greater than .. Thus A, is forced
to belong to L.

Given v < (k)% and a condition p, define f(%) = length(p(%)) for regular
k < k. As k is Mahlo, f has stationary domain and hence by Fodor’s
Theorem we may choose a < k such that length(p(k)) is less than « for
stationary many regular £ < k. Then p can be extended so that A, is
guaranteed to be distinct from the x-many subsets of x in L.,.

Thus " is collapsed if x is Mahlo. Conversely, if x is not Mahlo, then
choose a CUB C C k consisting of cardinals which are not inaccessible (we
may assume that x is a limit cardinal). Suppose that (D,|a € C) is a
definable sequence of dense classes. Given p we can successively extend p(>
a™),a € C so that {¢ < plq,p agree > a*,q € D,} is predense < p. There
is no difficulty in obtaining a condition at a limit stage less than k precisely
because conditions are trivial at limit points of C'. Thus we have shown that
P(< k) x P(> k) preserves k1 as k-many dense classes can be simultaneously
reduced to predense subsets of size < k. Finally P ~ P(< k)X P(> k) X P(k)
and P(k) preserves 1 as it has size k. O

Remark. Full cofinality-preservation does hold for Thin Faston forcing, de-
fined like Long Easton forcing but with the requirement that for inaccessible
Kk, {a < k|p(a) # 0} is nonstationary in k.

Reverse Easton Forcing

Our third class forcing example is a type of iteration of set forcings first
considered by Silver. Define the iteration (P(< i)]i < oo) in L by: P(< 0) =
{0}, the trivial forcing; P(< i) ~ P(< i) * P(i) where P(i) is (a formula for)
the trivial forcing unless i > w is regular, in which case P(7) is (a formula
for) the forcing 2<* = {p : &« — 2|« < i}, ordered by extension; for i limit
we take P(< i) = Inverse Limit (P(< j)|j < i) if ¢ is singular and Direct
Limit (P(< 7)|j < i) if 7 is regular (or if i = 00).

Fact 1. For each i < oo, P(< i) has a dense subordering which is a set of
cardinality < i (by convention, 07 = w).

Fact 2. For k regular and infinite, P(< k) is kT -cc.
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We now state the Factoring Property. For a < 8 < oo we let Pla, 3) be
(a formula for) the iteration of length 3 — « stages defined just like P, except
beginning at index « and ending after 3 — « stages. Then P(< «) * Pla, 3)
consists of pairs (p,q) where p € P(< «) and ¢ is a P(< «)-name for a
condition in the iteration P|a, 3).

Fact 3. (Factoring Property) P(< () is isomorphic to P(< «) % Pla, 3).

Fact 4. For k regular and infinite, P(< k) Ik Plk + 1,00) is x*-closed
(descending sequences of length < k have lower bounds).

These are all the facts needed to establish tameness and cofinality-preservation
for P = Direct Limit (P(< i)|i < co).

Amenable Class Forcing

Our fourth and final basic example of class forcing is where one has k-
distributivity for every x. Tameness and preservation of cofinalities follow
easily. Note that in this case one adds a generic class but no new sets, so
GCH preservation is trivial.

A simple example is P = all functions p : « — 2, o € ORD, ordered
by extension. Another is P = all closed sets of ordinals, ordered by end
extension.

We pose the question: For which class forcings P defined in L can we
construct P-generic classes? We will make sense of this question using Silver’s
theory of indiscernibles for L, which will lead us to some unexpected answers.

Construction of Generic Classes

Recall that we imposed the Assumption that P-generic classes exist for
any class forcing defined over a ground model (M, A). This is true when M
is countable, but not in general. We now drop this Assumption and study
in detail, for the case of forcings defined over L, the problem of generic class
existence. We will see that there is a natural condition, L-rigidity, shared
by all tame class-generic extensions of L and if this property fails in V' then
there is a least inner model in which it fails, L[0#]. We then use L[0#] to
provide a criterion for deciding which class forcings P defined over L have
generic classes, by defining such a P to be relevant if it has a generic definable
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in L[0¥]. Finally, we determine which of the basic class-forcing examples are
relevant, using properties of the L-indiscernibles provided by 0%.

First we must verify that if a P-generic G exists then the model (M[G], A, G)
does behave as earlier described under the various hypotheses on P discussed
there. This is not immediate as we in fact do need the Assumption to prove
some of the basic facts about | such as the fact that |- and IF coincide, as
well as the Definability and Truth lemmas for IF. However note the following:

Proposition 4.5. Suppose ¢ is a first-order property true in (M[G], A, G)
whenever M is countable and G is P-generic over (M, A) for a forcing P

definable over (M, A). Then ¢ is true for all such (M[G], A, G), without the
assumption that M is countable.

Proof. Given an arbitrary (M[G], A,G) let (M[G], A,G) be the transitive
collapse of a sufficiently elementary countable submodel and apply the hy-
pothesis about ¢ and elementarity to conclude that ¢ holds in (M[G], A, G).
O

Thus when establishing first-order properties of (M[G], A, G) for P-generic
(G, we may in fact use our earlier Assumption. Consequently:

Theorem 4.6. If P is one of the basic examples of class forcing over L (Easton,
Long Easton at Successors, Reverse Easton, Amenable) then P is tame and
preserves both cofinalities and the GCH.

Rigidity

Which forcings P defined in L have generic classes? Of course if V = L
then for no nontrivial P does there exist a P-generic class, however we declare
this hypothesis to be too restrictive. A necessary condition for every p € P
to belong to a P-generic, as we have seen, is that P be tame, and for any
such P it is consistent that a P-generic class exists. However, the possibility
that a P-generic class exist for every tame P which is L-definable without
parameters is ruled out by the following result.

Proposition 4.7. There exist tame forcings Fy, P, which are L-definable wi-
thout parameters such that if Gy, G are Fy, Pj-generic over L, respectively,
then (L[Gy, G1], Gy, G1) is not a model of ZF.
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Proof. For any ordinal «, let n(a) be the least n such that L, is not a model
of ¥,-replacement, if such an n exists. Let Sy = {a|n(a) exists and is even}.
Py consists of all closed p such that p C Sy, ordered by p < ¢ iff ¢ is an initial
segment of p.

Note that Sy is unbounded in ORD: Given «, let 5 be least such that
B > a and Lg F ¥;-Replacement. Then n(3) = 2so0o 5 € Sy. If Gy C Py
is Py-generic over L then UGy is therefore a closed unbounded subclass of
ORD contained in Sy. To show that P, is tame, it suffices to show that it is
r-distributive for every L-regular s : If (D;|i < k) is an L-definable sequence
of classes dense on Py and p € By then choose n odd so that (D;]i < k) is
Y., definable and choose (q;|i < k) to be first k-many « such that L, is
Yn-elementary in L and k,p,x € L, where x is the defining parameter for
(D;]i < k). We can define p > py > p; > ... so that p;;; meets D; and
max(p;) = «a;, using the ¥, -elementarity of L,, in L. As n(a;) =n+ 1 and
n+1is even, we may define p, to be U{p;|i < A} U{a,} for limit A < x and
we see that ¢ = p, < p meets each D;,.

Now define P; in the same way, but using S; = {a|n(«) is defined and
odd}. Then P is also tame yet if Gy, G; are Py, P;-generic over L (respec-
tively) then UGy, UG are disjoint CUB subclasses of ORD. O

So we need a criterion for choosing L-definable forcings for which we can
have a generic. Our approach is to isolate a “property of transcendence” (#)
such that:

(a) In tame class-generic extensions of L, (#) fails.
(b) If (#) is true in V' then there is a least inner model L(#) satisfying (#).

Then our criterion for generic class existence is: P has a generic iff it has
one definable over L(#).

Definition. An amenable (L, A) is rigid if there is no nontrivial elementary
embedding (L, A) — (L, A). L is rigid if (L, ) is rigid.

We shall take (#) to be: L is not rigid. First we demonstrate property
(b) above, i.e., that there is a least model in which L is not rigid (if there is
one at all).

Theorem 4.8 If L is not rigid then there exists a CUB class C' of ordinals
which are L-indiscernible: If ¢ is an n-ary formula, oy ..., and 3;...3,
are increasing n-tuples from C then L E p(ay ... ap) «— ©(B1 ... 0y).
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Proof. We need a lemma.

Lemma 4.9. Suppose there exists j : L. — L. Then there exists such a
j which is definable (with parameters) and such that every cardinal A of
L-cofinality greater than x satisfying A < A — Card (A\*)Y < ) is a fixed
point of j, where k = crit (j) = least « such that j(«) # «. (“crit ” stands
for “critical point”.)

Proof of Lemma. We use the ultrapower construction. Define an ultrafilter U
on P(k)NL by: X € Uiff k € j(X). Then there is an elementary embedding
k: L — Ult (L,U) where Ult (L,U) is the ultrapower L"/U defined using
functions f : Kk — L which belong to L. Thus an element of Ult (L,U) is
[fl={9:x — Llg € L and for some X € U, a € X — g(a) = f(a)},
with F = €&-relation of Ult (L,U) defined in the natural way: [f]E[g] iff
{lf(0) € gla)} € U.

The map [f] — j(f)(k) gives an elementary embedding from Ult (L, U)
into L and hence Ult (L,U) is well-founded and isomorphic to L. If A :
Ult (L,U) ~ L then j* = hok : L — L is definable with parameters «, U.
If X has L-cofinality greater than s then k (and hence j*) is continuous at A

since any constructible f : £ — A is bounded by the constant function c;
with value A for some A\ < X (hence [f]E[c)] — [f]F]cs] for some X\ < \).

But if [f]E[cs] then {[g]|[g]E[f]} has size at most Card (A\*)%, and if this is
smaller than A then j*[A\] C A and hence by continuity j*(\) = A.

If L is not rigid then there is j : L — L with critical point x such that
every limit cardinal of cofinality > & is a fixed point of j. It follows that if
F = {a|a a limit cardinal of cofinality > x} then x ¢ Hull(xU F') where Hull
denotes the Skolem hull in L.

For any class of ordinals G let G* denote {« € G|a = ordertype (aNG)}.
Then define inductively: Fy = F, F,.1 = (F,)*, F\ = (N{Fa|]a < A})* for
limit A. For any «, H, denotes Hull(x U F,,). And (k.|oo € ORD) is defined
by: ko = K, Ka1 = min(H, — k), kx = U{k|a < A} for limit .

Claim 1. For every «, ko < Kai1-

Proof. We may assume that a is not 0. As k.41 belongs to Hull(k U F,)
it is a fixed point of the isomorphism L ~ H., = Hull(x U {F3|8 < a}).
But H., N[k, ko) = 0, s0 K is not a fixed point of this isomorphism, using
K < K.
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Claim 2. Let m,4: L ~ Hull(k, U F3). Then m,g fixes x, when v < o or when
7 is a successor ordinal > 3+ 1. Also m,5(ka) = Kgi1-

Proof. 7 < o — Ky < Kq, so clearly 7, fixes k. If 3+ 1 < v, v successor
then x, € Hull(k U F.,_1), so k, is a fixed point of m,g.

As kgyq € Hull(k,UFp) = H, we have ko < Top(ka) < Kgy1. Conversely,
suppose that k, < 0 < kKpp1,0 € H; we derive a contradiction. Write
§ = t(£,77) where the components of € are less than 4 and the components
of 77 belong to Fjg. Choose @+1 < « least so that the components of gare less
than kas;. Then L F 3¢ with components < Kat1(Kar1 < t(g, n) < Kgt1)-
Let m: L ~ Hull(k U F5). Then n(k) = Kkat1, 7(7) =1, m(kgs1) = Kp41. SO
L E 3¢ with components < x(k < t(£,7) < Kg+1), contradicting the defintion
of R3+1-

Now for any two increasing n-tuples «; ..., and ;... 3, with «a,, < 3
we can obtain m: L — L such that 7(k,,) = kg1 for all 4, by taking
ToiBy © --- O Ta,p,- Lhis implies that C' = {k,|Ja € ORD} is a class of
L-indiscernibles. O

Now we introduce 0%. As before, Hull denotes Skolem hull in L.

Theorem 4.10. Suppose L is not rigid. Then there is a unique CUB class sense
that L = Hull(Z). Moreover [ is unbounded in every uncountable cardinal
and if 07 = First-Order theory of (L, €, 11,1y, ...) (where the first w elements
i1,19,... of I are introduced as constants) then we have the following:

(a) 07 € L[I], I is A;(L[0#]) in the parameter 0% and I is unbounded in «
whenever L,[0%] E ¥, replacement.

(b) 0%, viewed as a real, is the unique solution to a IT} formula (i.e., a formula
of the form Va3yi), where x,y vary over reals and 1) is arithmetical).

(c) If f: I — I isincreasing, f # identity then there is a unique j : L — L
extending f with critical point in I, and every j : L. — L is of this form.
(d) If (L, A) is amenable then A is A;(L[0%]), (L, A) is not rigid and a final
segment of [ is a class of (L, A)-indiscernibles.

Remarks. (i) As I is closed and is unbounded in every uncountable cardinal
it follows that every uncountable cardinal belongs to I and 0% = First-
Order theory of (L, €, Ry, Ny, ...). (ii) The Xl-absoluteness of L implies that
the unique solution to a Y} formula is constructible; so in a sense (b) is
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best possible. (iii) I is a class of strong indiscernibles: If 7,7 are increasing
tuples from I of the same length and < min(7), min(j) then for any ¢,
L E ¢(x,1) < @(z,7). In fact the proof below shows that any unbounded
class I of L-indiscernibles such that I N Lim I # ) is necessarily a class of

strong indiscernibles.

Proof. There exists a CUB class C' of L-indiscernibles. Let 7 : Hull(C') ~ L
and we see that I = 7[C] is a CUB class of generating L-indiscernibles.
Note that & € I — L, < L and therefore L = ¥;-Hull(/). For any ¥,
©(x,y1...yn) let t, be the term pxe(z,y1...yy,), intended to name the L-
least = such that L F @(x,y;...y,), if it exists, and 0 otherwise. Then
L is described as the Ehrenfeucht-Mostowski model consisting of all terms
to(J1 .- Jn) (with ji...j, € I substituting for the variables y; ...y,), with
terms identified as dictated by Thy(L, €, 1y, 1is,...) = First-Order theory of
(L, €,i1,12,...). Thus I is uniquely determined by Thy (L, €,iy,1s,...). But
if I* is another CUB class of generating L-indiscernibles we get I N I* infinite
(and in fact CUB), hence Thy(L, €,iy,4s,...) = Thy(L,€,4},45,...). So I
is unique. Also note th_&}t I is a class of strong L-indiscernibles in the sense

that 2 < min(7), min(j), 7 and j of the same length from I implies that

—, —,

L E o(x,7) «— @(x,7) for any formula ; if not then we get 7 < min(j)
with {z < min(i)|L E ¢(z,7)} # {z < min(i)|L £ ¢(z,7)} and min(i) a
limit point of 7. But then we can get 7 < j‘o < j1 < ... of length ORD with
a < B — {x <L E olx,ja)} # {x < io|L E o(x,jz)}; this is absurd
because there are only set-many choices for subsets of 7.

It follows from the strong indiscernibility of I that t(i,7) < min(j) im-
plies (i, j) < I-successor to max(i). Hence for all i € I U {0}, Hull(i U
{i,71,72...}) 2 Ly where i < i* < j; < jo < ... are w-many elements of /,
i* = I-successor to i. So Card (L;<) = Card (i) and it follows that uncoun-
table cardinals belong to Lim /. Moreover if ¢ € Lim [ then L; = Hull(1 N4)
and L; is isomorphic to the natural Ehrenfeucht-Mostowski model built from
I Ni, using 0% = Thy (L, €,4y,143,...) to determine when to identify two
terms £, (io), te, (11). We now verify (a)-(d).

(a) Clearly 0% € L[I] as 0% = Thy (L, , €,i1,4s,...) where i, = nth
indiscernible. If o is 0%-admissible (i.e., L,[0%] E X, replacement) then for
any limit A < «, L;, ~ Ehrenfeucht-Mostowski model M (0%, \) built from A
indiscernibles and therefore belongs to L,[07%], as X;-replacement gives us the
Mostowski collapse. So « = i, = ath indiscernible and A\ — (L;,, {ig|5 <

A} is Ay(La[07]). Hence I is A;(L[0%]) (with parameter 0%).
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(b) 0% = Thy (L, €,1y,1iy,...) has the property that for every countable
limit A, M (0%, \) is well-founded and if 7 : M (0%, \) ~ L, , 7(5" indiscerni-
ble in M (0%, X)) = iz then {ig|3 < A} is CUB in 4,. This is a I} property as
it says V relation R on w (R a well-ordering — M (0%, <p) is well-founded
and is a model of ) where ¢ is first-order. But if 0* obeys this property then
M(0*,ORD) = L and 0* = Thy (L, €,i},ij...) where I* = {i3|8 € ORD} is
a CUB class of generating L-indiscernibles. We have seen that I = I* and
so 0" = 07,

(c¢) If f : I — I is increasing, f # identity then define j : L — L by
J (to(1---Jn)) =tu(f(J1) .. f(4n)). This is well-defined since [ is a class of
L-indiscernibles. j must be the identity on ¢ = the critical point of f = the
least 4, f(i) >4, as t,(j1.. - Jn, k1. k) =to(J1 - Jn, f(K1) ... f(km)) when
to(J1 .- Jnr k1, .. km) < k1. So the critical point of j = the critical point of
f belongs to I. Clearly j is unique, given f. If j : L — L is arbitrary then
«a = the critical point of 7 belongs to I, as a = critical point of j* where
4*(i) = i for unboundedly many i € I and thus if a ¢ I we get o = t,(z, 1),
x < o <1, j*(i) =i and thus j*(a) = a, contradicting o = critical point of
j*. Now note that if ¢ € I then j(7) is the critical point of some j*: L — L
asi ¢ Hull(¢U(I—(i+1))) implies (i) ¢ Hull(j(i)UJ) where J = j[I—(i+1)]
so k : L ~ Hull(j(¢) U J) has critical point j(¢). So j(i) € I.

(d) If (L, A) is amenable then for each i € I we may write ANi =
t%(ﬁ,z’,l_{i) where j; < i < k; are all from I. By Fodor’s Theorem (y;, ;)
is constant on an unbounded subclass of I and hence by indiscernibility we
may assume that ANi = tg,(j',i,/;i) for all i € I,7 > max(j) where the

choice of k; € I — (i + 1) does not matter. Thus I — (max(j) + 1) is a

class of (L, A)-indiscernibles and A is A;(L[0#]) in parameters 7, 0%. We get
j: (L, Ay — (L, A) by shifting I above j. O

In case the conclusion of this Theorem holds (i.e. in case L is not rigid)
we say that “07 exists” and refer to I as the Silver Indiscernibles. Note that
if L is not rigid then L[0%] is the smallest inner model in which L is not rigid.

The next theorem shows that L is rigid in its tame class-generic extensi-
ons.

Theorem 4.11. Suppose that G is P-generic over (L, A) and P is tame. Then
L[G] | 0% does not exist.
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Proof. Suppose py € P, pg IF I = Silver indiscernibles is unbounded and ¢ < j
in I — L; < L;. Suppose that p < pg,p =& € I. Then L, < L as this is
true in any P-generic extension (L[G], A, G),p € G. (By Lowenheim-Skolem
we can assume that such a G exists for the sake of this argument.) Thus
an L-Satisfaction predicate is definable over (L, A) as L = ¢(x) iff for some
p € P below pgy, some a with z € L,,p I ¢(Z) is true in L,. This is a
contradiction if A = (), for then L-satisfaction would be L-definable. But
note that for any A such that (L, A) is amenable we can apply the same
argument, using the fact that (L,, AN L,) < (L, A) for v in a final segment
of I.

The previous result was proved independently by A. Beller.

The most important sufficient condition for the existence of 07 is expres-

sed by Jensen’s Covering Theorem, to which we turn next. A set X is covered
in L if there is a constructible Y such that X C Y, Card Y = Card X.

Covering Theorem. Suppose there exists an uncountable set of ordinals which
is not covered in L. Then 0% exists.

Using this result we can show:

Theorem 4.12. Each of the following is equivalent to the existence of 0%:

(a) L is not rigid.

(b) Some uncountable set of ordinals is not a subset of a constructible set of
the same cardinality.

(c) Some singular cardinal is regular in L.

(d) kT # (k7)T for some singular cardinal .

(e) Every constructible subset of w; either contains or is disjoint from a
closed, unbounded subset of w;.

(f) There exists j : L, — Lg, crit (j) =k, k7 < a.

(g) There exists j : L, — Lg, crit (j) = &, (k7)* < o, a > wy.

Proof. It is straightforward to show that these all follow from the existence of
0%. Also (a) implies the existence of 0% by an earlier result. Conditions (c),
(d) each easily imply (b), and we get 0% from (b) by the Covering Theorem.
Condition (e) implies (a), since L — L ~ Ult (L, U), where U consists of
all constructible subsets of w; containing a closed unbounded subset. To see
that (f) implies the existence of 0%, define an ultrafilter U on constructible

60



subsets of k by: X € U iff k € j(X). Then Ult (L, U) is well-founded, for if
not then by Léwenheim-Skolem there would be an infinite descending chain
in Ult (L,+,U) which contradicts k* < a.

Finally we show that (g) implies the existence of 0#. Define U as before
by: X € U iff k € j(X). First suppose that x is at least wy. We shall
argue that U is countably complete, i.e. that if (X, |n € w) belong to U then
N{X,|n € w} is nonempty. (This gives 0% as it implies that Ult (L,U) is
well-founded.) By the Covering Theorem, there is F' € L of cardinality w;
such that X,, € F for each n. Then as we have assumed that x > w,, I has
L-cardinality less than x. We may assume that F' is a subset of P(k) N L,
and hence as « is an L-cardinal, F' belongs to L, and there is a bijection
h : F «— ~ for some v < k,h € L,. But then F* = {X € Flk € j(X)}
belongs to L, as X € F* «— r € j(h ')(h(X)) and F* has nonempty
intersection as j(F*) = Range (j | F*) and k € Nj(F*). Thus {X,|n € w}
has nonempty intersection since it is a subset of F*. If k is less than wy then
we have o > wy > kT so we have a special case of (f). O

I

The author does not know if “w,” can be replaced by “w;” in (g) of the

previous theorem.
Relevant Forcing

We showed that L is rigid in its tame class generic extensions and that if
L is not rigid then there is a least inner model L[0#] in which L is not rigid.
We now use these facts to provide a criterion for generic class existence for
class forcings over L.

Definition. A forcing P defined over a ground model (L, A) is relevant if
there is a G P-generic over (L, A) which is definable (with parameters) over
L[0#]. P is totally relevant if for each p € P the same is true for P(< p) = P
restricted to conditions extending p.

Assume that 0% exists. Then any L[0%]-countable P € L is totally re-
levant, as there are only countably many constructible subsets of P (using
the fact that wy is inaccessible in L). Note that this includes the case of any
forcing P € L definable in L without parameters.

The situation is far less clear for uncountable P € L. The next result
treats the case of k-Cohen forcing.
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Proposition 4.13. Suppose & is L-regular and let P(x) denote x-Cohen forcing
in L: Conditions are constructible p: @« — 2, a < k and p < ¢ iff p extends

q.

(a) If k has cofinality w in L[0%] then P(k) is totally relevant.
(b) If k has uncountable cofinality in L[0#] then P(k) is not relevant.

Proof. Let j, denote the first n Silver indiscernibles > k.

(a) We use the fact that P(k) is k-distributive in L. Let ko < k1 < ...
be an w-sequence in L[0%] cofinal in x. Then any D C P(k) in L belongs to
Hull(k,,Uj,,) for some n, where Hull denotes Skolem hull in L. As Hull(x,,Uj,,)
is constructible of L-cardinality < x we can use the s-distributivity of P(k)
to choose py > p; > ... successively below any p € P(k) to meet all dense
D C P(k) in L.

(b) Note that in this case k € Lim I, as otherwise k = U{k,|n € w}
where k, = U(k NHull(k + 1 U j,)) < k,k = max(/ N k), and hence x has
L[0#]-cofinality w. Suppose G C P(r) were P(k)-generic over L. For any
p € P(k) let a(p) denote the domain of p. Define py > p; > ... in G so
that a(p,+1) € I and p,41 meets all dense D C P(x) in Hull(a(p,) U j,).
Then p = U{p,|n € w} meets all dense D C P(x) in Hull(aw U j) where
a=U{a(p,)|n € w} €I, j = U{j,|n € w}. But then p is P(a)-generic over
L, as every constructible dense D C P(«a) is of the form D N P(«) for some
D as above. So p is not constructible, contradicting p € G. O

As a consequence we see that the basic class forcing examples of Easton
and Long Easton forcing are not relevant. However, we can rescue these
forcings by restricting to successor cardinals, thereby not adding x-Cohen
sets for x of uncountable L[0#]-cofinality. FEaston forcing at Successors is
defined as follows: Conditions are constructible p : a(p) — L where for
a < ap), p(a) = 0 unless « is a successor cardinal of L, in which case
p(a) € a-Cohen forcing; we also require that if « is L-inaccessible then
{6 < a|p(B) # 0} is bounded in «. Extension is defined in the natural
way: p < q iff p(«) extends ¢(«) for each o« < a(q). Long Easton forcing
at Successors is obtained from Easton forcing at Successors by dropping the
support condition.

Theorem 4.14. Let P be Easton forcing at Successors, the basic example
of Reverse Easton forcing or Long Easton forcing at Successors. Then P is
totally relevant.
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Indiscernible Preservation

Though we have shown Easton at Successors and Reverse Easton to be
totally relevant, we can further ask for a generic class that preserves indiscer-
nibles. This is important in the context of Jensen coding, as we can only
code a class by a real (in L[0%]) if the class preserves (a periodic subclass of
the) indiscernibles.

It is too much to ask that every condition p be included in a generic class
that preserves indiscernibles, as p itself may not (only 2% subclasses of L
can).

Definition. A class A C L preserves indiscernibles if I is a class of indiscer-
nibles for the structure (L[A], A).

Theorem 4.15. For each of Easton at Successors, Reverse Easton, Thin Ea-
ston at Successors, Coherent Easton at Successors and Long Easton at Suc-
cessors there is a generic class G that preserves indiscernibles.

The Coding Theorem

The class forcings discussed in the previous two chapters provide examples
of set-theoretic universes which neither contain 0% nor are obtainable by
forcing over L by the traditional method of forcing, with sets of conditions.
Notice however that these universes are “locally set-generic” over L: Each of
their sets belongs to an intermediate set-generic extension of L.

Solovay posed three questions the solutions to which require use of a new
kind of forcing, where sets are produced using a class of forcing conditions.
Jensen developed this technique to prove his Coding Theorem, which says
that any universe can be class-generically extended to one of the form L[R], R
areal. We now introduce the Solovay questions and prove a special case of the
Coding Theorem, in which we assume that 0% is not present in the universe
to be coded.

Three Questions of Solovay

Solovay’s three problems each demand the existence of a real that neither
constructs 07, nor is in a set-generic extension of L.

63



Definition. If z, y are sets of ordinals then we write = < y for = € L[y| and
r<pyforaz<pyvys%L e

The Genericity Problem. Does there exist a real R <; 0% such that R does
not belong to a set-generic extension of L?

It was to affirmatively answer this question that Jensen proved his Coding
Theorem. Roughly speaking he showed that if G is generic for Easton forcing
at Successors and G preserves indiscernibles then there is a real R < 07,
obtained by class forcing over (L[G],G), such that L[G] C L[R] and G is
definable over L[R]. Then R does not belong to a set-generic extension of L
as L[G] is not included in any set-generic extension of L.

Solovay’s second problem concerns definability of reals.

Definition. R is an Absolute Singleton if for some formula ¢, R is the unique
solution to ¢ in every inner model containing R.

Shoenfield’s Absoluteness Theorem states that if o is II3 (i.e., of the form
VR3S, 1 arithmetical) then p(R) «— M F ¢(R) where M is any inner
model containing R. Thus any II}-Singleton (i.e., the unique solution to a
I1} formula) is an Absolute Singleton; 07 is an example. Also 0 is trivially
an example. Solovay asked if there are any examples lying strictly between
these two.

The T1}-Singleton Problem. Does there exists a real R, 0 < R <p 0% such
that R is a I13-Singleton?

Note that it follows from the Covering Theorem (relative to R) that if
R < 0% then R# € L[0%#] where R¥ is defined relative to L[R] the way
we defined 0% relative to L. In particular Ly, [R] is elementary in L[R] and
therefore if R is in a P-generic extension of L, P € L then there is such a P
in Ly,. As N; is inaccessible in L, there are only countably-many subsets of
P in L and therefore we can build a P-generic containing any condition in P.
So we conclude that if R is a nonconstructible real in a P-generic extension
of L then R cannot be a IIi-Singleton, as there must be other P-generic
extensions with reals R’ # R satisfying any II3 formula satisfied by R. This
is why the TIi-Singleton Problem requires Jensen’s method: An affirmative
answer to the IIi-Singleton Problem implies an affirmative answer to the
Genericity Problem.
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Solovay’s third problem concerns Admissibility Spectra. Let T be a
subtheory of ZF and R a real. The T-spectrum of R, Ar(R), is the class of
all ordinals « such that L,[R] E T. A general problem is to characterize the
possible T-spectra of reals for various theories 7. An important special case
is when 7' = Ty = (ZF without the Power Set Axiom and with Replacement
restricted to X; formulas). We may refer to Ty as “admissibility theory,” as an
ordinal «v is R-admissible if and only if it is w or belongs to the Ty-spectrum
of R. We refer to the Ty- spectrum of R as the admissibility spectrum of R
and denote it by A(R).

There are some basic facts which limit the possibilities for A(R): First, if
R belongs to a set-generic extension of L then A(R) contains A — [ for some
ordinal 3, where A = A(0). This is because if &« € A, P € L, then L,[G] F Tj
for P-generic G. Second, if 0% <; R then A(R) — 3 C L-inaccessibles for
some (3. This is because if 0% € Lg[R] then every o in A(R) — (3 is in A(0%)
and hence is a Silver indiscernible.

Thus to get a nontrivial admissibility spectrum for R without 0% we need
Jensen’s methods. An ordinal is recursively inaccessible if it is admissible
and also the limit of admissibles.

The Admissibility Spectrum Problem. Does there exist a real R <; 0% such
that A(R) = the recursively inaccessible ordinals?

Of course we must in fact have R <j, 0% as otherwise A(R) is too small.
The Coding Theorem without 0%
We prove the following result of Jensen.

Theorem 4.16. Suppose that A C ORD and (L[A], A) is a model of ZFC +
GCH + 0% does not exist. Then there is an (L[A], A)-definable class forcing
P such that if G C P is P-generic over (L[A], A):

(a) (L[A, G, A, G) is a model of ZFC + GCH.

(b) L[A, G| = L|R)] for some real R and A, G are definable over L[R] from
the parameter R.

(c) L[A] and L[R] have the same cofinalities.

The proof makes use of the following consequence of the Covering Theo-
rem.
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Fact. Assume that 0% does not exist. If j : L, — Lg is X;-elementary,
a > wy and k = critical point of j then o < (kT)%.

We make the following assumption about the predicate A: If H,, o an
infinite L[A]-cardinal, denotes {z € L[A] | transitive closure (x) has L[A]-
cardinality < o} then we assume that H, = L,[A]. This is easily arranged
using the fact that the GCH holds in L[A].

The basic idea of the proof is simple. Let Card denote all infinite L[A]-
cardinals. Also Card ¥ = {at | @ € Card } and Card " = all uncountable
limit cardinals. If a C o™, a € Card we can attempt to “code” a by b C a*
as follows. We associate a subset be of a™ to each & < o™ and design b so
that £ € a iff b, be are almost disjoint, i.e. have intersection bounded in a™.
There is a natural forcing R* for doing this, invented by Solovay. A condition
in R* is a pair (p,p) where p is a bounded subset of a™ and p consists of
at most a-many b¢’s with £ € a. When extending (p,p) to (¢,q), ¢ must
end-extend p, ¢ must contain p and ¢ — p must be disjoint from all b, in p.

Of course the forcing R* does not really code a by a subset of a™ without
some assumptions about the b¢’s. For example each b should be almost
disjoint from the union of a-many other b;’s; this is easy to arrange. More
seriously, we need to know how to find b¢ in Lja N &] in a uniform way, so
that a can be inductively recovered from our generic b C ™. The latter is
possible only if £ < a™ — Lla N ] E Card (£) < a™. If this fails then we
must first “reshape” a to make it true, by forcing with bounded subsets of
att which do have this property up to their supremum.

It is not clear that the forcing for the purpose of reshaping a is cardinal-
preserving unless we can apply it in L[c], where ¢ is an already-reshaped
subset of ™™ *. Jensen’s solution to this problem is to both reshape ANa*
and code AN a™ into a subset of «, for all & simultaneously. Then in effect,
the forcing to reshape ANa™ takes place in L[c] where ¢ is a reshaped subset
of ™ that codes L[A].

As suggested in the previous paragraph there is a forcing analogous to R*
for coding a reshaped a C o™ into a subset of a, for a a limit cardinal. Thus
if we combine all of these forcings we obtain a single forcing P for coding A
by a real. A condition is of the form p = ((pa,pl) | @ € Card ,a < a(p))
where p, is a (reshaped) bounded subset of a™, p* is the “restraint” imposed
on p, to ensure that p,+ is coded, and where for o € Card ' we require that
(pa | @ € Card Na) code p,.
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Proof of Theorem 4.16. Let « belong to Card.

Definition. (Strings) S, consists of all s : [a,|s]) — 2, a < |s] < a™ such
that |s| is a multiple of « and for all n < |s|, Ls[ANa,s | n] E Card (n) < «
for some § < (n1)L U wsy.

Thus for « equal to w or wq, elements of S, are “reshaped” in the natural
sense, but for a > wy we insist that s € S, be “quickly reshaped” in that
n < |s| be collapsed relative to AN «, s | n before the next L-cardinal. This
will be important when we use ~ 07 to establish cardinal-preservation, via
the above-mentioned Fact. The requirement that |s| be a multiple of « is
a technical convenience. Elements of S, are called “strings”. Note that we
allow the empty string (0, € S,, where |(,| = . For s, ¢ in S, we write s < t
for s <t, s #t.

Definition. (Coding Structures) For s € S, define <%, p® inductively by:
ple = o, p<t = u{pt | t < s} for s # 0, and p® = least limit of limit
ordinals p > p<* such that L,[ANa,s]Ese S, And A® = L,:[ANa,s].

Thus by definition, when o > ws there is 6 < p® such that Ls[ANa,s] F
Card (|s|) < @ and L,s F Card (§) < |s|. The requirement “limit of limit
ordinals” on p° is a technical convenience.

Definition. (Coding Apparatus) For a > w, s € S,, i < « let H*(i) = ¥
Skolem hull of i U {ANa,s} in A° and f*(i) = ordertype (H*(i) N ORD).
For a € Card T, b* = Range (f* | B®) where B* = {i < a|i= H*(i) Na}.

Note that if s < ¢ belong to S, then Range f*, Range f' are almost
disjoint in the sense that their intersection is bounded in «. The choice of
f° I B? rather than f? is a technical convenience.

Using the above we will construct a tame, cofinality-preserving forcing
P for coding (L[A], A) by a subset G, of w; which is reshaped in the sense
that proper initial segments of (the characteristic function of) G, belong to
So- Then as G, can be coded into a real by a ccc forcing of size w; by the
Solovay technique mentioned earlier, the theorem follows.

Definition. (A Partition of the Ordinals) Let B,C, D, E denote the classes
of ordinals congruent to 0,1, 2,3 mod 4, respectively. For any ordinal a, o®
denotes the o' element of B, when B is listed in increasing order and for
any set of ordinals X, X? denotes {a? | « € X}. Similarly for C, D, E.
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Definition. (The Successor Coding) Suppose o € Card and s € S,+. A
condition in R® is a pair (¢,t*) where t € S,,t* C {b*"" | n € [a*,|s])} Ut
Card (t*) < «. Extension of conditions is defined by: (to,t5) < (t1,t7) iff
to Q tl, tT Q ts and:

L |th] < AP < |tol,y € b1 € t7 — to(7P) = 0 or s(n).

2. |l <49 < [tol,7 = (v, M), 70 € ANt — to(7¢) = 0.

In (b) above, (-,-) is an L-definable pairing function on ORD so that
Card ({y0,71)) = Card 7y + Card ; in L for infinite vy,v;. An R*-generic
over A® is determined by a function 7 : ot — 2 such that s(n) = 0 iff
T(vB) = 0 for sufficiently large v € b and such that for vo < at : 7y, € A
iff T((7o,71)¢) = 0 for sufficiently large v, < a¥.

Now we come to the definition of the limit coding, which incorporates the
idea of “coding delays.” Suppose s € S,, o € Card " and p = ((pg,p5) | 5 €
Card N «) where pg € Sj for each § € Card N . A natural definition of
“p codes s” would be: For n < |s|, ps(f*""(3)) = s(n) for sufficiently large
8 € Card Na. There are a number of problems with this definition however.
First, to avoid conflict with the Successor Coding we should use f*I"(3)P
instead of f*"(3). Second, to lessen conflict with codings at 3 € Card ' N«
we only require the above for 3 € Card ™ N . However there are still
difficulties in making sure that the coding of s is consistent with the coding
of ps by p | 8 for § € Card ' N .

We introduce coding delays to facilitate extendibility of conditions. The
rough idea is to code not using f*!"(3)P, but instead just after the least
ordinal > f4I"(3)P where pg takes the value 1. In addition, we “precode” s
by a subset of a, which is then coded with delays by (ps | 5 € Card N «);
this “indirect” coding further facilitates extendibility of conditions.

Definition. Suppose a € Card , X C «a, s € S,. Let i° be defined just as we
defined p® but with the requirement “limit of limit ordinals” replaced by the
weaker condition “limit ordinal”. Then note that A® = L;:[A N a, s] belongs
to A®, contains s and X, Hull(@ U {ANa,s}) in A° = A°. Now X precodes s
if X is the ©; theory of A* with parameters from o U {ANa,s}, viewed as
a subset of a.

Definition. (Limit Coding) Suppose s € S,, a € Card " and p = ((pg,Pp) |
B € Card N «) where pg € Ss for each § € Card N a. We wish to define
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“p codes s”. First we define a sequence (s, | v < ) of elements of S,:
Let so = 0,. For limit v < 5, s, = U{ss; | § < 7}. Now suppose s, is
defined and let f,”(8) = least 6 > f*'(3) such that ps(6¥) = 1, if such a
§ exists. If for cofinally many 8 € Card ™ Na, f,”(3) is undefined, then set
7o = 7. Otherwise define X C a by: § € X iff ps((f,"(8) + 1+ 06)”) =1 for
sufficiently large 3 € Card * N a. If Even (X) precodes an element ¢ of S,
extending s, such that A’ contains X and f,”, then set s,;; = t. Otherwise
let 5,41 be s, * X P if f,” belongs to As*XEif not, then again 79 = . Now
p exactly codes s if s = s, for some v < vy and p codes s if s < s, for some
7 < Y-

Note that the Successor Coding only restrains pg from taking certain
nonzero values, so there is no conflict between the Successor Coding and
these delays. The advantage of delays is that they give us more control
over where the limit coding takes place, thereby enabling us to avoid conflict
between the limit codings at different cardinals.

Definition. (The Conditions) A condition in P is a sequence p = ((pa, pl) |
a € Card , o < a(p)) where a(p) € Card and:

L. pa(p) belongs to Sa(y) and pl, = 0.
2. For a € Card Na(p), (pa,pl) belongs to RPat.
3. For a € Card ', o < a(p), p | @ belongs to AP> and exactly codes p,.

4. For a € Card ', a < a(p) if a is inaccessible in AP~ then there exists a
CUBC C a, C € AP such that pj = () for g € C.

For a € Card , P<® denotes the set of all conditions p such that a(p) < a.
Conditions are ordered by: p < ¢ iff a(p) > a(q), p(a) < ¢(«) in RPa+ for
a € Card Na(p) N (a(g) +1) and pyp) extends gqp) if a(q) = a(p). Also for
s € S,, w < a€ Card , P?denotes P<® together with all p | « for conditions
p such that a(p) = @, pap) < s. To order conditions in P*, first define p*
for p in P*® as follows: pt =p for p € P<* forp € P* — P<* pt [a =p
and pT(a) = (s | n,0) where 7 is least such that p € P*". Now p < ¢ in P*
iff p* < ¢t in P. Finally, P<¢ = U{P*I" | n < |s|} U P=°.

It is worth noting that (3) above implies that fP> dominates the coding

of po by p | «, in the sense that fPe strictly dominates each ;’f‘am, n < [pal

69



on a tail of Card " Na. The purpose of (d) is to guarantee that extendibility
of conditions at (local) inaccessibles is not hindered by the Successor Coding
(see the proof of Extendibility below).

We now embark on a series of lemmas which together show that P pre-
serves cofinalities and that if G is P-generic over (L[A], A) then for some
reshaped X C wy, L[A,G] = L[X]| and A is L[ X]-definable from the parame-
ter X.

Distributivity for R* Suppose o € Card , s € S,+. Then R® is at-distributive
in A% If (D; |i < «a) € A° is a sequence of dense subsets of R® and p € R®
then there is ¢ < p such that ¢ meets each D,.

Proof. Choose i < p® to be a large enough limit ordinal such that p, (D; |
i < a) and A< belong to A = L,[ANa™,s]. Let (o | ¢ < o) enumerate the
first a elements of {5 < a™ | 8 =a™ NXHull of(BU {p, (D; | i < a), A~})
in A}.

Now write p as (to,t;) and successively extend p to (¢;,t}) for i < « as
follows: (t;41,t,,) is the least extension of (¢;,¢) meeting D; such that: (a)
tr., contains {b°'" | n € H; N [a™,|s])} where H; = X;Hull ofa; U {p, (D; |
i < a), A~} in A. (b) If v*I" € t;,s(n) = 1 then t;.1(7®) = 1 for some
v e by > il (c) v & A7 < |t then i1 ({79,71)¢) = 1 for some
v > ‘f}l|

The lemma reduces to:

Claim. (t,,t}) = greatest lower bound to ((¢;,t7) | ¢ < A) exists for limit
A< a.

Proof of Claim. We must show that ¢y, = U{¢; | i < A} belongs to S,. Note
that (t; | i < \) is definable over H, = transitive collapse of Hy and by
construction, ¢y codes H) definably over L [t\], where fiy = height of H,.
So t is reshaped, as [t\| is definably singular over Lg, [t\]. By the Fact,
fix < (Jta]D)F if @ > wy. So ty belongs to S,. O

The next lemma illustrates the use of coding delays.

Extendibility for P°. Suppose that « is a limit cardinal, s belongs to .S,, and
p € P?. Suppose also that X C « belongs to A°. Then there exists ¢ < p in
P? such that X N 3 € A% for each § € Card N a.
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Proof. By induction on a. Let Y C «a be chosen so that Even(Y’) precodes
s and Odd(Y") is the X; theory of A with parameters from o U {A N a, s},
where A is an initial segment of A® of limit height large enough to extend
A® and contain X,p. For 3 € Card Na let Az be the transitive collapse
of Hy = ¥1Hull(f U {ANa,s}) in A and suppose that 3 is large enough
so that Hg contains p. If Hg N« = (@ then Even (Y N ) precodes sz € S
where s4 is the pre-image of s under the natural embedding A; — A. If
HzNa # B then |ps| < (37)4%, in which case f?# is dominated by the
function g(v) = (y5)* on a final segment of Card * N f3.

Now define ¢ as follows: If Even(Y N 3) precodes sz € Sg, then gg = s5.
For other 8 € Card ' Na, qs = pg* (Y NB)E. For B € Card " Na, g5 =
ps* 0% 1% (Y N B)P where 0 has length g(3).

As g | B and Y N 3 are definable over Az for 3 € Card ' N« we get
g1 B,YNGe A% when Even (Y N 3) precodes sg € Sg. Alsog [ 5,Y NG €
A% for other 3 € Card ' N« as Odd (Y N B) codes Az. And note that for
sufficiently large 8 € Card ' N a, g | S dominates fP¢ on a final segment of
Card "N 3 (and hence ¢ | 3 exactly codes gg), unless Even (Y N 3) precodes
sg and sg = pg, in which case ¢ [ 3 exactly codes gg = sz because p [ 3 does.

So we conclude that for sufficiently large 3 € Card ' N a,q | B exactly
codes gz and X N 3 € A%. Apply induction on « to obtain this for all
3 € Card 'Na. Finally, note that the only problem in verifying ¢ < p is that
the restraint pj; may prevent us from making the extension gz of pg when
¢s = sg and Even (Y N 3) precodes sg. But property (4) in the definition of
condition guarantees that pj; = () for 5 in a CUBC C «, C € A*. We may
assume that C' € A and hence for sufficiently large 5 as above we get § € C'
and hence pj = (). So g < p on a final segment of Card N «a, and we may
again apply induction to get ¢ < p everywhere. O

We come now to the verification of distributivity for P*. Before we can
state and prove this property we need some preliminary definitions.

Definition. Supposei < 3 € Card and D C P®, s € Sg+. Disit-predense on
PsifVp € Ps3g € P5(¢ < p,qmeets Dand ¢ [ it =p [iT). X C Card NFT
is thin if for each inaccessible v < 3, X N+~ is not stationary in . A function
f: Card NBT — V is small if for each v € Card N BT, Card (f(7)) < v
and Support (f) = {y € Card N B* | f(y) # 0} is thin. If D C P* is
predense and p € P*, v € Card N B we say that p reduces D below ~ if for
some § < 7 in Card ¥, every ¢ < p can be extended to r < ¢ such that r
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meets D and r [ [, 5] = ¢q | [0, 5]. Finally, for p € P*, f small, f in A® we
define E’} to consist of all ¢ < p in P* such that whenever v € Card N 37,
D € f(v), and D is predense on P"*  we have that g reduces D below ~.

Distributivity for P*. Suppose s € Sz+, 3 € Card .

1. If (D; |i< p) € A% D;it-dense on P* for each i < § and p € P*® then
there is ¢ < p such that ¢ meets each D;.

2. If pe P°, f small, f in A® then there exists ¢ <p, ¢ € 3.

Proof. We demonstrate 1 and 2 by a simultaneous induction on 3. If f = w
or belongs to Card * then by induction, 1 and 2 reduce to the following: If
S is a collection of f-many predense subsets of P*, S € A® then {q € P* |
q reduces each D € S below 3} is dense on P?®. The latter follows, since P*
factors as R® * @Q where R* I Q) is 3'-cc, and hence any p € P?® can be
extended to ¢ € P*® such that D? = {r | r U ¢(5) meets D} is predense
<gq | pforeach D € S.

Now suppose that (3 is inaccessible. We first show that 2 holds for f,
provided f(3) = (). First select a CUB C' C 8 in A% such that v € C' —
f(v) = 0 and extend p so that f | v, C' N~ belong to AP* for each v €
Card N B*. Then we can successively extend p on [, 3;.1] in the L[A]-
least way so as to meet X on [, Bi41], where (8; | i < ) is the increasing
enumeration of C'. At limit stages A\, we still have a condition, as the sequence
of first A extensions belongs to AP%x. The final condition, after 3 steps, is an
extension of p in 3.

Now we prove 1 in this case. Suppose p € P® and (D; | i < ) € A® and
D; is iT-dense on P* for each i < 3. Let ug < p® be a large enough limit
ordinal so that (D; | i < ), p and i® belong to L,,[AN 5T, s]. Fori <, p;
denotes g+ w-i < p®. For any v we let H;(vy) denote X1Hull(y U {(D; | i <
B).p, i, s, AN BT} in L, [AN BT, s].

Let f; : Card NG — V be defined by: f;(v) = H;(v) if i <y € H;(7y) and
fi(7) = 0 otherwise. Then each f; is small in A® and we inductively define
p=p">p' > in P* as follows: p"*! = L[A]-least ¢ < p' such that:

(a) q(B) meets all predense D C R*, D € H;(f3).
(b) ¢ meets E’}: and D;.
(c) g lit =p' it
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For limit A < 3 we take p* to be the greatest lower bound to (p’ | i < \),
whose existence is guaranteed by the following Claim.

Claim. p* is a condition in P*, where p*(y) = (U{p! | i < A}, U{p}" | i < A})
for each v € Card N 3.

Suppose that v belongs to Hy ()N 3. First we verify that p;\ = U{pfy | i<
A} belongs to S,. Let H)(vy) be the transitive collapse of H)(y) and write
Hy(v) as Lz[A, 5], P = image of P*N H,(y) under transitive collapse, 3 =
image of 3 under collapse. Also write P as R® * PY where G denotes an
Rs-generic (just as P° factors as R® x P9 (5 denoting an R*-generic).

Now the construction of the p’s (see conditions (a), (b)) was designed
to guarantee: (i) Gz = {p € R® | pis extended by some p*(3),i < A} is
RP-generic over Hy(7), where p' = image of p' under collapse, and (ii) For
each & in (Card * of Hy(v)), v < 0 < B3, {p | p is extended by some p’ |
[v,0) in Pfg} is PO5-generic over A% = U{A% | i < A}, where PS% =
U{Pf% | © < A} and Pf% denotes the image under collapse of P$3 ={q |
[v,0) | ¢ € PP5}, § = image of § under collapse.

Note. We do not necessarily have property (ii) above for § = 3, and this is
the source of our need for ~ 0% in this proof.

By induction, we have the distributivity of Pf for t € S5, 6 € Card tng,
and hence that of P! for £ € S5, § € (Card * of Hy(7)), § < 3. So the “weak”
genericity of the preceding paragraph implies that:

(d) La[AN ’YapfAy] F |pf>| is ¥;-singular.
Also:
(e) LzlAN ’y,p,)y‘] E \pi\ is a cardinal.

Thus p} € S, (by (d)) provided we can show that when v > ws, i1 <
(Ip3IT)F. But Hi(y) = Ha(7) gives a X;-elementary embedding with critical
point |p,’>|, so by the Fact, this is true.

The key point is that we also get p* | v € AP3 | since p* | v is definable
over H,(v) and we defined AP> to be large enough to contain H,(v), since
L E |p)| is a cardinal by (e) and § is a cardinal of Lj.
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The previous argument applies also if v = 3, using the distributivity of
Re, orif vy = BN Hy(7), using the fact that pg collapses to pi. Ify <y =
min(Hy(y) N [y, 5)) then we can apply the first argument to get the result
for v*, and then the second argument to get the result for ~.

Finally, to prove the Claim we must verify the restraint condition 4 in
the definition of P. Suppose v is inaccessible and for i < Xlet C* be the
least CUB subset of v in AP~ disjoint from {% < 7 | p,y # 0} If A < 7 then
N{C" | i < A\} witnesses the restraint condition for p* at . If ¥ < A then the
restraint condition for p* at ~ follows by induction on A. And if v = X then
A{C" | i < \} witnesses the restraint condition for p* at -y, where A denotes
diagonal intersection.

Thus the Claim and therefore 1 is proved in case (3 is inaccessible. To
verify 2 in this case, note that as we have already proved 2 when f(3) = 0,
it suffices to show: If (D; | i < B) € A® is a sequence of dense subsets of P*
then every p € P° cna be extended to g € P? that reduces each D; below
(. But using 1 we see that D} = {q | g reduces D; below i} is i*-dense for
each i < (3, so again by 1 there is ¢ < p reducing D; below " for each i.

We are now left with the case where 3 is singular. The proof of 1 can
be handled using the ideas from the inaccessible case as follows. Choose
(B; | i < Xo) to be a continuous and cofinal sequence of cardinals < g,
Ao < Po- As before, we first we argue that p € P® can be extended to meet
32 for any small f in A® provided f(3) = 0): Extend p if necessary so that for
each v € Card NG, f [ vand {G; | B; <~} belong to AP7. Now perform a
construction like the one used in the inaccessible case, successively extending
p this time on [5y, 3;] so as to meet X% on [f, 5;*] as well as E’}:’s defined
on (B, 3;t], to guarantee that p* is a condition for limit A < \¢. Note that
each extension is made on a bounded initial segment of [, 3) and therefore

by induction ¥, Zp can be met on these intervals. The result is that p can
be extended to meet Zp on a final segment of Card N ( and therefore by
induction can be extended to meet 3%. Second, use the density of X% when
f(B) = 0 to carry out the proof of 1 as we did in the inaccessible case. And
again, the general case of 2 follows from 1. This completes the proof. O

The argument of the previous lemma also shows:
Lemma 4.17. P is A-distributive at x for all regular k.

Thus P is tame and preserves cofinalities. As L[A,G] = L[X]| where
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X C wi, we also have GCH-preservation. This completes the proof of the
Coding Theorem in the ~ 0% case.

Theorem 4.18. Let P be the forcing used above, when A = (). Then there is
a class G which is P-generic over L, which is definable in L[0#] and which
preserves indiscernibles.

Proof. For any indiscernible ¢ let j,, be the first n indiscernibles > 4. Then
define s, € S*" and p" € P inductively, meeting the following conditions:
sop = () and p" is the trivial condition. s, 1 = m;(p")+ where 7; : L — L is an
elementary embedding with critical point i, and p"*! is the least ¢ < p™ in P*"
meeting X where for 3 € Card Ni*, f,(8) = Hull(3Uj,) if # € Hull(3Uj,)
and f,(3) = 0 otherwise. (When 3 = i we take pj, to be s,.) Let Gj = {p | p
is extended by some p"}.

GY need not be P*"-generic over A*" as all conditions in G have empty
restraint at indiscernibles < 7. But notice that for ig < i; < --- <1, < i in
I, G U--- UG is a compatible set of conditions. We take G to be {p | p
is extended by gy A --- A g, for some choice of ¢, € Gg, g < -+ < ip <4
in I}. Now we claim that G is P*"-generic over A*" for each n. Indeed, if
D is predense on P** and belongs to A**, D € Hull({ko, - -,k } U j,) with
ko < -+ < ky <iin I then p"*! reduces D below k', p"*? reduces D below
kt |, .-+ and eventually we get p" ™2 in G* meeting D.

It follows that G'(< i) = G'N P’ is generic over L; (for L;-definable dense
sets) and hence G is P-generic over L where G = U{G'(< i) | i € I}. Clearly
G preserves indiscernibles. O

Corollary 4.19 (to proof). If A C ORD preserves indiscernibles and L[A]
satisfies GCH then there is a real R € L[A,0%] such that R preserves in-
discernibles and A is definable in L[R]. If L|A] E GCH then L[A], L[R] have
the same cofinalities.

In fact, it is possible to characterize those A C ORD which are coded by
reals R such that 0% £, R:

Definition. For o, < wy, f # 0 let I, 3 = {iatp | ¥ € ORD} where
(i | & € ORD) is the increasing enumeration of I.

Corollary 4.20. If A € ORD and for some a, 3 < w; the class I, g forms a
generating class of indiscernibles for (L[A], A) then A is definable in L[R] for
some real R such that 0% ¢ L[R].
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One can use the preceding Corollary to show that A C ORD is definable
in L[R] for some real R, 0% ¢ L[R] iff I, 5 forms a class of indiscernibles
for (L[A], A) for some «, 3 < wy, B # 0. Moreover there are reals R such
that I = I,5, for any a,3 < wy, 8 # 0 (where I denotes the Silver
indiscernibles for L[R]).

Solution to the Genericity Problem

Theorem 4.21. (Jensen) There is a real R <; 0% that is not set-generic
over L.

Proof. Take R € L[0%] to result from applying the proof of the Coding
Theorem to the ground model (L, ()}, obtaining a generic G coded by R. Note
that in L[G] = L[R] there are P(x™)-generic sets for each infinite successor
L-cardinal kT, where P(k*) = k*-Colen forcing. In a P-generic extension
of L, where P € L, there can be no x-Cohen set where x = L-cardinality
(P). So L[R] is not a set-generic extension of L. O

Note also that R as in the previous Theorem can be chosen to preserve
both L-cofinalities and indiscernibles.

The other two Solovay problems, the II3-Singleton and Admissibility
Spectrum problems, also have positive solutions via further elaborations on
the coding method.
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4.5 More about 0%

So far we have examined the following topics, using the indicated techni-
ques.

1. Constructibility: Fine structure theory, developed to study the generalised
Suslin problem.

2. Set Forcing over L: Iterated forcing with finite and countable support,
developed to study the Suslin problem and the Borel conjecture.

3. Class Forcing over L: The coding method, developed to study genericity
over L.

Next we came to 07, which we introduced to organise the study of class
forcing. Soon we will generalise 0% to a “# operation”, which will lead us
to inner models for large cardinals. But first we take a closer look at the
motivation for introducing 0% in the first place.

It will be convenient to work not with the usual theory ZFC, but with an
appropriate class theory. This allows us to discuss classes which are not
necessarily definable. For an inner model M, a class A belongs to M iff ANx
belongs to M for every set x in M.

V = L is not a theorem of class theory: The forcing method allows us to
consistently enlarge L to models L[G] # L where G is a class that is P-generic
over L for some L-forcing P, i.e., some partial ordering P that belongs to L.

Assume that generic extensions of L do exist, and let us see what implications
this has for the nature of the set-theoretic universe.

Definition. A class C of ordinals is CUB (closed and unbounded) iff it is a
proper class of ordinals which contains all of its limit points. A class X of
ordinals is large iff it contains a CUB subclass.

Largeness is not absolute: It is possible that a class X belonging to L is not
large but becomes large after expanding the universe by forcing.

Definition. A class X is potentially large iff it is large in a generic extension
of the universe.
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Can the universe be CUB-complete over L in the sense that every class which
belongs to L and is potentially large is already large? Yes, if 0% exists, as
then each class of ordinals belonging to L either contains or is disjoint from

a CUB class. We now show that this in fact leads to a characterisation of
07,

Theorem 1. There exists a sequence X,,, n € w of classes such that:

1. Each X, belongs to L and indeed the relation “a belongs to X,” is
definable in L.

2. X,, O X, 41 for each n and each X, is potentially large.

3. If each X, is large then 07 exists and therefore the universe is CUB-
complete over L.

Thus we have the following picture: Let n be least so that X, is not large,
if such a finite n exists, and n = oo otherwise. If n is finite then n can be
increased by going to a generic extension of the universe, further increased
by going to a further generic extension, and so on. The only alternative is
that the universe is CUB-complete over L, i.e., that 0% exists.

Proof of Theorem 1. We show the following:

() There exists an L-definable function n : L-Singulars — w such that if M
is an inner model, 0% ¢ M:

(a) For some k, M E {«a | n(a) < k} is stationary.

(b) For each k there is a generic extension of M in which 0% does not exist
and {a | n(a) < k} is non-stationary.

“Stationary in M” means “intersects every CUB class which belongs to
M.

We define n(«a). Let (C, | a L-singular) be an L-definable [-sequence:
C, is closed unbounded in «, ordertype C, < a and & € limC, — C5 =
Cy Na. Let ot C, denote the ordertype of C,. If ot C, is L-regular then
n(a) = 0. Otherwise n(a) = n(ot C,) + 1.

(a) is clear, as otherwise (using the fact that we are working in a sufficient-
ly strong class theory) there is a closed unbounded C' C L-regulars amenable
to M, contradicting the Covering Theorem and the hypothesis that 0% does
not belong to M.
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Now we prove (b). Fix n € w. In M let P consist of closed, bounded p C
ORD such that @ € p — «a L-regular or n(«) > n + 1, ordered by p < ¢ iff p
end extends gq.

We claim that P is co-distributive in M. Suppose that p € P and (D,, |
a < k) is a definable sequence of open dense subclasses of P, k regular. We
wish to find ¢ < p, ¢ € D, for all a < k. Let C' be the class of all strong
limit cardinals 3 such that D, NVjp is dense in P N V3 for all a < K, a closed
unbounded class of ordinals. It suffices to show that C' N {5 | n(G) > n+ 1}
has a closed subset of ordertype x+1, for then p can be successively extended
k+1 times meeting the D,’s, to conditions with maximain {3 | n(3) > n+1};
the final condition (at stage k) extends p and meets each D,.

Lemma. Suppose m > k, a > w is regular and C is a closed set of or-
dertype a™™ + 1, consisting of ordinals greater than o™ (where a™® = q,
atPtD) = (a*P)*). Then CN{B | n(B) > k} has a closed subset of ordertype
O[Jr(mfkfl) +1.

Proof of Lemma. We shall use the following easy consequence of the Covering
Theorem.

If 07 does not exist, 3 > w, and cof 3 < Card 3 then 3 is singular in L.

We prove the lemma by induction on k. Suppose & = 0. Let  be the
(™= 4+ 1)st element of C. Then 3 is L-singular since it is at least wy
and its cofinality (= a*(™=1) is less than its cardinality (> a*™). Similarly,
each element of Lim(C' N 3) is L-singular and therefore Lim(C'Nf3) is a closed
subset of C'N {3 | n(B) > 0} of ordertype a*(™~1) 4 1, as desired.

Suppose that the lemma holds for £ and let m +1 > k+ 1, C' a closed
set of ordertype a1 41 consisting of ordinals greater than at(™+1). Let
B be the (™™ + a*™ + 1)st element of C. (3 is L-singular as it is at least wo
and its cofinality is less than its cardinality; so Cj is defined. Let 3 be the
(@™ + 1)st element of C. Then C' = {ot C,, | v € CNLim Cs N [3, 3]} is a
closed set of ordertype at™ + 1 consisting of ordinals greater than o™. By
induction there is a closed D contained in C N {vy | n(y) > k} of ordertype
atm=k=1 4 1 But then D = {y € C NLimCjs | ot C, € D} is a closed
subset of C' N {y | n(y) > k+ 1} of ordertype o™ *=D 4 1. Asm—k—1=
(m+1)— (k+1)—1 we are done.

79



By the lemma, C' N {F | n(f) > n + 1} has arbitrary long closed subsets
for any n, for any closed unbounded C' C ORD. It follows that P is co-
distributive. Now to prove (b), we apply the forcing P to M, producing C'
witnessing the nonstationarity of {a | n(a) < n}. Of course this will not
produce 0% as no sets are added. This completes the proof of (x). Theorem
1 now follows, as we may take X, to be {a | Either « is regular in L or
n(a) > n}.

We conjecture another way to obtain 0% through forcing, motivated by
the following result.

Theorem 2. Assume slightly more than class theory (precisely: ORD is w+w-
Erdés, defined below). If 07 exists, P is L-definable without parameters and
there exists a P-generic, then there exists a P-generic definable in L[0#]. If
P is L-definable with parameters and there exists a P-generic, then there
exists a P-generic definable in a set-generic extension of L[0¥] (indeed, in
any extension of L[0%] in which those parameters are countable).

Thus the inner model L[0#] is saturated with respect to L-definable for-
cings. If 0% exists, then it can be shown that any inner model which is
saturated in this sense must contain L[0%#]. (Reason: The L-definable for-
cing to add a CUB subclass to X, using constructible, closed subsets of X,
has a generic in L[0%]. Thus if 0% exists, each X,, has a CUB subclass in any
inner model which is saturated in the above sense, and therefore this inner
model contains 0%.) A stronger claim would be the following.

Conjecture. If the universe is saturated with respect to L-definable forcings
in the sense of Theorem 2 then 07 exists.

To prove this Conjecture it would suffice to show that for X,, as in Theo-
rem 1, not only does X,, contain a CUB subclass in a generic extension of
the universe, but this can be accomplished via an L-definable forcing. This
is reminiscent of the following.

Theorem (Baumgartner). Suppose that X is a constructible subset of w;

and X is stationary. Then there is a constructible set-forcing P which adds
a CUB subset to X.

The P in this Theorem is a forcing which adds a CUB subset to X using
“finite conditions”. Is there a version of this result with w; replaced by ORD,
X replaced by X,, from Theorem 17
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We now turn to the proof of Theorem 2.

Definition. Let A = (V,€,...) be a structure for a countable language.
I C ORD is a good set of indiscernibles for A iff v € [ — [ — 7 is a set of
indiscernibles for (A, a)q<s-

Definition. ORD is a-Erdds iff whenever A = (V, €,...) is a structure for a
countable language, and C' is CUB there exists [ C C, ot [ = a such that [
is a good set of indiscernibles for A.

The proof of Theorem 2 makes use of periodic subclasses of the Silver
indiscernibles.

Definition. Let I = (i, | v € ORD) be the increasing enumeration of the
Silver indiscernibles. For any ordinals Ay and A (A > 0) define I,y = {i, | @
of the form Ao+ A - 3, 3 € ORD}. An L-definable forcing P is Ay, A\-periodic
iff in a set-generic extension of V, there is a P-generic G such that I, ) is a
class of indiscernibles for (L[G], €, G).

Fact. If P is \g, A-periodic then P has a generic in a set-generic extension of
L[0#].

Proof Sketch. Assume that P is L-definable without parameters. Consider
a set-generic extension M of L[0#] in which )y and )\ are countable. Build
a tree in M, a branch through which produces a generic Go for PN L;,
relative to which Iy, x Ny 42 15 @ good set of indiscernibles. As P is g, A-
periodic, this tree has a branch, therefore a branch in M, and the resulting
G can be “stretched” to a generic for P. If P is L-definable with parameters,
then we require that those parameters be countable in M.

Proof of Theorem 2. Fix a P-generic G and assume that P is L-definable
without parameters. We shall construct another P-generic G* such that for
some \g and A, I, is a class of indiscernibles for (L[G*], €, G*). Let X be
a good set of indiscernibles for (L[0%, G], €, G) of ordertype w + w such that
a € X — (L,[0%,G], G) is an elementary submodel of (L[0% G], G). (We
refer to this last condition as the “stability” of « relative to 0%, G.)

Select a canonical enumeration of the L-definable open dense subclasses
of P : Thus let (D,|n € w) be a sequence of predicates such that each
Dy(x,0q...qay,) is definable over L, {x € L | D,(z,0q...a,)} is an open
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dense subclass of P for each a; < ... < «, in ORD and every L-definable
open dense subclass of P is of this form for some n, for some a; < ... < a, in
I. We may also assume that {(n,z,@)|D,(z, &)} is definable in L relative to
a satisfaction predicate for L. For oy < ... < «,, in ORD we abuse notation
and write D(ay ... ay,) for {x € L|D,(z,aq,...a,)}. Alsolet D*(ay ... ap) =
(D@ < a).

Now we construct an w-sequence of terms with Silver indiscernible para-
meters which we will use to define G*.

For jo € X choose the least th(EO(jO),jO, k1(jo)) in D(jo) N G, where tio
is a Skolem term for L, ko(jo) < jo < k1(jo) is an increasing sequence of
Silver indiscernibles. By the good-indiscernibility of X, t,, = to, Eo(jo) = ko
are fixed. Thus we can write to(ko, jo, k1(jo)) € D(jo) N G for jo € X. By
the stability relative to 0%, G of the elements of X we have: j, < j; in
X — k1(jo) < Jr- B B B

Next for jo < jiin X choose the least tio.ir (kS (o 71)s Jos K1 (Jos 1), 315 k3 (Jo, 71))
in D*(ko, Jo, k1(Jo), j1, k1(j1)) N G. By the good-indiscernibility of X we can
write the above term with Silver indiscernible parameters as t1 (kL jo, k(jo), 1, k4 (o, 1))
However, we want to argue that l%(jo,jl) can be chosen independently of
jo. To agrange thiS, EI‘St note thaic tjo,jl(E(l] (jo, jl),jo, E} (jo,jl),jl, E% (jo,jl))
= tjo.j1 (Ko (Jos 71), Jos k1 (Jos J1), J1, k3.0 (Jos J1), 50) where the latter is indepen-
dent of the choice of the Silver indiscernibles 0o above I_Cg,o(jo,jl) and where
(K Gos 1), K Gio, 1), E;,O(jo, 41)) is the least sequence of ordinals such that this
term with parameters belongs to D*(Eo,jo, K (Jo), J1, K, (71)) NG N Lyin - By
the good-indiscernibility of X we can write this as t1 (K}, jo, k2 (jo), j1, 1%70(]'0, J1), 30).
Note that (kg, &1 (jo), k4o (jo, j1)) is definable in (L[G], G) from &0, ko, jo,k1(jo), 1, k1(j1)
and therefore E%7O(j0,j1) is definable in (L[G], G) from o0,k (j;) and para-
meters < 7.

Lemma. E%7O(j0,j1) is independent of jo.

Proof. Enumerate the first w + 1 elements of X in increasing order as
jo < j1<...<j=(w+1)st element of X and for any m,n let k(jn,j) (m)
denote the m-th element of 1%70(]'”, j). If the Lemma fails then for some fixed
m, k(jo,7)(m) < k(j1,7)(m) < ... forms an increasing w-sequence of Silver

indiscernibles with supremum ¢ € I. By the remark immediately preceding
this Lemma, ¢ has cofinality < j in L|G]. By Covering between L and L[G], ¢
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has cofinality < (5% in L[G]) in L. This contradicts the following.
Claim. j*in L[G] =j* in L.

Proof of Claim. If not then in L[G] there is a CUB C C j such that C' is
almost contained in each CUB constructible D C j. But I N j is the inter-
section of countably many such D and therefore as j is regular (in L[G,0%])
we get that C' is almost contained in I; so 0% belongs to L[G], contradiction.
This proves the Claim and hence the Lemma.

Thus we can write tl(lgo,jo, El (]0) jl, El (]1)) S D*(EQ, jo, El(]O) jl, kfl( )
G for jo < j; in X. By modifying the term ¢; we may assume that /{31(]0) =
k1 (jo) for jo # min(X). Also we can assume that kg C kb, k1(jo) C kL (jo) for
jo € X and moreover that the structure (k!(jo), <) with a unary predicate
for k; (jo) has isomorphism type independent of j, € X.

We obtain ¢, in a similar way: thus,

tZ(EgajOaE%(jO)ajhE%(jl)aj%k (j2)) € D* (kOaJOakl(jO)ajlaE%(jl)aj%]g%(jZ))mG

for jo < j1 < j2 in X and kS C K2 K Go) € K2(jo), (K2(jo), <) with unary
predicates for k! (jo), 1(jo) has 1s0m0rph1sm type 1ndependent of jo. Conti-
nue in this way to define t,(k2, jo, K7(jo), - -, jn, K*(jn)) for each n and for
Jo < ... < jnin X. (The analogous version of the Lemma uses the first w +n
elements of X.)

Let iy, = min X and A = ordertype ((J&"(jo)) for jo € X, an ordinal

independent of the choice of jj.
We may assume that A is a limit ordinal and in a generic extension where
Ao is countable we may arrange that | Jkj = I Ni,,. Also note that I —1i,, is

a class of indiscernibles for L. Now innV[g], where g is a Lévy collapse of iy,
to w, carry out the above construction, arranging that |Jk{ = i,,. For any
Silver indiscernible i define k7(is) C I N (i5,i5:) S0 th;t (I N (i5,0512), <)
with a predicate for k7 (is) is isomorphic to { |J&"(jo), < ) with a predicate
for k7 (jo), for iy, < jo € X. Define: '

G* = {p € P | pisextended by some t,, (K, ix,, k7(iy,), - . .ix,, k7(iy,)) where
Ao < A\ < ...< )\, are of the form Ay + A - @, € ORD}.
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Using the indiscernibility of I — i), we see that G* is compatible and meets
every L-definable open dense class on P. Thus P is Ag, A-periodic. This
proves Theorem 2.
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5. Extender Models

If we are willing to accept the existence of 0%, then we surely should also
admit the existence of 07#, which relates to the model L[0#] in the same way
as 07 relates to L. Indeed, through iteration of a suitable “# operation”, we
are led to models much larger than L, which can satisfy strong large cardinal
axioms. These are called extender models.

How do we define a # operation? We have said that the existence of
07 is equivalent to the non-rigidity of L, i.e., to the existence of a nontri-
vial elementary embedding from L to itself. Let us use this as a basis for
generalisation. Suppose that M is an inner model satisfying ZFC and let
m: M — M be a nontrivial elementary embedding from M to itself.

Theorem 1. (Kunen) Suppose 7 : M — M is a nontrivial elementary embed-
ding. Then for some x € M, 7 |  does not belong to M.

Proof of Theorem. First we prove the following Lemma.

Lemma 2. Let \ be an infinite cardinal such that 2* = A¥. There exists a
function F' : A — X such that whenever A is a subset of A of cardinality A
and 7 < A, there exists some s € A such that F'(s) = 7.

Proof of Lemma 2. Let ((A4,7a) | @ < 2*) be an enumeration of all pairs
(A,v) where v < X and A is a subset of A of cardinality A. By induction on
a < 2* choose s, € \“ so that s, € A% and s, # s for § < . Define F(s)
to be v, if s = s, for some «, F(s) = 0 otherwise. This function F' has the
desired property, proving Lemma 2.

Our next lemma lists some general facts about elementary embeddings
between inner models.

Lemma 3. Suppose that 7 : M — N is an elementary embedding of inner
models with critical point k. Then « is a regular cardinal of M and HY is
contained in N. If HY is contained in M then x is inaccessible in M.

Proof of Lemma 3. If k were singular in M then choose v < xk and a cofinal
f:v — kin M. Then 7(f) is cofinal in 7(k), but 7(f) = f so k cannot be
the critical point of w. If X is a subset of x in M, then X = 7(X) N« so
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X belongs to N. As any element of H is coded by a subset of x in M, it
follows that N contains each element of H?{ as well.

Suppose that HY is contained in M. If s is not inaccessible in M then
choose 7 < k and a surjection f : 27 — k in M. Then 7(f) is a surjection
from 27 of N onto 7(k). By hypothesis 27 of N = 27 of M and therefore
k = Range f = Range 7(f) = (), a contradiction. This proves Lemma 3.

Now to prove the Theorem: Let x be the critical point of m and define ky = &,
Kni1 = T(Ky). Let A be the limit of the x,’s. We shall show that 7 [ A does
not belong to M. Otherwise, A has cofinality w in M and therefore w(\) = A.
Also by Lemma 3  (and therefore each k,) is a strong limit cardinal of M.
Therefore ) is a strong limit cardinal of cofinality X in M and hence 2* = \Y
in M. Let S be the range of m on A, a subset of \ of M-cardinality \.

By Lemma 2 (applied in M) there is a function F' : A — X in M such that
M satisfies: The range of F' on A“ is all of A, for each A C X of cardinality
A. By the elementarity of = and the fact that 7(\) = A, the same holds for
7(F'). Applying this to the set S = Range (7 [ A) we obtain s € S¥ in M
such that 7(F)(s) = k. But s belongs to the range of 7, as it equals 7 (),
where t(n) = 771(s(n)) for each n; it follows that » belongs to the range of
7. This contradicts the fact that x is the critical point of 7. O

How small can x satisfying the previous Theorem be? Let x be the critical
point of 7. Of course m | HM belongs to M, as this is just the identity on
HM. And if z belongs to HY then again « [ = belongs to M, asif f :z — &
is an injection, we have:

yex—m(y)=r(f"(fy) =7/ )= () =) ().

So the least natural candidate for z satisfying the Theorem is H , where
is the critical point of .

Embeddings 7 : M — M where 7 | H belongs to M give rise to very
strong large cardinal properties.

Definition. k is measurable iff k is the critical point of a 7 : V — M. k
is a-strong iff k is the critical point of a 7 : V' — M such that o < 7(k)
and every bounded subset of o belongs to M. k is strong iff k is a-strong
for every a. If f : k — K then k is f-strong iff k is the critical point of a
7w : V. — M such that every bounded subset of 7(f)(x) belongs to M. ¢
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is Woodin iff for each f : 6 — ¢ there is a Kk < ¢ closed under f which is
f | k-strong. k is superstrong iff  is the critical point of a 7 : V' — M such
that every bounded subset of 7(x) belongs to M.

To analyse these properties we introduce the notion of extender.

Definition. The extender derived from m : M — N (where M, N are inner
models of ZFC) is the restriction £, = 7 | H,i‘({r)“ where k(7) is the critical
point of w. An extender on M is an extender derived from some embedding
w: M — N. A # for M is an extender derived from some 7 : M — N where
HM =HN ..
m(k(m)) — T Tw(k(m))

Thus extenders on M are restrictions of embeddings of M. Conversely,
each extender on M gives rise to a canonical embedding of M, of which it is
a restriction.

Theorem 4. Suppose that E is an extender on M, with critical point x. Then
there is a unique 7 : M — Npg such that E is the extender derived from 7g
and every element of Ng is of the form mg(f)(a) for some f: H® — M in
M and a in HYE .
Te(K)
Proof (The Ultrapower Construction). Consider pairs (f, a) where f : HM —
M belongs to M and a € E(HM). We say that (f,a) and (g, b) are equivalent,
written (f,a) =* (g,b), iff (a,b) belongs to E({(u,v) € HM | f(u) = g(v)})
and (f,a) belongs to (g,b), written (f,a) €* (g,b), iff (a,b) belongs to
E({(u,v) € H™ | f(u) € g(v)}). We write [f,a] for the =* equivalence
class of (f,a) and define N* to be the structure whose universe consists of
these =* equivalence classes, together with the (induced) relation €* on these
equivalence classes. By a straightforward induction (using the axiom of choi-
ce in M for the quantifier case) we have: (N*, €*) E o([f1,a1], ..., [fn, an]) iff
(a,...,a,) belongs to E({(u1,...,u,) € H® | M E o(fi(uwr), ..., falun))}).
Using this we obtain an elementary embedding 7}, : M — N* defined by
75 (x) = [fs, 0], where f, is the function on HM with constant value z.
Now suppose that E is derived from 7 : M — N. Then (N* €*) E
o([f1,a1], -, [fa,an]) iff (ay,...,a,) belongs to E({(ui,...,u,) € H? |
ME <p(f1(u1) o falun))}) iff (ag, . .., ay,) belongs to {(vy,...,v,) € Hff |
N E 4,0( (f1)(v ) 7(fn)(vy))}, so we get an elementary embeddmg k:* ;
(N*, e*) — (N, €) deﬁned by k*([f,a]) = 7(f)(a). The embedding 7 is the
Composntlon k* o 5. Note that the range of &* includes all of Hp, () Since
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HN

By = E(H}) and for each a € E(H"), k*([id, a]

= a (where id is the
identity on HM); also the range of k* includes E(r) = k*([f., 0]).

A consequence of the existence of k* : (N*, €*) — (N, €) is that (N*, €*)
is extensional, well-founded, set-like (i.e. for any [f, a] € N* some set provides
representatives to all of the equivalence classes [g,b] €* [f, a]) and therefore
isomorphic to a transitive structure (Ng, €). Write i : <N*, €*) ~ (N, e).
Then define k = k*oi~ ! and 7p = tomy. Then m = komg and as Range k =
Range k* includes Hj,) U {E(k)}, it follows that k=" is the identity on

Hg(ﬁ) U{E(k)} and therefore k is the identity on Hp?” o+ (Which is contained

in, but not necessarily equal to HE(H)+). For z € HM we have mp(z) € H P B+

and therefore w(x) = komg(x) = mg(x). It follows that the extender derived
from mp is the same as that derived from m, namely E. As each element
of the range of k is of the form w(f)(a) for some f : H¥ — M in M
and some a in HJ]EV(H), it follows that each element of Npg is of the form

k~tom(f)(a) = mr(f)(a) for some f: HY — Min M and ain H, ) = HfEV@)
So mg : M — Npg has the desired properties. The uniqueness of ng is clear,
as if we began with an embedding 7 : M — N also satisfying the desired
properties, the above construction produces k : Np — N with # = ko ng, k

equal to the identity on Hg(i) and therefore as each element of N is of the

form w(f)(a) = komr(f)(k(a)) = k(me(f)(a)) for some a € HfEV(E) it follows
that k is onto, and therefore the identity. O

Remarks. (a) We write Ng as Ult (M, E). It follows from the ultrapower
construction that the notion of extender is first-order. Indeed, E is an exten-
der on M iff E is an elementary embedding E : HY — N, = U(Range E)
with critical point x and the structure (N*, €*) resulting from the ultrapower
construction using F and M is well-founded.

(b) Note that if E is an extender on M with critical point x then for any
ordinal «, 7g(a) has cardinality at most that of (as of M) X (Hy,) of
Ult (M, E)), as each ordinal less than 7g(«) is represented in Ult (M, E)
by a pair (f,a) where f : HY — a belongs to M and a belongs to Hy,x)
of Ult (M, E). Also mg(a) = Umg[a] whenever o has M-cofinality greater
than the M-cardinality of HM. It follows that if & > 7g(k) is a strong limit
cardinal of M-cofinality greater than 2<% then « is a fixed point of 7.

(c) If « is inaccessible in M then £ € HM is an extender on M iff E is an
extender on HM: If N* from the ultrapower construction is not well-founded,
then this is witnessed by a sequence [f,11,an+1] € [fn,an), n € w. Such a
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witness exists not only in M, but also in HM  as we may assume that the
functions f,, take ordinal values less than a.

Theorem 5. If k is measurable, a-strong, strong, f-strong, Woodin or super-
strong, respectively then this is witnessed by embeddings of the form 7z for
some extender E on V. Thus these properties are first-order.

Proof. If © witnesses the a-strength of x then so does 7g, where E' is derived
from 7, since by definition a must be less than or equal to m(x). The same
holds for f-strength, as m(f)(k) is less than 7(k) for f : Kk — k. As measu-
rability, strength, Woodinness and superstrength can be defined in terms of
a-strength and f-strength, these properties are all witnessed by embeddings
of the form 7 and therefore are first-order since the notion of extender is
first-order. O

For our next result it will be useful to consider the following variant of
the ultrapower construction: Suppose that 7 : M — N has critical point &
and « is a cardinal of N, K < o < 7(k). Then define N} just like N*, but
only using pairs (f,a) where a belongs to HY. We obtain a well-founded,
set-like and extensional structure (N¥, €*), isomorphic to a transitive class
NE o, with canonical embeddings 7z, : M — Ng, and ky : Ngo — N,
ko = id on HY. Thus if 7 : V — N witnesses the a-strength of x, so does
TE.o- We define the cutback of E to «, written E | «, to be the extender
derived from the embedding 7g,. As each ordinal less than (E | «)(k) is
represented by a pair (f,a) where f : HM — k, a € HY, it follows that
(E | a)(k) has cardinality 2<¢ and therefore so does E | a. The true length
of F is the least o such that £ | a = E.

Let us say that a property P(k) is stronger than a property Q(r) iff the
existence of a k satisfying P (k) implies the existence of a transitive set which
is a ZFC-model and in which there is a & satisfying Q(&).

Theorem 6. Superstrength is stronger than Woodinness, Woodinness is stron-
ger than strength and strength is stronger than measurability.

Proof. Suppose that k is superstrong via the embedding 7 and let E be the
extender derived from 7. We claim that x is witnessed to be Woodin using
extenders in H,, and therefore is Woodin in the ZFC-model Hy,). If not,
pick a function f : kK — k such that no k& < xk closed under f is witnessed to
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be f | k-strong by an extender in H,. Then x is not witnessed to be f-strong
in M = Ult (V, E) using extenders in H(). But by superstrength £ | «
belongs to M for each « less than 7(k), and in particular for a = 7(f)(k)*.
Thus E | w(f)(k)" witnesses the f-strength of x in M, contradiction.

Suppose that § is Woodin. We claim that some x < § is strong in the
ZFC-model Hj. If not, then define f(x) = (2<9¢)* where g(k) is least so
that x is not g(k)-strong in Hys, and therefore not g(x)-strong in V. Apply
the Woodinness of § to obtain x closed under f which is f [ k-strong, via an
embedding 7 : V' — M. By elementarity « is not m(g)(x)-strong in M. But
if £ is the extender derived from 7, we have E | (7(g)(k)) € M, witnessing
the m(g)(k)-strength of x in M, contradiction.

Suppose that x is strong. We claim that there is a measurable cardinal
less than « and therefore the ZFC-model H, satisfies that there exists a
measurable cardinal. Suppose not and let 7 : V' — M witness the (27)*-
strength of k. Then x is not measurable in M. But if FE is the extender
derived from 7, we have E | k* € M, witnessing the measurability of x in
M, contradiction. O

Let us now return to our discussion of Kunen’s Theorem. Suppose that
m: M — M and let E be the extender derived from 7. Then ng : M —
Ult (M, E) has the property that M and Ult (M, E') have the same bounded
subsets of F(k), where k is the critical point of w. Thus if £ belonged to
M, we would have a superstrong cardinal in M. The same applies to any
#-embedding for M, i.e., to any embedding 7w : M — N such that M, N have
the same bounded subsets of m(k), K = the critical point of w. Therefore:

M has a superstrong cardinal iff M contains a sharp for itself.

Superstrength is essentially the strongest large cardinal property which can
be witnessed by an extender embedding. Indeed, if £ is an extender on V'
and 7 : V — Ult (V, E) = M is the resulting ultrapower embedding, then
E cannot belong to M, as E maps k" cofinally into F(x)" of M, where s
is the critical point of E. As FE belongs to Hy(.)+ it follows that whereas M
might contain all bounded subsets of m(k), it cannot contain all subsets of
7(k), as some of them code E itself, which does not belong to M.
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#-Iterations

Godel’s universe L provides a canonical inner model of V' which satisfies
not only ZFC, but also GCH. Is there a similar result for the theory ZFC +
there exists a superstrong cardinal?

Inner Model Conjecture. Suppose that there is a superstrong cardinal. Then
there is an inner model satisfying ZFC 4+ GCH in which there is a superstrong
cardinal.

We might try to prove this conjecture as follows. Assume that there is a
well-ordering of the universe. (If there is no such well-ordering, then we can
easily add one by forcing without creating new sets.) Let xk be superstrong
in V| witnessed by the embedding 7 : V' — M; thus E, is a # for V. Set
My = L. Now 7w [ My maps My to My and therefore M, has a #. Let
M, = My[Ey| where Ej is the least sharp for M. Inductively, if M; has been
defined then 7 [ M; maps M; into N; = w(M;) = |JRange w [ M;. Perhaps
7 | M; witnesses that M; has a sharp. Define M, ,; to be M;[E;] where FE;
is the least sharp for M;. Take an appropriate limit at limit stages. Then
at some least stage oo, M., must contain a sharp for itself, and therefore a
superstrong cardinal. If we can arrange that each M; satisfy the GCH, then
we have established the Inner Model Conjecture.

There are many difficulties with the above sketch. As a start, we assume
somewhat more than a superstrong and carry out the above construction,
ignoring the important problem of ensuring the GCH.

Definition. Suppose that A is a class. We say that x is A-strong iff for each
cardinal « there exists 7 : V' — M with critical point x such that o < 7 (k)
and ANH, =7(A)NH, (=7m(ANH,)NH,). kis A-superstrong iff for each
cardinal « there exists 7 : V' — M with critical point x such that o < 7 (k)
and AN Hyy = m(A) N Hyy (= m(ANHyg) N Hyyy). V is super- Woodin iff
for each class A there is a k which is A-superstrong.

k is supersolid iff there is 7 : V' — M with critical point x such that M
contains all bounded subsets of 7(x) and in addition 7(k) is regular. & is
hyperstrong iff there is 7 : V' — M with critical point x such that M contains
all subsets of (k).

Proposition 7. Hyperstrength > Supersolidity > Super-Woodinness.
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Proof Sketch. Suppose that x is hyperstrong, witnessed by 7 : V' — M. As
r is Mahlo, it follows that 7(x) is also Mahlo, as w(x) is Mahlo in M and
M contains all subsets of w(k). We claim that some & < r is supersolid in
V.. Otherwise k is not supersolid in Vwﬂ(ﬂ) = Vz)- But as x is Mahlo in
M, there exists a regular § < m(k) such that only ordinals less than ¢ are
represented in Ult (V) E,;) by a pair (f,a) where a belongs to Vj. It follows
that E, | 0 is an extender sending x to J, witnessing the supersolidity of x
in V), contradiction.

Suppose that x is supersolid, witnessed by the embedding 7 : V — M.
Then we claim that V is super-Woodin (with respect to all subsets of V,,). If
not, choose A C V, such that no k& < k is A-superstrong in V.. Then « is not
7(A)-superstrong in Vﬂj‘é) = Vi(w)- But for CUB-many 0 < w(k), Es = E; | §
witnesses the superstrength of x and moreover Es(ANk) = Es(r(A) Nk) =
m(A) N Es(k) so in fact the Ejs’s witnesses the m(A)-superstrength of x in
Vr(x), contradiction. O

We also need one more simple fact. If 7 : M — N then we define the
critical image of 7, written crim 7, to be 7(k), where « is the critical point
of m. If F is the extender derived from 7 we also write crim E for crim 7.

Proposition 8. Suppose that V' is super-Woodin. Then for every class A and
every CUB class of ordinals C' there exists a k € C' which is witnessed to be
A-superstrong via embeddings with critical image in C'.

Proof. Suppose that x is A, C-superstrong. For any cardinal « choose 7 :
V' — M with critical point s such that o < w(x) and AN H.(k),C N7(k)
are the same as 7(A) N H,(k), 7(C) N w(x). We may also assume that some
element of C' lies between x and 7(k) for each such 7. But then CNx must be
unbounded in x and therefore x belongs to C'. Also 7(C)N7(k) = CNw(k)
is unbounded in 7(k) so m(k) belongs to C. O

Assume now that V is super-Woodin. Then every inner model M has a
#: Choose m : V' — N with critical point x such that M N H () agrees with
7(M) N Hy(xy. Then 7w [ M : M — 7w(M) provides a # for M. The fact that
both crit 7 and crim 7 can be chosen from any CUB class of ordinals will be
used a bit later.

As suggested above, a # iteration is, roughly speaking, a sequence My, My, . ..

of inner models where:
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MO — L
M; 1 = M;[E;], where E; is a # for M;
M, = the limit of (M; | i < A) for limit \.

The type of model that arises through such an iteration is called an extender
model and is of the form L[E] where E = (E, | « € ORD) is a sequence of
extenders (for appropriate models). For any extender F we define the index
of E, written ind F, to be U(Range £ N ORD).

Definition. An eztender sequence is a sequence E = (E, | v € ORD) such
that for all v, E, is either empty or an extender on L[E | v] such that:

1. v=1ind E,.

2. Let k be the critical point of E,. The E, preserves E | v: if 7 is the
canonical embedding L[E | v] — Ult (L[E [ v],E,] then E [v=n(E [v) |
V.

An ezstender model is a structure L¥ = (L[E], E) where E is an extender
sequence.

To carry out our inductive definition of extender models we must consider
well-orderings of length greater than ORD. To formalise this it is convenient
to work in a strengthened class theory. We shall assume:

() There is a relation £ on V' such that V* = (V, E) is a model of ZFC~
with an element isomorphic to (V] €).

Fix such a V* and let < be the well-ordering of its ordinals. An element of
the field of < is called a hyperordinal and we order hyperordinals using <.
Then our desired definition of the extender models M; is by induction on the
hyperordinal i. Fix also a well-ordering of V' belonging to V* to be used in
this induction.

We explain now what is done at successor stages. Suppose that M = L¥
is an extender model and suppose that F' is an extender on M with critical
point k, v = ind I, F[E | k| = E | F(k), H¥ C LIE | k] and Hl{‘f{ﬁ) -
LIE | F(k)]. Then M[F] is defined to be the extender model with extender
sequence E*, where E = E, for 0 < F(k), EX = F[E | (k" of M)], for
F(k)<o<v,Ef=Fand EX=0forv <o.

At limit stages we have:
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Definition. Suppose that (M; | i < A) is a sequence of extender models with
corresponding extender sequences F;, i < A. Then the limit of the M;’s,
lim(M; | i < )), is the extender model LZ where E is defined by: E, = ()
unless £; [ v +1 = E; [ v+ 1 for all sufficiently large ¢,j < A, in which case
E, is the common value of (E;), for sufficiently large i < A.

Theorem 9. Assume that V is super-Woodin and isomorphic to an element
of some ZFC™ model V* = (V| E). Fix a well-ordering of V' in V* and let <
denote the well-ordering of the ordinals of V*, called hyperordinals. Define a
sequence of extender models M; = L¥i, i a hyperordinal, as follows:

My = L, with (Ep), = 0 for all v

M; 1 = M;[F;] where Fj is the least # for M; such that if x; is the critical
point of F; then F;(E; | k;) = E; | Fi(k:), H,i‘;[i C L[E; | ;] and HI]XZ-[EM) C
LIE; | Fi(k;)]

M, = lim(M; | i < A) for limit hyperordinals A.

Then M; is defined for all 7 and for some hyperordinal co, M., E There is a
superstrong cardinal.

Proof. Suppose that M; is defined and we wish to show that F; exists. By
Proposition 8 there exists an embedding 7 : V' — M with critical point &
such that m(E; | k) = E; | 7(x), HM C L[E; | 5] and Hy\) C LIE; | w(r)).
Then E; is a candidate for Fj.

Now suppose that no M; has a superstrong cardinal.

We show by induction that for each ordinal o, crim F; > « for sufficiently
large ¢ (where crim F; = Fj(k;), the critical image of F;). Suppose that
this is true for a and we wish to show that crim F; > « for sufficiently
large 7. Choose ig so that crim F; > « for ¢ > ig. If crim F; > « for all
1 > ig then we are done. Otherwise choose i; > iy such that crim F};, = a.
We claim that crim F; > ind Fj, for all j > 7;. Otherwise let i > i; be
least so that crim Fj, < ind Fj,. Then F}, belongs to the model M;, and
therefore ind F;, < a™ of M;,. It follows that crim Fj, is at most « as it is
an inaccessible cardinal of M;,. By choice of iy, in fact crim F}, equals a.
Now by definition, Ha  is contained in L|E;, | o] which equals L[E;, | a] as
all F;, i1 <1 < iy, preserve E; up to a and therefore E; | o does not change
between 7; and i;. Thus M;, contains the extender Fj, and all bounded
subsets of o = crim Fj, belong to Ult (M,,, F},). (The latter is well-founded
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as it embeds into Ult (V, F}"), where Fj is the restriction to M;, of the V-
extender F}'.) Thus F; witnesses the superstrength of its critical point r;,
in M;,, contrary to hypothesis.

As crim Fj is eventually at least « for any ordinal «, it follows that F; is
eventually undefined, in contradiction to the first paragraph of the proof. O

How can we ensure that the inner models M; of the previous theorem
satisfy GCH? A natural way is to enforce the Gddel property:

Godel Property. Suppose that V' = L¥ is an extender model. If X is a subset
of the infinite cardinal s then X belongs to L, .

In our inductive definition of the M;’s, we begin with M, = L, which satisfies
the Godel property by virtue of Gédel’s proof of the GCH in L. Now suppose
that M, satisfies the Gddel property and we wish to maintain this property
when defining M;, ;. Write M;,; = M;[F;], where F; has index v;. As F; can
be coded by a subset of crim F; = F;(crit F}), it follows by Godel’s argument
that the Godel property holds for k > crim F;. Also if k is less than crim F;
and X is a subset of x in M;, then since the Gdédel property holds for X in
M; it also holds for X in M, as M;,; agrees with M; up to crim F; and x*
of M;,, is at least k* of M;. Now let X be a bounded subset of crim F; in
M; 1 — M; and choose v such that X belongs to Lfi“. Then v is at least v;.
For simplicity let us assume that X = R is a subset of w. We would like to
guarantee the Gddel property for R in M;,,. Of course the difficulty is that
R does not appear until stage v, which may be uncountable in M.

So consider H = the Skolem hull of {R} in L)™', Then H is countable
and R belongs to the countable structure Miﬂ = the transitive collapse of
H. We replace M, by M}, ,, the extender model obtained by adding empty
levels to the top of M,,;. We have the Godel property for M., as this
model is of the form L[S] for some real S.

But we must show that this new inductive definition converges to a model
of a superstrong. For this purpose we need to know that when “hulling down”
to form M1, not too much information is lost. In particular we would like
to know that we still have all the reals present in M;. The crucial property
needed is the following:

(%) Suppose that H is a countable elementary submodel of N = LJ*'. Then
the reals in H form an initial segment of the reals in N.
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Currently, the only known technique for proving (x) is to use the theory
of iteration and comparison. Suppose that M = LE is an initial segment,
of an extender model. We can use our earlier ultrapower construction to
form Ult (M, F) whenever F is an extender on M (i.e., derived from some
embedding M — N). By taking repeated ultrapowers and taking direct
limits at limit stages, we from an iteration of M. In an iteration, we allow
ourselves to truncate the current iterate M; of M, by replacing M; by one
of its proper initial segments. We consider iterable M, which give rise to
well-founded iterates, with only finitely many truncations occuring in any
iteration. When iterating the reals do not change, except when truncation
occurs, when a final segment of the reals may be lost.

Comparison says the following:

Comparison. Suppose that M, N are iterable. Then either some iterate M*
of M without truncations is an initial segment of an iterate N* of N, or
vice-versa.

It follows from Comparison that if M, N are iterable then either the reals of
M form an initial segment of the reals of N, or vice-versa. This yields (x):
Let H = the transitive collapse of H. Then either the reals of H form an
initial segment of the reals of N = L' or vice-versa. But as the reals of H
equal the reals of H C N, the former must hold, as desired.

Unfortunately obtaining iterable extender models is problematic and has
not yet been carried out to the level of a superstrong cardinal. One does have
the desired theory at the level of a Woodin cardinal, and therefore the inner
model conjecture has been proven, if one replaces “superstrong” by “Woodin”
in its statement.

O in Extender Models

For an extender model L¥ to serve as a good analogue of L in the large
cardinal context, it would be uesful to know that not only GCH, but also
Jensen’s O principle holds in such a model. Schimmerling and Zeman esta-
blished this result for the extender models which are known to satisfy GCH.
We now discuss some of the ideas behind this proof.

Suppose that V' = L¥ is an extender model and fix an uncountable cardi-
nal k. We would like to prove the following version of O for ordinals between
k and kT:
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O,. There exists (C, | kK < v < kT, v limit) such that C, is CUB in v, C,
has ordertype < x and v € LimC, — C; = C, Nv.

Let’s begin by recalling some of the ideas behind the proof of this principle
in L. It suffices to define the C, for limit ordinals v < k™ such that L, F &
is the largest cardinal, as the set of such v forms a CUB subset of k*. Let
v be such a limit ordinal and choose 3(r) > v least so that v C the 3,
Skolem hull of x U {p} in Lg() for some n and some parameter p € Lg,.
We assume that n = 1, 3(v) is a limit ordinal and that p = p(v) is least in
the maximum-difference ordering <* of finite sets of ordinals: p <* ¢ iff the
largest ordinal in (¢ — p) U (p — ¢) belongs to ¢. For any a < k we consider
H, = the ¥, Skolem hull of aU{p(v)} in Lg(, as well as 3, = sup(H.NG(v))
and v, = sup(H, Nv). The rough idea is to define C, to be the collection of
those v, which are less than v.

One must verify coherence: v € LimC, — C; = C, N v. Choose « so
that 7 = 1,. The key step is to show:

Lj ) is the transitive collapse of H = the ¥; Skolem hull of 7 U {p(v)} in
Lg,.
Then one also verifies that p(v) is the image of p(v) under the collapsing
map, and ultimately that coherence holds. In the L-context we necessarily
have that H is isomorphic to Lj for some 3, by condensation, and then one
can argue that 3 equals 3(7). The difficulty in the LP-context is that H
need not be of the form Lg , in cases where Ej(,) is nonempty.

Let us take a closer look at this last point. Suppose that F' = Eg(, is
an extender with critical point 7 < x. Thus F' is a function from (H,+ of
Lg(y)) = H_+ cofinally into Lg(y). Typically, 5, < 3(v) and therefore FNLE
is only partially defined on H,+. This means that the transitive collapse of

H is a structure LBE with a function F = EB at the top which is not an

extender, but a function mapping a proper subset of H.+ cofinally into LE.
Such a function is called an eztender fragment, as its domain is smaller than
it should be.

This suggests that when defining C; we should not use the usual collapsing
structure LE(D), but rather an appropriate “fragment structure” associated
to 7, in order to obtain coherence. But what fragment structure do we
choose? Tt turns out that all candidates Lg for the fragment structure have
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the following property: The ultrapower of LBJ—:J by the extender fragment EB is

equal to the usual collapsing structure Lg(ﬁ). Thus we are led to an analysis

of the different ways in which the usual collapsing structure Lg(ﬂ) can be

obtained via a fragment ultrapower.

The possible fragments are parametrised by pairs (i, q), where p is a
cardinal less than s and ¢ is an initial segment of the standard parameter
p = p(7). (Thus we view p as a finite set of ordinals, and ¢ is of the form pN¢
for some ordinal §.) A fragment is associated to (u, ¢) provided X (u, q) = the
Y1 Skolem hull of pU{p—¢q} in Lg(ﬂ) does not intersect the interval [p, max q|;

in this case the associated fragment is 7 | (H,+ of X (u,q)) where X (1, q) is
the transitive collapse of X (u,q) and 7 is the inverse to the collapsing map.
We are interested in strong fragments which have the additional property
that X (u,q) and the same hull with p — ¢ replaced by p have the same

subsets of p after transitive collapse.

For any ¢ we consider D(q) = {u | (1, ¢) gives rise to a strong fragment}.
This is closed and bounded in . Finally consider the smallest initial segment,
q = q(v) of p such that D(q) is nonempty and the largest element 1 = pu(v)
of the associated D(q). The desired fragment is the one associated to this
pair (u(7),q(v)). Schimmerling-Zeman prove coherence for this choice of
fragment.
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6. Set Forcing over Extender Models
Singular Cardinals
First we recall the following consequence of Jensen’s Covering Theorem.

Theorem 1. Suppose that 0% does not exist. Then the GCH holds at all
singular strong limit cardinals.

Proof. Suppose that x is a singular strong limit cardinal and let A be the
cofinality of k. Then 2% = r*. As every subset of x of cardinality X is
contained in a constructible one of cardinality at most A", x* is at most
k.22 =kt O

We will show that the conclusion of this theorem can be violated if we
assume the existence of large cardinals. First we need a method for making
a cardinal singular without collapsing it.

Prikry Forcing

Theorem 2. Let x be a measurable cardinal. Then there is a generic extension
in which the cofinality of k is w and no cardinals are collapsed. Moreover,
no bounded subsets of x are added.

Proof. Let U be the ultrafilter on s derived from an embedding 7 : V — M
with critical point k. L.e., U is the collection of subsets of x defined by

AeUiff k e m(A).

Let P consist of all pairs p = (s, A) where s is a finite subset of x and A
belongs to U. Extension is defined by

(s,A) < (t, B) iff

(i) ¢ is an initial segment of s
(ii) A is a subset of B

(iii) s — t C B.

Two conditions with the same first component are compatible, since U is a

filter. Thus P has the x'-cc and therefore all cardinals greater than s are
preserved by P.
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Let G be P-generic. Then & has cofinality w in V[G], as J{s | (s, 4) € G
for some A} is an unbounded subset of x of ordertype w.

It remains only to show that P does not add new bounded subsets of k.
The proof is based on two lemmas.

Lemma 3. Suppose that f: [k]<“ — 2, where [k]<“ denotes the set of finite
subsets of k. Then there exists A € U such that for each n, f is constant on
[A]", the set of subsets of A of size n.

Proof of Lemma 3. First note that U is a normal ultrafilter, i.e., if A; belongs
to U for each i < k thensodoes A{A; |i <k} ={i <k |iec Ajforallj <i}.
This is because by hypothesis s belongs to w(A;) = (7((4; | ¢ < k))); for
each i < k, and therefore s belongs to A 7({4; | i < k}) = 7(A{A; | i < Kk}).

Now by induction on n we show that there exists A € U such that f
is constant on [A]". This is clear for n = 1, since U is an ultrafilter. If it
holds for n then for each i < k choose A; € U such that f; is constant on
[A;]", where f; is defined on k — (i + 1) by fi(aq,...,an) = f(i,aq, ..., ).
Let A* = A{A; | i < s} and choose A C A* in U such that f; has the
same constant value on [A;]" for each i € A. Then f is constant on [A]"™!
completing the induction.

Now by intersecting sets A,, € U such that f is constant on [A,]" for each
n, we get the desired set A € U. O

Lemma 4. Let ¢ be a sentence of the forcing language and (g, Ag) a condi-
tion. Then there exists A C Aj in U such that (s, A) decides ¢.

Proof of Lemma 4. We may assume that min Ay > maxsy. Let ST be the
set of s € [Ap]<¥ such that (so U s, A) IF ¢ for some A C Ay and S~ the set
of s € [Ap]<* such that (so U s, A) Ik~ ¢ for some A C Ay. By Lemma 3,
choose A € U such that for each n, either [A]" C ST, [A]* C S~ or [A]" is
disjoint from ST U S™.

We claim that (sg, A) decides . If not then there are (soUs, B), (soUt, C)
extending (s, A) which force ¢, ~ ¢, respectively. We may assume that s
and ¢ have the same length n. But then s € ST, ¢t € S~ and therefore [A]"
intersects both ST and S, contrary to the choice of A. O

Now suppose that (s, A) IF o is a subset of A < k. For each i < A, choose
A; C A such that (s, A;) decides the sentence i € o. Then (s, A*) forces that
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o is in the ground model, where A* = (. A;. This completes the proof of
Theorem 2. O

Our strategy to obtain a singular strong limit cardinal where GCH fails is
now as follows. We will show that the GCH can fail at a measurable cardinal
k. Then by applying Prikry forcing to x, we obtain a singular strong limit
cardinal of cofinality w where the GCH fails.

First we state a general lemma which can be used to extend an embedding
k: M — N to a generic extension of M.

Proposition 5. Let k : M — N be an elementary embedding between ZFC
models, P € M, G P-generic over M and let H be k(P)-generic over N.
If k[G] € H then there exists k* : M[G] — N[H] extending k such that
k(G)=H.

Proof. If k[G] C H define k* by k*(6“) = k(o)®. This is well-defined,
as if 0% = 7¢ then there is p € G such that p IF ¢ = 7 and therefore
k(p) & k(o) = k(7), yielding k(o) = k(r)#, since k(p) belongs to H.
Similarly k£* is elementary. As k sends a standard P-name for an element of
M to a standard k(P)-name for the image of that element, it follows that k*
extends k. Similarly, as k sends a standard P-name for the generic G to a
standard k(P)-name for the generic H, we get k(G) = H. O

Theorem 6. Suppose that it is consistent to have GCH and a cardinal x which
is kT T-strong. Then it is consistent to have the GCH fail at a measurable
cardinal.

Proof. Suppose that V satisfies GCH and has a s which is k™ T-strong,
witnessed by an embedding 7 : V — M. We may assume that M is the
ultrapower of V' by an extender E with critical point x, and that E equals
E | k™t. Thus every element of M is of the form 7(f)(a), where f : H, — V
and a € H,++. Note that M is closed under k-sequences, as if for each i < k,
m; € M is represented as 7(f;)(a;), we can represent (m; | i < k) by 7(f)(a)
where f((z; | 7 <)) = (f;(z;) | j <i) and a = (a; | i < k). Also since H, ++
is contained in M, we have that k™ = k™ of M.

Let U be E | x*, the “measure” derived from F, and 7y : V — N =
Ult (V,U) the ultrapower embedding given by U. Using the same argument
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as used above for M, N is closed under k-sequences. Also m = k o m; where
k: N — M is given by k(my(f)(a)) = n(f)(a) for a € H,+.

Let A be the k** of N. Since the GCH holds at x, A < k™" = x*T of
M. Tt follows that A is the critical point of £ : N — M. Every element of
M is of the form 7(f)(a) for some a € H,++. Now 7(f)(a) = (k(mu(f)) |
H,++)(a) = k(my(f) | HY)(a). Therefore every element of M is of the form
k(g)(a) for some a € H,++ and some g € N whose domain has N-cardinality
A

Our goal is to extend the embedding 7 to a generic extension of V' in
which 2% = k™ and in which this extension of 7 is definable. We shall first
show how to extend 7 to the natural reverse Easton extension of V' in which
2% = kT, and then extend this embedding once more to a further generic
extension in which this second extension of 7 is definable.

Let P = P,,1 be the reverse Easton iteration where at stage a < &,
P,.1 = P, xQ,, where (), is trivial unless « is inaccessible, in which case
Qo = Add (o, a*+)VIGal the forcing to add at*t subsets to o with condi-
tions of size less than a. We use Easton supports, taking direct limits at
inaccessibles and inverse limits elsewhere.

Let G be P.-generic over V and let g be Q-generic over V[G]|. Our
first step is to extend 7 and 7y to V[G]. Thus we must choose generics
for 7(P.) = m(P)x(x) and 7y (Py) = Ty (P)xy (s containing n[G] and 7y [G],
respectively. Up to stage k, the iterations P, my(P) and w(P) are all the
same: P, = my(P),; = 7(P)s.

Lemma 7. m(P).11 = Pey1.
Proof. This is because V and M have the same H, ++. O
Lemma 8. 7y (P)x11 = Py x QF where QF is the Add (k, A) of V[G].

Proof. Clearly Q* is the Add (k, A) of N[G]|. But V and N have the same
H,+ and X has cofinality greater than x; therefore NV, V' have the same size
< k subsets of A and N[G], V[G] have the same size < k subsets of A\. O

Let go equal g N Q%. Then gy is Q%-generic over V[G] and therefore also
over N[G]. As N is closed under k-sequences and P, * Q% has the x'-cc,
it follows that V[G][go] E N[G][go] is closed under r-sequences (since every
r-sequence in V'[G][go] has a name in V' of size k).
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Let Ry = P,ﬁm,](n) be the factor forcing to prolong G * gy to a generic
for 7y (P,). We may build Hy in V[G][go] which is Ry-generic over N[G][go],
using the fact that Ry is x7-closed in N[G][go], has cardinality x* in V[G][go]
and V'[G][go] F N[G][go] is closed under k-sequences.

Since k has critical point A > s, k[G] = G and we can lift k : N — M
to k : N|G] — MIG]. Also, k[go] = go C g and so we may lift again to get
k : N[G]lgo] — M[G][g].

Let R = P, (- We claim that H = {r € R | k(ro) < r for some
ro € Hy} is R-generic over M|[G][g]. To see this, note that each open dense
D C R in M[G][g] is of the form k(f)(a) for some f € N|[G][go] with domain
of size A\. We may assume that f(x) is open dense on Ry for each x € Dom f,
and since Ry is AT-closed in N[G][go], we may choose ry € Hy belonging to
each f(z), v € Dom f. It follows that k(r¢) € H belongs to D.

Thus we have now extended the original 7, 7y and k& to embeddings
m: VIG] — M[G[g][H], my : V]G] — N[G][go][Ho] and & : N[G][go][Ho] —
MI|G][go][H] so that m = k o my. These embeddings are definable in V[G][g].

Now we try to lift 7w to V[G][g]. Let So = 1y (Q) = Add (7y(k), my(k)TT)
of N[G][go][Ho]. Notice that Sy has cardinality <", so we cannot choose

an Sp-generic the way we chose an Ry-generic. Instead we must force over
V[G][g] with Sp.

Lemma 9. Sy is 1-closed and k™ *-Knaster in V[G][go]. (P is k-Knaster iff
for every k-sequence of conditions (p, | @ < k) there is an unbounded X C k
such that p,,ps are compatible for all o, 3 € X.)

Proof. kT-closure follows because V[G][go] E N|[G][go][Ho] is closed under
r-sequences and N|[G][go][Ho] E Sp is kt-closed. Let (p, | a < ) be a
sequence of conditions in Sy and represent p, as 7y (f,)(as) where a, € H, .+
and f, : H. — Qu, fo € V[G]. Then for some unbounded X C k*7,
fa(y), fa(y) are compatible for all y € H, and a, = ag, for all o, 3 € X. It
follows that p,, ps are compatible for all o, 3 € X. O

Lemma 10. Sy is kT -distributive and x**-cc in V[G][g].
Proof. V[G][g] is a generic extension of V[G][g] via a forcing which is iso-

morphic to Q,, which is k™-cc in V[G][go]. As Sp is T-closed in V[G][go], it
follows that it is k"-distributive in V[G][g].

103



The product of a k™ T-Knaster forcing and a x*-cc forcing is K+ -cc. So
as Sp is k7T -Knaster in V[G][go] and Q) is kT -cc (in fact £7-cc) in V[G][go]
it follows that Sy x Q is kT T-cc in V[G][go]. Thus since V[G][g] is a generic
extension of V[G][go] via a forcing isomorphic to @, it follows that Sy is
kT t-cc in V[G][g]. O

By Lemma 10, if we force with Sy over V[G][g] we preserve cardinals. Let
ho be Sp-generic over V[G][g].

Just as we could obtain an R-generic (over M[G][g]) H = {r € R | k(o) <
r for some 1o € Hy}, we can obtain an S-generic (over M[G|[g][H]) h = {s €
S | k(sg) < s for some sq € ho}, where S = 7(Q,) = Add (7(k), 7(k)")
of M[G][g][H]. Our wish is to extend 7 to an embedding from V[G][g] to
MIG][g][H][Rh], but we have to first guarantee that 7[g] C h.

Let f = Ug : k x kTt — 2 be the function corresponding to the generic
g. Then Ur[g] is the function f*: k x w[k™t] — 2 defined by f*(a, 7(8)) =
f(a, B). We have to modify h to h* so that each ¢* in h* is compatible with
fr

For any ¢ € h let ¢* be defined by altering ¢ on Dom ¢ N (k x w[xT])
to agree with f*. We claim that ¢* belongs to M[G][g|[H], and therefore
belongs to S. Write ¢ = w(f)(a) where a belongs to H.++ and f: H, — Q4
belongs to V[G]. (Of course H,, denotes the H,, of V[G] and @, denotes the
Add (k, ™) of V[G].) If (o, 7(/3)) belongs to Dom ¢ then («, 3) belongs to
Dom f(z) for some x € H,, so {(«, ) | (o, 7(8)) € Dom ¢} is contained in
Zy = J,Dom f(z) € V[G]. As Z, has size at most x and P, is k-cc, there
isZeV,ZyCZCkxkTt of size at most k. Then Z belongs to M and
7 | Z also belongs to M. Using q, g, 7 | Z we can define ¢*, and therefore ¢*
belongs to M[G][g][H].

Lemma 11. h* = {¢* | ¢ € h} is S-generic over M[G][g|[H].

Proof. Suppose that D is open dense on S, D € M[G|[g][H]. For any q € S
define N(q) to be the set of r € S with the same domain as ¢ which disagree
with ¢ on a set of size at most x. Then E'= {q | N(¢) C D} is dense on S,
using the 7(k)-closure of S. Choose ¢ in ENh. Then ¢* belongs to N(g) and
therefore to D. It follows that A* intersects D. O

As 7[g] C h* we may lift 7 to an embedding V[G][g] — M[G][g][H][h*].
And as before, by taking I = {p | m(py) < p for some py € ho}, we
obtain a 7(Sp)-generic over M[G][g][H][h*], and therefore an embedding
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VgG] [g][ho] — M[G][g][H][h*][I] which is definable in V[G][g][ho], as desi-
red. U

Remark. The hypothesis of Theorem 6 can be weakened slightly. The above
proof only needed an embedding 7 : V' — M with critical point x, where
GCH holds in V', M is closed under s-sequences and for some function f,
7n(f)(k) = k. (f does not have to be the function f(a) = a™*.) Gitik
showed that this weaker statement is equiconsistent with the statement that
for some k and every A C kT, there is an embedding 7 : V — M with
critical point x such that A belongs to M, and also equiconsistent with the
statement that GCH fails at a measurable cardinal.

Regularity Properties

We show that if there is a Woodin limit of Woodin cardinals then every set
of reals in L(R), the smallest inner model containing all the reals, is Lebesgue
measurable. The consistency of the latter statement is rather weak, following
from the consistency of the existence of an inaccessible cardinal:

Theorem 12. (Solovay) Suppose that ¢ is inaccessible and G is generic for
Coll(w, < 9), the forcing with finite conditions that makes each ordinal less
than ¢ countable. Then in V[G], every set of reals in L(R) is Lebesgue
measurable.

We shall show that if there is a Woodin limit of Woodin cardinals, then L(R)
elementarily embeds into L(R)VI®! where G is as in Theorem 12. Tt follows
that every set of reals in L(R) is Lebesgue measurable.

Definition. Suppose that ¢ C P(u). Then ¢ is CUB on u iff ¢ consists of the
universes of all substructures of a fixed structure for a countable language
with universe u. s C P(u) is stationary on u iff s N ¢ # () for each CUB
¢ € P(u), i.e., iff every structure for a countable language with universe u
has a substructure with universe in s. The stationary tower forcing QQ = Qs,
where § is an inaccessible cardinal, consists of all pairs (u, s) where u € Vj
is transitive and s C P,(u) = {x C u | = is countable} is stationary on u,
ordered by:

(u,8) < (v,t) iffu Dvand s Jv={xNv|x e s} Ct.
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If G is )-generic then G assigns an ultrafilter G, on P, (u) to each u: G, =
{s ]| (u,s) e G}.

The main fact that we need to prove is that if ¢ is Woodin and G is
Q-generic then ¢ is a cardinal of V[G]. Tt turns out that every ordinal less
than ¢ is countable in V[G] and therefore it will be enough to show that §
has uncountable cofinality in V[G].

The following is a version of Fodor’s Lemma in this context.

Fodor’s Lemma. Suppose that s is stationary on v and f : s — u such that
f(z) € x for each x € s. Then there is a stationary s’ C s such that f is
constant on .

Proof. TIf not, then for each v € w choose a ¢, which is CUB on u such
that f(x) # v whenever « € c¢. Let ¢ be the diagonal intersection of the ¢,:
c=A{x |z €c¢, forall v €x}. Then cis CUB, so by the stationarity of s
there is © € s N ¢. But this means that f(z) # v for all v € z, contradicting
the hypothesis on f. O

Recall that A C @ is predense below p € @ iff every extension of p is
compatible with an element of A. To show that ¢ has uncountable cofinality
in V[G], it suffices to show:

() If A;, i € w are dense on @ and p € @) then there exists K < J and ¢ < p
such that A; N Q, is predense below ¢ for each i, where Q, = Q N V.

Write p = (u,, sp). We say that a set  captures A iff there is (u,s) € N A
such that z Nu € s. A condition p captures A iff every = € s, captures A.

Proposition 13. If g captures A then A is predense below q.

Proof. Suppose that » < ¢. Then for each z € s,, x Ny, € s, and hence
x Nu, captures A. For each such x choose (uy,s,) € x Nu, N A such that
T NugNuy € 5. As u, is transitive, x Nu, Nu, = = Nu, for such . By
Fodor there is a fixed (u, s) and a stationary s’ C s, such that for all z € s
(u,s) €A and zNu € s. Thus (u,, s’) extends both  and (u, s) € A, so
r is compatible with an element of A. O
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Thus to obtain (x) it suffices show that there is ¢ < p which captures
each A; N Qy, 1 € w. For this we need that each A; N (), can be captured by
many sets in Vj, in the following sense.

Definition. ANQ, is semiproper iff for CUB-many countable = C V. there
is a countable z € V, such that:

(i) z captures A N Q,: There is (u,s) € ANz such that zNu € s.
(i) z end-extends x NV, i.e., x NV, = 2NV, for some a < k.
(iii) z is z-closed: If ¢ € x is CUB on Vj; then z belongs to c.

Proposition 14. Suppose that p € @), and each A; N Q) is semiproper. Then
there exists ¢ < p such that ¢ captures each A; N Q...

Proof. Set ¢ = (Vj,t) where t = {x C V| 2 Nwu, € s, and = captures each
A; N Q). Tt suffices to show that ¢ is stationary.

For each i let ¢; be CUB on V., witnessing that A; NV, is semiproper
(i.e, the CUB set of countable x in the statement of semiproperness can be
chosen to be the countable elements of ¢;). Let ¢ be the intersection of the
Ci-

Now suppose that b is CUB on V, and we show that ¢t has an element
which belongs to b. Choose zy € ¢ such that zo N, € s,; this is possible
as s, is stationary and therefore intersects ¢ [ u, = {z Nwu, | x € ¢}. Also
require that p,b and c [ V, belong to x,.

Let zg = z¢9 N V.. Applying the semiproperness of Ay N @, choose z;
end-extending zy to capture Ay N @, and to be zg-closed. As ¢ [ Vi € xg
and z; is xg-closed, it follows that z; € ¢ | Vi and therefore z; = z; NV
for some x; € c. Similarly, choose 2z, end-extending z; to capture A; N Q,
and to be xi-closed; then zy = x5 NV, for some x5 € c¢. Continue, getting
29 € 7 C --- with union 2. Note that z Nwu, = 2z Nu, € s, since p € 2
and z end-extends zy. Thus z belongs to ¢, and since b belongs to zy and z
is xo-closed, z belongs to b, as desired. O

Recall that k < ¢ is A-strong below § iff for each @ < § there exists
7V — M with critical point  such that 7(x) > a, V,, € M and 7(A)NV,, =
ANV,. ¢ is Woodin iff for any A C Vj there exists a k < d which is A-strong
below 4.
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Lemma 15. Let Kk < a < 0§, « inaccessible, 7 : V' — M with critical point
K, m(k) > a, Vo, € M, m1(A)NV, = ANV, where AN Q, is predense on
Q. =QnNV,. Then ANQ, is semiproper.

Proof. If not, then s = {z C V4, | There is no z-closed z € V,; such that
z end extends x NV, and captures A} is stationary, and therefore (V,1,s)
is a condition in @,. Choose (u,s’) € ANV, compatible with (V,.,1,s). We
can choose (Vg,t) < (u,s), (Vii1,s) where [ is less than « and (u, s’) € Vj.
Now choose x € t to contain (u,s’) and to belong to m(c) [ V3 for each
¢ € NVj4q which is CUB on Vj,. Thus x = 2*NVj for some 2* € (V) which
is m(z N Vjq1)-closed. Since (Vg,t) < (Vii1,s), it follows that 2 NV 4y € s.
Applying 7, we have that 7(z N V,41) € 7(s). Using the definition of 7 (s),
there is no w(x N V,4q)-closed z € (V) such that z end extends w(zNV};) =
x NV, and captures 7(A). But consider z = z* € m(V},). z* is m(x NV, 41)-
closed and end-extends x N V.. Also z* captures m(A), since x contains
(u,s) e ANVy=n(A)NV, and 2* Nu =z Nu € s since (V3,t) < (u,s).
This is a contradiction. O

Corollary 16. Suppose that § is Woodin. Then ¢ has uncountable cofinality
in V|[G] for Q-generic G.

Proof. By Proposition 14 it suffices to show that if p € Q) and A;, i € w are
dense on () then there exists ¢ < p and k < J such that ¢ € (), and each
A; N Q.. is semiproper. To prove this, apply the Woodinness of § to obtain
k < 60 such that p € @, and & is A-strong below &, where A is the join of the
A;’s. Then apply Lemma 15 where o < ¢ is chosen so that each A; N Q. is
predense on (),. O

Suppose that G is Q-generic. Then we can form an ultrapower Ult (V, G)
as follows:

D={(u,f)| f:P(u) =V, feV}

(u, f) ~ (v,g) iff {e Culv | flzNu)=glzNv)} € Gy

(w, f)E(v,g) iff {x CuUv| f(zNu) € glznuv)} € Guu.

Ult (V, G) has universe D/ ~ and membership relation £ on the ~-equivalence
classes [u, f].

We have: Ult (V,G) E p([ur, fi], -, [tn, fu]) if {x Cu | V E @(fi(zN
), ..., falx Nuy))} € Gy, where v = Uju;. Thus we get an elementary
embedding o : V — Ult (V,G) defined by: o(z) = [0, ¢,] where ¢, (0) = .
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Assume that ¢ is Woodin and that G is ()-generic over V.

Lemma 17. (a) Identify the well-founded part of Ult (V, G) with its transitive
collapse. Then every element of V5G] belongs to Ult (V| G) and is countable
in Ult (V,G). All reals of V[G] belong to Ult (V,G).

(b) In fact, Ult (V, Q) is well-founded.

Proof. (a) Suppose that u € Vj is transitive. By Fodor’s Lemma, [u,id]
represents o[u] in Ult (V,G), and therefore u, the transitive collapse of ou],
belongs to Ult (V, G). Thus V5 C Ult (V,G). Also, as V F x is countable, for
each x € G, we have that Ult (V,G) E [u,id] = o[u] is countable and there-
fore u, the transitive collapse of o[u], is also countable in Ult (V, G). Finally,
s € Gy iff [u,id|Eo(s), so as o | PP(u) belongs to Ult (V, G), it follows that
G, belongs to Ult (V,G). Thus V5[G] C Ult (V,G). As every ordinal less
than § is countable in Ult (V,G) and hence in V[G], § is regular in V[G].
Thus every real in V[G] belongs to V5[G] and therefore to Ult (V, G).

(b) Suppose that (7, | n € w) is forced by some condition in @ to be a de-
scending sequence of ordinals in Ult (V,G). For simplicity, we assume that
this condition is the weakest condition of (). Then for each n, the set of (u, s)
such that for some f, . Pu(u) = ORDin V, (u, s) IF 7, = [u, ff,, ;)] is dense
on (). Choose ¢ € () which captures each A,,. For each x € s, and each n,
choose some (u, s) € A, Nz such that zNu € s and set f"(z) = f(, (zNu).
We claim that for each n, f"*!(z) € f"(x) for CUB-many = € s,. Other-
wise, t = {z € s, | f""(z) ¢ f"(z)} is stationary, by Fodor we can choose
(Un, Sn) € Ay, (Uns1, Sny1) € Apyq such that xNw, € s, TNURy € Spyq and

(@) = f(,,, o (@Nun), [ () = (Zt-lu onin) (@Ntnsy) for all z in a stationa-

ry ¢ C t and then (ug, t') IF~ (Tpp1 = [Unt1, f&t}rl’snﬁ)] E [un, [, o] = ™),
contradicting our hypothesis about the 7,,’s. If z € s, belongs to the inter-
section of the CUB sets witnessing f"1(z) < f"(x), then we get an infinite

descending sequence of ordinals, contradiction. O

To prove that every set of reals in L(R) is Lebesgue measurable, we only
need one more fact.

Lemma 18. Suppose that J is not only Woodin but also the limit of Woodin
cardinals. Suppose that G is Qs-generic. Then every real in V[G] is generic
over V for a forcing of size less than J.

Proof. For any inaccessible k < § define:
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t ={x C V.41 | = is countable and captures all predense A C @, in x}.

Assuming that x is Woodin, we show that ¢ is stationary. Let ¢ be CUB on
Vi1 and assume that for z € ¢, x NV, € b whenever a,b € x, b is CUB
on V,. The latter condition is a CUB condition, so can be assumed without
loss of generality. Now let zy be an arbitrary element of c. If xy belongs
to ¢ then we are done. Otherwise choose a predense Ag C Q. in xg not
captured by xy and choose v < ¢ in zy which is Ay-strong below . Then
Ay N @ is semiproper so for CUB-many countable  C V,,; we may choose
z € V, end-extending x NV, which captures Ay N @), and is z-closed. There
is such a CUB collection of z’s in z( so it follows that such a z exists for
x = x9N V41, by our assumption about c. Choose such a z; and let x; be
the smallest element of ¢ such that z; Uxzy C x;. Then 2y NV, = 2, using
the xg-closure of z;. If x1 belongs to ¢ then we are done. Otherwise repeat
the above for some predense A; C @, in x; not captured by x1, producing z,
and x5. We can continue in this way, arranging that every predense A C ),
in U{z; | i € w} is considered, resulting in x = U{z; | i € w} such that = € t.

Thus if x is Woodin, (V,11,t) is a condition, where ¢ is defined as above.
Similarly, for any (u, s) € Q., {v € t | x Nu € s} is stationary and therefore
(u, s) is compatible with (V,11,1).

Now we claim that G N Q) is Q.-generic for all ()-generic G containing
(Vis1,t). It suffices to show that each ¢ < (V,41,t) is compatible with each
predense A C (). To see this, consider s’ = {z € s, | A € x} and form the
condition ¢’ = (u,, s') < ¢q. As ¢ < (Viy,t), 2NV, € tfor each x € ¢/, and
in particular x NV, captures A for each z € s’. Thus ¢’ captures A and
therefore is compatible with a condition in A. Tt follows that ¢ is compatible
with a condition in A, as desired.

Thus if ¢ is a limit of Woodin cardinals, {p € Qs | For some x < 0,
plF GNV, is Q.-generic} is dense. Thus GNVj is Q,-generic for unboundedly
many k < d, proving that every element of V|G|, and hence any real in V[G],
is generic over V for a forcing of size less than §. O

Theorem 19. Suppose that 0 is a Woodin limit of Woodin cardinals. Then
there exists an elementary embedding L(R) — L(R)V!"] where H is V-
generic for Coll(w, < ). Therefore, every set of reals in L(R) is Lebesgue
measurable.
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Proof. Let G be )-generic over V, where () = ()5, the stationary tower
forcing. Then there is an elementary embedding V' — Ult (V,G) where
d = wy of V[G] and Ult (V,G), V[G] have the same reals. Also every real
in V[G] belongs to a generic extension of V' by a forcing of size less than 0.
Now in a generic extension of V[G] in which ¢ is countable, we can define a
sequence Gy C G C - - of length w where G,, € V[G] is generic over V for
Coll(w, < 6,), the d,,’s form a cofinal, increasing w-sequence of V-inaccessibles
less than ¢ and each real in V[G] belongs to some V[G,]. If H is the union of
the G,’s then V[H] is generic over V for Coll(w, < ¢) and the reals of V[H]
are precisely the reals of V[G].

Thus we have an elementary embedding L(R) — (L(R) of Ult (V,G)) =
(L(R) of V[G]) = (L(R) of V[H]), where H is Coll(w, < §)-generic over V.
By Theorem 12, every set of reals in (L(R) of V[H]) is Lebesgue measurable
and therefore this also holds for L(R). O.
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