
Set Theory1. BasisWe begin with a summary (omitting proofs) of the basis of Zermelo-Fraenkel Set Theory with the Axiom of Choie (ZFC).Language of ZFCThe only nonlogial symbol is a binary symbol ∈ for denoting set-theoretimembership. This is ombined with the usual logial symbols of a �rst-orderlanguage to form formulas. We also introdue the usual abbreviations for
∃xϕ, ϕ ∧ ψ, ϕ ∨ ψ . . ., as well as:

∃!xϕ abbreviates ∃x∀y(ϕxy ↔ x = y)Axioms of ZF (= ZFC without the Axiom of Choie)1. Extensionality: Two sets are equal i� they have the same elements. For-mally, ∀x∀y(x = y ↔ ∀w(w ∈ x↔ w ∈ y)).2. Empty Set: ∅ exists. Formally, ∃x∀y(y /∈ x).3. Pairing: {x, y} exists. Formally, ∀x∀y∃z∀w(w ∈ z ↔ (w = x ∨ w = y)).4. In�nity: There is a set whih ontains ∅ and is losed under the operation
u 7→ u ∪ {u}. Formally, ∃x(∅ ∈ x ∧ ∀y(y ∈ x → y ∪ {y} ∈ x)), where
y ∪ {y} ∈ x abbreviates ∃z(z ∈ x ∧ ∀w(w ∈ z ↔ (w ∈ y ∨ w = y))).5. Union: For any set x, ∪x = {z | z ∈ w for some w ∈ x} exists. Formally,
∀x∃y∀z(z ∈ y ↔ ∃w ∈ x(z ∈ w)).6. Power Set: P(x) = {y | y ⊆ x} exists. Formally, ∀x∃y∀z(z ∈ y ↔ y ⊆ x),where y ⊆ x abbreviates ∀w(w ∈ y → w ∈ x).7. Replaement Sheme: If ϕ(x, y) is a formula that de�nes a funtion thenits range on any set exists. Formally:
∀x∃!yϕ(x, y)→ ∀a∃b∀y(y ∈ b↔ ∃x ∈ aϕ(x, y))where ϕ is any formula whose free variables inlude x, y but not a, b.8. Foundation: ∈ is a well-founded relation. Formally, ∀x(x 6= ∅ → ∃y ∈
x∀z ∈ x(z /∈ y)).The following are two important onsequenes of the ZF axioms.Comprehension Priniple. For any set a and formula ϕ(x) one an form theset {x ∈ a | ϕ(x)}. Formally:

∀a∃b∀x(x ∈ b↔ (x ∈ a ∧ ϕ(x)))1



where ϕ is any formula whose free variables inlude x but not a, b.Bounding Priniple. If ϕ(x, y) de�nes a total relation then for any a there isa b suh that {〈x, y〉 | ϕ(x, y) ∧ y ∈ b} is a total relation on a. Formally:
∀x∃yϕ(x, y)→ ∀a∃b∀x ∈ a∃y ∈ bϕ(x, y)where ϕ is any formula whose free variables inlude x, y but not a, b.We disuss some tehnialities onerning funtions and artesian pro-duts. For any two sets x, y de�ne the ordered pair 〈x, y〉 to be the set

{{x}, {x, y}}. A simple exerise is to show that 〈x, y〉 = 〈x′, y′〉 i� x = x′and y = y′. It follows from the Pairing axiom that 〈x, y〉 exists for any x, y.A funtion is a set f whose elements are ordered pairs with the property:If 〈x, y〉 and 〈x, y′〉 are elements of f then y = y′. In ZF we an de�ne thenotion of funtion as well as: Dom(f) (domain of f), Ran(f) (range of f),
f ↾ x (restrition of f to x). Also, for any two sets a, b de�ne the artesianprodut of a, b to be a× b = {〈x, y〉 | x ∈ a ∧ y ∈ b}. A simple exerise is toshow (using Union, Power Set and Comprehension) that a× b exists for anytwo sets a, b.We an now introdue the �nal axiom of ZFC:Axiom of Choie (AC). If every element of x is nonempty then there is afuntion whih selets a unique element from eah element of x. Formally,
∀y ∈ x(y 6= ∅)→ ∃f(f is a funtion ∧ Dom(f)= x ∀y ∈ x(f(y) ∈ y)).ZFC = ZF with the additional axiom AC.Ordinals
〈x,≤〉 is a linear ordering (lo) if it obeys:

a ≤ a
a ≤ b ∧ b ≤ a→ a = b
a ≤ b ≤ c→ a ≤ cFor all a, b: a ≤ b ∨ b ≤ a

〈x,≤〉 is a well-ordering (wo) if it also obeys:
y ⊆ x, y 6= ∅ → y has a ≤-least element; i.e., ∃a ∈ y∀b ∈ y(a ≤ b).Cantor lassifed the well-orderings. If 〈x,≤x〉 is a wo then an intial seg-ment of 〈x,≤x〉 is a wo 〈x′,≤x′〉 where:2



x′ ⊆ x
a ∈ x′, b ≤x a→ b ∈ x′For a0, a1 ∈ x

′, a0 ≤x′ a1 i� a0 ≤x a1.And 〈x′,≤ ′
x〉 is a proper intial segment of 〈x,≤x〉 if in addition x′ 6= x.Comparability of WO's. If 〈x,≤x〉 and 〈y,≤y〉 are wo's then exatly one ofthe following is true:1. 〈x,≤x〉 is isomorphi to a proper initial segment of 〈y,≤y〉.2. 〈y,≤y〉 is isomorphi to a proper initial segment of 〈x,≤x〉.3. 〈x,≤x〉 and 〈y,≤y〉 are isomorphi.Cantor showed that every wo is isomorphi to a unique wo of a speialkind. 〈x,≤x〉 is a quasi-ordinal i� it is a wo and <x= ∈ restrited to x =

{〈y, z〉 | y, z ∈ x∧ y ∈ z}. A quasi-ordinal 〈x,≤x〉 is an ordinal if in addition
x is transitive: a ∈ b ∈ x→ a ∈ x.Comparability of Ordinals. If α, β are ordinals then α ∈ β, β ∈ α or α = β.Notation. If α, β are ordinals then we write α < β for α ∈ β, α ≤ β for
α < β or α = β and ORD for the lass of all ordinals.Ordinal Fats(a) An element of an ordinal is an ordinal.(b) ∅ is an ordinal.() If α is an ordinal then so is α ∪ {α}, the least ordinal greater than α.(d) If x is a set of ordinals then ∪x is also an ordinal, the supremum of x inthe well-ordering of ordinals.For natural numbers n de�ne 0 = ∅, n + 1 = n ∪ {n} = {0, 1, . . . , n}.The least in�nite ordinal is denoted by ω and is equal to {0, 1, . . .}. α is asuessor ordinal if it is of the form β ∪ {β} for some ordinal β; the latter isalso written as β + 1. α is a limit ordinal if it is not 0 and is not a suessorordinal. The least in�nite ordinal ω is an example.Classi�ation of wo's. Every wo is isomorphi to an ordinal.Indution generalises from the natural numbers to the ordinal numbers:Leastness Priniple for ORD.
∃αϕ(α)→ ∃α(ϕ(α) ∧ ∀β < α ∼ ϕ(β)).3



Trans�nite Indution.
(ϕ(0) ∧ ∀α(∀β < αϕ(β)→ ϕ(α)))→ ∀αϕ(α).Using trans�nite indution we an de�ne addition and multipliation onordinal numbers:
α + 0 = α
α + (β + 1) = (α + β) + 1
α + λ = ∪{α + β | β < λ}, λ limit
α · 0 = 0
α · (β + 1) = (α · β) + α
α · λ = ∪{α · β | β < λ}, λ limitNote: 1 + ω = ω 6= ω + 1; 2 · ω = ω 6= ω · 2 = ω + ω.von Neumann Hierarhy
V0 = ∅
Vα+1 = P(Vα)
Vλ = ∪{Vα | α < λ}, λ limitEah Vα is transitive, α ≤ β → Vα ⊆ Vβ and α ∈ Vα+1. The funtion
F (α) = Vα is de�nable.von Neumann's Theorem. Every set is an element of some Vα.The Rank of a set x is the least ordinal α suh that x belongs to Vα+1.CardinalsUsing the Axiom of Choie (AC) one an prove:Theorem 1.1. For every set X there exists ≤X suh that 〈X,≤X〉 is a wo.Corollary 1.2. For every set X there is an ordinal α and a bijetion f : X ↔
α.De�nition. A ardinal if an ordinal κ suh that α < κ→ there is no injetivefuntion f : κ→ α. 4



Remark. If β is not a ardinal then there is α < β and a bijetive funtion
f : β ↔ α: If f : β → α, α < β is injetive, then hoose g : 〈 Range(f),∈〉 ≃
〈ᾱ,∈〉, and replae f by g ◦ f .De�nition. Card X = ardinality of X is the unique ardinal κ suh thatthere is a bijetion f : X ↔ κ.Cantor's Theorem. For any set X, Card P(X) > Card X.Proof. Otherwise there is a surjetive f : X → P(X). But onsider the set
Y = {A ∈ X | a /∈ f(a)}. Then f(y) 6= Y for all a ∈ X, as otherwise wewould have a ∈ Y i� a /∈ Y . 2So there is no largest ardinal and every set is in bijetive orrespondenewith a unique ardinal. De�ne:
ℵ0 = ω
ℵα+1 = least ardinal greater than ℵα
ℵλ = ∪{ℵα | α < λ} for limit λ.These are the in�nite ardinals. For whih α do we have Card P(ω) = ℵα?We shall disuss this later.De�nition. If κ is a ardinal then κ+ is the least ardinal greater than κ. Asuessor ardinal is a ardinal of the form κ+ for some κ; a limit ardinal isa nonzero ardinal that is not a suessor ardinal. The limit ardinals are
ℵ0 together with ℵλ for limit ordinals λ.Cardinal ArithmetiIf κ, λ are ardinals then the ardinal sum and produt κ + λ, κ · λ arethe ardinalities of the ordinal sum and produt κ + λ, κ · λ.Theorem 1.3. For nonzero ardinals κ, λ, not both �nite:
κ+ λ = κ · λ = max(κ, λ).So addition and multipliation of ardinals is not very interesting. Howe-ver ardinal exponentiation is very interesting, as we will now see.De�nition. For ardinals κ, λ, κλ is the ardinality of the set {f | f : λ→ κ}.5



For example, 2ℵ0 = 2ω is the ardinality of the set of funtions f from thenatural numbers N into {0, 1}. Of ourse this is the same as the ardinalityof P(N). It is also the same as the ardinality of the set of real numbers:Proposition 1.4. The set of real numbers has ardinality 2ℵ0 .What is 2ℵ0? It turns out that this question annot be answered in ZFC.Gödel: If ZFC is onsistent then so is ZFC + 2ℵ0 = ℵ1.Cohen: If ZFC is onsistent then so is ZFC + 2ℵ0 = ℵ2.The Continuum Hypothesis (CH) is the statement that 2ℵ0 = ℵ1. Thusit follows that both CH and ∼ CH are onsistent with ZFC (assuming ofourse that ZFC is onsistent). There is a similar situation at other in�niteardinals. The Generalised Continuum Hypothesis (GCH) is the statementthat 2κ = κ+ for every in�nite ardinal κ. Gödel's work also showed thatthe GCH is onistent with ZFC. But the general behaviour of the funtion
κ 7→ 2κ is very di�ult to determine. For example, we have:Silver: If 2α = α+ for every α < κ = ℵℵ1

then 2κ = κ+.And there are results stating that Silver's result does not hold with ℵℵ1replaed by ℵω. However there is some restrition in the latter ase:Shelah: If 2ℵn < ℵω for every �nite n then 2ℵω < ℵℵ4
.The Lévy HierarhyThe ∆0 formulas form the least set of formulas ontaining the atomiformulas x ∈ y, x = y and losed under ∼,∧ and bounded quanti�ation

∀x ∈ y. Now de�ne:
Σ0 = Π0 = ∆0A Σn+1 formula is one of the form ∃x1 · · · ∃xmϕ, where ϕ is ΠnA Πn+1 formula is one of the form ∀x1 · · · ∀xmϕ, where ϕ is Σn.De�nability of Σn Satisfation. For eah n there is a formula Satn(i, s) suhthat if i = #ϕ, ϕ is Σn and s is a funtion with domain i+ 1 then:ZF− ⊢ Satn(i, s)↔ ϕ(s(0), . . . , s(i))6



(where if ϕ has free variables x0, . . . , xj then ϕ(s(0), . . . , s(i)) is obtainedfrom ϕ by replaing xk by s(k)).Tarski observed that ther is no formula Sat(i) suh that if i = #ϕ, ϕan arbitrary sentene then ZF− ⊢ Sat(i) ↔ ϕ. The same applies to anyreursive theory ontaining ZF−.Using the previous result we an formulate the Re�etion Priniples. Theexpression
M ≺n Vmeans that for Σn formulas ϕ(x1, . . . , xm) and a1, . . . , am ∈M :

M � ϕ(a1, . . . , am) i� ϕ(a1, . . . , am) is true.Theorem 1.5. For eah n, ZF proves the n-th Re�etion Priniple RPn:
∀α∃β > α Vβ ≺n V .The Universe of Construtible SetsGödel's universe of onstrutible sets is de�ned via the following hierarhy:

L0 = ∅
Lα+1 = Def Lα
Lλ = ∪{Lα | α < λ} for limit ordinals λ.We say that x is onstrutible if for some ordinal α, x ∈ Lα. This is oftenabbreviated as �x ∈ L�, where L = ∪{Lα | α ∈ ORD}, but it is importantto keep in mind that L is not a set, but what an be referred to as a �properlass� of sets.We need to know that this hierarhy is de�nable in an �absolute� way,in the following sense. Let ZF− be the �nite subtheory of ZF obtained byrestriting the Replaement sheme to formulas with only 100 quanti�ers.Fat. If M,N are transitive sets and both 〈M,∈〉 and 〈N,∈〉 are models ofZF− then for every ordinal α ∈ M ∩ N , LMα = LNα , where LMα , LNα are theinterpretations of Lα in M,N , respetively.We now show that in a ertain sense, L is a �model� of ZF. For eahformula ϕ, de�ne a formula ϕL as follows:7



(x ∈ y)L = (x ∈ y)
(x = y)L = (x = y)
(ϕ ∧ ψ)L = (ϕL ∧ ψL)
(∼ ϕ)L =∼ (ϕL)
(∀xϕ)L = ∀x(x ∈ L→ ϕL).Then ϕ expresses the property �ϕ is true in L�. We have:Theorem 1.6. ZF ⊢ ϕL for eah axiom ϕ of ZF.Corollary 1.7. Let V = L be the sentene ∀x(x ∈ L). Then assuming thatZF is onsistent, the theory ZF + V = L is also onsistent.Proof of Corollary from Theorem. Suppose that ZF + V = L were inonsi-stent. Then ZF ⊢∼ (V = L). By the Theorem, ZF proves ϕL whenever ϕ isan axiom of ZF, and therefore ZF proves ϕL whenever ϕ is a theorem of ZF.So ZF proves (∼ (V = L))L. But
(∼ (V = L))L =∼ ((V = L)L) =∼ (∀x(x ∈ L))L =∼ ∀x(x ∈ L→ x ∈ L)whih is the negation of a valid sentene. It follows that ZF is inonsistent,against our hypothesis. 2Proof of Theorem. ϕL is easy to hek when ϕ is an axiom of ZF, exeptfor the Power Set Axiom and Replaement. For example if ϕ is the UnionSet Axiom, we must only show that if x ∈ L then ∪x is in L, for then byabsoluteness (∪x)L = ∪x. But if x belongs to Lα then ∪x = {y | y is anelement of an element of x} is de�nable over Lα, and therefore belongs to
Lα+1.For Power Set: Suppose that x belongs to Lα and de�ne PL(x) to be
{y ∈ L | y ⊆ x}. We must show that PL(x) belongs to some Lβ . De�ne afuntion f : PL(x) → ORD by f(y) = the least ordinal γ suh that y ∈ Lγ .By the Replaement axiom there is an ordinal β suh that PL(x) ⊆ Lβ, andtherefore PL(x) ∈ Def Lβ = Lβ+1.For Replaement: Suppose that x belongs to L and f : x → L is an
L-de�nable funtion. We want to show that there is an ordinal α suh thatRange f belongs to Lα. If f is Σn-de�nable in L then it is enough to �ndan ordinal α suh that Lα ≺n L, Range f ⊆ Lα and the parameters in theformula that de�nes f belong to Lα. Using the Re�etion Priniple we an8



hoose suh an α, with Lα ≺n L replaed by Vα ≺m V for anym. By hoosing
m large enough we get LVα ≺n L and therefore by absoluteness Lα ≺n L. 2One of Gödel's famous results is that if ZF is onsistent then so is ZFC =ZF + AC. By the previous orollary, any statement provable in the theoryZF+ V = L is onsistent with ZF, so this follows from:Theorem 1.8. ZF+ V = L ⊢ AC.

9



2. Hyper�ne Struture TheoryNames and LoationsFor any α ∈ ORD, ϕ(u,~v) a �rst�order formula with n+ 1 free variables,and ~x a sequene from Lα of length n, let I(α, ϕ, ~x) denote {y ∈ Lα | Lα |=
ϕ(y, ~x)}. Thus we an think of the above triples (α, ϕ, ~x) as names forelements of L. A entral idea in our theory is to also view (α, ϕ, ~x) as aloation for the struture L(α,ϕ,~x) in the �ne hierarhy with an assoiated hulloperation L(α,ϕ,~x){·} whih approximates the usual Skolem hull operation onsubsets of Lα. Before we de�ne these notions we �rst disuss the orderingof names (=loations) and prove a ondensation result for �onstrutibly�losed� subsets of Lα.Well-order names and onstrutible sets in the standard way as follows:Consider ∈�formulae built using ¬, ∧, ∨ and the existential quanti�er ∃.We agree that every formula ϕ has a distinguished variable used for the
I�operation and for existential quanti�ations. When we write ϕ(u, ~x), weintend that u is distinguished in ϕ; then ∃uϕ with any hoie of distinguishedvariable is a new permitted formula. Let ϕ0, ϕ1, ϕ2, . . . be an ω�ordering ofpermitted formulas, subformulas appearing earlier, whih we assume to be�xed throughout this artile.We take <0 to be the vauous ordering on L0 = ∅. If <α is de�ned asa wellordering of Lα then order sequenes from Lα by ~x <lex

α ~y i� ~x islexiographially less then ~y, using <α on the omponents of ~x and ~y. Names
(β, ϕ, ~x) where β ≤ α are ordered by:
(β, ϕm, ~x) <̃ (γ, ϕn, ~y) i�
(β < γ) ∨
(β = γ ∧m < n) ∨
(β = γ ∧m = n ∧ ~x <lex

β ~y).And for y ∈ Lα+1 letN(y) denote the <̃ �least (β, ϕ, ~x) suh that I(β, ϕ, ~x) =
y. Then de�ne y <α+1 z i� N(y) <̃N(z). Finally for limit λ set <λ=⋃
α<λ <α. Thus we obtain a wellordering <L=

⋃
α∈ORD <α of L and awellordering <̃ of names (α, ϕ, ~x) used to denote elements of L.By an α�loation we understand a loation s of the form s = (α, ϕ, ~x).The <̃ �smallest α�loation is (α, ϕ0,~0) with ~0 a vetor of 0's of appropriatelength. The <̃ �suessor of s is denoted by s+.10



Construtible Operations and Basi Construtible Closures.The basi onstrutible operations are I and N as de�ned above and aSkolem funtion:(Interpretation)For a name (α, ϕ, ~x), set I(α, ϕ, ~x) = {y ∈ Lα | Lα |= ϕ(y, ~x)}.(Naming)For y ∈ L, let N(y) be the <̃ �least name (α, ϕ, ~x) suh that I(α, ϕ, ~x) = y.(Skolem Funtion)For a name (α, ϕ, ~x), let S(α, ϕ, ~x) be the <L� least y ∈ Lα suh that Lα |=
ϕ(y, ~x), and set S(α, ϕ, ~x) = 0 if suh a y does not exist.As we do not assume that α is a limit ordinal and therefore do not havepairing, we make the following nonstandard de�nition.De�nition. For X ⊆ L and ~x a �nite sequene we write ~x ∈ X if eahomponent of ~x belongs to X. If (α, ϕ, ~x) is a name we write (α, ϕ, ~x) ∈ Xto mean that α ∈ X and ~x ∈ X.A set or lass X ⊆ L is onstrutibly losed, written X ⊳ L, i� X is losedunder I, N and S, i.e.,

(α, ϕ, ~x) ∈ X −→ I(α, ϕ, ~x) ∈ X and S(α, ϕ, ~x) ∈ X,

y ∈ X −→ N(y) ∈ X.For X ⊆ L let L{X} denote the ⊆�smallest Y ⊇ X suh that Y ⊳ L.Clearly eah Lα is onstrutibly losed.Proposition 2.1. Let X be onstrutibly losed and let π:X ∼= M be theMostowski ollapse of X onto the transitive set M . Then there is an ordinal
α suh that M = Lα, and π preserves I, N , S and <L:

π: (X,∈, <L, I, N, S) ∼= (Lα,∈, <L, I, N, S).Proof. We prove this for X ⊆ Lγ , by indution on γ. The ases γ = 0 and
γ limit are easy. Let γ = β + 1 and X ⊆ Lβ+1 but X * Lβ. Closure under
N and I implies that X = {I(β, ϕ, ~x) | ~x from X ∩ Lβ}. Indutively let
π:X ∩ Lβ ∼= Lα. Closure under S and the fat that β belongs to X imply11



that X ∩ Lβ is elementary in Lβ. It follows that π extends to π̃:X ∼= Lα+1.Preservation of I, N , S and <L follows also from the elementarity of X ∩Lβin Lβ. 2The Hyper�ne Hierarhy.De�nition. Let s be a loation, s = (α, ϕm, ~x). Set
Ls = (Lα,∈, <L, I, N, S, S

Lα

ϕ0
, SLα

ϕ1
, . . . , SLα

ϕm
↾ ~x, ∅, ∅, . . .)where SLα

ϕ (~y) = S(α, ϕ, ~y), SLα
ϕm

↾ ~x is the restrited Skolem funtion SLα
ϕm

↾

{~y | ~y <lex
α ~x} and ∅, ∅, . . . are empty funtions.

(Ls | s is a loation) is the hyper�ne onstrutible hierarhy.Eah struture of the hyper�ne hierarhy possesses an assoiated hulloperator.De�nition. Let s = (α, ϕm, ~x) be a loation. A set Y ⊆ Lα is losed in Ls,written Y ⊳ Ls, if Y is an algebrai substruture of Ls, i.e., if Y is losedunder I, N , S, SLα
ϕ0
, SLα

ϕ1
,. . ., SLα

ϕm
↾ ~x.For a set X ⊆ Lα let Ls{X} be the ⊆�smallest set Y suh that Y ⊳ Ls and

Y ⊇ X. We all Ls{X} the Ls�hull of X.The hyper�ne hierarhy is a very slow growing hierarhy whih nonethe-less satis�es full ondensation. This is the basis for its appliations to �nestruture theory.Condensation. Let s = (α, ϕm, ~x) be a loation and suppose X is a set suhthat X ⊳ Ls. Then there is a unique isomorphism
π: (X,∈, <L, I, N, S, S

Lα
ϕ0
, SLα

ϕ1
, . . . , SLα

ϕm
↾ ~x, ∅, . . .) ∼=

Ls = (Lα,∈, <L, I, N, S, S
Lα
ϕ0
, SLα

ϕ1
, . . . , SLα

ϕm
↾ ~x, ∅, . . .).Proof. Let π:X ∼= Lα be given by Proposition 1. Note that X is ϕi�elementary in Lα for i ≤ m, sine X is losed under the Skolem funtionsfor every proper subformula of ϕi. Hene π−1:Lα → Lα is ϕi�elementary for

i ≤ m. Let r = (α, ϕi, ~w) be a loation suh that π−1(r) := (α, ϕi, π
−1(~w)) <̃

(α, ϕm, ~x). Then z := SLα
ϕi

(π−1(~w)) belongs to X and Lα |= ϕi(z, π
−1(~w)) i�

Lα |= ϕi(π(z), ~w). Moreover, if there is z ∈ Lα suh that Lα |= ϕi(z, ~w), then12



π(z) is the <L�minimal suh element, beause z <L π(z) and Lα |= ϕi(z, ~w)imply Lα |= ϕi(π
−1(z), π−1(~w)) and π−1(z) <L z, ontraditing the de�nitionof Sϕi

. Hene
π(z) = π(SLα

ϕi
(π−1(~w))) = SLα

ϕi
(~w)as required. The loation s of the ondensed struture is de�ned as the <̃ �smallest strit upper bound of all r suh that π−1(r) <̃ s and s = <̃ � sup{r |

π−1(r) <̃ s}. 2Usually, we shall have m = m in the proposition, exept when for every
~w ∈ Lα of the right length

π−1(~w) <lex ~x.In that ase we have m = m+ 1 and ~x = ~0, i.e., s = (α, ϕm+1,~0) and
Ls = (Lα,∈, <L, I, N, S, S

Lα
ϕ0
, SLα

ϕ1
, . . . , SLα

ϕm
, ∅, . . .)observing that SLα

ϕm+1
↾ ~0 = ∅.The ondensation situation in proposition 2 is often written as π:X ∼= Ls.The slow growth of the Ls �hierarhy is expressed by a �niteness propertywhih says that at suessor loations essentially only one more point entersthe hulling proess, and by ontinuity properties saying that at limit loationswe just ollet results of previous proesses.Finiteness Property. Let s = (α, ϕ, ~x) be an α�loation. Then there exists

z ∈ Lα suh that for any X ⊆ Lα:
Ls+{X} ⊆ Ls{X ∪ {z}}.Proof. The expansion from Ls to Ls+ provides us with at most one newSkolem value in forming hulls, namely SLα

ϕ (~x). Take this SLα
ϕ (~x) to be z. 2Monotoniity. (i) Suppose that s0 and s1 are α�loations suh that s0 ≤̃ s1.Then Ls0{X} ⊆ Ls1{X} for all X ⊆ Lα.(ii) Suppose that α0 and α1 are ordinals suh that α0 < α1. If s0, s1 are α0�and α1�loations, respetively, and X ⊆ Lα0

then Ls0{X} ⊆ Ls1{X ∪{α0}}.Proof. Clear from the de�nitions. 2 13



For the ontinuity property we have to distinguish among three kinds oflimit loations:Continuity.(a) If α is a limit ordinal, s = (α, ϕ0,~0), and X ⊆ Lα then
Ls{X} = L{X} =

⋃

β<α

L(β,ϕ0,~0)
{X ∩ Lβ}.(b) If s = (α + 1, ϕ0,~0) and X ⊆ Lα then

Ls{X ∪ {α}} ∩ Lα = L{X ∪ {α}} ∩ Lα

=
⋃
{Lr{X} | r is an α�loation}.() If s = (α, ϕ, ~x) is a <̃ �limit, s 6= (α, ϕ0,~0), and X ⊆ Lα then

Ls{X} =
⋃
{Lr{X} | r is an α�loation, r <̃ s}.Proof. (a) is lear from the de�nitions sine the hull operators onsideredonly use the funtions I, N , S.(b) The �rst equality is lear. The other is proved by two inlusions.(⊇) If z is an element of the right hand side, z is obtained from elements of

X by suessive appliations of I, N , S and SLα
ϕn

for n < ω. Sine SLα
ϕn

(~y) =
S(α, ϕn, ~y), z is also obtainable from elements of X ∪{α} using only the I,Nand S operations. Hene z belongs to the left hand side.(⊆) Conversely, onsider z ∈ L{X ∪ {α}} ∩ Lα. There is a �nite sequeneomputing z in L{X ∪ {α}}:

y0, y1, . . . , yk = zsuh that eah yj is an element of X ∪ {α} or yj is obtained from {yi | i < j}by using I, N , S:
yj = I(β, ϕn, ~y) or yj = S(β, ϕn, ~y) or yj is a omponent of N(y)for some β, ~y, y ∈ {yi | i < j}.We show by indution on j ≤ k:if yj ∈ Lα then yj ∈ U =

⋃
{Lr{X} | r is an α�loation}.14



Case 1: yj ∈ X ∪ {α}. Then our laim is obvious.Case 2: yj = I(β, ϕn, ~y) (as in the �rst of the three ways of obtaining yj from
~y ∈ {yi | i < j}, displayed above). If β < α, then β, ~y ∈ U by the indutionhypothesis and hene yj ∈ U . If β = α, then ~y ∈ U by the indutionhypothesis. Setting

ψ(v, ~w) = ∀u (u ∈ v ←→ ϕn(u, ~w))with distinguished variable v we obtain yj = SLα

ψ (~y) ∈ U .Case 3: yj = S(β, ϕn, ~y) (the seond way of obtaining yj). If β < α, then
β, ~y ∈ U and yj ∈ U . If β = α, then ~y ∈ U and yj = SLα

ϕn
(~y) ∈ U .Case 4: yj is a omponent of N(yi) for some i < j (the third way of obtaining

yj).Case 4.1: yi ∈ Lα. Then yi ∈ U by the indution hypothesis. As U is losedunder N , we get N(yi) ∈ U , i.e., eah omponent of N(yi) belongs to U .Case 4.2: yi ∈ Lα+1 \ Lα. Then yi = α, or yi = I(α, ψ, ~y) for some ~y ∈
{yh | h < i}. Sine α = I(α, �u is an ordinal�, ∅), we may assume the latter.
N(yi) will be of the form (α, χ, (c0, . . . , cm−1)). We obtain c0 in U as follows:If

χ0(v0, ~w) = ∃v1 . . .∃vm−1∀u (χ(u, v0, v1, . . . , vm−1)←→ ψ(u, ~w))with distinguished variable v0 then c0 = SLα
χ0

(~y) ∈ U , sine, indutively,
~y ∈ U . We obtain c1 in U as follows: If

χ1(v1, ~w) = ∃v2 . . .∃vm−1∀u (χ(u, v0, v1, . . . , vm−1)←→ ψ(u, ~w))with distinguished variable v1 then c1 = SLα
χ1

(c0
⌢~y) ∈ U . Proeeding likethis we see that yj ∈ U .() is again obvious from the de�nitions. 2This ompletes our list of basi properties of the hull operations assoiatedwith the hyper�ne hierarhy. They are su�ient to establish Jensen's SquarePriniple in L, whih we onsider next.A Proof of SquareTheorem 2.2. (Jensen) Assume V = L. There exists a sequene 〈Cβ |

β singular 〉 suh that(i) Cβ is losed unbounded in β 15



(ii) Cβ has ordertype less than β(ii) if β is a limit point of Cβ then β is singular and Cβ = Cβ ∩ β.Proof. Let β be singular. The following laim gives a reformulation of thesingularity of β:Claim 1. There is a loation s = (γ, ϕ, ~x), γ ≥ β, and a �nite set p ⊆ Lγsuh that
{β < β | β = β ∩ Ls{β ∪ p}}is bounded in β.Proof. Choose α less than β and a funtion f :α → β o�nally. Choose

γ ∈ ORD suh that f ∈ Lγ . Set p = {f} and s = (γ, ϕn+1,~0) where n isa natural number hoosen suh that ϕn ≡ v0 = v1(v2) with distinguishedvariable v0. If α ≤ β < β then
β ∩ Ls{β ∪ p} ⊇ β ∩ Ls{α ∪ p} ⊇ f ′′α.Hene β ∩ Ls{β ∪ p} is o�nal in β, and so β ∩ Ls{β ∪ p} 6= β.Let s = s(β) be <̃ �minimal satisfying Claim 1, together with the �nite set

p ⊆ Lγ . We show that s is a <̃ �limit whih an be niely approximatedfrom below.Claim 2. s is a limit loation.Proof. Assume that s = r+. By the Finiteness Property there exists a z ∈ Lγsuh that if β is less than β then
Ls{β ∪ p} ⊆ Lr{β ∪ p ∪ {z}}.So

{β < β | β = β ∩ Lr{β ∪ p ∪ {z}}} ⊆ {β < β | β = β ∩ Ls{β ∪ p}}.Hene {β < β | β = β ∩Lr{β ∪ p∪ {z}}} is bounded in β, ontraditing theminimality of s.Claim 3. s 6= (β, ϕ0,~0). 16



Proof. Assume that s = (β, ϕ0,~0). Choose β0 less than β suh that p ⊆ Lβ0
.If β0 ≤ β < β then

β ⊆ β ∩ Ls{β ∪ p} ⊆ β ∩ L{β ∪ p} ⊆ β ∩ Lβ = β,ontraditing the fat that s and p satisfy the requirements in Claim 1.Claim 4. s 6= (γ, ϕ0,~0) for limit γ.Proof. Assume that there is a limit ordinal γ suh that s = (γ, ϕ0,~0). Choose
γ0 less than γ suh that p ⊆ Lγ0 and γ0 ≥ γ, and set s0 = (γ0, ϕ0,~0). Then

{β < β | β = β ∩ Ls0{β ∪ p}} ⊆ {β < β | β = β ∩ Ls{β ∪ p}}.Hene {β < β | β = β ∩ Ls0{β ∪ p}} is bounded below β, ontraditing theminimality of s.In de�ning Cβ we shall onsider three speial ases and a generi ase. Inthe speial ases, β will have o�nality ω and we an pik any ω�sequeneo�nal in β as Cβ.Speial Case 1. s = (α + 1, ϕ0,~0) for some α.Every element of Lα+1 an be �named� by α and �nitely many elements of
Lα. So we may assume that p is of the form p = q ∪ {α} with q ⊆ Lα.De�ne a stritly inreasing sequene (βn | n < ω) of ordinals less than βreursively: Let

β0 = max{β < β | β = β ∩ Ls{β ∪ p}} < β.Given βn hoose βn+1 greater than βn least suh that
βn+1 = β ∩ L(α,ϕn,~0)

{βn+1 ∪ q}.Sine s = (α, ϕn,~0) <̃ (α+1, ϕ0,~0), the de�nition of s implies that βn+1 existsbelow β. Let βω =
⋃
n<ω βn. Then

β ∩ Ls{βω ∪ p} = β ∩ Ls{βω ∪ q ∪ {α}}

= β ∩
⋃
{Lr{βω ∪ q} | r is an α�loation}

=
⋃

n<ω

β ∩ L(α,ϕn,~0)
{βω ∪ q}17



=
⋃

n<ω

β ∩ L(α,ϕn,~0)
{βn+1 ∪ q}

=
⋃

n<ω

βn+1 = βω;the seond equality uses Continuity (b), the third and fourth use the mo-notoniity property of our hulls. Now by the de�nition of β0 we must have
βω = β. Hene setting

Cβ = {βn | n < ω}we get a o�nal subset of β. This �nishes Speial Case 1.Now assume that s = (γ, ϕ, ~x) 6= (γ, ϕ0,~0).Claim 5. There is a �nite p ⊆ Lγ suh that Ls{β ∪ p} = Lγ .Proof. By Condensation, there are a unique funtion π and a unique loation
s suh that π:Ls{β ∪p} ∼= Ls. Then we have Ls = Ls{β∪p} where p = π′′p.As π ↾ β = id, we an onlude that β ∩ Ls{β ∪ p} = β ∩ Ls{β ∪ p} holdsfor all β less than β. Hene

{β < β | β = β ∩ Ls{β ∪ p}} = {β < β | β = β ∩ Ls{β ∪ p}}is bounded below β. Then s = s by the <̃ �minimality of s, and so Ls =
Ls{β ∪ p} = Lγ .Let <∗ be the anonial wellorder of �nite subsets of L derived from <L:
p0 <

∗ p1 ←→ p0 6= p1 and the <L-maximal element of p0△ p1 belongs to p1.Choose a <∗-minimal p(β) ⊆ Lγ suh that p(β) satis�es Claim 5. Sine inpartiular the old parameter p is generated by β ∪ p(β) we haveClaim 6. {β < β | β = β ∩ Ls{β ∪ p(β)}} is bounded below β. Let β0 < βbe the maximum of this set.By Claim 6, p(β) satis�es the requirements in Claim 1 and we may denote
p(β) by p without danger of onfusion.We have to examine whih loations below s are omputed in Ls{X}: for
Y ⊆ Lγ we write r = (γ, ψ, ~y) ǫ Y if ~y ∈ Y . We say that a subset Y of Lγis bounded below s, if there is s0 <̃ s suh that if r <̃ s and r ǫ Y , then r <̃ s0.The <̃ -least suh s0 is alled the <̃ -least upper bound of Y below s. Notethat if in addition Y = Ls{Z} then we get Ls{Z} = Ls0{Z}.18



Speial Case 2. Ls{α ∪ p} is bounded below s for every α < β.De�ne a stritly inreasing sequene (βn | n < ω) of ordinals less than βreursively: Let β0 be de�ned as in Claim 6. Given βn, set
βn+1 =

⋃
(β ∩ Ls{(βn + 1) ∪ p}).By Speial Case 2, there is r <̃ s suh that

Ls{(βn + 1) ∪ p} = Lr{(βn + 1) ∪ p}.The minimality of s implies that β ∩ Lr{(βn + 1) ∪ p} annot be o�nal in
β, and so βn+1 is less than β. Let βω =

⋃
n<ω βn. Then

βω ⊆ β ∩ Ls{βω ∪ p} ⊆
⋃

n<ω

β ∩ Ls{(βn + 1) ∪ p} ⊆
⋃

n<ω

βn+1 = βω,and sine βω is greater than β0 we have βω = β. Hene setting
Cβ = {βn | n < ω}we get a o�nal subset of β. This �nishes Speial Case 2.Now assume that Ls{α0 ∪ p} is unbounded below s for some α0 less than

β. Choose α0 = α0(β) least with this property. We would like to use α0 tosteer the singularisation of β and obtain ordertype(Cβ) ≤ max{α0, ω} < β.If α0 is neither a limit ordinal nor zero we have to look for another steeringordinal. In this ase we write α0 = α′
0 + 1, and we hoose a least α1 = α1(β)less than α0 suh that

Ls{α1 ∪ p ∪ {α
′
0}}is unbounded below s. If α1 = α′

1 +1, then we hoose a least α2 = α2(β) lessthan α1 suh that
Ls{α2 ∪ p ∪ {α

′
0, α

′
1}}is unbounded below s. Continuing this way we �nd a natural number k =

k(β) suh that α = α(β) = αk(β) is a limit ordinal or zero.Speial Case 3. α = 0.One easily sees that Ls{p ∪ {α′
0, . . . , α

′
k−1}} is a ountable set. Sine α = 0,it is unbounded below s. So s has �o�nality ω� in the ordering of loations19



and we an �nd a stritly inreasing sequene (sn | n < ω) of γ�loationsonverging towards s. De�ne a stritly inreasing sequene (βn | n < ω) ofordinals less than β reursively: Let β0 be de�ned as in Claim 6. Given βn,hoose βn+1 greater than βn minimal suh that
βn+1 = β ∩ Lsn+1

{βn+1 ∪ p}.

βn+1 exists, sine sn+1 <̃ s. Let βω =
⋃
n<ω βn. Then

βω =
⋃

n<ω

βn+1 =
⋃

n<ω

β ∩ Lsn+1
{βn+1 ∪ p} = β ∩ Ls{βω ∪ p},hene the de�nition of β0 implies βω = β. Setting

Cβ = {βn | n < ω}we get a o�nal subset of β. This �nishes Speial Case 3.So, �nally, we arrive at the general ase:General Case. s = (γ, ϕ, ~x) 6= (γ, ϕ0,~0), and Ls{α ∪ p ∪ {α′
0, . . . , α

′
k−1}} isunbounded below s where α is a limit ordinal less than β.De�ne sequenes (βi(β) | i ≤ α) and (si | 0 < i ≤ α) reursively: Let β0 < βbe de�ned as in Claim 6. For eah 0 < i ≤ α let si be the <̃ �least upperbound of Ls{i ∪ p ∪ {α′

0, . . . , α
′
k−1}} below s, and let βi = βi(β) be the leastordinal greater than β0 suh that

βi = β ∩ Lsi
{βi ∪ p ∪ {α

′
0, . . . , α

′
k−1}}.If i < α then βi < β beause si <̃ s; also sα = s, βα = β andClaim 7. If 0 < i < j < α then si ≤̃ sj and βi ≤ βj .Claim 8. {βi | i < α} is losed unbounded in β.Proof. Let α ≤ α be a limit ordinal. We only have to show that βα =

⋃
i<α βiand sine βα ≥ βi for i < α it su�es to see that

⋃

i<α

βi =
⋃

i<α

β ∩ Lsi
{βi ∪ p ∪ {α

′
0, . . . , α

′
k−1}}

= β ∩ Lsα
{
⋃

i<α
βi ∪ p ∪ {α

′
0, . . . , α

′
k−1}}20



so that ⋃
i<α βi satis�es the de�ning property of βα.

Cβ will now be de�ned as an endsegment of suh βi's for whih importantelements of the preeding onstrution are visible below βi or si. Let I(β)be the set of those ordinals i that satisfy the following properties (1) � (5):(1) 0 < i < α, and if l ≤ k then βi ≥ α′
l.(2) si is a γ�loation.(3) j < βj for i ≤ j < α.(4) If l < k and t is the <̃ �least upper bound of Ls{α′

l ∪ p∪ {α
′
0, . . . , α

′
l−1}}below s then si >̃ t.(5) If β < γ then β ∈ Lsi

{βi ∪ p}.Using the following fats (i) � (iv) the reader an easily show that thereis i0 less than α suh that an ordinal i less than α satis�es the onditions(1) � (5) if and only if i > i0, i.e., I(β) is a �nal segment of α.(i) Ls{α ∪ p ∪ {α′
0, . . . , α

′
k−1}} is unbounded below s.(ii) α < β and β =

⋃
{βi|i < α} where (βi | i < α) is (weakly) inreasing.(iii) Ls{α′

l ∪ p ∪ {α
′
0, . . . , α

′
l−1}} is bounded below s for all l ≤ k.(iv) If β < γ then β ∈ Ls{β ∪ p} = Lγ .So set
Cβ = {βi | i ∈ I(β)}.Claim 9. Cβ is losed unbounded in β and ordertype(Cβ) ≤ α < β.This ompletes the de�nition of the system 〈Cβ | β singular〉, and we areleft with proving the oherene property. Fix β less than β suh that β isa limit point of Cβ. We have to show that β is singular and Cβ = Cβ ∩ β.

β falls under the General Case, as ordertype(Cβ) > ω. Let α be the leastordinal η suh that β = βη. Then α is a limit ordinal and β is singular sine
cf(βα) ≤ α < βα. By ondensation there is an isomorphism

π:Lsα
{β ∪ p} ∼= Ls.Let q = π′′p and γ = α(s̄).Claim 10. π ↾ β = id. If s is a β�loation then s is a β�loation while if s isa γ�loation and γ > β then π(β) = β.21



Proof. If γ > β then β ∈ Lsα
{β ∪ p} and β = β ∩ Lsα

{β ∪ p}.Claim 11. s = s(β).Proof. If β0 < δ < β then δ 6= β ∩ Lsα
{δ ∪ p ∪ {α′

0 . . . α
′
k−1}} and therefore

δ 6= β ∩ Ls{δ ∪ q ∪ {α
′
0 . . . α

′
k−1}}. It follows that s(β) ≤̃ s.Conversely if r <̃ s and q is a �nite subset of Lα(r) then π−1(r) <̃ si and

π−1′′q ⊆ Lsi
{βi ∪ p} for su�iently large i less than α, sine the si's areunbounded below sα, the βi's are unbounded in β and Ls{β ∪ q} = Lα(s). As

βi = β ∩ Lsi
{βi ∪ p} we get βi = β ∩ Lr{βi ∪ q} for βi's o�nal in β and so

r <̃ s(β). Therefore s ≤̃ s(β).Claim 12. β does not fall under Speial Case 1.Claim 13. q = p(β).Proof. As Ls{β ∪ q} = Lγ , we get q ≥∗ p(β). Assume q >∗ p(β). As
p(β) satis�es the requirements in Claim 5 at β, we get q ⊆ Ls{β ∪ p(β)},hene p = π−1 ′′q ⊆ Ls{β ∪ π

−1 ′′p(β)}. So π−1 ′′p(β) <∗ p = π−1 ′′q and
π−1 ′′p(β) satis�es the requirements in Claim 5, ontrary to the minimalhoie of p = p(β).Now Lsα

{α ∪ p} = Ls{α ∪ p} is unbounded below sα. Hene Ls{α ∪ q} isunbounded below s, and α < β. HeneClaim 14. β does not fall under Speial Case 2.Claim 15. If j < k then αj(β) = αj(β).Proof. By indution on j < k.By de�nition, αj(β) is the smallest ν s.t. Ls{ν∪p∪{α′
i | i < j}} is unboundedbelow s. Now Ls{α∪p∪{α

′
0, . . . , α

′
k−1}} is unbounded below sα, so Ls{α∪q∪

{α′
0, . . . , α

′
k−1}} is unbounded below s. Hene Ls{αj(β)∪q∪{α′

0, . . . , α
′
j−1}}is unbounded below s, as α∪{α′

j . . . α
′
k−1} ⊆ αj(β). Conversely, the de�nitionof I(β) implies that Ls{α′

j ∪ p∪{α
′
0, . . . , α

′
j−1}} is bounded below s by some

s′ <̃ sα, hene by some loation in Lsα
{β∪p}. So Ls{α′

j ∪q∪{α
′
0, . . . , α

′
j−1}}is bounded below s by some loation less than s. So αj(β) = αj(β).Claim 16. αk(β) = α. 22



Proof. The set Ls{α ∪ q ∪ {α′
0, . . . , α

′
k−1}} is unbounded below s. If we take

α′ less than α, then Lsα
{α′∪p∪{α′

0, . . . , α
′
k−1}} is bounded below sα, by theminimality of α. So we have αk(β) = α.Claim 17. β does not fall under Speial Case 3,sine α 6= 0. So we are again in the General Case.Claim 18. If i < α then βi(β) = βi(β).Proof. By de�nition, β0 = β0(β) is the largest δ less than β suh that

δ = β ∩ Ls{δ ∪ p}. From the de�nition of β = βα we infer that β0 is thelargest δ less than β suh that δ = β ∩ Lsα
{δ ∪ p}. As Lsα

{β∪p} ∼= Ls{β∪q}by a map whih is the identity on β, we see that β0 is the largest δ less than
β suh that δ = β ∩ Ls{δ ∪ q}, whih is the de�nition of β0(β).Now onsider 0 < i < α. Then
si(β) is the <̃ �least upper bound of Ls{i ∪ p ∪ {α′

0, . . . , α
′
k−1}} below s.By the de�nition of sα we get that

si(β) is the <̃ �least upper bound of Lsα
{i ∪ p ∪ {α′

0, . . . , α
′
k−1}} below sα.Moreover,

si(β) is the <̃ �least upper bound of Ls{i ∪ q ∪ {α′
0, . . . , α

′
k−1}} below s.Now βi(β) is the minimal ordinal greater than β0 suh that

βi(β) = β ∩ Ls′{βi(β) ∪ p ∪ {α′
0, . . . , α

′
k−1}}for all s′ <̃ sα(β) with s′ ǫ Lsα

{i∪p∪{α′
0 . . . α

′
k−1}}, and βi(β) is the minimalordinal greater than β0 suh that

βi(β) = β ∩ Ls′{βi(β) ∪ q ∪ {α′
0, . . . , α

′
k−1}}for all s′ <̃ s with s′ ǫ Ls{i ∪ q ∪ {α′

0 . . . α
′
k−1}}. By the above and the fatthat π ↾ β = id we have βi(β) = βi(β) as required.Now one easily heks that eah ordinal i less than α satis�es the de�ningproperties of I(β) (f. (1) � (5) above) if and only if it satis�es the orre-sponding de�ning properties of I(β). So we get I(β) = I(β) ∩ α, and thisimmediately implies the oherene property. 223



3. Set-ForingThe method of foring provides a way to onstrut extensions of Gödel'smodel L. Cohen invented this method to demonstrate the unprovability ofthe ontinuum hypothesis (CH) in ZFC and of the axiom of hoie (AC)in ZF; as AC, CH hold in L we obtain in this way two striking examplesof undeidable propositions. Cohen's method was extended by Solovay toprovide a very general and powerful tehnique for enlarging any transitiveZFC modelM , given the hoie of a pre-ordering (i.e., re�exive and transitivebinary relation) P ∈M .Let M be a transitive model of ZF, either a set or a lass. The ase thatinterests us most is when M is L, but the foring method does not requiresuh a restrition. Let P ∈ M be a pre-ordering; our plan is to do thefollowing:1. We de�ne what it means for G ⊆ P to be P -generi over M .2. We desribe, for eah G ⊆ P , a transitive M [G] ⊇M ∪ {G}.3. We prove that if G is P -generi over M then M [G] is a model of ZFand, assuming AC holds in M , that AC holds in M [G].
P -Generi SetsWe assume that P = (P,≤) has a greatest element, whih we all 1P . Wethink of p ≤ q as meaning �p is at least as strong as q.�De�nition. p, q are ompatible if for some r, r ≤ p and r ≤ q. D ⊆ P isdense if ∀p∃q(q ≤ p and q ∈ D). G ⊆ P is P -generi over M if:1. p, q ∈ G −→ p, q are ompatible.2. p ≥ q ∈ G −→ p ∈ G.3. D ⊆ P,D dense, D ∈M −→ G ∩D 6= ∅.
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Assumption. We assume that for eah p ∈ P there exists G ⊆ P, p ∈ G, G
P -generi over M .Our Assumption is vauous if M is ountable as we an list the dense
D ∈M as D0, D1, . . ., de�ne p0 = p, pn ≥ pn+1 ∈ Dn and take G = {p|pn ≤ pfor some n}.The Extension M [G]We de�ne M [G] to onsist of sets whih have �names� in M , interpretedusing G.A name is a set σ ∈ M onsisting of pairs 〈τ, p〉 where τ is a name and
p ∈ P . Equivalently, a name is an element of ∪{Nameα|α ∈ ORD(M)}where Name0 = ∅, Nameα+1 = All subsets of Nameα × P in M , Nameλ =
∪{Nameα|α < λ} for limit λ.The interpretation of the name σ is σG = {τG|〈τ, p〉 ∈ σ, p ∈ G}. Then
M [G] = {σG|σ a name}.Lemma 3.1. Suppose 1P ∈ G ⊆ P .1. M ⊆M [G], G ∈M [G],2. M [G] is transitive, ORD(M [G]) = ORD(M).3. If M ∪ {G} ⊆ N , N a model of ZF then M [G] ⊆ N .Proof.1. For a ∈ M de�ne â = {〈b̂, 1P 〉|b ∈ a} and then âG = a. Also G = γGwhere γ = {〈p̂, p〉|p ∈ P}.2. If a ∈ σG ∈ M [G] then by de�nition a = τG ∈ M [G] for some τ ;so M [G] is transitive. By indution on Rank σ = least α suh that

σ ∈ Nameα+1, it follows that the von Neumann rank of σG is at mostRank σ ∈ ORD(M). So ORD(M [G]) ⊆ ORD(M).3. For eah α ∈ ORD(M), the indutive de�nition of σG for Rank σ < αan be arried out in N . 2 25



De�nition. Suppose p belongs to P , ϕ(v1 . . . vn) is a formula and σ1 . . . σn arenames. We write p  ϕ(σ1 . . . σn), p fores ϕ(σ1 . . . σn), i� whenever G ⊆ Pis P -generi over M and p ∈ P , we have M [G] � ϕ(σG1 . . . σ
G
n ). And we write

P  ϕ(σ1 . . . σn) for 1P  ϕ(σ1 . . . σn).The key to foring is to establish the De�nability and Truth lemmas.The De�nability lemma, muh like Gödel's Completeness Theorem equatingnononstrutive semantial validity with semionstrutive syntatial prova-bility, says that the foring relation is M-de�nable for eah ϕ (as a propertyof p, σ1 . . . σn). The Truth lemma says that P -generi G are in fat �generi�in the intuitive sense: If ϕ(σG1 . . . σ
G
n ) is true in M [G] then for some p ∈ G,it is true in every M [H ], H P -generi and ontaining p.De�nability Lemma. For any ϕ, the relation �p  ϕ(σ1 . . . σn)� is de�nablein M .Truth Lemma. If G is P -generi overM thenM [G] � ϕ(σG1 . . . σ

G
n )←→ ∃p ∈

G (p  ϕ(σ1 . . . σn)).Our proof strategy for these lemmas is indiret: We de�ne a relation ∗for whih the De�nability Lemma is lear, prove the Truth Lemma for ∗and �nally show =∗.De�nition of ∗. We say that D ⊆ P is dense ≤ p if ∀q ≤ p∃r(r ≤ q, r ∈ D).1. p ∗ σ ∈ τ i� {q|∃〈π, r〉 ∈ τ suh that q ≤ r, q ∗ σ = π} is dense ≤ p.2. p ∗ σ = τ i� for all 〈π, r〉 ∈ σ ∪ τ , p ∗ (π ∈ σ ←→ π ∈ τ).3. p ∗ ϕ ∧ ψ i� p ∗ ϕ and p ∗ ψ.4. p ∗∼ ϕ i� ∀q ≤ p(∼ q ∗ ϕ).5. p ∗ ∀xϕ i� for all names σ, p ∗ ϕ(σ).Note that irularity is avoided in (a), (b) as max(Rank σ,Rank τ) goesdown (in at most three steps) when these de�nitions are applied. Also allquanti�ers in (a), (b) are bounded, as P is a set, so the above de�nition anbe arried out in M and the De�nability Lemma does hold for ∗.26



Tehnial Lemma.1. p ∗ ϕ, q ≤ p −→ q ∗ ϕ.2. If {q|q ∗ ϕ} is dense ≤ p then p ∗ ϕ.3. If ∼ p ∗ ϕ then ∃q ≤ p (q ∗∼ ϕ).Proof.1. Clear, by indution on ϕ, as dense ≤ p −→ dense ≤ q.2. Again by indution on ϕ. The proof uses the following fats: If {q|Dis dense ≤ q} is dense ≤ p then D is dense ≤ p; if {q|q ∗∼ ϕ} is dense
≤ p then ∀q ≤ p(∼ q ∗ ϕ), using (a).3. Immediate by (b). 2We are ready to prove the Truth Lemma for ∗.Lemma 3.2. For G P -generi over M :

M [G] � ϕ(σG1 . . . σ
G
n )←→ ∃p ∈ G(p ∗ ϕ(σ1 . . . σn)).Proof. By indution on ϕ.

σ ∈ τ :(−→) If σG ∈ τG then hoose 〈π, r〉 ∈ τ suh that σG = πG and r ∈ G.By indution we an hoose p ∈ G, p ≤ r, p ∗ σ = π. Then p ∗ σ ∈ τ .
(←−) If p ∈ G, {q|∃〈π, r〉 ∈ τ suh that q ≤ r, q ∗ σ = π} = D isdense ≤ p then by generiity we an hoose q ∈ G, 〈π, r〉 ∈ τ suh that
q ≤ r, q ∗ σ = π; then by indution σG = πG and as r ≥ q ∈ G we get
r ∈ G and hene by de�nition of τG, πG ∈ τG. So σG ∈ τG.

σ = τ :(−→) Suppose σG = τG. Consider D = {p| Either p ∗ σ = τ or forsome 〈π, r〉 ∈ σ∪τ , p ∗∼ (π ∈ σ ←→ π ∈ τ)}. Then D is dense, usingthe de�nition of p ∗ σ = τ . By generiity there is p ∈ G ∩D and byindution it must be that p ∗ σ = τ . (←−) Suppose p ∈ G, p ∗ σ = τ .Then by indution, πG ∈ σG ←→ πG ∈ τG for all 〈π, r〉 ∈ σ ∪ τ . So
σG = τG. 27



ϕ ∧ ψ : Clear by indution, using the fat that p, q ∈ G −→ ∃r ∈ G(r ≤ pand r ≤ q).
∼ ϕ : Clear by indution, using the density of {p|p ∗ ϕ or p ∗∼ ϕ}.
∀xϕ :(−→) Suppose M [G] � ∀xϕ. As in the proof of (−→) for σ = τ ,there is p ∈ G suh that either p ∗ ∀xϕ or for some σ, p ∗∼ ϕ(σ).By indution the latter is impossible so p ∗ ∀xϕ. (←−) Clear byindution. 2Lemma 3.3. ∗ = .Proof. p ∗ ϕ(σ1 . . . σn) −→ p  ϕ(σ1 . . . σn). And ∼ p ∗ ϕ(σ1 . . . σn) −→
q ∗∼ ϕ(σ1 . . . σn) for some q ≤ p −→ ∼ p  ϕ(σ1 . . . σn) using our Assump-tion about the existene of generis. 2ZFC and Co�nalities in M [G]Theorem 3.4. If G is P -generi over M then M [G] is a model of ZF. If Msatis�es AC then so does M [G].Proof. As M [G] is transitive and ontains ω, it is a model of all ZF axiomswith the possible exeption of pairing, union, power and replaement.For pairing, given σG1 , σG2 onsider σ = {〈σ1, 1

P 〉, 〈σ2, 1
P 〉}. Then σG =

{σG1 , σ
G
2 }.For union, given σG onsider π = {〈τ, p〉|p  τ ∈ ∪σ, Rank τ < Rank σ}.By the Truth Lemma, πG = (∪σG)∩{τG|Rank τ < Rank σ}. As any elementof ∪σG is of the form τG,Rank τ < Rank σ we get πG = ∪σG.For power, given σG onsider π = {〈τ, p〉|p  τ ⊆ σ, Rank τ ≤ Rank σ}.Then πG = P(σG) ∩ {τG|Rank τ ≤ Rank σ}. Now suppose that τG ⊆ σG,with no restrition on Rank τ . Form the name τ ∗ by replaing eah 〈τ0, p〉 ∈ τby all of the 〈τ ∗0 , q〉 suh that Rank τ ∗0 < Rank σ, q ≤ p, q  τ ∗0 = τ0. ThenRank τ ∗ ≤ Rank σ and τ ∗G = τG sine if 〈τ0, p〉 ∈ τ , p ∈ G then τG0 ∈ σGand hene there is q ≤ p, q ∈ G, q  τ0 = τ ∗0 where Rank τ ∗0 < Rank σ;onversely, if q ≤ p, q  τ ∗0 = τ0 and q ∈ G then p ∈ G and τ ∗G0 = τG0 . So weonlude that πG = P(σG) ∩M [G].For replaement, given f : σG −→ M [G], f de�nable (with parameters)in M [G] onsider πα = {〈τ, p〉|Rank τ < α and for some σ0, Rank σ0 <Rank σ, p  σ0 ∈ σ∧f(σ0) = τ}. Then πGα = Range (f)∩{τG|Rank τ < α}.28



Now hoose α ∈ ORD(M) so large that if p ∈ P , Rank σ0 < Rank σ and
p  f(σ0) = τ for some τ , then there is suh a τ of Rank < α. This ispossible by replaement in M . Then πGα = Range (f).Finally if M satis�es AC, we an well-order σG in M [G] by �rst hoosinga well-ordering of names of Rank < Rank σ in M , and then omparing
x, y ∈ σG by omparing the least names σx, σy suh that σGx = x, σGy = y. 2It does not follow that M,M [G] have the same ardinals. We now turnto onditions on P whih guarantee that ardinals (indeed, o�nalities) arepreserved. Assume that AC holds in M and hene also in M [G].De�nition. An antihain is a set A ⊆ P suh that p 6= q in A −→ p, q areinompatible. For regular, unountable κ, P is κ- (κ-hain ondition) ifevery antihain has ardinality < κ.Lemma 3.5. If P is κ- in M and of (α) ≥ κ in M then of (α) ≥ κin M [G].Proof. It su�es to show that if f : β −→ γ belongs toM [G] then there is g :
β −→ P (γ) inM suh that for eah β0 < β, f(β0) ∈ g(β0), Card (g(β0)) < κin M . Let σG = f and de�ne g by g(β0) = {γ0 < γ|p  σ is a funtion and
σ(β̂0) = γ̂0, for some p}. 2De�nition. If D ⊆ P and p ∈ P then we say that p meets D if p ≤ q ∈ D forsome q. For regular, unountable κ, P is κ-distributive if whenever p ∈ Pand 〈Di|i < β〉 are dense subsets of P, β < κ then ∃q ≤ p (q meets eah Di).Lemma 3.6. If P is κ-distributive inM and of (α) ≥ κ inM then of (α) ≥ κin M [G].Proof. It su�es to show that if f : β −→ γ, β < κ belongs to M [G] thenit belongs to M . Let σG = f and note that for eah β0 < β, Dβo = {q| Forsome γ0 < γ, q  σ a total funtion −→ σ(β̂0) = γ̂0} is dense. If p ∈ G,
p  σ total and p meets eah Dβ0

then f(β0) = unique γ0, p  σ(β̂0) = γ̂0;so f ∈M . 2There is one more ondition for o�nality preservation to onsider, whihis best motivated by an example. Suppose that κ is regular and that theground model M is L. Let P onsist of all funtions p on I = {0}∪ All29



in�nite ardinals < κ suh that for all α ∈ I, p(α) is a bounded subset of α+(we take 0+ = ω). Order P by p ≤ q ←→ For eah α ∈ I, q(α) is an initialsegment of p(α). For inaessible κ, P is neither κ+- nor κ+-distributive,yet �o�nality > κ� is preserved when foring with P . This is beause P is
∆-distributive at κ, a onept that we now de�ne.De�nition. Let κ be regular. We say that d ⊆ P is predense ≤ p if q ≤ p −→ qis ompatible with an element of d. If D ⊆ P is dense then p α+-redues Dif there exists d ⊆ D, Card (d) ≤ α+, d predense ≤ p. P is ∆-distributive at
κ if whenever 〈Di|i < κ〉 are dense subsets of P and p ∈ P , there is q ≤ p, q
i+-redues Di for eah i. (We take i+ = ω for �nite i.)Lemma 3.7. If P is ∆-distributive at κ in M and of (α) ≥ κ+ in M thenof (α) ≥ κ+ in M [G].Proof. It su�es to show that if f : κ −→ γ belongs to M [G] then thereis g : κ −→ P(γ) in M suh that Card (g(i)) ≤ κ, f(i) ∈ g(i) for eah
i < κ. Let σG = f and note that Di = {p| For some γ̄ < γ, p  σ total
−→ σ(̂i) = ˆ̄γ} is dense for eah i. Let p ∈ G, p  σ total, p i+-redues Di foreah i. Then the desired g is g(i) = {γ̄ < γ|q  σ(̂i) = ˆ̄γ for some q ≤ p}. 2Corollary 3.8. If for some κ, P is either both κ-distributive and κ+-, orboth ∆-distributive at κ and κ++- then P preserves o�nalities.The above Lemmas are the basi tools for proving o�nality preservation.GCH PreservationGiven that o�nalities are preserved, we an ask what further onditionswe need on P to guarantee that GCH, if true inM , will remain true inM [G]for P -generi G. The basi fat is the following.Lemma 3.9. If M � 2κ = κ+, P ∈M and either P is κ+-distributive or P is
κ+-preserving, Card (P ) ≤ κ+ then G P -generi over M −→ M [G] � 2κ =
κ+.Proof. This is lear if P is κ+-distributive as then P(κ) inM [G] = P(κ) inM .Now if P is a κ+-preserving foring of ardinality ≤ κ+ hoose f : P

1−1
−→ κ+and let Pα = f−1[α] for α < κ+. If σG ⊆ κ then there is α < κ+ suh that30



for all i < κ, i ∈ σG ←→ ∃p ∈ Pα ∩ G(p  î ∈ σ). Thus σG is uniquelydetermined by α, 〈Si|i < κ〉 where α < κ+, Si = {p ∈ Pα|p  î ∈ σ} andhene in M [G] there are at most κ+-many suh σG. 2Cohen's ResultsTheorem 3.10. If ZF is onsistent then so is ZFC+ ∼ CH.Proof. First suppose that ZF has a ountable transitive model N ; then sodoes ZFC for we an take M = (L)N . Now take P ∈ M to onsist of all
p : Fp −→ 2, Fp a �nite subset of ω × ℵM2 , ordered by p ≤ q ←→ p extends
q as a funtion. If G is P -generi over M (suh G exist by the assumptionthatM is ountable) then ∪G : ω×ℵM2 −→ 2, sine for eah (n, α) ∈ ω×ℵM2the set D = {p|(n, α) ∈ Fp} is dense. Also α < β < ℵM2 −→ Gα 6= Gβ where
Gα(n) = (∪G)(n, α). So M [G] � ZFC + 2ℵ0 ≥ ℵM2 . Thus to get ∼ CH in
M [G] we only need ℵM2 = ℵ

M [G]
2 , whih will follow if we an show that P is

ℵ1- in M .Claim. P is ℵ1- in M .Suppose A were an unountable antihain and hoose F maximal so that
F ⊆ Fp for unountably many p ∈ A. We may assume that p ↾ F is onstantfor p ∈ A. But then for any p ∈ A hoose p 6= q ∈ A suh that Fq ∩ Fp = Fand we see that p, q are ompatible, ontradition.Now to prove the Theorem notie the following: The above shows that ifZFn+17(= ZF with only Σn+17 Replaement) has a ountable transitive modelthen so does ZFn + AC+ ∼ CH. But in ZF we an prove that ZFn+17 hasa ountable transitive model, so if ZF + AC+ ∼ CH were inonsistent wewould get an inonsisteny in ZF. 2Theorem 3.11. If ZF is onsistent then so is ZF+ ∼ AC.Proof. As in the previous Theorem, it will su�e to show that if ZF+V = Lhas a ountable transitive modelM then so does ZF+ ∼ AC. Let P ∈M bethe pre-ordering of all p : Fp −→ 2 where Fp is a �nite subset of ω×ω, orderedby p ≤ q ←→ p extends q. If G is P -generi over M then ∪G : ω × ω −→ 2and n 6= m −→ Gn 6= Gm where Gn(i) = (∪G)(i, n).For any m,n ∈ ω de�ne πmn : P −→ P as follows: if p ∈ P then πmn(p)agrees with p exept it sends (i,m) to p(i, n) and (i, n) to p(i,m). Then31



Gmn = {πmn(p)|p ∈ G} is P -generi over M and M [G] = M [Gmn]. It followsthat if f : ω −→ S = {Gn|n ∈ ω} is de�nable in M [G] with parameters from
M ∪ {S,G0, G1, . . .} then Range (f) is �nite: If the formula ϕ de�ning fdoes not have f(k) = Gm as a parameter, hoose p ∈ G, p  f is a funtion,
f(k) = Gm; then for large enough n ≥ m, p and πmn(p) are ompatible andtogether fore f(k) to equal both Gm and Gn, ontradition.Let N = ∪{t ∈ M [G]|t transitive and x ∈ t −→ x is de�nable in M [G]with parameters from M ∪ {S,G0, G1, . . .}}. We have shown that f : ω −→
S, f ∈ N −→ Range (f) �nite and learly S ∈ N . So we need only show that
N is a model of ZF. Note that N is a transitive, de�nable (with parameter
G) sublass of M [G], sine by the Re�etion Priniple, N = ∪{t ∈ M [G]|ttransitive and x ∈ t −→ for some α ∈ ORD(M), x is de�nable in V

M [G]
αwith parameters from M ∪ {S,G0, G1, . . .}}. The axioms of extensionality,foundation, empty and in�nity obviously hold in N . Pairing and union holdas these are de�nable operations and the transitive losure (TC) of {x, y} is

TC{x} ∪ TC{y}, TC(∪x) ⊆ TC(x). For power, use the de�nability of N toget x ∈ N −→ P (x) ∩ N ∈ N . Finally, for replaement use replaement in
M [G] and the de�nability of N . 2Iterated Set-ForingFirst we onsider two-step iteration.Let P be a notion of foring and (̇Q) a P -name suh that 1P  Q̇ is apre-ordering. There is a notion of foring P ∗Q̇ with the property that foringwith P ∗ Q̇ is the same as �rst foring with P and then in the extension by
P foring with Q̇. We de�ne:
P ∗ Q̇ = {(p, q) | p ∈ P , Rank q < Rank Q̇ and p  q ∈ Q̇}
(p0, q0) ≤ (p1, q1) i� p0 ≤ p1 and p0  q0 ≤ q1.Then P ∗ Q̇ is a pre-ordering, alled the two-step iteration of P and Q̇.Lemma 3.12. Let G be P -generi over V and Q = Q̇G, a notion of foring in
V [G]. If H is Q-generi over V [G] then

G ∗H = {(p, q) ∈ P ∗ Q̇ | p ∈ G and pG ∈ H}is P ∗ Q̇-generi over V and V [G ∗H) = V [G][H ].32



Proof. If D ∈ V [G] is dense on P ∗ Q̇ then de�ne D1 = {qG | (p, q) ∈ D forsome p ∈ G}.Claim. D1 is dense in Q = Q̇G.To prove the Claim, suppose that qG belongs to Q, Rank q < Rank Q̇. Con-sider the set {p ∈ P | For some q1, p  q1 ≤ q0 and (p, q1) ∈ D}. Sine D isdense in P ∗ Q̇, it follows that the latter set is dense in P . By the generiityof G there is p ∈ G belonging to this set and therefore qG has an extensionin D1.Now sine D1 is dense and belongs to V [G] it follows from the generiity of
H that there is q ∈ H belonging to D1. But then there is p ∈ G suh that
(p, q) belongs to D and to P ∗ Q̇, as desired. 2Lemma 3.13. Let K be P ∗ Q̇-generi over V . Then the set G = {p ∈ P |
(p, q) ∈ K for some q} is P -generi over V and the set H = {qG | (p, q ∈ Kfor some p} is Q = Q̇G-generi over V [G]. Moreover K = G ∗H .Proof. If D ∈ V is dense on P then D1 = {(p, q) | p ∈ D} is dense on P ∗ Q̇and it follows that D ∩G is nonempty. And, if D ∈ V [G] is dense on Q wemay hoose a name Ḋ suh that ḊG = D and 1P  Ḋ is dense in Q̇. Then
{(p, q) ∈ P ∗ Q̇ | p  q ∈ Ḋ} is dense in P ∗ Q̇ and it follows that H ∩D isnonempty. The equality K = G ∗H is lear, using the ompatibility of K.
2 It follows from the Lemmas that V [G ∗H ] = V [G][H ].Lemma 3.14. Let κ be regular. If P has the κ- and 1P  Q̇ has the κ-then P ∗ Q̇ has the κ-.Proof. Assume that (pα, qα), α < κ are mutually inompatible. Let G be
P -generi over V and Z = {α | pα ∈ G}. Whenever α and β belongs to Z,we have that qGα and qGβ are inompatible in Q = Q̇G. As Q has the κ- in
V [G] it follows that Z has ardinality less than κ in V [G]. But as P has the
κ- in V it follows that for some γ < κ, 1P  Z is a subset of γ; but thisontradits the fat that pγ  γ ∈ Z. 2Now we turn to trans�nite iterations. We shall introdue sequenes 〈Pβ |
β < α〉 of foring notions so that Pβ+1 = Pβ ∗ Q̇β for β < α. At limits wewill take �diret limits�. 33



De�nition. Let α be a nonzero ordinal. Pα is an iteration of length α with�nite support i� it is a set of α-sequenes with the following properties:(i) If α = 1 then for some foring notion Q0, P1 is the set of all sequenes
〈p(0)〉 of length 1, where p(0) ∈ Q0. And 〈p(0)〉 ≤ 〈q(0)〉 i� p(0) ≤ q(0).(ii) If α = β + 1 then Pβ = {p ↾ β | p ∈ Pα} is an iteration of length β andthere is some name Q̇β suh that 1Pβ  Q̇β is a foring notion and:
p ∈ Pα i� p ↾ β ∈ Pβ and 1Pβ  p(β) ∈ Q̇β

p ≤ q in Pα i� p ↾ β ≤ q ↾ β in Pβ and p ↾ β  p(β) ≤ q(β).(iii) If α is a limit ordinal then for all β < α, Pβ = {p ↾ β | p ∈ Pα} is aniteration of length β and:
p ∈ Pα i� p ↾ β ∈ Pβ for all β < α and
1Pβ  p(β) = 1Q̇β for all but �nitely many β < αAlso: p ≤ q in Pα i� p ↾ β ≤ q ↾ β in Pβ for all β < α.Notation. ≤β denotes the ordering of Pβ, β denotes the foring relation of
Pβ and β ϕ denotes 1Pβ β ϕ. An easy exerise is the following.Fat. If G is Pα-generi over V then for β < α, G ↾ β = {p ↾ β | p ∈ G} is
Pβ-generi over V .Theorem 3.15. Let Pα result from the iteration of �nite support of 〈Q̇β | β <
α〉. If β Q̇β has the ℵ1- for eah β < α then Pα has the ℵ1-.Proof. By indution on α. If α = β + 1 then Pα = Pβ ∗ Q̇β and the resultfollows from our earlier Lemma. Now suppose that α is a limit ordinal andfor eah p ∈ Pα let supp (p) denote the support of p, i.e. the set of β < αsuh that p(β) 6= 1Pβ .Case 1. of α 6= ℵ1. Let W ⊆ Pα be a set of size ℵ1. Sine of α 6= ℵ1 thereis a β < α and Z ⊆W of size ℵ1 suh that supp (p) ⊆ β for all p ∈ Z. Then
{p ↾ β | p ∈ Z} is a set of size ℵ1 in Pβ and sine by indution Pβ has the
ℵ1- there are p and q in Z suh that p ↾ β and q ↾ β are ompatible in Pβ.But then p and q are ompatible. So W is not an antihain.Case 2. of α = ℵ1. Let 〈αξ | ξ < ℵ1〉 be a ontinuous inreasing sequenewith limit α and W = {pξ | ξ < ℵ1} a subset of Pα of size ℵ1. For eah limit
ξ < ℵ1 there is γ(ξ) < ξ suh that supp (p)∩αxi ⊆ αγ(ξ). By Fodor's Theoremthere is a stationary S ⊆ ℵ1 and some γ < ℵ1 suh that supp (pξ)∩ αξ ⊆ αγ34



for all ξ ∈ S. Also we an onstrut an unountable set Z ⊆ S so that forany ξ < η in Z, supp (pξ) ⊆ αη.Now onsider the set {pξ ↾ αγ | ξ ∈ Z}. This is an unountable subset of
Pαγ and so there are ξ < η in Z suh that pξ ↾ αγ and pη ↾ αγ are ompatible.Let q ∈ Pαγ be stronger than both of these onditions. Now de�ne r ∈ Pα asfollows.
r(i) = q(i) if i < α
r(i) = pξ(i) if αγ ≤ i < αη
r(i) = pη(i) if αη ≤ i < α.Then r is stronger than both pξ and pη and therefore pξ and pη are ompatible.So W is not an antihain. 2Suslin's ProblemSuslin asked whether there is a omplete, dense linear ordering withoutendpoints, without an unountable set of pairwise disjoint intervals and notisomorphi to the real line. It turned out the answer is Yes in L, but theanswer is No in an extension of L obtainable through iteration with �nitesupport.An equivalent version of Suslin's question is the following: Is there aSuslin Tree? The latter is an unountable partially-ordered set (T,<T ) suhthat the predeessors of eah element of T are well-ordered by <T and (T,<T )has no unountable hain or antihain.Notie that a Suslin tree is a partial-ordering and therefore an be used asa foring notion. If T is a Suslin tree with the property that eah t ∈ T hasunountably many extensions in T , then foring with T adds an ℵ1-branhthrough T and therefore T will not be Suslin in the generi extension.Theorem 3.16. In L, there is an iteration with �nite support P of length ℵ2suh that if G is P -generi over L then in L[G] there are no Suslin trees.Proof. We onstrut P as the iteration of 〈Q̇α | α < ℵ2〉 where at eah stage
α Q̇α is ℵ1-. Thus P is also ℵ1- and all o�nalities are preserved.We de�ne Q̇α by indution on α < ℵ2. Fix a funtion π mapping ℵ2 onto
ℵ2 × ℵ2 so that if π(α) = (β, γ) then β, γ ≤ α. Assuming for the moment35



that Pα is an ℵ1- foring of size ≤ ℵ1, it follows α 2ℵ1 = ℵ2 and thereforethere at most ℵ2 nonisomorphi Suslin trees in a Pα-generi extension. Sine
Pα is ℵ1- there are at most ℵ2 Pα-names for Suslin trees. Let π(α) be
(β, γ). Then Q̇α is de�ned to be the γ-th Pβ-name for a Suslin tree.We assuimed that Pα is an ℵ1- foring of size ≤ ℵ1 for eah α < ℵ2.We now prove this indutively. Clearly it holds for limit stages sine we aretaking diret limits. At the suessor stage Pα+1 = Pα ∗ Q̇α we have  Q̇αhas ardinality ℵ1, as Q̇α is a name for a Suslin tree. Every name for anelement of Q̇α an be represented as a funtion from an antihain of Pα into
ℵ1, and sine Pα is ℵ1- there are at most ℵℵ0

1 = ℵ1 suh names. It followsthat Pα+1 has size at most ℵ1.Now we laim that there are no Suslin trees in a P -generi extension L[G].Let Gα denote G ↾ Pα for eah α < ℵ2.Claim. If X is a subset of ℵ1 in L[G] then X ∈ L[Gα] for some α < ℵ2.Proof of Claim. A name for X is determined by an ℵ1-sequene of maximalantihains, and therefore by the ℵ1-, by a name of size ℵ1.Now suppose there were a Suslin tree in L[G]. Then there would bea Suslin tree T with the property that eah t ∈ T has unountably manyextensions in T . By the Claim we an assume that T belongs to L[Gα] forsome α < ℵ2 and therefore by onstrution at some stage β of the iteration,we fore with T . But then T is not Suslin in L[G], ontradition. 2Countable Support IterationIterations with ountable support are de�ned just like iterations with �nitesupport, but with the ondition at limit stages α given as follows:
p ∈ Pα i� p ↾ β ∈ Pβ for all β < α and
1Pβ  p(β) = 1Q̇β for all but ountably many β < α.This type of iteration is needed when one wishes to use forings whih arenot ℵ1-. Typially one performs an iteration of length ℵ2, using forings ofsize ℵ1. To show that ardinals above ℵ1 are preserved one uses:36



Proposition 3.17. Let P be a ountable support iteration of length ℵ2 suhthat for β < ℵ2, P ↾ β has a dense subset of size at most ℵ1. Then P hasthe ℵ2-.Proof. If 〈pξ | ξ < ℵ2〉 are onditions in P then there is a stationary set
S ⊆ ℵ2 onsisting of ordinals of unountable o�nality suh that for ξ ∈ S,supp (pξ) ∩ ξ is bounded by a �xed ordinal γ < ℵ2. But then we an hoosetwo onditions pξ and pη whose restritions to γ are ompatible and whosesupports above γ are disjoint. It follows that these onditions are ompatibleand therefore the original sequene annot enumerate the elements of anantihain. 2How does one show that ℵ1 is preserved in a ountable support iterati-on? Shelah isolated a ondition on the forings used in the iteration, alledproperness, whih guarantees preservation of ℵ1 and is preserved throughountable support iteration.De�nition. P is proper i� player II has a winning strategy in the followinggame: Player I begins by seleting a ondition p and hoosing a name Ȧ0for a ountable set of ordinals. Player II hooses an ordinal β0. At the n-thmove, I plays a name Ȧn for a ountable set of ordinals and II plays anordinal βn. Now II wins the game i� for some q ≤ p :

(∗) q  For all n and α in Ȧn, α = βk for some k.Notie that if II has a winning strategy in the above game, then everyountable set of ordinals in a P -generi extension of V is a subset of a setof ordinals whih is ountable in V . Thus properness implies that ℵ1 ispreserved.Theorem 3.18. Let Pγ be a ountable support iteration of length γ of Q̇β ,
β < γ suh that for every β < γ, β Q̇β is proper. Then Pγ is proper.Proof. We atually prove something stronger than stated, to failitate anindutive argument. A winning strategy σ for II in the properness gameis good i� for every sequene of moves p, Ȧ0, . . ., Ȧn, . . . of player I, σprodues a sequene 〈βn | n ∈ ω〉 suh that for some q ≤ p obeying (∗)above: supp (q) ⊆ {βn | n ∈ ω}. 37



Claim. (a) For all η < γ, η II has a good winning strategy in the propergame for Pηγ = {p ↾ [η, γ) | p ∈ Pγ}.(b) Suppose that γ has o�nality ω and 〈γn | n ∈ ω〉 is an inreasing sequeneo�nal in γ. Let R0 = Pγ0 and Ṙn+1 = Pγnγn+1
for eah n ∈ ω. Then P isequivalent to the ω-iteration of the Ṙn's.To treat the ase of the Claim (a) when γ is a suessor ordinal we need:Lemma 3.19. Suppose that P is proper and P Q̇ proper. Then P ∗ Q̇ isproper.Proof of Lemma. It is not di�ult to show that in the de�nition of properness,we an equally well use the game where I plays names for single ordinals,rather than ountable sets of ordinals. We shall prove the lemma using thismodi�ed version of the game.Let σ be a winning strategy for II in the game on P and let τ̇ be suh that

P τ̇ is a winning strategy for II on Q̇. We desribe a winning strategy for
II on P ∗Q̇: Player I starts by seleting a ondition (p, q̇) ∈ P ∗Q̇ and a name
α̇0 for an ordinal. We desribe II's response, an ordinal γ0. The P ∗ Q̇-name
α̇0 an be identi�ed with a P -name for a Q̇ name. Apply II's strategy τ̇ inthe Q̇-game where I begins with q̇ and α̇0. Let β̇0 be II's response. Nowonsider the game on P and use σ to respond when I plays p and β̇0. Theresult is γ0.At the nth move, I plays a P ∗ Q̇-name α̇n. Identify α̇n with a P -name for a
Q̇-name and apply τ̇ to get β̇n. Now in the game on P we use σ to produean ordinal γn, when I plays β̇n as his nth move.Sine τ̇ is a winning strategy we have

p P ∃q
′ ≤ q̇, q′ Q ∀n∃m α̇n = β̇m.Therefore there is a q̇′ suh that p  q̇′ ≤ q̇ and

(p, q̇)  ∀n∃m α̇n = β̇m.Sine σ is a winning strategy, there is p′ ≤ p suh that
p′  ∀m∃k β̇m = γk.38



Putting this together we get
(p′, q̇′)  ∀n∃k α̇n = γk,and therefore the strategy desribed above is a winning strategy for II inthe game on P ∗ Q̇. This proves the Lemma.Notie that the proof of the Lemma shows that if II has a good winningstrategy in the game on Pηγ and ηγ Q̇γ is proper, then II has a good winningstrategy in the game on Pηγ+1, the suessor step in the proof of the Claim,part (a).Now we prove the Claim, part (a) for limit γ. It su�es to prove it when

η = 0: When η < γ is arbitrary, we will be able to arry out the same proof ina generi extension via Pη, beause by the Claim, part (b), Pηγ is a ountablesupport iteration of proper forings in this generi extension.If γ has o�nality ω, �x an inreasing ω-sequene 〈γi | i < ω〉 o�nal in γ.Player I starts the game on Pγ by seleting p ∈ Pγ and a Pγ-name α̇0. If γhas unountable o�nality we hoose some γ0 < γ and onsider R0 = Pγ0 .(Otherwise γ0 has already been hosen.) Let p0 = p ↾ γ0. There are R0-names α̇0
0 and ṡ0 suh that p0 R0

ṡ0 ≤ p ↾ [γ0, γ) and (p0, ṡ0)  α̇0
0 = α̇0. Westart the game on R0 by letting I play p0 and an R0-name for the ountableset {α̇0}∪ supp (ṡ0). Player II uses a good winning strategy σ0 to return anordinal β0. This is II's �rst move in the game on Pγ.At the nth move I hooses a Pγ-name α̇n. If γ has unountable o�nality wehoose some γn ∈ (γn−1, γ) greater than βn−1. Let Ṙn = Pγn−1γn . Let ṗn bea name for a ondition in Ṙn so that 〈p0, . . . , ṗn−1〉  ṗn = ṡn−1 ↾ [γn−1, γn).There are R0 ∗ · · · ∗ Ṙn-names α̇nn and ṡn suh that 〈p0, . . . , ṗn〉  ṡn ∈ Pγnγ ,

ṡn ≤ ṡn−1 ↾ [γn, γ) and (〈p0, . . . , ṗn〉, ṡn)  α̇n = α̇nn. We start the game on
Ṙn by letting I play ṗn and Ȧnn, where Ȧnn = {α̇nn} ∪ supp (ṡn).
II uses a good winning strategy σ̇n to play α̇n−1

n . Then we ontinue the
Ṙn−1-game by letting I play α̇n−1

n , to whih II responds α̇n−2
n . And so on,until II plays (by σ0 in the R0-game) an ordinal βn.It remains to show that the strategy desribed above is a good winningstrategy for II in the Pγ-game. Let γ∞ = limn γn and S = {βn | n ∈ ω}. We39



an obtain a sequene p = 〈q̇n | n ∈ ω〉 in the ω-iteration of the Ṙn's suhthat q ≤ 〈ṗn | n ∈ ω〉 and
q  ∀n∃k α̇nn = βk.Sine the σ̇n are good winning strategies, it follows that R and Pγ∞ areequivalent forings, and that q is a ondition in Pγ∞ with supp q ⊆ S. Letus identify q with q ∗ 〈111 · · ·〉 ∈ Pγ (if γ∞ < γ). Sine S ⊆ γ∞ and for every

n, q ↾ n  supp ṡn ⊆ S, we have
q ≤ (〈p0, . . . , ṗn〉, ṡn).It follows that q ≤ p, q  ∀n∃k α̇n = βk and supp q ⊆ S. Hene the strategygiven is a good winning strategy, as desired. This proves the Claim, part (a).We now prove the Claim, part (b). Let γ = limn γn and let Pγ be theproper iteration of length γ of 〈Q̇ξ | ξ < γ〉. For eah n let Ṙn = Pγn−1γn(and R0 = Pγ0). Let R be the ω-iteration of the Ṙn. We want to show that

R and Pγ are equivalent forings. For any p ∈ Pγ let r = 〈rn | n ∈ ω〉 where
rn = p ↾ [γn−1, γn). Thus Pγ embeds into R; it su�es to show that Pγembeds into R densely.Thus let r = 〈ṙn | n ∈ ω〉 be a ondition in R. We wish to �nd p ∈ Psuh that p ≤ r. By the indution hypothesis, eah Ṙn has a good winningstrategy σ̇n. We use these good strategies to produe p.Play the proper games on the Ṙn simultaneously for all n ∈ ω. The gameon Ṙn begins with the ondition ṙn. The moves of I are names for ountablesets of ordinals; the moves of II are aording to the strategy σ̇n.At step 0, start the game for R0. I plays r0 and a name Ȧ0

0 for thesupport of ṙ1. II responds with β0. At step 1 we start the game on Ṙ1 inan R0-generi extension. I plays ṙ1 and a name Ȧ1
1 for the support of ṙ2. IIresponds with α̇0

1. Continue the game on R0: I plays α̇0
1 and II respondswith β1. At step n, we start the game on Ṙn in a R0 ∗ · · · ∗ Rn−1-generiextension. I plays ṙn and a name Ȧnn for the support of ṙn+1. II respondswith α̇n−1

n . Then, playing the game on Ṙn−1, I plays α̇n−1
n and II respondswith α̇n−2

n . And so on, until II plays βn in the game on R0.Sine the σ̇n are good winning strategies there exists a ondition q = 〈q̇n |
n ∈ ω〉 ∈ R, stronger than 〈ṙn | n ∈ ω〉, suh that for eah n, q ↾ n fores:
q̇n  ∀α played by I ∃β played by II suh that α = β, and40



the support of q̇n is inluded in the set of all ordinals played by II.Let S{βn | n ∈ ω}. It follows jthat for every n, q ↾ n  supp (q̇n) ⊆ S. Weonlude the proof by onstruting a ondition p ∈ Pγ so that p = q (underthe embedding of P into R). This we do by indution on ξ < γ: If ξ /∈ S welet p(ξ) = 1 and if ξ ∈ S then we let p(ξ) be the ondition ṫ ∈ Q̇ξ so that
p ↾ ξ  ṫ = q̇n(ξ), where n is the unique n for whih γn−1 ≤ ξ < γn. For eah
n we have p ↾ γn−1  p ↾ [γn−1, γn) = q̇n and so p = q. 2The Borel ConjetureProperness an be used to establish the onsisteny of Borel's Conjetureonerning sets of strong measure 0. Let X be a subset of [0, 1]. X has strongmeasure 0 if for every sequene 〈ǫn | n ∈ ω〉 of positive reals there exists asequene 〈In | n ∈ ω of intervals with length In ≤ ǫn suh that X ⊆ ∪nIn.Borel onjetured that strong measure 0 sets are in fat ountable. Thisontradits CH, but Laver proved the onsisteny of Borel's Conjeture usinga ountable support iteration of Laver foring.Laver foring is de�ned as follows. A set p ⊆ ω<ω is a tree i� it is losedunder initial segments. A tree p is a Laver tree i� for some s ∈ p (alled thestem of p):1. For all t ∈ p either t ⊆ s or s ⊆ t.2. For all t ∈ p extending s the set S(t) = {a | t∗a ∈ p} (the set of suessorsof t in p) is in�nite.Laver foring onsists of all Laver trees, partially ordered by inlusion. If Gis generi then f =

⋃
{s | s is the stem of some p ∈ G} is a funtion from ωinto ω, a Laver real. It is easy to show that V [G] = V [f ].By an earlier Proposition, if we iterate Laver foring for ℵ2 steps over L,we will have the ℵ2- and therefore preserve all o�nalities greater than ℵ1.To show that this iteration preserves o�nality ω1 it su�es to show thatLaver foring is proper.Lemma 3.20. Laver foring is proper.Proof. De�ne the relations ≤n as follows. Consider a anonial enumerationof ω<ω in whih s appears before t when s ⊆ t and s ∗ a appears before

s ∗ (a + 1) for a ∈ ω. If p is a Laver tree then part of p above the stem is41



isomorphi to ω<ω and so we have a anonial enumeration of it 〈spi | i ∈ ω〉,where sp0 is the stem of p. Note that if q ≤ p and sqn = spm then n ≤ m. Wede�ne:
q ≤n p i� p and q have the same stem and spi = sqi for all i ≤ n.It is easy to show that if p0 ≥0 p1 ≥1 p2 ≥2 . . . then p =

⋂
n pn is a Lavertree, alled the fusion of the fusion sequene 〈pn | n ∈ ω〉.Fat. If p  α̇ ∈ ORD then there are q ≤n p and a ountable A ⊆ ORD suhthat q  α̇ ∈ A.Proof of Fat. We assume that n = 0, as the proof for general n is almostthe same. If p is a Laver tree, n ∈ ω, q ≤ p and the stem of t is maximalamong {sp0, . . . , spn} then

r = q ∪ {u ∈ p | u * t and t * u}is a Laver tree ≤n p, alled the n-amalgamation of q into p. This has theobvious generalisation to the amalgamation of {q1, . . . , qk} into p when the
qi extend p and their stems are all the maximal nodes among {sp0, . . . , spn}(for a uniquely determined n).We onstrut a fusion sequene 〈pn | n ∈ ω〉 with p0 = p and �nite sets
An so that the fusion of this sequene fores α̇ ∈ ⋃

nAn. At stage n wealready have pn. Let t1, . . . , tk be all the maximal nodes among spn

0 , . . . , s
pn
n .For eah i ∈ {1, . . . , k} if there exists qi ≤ pn with stem ti and an ordinal αinso that qi  α̇ = αin then we hoose suh qi and αin. Let An be the olletionof all the αin hosen and let pn+1 be the amalgamation of {q1, . . . , qk} into

pn. (If qi did not exist, then we take it to be the olletion of nodes in pnompatible with ti.) We have pn+1 ≤n pn.Let p∞ be the fusion of the pn's and A =
⋃
nAn. To prove that p∞ 

α̇ ∈ A, let q ≤ p∞. There are a ondition q̄ ≤ q and α ∈ ORD suhthat q̄  α̇ = α. Let n be large enough so that the stem of q̄ is among
K = {spn

0 , . . . , s
pn
n }. There is t ∈ q̄ that is a maximal node in K and thereforeone of the nodes onsidered at stage n, say t = ti. Let r onsist of those nodesof q̄ whih are ompatible with t. As r and α satisfy the requirements forhoosing qi in the de�nition of pn+1 we indeed have hosen qi and αin. Beause

r ≤ qi it must be the ase that α = αin and so r  α̇ ∈ A. So by a densityargument, p∞  α̇ ∈ A. This proves the Fat.42



Now we an show that II wins the proper game for Laver foring (in theversion where I plays a ondition p and names for single ordinals, II playsountable sets of ordinals and II wins i� there is q ≤ p whih fores all thenames to be in the union of the sets played). At the start of the game let
I selet p0 and the ordinal name α̇0. By the Fat there is p1 ≤0 p0 and aountable B0 suh that p1  α̇ ∈ B0. At the nth move, when I plays α̇nthere are pn+1 ≤n pn and a ountable set Bn with pn+1  α̇n ∈ Bn. Then thefusion of the pn's veri�es that II wins the game. 2The Main Lemma needed to verify that Borel's Conjeture holds in theLaver model (obtained via an ℵ2-iteration of Laver foring over L) is thefollowing.Main Lemma. If GCH holds in V and X is an unountable set of reals in Vthen X does not have strong measure 0 in V [G] where G is generi over Vfor the ℵ2-iteration of Laver foring.We ontent ourselves with a proof of the following simpler version.Theorem 3.21. If GCH holds in V and X is an unountable set of reals in Vthen X does not have strong measure 0 in V [G] where G is generi over Vfor (a single appliation of )Laver foring.Proof. We show that if f is the Laver real and ǫn = I/f(n) then for some
n0, X annot be overed by intervals of lengths ǫn0

, ǫn0+1, . . ..Lemma 3.22. Let p  ϕ1 ∨ · · · ∨ ϕk. Then there is q ≤ p with the same stemas p suh that p  ϕi for some i.Proof of Lemma 3.22. Reall that for t ∈ p, S(t) denotes the set of a ∈ ω suhthat t ∗ a belongs to p. Let s be the stem of p and assume that the Lemmafails. Then there are only �nitely many a ∈ S(s) suh that some q ≤0 p ↾ s∗ahas the desired property. By removing these �nitely many nodes and theirextensions, we get p1 ≤0 p. For eah s ∗ a ∈ p1 there are only �nitely many
b ∈ S(s ∗ a) suh that some q ≤0 p1 ↾ s ∗ a ∗ b has the desired property.By removing all suh b and their extensions we get p2 ≤1 p1. Continue inthis way to form a fusion sequene with limit r. Then if t ∈ r there is no
q ≤0 r ↾ t with the desired property. But then no extension of r fores any
ϕi, a ontradition. 43



Lemma 3.23. Let p be a ondition with stem s and ẋ a name for a real. Thenthere is q ≤0 p and a real u suh that for every ǫ > 0, for all but �nitelymany a ∈ S(s),
q ↾ s ∗ a  |ẋ− u| < ǫ.Proof of Lemma 3.23. Let {tn | n ∈ ω} be an enumeration of {s ∗ a |

a ∈ S(s)}. For eah n we an hoose qn ≤0 p ↾ tn and an interval Jn =
[m/n, (m + 1)/n] so that qn  ẋ ∈ Jn. There is a sequene 〈kn | n ∈ ω〉 sothat the Jkn's form a dereasing sequene onverging to a unique real u. Let
q = ∪nqkn . Then q is as desired.Lemma 3.24. Let p be a ondition with stem s and let 〈ẋn | n ∈ ω〉 be asequene of names for reals. Then thre is q ≤0 p and a set of reals {ut | t ∈ q,
t ⊇ s} suh that for every ǫ > 0 and every t ∈ q extending s, for all but�nitely many a ∈ S(t):

q ↾ t+ a  |ẋk − ut| < ǫ.where k = length t− length s.Proof of Lemma 3.24. By repeated appliation of Lemma 3.23. First weget p1 ≤0 p and us. Then for every immediate suessor t of s in p1 weget qt ≤0 p1 ↾ t and ut; let p2 = ∪tqt. Continue to get a fusion sequene
p ≥0 p1 ≥1 p2 ≥2 . . . and let q = ∩npn.We are now ready to prove the Theorem. Let X ∈ V be a subset of [0, 1]and p  X has strong measure 0. We show that X is ountable. Let s bethe stem of p, of length n. Let f be the Laver real. Consider the sequene
ǫk = 1/f(k), k ≥ n. There exists a sequene of intervals İk, k ≥ n of length
ǫk so that X ⊆ ⋃

k≥n İk. For eah k ≥ n let ẋk be the enter of Ik.Let q ≤0 p be a ondition obtained by Lemma 3 applied to p and 〈ẋk |
k ≥ n〉 and let {ut | t ∈ q, q ⊇ s} be the resulting reals. We shall show that
X ⊆ {ut | t ∈ q, q ⊇ s}.Let v /∈ {ut | t ∈ q, q ⊇ s}. Sine p  X ⊆

⋃
k≥n İk it su�es to �ndsome r ≤ q suh that r  v /∈ İk for all k ≥ n. We onstrut r by indutionon the levels of q; at stage k ≥ n we guarantee that r  v /∈ İk.The �rst step is as follows: Let ǫ = (1/2)·|v−us|. For all but �nitely many

a ∈ S(s), q ↾ s∗a  |ẋn−us| < ǫ. Also, for eah a, q ↾ s∗a  ḟ(n) = a and so
q ↾ s+a  ǫ̇n = 1/a; thus, for all but �nitely many a, q ↾ s∗a  ´ẋn−v| > ǫ̇n,44



i.e., q ↾ s∗a  v /∈ İn. Thus, by removing �nitely many immediate suessorsof s we ensure that r  v /∈ İn. We ontinue in this way to get r ≤ q suhthat r  v /∈
⋃
k≥n İk. 2
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4. Class ForingUnder the assumption of �large ardinal axioms� it an be shown thatthere are reals that are not generi over L for set-foring. The standardexample is the real alled 0#, whih auses dramati e�ets when added to
L: In L[0#] all suessor L-ardinals are ollapsed and indeed the ardinalsof L[0#] are indisernible in L.Solovay asked if 0# provides the only ounterexample to the universalityof set-foring over L. For our present purposes we an pose his question asfollows:Is it onsistent that for some real R, L and L[R] have the same ardinals but
R belongs to no set-generi extension of L?The positive answer to this question was provided by Jensen, who de-veloped a powerful new type of foring, in whih a generi real is reatedby foring over L with a lass partial-ordering. We shall next develop thegeneral theory of lass-foring and establish this result of Jensen.LetM be a transitive set or lass satisfyingg ZF, and A ⊆ M . We say that
〈M,A〉 is a model of ZF ifM is a model of ZF and the sheme of replaementholds in M for formulas whih mention A as a prediate. In addition werequire 〈M,A〉 to be a ground model, whih means that 〈M,A〉 satis�es:
V = L(A) = ∪{L(A ∩ Vα)|α ∈ ORD}. Any ZF model 〈M,A〉 is easilymodi�ed to a ground model 〈M,A∗〉 (with the same de�nable prediates) bytaking A∗ to be {〈0, x〉|x ∈ A}∪{〈1, VM

α 〉|α ∈ ORD(M)}. This �minimality�property of M relative to A is needed to guarantee that M is de�nable as aprediate in all of its extensions 〈M [G], A,G〉.A partial ordering P is a lass foring forM (or anM-foring) if for someground model 〈M,A〉, P (with its ordering) is de�nable with parameters over
〈M,A〉. Assume that this is the ase and that P has a greatest element 1P .De�nition. G ⊆ P is P -generi over 〈M,A〉 i�:
p, q ∈ G −→ p, q are ompatible.
p ≥ q ∈ G −→ p ∈ G.If D ⊆ P is dense and 〈M,A〉-de�nable (with parameters) then G ∩D 6= ∅.46



We make the same Assumption as before, that for eah p ∈ P there exists
G suh that p ∈ G and G is P -generi over 〈M,A〉. (This is provable when
M is ountable.) We will disuss (and dispense with) this Assumption later.De�ne names and M [G] as before. We have the following:Lemma 4.1. (a)M ⊆M [G] andM [G] is transitive, ORD(M [G]) = ORD(M).(b) G∩Vα ∈M [G] for eah α ∈ ORD(M) and ifM ⊆ N, 〈N , G〉 is amenableand N is a model of ZF then M [G] ⊆ N and M is de�nable over 〈N,A〉.Proof. (a) Exatly as before.(b) For eah α ∈ ORD(M), G ∩ Vα = γGα where γα = {〈p̂, p〉|p ∈ P ∩ Vα}, so
G∩Vα ∈M [G]. Under the assumptions on N we an de�ne σG as an elementof N , for eah name σ; M is de�nable over 〈N,A〉 as it equals L(A)N . 2De�ne  and ∗ as before. We would like to arry out the earlier argu-ment to show that the Truth and De�nability lemmas hold for . But weimmediately run into trouble: We do not know that the De�nability lemmaholds for ∗. The problem is in (a), (b) of the de�nition of ∗:(a) p ∗ σ ∈ τ i� {q|∃〈π, r〉 ∈ τ suh that q ≤ r, q ∗ σ = π} is dense ≤ p.(b) p ∗ σ = τ i� for all 〈π, r〉 ∈ σ ∪ τ , p ∗ (π ∈ σ ←→ π ∈ τ) i� for all
〈π, r〉 ∈ σ ∪ τ , {q|q ∗ (π ∈ σ ∧ π ∈ τ) or q ∗ (π /∈ σ ∧ π /∈ τ)} is dense ≤ p.As P may now be a proper lass these lauses involve unbounded quan-ti�ers, and therefore lead to de�nitions of p ∗ σ ∈ τ, p ∗ σ = τ whosequanti�er omplexity may inrease with the ranks of σ, τ .By introduing a further ondition on P we an ontrol the quanti�eromplexity of the relations p ∗ σ ∈ τ , p ∗ σ = τ and therefore obtain theDe�nability lemma for ∗. In the disussion below, �de�nable� always means�de�nable with parameters� unless we say otherwise.Pretameness Condition. P is pretame i� whenever 〈Di|i ∈ a〉 is an 〈M,A〉-de�nable sequene of dense lasses, a ∈ M and p ∈ P then there is q ≤ pand 〈di|i ∈ a〉 ∈M suh that di ⊆ Di and di is predense ≤ q for eah i.Proposition. Suppose that for eah p ∈ P there is G ⊆ P suh that p ∈ G, Gis P -generi over 〈M,A〉 and 〈M [G], A,G〉 is a model of ZF− Power . Then
P is pretame. 47



Proof. Given 〈Di|i ∈ a〉 and p as in the statement of pretameness hoose Gsuh that p ∈ G, G P -generi over 〈M,A〉 and onsider f(i) = least rank ofan element of G ∩ Di. If pretameness failed for p, 〈Di|i ∈ a〉 then for every
q ≤ p and α ∈ ORD(M) there would be r ≤ q and i ∈ a with r inompatiblewith eah element of Di ∩ Vα. But then by generiity, no ordinal of M anbound the range of f , so replaement fails in 〈M [G], A,G,M〉. As 〈M,A〉 isa ground model, replaement fails in 〈M [G], A,G〉. 2Thus pretameness is neessary for a reasonable notion of lass foring. Wenow prove the De�nability lemma for ∗ assuming pretameness. By formulawe now mean a formula in the language of set theory with the addition of theunary prediate symbols A,G. Of ourse 〈M [G], A,G〉 � A(σG) i� σG ∈ A,
〈M [G], A,G〉 � G(σG) i� σG ∈ G. And extend the de�nition of ∗ by adding:(f) p ∗ A(σ) i� p ∗ σ ∈ âα, where aα = A ∩ Vα, α = Rank σ + 1.(g) p ∗ G(σ) i� p ∗ σ ∈ γα, where γα = {〈p̂, p〉|p ∈ P∩Vα}, α = Rank σ+1.Theorem 4.2. If P is pretame then for any formula ϕ, the relation �p ∗

ϕ(σ1 . . . σn)� of p, σ1 . . . σn is 〈M,A〉-de�nable.Proof. It su�es to show that the relations p ∗ σ ∈ τ and p ∗ σ = τ are
〈M,A〉-de�nable, for then we may indut on teh struture of ϕ. Note that bymodifying A if neessary, we may assume that the relations �x = V M

α ,� �p, qare ompatible,� �d is predense below p,� as well as (P,≤), are ∆1-de�nableover 〈M,A〉.Using pretameness we shall de�ne a funtion F from pairs (p, σ ∈ τ),
(p, σ = τ) into M suh that:(a) F (p, σ ∈ τ) = (i, d) where d ∈ M is a nonempty subset of P (≤ p) =
{q ∈ P | q ≤ p} and either (i = 1 and q ∗ σ ∈ τ for q ∈ d) or (i = 0 and
q ∗ σ /∈ τ for q ∈ d).(b) The same holds for σ = τ , σ 6= τ instead of σ ∈ τ, σ /∈ τ .() F is Σ1-de�nable over 〈M,A〉.Given this we an de�ne p ∗ σ ∈ τ by: p ∗ σ ∈ τ i� for all q ≤ p,
F (q, σ ∈ τ) = (1, d) for some d. This holds beause p ∗ σ ∈ τ i� {q|q ∗

σ ∈ τ} is dense ≤ p. Similarly we an de�ne p ∗ σ = τ .Now de�ne F by indution on σ ∈ τ , σ = τ . We onsider the two asesseparately. 48



σ ∈ τGiven p, searh for 〈π, r〉 ∈ τ and q ≤ p, q ≤ r suh that F (q, σ =
π) = (1, d) for some d. If suh exist, let F (p, σ ∈ τ) = (1, e) where e is theunion of all suh d whih appear by the least possible stage α (i.e., this Σ1property is true in 〈V M

α , A ∩ V M
α 〉, α least). If not then for eah 〈π, r〉 ∈ τ ,

D(π, r) = ∪{d| For some q ≤ r, F (q, σ = π) = (0, d)} ∪ {q|q inompatiblewith r} is dense below p. So also searh for 〈d(π, r)|〈π, r〉 ∈ τ〉 ∈ M and
q ≤ p suh that d(π, r) ⊆ D(π, r) for eah 〈π, r〉 and eah d(π, r) is predense
≤ q; if this latter searh terminates then set F (p, σ ∈ τ) = (0, e), where eonsists of all suh q witnessed by the least possible stage α. One of thesesearhes must terminate (by pretameness) and hene F (p, σ ∈ τ) is de�nedand either of the form (1, e) where q ∈ e −→ q ≤ p, q ∗ σ ∈ τ , or of theform (0, e) where q ∈ e −→ q ≤ p, q ∗∼ (σ ∈ τ).
σ = τGiven p, searh for 〈π, r〉 ∈ σ ∪ τ and q ≤ p, q ≤ r suh that for some
i, d, q′ and e, F (q, π ∈ σ) = (i, d), q′ ∈ d, F (q′, π ∈ τ) = (1 − i, e). If thissearh terminates then set F (p, σ = τ) = (0, f) where f is the union ofall suh e whih appear by the least possible stage α. If this searh failsthen for eah 〈π, r〉 ∈ σ ∪ τ , D(π, r) = ∪ {e| For some q ≤ r, some i, d, q′,
F (q, π ∈ σ) = (i, d), q′ ∈ d, F (q′, π ∈ τ) = (i, e)} ∪ {q|q is inompatiblewith r} is dense ≤ p. So also searh for 〈d(π, r)|〈π, r〉 ∈ σ ∪ τ〉 ∈ M and
q ≤ p suh that for eah 〈π, r〉, d(π, r) ⊆ D(π, r) and d(π, r) is predense
≤ q. If this latter searh terminates then q ∗ σ = τ for all suh q and let
F (p, σ = τ) = (1, f), where f onsists of all suh q ≤ p witnessed to obeythe above by the least stage α. 2The previous Theorem was proved independently by M. Stanley. Theauthor does not know if the assumption of pretameness is neessary for thisresult.Now that we have the De�nability lemma for ∗ we an prove the Truthlemma for ∗ as we did before; the two new lauses (f), (g) ause no di�ulty.Then we infer that =∗ as before.Pretameness is su�ient to verify that ZF− Power is preserved:Lemma 4.3. If P is pretame andG is P -generi over 〈M,A〉 then 〈M [G], A,G〉is a model of ZF− Power . If M is a model of AC then so is M [G].49



Proof. This is exatly as before, exept for the veri�ations of replaement,union. For replaement, suppose f : σG −→ M [G], f de�nable (with pa-rameters) in 〈M [G], A,G〉 and hoose p ∈ G, p  f is a total funtionon σ. Then for eah σ0 of Rank < Rank σ, D(σ0) = {q| For some τ ,
q  σ0 ∈ σ −→ f(σ0) = τ} is dense ≤ p. Thus by pretameness we get thatfor eah q ≤ p there is r ≤ q and α ∈ ORD(M) suh that Dα(σ0) = {s|s ∈ Vαand for some τ of Rank < α, s  σ0 ∈ σ −→ f(σ0) = τ} is predense ≤ r foreah σ0 of Rank < Rank σ. By generiity there is q ∈ G and α ∈ ORD(M)suh that q ≤ p, Dα(σ0) is predense ≤ q for eah σ0 of Rank < Rank σ. ThusRange (f) = πG where π = {〈τ, r〉|Rank τ < α, r ∈ Vα, r  τ ∈ Range (f)}.So Range (f) ∈M [G].For union, given σG onsider π = {〈τ, p〉 | p  τ ∈ ∪σ}. This is nota set, but for eah α we may onsider πα = π ∩ V M

α . By replaement in
〈M [G], A,G〉, πGα is onstant for su�iently large α ∈ ORD(M). For suh αwe have πGα = ∪σG. 2Thus pretameness is equivalent to ZF− Power preservation. P is tame i�
P is pretame and in addition 1P fores the Power Set Axiom. Thus tamenessis equivalent to ZF preservation. ExamplesWe desribe the four basi examples of tame lass foring: Easton, LongEaston, Reverse Easton and Amenable foring.We now �x our ground model 〈M,A〉 to just be 〈L, ∅〉, and maintainthe Assumption that for eah foring P onsidered, P -generi lasses existontaining any given ondition in P (where P -generi means P -generi over
〈L, ∅〉). We shall later onsider the question of generi lass existene andwill show how to eliminate this Assumption, when establishing �rst-orderproperties of P -generi lass.Easton ForingEaston extended Cohen's independene proof for CH to all regular ardi-nals, showing that the funtion f(κ) = 2κ an exhibit any reasonable behaviorfor regular κ. To do so he developed a lass foring for adding generi subsetsto all regular κ simultaneously. We desribe here a version of his tehnique,where we expliitly add only one generi subset to eah regular κ, therebypreserving GCH. 50



A ondition in P is a funtion p : α(p) −→ L where α(p) ∈ ORD andfor α < α(p), p(α) = ∅ unless α is in�nite and regular, in whih ase p(α) ∈
2<α = {f : β −→ 2|β < α}. In addition we require that p has Eastonsupport whih means that for inaessible κ, {α < κ|p(α) 6= ∅} is bounded in
κ. Extension is de�ned by: p ≤ q i� α(p) ≥ α(q), α < α(q) −→ p(α) extends
q(α). The key to analyzing P is to observe that for eah in�nite regular κ,
P is isomorphi to P (≤ κ) × P (> κ), where P (≤ κ) = {p ↾ [0, κ]|p ∈ P},
P (> κ) = {p ↾ (κ,∞)|p ∈ P}, ordered in the natural way. Note that P (≤ κ)is κ+- (indeed has ardinality κ) and P (> κ) is κ+-distributive (indeed is
κ+-losed: dereasing κ-sequenes of onditions have lower bounds).Long Easton ForingThis is like Easton foring, exept we drop the Easton support require-ment. There are two types of Long Easton foring, depending upon whetheror not the foring is trivial at inaessibles. We begin with the simpler ase,alled Long Easton foring at Suessors. We treat ω as a suessor ardinalin this disussion: 0+ = ω.A ondition in P is a funtion p : α(p) −→ L, α(p) ∈ ORD where p(α) = ∅unless α is a suessor ardinal, in whih ase p(α) ∈ 2<α. Extension isde�ned by p ≤ q i� α(p) ≥ α(q) and for eah α < α(q), p(α) extends q(α).For any in�nite regular κ we an fator P as P (≤ κ)×P (> κ) and P (> κ) is
κ+-distributive. However if κ is inaessible, P (≤ κ) = P (< κ) is not κ+-.Now we onsider (unrestrited) Long Easton foring, where we rede�ne
P so as to allow p(α) ∈ 2<α for any in�nite regular α, not just suessorardinals. Then for any in�nite suessor ardinal κ we an fator P as
P (≤ κ) × P (> κ) and the analysis of Easton foring shows that P is tameand preserves �o�nality > κ� for suessor ardinals κ. However P is noto�nality-preserving in general. A ardinal κ is Mahlo if κ is inaessible and
{α < κ|α inaessible} is stationary in κ.Theorem 4.4. Suppose G is P -generi over L and κ is L-regular. Then
(κ+)L[G] = (κ+)L i� κ is not Mahlo in L.Proof. Let G = 〈Gα|α in�nite, regular〉 be P -generi. For eah α < κonsider Aα ⊆ κ de�ned by: β ∈ Aα ←→ α ∈ Gβ .Claim. Suppose κ is Mahlo. Then {Aα|α < κ} ⊆ L but for no γ < (κ+)L dowe have {Aα|α < κ} ⊆ Lγ . 51



Proof of Claim. For any α < κ and ondition p, we an extend p to q so that
α < κ̄ < κ, κ̄ regular −→ p(κ̄) has length greater than α. Thus Aα is foredto belong to L.Given γ < (κ+)L and a ondition p, de�ne f(κ̄) = length(p(κ̄)) for regular
κ̄ < κ. As κ is Mahlo, f has stationary domain and hene by Fodor'sTheorem we may hoose α < κ suh that length(p(κ̄)) is less than α forstationary many regular κ̄ < κ. Then p an be extended so that Aα isguaranteed to be distint from the κ-many subsets of κ in Lγ .Thus κ+ is ollapsed if κ is Mahlo. Conversely, if κ is not Mahlo, thenhoose a CUB C ⊆ κ onsisting of ardinals whih are not inaessible (wemay assume that κ is a limit ardinal). Suppose that 〈Dα|α ∈ C〉 is ade�nable sequene of dense lasses. Given p we an suessively extend p(≥
α+), α ∈ C so that {q ≤ p|q, p agree ≥ α+, q ∈ Dα} is predense ≤ p. Thereis no di�ulty in obtaining a ondition at a limit stage less than κ preiselybeause onditions are trivial at limit points of C. Thus we have shown that
P (< κ)×P (> κ) preserves κ+ as κ-many dense lasses an be simultaneouslyredued to predense subsets of size < κ. Finally P ≃ P (< κ)×P (> κ)×P (κ)and P (κ) preserves κ+ as it has size κ. 2Remark. Full o�nality-preservation does hold for Thin Easton foring, de-�ned like Long Easton foring but with the requirement that for inaessible
κ, {α < κ|p(α) 6= ∅} is nonstationary in κ.Reverse Easton ForingOur third lass foring example is a type of iteration of set forings �rstonsidered by Silver. De�ne the iteration 〈P (< i)|i ≤ ∞〉 in L by: P (< 0) =
{∅}, the trivial foring; P (≤ i) ≃ P (< i) ∗P (i) where P (i) is (a formula for)the trivial foring unless i ≥ ω is regular, in whih ase P (i) is (a formulafor) the foring 2<i = {p : α −→ 2|α < i}, ordered by extension; for i limitwe take P (< i) = Inverse Limit 〈P (< j)|j < i〉 if i is singular and DiretLimit 〈P (< j)|j < i〉 if i is regular (or if i =∞).Fat 1. For eah i < ∞, P (≤ i) has a dense subordering whih is a set ofardinality ≤ i+ (by onvention, 0+ = ω).Fat 2. For κ regular and in�nite, P (≤ κ) is κ+-.52



We now state the Fatoring Property. For α ≤ β ≤ ∞ we let P [α, β) be(a formula for) the iteration of length β−α stages de�ned just like P , exeptbeginning at index α and ending after β − α stages. Then P (< α) ∗ P [α, β)onsists of pairs (p, q) where p ∈ P (< α) and q is a P (< α)-name for aondition in the iteration P [α, β).Fat 3. (Fatoring Property) P (< β) is isomorphi to P (< α) ∗ P [α, β).Fat 4. For κ regular and in�nite, P (≤ κ)  P [κ + 1,∞) is κ+-losed(desending sequenes of length ≤ κ have lower bounds).These are all the fats needed to establish tameness and o�nality-preservationfor P = Diret Limit 〈P (< i)|i <∞〉.Amenable Class ForingOur fourth and �nal basi example of lass foring is where one has κ-distributivity for every κ. Tameness and preservation of o�nalities followeasily. Note that in this ase one adds a generi lass but no new sets, soGCH preservation is trivial.A simple example is P = all funtions p : α −→ 2, α ∈ ORD, orderedby extension. Another is P = all losed sets of ordinals, ordered by endextension.We pose the question: For whih lass forings P de�ned in L an weonstrut P -generi lasses? We will make sense of this question using Silver'stheory of indisernibles for L, whih will lead us to some unexpeted answers.Constrution of Generi ClassesReall that we imposed the Assumption that P -generi lasses exist forany lass foring de�ned over a ground model 〈M,A〉. This is true when Mis ountable, but not in general. We now drop this Assumption and studyin detail, for the ase of forings de�ned over L, the problem of generi lassexistene. We will see that there is a natural ondition, L-rigidity, sharedby all tame lass-generi extensions of L and if this property fails in V thenthere is a least inner model in whih it fails, L[0#]. We then use L[0#] toprovide a riterion for deiding whih lass forings P de�ned over L havegeneri lasses, by de�ning suh a P to be relevant if it has a generi de�nable53



in L[0#]. Finally, we determine whih of the basi lass-foring examples arerelevant, using properties of the L-indisernibles provided by 0#.First we must verify that if a P -generiG exists then the model 〈M [G], A,G〉does behave as earlier desribed under the various hypotheses on P disussedthere. This is not immediate as we in fat do need the Assumption to provesome of the basi fats about  suh as the fat that  and ∗ oinide, aswell as the De�nability and Truth lemmas for . However note the following:Proposition 4.5. Suppose ϕ is a �rst-order property true in 〈M [G], A,G〉whenever M is ountable and G is P -generi over 〈M,A〉 for a foring Pde�nable over 〈M,A〉. Then ϕ is true for all suh 〈M [G], A,G〉, without theassumption that M is ountable.Proof. Given an arbitrary 〈M [G], A,G〉 let 〈M̄ [Ḡ], Ā, Ḡ〉 be the transitiveollapse of a su�iently elementary ountable submodel and apply the hy-pothesis about ϕ and elementarity to onlude that ϕ holds in 〈M [G], A,G〉.
2 Thus when establishing �rst-order properties of 〈M [G], A,G〉 for P -generi
G, we may in fat use our earlier Assumption. Consequently:Theorem 4.6. If P is one of the basi examples of lass foring over L (Easton,Long Easton at Suessors, Reverse Easton, Amenable) then P is tame andpreserves both o�nalities and the GCH.RigidityWhih forings P de�ned in L have generi lasses? Of ourse if V = Lthen for no nontrivial P does there exist a P -generi lass, however we delarethis hypothesis to be too restritive. A neessary ondition for every p ∈ Pto belong to a P -generi, as we have seen, is that P be tame, and for anysuh P it is onsistent that a P -generi lass exists. However, the possibilitythat a P -generi lass exist for every tame P whih is L-de�nable withoutparameters is ruled out by the following result.Proposition 4.7. There exist tame forings P0, P1 whih are L-de�nable wi-thout parameters suh that if G0, G1 are P0, P1-generi over L, respetively,then 〈L[G0, G1], G0, G1〉 is not a model of ZF .54



Proof. For any ordinal α, let n(α) be the least n suh that Lα is not a modelof Σn-replaement, if suh an n exists. Let S0 = {α|n(α) exists and is even}.
P0 onsists of all losed p suh that p ⊆ S0, ordered by p ≤ q i� q is an initialsegment of p.Note that S0 is unbounded in ORD: Given α, let β be least suh that
β > α and Lβ � Σ1-Replaement. Then n(β) = 2 so β ∈ S0. If G0 ⊆ P0is P0-generi over L then ∪G0 is therefore a losed unbounded sublass ofORD ontained in S0. To show that P0 is tame, it su�es to show that it is
κ-distributive for every L-regular κ : If 〈Di|i < κ〉 is an L-de�nable sequeneof lasses dense on P0 and p ∈ P0 then hoose n odd so that 〈Di|i < κ〉 is
Σn de�nable and hoose 〈αi|i < κ〉 to be �rst κ-many α suh that Lα is
Σn-elementary in L and κ, p, x ∈ Lα where x is the de�ning parameter for
〈Di|i < κ〉. We an de�ne p ≥ p0 ≥ p1 ≥ . . . so that pi+1 meets Di andmax(pi) = αi, using the Σn-elementarity of Lαi

in L. As n(αi) = n + 1 and
n+ 1 is even, we may de�ne pλ to be ∪{pi|i < λ} ∪ {αλ} for limit λ ≤ κ andwe see that q = pκ ≤ p meets eah Di.Now de�ne P1 in the same way, but using S1 = {α|n(α) is de�ned andodd}. Then P1 is also tame yet if G0, G1 are P0, P1-generi over L (respe-tively) then ∪G0,∪G1 are disjoint CUB sublasses of ORD. 2So we need a riterion for hoosing L-de�nable forings for whih we anhave a generi. Our approah is to isolate a �property of transendene� (#)suh that:(a) In tame lass-generi extensions of L, (#) fails.(b) If (#) is true in V then there is a least inner model L(#) satisfying (#).Then our riterion for generi lass existene is: P has a generi i� it hasone de�nable over L(#).De�nition. An amenable 〈L,A〉 is rigid if there is no nontrivial elementaryembedding 〈L,A〉 −→ 〈L,A〉. L is rigid if 〈L, ∅〉 is rigid.We shall take (#) to be: L is not rigid. First we demonstrate property(b) above, i.e., that there is a least model in whih L is not rigid (if there isone at all).Theorem 4.8 If L is not rigid then there exists a CUB lass C of ordinalswhih are L-indisernible: If ϕ is an n-ary formula, α1 . . . αn and β1 . . . βnare inreasing n-tuples from C then L � ϕ(α1 . . . αn)←→ ϕ(β1 . . . βn).55



Proof. We need a lemma.Lemma 4.9. Suppose there exists j : L −→ L. Then there exists suh a
j whih is de�nable (with parameters) and suh that every ardinal λ of
L-o�nality greater than κ satisfying λ̄ < λ −→ Card (λ̄κ)L < λ is a �xedpoint of j, where κ = rit (j) = least α suh that j(α) 6= α. (�rit � standsfor �ritial point�.)Proof of Lemma. We use the ultrapower onstrution. De�ne an ultra�lter Uon P(κ)∩L by: X ∈ U i� κ ∈ j(X). Then there is an elementary embedding
k : L −→ Ult (L,U) where Ult (L,U) is the ultrapower Lκ/U de�ned usingfuntions f : κ −→ L whih belong to L. Thus an element of Ult (L,U) is
[f ] = {g : κ −→ L|g ∈ L and for some X ∈ U , α ∈ X −→ g(α) = f(α)},with E = ∈-relation of Ult (L,U) de�ned in the natural way: [f ]E[g] i�
{α|f(α) ∈ g(α)} ∈ U .The map [f ] 7−→ j(f)(κ) gives an elementary embedding from Ult (L,U)into L and hene Ult (L,U) is well-founded and isomorphi to L. If h :Ult (L,U) ≃ L then j∗ = h ◦ k : L −→ L is de�nable with parameters κ, U .If λ has L-o�nality greater than κ then k (and hene j∗) is ontinuous at λsine any onstrutible f : κ −→ λ is bounded by the onstant funtion cλ̄with value λ̄ for some λ̄ < λ (hene [f ]E[cλ] −→ [f ]E[cλ̄] for some λ̄ < λ).But if [f ]E[cλ̄] then {[g]|[g]E[f ]} has size at most Card (λ̄κ)L, and if this issmaller than λ then j∗[λ] ⊆ λ and hene by ontinuity j∗(λ) = λ.If L is not rigid then there is j : L −→ L with ritial point κ suh thatevery limit ardinal of o�nality > κ is a �xed point of j. It follows that if
F = {α|α a limit ardinal of o�nality > κ} then κ /∈ Hull(κ∪F ) where Hulldenotes the Skolem hull in L.For any lass of ordinals G let G∗ denote {α ∈ G|α = ordertype (α∩G)}.Then de�ne indutively: F0 = F , Fα+1 = (Fα)

∗, Fλ = (
⋂
{Fα|α < λ})∗ forlimit λ. For any α,Hα denotes Hull(κ ∪ Fα). And 〈κα|α ∈ ORD〉 is de�nedby: κ0 = κ, κα+1 = min(Hα − κ), κλ = ∪{κα|α < λ} for limit λ.Claim 1. For every α, κα < κα+1.Proof. We may assume that α is not 0. As κα+1 belongs to Hull(κ ∪ Fα)it is a �xed point of the isomorphism L ≃ H<α = Hull(κ ∪ ⋂
{Fβ|β < α}).But H<α ∩ [κ, κα) = ∅, so κα is not a �xed point of this isomorphism, using

κ < κα. 56



Claim 2. Let παβ:L ≃ Hull(κα∪Fβ). Then παβ �xes κγ when γ < α or when
γ is a suessor ordinal > β + 1. Also παβ(κα) = κβ+1.Proof. γ < α −→ κγ < κα, so learly παβ �xes κγ. If β + 1 < γ, γ suessorthen κγ ∈ Hull(κ ∪ Fγ−1), so κγ is a �xed point of παβ .As κβ+1 ∈ Hull(κα∪Fβ) = H , we have κα ≤ παβ(κα) ≤ κβ+1. Conversely,suppose that κα ≤ δ < κβ+1, δ ∈ H ; we derive a ontradition. Write
δ = t(~ξ, ~η) where the omponents of ~ξ are less than κα and the omponentsof ~η belong to Fβ. Choose ᾱ+1 ≤ α least so that the omponents of ~ξ are lessthan κᾱ+1. Then L � ∃~ξ with omponents < κᾱ+1(κᾱ+1 ≤ t(~ξ, ~η) < κβ+1).Let π:L ≃ Hull(κ ∪ Fᾱ). Then π(κ) = κᾱ+1, π(~η) = η, π(κβ+1) = κβ+1. So
L � ∃~ξ with omponents < κ(κ ≤ t(~ξ, ~η) < κβ+1), ontraditing the de�ntionof κβ+1.Now for any two inreasing n-tuples α1 . . . αn and β1 . . . βn with αn < β1we an obtain π:L −→ L suh that π(καi

) = κβi+1 for all i, by taking
πα1β1

◦ . . . ◦ παnβn. This implies that C = {κα|α ∈ ORD} is a lass of
L-indisernibles. 2Now we introdue 0#. As before, Hull denotes Skolem hull in L.Theorem 4.10. Suppose L is not rigid. Then there is a unique CUB lass sensethat L = Hull(I). Moreover I is unbounded in every unountable ardinaland if 0# = First-Order theory of 〈L,∈, i1, i2, . . .〉 (where the �rst ω elements
i1, i2, . . . of I are introdued as onstants) then we have the following:(a) 0# ∈ L[I], I is ∆1(L[0#]) in the parameter 0# and I is unbounded in αwhenever Lα[0#] � Σ1 replaement.(b) 0#, viewed as a real, is the unique solution to a Π1

2 formula (i.e., a formulaof the form ∀x∃yψ, where x, y vary over reals and ψ is arithmetial).() If f : I −→ I is inreasing, f 6= identity then there is a unique j : L −→ Lextending f with ritial point in I, and every j : L −→ L is of this form.(d) If 〈L,A〉 is amenable then A is ∆1(L[0#]), 〈L,A〉 is not rigid and a �nalsegment of I is a lass of 〈L,A〉-indisernibles.Remarks. (i) As I is losed and is unbounded in every unountable ardinalit follows that every unountable ardinal belongs to I and 0# = First-Order theory of 〈L,∈,ℵ1,ℵ2, . . .〉. (ii) The Σ1
2-absoluteness of L implies thatthe unique solution to a Σ1

2 formula is onstrutible; so in a sense (b) is57



best possible. (iii) I is a lass of strong indisernibles: If ~i,~j are inreasingtuples from I of the same length and x < min(~i), min(~j) then for any ϕ,
L � ϕ(x,~i) ←→ ϕ(x,~j). In fat the proof below shows that any unboundedlass I of L-indisernibles suh that I ∩ Lim I 6= ∅ is neessarily a lass ofstrong indisernibles.Proof. There exists a CUB lass C of L-indisernibles. Let π : Hull(C) ≃ Land we see that I = π[C] is a CUB lass of generating L-indisernibles.Note that α ∈ I −→ Lα ≺ L and therefore L = Σ1-Hull(I). For any Σ1

ϕ(x, y1 . . . yn) let tϕ be the term µxϕ(x, y1 . . . yn), intended to name the L-least x suh that L � ϕ(x, y1 . . . yn), if it exists, and 0 otherwise. Then
L is desribed as the Ehrenfeuht-Mostowski model onsisting of all terms
tϕ(j1 . . . jn) (with j1 . . . jn ∈ I substituting for the variables y1 . . . yn), withterms identi�ed as ditated by Thy〈L,∈, i1, i2, . . .〉 = First-Order theory of
〈L,∈, i1, i2, . . .〉. Thus I is uniquely determined by Thy 〈L,∈, i1, i2, . . .〉. Butif I∗ is another CUB lass of generating L-indisernibles we get I ∩I∗ in�nite(and in fat CUB), hene Thy〈L,∈, i1, i2, . . .〉 = Thy〈L,∈, i∗1, i∗2, . . .〉. So Iis unique. Also note that I is a lass of strong L-indisernibles in the sensethat x < min(~i),min(~j), ~i and ~j of the same length from I implies that
L � ϕ(x,~i) ←→ ϕ(x,~j) for any formula ϕ; if not then we get ~i < min(~j)with {x < min(~i)|L � ϕ(x,~i)} 6= {x < min(~i)|L � ϕ(x,~j)} and min(~i) alimit point of I. But then we an get ~i < ~j0 < ~j1 < . . . of length ORD with
α < β −→ {x < i0|L � ϕ(x,~jα)} 6= {x < i0|L � ϕ(x,~jβ)}; this is absurdbeause there are only set-many hoies for subsets of i0.It follows from the strong indisernibility of I that t(~i,~j) < min(~j) im-plies t(~i,~j) < I-suessor to max(~i). Hene for all i ∈ I ∪ {0}, Hull(i ∪
{i, j1, j2 . . .}) ⊇ Li∗ where i < i∗ ≤ j1 < j2 < . . . are ω-many elements of I,
i∗ = I-suessor to i. So Card (Li∗) = Card (i) and it follows that unoun-table ardinals belong to Lim I. Moreover if i ∈ Lim I then Li = Hull(I ∩ i)and Li is isomorphi to the natural Ehrenfeuht-Mostowski model built from
I ∩ i, using 0# = Thy 〈L,∈, i1, i2, . . .〉 to determine when to identify twoterms tϕ0

(~i0), tϕ1
(~i1). We now verify (a)�(d).(a) Clearly 0# ∈ L[I] as 0# = Thy 〈Liω ,∈, i1, i2, . . .〉 where in = nthindisernible. If α is 0#-admissible (i.e., Lα[0#] � Σ1 replaement) then forany limit λ < α, Liλ ≃ Ehrenfeuht-Mostowski modelM(0#, λ) built from λindisernibles and therefore belongs to Lα[0#], as Σ1-replaement gives us theMostowski ollapse. So α = iα = αth indisernible and λ 7−→ 〈Liλ , {iβ|β <

λ}〉 is ∆1(Lα[0
#]). Hene I is ∆1(L[0#]) (with parameter 0#).58



(b) 0# = Thy 〈L,∈, i1, i2, . . .〉 has the property that for every ountablelimit λ,M(0#, λ) is well-founded and if π : M(0#, λ) ≃ Liλ , π(βth indiserni-ble inM(0#, λ)) = iβ then {iβ|β < λ} is CUB in iλ. This is a Π1
2 property asit says ∀ relation R on ω (R a well-ordering −→ M(0#, <R) is well-foundedand is a model of ϕ) where ϕ is �rst-order. But if 0∗ obeys this property then

M(0∗,ORD) ≃ L and 0∗ = Thy 〈L,∈, i∗1, i∗2 . . .〉 where I∗ = {i∗β|β ∈ ORD} isa CUB lass of generating L-indisernibles. We have seen that I = I∗ andso 0∗ = 0#.() If f : I −→ I is inreasing, f 6= identity then de�ne j : L −→ L by
j (tϕ(j1 . . . jn)) = tϕ(f(j1) . . . f(jn)). This is well-de�ned sine I is a lass of
L-indisernibles. j must be the identity on i = the ritial point of f = theleast i, f(i) > i, as tϕ(j1 . . . jn, k1 . . . km) = tϕ(j1 . . . jn, f(k1) . . . f(km)) when
tϕ(j1 . . . jn, k1, . . . km) < k1. So the ritial point of j = the ritial point of
f belongs to I. Clearly j is unique, given f . If j : L −→ L is arbitrary then
α = the ritial point of j belongs to I, as α = ritial point of j∗ where
j∗(i) = i for unboundedly many i ∈ I and thus if α /∈ I we get α = tϕ(x,~i),
x < α <~i, j∗(~i) = ~i and thus j∗(α) = α, ontraditing α = ritial point of
j∗. Now note that if i ∈ I then j(i) is the ritial point of some j∗ : L −→ Las i /∈ Hull(i∪(I−(i+1))) implies j(i) /∈ Hull(j(i)∪J) where J = j[I−(i+1)]so k : L ≃ Hull(j(i) ∪ J) has ritial point j(i). So j(i) ∈ I.(d) If 〈L,A〉 is amenable then for eah i ∈ I we may write A ∩ i =

tϕi
(~ji, i, ~ki) where ~ji < i < ~ki are all from I. By Fodor's Theorem (ϕi,~ji)is onstant on an unbounded sublass of I and hene by indisernibility wemay assume that A ∩ i = tϕ(~j, i,~ki) for all i ∈ I, i > max(~j) where thehoie of ~ki ∈ I − (i + 1) does not matter. Thus I − (max(~j) + 1) is alass of 〈L,A〉-indisernibles and A is ∆1(L[0#]) in parameters ~j, 0#. We get

j : 〈L,A〉 −→ 〈L,A〉 by shifting I above ~j. 2In ase the onlusion of this Theorem holds (i.e. in ase L is not rigid)we say that �0# exists� and refer to I as the Silver Indisernibles. Note thatif L is not rigid then L[0#] is the smallest inner model in whih L is not rigid.The next theorem shows that L is rigid in its tame lass-generi extensi-ons.Theorem 4.11. Suppose that G is P -generi over 〈L,A〉 and P is tame. Then
L[G] |= 0# does not exist. 59



Proof. Suppose p0 ∈ P, p0  I = Silver indisernibles is unbounded and i < jin I −→ Li ≺ Lj. Suppose that p ≤ p0, p  α̂ ∈ I. Then Lα ≺ L as this istrue in any P -generi extension 〈L[G], A,G〉, p ∈ G. (By Löwenheim-Skolemwe an assume that suh a G exists for the sake of this argument.) Thusan L-Satisfation prediate is de�nable over 〈L,A〉 as L |= ϕ(x) i� for some
p ∈ P below p0, some α with x ∈ Lα, p  ϕ(x̂) is true in Lα. This is aontradition if A = ∅, for then L-satisfation would be L-de�nable. Butnote that for any A suh that 〈L,A〉 is amenable we an apply the sameargument, using the fat that 〈Lα, A∩ Lα〉 ≺ 〈L,A〉 for α in a �nal segmentof I.The previous result was proved independently by A. Beller.The most important su�ient ondition for the existene of 0# is expres-sed by Jensen's Covering Theorem, to whih we turn next. A set X is overedin L if there is a onstrutible Y suh that X ⊆ Y , Card Y = Card X.Covering Theorem. Suppose there exists an unountable set of ordinals whihis not overed in L. Then 0# exists.Using this result we an show:Theorem 4.12. Eah of the following is equivalent to the existene of 0#:(a) L is not rigid.(b) Some unountable set of ordinals is not a subset of a onstrutible set ofthe same ardinality.() Some singular ardinal is regular in L.(d) κ+ 6= (κ+)L for some singular ardinal κ.(e) Every onstrutible subset of ω1 either ontains or is disjoint from alosed, unbounded subset of ω1.(f) There exists j : Lα −→ Lβ , rit (j) = κ, κ+ ≤ α.(g) There exists j : Lα −→ Lβ , rit (j) = κ, (κ+)L ≤ α, α ≥ ω2.Proof. It is straightforward to show that these all follow from the existene of
0#. Also (a) implies the existene of 0# by an earlier result. Conditions (),(d) eah easily imply (b), and we get 0# from (b) by the Covering Theorem.Condition (e) implies (a), sine L −→ L ≃ Ult (L,U), where U onsists ofall onstrutible subsets of ω1 ontaining a losed unbounded subset. To seethat (f) implies the existene of 0#, de�ne an ultra�lter U on onstrutible60



subsets of κ by: X ∈ U i� κ ∈ j(X). Then Ult (L,U) is well-founded, for ifnot then by Löwenheim-Skolem there would be an in�nite desending hainin Ult (Lκ+ , U) whih ontradits κ+ ≤ α.Finally we show that (g) implies the existene of 0#. De�ne U as beforeby: X ∈ U i� κ ∈ j(X). First suppose that κ is at least ω2. We shallargue that U is ountably omplete, i.e. that if 〈Xn|n ∈ ω〉 belong to U then
∩{Xn|n ∈ ω} is nonempty. (This gives 0# as it implies that Ult (L,U) iswell-founded.) By the Covering Theorem, there is F ∈ L of ardinality ω1suh that Xn ∈ F for eah n. Then as we have assumed that κ ≥ ω2, F has
L-ardinality less than κ. We may assume that F is a subset of P(κ) ∩ L,and hene as α is an L-ardinal, F belongs to Lα and there is a bijetion
h : F ←→ γ for some γ < κ, h ∈ Lα. But then F ∗ = {X ∈ F |κ ∈ j(X)}belongs to Lα as X ∈ F ∗ ←→ κ ∈ j(h−1)(h(X)) and F ∗ has nonemptyintersetion as j(F ∗) = Range (j ↾ F ∗) and κ ∈ ∩j(F ∗). Thus {Xn|n ∈ ω}has nonempty intersetion sine it is a subset of F ∗. If κ is less than ω2 thenwe have α ≥ ω2 ≥ κ+ so we have a speial ase of (f). 2The author does not know if �ω2� an be replaed by �ω1� in (g) of theprevious theorem.Relevant ForingWe showed that L is rigid in its tame lass generi extensions and that if
L is not rigid then there is a least inner model L[0#] in whih L is not rigid.We now use these fats to provide a riterion for generi lass existene forlass forings over L.De�nition. A foring P de�ned over a ground model 〈L,A〉 is relevant ifthere is a G P -generi over 〈L,A〉 whih is de�nable (with parameters) over
L[0#]. P is totally relevant if for eah p ∈ P the same is true for P (≤ p) = Prestrited to onditions extending p.Assume that 0# exists. Then any L[0#]-ountable P ∈ L is totally re-levant, as there are only ountably many onstrutible subsets of P (usingthe fat that ω1 is inaessible in L). Note that this inludes the ase of anyforing P ∈ L de�nable in L without parameters.The situation is far less lear for unountable P ∈ L. The next resulttreats the ase of κ-Cohen foring. 61



Proposition 4.13. Suppose κ is L-regular and let P (κ) denote κ-Cohen foringin L: Conditions are onstrutible p : α −→ 2, α < κ and p ≤ q i� p extends
q.(a) If κ has o�nality ω in L[0#] then P (κ) is totally relevant.(b) If κ has unountable o�nality in L[0#] then P (κ) is not relevant.Proof. Let jn denote the �rst n Silver indisernibles ≥ κ.(a) We use the fat that P (κ) is κ-distributive in L. Let κ0 < κ1 < . . .be an ω-sequene in L[0#] o�nal in κ. Then any D ⊆ P (κ) in L belongs toHull(κn∪jn) for some n, where Hull denotes Skolem hull in L. As Hull(κn∪jn)is onstrutible of L-ardinality < κ we an use the κ-distributivity of P (κ)to hoose p0 ≥ p1 ≥ . . . suessively below any p ∈ P (κ) to meet all dense
D ⊆ P (κ) in L.(b) Note that in this ase κ ∈ Lim I, as otherwise κ = ∪{κn|n ∈ ω}where κn = ∪(κ ∩ Hull(κ̄ + 1 ∪ jn)) < κ, κ̄ = max(I ∩ κ), and hene κ has
L[0#]-o�nality ω. Suppose G ⊆ P (κ) were P (κ)-generi over L. For any
p ∈ P (κ) let α(p) denote the domain of p. De�ne p0 ≥ p1 ≥ . . . in G sothat α(pn+1) ∈ I and pn+1 meets all dense D ⊆ P (κ) in Hull(α(pn) ∪ jn).Then p = ∪{pn|n ∈ ω} meets all dense D ⊆ P (κ) in Hull(α ∪ j) where
α = ∪{α(pn)|n ∈ ω} ∈ I, j = ∪{jn|n ∈ ω}. But then p is P (α)-generi over
L, as every onstrutible dense D̄ ⊆ P (α) is of the form D ∩ P (α) for some
D as above. So p is not onstrutible, ontraditing p ∈ G. 2As a onsequene we see that the basi lass foring examples of Eastonand Long Easton foring are not relevant. However, we an resue theseforings by restriting to suessor ardinals, thereby not adding κ-Cohensets for κ of unountable L[0#]-o�nality. Easton foring at Suessors isde�ned as follows: Conditions are onstrutible p : α(p) −→ L where for
α < α(p), p(α) = ∅ unless α is a suessor ardinal of L, in whih ase
p(α) ∈ α-Cohen foring; we also require that if α is L-inaessible then
{β < α|p(β) 6= ∅} is bounded in α. Extension is de�ned in the naturalway: p ≤ q i� p(α) extends q(α) for eah α < α(q). Long Easton foringat Suessors is obtained from Easton foring at Suessors by dropping thesupport ondition.Theorem 4.14. Let P be Easton foring at Suessors, the basi exampleof Reverse Easton foring or Long Easton foring at Suessors. Then P istotally relevant. 62



Indisernible PreservationThough we have shown Easton at Suessors and Reverse Easton to betotally relevant, we an further ask for a generi lass that preserves indiser-nibles. This is important in the ontext of Jensen oding, as we an onlyode a lass by a real (in L[0#]) if the lass preserves (a periodi sublass ofthe) indisernibles.It is too muh to ask that every ondition p be inluded in a generi lassthat preserves indisernibles, as p itself may not (only 2ℵ0 sublasses of Lan).De�nition. A lass A ⊆ L preserves indisernibles if I is a lass of indiser-nibles for the struture 〈L[A], A〉.Theorem 4.15. For eah of Easton at Suessors, Reverse Easton, Thin Ea-ston at Suessors, Coherent Easton at Suessors and Long Easton at Su-essors there is a generi lass G that preserves indisernibles.The Coding TheoremThe lass forings disussed in the previous two hapters provide examplesof set-theoreti universes whih neither ontain 0# nor are obtainable byforing over L by the traditional method of foring, with sets of onditions.Notie however that these universes are �loally set-generi� over L: Eah oftheir sets belongs to an intermediate set-generi extension of L.Solovay posed three questions the solutions to whih require use of a newkind of foring, where sets are produed using a lass of foring onditions.Jensen developed this tehnique to prove his Coding Theorem, whih saysthat any universe an be lass-generially extended to one of the form L[R], Ra real. We now introdue the Solovay questions and prove a speial ase of theCoding Theorem, in whih we assume that 0# is not present in the universeto be oded.Three Questions of SolovaySolovay's three problems eah demand the existene of a real that neitheronstruts 0#, nor is in a set-generi extension of L.63



De�nition. If x, y are sets of ordinals then we write x ≤L y for x ∈ L[y] and
x <L y for x ≤L y, y �L x.The Generiity Problem. Does there exist a real R <L 0# suh that R doesnot belong to a set-generi extension of L?It was to a�rmatively answer this question that Jensen proved his CodingTheorem. Roughly speaking he showed that if G is generi for Easton foringat Suessors and G preserves indisernibles then there is a real R <L 0#,obtained by lass foring over 〈L[G], G〉, suh that L[G] ⊆ L[R] and G isde�nable over L[R]. Then R does not belong to a set-generi extension of Las L[G] is not inluded in any set-generi extension of L.Solovay's seond problem onerns de�nability of reals.De�nition. R is an Absolute Singleton if for some formula ϕ,R is the uniquesolution to ϕ in every inner model ontaining R.Shoen�eld's Absoluteness Theorem states that if ϕ is Π1

2 (i.e., of the form
∀R∃Sψ, ψ arithmetial) then ϕ(R) ←→ M � ϕ(R) where M is any innermodel ontaining R. Thus any Π1

2-Singleton (i.e., the unique solution to a
Π1

2 formula) is an Absolute Singleton; 0# is an example. Also 0 is triviallyan example. Solovay asked if there are any examples lying stritly betweenthese two.The Π1
2-Singleton Problem. Does there exists a real R, 0 <L R <L 0# suhthat R is a Π1

2-Singleton?Note that it follows from the Covering Theorem (relative to R) that if
R <L 0# then R# ∈ L[0#] where R# is de�ned relative to L[R] the waywe de�ned 0# relative to L. In partiular Lℵ1

[R] is elementary in L[R] andtherefore if R is in a P -generi extension of L, P ∈ L then there is suh a Pin Lℵ1
. As ℵ1 is inaessible in L, there are only ountably-many subsets of

P in L and therefore we an build a P -generi ontaining any ondition in P .So we onlude that if R is a nononstrutible real in a P -generi extensionof L then R annot be a Π1
2-Singleton, as there must be other P -generiextensions with reals R′ 6= R satisfying any Π1

2 formula satis�ed by R. Thisis why the Π1
2-Singleton Problem requires Jensen's method: An a�rmativeanswer to the Π1

2-Singleton Problem implies an a�rmative answer to theGeneriity Problem. 64



Solovay's third problem onerns Admissibility Spetra. Let T be asubtheory of ZF and R a real. The T -spetrum of R, ΛT (R), is the lass ofall ordinals α suh that Lα[R] � T . A general problem is to haraterize thepossible T -spetra of reals for various theories T . An important speial aseis when T = T0 = (ZF without the Power Set Axiom and with Replaementrestrited to Σ1 formulas). We may refer to T0 as �admissibility theory,� as anordinal α is R-admissible if and only if it is ω or belongs to the T0-spetrumof R. We refer to the T0- spetrum of R as the admissibility spetrum of Rand denote it by Λ(R).There are some basi fats whih limit the possibilities for Λ(R): First, if
R belongs to a set-generi extension of L then Λ(R) ontains Λ− β for someordinal β, where Λ = Λ(0). This is beause if α ∈ Λ, P ∈ Lα then Lα[G] � T0for P -generi G. Seond, if 0# ≤L R then Λ(R) − β ⊆ L-inaessibles forsome β. This is beause if 0# ∈ Lβ[R] then every α in Λ(R)− β is in Λ(0#)and hene is a Silver indisernible.Thus to get a nontrivial admissibility spetrum for R without 0# we needJensen's methods. An ordinal is reursively inaessible if it is admissibleand also the limit of admissibles.The Admissibility Spetrum Problem. Does there exist a real R ≤L 0# suhthat Λ(R) = the reursively inaessible ordinals?Of ourse we must in fat have R <L 0# as otherwise Λ(R) is too small.The Coding Theorem without 0#We prove the following result of Jensen.Theorem 4.16. Suppose that A ⊆ ORD and 〈L[A], A〉 is a model of ZFC +GCH + 0# does not exist. Then there is an 〈L[A], A〉-de�nable lass foring
P suh that if G ⊆ P is P -generi over 〈L[A], A〉:(a) 〈L[A,G], A,G〉 is a model of ZFC + GCH.(b) L[A,G] = L[R] for some real R and A,G are de�nable over L[R] fromthe parameter R.() L[A] and L[R] have the same o�nalities.The proof makes use of the following onsequene of the Covering Theo-rem. 65



Fat. Assume that 0# does not exist. If j : Lα −→ Lβ is Σ1-elementary,
α ≥ ω2 and κ = ritial point of j then α < (κ+)L.We make the following assumption about the prediate A: If Hα, α anin�nite L[A]-ardinal, denotes {x ∈ L[A] | transitive losure (x) has L[A]-ardinality < α} then we assume that Hα = Lα[A]. This is easily arrangedusing the fat that the GCH holds in L[A].The basi idea of the proof is simple. Let Card denote all in�nite L[A]-ardinals. Also Card + = {α+ | α ∈ Card } and Card ′ = all unountablelimit ardinals. If a ⊆ α++, α ∈ Card we an attempt to �ode� a by b ⊆ α+as follows. We assoiate a subset bξ of α+ to eah ξ < α++ and design b sothat ξ ∈ a i� b, bξ are almost disjoint, i.e. have intersetion bounded in α+.There is a natural foring Ra for doing this, invented by Solovay. A onditionin Ra is a pair (p, p̄) where p is a bounded subset of α+ and p̄ onsists ofat most α-many bξ's with ξ ∈ a. When extending (p, p̄) to (q, q̄), q mustend-extend p, q̄ must ontain p̄ and q − p must be disjoint from all bξ in p̄.Of ourse the foring Ra does not really ode a by a subset of α+ withoutsome assumptions about the bξ's. For example eah bξ should be almostdisjoint from the union of α-many other bξ's; this is easy to arrange. Moreseriously, we need to know how to �nd bξ in L[a ∩ ξ] in a uniform way, sothat a an be indutively reovered from our generi b ⊂ α+. The latter ispossible only if ξ < α++ −→ L[a ∩ ξ] � Card (ξ) ≤ α+. If this fails then wemust �rst �reshape� a to make it true, by foring with bounded subsets of
α++ whih do have this property up to their supremum.It is not lear that the foring for the purpose of reshaping a is ardinal-preserving unless we an apply it in L[c], where c is an already-reshapedsubset of α+++. Jensen's solution to this problem is to both reshape A∩ α+and ode A∩ α+ into a subset of α, for all α simultaneously. Then in e�et,the foring to reshape A∩α+ takes plae in L[c] where c is a reshaped subsetof α++ that odes L[A].As suggested in the previous paragraph there is a foring analogous to Rafor oding a reshaped a ⊆ α+ into a subset of α, for α a limit ardinal. Thusif we ombine all of these forings we obtain a single foring P for oding Aby a real. A ondition is of the form p = 〈(pα, p

∗
α) | α ∈ Card , α ≤ α(p)〉where pα is a (reshaped) bounded subset of α+, p∗α is the �restraint� imposedon pα to ensure that pα+ is oded, and where for α ∈ Card ′ we require that

〈pᾱ | ᾱ ∈ Card ∩ α〉 ode pα. 66



Proof of Theorem 4.16. Let α belong to Card.De�nition. (Strings) Sα onsists of all s : [α, |s|) −→ 2, α ≤ |s| < α+ suhthat |s| is a multiple of α and for all η ≤ |s|, Lδ[A∩ α, s ↾ η] � Card (η) ≤ αfor some δ < (η+)L ∪ ω2.Thus for α equal to ω or ω1, elements of Sα are �reshaped� in the naturalsense, but for α ≥ ω2 we insist that s ∈ Sα be �quikly reshaped� in that
η ≤ |s| be ollapsed relative to A∩ α, s ↾ η before the next L-ardinal. Thiswill be important when we use ∼ 0# to establish ardinal-preservation, viathe above-mentioned Fat. The requirement that |s| be a multiple of α isa tehnial onveniene. Elements of Sα are alled �strings�. Note that weallow the empty string ∅α ∈ Sα, where |∅α| = α. For s, t in Sα we write s < tfor s ≤ t, s 6= t.De�nition. (Coding Strutures) For s ∈ Sα de�ne µ<s, µs indutively by:
µ<∅α = α, µ<s = ∪{µt | t < s} for s 6= ∅α and µs = least limit of limitordinals µ > µ<s suh that Lµ[A ∩ α, s] � s ∈ Sα. And As = Lµs [A ∩ α, s].Thus by de�nition, when α ≥ ω2 there is δ < µs suh that Lδ[A ∩ α, s] �Card (|s|) ≤ α and Lµs � Card (δ) ≤ |s|. The requirement �limit of limitordinals� on µs is a tehnial onveniene.De�nition. (Coding Apparatus) For α > ω, s ∈ Sα, i < α let Hs(i) = Σ1Skolem hull of i ∪ {A ∩ α, s} in As and f s(i) = ordertype (Hs(i) ∩ ORD).For α ∈ Card +, bs = Range (f s ↾ Bs) where Bs = {i < α | i = Hs(i) ∩ α}.Note that if s < t belong to Sα then Range f s, Range f t are almostdisjoint in the sense that their intersetion is bounded in α. The hoie of
f s ↾ Bs rather than f s is a tehnial onveniene.Using the above we will onstrut a tame, o�nality-preserving foring
P for oding 〈L[A], A〉 by a subset Gω of ω1 whih is reshaped in the sensethat proper initial segments of (the harateristi funtion of) Gω belong to
Sω. Then as Gω an be oded into a real by a  foring of size ω1 by theSolovay tehnique mentioned earlier, the theorem follows.De�nition. (A Partition of the Ordinals) Let B,C,D,E denote the lassesof ordinals ongruent to 0, 1, 2, 3 mod 4, respetively. For any ordinal α, αBdenotes the αth element of B, when B is listed in inreasing order and forany set of ordinals X, XB denotes {αB | α ∈ X}. Similarly for C,D,E.67



De�nition. (The Suessor Coding) Suppose α ∈ Card and s ∈ Sα+ . Aondition in Rs is a pair (t, t∗) where t ∈ Sα, t∗ ⊆ {bs�η | η ∈ [α+, |s|)} ∪ |t|,Card (t∗) ≤ α. Extension of onditions is de�ned by: (t0, t
∗
0) ≤ (t1, t

∗
1) i�

t0 ⊆ t1, t∗1 ⊆ t∗0 and:1. |t1| ≤ γB < |t0|, γ ∈ b
s�η ∈ t∗1 −→ t0(γ

B) = 0 or s(η).2. |t1| ≤ γC < |t0|, γ = 〈γ0, γ1〉, γ0 ∈ A ∩ t
∗
1 −→ t0(γ

C) = 0.In (b) above, 〈·, ·〉 is an L-de�nable pairing funtion on ORD so thatCard (〈γ0, γ1〉) = Card γ0 + Card γ1 in L for in�nite γ0, γ1. An Rs-generiover As is determined by a funtion T : α+ −→ 2 suh that s(η) = 0 i�
T (γB) = 0 for su�iently large γ ∈ bs�η and suh that for γ0 < α+ : γ0 ∈ Ai� T (〈γ0, γ1〉

C) = 0 for su�iently large γ1 < α+.Now we ome to the de�nition of the limit oding, whih inorporates theidea of �oding delays.� Suppose s ∈ Sα, α ∈ Card ′ and p = 〈(pβ, p
∗
β) | β ∈Card ∩ α〉 where pβ ∈ Sβ for eah β ∈ Card ∩ α. A natural de�nition of�p odes s� would be: For η < |s|, pβ(f s�η(β)) = s(η) for su�iently large

β ∈ Card ∩α. There are a number of problems with this de�nition however.First, to avoid on�it with the Suessor Coding we should use f s�η(β)Dinstead of f s�η(β). Seond, to lessen on�it with odings at β ∈ Card ′ ∩ αwe only require the above for β ∈ Card + ∩ α. However there are stilldi�ulties in making sure that the oding of s is onsistent with the odingof pβ by p ↾ β for β ∈ Card ′ ∩ α.We introdue oding delays to failitate extendibility of onditions. Therough idea is to ode not using f s�η(β)D, but instead just after the leastordinal ≥ f s�η(β)D where pβ takes the value 1. In addition, we �preode� sby a subset of α, whih is then oded with delays by 〈pβ | β ∈ Card ∩ α〉;this �indiret� oding further failitates extendibility of onditions.De�nition. Suppose α ∈ Card , X ⊆ α, s ∈ Sα. Let µ̃s be de�ned just as wede�ned µs but with the requirement �limit of limit ordinals� replaed by theweaker ondition �limit ordinal�. Then note that Ãs = Lµ̃s [A ∩ α, s] belongsto As, ontains s and Σ1Hull(α∪ {A∩α, s}) in Ãs = Ãs. Now X preodes sif X is the Σ1 theory of Ãs with parameters from α ∪ {A ∩ α, s}, viewed asa subset of α.De�nition. (Limit Coding) Suppose s ∈ Sα, α ∈ Card ′ and p = 〈(pβ, p
∗
β) |

β ∈ Card ∩ α〉 where pβ ∈ Sβ for eah β ∈ Card ∩ α. We wish to de�ne68



�p odes s�. First we de�ne a sequene 〈sγ | γ ≤ γ0〉 of elements of Sα:Let s0 = ∅α. For limit γ ≤ γ0, sγ = ∪{sδ | δ < γ}. Now suppose sγ isde�ned and let f sγ
p (β) = least δ ≥ f sγ (β) suh that pβ(δD) = 1, if suh a

δ exists. If for o�nally many β ∈ Card + ∩ α, f
sγ
p (β) is unde�ned, then set

γ0 = γ. Otherwise de�ne X ⊆ α by: δ ∈ X i� pβ((f sγ
p (β) + 1 + δ)D) = 1 forsu�iently large β ∈ Card + ∩ α. If Even (X) preodes an element t of Sαextending sγ suh that At ontains X and f sγ

p , then set sγ+1 = t. Otherwiselet sγ+1 be sγ ∗XE, if f sγ
p belongs to Asγ∗XE ; if not, then again γ0 = γ. Now

p exatly odes s if s = sγ for some γ ≤ γ0 and p odes s if s ≤ sγ for some
γ ≤ γ0.Note that the Suessor Coding only restrains pβ from taking ertainnonzero values, so there is no on�it between the Suessor Coding andthese delays. The advantage of delays is that they give us more ontrolover where the limit oding takes plae, thereby enabling us to avoid on�itbetween the limit odings at di�erent ardinals.De�nition. (The Conditions) A ondition in P is a sequene p = 〈(pα, p

∗
α) |

α ∈ Card , α ≤ α(p)〉 where α(p) ∈ Card and:1. pα(p) belongs to Sα(p) and p∗α(p) = ∅.2. For α ∈ Card ∩ α(p), (pα, p
∗
α) belongs to Rp

α+ .3. For α ∈ Card ′, α ≤ α(p), p ↾ α belongs to Apα and exatly odes pα.4. For α ∈ Card ′, α ≤ α(p) if α is inaessible in Apα then there exists aCUBC ⊆ α, C ∈ Apα suh that p∗β = ∅ for β ∈ C.For α ∈ Card , P<α denotes the set of all onditions p suh that α(p) < α.Conditions are ordered by: p ≤ q i� α(p) ≥ α(q), p(α) ≤ q(α) in Rpα+ for
α ∈ Card ∩α(p)∩ (α(q) + 1) and pα(p) extends qα(p) if α(q) = α(p). Also for
s ∈ Sα, ω < α ∈ Card , P s denotes P<α together with all p ↾ α for onditions
p suh that α(p) = α, pα(p) ≤ s. To order onditions in P s, �rst de�ne p+for p in P s as follows: p+ = p for p ∈ P<α; for p ∈ P s − P<α, p+ ↾ α = pand p+(α) = (s ↾ η, ∅) where η is least suh that p ∈ P s�η. Now p ≤ q in P si� p+ ≤ q+ in P . Finally, P<s = ∪{P s�η | η < |s|} ∪ P<α.It is worth noting that (3) above implies that f pα dominates the odingof pα by p ↾ α, in the sense that f pα stritly dominates eah f pα�η

p�α , η < |pα|69



on a tail of Card +∩α. The purpose of (d) is to guarantee that extendibilityof onditions at (loal) inaessibles is not hindered by the Suessor Coding(see the proof of Extendibility below).We now embark on a series of lemmas whih together show that P pre-serves o�nalities and that if G is P -generi over 〈L[A], A〉 then for somereshaped X ⊆ ω1, L[A,G] = L[X] and A is L[X]-de�nable from the parame-ter X.Distributivity for Rs Suppose α ∈ Card , s ∈ Sα+ . Then Rs is α+-distributivein As: If 〈Di | i < α〉 ∈ As is a sequene of dense subsets of Rs and p ∈ Rsthen there is q ≤ p suh that q meets eah Di.Proof. Choose µ < µs to be a large enough limit ordinal suh that p, 〈Di |
i < α〉 and A<s belong to A = Lµ[A∩α

+, s]. Let 〈αi | i < α〉 enumerate the�rst α elements of {β < α+ | β = α+ ∩ Σ1Hull of(β ∪ {p, 〈Di | i < α〉,A<s})in A}.Now write p as (t0, t
∗
0) and suessively extend p to (ti, t

∗
i ) for i ≤ α asfollows: (ti+1, t

∗
i+1) is the least extension of (ti, t

∗
i ) meeting Di suh that: (a)

t∗i+1 ontains {bs�η | η ∈ Hi ∩ [α+, |s|)} where Hi = Σ1Hull ofαi ∪ {p, 〈Di |
i < α〉,A<s} in A. (b) If bs�η ∈ t∗i , s(η) = 1 then ti+1(γ

β) = 1 for some
γ ∈ bs�η, γ > |ti|. () If γ0 /∈ A, γ0 < |ti| then ti+1(〈γ0, γ1〉

C) = 1 for some
γ1 > |ti|.The lemma redues to:Claim. (tλ, t

∗
λ) = greatest lower bound to 〈(ti, t∗i ) | i < λ〉 exists for limit

λ ≤ α.Proof of Claim. We must show that tλ = ∪{ti | i < λ} belongs to Sα. Notethat 〈ti | i < λ〉 is de�nable over Hλ = transitive ollapse of Hλ and byonstrution, tλ odes Hλ de�nably over Lµ̄λ
[tλ], where µ̄λ = height of Hλ.So tλ is reshaped, as |tλ| is de�nably singular over Lµ̄λ

[tλ]. By the Fat,
µ̄λ < (|tλ|

+)L if α ≥ ω2. So tλ belongs to Sα. 2The next lemma illustrates the use of oding delays.Extendibility for P s. Suppose that α is a limit ardinal, s belongs to Sα, and
p ∈ P s. Suppose also that X ⊆ α belongs to As. Then there exists q ≤ p in
P s suh that X ∩ β ∈ Aqβ for eah β ∈ Card ∩ α.70



Proof. By indution on α. Let Y ⊆ α be hosen so that Even(Y ) preodes
s and Odd(Y ) is the Σ1 theory of A with parameters from α ∪ {A ∩ α, s},where A is an initial segment of As of limit height large enough to extend
Ãs and ontain X, p. For β ∈ Card ∩ α let Aβ be the transitive ollapseof Hβ = Σ1Hull(β ∪ {A ∩ α, s}) in A and suppose that β is large enoughso that Hβ ontains p. If Hβ ∩ α = β then Even (Y ∩ β) preodes sβ ∈ Sβwhere sβ is the pre-image of s under the natural embedding Aβ −→ A. If
Hβ ∩ α 6= β then |pβ| < (β+)Aβ , in whih ase f pβ is dominated by thefuntion g(γ) = (γ+)Aγ on a �nal segment of Card + ∩ β.Now de�ne q as follows: If Even(Y ∩ β) preodes sβ ∈ Sβ, then qβ = sβ .For other β ∈ Card ′ ∩ α, qβ = pβ ∗ (Y ∩ β)E. For β ∈ Card + ∩ α, qβ =
pβ ∗~0 ∗ 1 ∗ (Y ∩ β)D where ~0 has length g(β).As g ↾ β and Y ∩ β are de�nable over Aβ for β ∈ Card ′ ∩ α we get
g ↾ β, Y ∩ β ∈ Asβ when Even (Y ∩ β) preodes sβ ∈ Sβ . Also g ↾ β, Y ∩ β ∈
Aqβ for other β ∈ Card ′ ∩ α as Odd (Y ∩ β) odes Aβ. And note that forsu�iently large β ∈ Card ′ ∩ α, g ↾ β dominates f pβ on a �nal segment ofCard + ∩ β (and hene q ↾ β exatly odes qβ), unless Even (Y ∩ β) preodes
sβ and sβ = pβ, in whih ase q ↾ β exatly odes qβ = sβ beause p ↾ β does.So we onlude that for su�iently large β ∈ Card ′ ∩ α, q ↾ β exatlyodes qβ and X ∩ β ∈ Aqβ . Apply indution on α to obtain this for all
β ∈ Card ′∩α. Finally, note that the only problem in verifying q ≤ p is thatthe restraint p∗β may prevent us from making the extension qβ of pβ when
qβ = sβ and Even (Y ∩ β) preodes sβ. But property (4) in the de�nition ofondition guarantees that p∗β = ∅ for β in a CUBC ⊆ α, C ∈ As. We mayassume that C ∈ A and hene for su�iently large β as above we get β ∈ Cand hene p∗β = ∅. So q ≤ p on a �nal segment of Card ∩ α, and we mayagain apply indution to get q ≤ p everywhere. 2We ome now to the veri�ation of distributivity for P s. Before we anstate and prove this property we need some preliminary de�nitions.De�nition. Suppose i < β ∈ Card andD ⊆ P s, s ∈ Sβ+. D is i+-predense on
P s if ∀p ∈ P s∃q ∈ P s(q ≤ p, q meets D and q ↾ i+ = p ↾ i+). X ⊆ Card ∩β+is thin if for eah inaessible γ ≤ β, X ∩γ is not stationary in γ. A funtion
f : Card ∩ β+ −→ V is small if for eah γ ∈ Card ∩ β+, Card (f(γ)) ≤ γand Support (f) = {γ ∈ Card ∩ β+ | f(γ) 6= ∅} is thin. If D ⊆ P s ispredense and p ∈ P s, γ ∈ Card ∩ β+ we say that p redues D below γ if forsome δ ≤ γ in Card +, every q ≤ p an be extended to r ≤ q suh that r71



meets D and r ↾ [δ, β] = q ↾ [δ, β]. Finally, for p ∈ P s, f small, f in As wede�ne Σp
f to onsist of all q ≤ p in P s suh that whenever γ ∈ Card ∩ β+,

D ∈ f(γ), and D is predense on P pγ+ , we have that q redues D below γ.Distributivity for P s. Suppose s ∈ Sβ+ , β ∈ Card .1. If 〈Di | i < β〉 ∈ As, Di i
+-dense on P s for eah i < β and p ∈ P s thenthere is q ≤ p suh that q meets eah Di.2. If p ∈ P s, f small, f in As then there exists q ≤ p, q ∈ Σp

f .Proof. We demonstrate 1 and 2 by a simultaneous indution on β. If β = ωor belongs to Card + then by indution, 1 and 2 redue to the following: If
S is a olletion of β-many predense subsets of P s, S ∈ As then {q ∈ P s |
q redues eah D ∈ S below β} is dense on P s. The latter follows, sine P sfators as Rs ∗ Q where Rs  Q is β+-, and hene any p ∈ P s an beextended to q ∈ P s suh that Dq = {r | r ∪ q(β) meets D} is predense
≤ q ↾ β for eah D ∈ S.Now suppose that β is inaessible. We �rst show that 2 holds for f ,provided f(β) = ∅. First selet a CUB C ⊆ β in As suh that γ ∈ C →
f(γ) = ∅ and extend p so that f ↾ γ, C ∩ γ belong to Apγ for eah γ ∈Card ∩ β+. Then we an suessively extend p on [β+

i , βi+1] in the L[A]-least way so as to meet Σp
f on [β+

i , βi+1], where 〈βi | i < β〉 is the inreasingenumeration of C. At limit stages λ, we still have a ondition, as the sequeneof �rst λ extensions belongs to Apβλ . The �nal ondition, after β steps, is anextension of p in Σp
f .Now we prove 1 in this ase. Suppose p ∈ P s and 〈Di | i < β〉 ∈ As and

Di is i+-dense on P s for eah i < β. Let µ0 < µs be a large enough limitordinal so that 〈Di | i < β〉, p and µ̃s belong to Lµ0
[A∩ β+, s]. For i < β, µidenotes µ0 + ω · i < µs. For any γ we let Hi(γ) denote Σ1Hull(γ ∪ {〈Di | i <

β〉, p, µ̃s, s, A ∩ β+}) in Lµi
[A ∩ β+, s].Let fi : Card ∩β → V be de�ned by: fi(γ) = Hi(γ) if i < γ ∈ Hi(γ) and

fi(γ) = ∅ otherwise. Then eah fi is small in As and we indutively de�ne
p = p0 ≥ p1 ≥ · · · in P s as follows: pi+1 = L[A]-least q ≤ pi suh that:(a) q(β) meets all predense D ⊆ Rs, D ∈ Hi(β).(b) q meets Σpi

fi
and Di.() q ↾ i+ = pi ↾ i+. 72



For limit λ ≤ β we take pλ to be the greatest lower bound to 〈pi | i < λ〉,whose existene is guaranteed by the following Claim.Claim. pλ is a ondition in P s, where pλ(γ) = (∪{piγ | i < λ},∪{piγ
∗
| i < λ})for eah γ ∈ Card ∩ β+.Suppose that γ belongs to Hλ(γ)∩β. First we verify that pλγ = ∪{piγ | i <

λ} belongs to Sγ. Let H̄λ(γ) be the transitive ollapse of Hλ(γ) and write
H̄λ(γ) as Lµ̄[Ā, s̄], P̄ = image of P s ∩ Hλ(γ) under transitive ollapse, β̄ =image of β under ollapse. Also write P̄ as R̄s̄ ∗ P Ḡβ̄ where Ḡ denotes an
R̄s̄-generi (just as P s fators as Rs ∗ PGβ , Gβ denoting an Rs-generi).Now the onstrution of the pi's (see onditions (a), (b)) was designedto guarantee: (i) Ḡβ̄ = {p̄ ∈ Rs̄ | p̄ is extended by some p̄i(β̄), i < λ} is
Rs̄-generi over H̄λ(γ), where p̄i = image of pi under ollapse, and (ii) Foreah δ̄ in (Card + of H̄λ(γ)), γ < δ̄ < β̄, {p̄ | p̄ is extended by some p̄i ↾

[γ, δ̄) in P̄ p̄i
δ̄

γ } is P̄ Ḡδ̄
γ -generi over AḠδ̄ = ∪{Ap̄

i
δ̄ | i < λ}, where P̄ Ḡδ̄

γ =

∪{P̄
p̄i

δ̄
γ | i < λ} and P̄

p̄i
δ̄

γ denotes the image under ollapse of P pi
δ

γ = {q ↾

[γ, δ) | q ∈ P pi
δ}, δ̄ = image of δ under ollapse.Note. We do not neessarily have property (ii) above for δ̄ = β̄, and this isthe soure of our need for ∼ 0# in this proof.By indution, we have the distributivity of P t for t ∈ Sδ, δ ∈ Card + ∩ β,and hene that of P̄ t̄ for t̄ ∈ S̄δ̄, δ̄ ∈ (Card + of H̄λ(γ)), δ̄ < β̄. So the �weak�generiity of the preeding paragraph implies that:(d) Lµ̄[A ∩ γ, pλγ ] � |pλγ | is Σ1-singular.Also:(e) Lβ̄ [A ∩ γ, pλγ ] � |pλγ | is a ardinal.Thus pλγ ∈ Sγ (by (d)) provided we an show that when γ ≥ ω2, µ̄ <

(|pλγ |
+)L. But H̄λ(γ)

∼
→ Hλ(γ) gives a Σ1-elementary embedding with ritialpoint |pλγ |, so by the Fat, this is true.The key point is that we also get pλ ↾ γ ∈ Ap

λ
γ , sine pλ ↾ γ is de�nableover H̄λ(γ) and we de�ned Apλ

γ to be large enough to ontain H̄λ(γ), sine
Lβ̄ � |pλγ| is a ardinal by (e) and β̄ is a ardinal of Lµ̄.73



The previous argument applies also if γ = β, using the distributivity of
Rs, or if γ = β ∩Hλ(γ), using the fat that pλβ ollapses to pλγ . If γ < γ∗ =
min(Hλ(γ) ∩ [γ, β)) then we an apply the �rst argument to get the resultfor γ∗, and then the seond argument to get the result for γ.Finally, to prove the Claim we must verify the restraint ondition 4 inthe de�nition of P . Suppose γ is inaessible and for i < λ let Ci be theleast CUB subset of γ in Api

γ disjoint from {γ̄ < γ | piγ̄
∗
6= ∅}. If λ < γ then

∩{Ci | i < λ} witnesses the restraint ondition for pλ at γ. If γ < λ then therestraint ondition for pλ at γ follows by indution on λ. And if γ = λ then
∆{Ci | i < λ} witnesses the restraint ondition for pλ at γ, where ∆ denotesdiagonal intersetion.Thus the Claim and therefore 1 is proved in ase β is inaessible. Toverify 2 in this ase, note that as we have already proved 2 when f(β) = ∅,it su�es to show: If 〈Di | i < β〉 ∈ As is a sequene of dense subsets of P sthen every p ∈ P s na be extended to q ∈ P s that redues eah Di below
β. But using 1 we see that D∗

i = {q | q redues Di below i+} is i+-dense foreah i < β, so again by 1 there is q ≤ p reduing Di below i+ for eah i.We are now left with the ase where β is singular. The proof of 1 anbe handled using the ideas from the inaessible ase as follows. Choose
〈βi | i < λ0〉 to be a ontinuous and o�nal sequene of ardinals < β,
λ0 < β0. As before, we �rst we argue that p ∈ P s an be extended to meet
Σp
f for any small f in As provided f(β) = ∅: Extend p if neessary so that foreah γ ∈ Card ∩ β+, f ↾ γ and {βi | βi < γ} belong to Apγ . Now perform aonstrution like the one used in the inaessible ase, suessively extending

p this time on [β0, βi
+] so as to meet Σp

f on [β0, βi
+] as well as Σpi

fi
's de�nedon [β0, βi

+], to guarantee that pλ is a ondition for limit λ ≤ λ0. Note thateah extension is made on a bounded initial segment of [β0, β) and thereforeby indution Σp
f ,Σ

pi

fi
an be met on these intervals. The result is that p anbe extended to meet Σp

f on a �nal segment of Card ∩ β and therefore byindution an be extended to meet Σp
f . Seond, use the density of Σp

f when
f(β) = ∅ to arry out the proof of 1 as we did in the inaessible ase. Andagain, the general ase of 2 follows from 1. This ompletes the proof. 2The argument of the previous lemma also shows:Lemma 4.17. P is ∆-distributive at κ for all regular κ.Thus P is tame and preserves o�nalities. As L[A,G] = L[X] where74



X ⊆ ω1, we also have GCH-preservation. This ompletes the proof of theCoding Theorem in the ∼ 0# ase.Theorem 4.18. Let P be the foring used above, when A = ∅. Then there isa lass G whih is P -generi over L, whih is de�nable in L[0#] and whihpreserves indisernibles.Proof. For any indisernible i let jn be the �rst n indisernibles ≥ i. Thende�ne sn ∈ Si+ and pn ∈ P sn indutively, meeting the following onditions:
s0 = ∅ and pn is the trivial ondition. sn+1 = πi(p

n)i+ where πi : L→ L is anelementary embedding with ritial point i, and pn+1 is the least q ≤ pn in P snmeeting Σpn

fn
where for β ∈ Card ∩i+, fn(β) = Hull(β∪jn) if β ∈ Hull(β∪jn)and fn(β) = ∅ otherwise. (When β = i we take pnβ+ to be sn.) Let Gi

0 = {p | pis extended by some pn}.
Gi

0 need not be P sn-generi over Asn as all onditions in Gi
0 have emptyrestraint at indisernibles < i. But notie that for i0 < i1 < · · · < in ≤ i in

I, Gi0
0 ∪ · · · ∪G

in
0 is a ompatible set of onditions. We take Gi to be {p | pis extended by q0 ∧ · · · ∧ qn for some hoie of ql ∈ Gil

0 , i0 < · · · < in ≤ iin I}. Now we laim that Gi is P sn-generi over Asn for eah n. Indeed, if
D is predense on P sn and belongs to Asn, D ∈ Hull({k0, · · · , km} ∪ jn) with
k0 < · · · < km < i in I then pn+1 redues D below k+

m, pn+2 redues D below
k+
m−1, · · · and eventually we get pn+m+2 in Gi meeting D.It follows that Gi(< i) = Gi∩P i is generi over Li (for Li-de�nable densesets) and hene G is P -generi over L where G = ∪{Gi(< i) | i ∈ I}. Clearly
G preserves indisernibles. 2Corollary 4.19 (to proof). If A ⊆ ORD preserves indisernibles and L[A]satis�es GCH then there is a real R ∈ L[A, 0#] suh that R preserves in-disernibles and A is de�nable in L[R]. If L[A] � GCH then L[A], L[R] havethe same o�nalities.In fat, it is possible to haraterize those A ⊆ ORD whih are oded byreals R suh that 0# 6≤L R:De�nition. For α, β < ω1, β 6= 0 let Iα,β = {iα+β·γ | γ ∈ ORD} where
〈iα | α ∈ ORD〉 is the inreasing enumeration of I.Corollary 4.20. If A ⊆ ORD and for some α, β < ω1 the lass Iα,β forms agenerating lass of indisernibles for 〈L[A], A〉 then A is de�nable in L[R] forsome real R suh that 0# /∈ L[R]. 75



One an use the preeding Corollary to show that A ⊆ ORD is de�nablein L[R] for some real R, 0# /∈ L[R] i� Iα,β forms a lass of indiserniblesfor 〈L[A], A〉 for some α, β < ω1, β 6= 0. Moreover there are reals R suhthat IR = Iα,β, for any α, β < ω1, β 6= 0 (where IR denotes the Silverindisernibles for L[R]).Solution to the Generiity ProblemTheorem 4.21. (Jensen) There is a real R <L 0# that is not set-generiover L.Proof. Take R ∈ L[0#] to result from applying the proof of the CodingTheorem to the ground model 〈L, ∅〉, obtaining a generi G oded by R. Notethat in L[G] = L[R] there are P (κ+)-generi sets for eah in�nite suessor
L-ardinal κ+, where P (κ+) = κ+-Colen foring. In a P -generi extensionof L, where P ∈ L, there an be no κ+-Cohen set where κ = L-ardinality
(P ). So L[R] is not a set-generi extension of L. 2Note also that R as in the previous Theorem an be hosen to preserveboth L-o�nalities and indisernibles.The other two Solovay problems, the Π1

2-Singleton and AdmissibilitySpetrum problems, also have positive solutions via further elaborations onthe oding method.
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4.5 More about 0#So far we have examined the following topis, using the indiated tehni-ques.1. Construtibility: Fine struture theory, developed to study the generalisedSuslin problem.2. Set Foring over L: Iterated foring with �nite and ountable support,developed to study the Suslin problem and the Borel onjeture.3. Class Foring over L: The oding method, developed to study generiityover L.Next we ame to 0#, whih we introdued to organise the study of lassforing. Soon we will generalise 0# to a �# operation�, whih will lead usto inner models for large ardinals. But �rst we take a loser look at themotivation for introduing 0# in the �rst plae.It will be onvenient to work not with the usual theory ZFC, but with anappropriate lass theory. This allows us to disuss lasses whih are notneessarily de�nable. For an inner modelM , a lass A belongs to M i� A∩xbelongs to M for every set x in M .
V = L is not a theorem of lass theory: The foring method allows us toonsistently enlarge L to models L[G] 6= L where G is a lass that is P -generiover L for some L-foring P , i.e., some partial ordering P that belongs to L.Assume that generi extensions of L do exist, and let us see what impliationsthis has for the nature of the set-theoreti universe.De�nition. A lass C of ordinals is CUB (losed and unbounded) i� it is aproper lass of ordinals whih ontains all of its limit points. A lass X ofordinals is large i� it ontains a CUB sublass.Largeness is not absolute: It is possible that a lass X belonging to L is notlarge but beomes large after expanding the universe by foring.De�nition. A lass X is potentially large i� it is large in a generi extensionof the universe. 77



Can the universe be CUB-omplete over L in the sense that every lass whihbelongs to L and is potentially large is already large? Yes, if 0# exists, asthen eah lass of ordinals belonging to L either ontains or is disjoint froma CUB lass. We now show that this in fat leads to a haraterisation of
0#.Theorem 1. There exists a sequene Xn, n ∈ ω of lasses suh that:1. Eah Xn belongs to L and indeed the relation �α belongs to Xn� isde�nable in L.2. Xn ⊇ Xn+1 for eah n and eah Xn is potentially large.3. If eah Xn is large then 0# exists and therefore the universe is CUB-omplete over L.Thus we have the following piture: Let n be least so that Xn is not large,if suh a �nite n exists, and n = ∞ otherwise. If n is �nite then n an beinreased by going to a generi extension of the universe, further inreasedby going to a further generi extension, and so on. The only alternative isthat the universe is CUB-omplete over L, i.e., that 0# exists.Proof of Theorem 1. We show the following:
(∗) There exists an L-de�nable funtion n : L-Singulars→ ω suh that if Mis an inner model, 0# /∈M :(a) For some k, M � {α | n(α) ≤ k} is stationary.(b) For eah k there is a generi extension of M in whih 0# does not existand {α | n(α) ≤ k} is non-stationary.�Stationary in M� means �intersets every CUB lass whih belongs to
M�.We de�ne n(α). Let 〈Cα | α L-singular〉 be an L-de�nable �-sequene:
Cα is losed unbounded in α, ordertype Cα < α and ᾱ ∈ limCα → Cᾱ =
Cα ∩ ᾱ. Let ot Cα denote the ordertype of Cα. If ot Cα is L-regular then
n(α) = 0. Otherwise n(α) = n(ot Cα) + 1.(a) is lear, as otherwise (using the fat that we are working in a su�ient-ly strong lass theory) there is a losed unbounded C ⊆ L-regulars amenableto M , ontraditing the Covering Theorem and the hypothesis that 0# doesnot belong to M . 78



Now we prove (b). Fix n ∈ ω. In M let P onsist of losed, bounded p ⊆ORD suh that α ∈ p→ α L-regular or n(α) ≥ n+ 1, ordered by p ≤ q i� pend extends q.We laim that P is ∞-distributive in M . Suppose that p ∈ P and 〈Dα |
α < κ〉 is a de�nable sequene of open dense sublasses of P , κ regular. Wewish to �nd q ≤ p, q ∈ Dα for all α < κ. Let C be the lass of all stronglimit ardinals β suh that Dα ∩ Vβ is dense in P ∩ Vβ for all α < κ, a losedunbounded lass of ordinals. It su�es to show that C ∩ {β | n(β) ≥ n+ 1}has a losed subset of ordertype κ+1, for then p an be suessively extended
κ+1 times meeting theDα's, to onditions with maxima in {β | n(β) ≥ n+1};the �nal ondition (at stage κ) extends p and meets eah Dα.Lemma. Suppose m > k, α > ω is regular and C is a losed set of or-dertype α+m + 1, onsisting of ordinals greater than α+m (where α+0 = α,
α+(p+1) = (α+p)+). Then C∩{β | n(β) ≥ k} has a losed subset of ordertype
α+(m−k−1) + 1.Proof of Lemma. We shall use the following easy onsequene of the CoveringTheorem.If 0# does not exist, β ≥ ω2 and of β < Card β then β is singular in L.We prove the lemma by indution on k. Suppose k = 0. Let β be the
(α+(m−1) + 1)st element of C. Then β is L-singular sine it is at least ω2and its o�nality (= α+(m−1)) is less than its ardinality (≥ α+m). Similarly,eah element of Lim(C∩β) is L-singular and therefore Lim(C∩β) is a losedsubset of C ∩ {β | n(β) ≥ 0} of ordertype α+(m−1) + 1, as desired.Suppose that the lemma holds for k and let m + 1 > k + 1, C a losedset of ordertype α+(m+1) + 1 onsisting of ordinals greater than α+(m+1). Let
β be the (α+m + α+m + 1)st element of C. β is L-singular as it is at least ω2and its o�nality is less than its ardinality; so Cβ is de�ned. Let β̄ be the
(α+m + 1)st element of C. Then C̄ = {ot Cγ | γ ∈ C ∩ LimCβ ∩ [β̄, β]} is alosed set of ordertype α+m + 1 onsisting of ordinals greater than α+m. Byindution there is a losed D̄ ontained in C̄ ∩ {γ | n(γ) ≥ k} of ordertype
α+(m−k−1) + 1. But then D = {γ ∈ C ∩ LimCβ | ot Cγ ∈ D̄} is a losedsubset of C ∩{γ | n(γ) ≥ k+ 1} of ordertype α+(m−k−1) +1. As m− k− 1 =
(m+ 1)− (k + 1)− 1 we are done. 79



By the lemma, C ∩ {β | n(β) ≥ n + 1} has arbitrary long losed subsetsfor any n, for any losed unbounded C ⊆ ORD. It follows that P is ∞-distributive. Now to prove (b), we apply the foring P to M , produing Cwitnessing the nonstationarity of {α | n(α) ≤ n}. Of ourse this will notprodue 0# as no sets are added. This ompletes the proof of (∗). Theorem1 now follows, as we may take Xn to be {α | Either α is regular in L or
n(α) ≥ n}.We onjeture another way to obtain 0# through foring, motivated bythe following result.Theorem 2. Assume slightly more than lass theory (preisely: ORD is ω+ω-Erd®s, de�ned below). If 0# exists, P is L-de�nable without parameters andthere exists a P -generi, then there exists a P -generi de�nable in L[0#]. If
P is L-de�nable with parameters and there exists a P -generi, then thereexists a P -generi de�nable in a set-generi extension of L[0#] (indeed, inany extension of L[0#] in whih those parameters are ountable).Thus the inner model L[0#] is saturated with respet to L-de�nable for-ings. If 0# exists, then it an be shown that any inner model whih issaturated in this sense must ontain L[0#]. (Reason: The L-de�nable for-ing to add a CUB sublass to Xn using onstrutible, losed subsets of Xnhas a generi in L[0#]. Thus if 0# exists, eah Xn has a CUB sublass in anyinner model whih is saturated in the above sense, and therefore this innermodel ontains 0#.) A stronger laim would be the following.Conjeture. If the universe is saturated with respet to L-de�nable foringsin the sense of Theorem 2 then 0# exists.To prove this Conjeture it would su�e to show that for Xn as in Theo-rem 1, not only does Xn ontain a CUB sublass in a generi extension ofthe universe, but this an be aomplished via an L-de�nable foring. Thisis reminisent of the following.Theorem (Baumgartner). Suppose that X is a onstrutible subset of ω1and X is stationary. Then there is a onstrutible set-foring P whih addsa CUB subset to X.The P in this Theorem is a foring whih adds a CUB subset to X using��nite onditions�. Is there a version of this result with ω1 replaed by ORD,
X replaed by Xn from Theorem 1? 80



We now turn to the proof of Theorem 2.De�nition. Let A = 〈V,∈, . . .〉 be a struture for a ountable language.
I ⊆ ORD is a good set of indisernibles for A i� γ ∈ I −→ I − γ is a set ofindisernibles for 〈A, α〉α<γ.De�nition. ORD is α-Erd®s i� whenever A = 〈V,∈, . . .〉 is a struture for aountable language, and C is CUB there exists I ⊆ C, ot I = α suh that Iis a good set of indisernibles for A.The proof of Theorem 2 makes use of periodi sublasses of the Silverindisernibles.De�nition. Let I = 〈iγ | γ ∈ ORD〉 be the inreasing enumeration of theSilver indisernibles. For any ordinals λ0 and λ (λ > 0) de�ne Iλ0,λ = {iα | αof the form λ0 + λ · β, β ∈ ORD}. An L-de�nable foring P is λ0, λ-periodii� in a set-generi extension of V , there is a P -generi G suh that Iλ0,λ is alass of indisernibles for 〈L[G],∈, G〉.Fat. If P is λ0, λ-periodi then P has a generi in a set-generi extension of
L[0#].Proof Sketh. Assume that P is L-de�nable without parameters. Considera set-generi extension M of L[0#] in whih λ0 and λ are ountable. Builda tree in M , a branh through whih produes a generi G0 for P ∩ Liλ0+λ·ωrelative to whih Iλ0,λ ∩ iλ0+λ·ω is a good set of indisernibles. As P is λ0, λ-periodi, this tree has a branh, therefore a branh in M , and the resulting
G0 an be �strethed� to a generi for P . If P is L-de�nable with parameters,then we require that those parameters be ountable in M .Proof of Theorem 2. Fix a P -generi G and assume that P is L-de�nablewithout parameters. We shall onstrut another P -generi G∗ suh that forsome λ0 and λ, Iλ0,λ is a lass of indisernibles for 〈L[G∗],∈, G∗〉. Let X bea good set of indisernibles for 〈L[0#, G],∈, G〉 of ordertype ω+ ω suh that
α ∈ X −→ 〈Lα[0

#, G], G〉 is an elementary submodel of 〈L[0#, G], G〉. (Werefer to this last ondition as the �stability� of α relative to 0#, G.)Selet a anonial enumeration of the L-de�nable open dense sublassesof P : Thus let 〈Dn|n ∈ ω〉 be a sequene of prediates suh that eah
Dn(x, α1 . . . αn) is de�nable over L, {x ∈ L | Dn(x, α1 . . . αn)} is an open81



dense sublass of P for eah α1 < . . . < αn in ORD and every L-de�nableopen dense sublass of P is of this form for some n, for some α1 < . . . < αn in
I. We may also assume that {〈n, x, ~α〉|Dn(x, ~α)} is de�nable in L relative toa satisfation prediate for L. For α1 < . . . < αn in ORD we abuse notationand write D(α1 . . . αn) for {x ∈ L|Dn(x, α1, . . . αn)}. Also let D∗(α1 . . . αn) =

∩{D(~β)|~β ⊆ ~α}.Now we onstrut an ω-sequene of terms with Silver indisernible para-meters whih we will use to de�ne G∗.For j0 ∈ X hoose the least tj0(~k0(j0), j0, ~k1(j0)) in D(j0) ∩ G, where tj0is a Skolem term for L,~k0(j0) < j0 < ~k1(j0) is an inreasing sequene ofSilver indisernibles. By the good-indisernibility of X, tj0 = t0, ~k0(j0) = ~k0are �xed. Thus we an write t0(~k0, j0, ~k1(j0)) ∈ D(j0) ∩ G for j0 ∈ X. Bythe stability relative to 0#, G of the elements of X we have: j0 < j1 in
X −→ ~k1(j0) < j1.Next for j0 < j1 inX hoose the least tj0,j1(~k1

0(j0, j1), j0,
~k1

1(j0, j1), j1,
~k1

2(j0, j1))in D∗(~k0, j0, ~k1(j0), j1, ~k1(j1)) ∩ G. By the good-indisernibility of X we anwrite the above term with Silver indisernible parameters as t1(~k1
0, j0,

~k1
1(j0), j1,

~k1
2(j0, j1)).However, we want to argue that ~k1

2(j0, j1) an be hosen independently of
j0. To arrange this, �rst note that tj0,j1(~k1

0(j0, j1), j0,
~k1

1(j0, j1), j1,
~k1

2(j0, j1))= tj0,j1(
~k1

0(j0, j1), j0,
~k1

1(j0, j1), j1,
~k1

2,0(j0, j1), ~∞) where the latter is indepen-dent of the hoie of the Silver indisernibles ~∞ above ~k1
2,0(j0, j1) and where

(~k1
0(j0, j1),

~k1
1(j0, j1),

~k1
2,0(j0, j1)) is the least sequene of ordinals suh that thisterm with parameters belongs to D∗(~k0, j0, ~k1(j0), j1, ~k1(j1))∩G∩Lmin ~∞. Bythe good-indisernibility ofX we an write this as t1(~k1

0, j0,
~k1

1(j0), j1,
~k1

2,0(j0, j1), ~∞).Note that (~k1
0,
~k1

1(j0),
~k1

2,0(j0, j1)) is de�nable in 〈L[G], G〉 from ~∞, ~k0, j0,~k1(j0), j1, ~k1(j1)and therefore ~k1
2,0(j0, j1) is de�nable in 〈L[G], G〉 from ~∞, ~k1(j1) and para-meters ≤ j1.Lemma. ~k1

2,0(j0, j1) is independent of j0.Proof. Enumerate the �rst ω + 1 elements of X in inreasing order as
j0 < j1 < . . . < j = (ω + 1)st element of X and for any m,n let ~k(jn, j) (m)denote the m-th element of ~k1

2,0(jn, j). If the Lemma fails then for some �xed
m, ~k(j0, j)(m) < ~k(j1, j)(m) < . . . forms an inreasing ω-sequene of Silverindisernibles with supremum ℓ ∈ I. By the remark immediately preedingthis Lemma, ℓ has o�nality ≤ j in L[G]. By Covering between L and L[G], ℓ82



has o�nality < (j+ in L[G]) in L. This ontradits the following.Claim. j+ in L[G] = j+ in L.Proof of Claim. If not then in L[G] there is a CUB C ⊆ j suh that C isalmost ontained in eah CUB onstrutible D ⊆ j. But I ∩ j is the inter-setion of ountably many suh D and therefore as j is regular (in L[G, 0#])we get that C is almost ontained in I; so 0# belongs to L[G], ontradition.This proves the Claim and hene the Lemma.Thus we an write t1(~k1
0, j0,

~k1
1(j0), j1,

~k1
2(j1)) ∈D

∗(~k0, j0, ~k1(j0), j1, ~k1(j1))∩

G for j0 < j1 in X. By modifying the term t1 we may assume that ~k1
1(j0) =

~k1
2(j0) for j0 6= min(X). Also we an assume that ~k0 ⊆ ~k

1
0,
~k1(j0) ⊆ ~k

1
1(j0) for

j0 ∈ X and moreover that the struture 〈~k1
1(j0), <〉 with a unary prediatefor ~k1(j0) has isomorphism type independent of j0 ∈ X.We obtain t2 in a similar way: thus,

t2(~k
2
0, j0,

~k2
1(j0), j1,

~k2
1(j1), j2,

~k2
1(j2)) ∈ D

∗(~k1
0, j0,

~k1
1(j0), j1,

~k1
1(j1), j2,

~k1
1(j2))∩Gfor j0 < j1 < j2 in X and ~k1

0 ⊆ ~k2
0,
~k1

1(j0) ⊆ ~k2
1(j0), 〈~k2

1(j0), <〉 with unaryprediates for ~k1
1(j0),

~k1(j0) has isomorphism type independent of j0. Conti-nue in this way to de�ne tn(~kn0 , j0, ~kn1 (j0), . . . , jn, ~k
n
1 (jn)) for eah n and for

j0 < . . . < jn in X. (The analogous version of the Lemma uses the �rst ω+nelements of X.)Let iλ0
= minX and λ = ordertype (

⋃
n

~kn1 (j0)) for j0 ∈ X, an ordinalindependent of the hoie of j0.We may assume that λ is a limit ordinal and in a generi extension where
λ0 is ountable we may arrange that ⋃

n

~kn0 = I ∩ iλ0
. Also note that I − iλ0

isa lass of indisernibles for L. Now in V [g], where g is a Lévy ollapse of iλ0to ω, arry out the above onstrution, arranging that ⋃
n

~kn0 = iλ0
. For anySilver indisernible iδ de�ne ~kn1 (iδ) ⊆ I ∩ (iδ, iδ+λ) so that 〈I ∩ (iδ, iδ+λ), <〉with a prediate for ~kn1 (iδ) is isomorphi to 〈⋃

n

~kn1 (j0), <

〉 with a prediatefor ~kn1 (j0), for iλ0
< j0 ∈ X. De�ne:

G∗ = {p ∈ P | p is extended by some tn(~kn0 , iλ1
, ~kn1 (iλ1

), . . . iλn ,
~kn1 (iλn)) where

λ0 ≤ λ1 < . . . < λn are of the form λ0 + λ · α, α ∈ ORD}.83



Using the indisernibility of I − iλ0
we see that G∗ is ompatible and meetsevery L-de�nable open dense lass on P . Thus P is λ0, λ-periodi. Thisproves Theorem 2.
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5. Extender ModelsIf we are willing to aept the existene of 0#, then we surely should alsoadmit the existene of 0##, whih relates to the model L[0#] in the same wayas 0# relates to L. Indeed, through iteration of a suitable �# operation�, weare led to models muh larger than L, whih an satisfy strong large ardinalaxioms. These are alled extender models.How do we de�ne a # operation? We have said that the existene of
0# is equivalent to the non-rigidity of L, i.e., to the existene of a nontri-vial elementary embedding from L to itself. Let us use this as a basis forgeneralisation. Suppose that M is an inner model satisfying ZFC and let
π : M →M be a nontrivial elementary embedding from M to itself.Theorem 1. (Kunen) Suppose π : M →M is a nontrivial elementary embed-ding. Then for some x ∈M , π ↾ x does not belong to M .Proof of Theorem. First we prove the following Lemma.Lemma 2. Let λ be an in�nite ardinal suh that 2λ = λℵ0 . There exists afuntion F : λω → λ suh that whenever A is a subset of λ of ardinality λand γ < λ, there exists some s ∈ Aω suh that F (s) = γ.Proof of Lemma 2. Let 〈(Aα, γα) | α < 2λ〉 be an enumeration of all pairs
(A, γ) where γ < λ and A is a subset of λ of ardinality λ. By indution on
α < 2λ hoose sα ∈ λω so that sα ∈ Aωα and sα 6= sβ for β < α. De�ne F (s)to be γα if s = sα for some α, F (s) = 0 otherwise. This funtion F has thedesired property, proving Lemma 2.Our next lemma lists some general fats about elementary embeddingsbetween inner models.Lemma 3. Suppose that π : M → N is an elementary embedding of innermodels with ritial point κ. Then κ is a regular ardinal of M and HM

κ+ isontained in N . If HN
κ is ontained in M then κ is inaessible in M .Proof of Lemma 3. If κ were singular in M then hoose γ < κ and a o�nal

f : γ → κ in M . Then π(f) is o�nal in π(κ), but π(f) = f so κ annot bethe ritial point of π. If X is a subset of κ in M , then X = π(X) ∩ κ so85



X belongs to N . As any element of HM
κ+ is oded by a subset of κ in M , itfollows that N ontains eah element of HM

κ+ as well.Suppose that HN
κ is ontained in M . If κ is not inaessible in M thenhoose γ < κ and a surjetion f : 2γ → κ in M . Then π(f) is a surjetionfrom 2γ of N onto π(κ). By hypothesis 2γ of N = 2γ of M and therefore

κ = Range f = Range π(f) = π(κ), a ontradition. This proves Lemma 3.Now to prove the Theorem: Let κ be the ritial point of π and de�ne κ0 = κ,
κn+1 = π(κn). Let λ be the limit of the κn's. We shall show that π ↾ λ doesnot belong toM . Otherwise, λ has o�nality ω inM and therefore π(λ) = λ.Also by Lemma 3 κ (and therefore eah κn) is a strong limit ardinal of M .Therefore λ is a strong limit ardinal of o�nality ℵ0 inM and hene 2λ = λℵ0in M . Let S be the range of π on λ, a subset of λ of M-ardinality λ.By Lemma 2 (applied inM) there is a funtion F : λω → λ inM suh that
M satis�es: The range of F on Aω is all of λ, for eah A ⊆ λ of ardinality
λ. By the elementarity of π and the fat that π(λ) = λ, the same holds for
π(F ). Applying this to the set S = Range (π ↾ λ) we obtain s ∈ Sω in Msuh that π(F )(s) = κ. But s belongs to the range of π, as it equals π(t),where t(n) = π−1(s(n)) for eah n; it follows that κ belongs to the range of
π. This ontradits the fat that κ is the ritial point of π. 2How small an x satisfying the previous Theorem be? Let κ be the ritialpoint of π. Of ourse π ↾ HM

κ belongs to M , as this is just the identity on
HM
κ . And if x belongs to HM

κ+ then again π ↾ x belongs toM , as if f : x→ κis an injetion, we have:
y ∈ x→ π(y) = π(f−1(f(y))) = π(f−1)(π(f(y))) = π(f)−1(f(y)).So the least natural andidate for x satisfying the Theorem is HM

κ+, where κis the ritial point of π.Embeddings π : M → M where π ↾ HM
κ+ belongs to M give rise to verystrong large ardinal properties.De�nition. κ is measurable i� κ is the ritial point of a π : V → M . κis α-strong i� κ is the ritial point of a π : V → M suh that α ≤ π(κ)and every bounded subset of α belongs to M . κ is strong i� κ is α-strongfor every α. If f : κ → κ then κ is f -strong i� κ is the ritial point of a

π : V → M suh that every bounded subset of π(f)(κ) belongs to M . δ86



is Woodin i� for eah f : δ → δ there is a κ < δ losed under f whih is
f ↾ κ-strong. κ is superstrong i� κ is the ritial point of a π : V → M suhthat every bounded subset of π(κ) belongs to M .To analyse these properties we introdue the notion of extender.De�nition. The extender derived from π : M → N (where M,N are innermodels of ZFC) is the restrition Eπ = π ↾ HM

κ(π)+ , where κ(π) is the ritialpoint of π. An extender on M is an extender derived from some embedding
π : M → N . A # for M is an extender derived from some π : M → N where
HM
π(κ(π)) = HN

π(κ(π)).Thus extenders on M are restritions of embeddings of M . Conversely,eah extender on M gives rise to a anonial embedding of M , of whih it isa restrition.Theorem 4. Suppose that E is an extender onM , with ritial point κ. Thenthere is a unique πE : M → NE suh that E is the extender derived from πEand every element of NE is of the form πE(f)(a) for some f : HM
κ → M in

M and a in HNE

πE(κ).Proof (The Ultrapower Constrution). Consider pairs (f, a) where f : HM
κ →

M belongs toM and a ∈ E(HM
κ ). We say that (f, a) and (g, b) are equivalent,written (f, a) =∗ (g, b), i� (a, b) belongs to E({(u, v) ∈ HM

κ | f(u) = g(v)})and (f, a) belongs to (g, b), written (f, a) ∈∗ (g, b), i� (a, b) belongs to
E({(u, v) ∈ HM

κ | f(u) ∈ g(v)}). We write [f, a] for the =∗ equivalenelass of (f, a) and de�ne N∗ to be the struture whose universe onsists ofthese =∗ equivalene lasses, together with the (indued) relation ∈∗ on theseequivalene lasses. By a straightforward indution (using the axiom of hoi-e inM for the quanti�er ase) we have: 〈N∗,∈∗〉 � ϕ([f1, a1], . . . , [fn, an]) i�
(a1, . . . , an) belongs to E({(u1, . . . , un) ∈ H

M
κ |M � ϕ(f1(u1), . . . , fn(un))}).Using this we obtain an elementary embedding π∗

E : M → N∗ de�ned by
π∗
E(x) = [fx, 0], where fx is the funtion on HM

κ with onstant value x.Now suppose that E is derived from π : M → N . Then 〈N∗,∈∗〉 �

ϕ([f1, a1], . . . , [fn, an]) i� (a1, . . . , an) belongs to E({(u1, . . . , un) ∈ HM
κ |

M � ϕ(f1(u1), . . . , fn(un))}) i� (a1, . . . , an) belongs to {(v1, . . . , vn) ∈ H
N
π(κ) |

N � ϕ(π(f1)(v1), . . . , π(fn)(vn))}, so we get an elementary embedding k∗ :
〈N∗,∈∗〉 → 〈N,∈〉 de�ned by k∗([f, a]) = π(f)(a). The embedding π is theomposition k∗ ◦ π∗

E . Note that the range of k∗ inludes all of HN
E(κ) sine87



HN
E(κ) = E(HM

κ ) and for eah a ∈ E(HM
κ ), k∗([id, a]) = a (where id is theidentity on HM

κ ); also the range of k∗ inludes E(κ) = k∗([fκ, 0]).A onsequene of the existene of k∗ : 〈N∗,∈∗〉 → 〈N,∈〉 is that 〈N∗,∈∗〉is extensional, well-founded, set-like (i.e. for any [f, a] ∈ N∗ some set providesrepresentatives to all of the equivalene lasses [g, b] ∈∗ [f, a]) and thereforeisomorphi to a transitive struture 〈NE,∈〉. Write i : 〈N∗,∈∗〉 ≃ 〈N,∈〉.Then de�ne k = k∗ ◦ i−1 and πE = i◦π∗
E. Then π = k ◦πE and as Range k =Range k∗ inludes HN

E(κ) ∪ {E(κ)}, it follows that k−1 is the identity on
HN
E(κ)∪{E(κ)} and therefore k is the identity on HNE

E(κ)+ (whih is ontainedin, but not neessarily equal toHN
E(κ)+). For x ∈ HM

κ+ we have πE(x) ∈ HNE

E(κ)+and therefore π(x) = k ◦πE(x) = πE(x). It follows that the extender derivedfrom πE is the same as that derived from π, namely E. As eah elementof the range of k is of the form π(f)(a) for some f : HM
κ → M in Mand some a in HN

E(κ), it follows that eah element of NE is of the form
k−1◦π(f)(a) = πE(f)(a) for some f : HM

κ → M inM and a inHN
E(κ) = HNE

E(κ).So πE : M → NE has the desired properties. The uniqueness of πE is lear,as if we began with an embedding π : M → N also satisfying the desiredproperties, the above onstrution produes k : NE → N with π = k ◦ πE , kequal to the identity on HNE

E(κ) and therefore as eah element of N is of theform π(f)(a) = k ◦ πE(f)(k(a)) = k(πE(f)(a)) for some a ∈ HNE

E(κ) it followsthat k is onto, and therefore the identity. 2Remarks. (a) We write NE as Ult (M,E). It follows from the ultrapoweronstrution that the notion of extender is �rst-order. Indeed, E is an exten-der on M i� E is an elementary embedding E : HM
κ+ → N0 = ∪(Range E)with ritial point κ and the struture 〈N∗,∈∗〉 resulting from the ultrapoweronstrution using E and M is well-founded.(b) Note that if E is an extender on M with ritial point κ then for anyordinal α, πE(α) has ardinality at most that of (αHκ of M) × (HπE(κ) ofUlt (M,E)), as eah ordinal less than πE(α) is represented in Ult (M,E)by a pair (f, a) where f : HM

κ → α belongs to M and a belongs to HπE(κ)of Ult (M,E). Also πE(α) = ∪πE [α] whenever α has M-o�nality greaterthan the M-ardinality of HM
κ . It follows that if α > πE(κ) is a strong limitardinal of M-o�nality greater than 2<κ then α is a �xed point of πE .() If α is inaessible in M then E ∈ HM

α is an extender on M i� E is anextender on HM
α : If N∗ from the ultrapower onstrution is not well-founded,then this is witnessed by a sequene [fn+1, an+1] ∈

∗ [fn, an], n ∈ ω. Suh a88



witness exists not only in M , but also in HM
α , as we may assume that thefuntions fn take ordinal values less than α.Theorem 5. If κ is measurable, α-strong, strong, f -strong, Woodin or super-strong, respetively then this is witnessed by embeddings of the form πE forsome extender E on V . Thus these properties are �rst-order.Proof. If π witnesses the α-strength of κ then so does πE , where E is derivedfrom π, sine by de�nition α must be less than or equal to π(κ). The sameholds for f -strength, as π(f)(κ) is less than π(κ) for f : κ → κ. As measu-rability, strength, Woodinness and superstrength an be de�ned in terms of

α-strength and f -strength, these properties are all witnessed by embeddingsof the form πE and therefore are �rst-order sine the notion of extender is�rst-order. 2For our next result it will be useful to onsider the following variant ofthe ultrapower onstrution: Suppose that π : M → N has ritial point κand α is a ardinal of N , κ < α ≤ π(κ). Then de�ne N∗
α just like N∗, butonly using pairs (f, a) where a belongs to HN

α . We obtain a well-founded,set-like and extensional struture 〈N∗
α,∈

∗〉, isomorphi to a transitive lass
NE,α, with anonial embeddings πE,α : M → NE,α and kα : NE,α → N ,
kα = id on HN

α . Thus if π : V → N witnesses the α-strength of κ, so does
πE,α. We de�ne the utbak of E to α, written E ↓ α, to be the extenderderived from the embedding πE,α. As eah ordinal less than (E ↓ α)(κ) isrepresented by a pair (f, a) where f : HM

κ → κ, a ∈ HN
α , it follows that

(E ↓ α)(κ) has ardinality 2<α and therefore so does E ↓ α. The true lengthof E is the least α suh that E ↓ α = E.Let us say that a property P (κ) is stronger than a property Q(κ) i� theexistene of a κ satisfying P (κ) implies the existene of a transitive set whihis a ZFC-model and in whih there is a κ̄ satisfying Q(κ̄).Theorem 6. Superstrength is stronger thanWoodinness, Woodinness is stron-ger than strength and strength is stronger than measurability.Proof. Suppose that κ is superstrong via the embedding π and let E be theextender derived from π. We laim that κ is witnessed to be Woodin usingextenders in Hκ, and therefore is Woodin in the ZFC-model Hπ(κ). If not,pik a funtion f : κ→ κ suh that no κ̄ < κ losed under f is witnessed to89



be f ↾ κ̄-strong by an extender in Hκ. Then κ is not witnessed to be f -strongin M = Ult (V,E) using extenders in Hπ(κ). But by superstrength E ↓ αbelongs to M for eah α less than π(κ), and in partiular for α = π(f)(κ)+.Thus E ↓ π(f)(κ)+ witnesses the f -strength of κ in M , ontradition.Suppose that δ is Woodin. We laim that some κ < δ is strong in theZFC-model Hδ. If not, then de�ne f(κ) = (2<g(κ))+ where g(κ) is least sothat κ is not g(κ)-strong in Hδ, and therefore not g(κ)-strong in V . Applythe Woodinness of δ to obtain κ losed under f whih is f ↾ κ-strong, via anembedding π : V → M . By elementarity κ is not π(g)(κ)-strong in M . Butif E is the extender derived from π, we have E ↓ (π(g)(κ)) ∈ M , witnessingthe π(g)(κ)-strength of κ in M , ontradition.Suppose that κ is strong. We laim that there is a measurable ardinalless than κ and therefore the ZFC-model Hκ satis�es that there exists ameasurable ardinal. Suppose not and let π : V → M witness the (2κ)+-strength of κ. Then κ is not measurable in M . But if E is the extenderderived from π, we have E ↓ κ+ ∈ M , witnessing the measurability of κ in
M , ontradition. 2Let us now return to our disussion of Kunen's Theorem. Suppose that
π : M → M and let E be the extender derived from π. Then πE : M →Ult (M,E) has the property that M and Ult (M,E) have the same boundedsubsets of E(κ), where κ is the ritial point of π. Thus if E belonged to
M , we would have a superstrong ardinal in M . The same applies to any
#-embedding forM , i.e., to any embedding π : M → N suh thatM,N havethe same bounded subsets of π(κ), κ = the ritial point of π. Therefore:

M has a superstrong ardinal i� M ontains a sharp for itself.Superstrength is essentially the strongest large ardinal property whih anbe witnessed by an extender embedding. Indeed, if E is an extender on Vand πE : V → Ult (V,E) = M is the resulting ultrapower embedding, then
E annot belong to M , as E maps κ+ o�nally into E(κ)+ of M , where κis the ritial point of E. As E belongs to Hπ(κ)+ it follows that whereas Mmight ontain all bounded subsets of π(κ), it annot ontain all subsets of
π(κ), as some of them ode E itself, whih does not belong to M .
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#-IterationsGödel's universe L provides a anonial inner model of V whih satis�esnot only ZFC, but also GCH. Is there a similar result for the theory ZFC +there exists a superstrong ardinal?Inner Model Conjeture. Suppose that there is a superstrong ardinal. Thenthere is an inner model satisfying ZFC + GCH in whih there is a superstrongardinal.We might try to prove this onjeture as follows. Assume that there is awell-ordering of the universe. (If there is no suh well-ordering, then we aneasily add one by foring without reating new sets.) Let κ be superstrongin V , witnessed by the embedding π : V → M ; thus Eπ is a # for V . Set
M0 = L. Now π ↾ M0 maps M0 to M0 and therefore M0 has a #. Let
M1 = M0[E0] where E0 is the least sharp for M0. Indutively, ifMi has beende�ned then π ↾ Mi maps Mi into Ni = π(Mi) =

⋃Range π ↾ Mi. Perhaps
π ↾ Mi witnesses that Mi has a sharp. De�ne Mi+1 to be Mi[Ei] where Eiis the least sharp for Mi. Take an appropriate limit at limit stages. Thenat some least stage ∞, M∞ must ontain a sharp for itself, and therefore asuperstrong ardinal. If we an arrange that eah Mi satisfy the GCH, thenwe have established the Inner Model Conjeture.There are many di�ulties with the above sketh. As a start, we assumesomewhat more than a superstrong and arry out the above onstrution,ignoring the important problem of ensuring the GCH.De�nition. Suppose that A is a lass. We say that κ is A-strong i� for eahardinal α there exists π : V → M with ritial point κ suh that α ≤ π(κ)and A∩Hα = π(A)∩Hα (= π(A∩Hκ)∩Hα). κ is A-superstrong i� for eahardinal α there exists π : V → M with ritial point κ suh that α ≤ π(κ)and A ∩Hπ(κ) = π(A) ∩Hπ(κ) (= π(A ∩Hκ) ∩Hπ(κ)). V is super-Woodin i�for eah lass A there is a κ whih is A-superstrong.

κ is supersolid i� there is π : V → M with ritial point κ suh that Montains all bounded subsets of π(κ) and in addition π(κ) is regular. κ ishyperstrong i� there is π : V → M with ritial point κ suh thatM ontainsall subsets of π(κ).Proposition 7. Hyperstrength > Supersolidity > Super-Woodinness.91



Proof Sketh. Suppose that κ is hyperstrong, witnessed by π : V → M . As
κ is Mahlo, it follows that π(κ) is also Mahlo, as π(κ) is Mahlo in M and
M ontains all subsets of π(κ). We laim that some κ̄ < κ is supersolid in
Vκ. Otherwise κ is not supersolid in V M

π(κ) = Vπ(κ). But as κ is Mahlo in
M , there exists a regular δ < π(κ) suh that only ordinals less than δ arerepresented in Ult (V,Eπ) by a pair (f, a) where a belongs to Vδ. It followsthat Eπ ↓ δ is an extender sending κ to δ, witnessing the supersolidity of κin Vπ(κ), ontradition.Suppose that κ is supersolid, witnessed by the embedding π : V → M .Then we laim that Vκ is super-Woodin (with respet to all subsets of Vκ). Ifnot, hoose A ⊂ Vκ suh that no κ̄ < κ is A-superstrong in Vκ. Then κ is not
π(A)-superstrong in V M

π(κ) = Vπ(κ). But for CUB-many δ < π(κ), Eδ = Eπ ↓ δwitnesses the superstrength of κ and moreover Eδ(A ∩ κ) = Eδ(π(A) ∩ κ) =
π(A) ∩ Eδ(κ) so in fat the Eδ's witnesses the π(A)-superstrength of κ in
Vπ(κ), ontradition. 2We also need one more simple fat. If π : M → N then we de�ne theritial image of π, written rim π, to be π(κ), where κ is the ritial pointof π. If E is the extender derived from π we also write rim E for rim π.Proposition 8. Suppose that V is super-Woodin. Then for every lass A andevery CUB lass of ordinals C there exists a κ ∈ C whih is witnessed to be
A-superstrong via embeddings with ritial image in C.Proof. Suppose that κ is A,C-superstrong. For any ardinal α hoose π :
V → M with ritial point κ suh that α ≤ π(κ) and A ∩ Hπ(κ), C ∩ π(κ)are the same as π(A) ∩Hπ(κ), π(C) ∩ π(κ). We may also assume that someelement of C lies between κ and π(κ) for eah suh π. But then C∩κ must beunbounded in κ and therefore κ belongs to C. Also π(C) ∩ π(κ) = C ∩ π(κ)is unbounded in π(κ) so π(κ) belongs to C. 2Assume now that V is super-Woodin. Then every inner model M has a
#: Choose π : V → N with ritial point κ suh that M ∩Hπ(κ) agrees with
π(M) ∩Hπ(κ). Then π ↾ M : M → π(M) provides a # for M . The fat thatboth rit π and rim π an be hosen from any CUB lass of ordinals will beused a bit later.As suggested above, a # iteration is, roughly speaking, a sequeneM0,M1, . . .of inner models where: 92



M0 = L
Mi+1 = Mi[Ei], where Ei is a # for Mi

Mλ = the limit of 〈Mi | i < λ〉 for limit λ.The type of model that arises through suh an iteration is alled an extendermodel and is of the form L[E] where E = 〈Eα | α ∈ ORD〉 is a sequene ofextenders (for appropriate models). For any extender E we de�ne the indexof E, written ind E, to be ∪(Range E ∩ORD).De�nition. An extender sequene is a sequene E = 〈Eν | ν ∈ ORD〉 suhthat for all ν, Eν is either empty or an extender on L[E ↾ ν] suh that:1. ν = ind Eν .2. Let κ be the ritial point of Eν . The Eν preserves E ↾ ν: if π is theanonial embedding L[E ↾ ν] → Ult (L[E ↾ ν], Eν ] then E ↾ ν = π(E ↾ ν) ↾

ν.An extender model is a struture LE = 〈L[E], E〉 where E is an extendersequene.To arry out our indutive de�nition of extender models we must onsiderwell-orderings of length greater than ORD. To formalise this it is onvenientto work in a strengthened lass theory. We shall assume:
(∗) There is a relation E on V suh that V ∗ = 〈V,E〉 is a model of ZFC−with an element isomorphi to 〈V,∈〉.Fix suh a V ∗ and let < be the well-ordering of its ordinals. An element ofthe �eld of < is alled a hyperordinal and we order hyperordinals using <.Then our desired de�nition of the extender modelsMi is by indution on thehyperordinal i. Fix also a well-ordering of V belonging to V ∗ to be used inthis indution.We explain now what is done at suessor stages. Suppose that M = LEis an extender model and suppose that F is an extender on M with ritialpoint κ, ν = ind F , F [E ↾ κ] = E ↾ F (κ), HM

κ ⊆ L[E ↾ κ] and HM
F (κ) ⊆

L[E ↾ F (κ)]. Then M [F ] is de�ned to be the extender model with extendersequene E∗, where E∗
σ = Eσ for σ < F (κ), E∗

σ = F [E ↾ (κ+ of M)]σ for
F (κ) ≤ σ < ν, E∗

ν = F and E∗
σ = ∅ for ν < σ.At limit stages we have: 93



De�nition. Suppose that 〈Mi | i < λ〉 is a sequene of extender models withorresponding extender sequenes Ei, i < λ. Then the limit of the Mi's,
lim〈Mi | i < λ〉, is the extender model LE where E is de�ned by: Eν = ∅unless Ei ↾ ν + 1 = Ej ↾ ν + 1 for all su�iently large i, j < λ, in whih ase
Eν is the ommon value of (Ei)ν for su�iently large i < λ.Theorem 9. Assume that V is super-Woodin and isomorphi to an elementof some ZFC− model V ∗ = 〈V,E〉. Fix a well-ordering of V in V ∗ and let <denote the well-ordering of the ordinals of V ∗, alled hyperordinals. De�ne asequene of extender models Mi = LEi , i a hyperordinal, as follows:
M0 = L, with (E0)ν = ∅ for all ν
Mi+1 = Mi[Fi] where Fi is the least # for Mi suh that if κi is the ritialpoint of Fi then Fi(Ei ↾ κi) = Ei ↾ Fi(κi), HMi

κi
⊆ L[Ei ↾ κi] and HMi

Fi(κi)
⊆

L[Ei ↾ Fi(κi)]

Mλ = lim〈Mi | i < λ〉 for limit hyperordinals λ.Then Mi is de�ned for all i and for some hyperordinal ∞, M∞ � There is asuperstrong ardinal.Proof. Suppose that Mi is de�ned and we wish to show that Fi exists. ByProposition 8 there exists an embedding π : V → M with ritial point κsuh that π(Ei ↾ κ) = Ei ↾ π(κ), HMi
κ ⊆ L[Ei ↾ κ] and HMi

π(κ) ⊆ L[Ei ↾ π(κ)].Then Eπ is a andidate for Fi.Now suppose that no Mi has a superstrong ardinal.We show by indution that for eah ordinal α, rim Fi ≥ α for su�ientlylarge i (where rim Fi = Fi(κi), the ritial image of Fi). Suppose thatthis is true for α and we wish to show that rim Fi > α for su�ientlylarge i. Choose i0 so that rim Fi ≥ α for i ≥ i0. If rim Fi > α for all
i ≥ i0 then we are done. Otherwise hoose i1 ≥ i0 suh that rim Fi1 = α.We laim that rim Fj > ind Fi1 for all j > i1. Otherwise let i2 > i1 beleast so that rim Fi2 ≤ ind Fi1 . Then Fi1 belongs to the model Mi2 andtherefore ind Fi1 < α+ of Mi2 . It follows that rim Fi2 is at most α as it isan inaessible ardinal of Mi2 . By hoie of i0, in fat rim Fi2 equals α.Now by de�nition, HMi2

α is ontained in L[Ei2 ↾ α] whih equals L[Ei1 ↾ α] asall Fi, i1 ≤ i ≤ i2, preserve Ei up to α and therefore Ei ↾ α does not hangebetween i1 and i2. Thus Mi2 ontains the extender Fi1 and all boundedsubsets of α = rim Fi1 belong to Ult (Mi2 , Fi1). (The latter is well-founded94



as it embeds into Ult (V, F ∗
i1
), where Fi1 is the restrition to Mi1 of the V -extender F ∗

i1
.) Thus Fi1 witnesses the superstrength of its ritial point κi1in Mi2 , ontrary to hypothesis.As rim Fi is eventually at least α for any ordinal α, it follows that Fi iseventually unde�ned, in ontradition to the �rst paragraph of the proof. 2How an we ensure that the inner models Mi of the previous theoremsatisfy GCH? A natural way is to enfore the Gödel property :Gödel Property. Suppose that V = LE is an extender model. If X is a subsetof the in�nite ardinal κ then X belongs to LEκ+.In our indutive de�nition of theMi's, we begin withM0 = L, whih satis�esthe Gödel property by virtue of Gödel's proof of the GCH in L. Now supposethat Mi satis�es the Gödel property and we wish to maintain this propertywhen de�ning Mi+1. Write Mi+1 = Mi[Fi], where Fi has index νi. As Fi anbe oded by a subset of rim Fi = Fi(rit Fi), it follows by Gödel's argumentthat the Gödel property holds for κ ≥ rim Fi. Also if κ is less than rim Fiand X is a subset of κ in Mi, then sine the Gödel property holds for X in

Mi it also holds for X inMi+1, as Mi+1 agrees withMi up to rim Fi and κ+of Mi+1 is at least κ+ of Mi. Now let X be a bounded subset of rim Fi in
Mi+1−Mi and hoose ν suh that X belongs to LEi+1

ν . Then ν is at least νi.For simpliity let us assume that X = R is a subset of ω. We would like toguarantee the Gödel property for R in Mi+1. Of ourse the di�ulty is that
R does not appear until stage ν, whih may be unountable in Mi+1.So onsider H = the Skolem hull of {R} in LEi+1

ν . Then H is ountableand R belongs to the ountable struture M i+1 = the transitive ollapse of
H . We replaeMi+1 by M∗

i+1, the extender model obtained by adding emptylevels to the top of M i+1. We have the Gödel property for M∗
i+1, as thismodel is of the form L[S] for some real S.But we must show that this new indutive de�nition onverges to a modelof a superstrong. For this purpose we need to know that when �hulling down�to form M i+1, not too muh information is lost. In partiular we would liketo know that we still have all the reals present in Mi. The ruial propertyneeded is the following:

(∗) Suppose that H is a ountable elementary submodel of N = L
Ei+1

ν . Thenthe reals in H form an initial segment of the reals in N .95



Currently, the only known tehnique for proving (∗) is to use the theoryof iteration and omparison. Suppose that M = LEα is an initial segmentof an extender model. We an use our earlier ultrapower onstrution toform Ult (M,F ) whenever F is an extender on M (i.e., derived from someembedding M → N). By taking repeated ultrapowers and taking diretlimits at limit stages, we from an iteration of M . In an iteration, we allowourselves to trunate the urrent iterate Mi of M , by replaing Mi by oneof its proper initial segments. We onsider iterable M , whih give rise towell-founded iterates, with only �nitely many trunations ouring in anyiteration. When iterating the reals do not hange, exept when trunationours, when a �nal segment of the reals may be lost.Comparison says the following:Comparison. Suppose that M,N are iterable. Then either some iterate M∗of M without trunations is an initial segment of an iterate N∗ of N , orvie-versa.It follows from Comparison that if M,N are iterable then either the reals of
M form an initial segment of the reals of N , or vie-versa. This yields (∗):Let H = the transitive ollapse of H . Then either the reals of H form aninitial segment of the reals of N = L

Ei+1

ν or vie-versa. But as the reals of Hequal the reals of H ⊆ N , the former must hold, as desired.Unfortunately obtaining iterable extender models is problemati and hasnot yet been arried out to the level of a superstrong ardinal. One does havethe desired theory at the level of a Woodin ardinal, and therefore the innermodel onjeture has been proven, if one replaes �superstrong� by �Woodin�in its statement.
2 in Extender ModelsFor an extender model LE to serve as a good analogue of L in the largeardinal ontext, it would be uesful to know that not only GCH, but alsoJensen's 2 priniple holds in suh a model. Shimmerling and Zeman esta-blished this result for the extender models whih are known to satisfy GCH.We now disuss some of the ideas behind this proof.Suppose that V = LE is an extender model and �x an unountable ardi-nal κ. We would like to prove the following version of 2 for ordinals between

κ and κ+: 96



2κ. There exists 〈Cν | κ < ν < κ+, ν limit〉 suh that Cν is CUB in ν, Cνhas ordertype ≤ κ and ν̄ ∈ LimCν → Cν̄ = Cν ∩ ν̄.Let's begin by realling some of the ideas behind the proof of this priniplein L. It su�es to de�ne the Cν for limit ordinals ν < κ+ suh that Lν � κis the largest ardinal, as the set of suh ν forms a CUB subset of κ+. Let
ν be suh a limit ordinal and hoose β(ν) ≥ ν least so that ν ⊆ the ΣnSkolem hull of κ ∪ {p} in Lβ(ν) for some n and some parameter p ∈ Lβ(ν).We assume that n = 1, β(ν) is a limit ordinal and that p = p(ν) is least inthe maximum-di�erene ordering ≤∗ of �nite sets of ordinals: p ≤∗ q i� thelargest ordinal in (q − p) ∪ (p− q) belongs to q. For any α < κ we onsider
Hα = the Σ1 Skolem hull of α∪{p(ν)} in Lβ(ν), as well as βα = sup(Hα∩β(ν))and να = sup(Hα ∩ ν). The rough idea is to de�ne Cν to be the olletion ofthose να whih are less than ν.One must verify oherene: ν̄ ∈ LimCν → Cν̄ = Cν ∩ ν̄. Choose α sothat ν̄ = να. The key step is to show:
Lβ(ν̄) is the transitive ollapse of H = the Σ1 Skolem hull of ν̄ ∪ {p(ν)} in
Lβα.Then one also veri�es that p(ν̄) is the image of p(ν) under the ollapsingmap, and ultimately that oherene holds. In the L-ontext we neessarilyhave that H is isomorphi to Lβ̄ for some β̄, by ondensation, and then onean argue that β̄ equals β(ν̄). The di�ulty in the LE-ontext is that Hneed not be of the form LE

β̄
, in ases where Eβ(ν) is nonempty.Let us take a loser look at this last point. Suppose that F = Eβ(ν) isan extender with ritial point γ < κ. Thus F is a funtion from (Hγ+ of

LEβ(ν)) = Hγ+ o�nally into LEβ(ν). Typially, βα < β(ν) and therefore F ∩LEβαis only partially de�ned on Hγ+ . This means that the transitive ollapse of
H is a struture LĒ

β̄
with a funtion F̄ = Ēβ̄ at the top whih is not anextender, but a funtion mapping a proper subset of Hγ+ o�nally into LĒ

β̄
.Suh a funtion is alled an extender fragment, as its domain is smaller thanit should be.This suggests that when de�ning Cν̄ we should not use the usual ollapsingstruture LEβ(ν̄), but rather an appropriate �fragment struture� assoiatedto ν̄, in order to obtain oherene. But what fragment struture do wehoose? It turns out that all andidates LĒ

β̄
for the fragment struture have97



the following property: The ultrapower of LĒ
β̄
by the extender fragment Ēβ̄ isequal to the usual ollapsing struture LEβ(ν̄). Thus we are led to an analysisof the di�erent ways in whih the usual ollapsing struture LEβ(ν̄) an beobtained via a fragment ultrapower.The possible fragments are parametrised by pairs (µ, q), where µ is aardinal less than κ and q is an initial segment of the standard parameter

p = p(ν̄). (Thus we view p as a �nite set of ordinals, and q is of the form p∩δfor some ordinal δ.) A fragment is assoiated to (µ, q) provided X(µ, q) = the
Σ1 Skolem hull of µ∪{p−q} in LEβ(ν̄) does not interset the interval [µ,max q];in this ase the assoiated fragment is π ↾ (Hµ+ of X̄(µ, q)) where X̄(µ, q) isthe transitive ollapse of X(µ, q) and π is the inverse to the ollapsing map.We are interested in strong fragments whih have the additional propertythat X(µ, q) and the same hull with p − q replaed by p have the samesubsets of µ after transitive ollapse.For any q we onsider D(q) = {µ | (µ, q) gives rise to a strong fragment}.This is losed and bounded in κ. Finally onsider the smallest initial segment
q = q(ν̄) of p suh that D(q) is nonempty and the largest element µ = µ(ν̄)of the assoiated D(q). The desired fragment is the one assoiated to thispair (µ(ν̄), q(ν̄)). Shimmerling-Zeman prove oherene for this hoie offragment.
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6. Set Foring over Extender ModelsSingular CardinalsFirst we reall the following onsequene of Jensen's Covering Theorem.Theorem 1. Suppose that 0# does not exist. Then the GCH holds at allsingular strong limit ardinals.Proof. Suppose that κ is a singular strong limit ardinal and let λ be theo�nality of κ. Then 2κ = κλ. As every subset of κ of ardinality λ isontained in a onstrutible one of ardinality at most λ+, κλ is at most
κ+ · 2λ

+

= κ+. 2We will show that the onlusion of this theorem an be violated if weassume the existene of large ardinals. First we need a method for makinga ardinal singular without ollapsing it.Prikry ForingTheorem 2. Let κ be a measurable ardinal. Then there is a generi extensionin whih the o�nality of κ is ω and no ardinals are ollapsed. Moreover,no bounded subsets of κ are added.Proof. Let U be the ultra�lter on κ derived from an embedding π : V → Mwith ritial point κ. I.e., U is the olletion of subsets of κ de�ned by
A ∈ U i� κ ∈ π(A).Let P onsist of all pairs p = (s, A) where s is a �nite subset of κ and Abelongs to U . Extension is de�ned by
(s, A) ≤ (t, B) i�(i) t is an initial segment of s(ii) A is a subset of B(iii) s− t ⊆ B.Two onditions with the same �rst omponent are ompatible, sine U is a�lter. Thus P has the κ+- and therefore all ardinals greater than κ arepreserved by P . 99



Let G be P -generi. Then κ has o�nality ω in V [G], as ⋃
{s | (s, A) ∈ Gfor some A} is an unbounded subset of κ of ordertype ω.It remains only to show that P does not add new bounded subsets of κ.The proof is based on two lemmas.Lemma 3. Suppose that f : [κ]<ω → 2, where [κ]<ω denotes the set of �nitesubsets of κ. Then there exists A ∈ U suh that for eah n, f is onstant on

[A]n, the set of subsets of A of size n.Proof of Lemma 3. First note that U is a normal ultra�lter, i.e., if Ai belongsto U for eah i < κ then so does ∆{Ai | i < κ} = {i < κ | i ∈ Aj for all j < i}.This is beause by hypothesis κ belongs to π(Ai) = (π(〈Ai | i < κ〉))i foreah i < κ, and therefore κ belongs to ∆ π({Ai | i < κ}) = π(∆{Ai | i < κ}).Now by indution on n we show that there exists A ∈ U suh that fis onstant on [A]n. This is lear for n = 1, sine U is an ultra�lter. If itholds for n then for eah i < κ hoose Ai ∈ U suh that fi is onstant on
[Ai]

n, where fi is de�ned on κ− (i+ 1) by fi(α1, . . . , αn) = f(i, α1, . . . , αn).Let A∗ = ∆{Ai | i < κ} and hoose A ⊆ A∗ in U suh that fi has thesame onstant value on [Ai]
n for eah i ∈ A. Then f is onstant on [A]n+1,ompleting the indution.Now by interseting sets An ∈ U suh that f is onstant on [An]

n for eah
n, we get the desired set A ∈ U . 2Lemma 4. Let ϕ be a sentene of the foring language and (s0, A0) a ondi-tion. Then there exists A ⊆ A0 in U suh that (s0, A) deides ϕ.Proof of Lemma 4. We may assume that minA0 > max s0. Let S+ be theset of s ∈ [A0]

<ω suh that (s0 ∪ s, A)  ϕ for some A ⊆ A0 and S− the setof s ∈ [A0]
<ω suh that (s0 ∪ s, A) ∼ ϕ for some A ⊆ A0. By Lemma 3,hoose A ∈ U suh that for eah n, either [A]n ⊆ S+, [A]n ⊆ S− or [A]n isdisjoint from S+ ∪ S−.We laim that (s0, A) deides ϕ. If not then there are (s0∪s, B), (s0∪t, C)extending (s0, A) whih fore ϕ,∼ ϕ, respetively. We may assume that sand t have the same length n. But then s ∈ S+, t ∈ S− and therefore [A]nintersets both S+ and S−, ontrary to the hoie of A. 2Now suppose that (s, A)  σ is a subset of λ < κ. For eah i < λ, hoose

Ai ⊆ A suh that (s, Ai) deides the sentene i ∈ σ. Then (s, A∗) fores that100



σ is in the ground model, where A∗ =
⋂
iAi. This ompletes the proof ofTheorem 2. 2Our strategy to obtain a singular strong limit ardinal where GCH fails isnow as follows. We will show that the GCH an fail at a measurable ardinal

κ. Then by applying Prikry foring to κ, we obtain a singular strong limitardinal of o�nality ω where the GCH fails.First we state a general lemma whih an be used to extend an embedding
k : M → N to a generi extension of M .Proposition 5. Let k : M → N be an elementary embedding between ZFCmodels, P ∈ M , G P -generi over M and let H be k(P )-generi over N .If k[G] ⊆ H then there exists k∗ : M [G] → N [H ] extending k suh that
k(G) = H .Proof. If k[G] ⊆ H de�ne k∗ by k∗(σG) = k(σ)H . This is well-de�ned,as if σG = τG then there is p ∈ G suh that p  σ = τ and therefore
k(p)  k(σ) = k(τ), yielding k(σ)H = k(τ)H , sine k(p) belongs to H .Similarly k∗ is elementary. As k sends a standard P -name for an element of
M to a standard k(P )-name for the image of that element, it follows that k∗extends k. Similarly, as k sends a standard P -name for the generi G to astandard k(P )-name for the generi H , we get k(G) = H . 2Theorem 6. Suppose that it is onsistent to have GCH and a ardinal κ whihis κ++-strong. Then it is onsistent to have the GCH fail at a measurableardinal.Proof. Suppose that V satis�es GCH and has a κ whih is κ++-strong,witnessed by an embedding π : V → M . We may assume that M is theultrapower of V by an extender E with ritial point κ, and that E equals
E ↓ κ++. Thus every element ofM is of the form π(f)(a), where f : Hκ → Vand a ∈ Hκ++. Note that M is losed under κ-sequenes, as if for eah i < κ,
mi ∈M is represented as π(fi)(ai), we an represent 〈mi | i < κ〉 by π(f)(a)where f(〈xj | j < i〉) = 〈fj(xj) | j < i〉 and a = 〈ai | i < κ〉. Also sine Hκ++is ontained in M , we have that κ++ = κ++ of M .Let U be E ↓ κ+, the �measure� derived from E, and πU : V → N =Ult (V, U) the ultrapower embedding given by U . Using the same argument101



as used above for M , N is losed under κ-sequenes. Also π = k ◦ πU where
k : N →M is given by k(πU (f)(a)) = π(f)(a) for a ∈ Hκ+ .Let λ be the κ++ of N . Sine the GCH holds at κ, λ < κ++ = κ++ of
M . It follows that λ is the ritial point of k : N → M . Every element of
M is of the form π(f)(a) for some a ∈ Hκ++. Now π(f)(a) = (k(πU(f)) ↾

Hκ++)(a) = k(πU (f) ↾ HN
λ )(a). Therefore every element of M is of the form

k(g)(a) for some a ∈ Hκ++ and some g ∈ N whose domain has N -ardinality
λ. Our goal is to extend the embedding π to a generi extension of V inwhih 2κ = κ++ and in whih this extension of π is de�nable. We shall �rstshow how to extend π to the natural reverse Easton extension of V in whih
2κ = κ++, and then extend this embedding one more to a further generiextension in whih this seond extension of π is de�nable.Let P = Pκ+1 be the reverse Easton iteration where at stage α ≤ κ,
Pα+1 = Pα ∗ Qα, where Qα is trivial unless α is inaessible, in whih ase
Qα = Add (α, α++)V [Gα], the foring to add α++ subsets to α with ondi-tions of size less than α. We use Easton supports, taking diret limits atinaessibles and inverse limits elsewhere.Let G be Pκ-generi over V and let g be Qκ-generi over V [G]. Our�rst step is to extend π and πU to V [G]. Thus we must hoose generisfor π(Pκ) = π(P )π(κ) and πU(Pκ) = πU(P )πU (κ) ontaining π[G] and πU [G],respetively. Up to stage κ, the iterations P , πU (P ) and π(P ) are all thesame: Pκ = πU(P )κ = π(P )κ.Lemma 7. π(P )κ+1 = Pκ+1.Proof. This is beause V and M have the same Hκ++. 2Lemma 8. πU(P )κ+1 = Pκ ∗Q

∗
κ where Q∗

κ is the Add (κ, λ) of V [G].Proof. Clearly Q∗
κ is the Add (κ, λ) of N [G]. But V and N have the same

Hκ+ and λ has o�nality greater than κ; therefore N , V have the same size
< κ subsets of λ and N [G], V [G] have the same size < κ subsets of λ. 2Let g0 equal g ∩Q∗

κ. Then g0 is Q∗
κ-generi over V [G] and therefore alsoover N [G]. As N is losed under κ-sequenes and Pκ ∗ Q

∗
κ has the κ+-,it follows that V [G][g0] � N [G][g0] is losed under κ-sequenes (sine every

κ-sequene in V [G][g0] has a name in V of size κ).102



Let R0 = PN
κ+1,πU (κ) be the fator foring to prolong G ∗ g0 to a generifor πU (Pκ). We may build H0 in V [G][g0] whih is R0-generi over N [G][g0],using the fat that R0 is κ+-losed in N [G][g0], has ardinality κ+ in V [G][g0]and V [G][g0] � N [G][g0] is losed under κ-sequenes.Sine k has ritial point λ > κ, k[G] = G and we an lift k : N → Mto k : N [G] → M [G]. Also, k[g0] = g0 ⊆ g and so we may lift again to get

k : N [G][g0]→M [G][g].Let R = PM
κ+1,π(κ). We laim that H = {r ∈ R | k(r0) ≤ r for some

r0 ∈ H0} is R-generi over M [G][g]. To see this, note that eah open dense
D ⊆ R in M [G][g] is of the form k(f)(a) for some f ∈ N [G][g0] with domainof size λ. We may assume that f(x) is open dense on R0 for eah x ∈ Dom f ,and sine R0 is λ+-losed in N [G][g0], we may hoose r0 ∈ H0 belonging toeah f(x), x ∈ Dom f . It follows that k(r0) ∈ H belongs to D.Thus we have now extended the original π, πU and k to embeddings
π : V [G] → M [G][g][H ], πU : V [G] → N [G][g0][H0] and k : N [G][g0][H0] →
M [G][g0][H ] so that π = k ◦ πU . These embeddings are de�nable in V [G][g].Now we try to lift π to V [G][g]. Let S0 = πU(Qκ) = Add (πU (κ), πU(κ)++)of N [G][g0][H0]. Notie that S0 has ardinality κ++, so we annot hoosean S0-generi the way we hose an R0-generi. Instead we must fore over
V [G][g] with S0.Lemma 9. S0 is κ+-losed and κ++-Knaster in V [G][g0]. (P is κ-Knaster i�for every κ-sequene of onditions 〈pα | α < κ〉 there is an unbounded X ⊆ κsuh that pα, pβ are ompatible for all α, β ∈ X.)Proof. κ+-losure follows beause V [G][g0] � N [G][g0][H0] is losed under
κ-sequenes and N [G][g0][H0] � S0 is κ+-losed. Let 〈pα | α < κ++〉 be asequene of onditions in S0 and represent pα as πU (fα)(aα) where aα ∈ Hκ+and fα : Hκ → Qκ, fα ∈ V [G]. Then for some unbounded X ⊆ κ++,
fα(y), fβ(y) are ompatible for all y ∈ Hκ and aα = aβ , for all α, β ∈ X. Itfollows that pα, pβ are ompatible for all α, β ∈ X. 2Lemma 10. S0 is κ+-distributive and κ++- in V [G][g].Proof. V [G][g] is a generi extension of V [G][g0] via a foring whih is iso-morphi to Qκ, whih is κ+- in V [G][g0]. As S0 is κ+-losed in V [G][g0], itfollows that it is κ+-distributive in V [G][g].103



The produt of a κ++-Knaster foring and a κ++- foring is κ++-. Soas S0 is κ++-Knaster in V [G][g0] and Qκ is κ++- (in fat κ+-) in V [G][g0]it follows that S0×Qκ is κ++- in V [G][g0]. Thus sine V [G][g] is a generiextension of V [G][g0] via a foring isomorphi to Qκ, it follows that S0 is
κ++- in V [G][g]. 2By Lemma 10, if we fore with S0 over V [G][g] we preserve ardinals. Let
h0 be S0-generi over V [G][g].Just as we ould obtain anR-generi (overM [G][g])H = {r ∈ R | k(r0) ≤
r for some r0 ∈ H0}, we an obtain an S-generi (over M [G][g][H ]) h = {s ∈
S | k(s0) ≤ s for some s0 ∈ h0}, where S = π(Qκ) = Add (π(κ), π(κ)++)of M [G][g][H ]. Our wish is to extend π to an embedding from V [G][g] to
M [G][g][H ][h], but we have to �rst guarantee that π[g] ⊆ h.Let f = ∪g : κ × κ++ → 2 be the funtion orresponding to the generi
g. Then ∪π[g] is the funtion f ∗ : κ× π[κ++] → 2 de�ned by f ∗(α, π(β)) =
f(α, β). We have to modify h to h∗ so that eah q∗ in h∗ is ompatible with
f ∗. For any q ∈ h let q∗ be de�ned by altering q on Dom q ∩ (κ × π[κ++])to agree with f ∗. We laim that q∗ belongs to M [G][g][H ], and thereforebelongs to S. Write q = π(f)(a) where a belongs to Hκ++ and f : Hκ → Qκbelongs to V [G]. (Of ourse Hκ, denotes the Hκ of V [G] and Qκ denotes theAdd (κ, κ++) of V [G].) If (α, π(β)) belongs to Dom q then (α, β) belongs toDom f(x) for some x ∈ Hκ, so {(α, β) | (α, π(β)) ∈ Dom q} is ontained in
Z0 =

⋃
xDom f(x) ∈ V [G]. As Z0 has size at most κ and Pκ is κ-, thereis Z ∈ V , Z0 ⊆ Z ⊆ κ × κ++ of size at most κ. Then Z belongs to M and

π ↾ Z also belongs to M . Using q, g, π ↾ Z we an de�ne q∗, and therefore q∗belongs to M [G][g][H ].Lemma 11. h∗ = {q∗ | q ∈ h} is S-generi over M [G][g][H ].Proof. Suppose that D is open dense on S, D ∈ M [G][g][H ]. For any q ∈ Sde�ne N(q) to be the set of r ∈ S with the same domain as q whih disagreewith q on a set of size at most κ. Then E = {q | N(q) ⊆ D} is dense on S,using the π(κ)-losure of S. Choose q in E∩h. Then q∗ belongs to N(q) andtherefore to D. It follows that h∗ intersets D. 2As π[g] ⊆ h∗ we may lift π to an embedding V [G][g] → M [G][g][H ][h∗].And as before, by taking I = {p | π(p0) ≤ p for some p0 ∈ h0}, weobtain a π(S0)-generi over M [G][g][H ][h∗], and therefore an embedding104



V [G][g][h0] → M [G][g][H ][h∗][I] whih is de�nable in V [G][g][h0], as desi-red. 2Remark. The hypothesis of Theorem 6 an be weakened slightly. The aboveproof only needed an embedding π : V → M with ritial point κ, whereGCH holds in V , M is losed under κ-sequenes and for some funtion f ,
π(f)(κ) = κ++. (f does not have to be the funtion f(α) = α++.) Gitikshowed that this weaker statement is equionsistent with the statement thatfor some κ and every A ⊆ κ+, there is an embedding π : V → M withritial point κ suh that A belongs to M , and also equionsistent with thestatement that GCH fails at a measurable ardinal.Regularity PropertiesWe show that if there is a Woodin limit of Woodin ardinals then every setof reals in L(R), the smallest inner model ontaining all the reals, is Lebesguemeasurable. The onsisteny of the latter statement is rather weak, followingfrom the onsisteny of the existene of an inaessible ardinal:Theorem 12. (Solovay) Suppose that δ is inaessible and G is generi forColl(ω,< δ), the foring with �nite onditions that makes eah ordinal lessthan δ ountable. Then in V [G], every set of reals in L(R) is Lebesguemeasurable.We shall show that if there is a Woodin limit of Woodin ardinals, then L(R)elementarily embeds into L(R)V [G] where G is as in Theorem 12. It followsthat every set of reals in L(R) is Lebesgue measurable.De�nition. Suppose that c ⊆ P(u). Then c is CUB on u i� c onsists of theuniverses of all substrutures of a �xed struture for a ountable languagewith universe u. s ⊆ P(u) is stationary on u i� s ∩ c 6= ∅ for eah CUB
c ⊆ P(u), i.e., i� every struture for a ountable language with universe uhas a substruture with universe in s. The stationary tower foring Q = Qδ,where δ is an inaessible ardinal, onsists of all pairs (u, s) where u ∈ Vδis transitive and s ⊆ Pω(u) = {x ⊆ u | x is ountable} is stationary on u,ordered by:
(u, s) ≤ (v, t) i� u ⊇ v and s ↾ v = {x ∩ v | x ∈ s} ⊆ t.105



If G is Q-generi then G assigns an ultra�lter Gu on Pω(u) to eah u: Gu =
{s | (u, s) ∈ G}.The main fat that we need to prove is that if δ is Woodin and G is
Q-generi then δ is a ardinal of V [G]. It turns out that every ordinal lessthan δ is ountable in V [G] and therefore it will be enough to show that δhas unountable o�nality in V [G].The following is a version of Fodor's Lemma in this ontext.Fodor's Lemma. Suppose that s is stationary on u and f : s → u suh that
f(x) ∈ x for eah x ∈ s. Then there is a stationary s′ ⊆ s suh that f isonstant on s′.Proof. If not, then for eah v ∈ u hoose a cv whih is CUB on u suhthat f(x) 6= v whenever x ∈ c. Let c be the diagonal intersetion of the cv:
c = {x | x ∈ cv for all v ∈ x}. Then c is CUB, so by the stationarity of sthere is x ∈ s ∩ c. But this means that f(x) 6= v for all v ∈ x, ontraditingthe hypothesis on f . 2Reall that ∆ ⊆ Q is predense below p ∈ Q i� every extension of p isompatible with an element of ∆. To show that δ has unountable o�nalityin V [G], it su�es to show:
(∗) If ∆i, i ∈ ω are dense on Q and p ∈ Q then there exists κ < δ and q ≤ psuh that ∆i ∩Qκ is predense below q for eah i, where Qκ = Q ∩ Vκ.Write p = (up, sp). We say that a set x aptures ∆ i� there is (u, s) ∈ x ∩∆suh that x ∩ u ∈ s. A ondition p aptures ∆ i� every x ∈ sp aptures ∆.Proposition 13. If q aptures ∆ then ∆ is predense below q.Proof. Suppose that r ≤ q. Then for eah x ∈ sr, x ∩ uq ∈ sq and hene
x ∩ uq aptures ∆. For eah suh x hoose (ux, sx) ∈ x ∩ uq ∩ ∆ suh that
x ∩ uq ∩ ux ∈ sx. As uq is transitive, x ∩ uq ∩ ux = x ∩ ux for suh x. ByFodor there is a �xed (u, s) and a stationary s′ ⊆ sr suh that for all x ∈ s′:
(u, s) ∈ x∩∆ and x∩ u ∈ s. Thus (ur, s

′) extends both r and (u, s) ∈ ∆, so
r is ompatible with an element of ∆. 2106



Thus to obtain (∗) it su�es show that there is q ≤ p whih aptureseah ∆i ∩Qκ, i ∈ ω. For this we need that eah ∆i ∩Qκ an be aptured bymany sets in Vκ, in the following sense.De�nition. ∆∩Qκ is semiproper i� for CUB-many ountable x ⊆ Vκ+1 thereis a ountable z ∈ Vκ suh that:(i) z aptures ∆ ∩Qκ: There is (u, s) ∈ ∆ ∩ z suh that z ∩ u ∈ s.(ii) z end-extends x ∩ Vκ, i.e., x ∩ Vκ = z ∩ Vα for some α < κ.(iii) z is x-losed : If c ∈ x is CUB on Vκ then z belongs to c.Proposition 14. Suppose that p ∈ Qκ and eah ∆i ∩Qκ is semiproper. Thenthere exists q ≤ p suh that q aptures eah ∆i ∩Qκ.Proof. Set q = (Vκ, t) where t = {x ⊆ Vκ | x ∩ up ∈ sp and x aptures eah
∆i ∩Qκ}. It su�es to show that t is stationary.For eah i let ci be CUB on Vκ+1 witnessing that ∆i ∩ Vκ is semiproper(i.e, the CUB set of ountable x in the statement of semiproperness an behosen to be the ountable elements of ci). Let c be the intersetion of the
ci. Now suppose that b is CUB on Vκ and we show that t has an elementwhih belongs to b. Choose x0 ∈ c suh that x0 ∩ up ∈ sp; this is possibleas sp is stationary and therefore intersets c ↾ up = {x ∩ up | x ∈ c}. Alsorequire that p, b and c ↾ Vκ belong to x0.Let z0 = x0 ∩ Vκ. Applying the semiproperness of ∆0 ∩ Qκ, hoose z1end-extending z0 to apture ∆0 ∩ Qκ and to be x0-losed. As c ↾ Vκ ∈ x0and z1 is x0-losed, it follows that z1 ∈ c ↾ Vκ and therefore z1 = x1 ∩ Vκfor some x1 ∈ c. Similarly, hoose z2 end-extending z1 to apture ∆1 ∩ Qκand to be x1-losed; then z2 = x2 ∩ Vκ for some x2 ∈ c. Continue, getting
z0 ⊆ z1 ⊆ · · · with union z. Note that z ∩ up = z0 ∩ up ∈ sp sine p ∈ z0and z end-extends z0. Thus z belongs to t, and sine b belongs to x0 and zis x0-losed, z belongs to b, as desired. 2Reall that κ < δ is A-strong below δ i� for eah α < δ there exists
π : V → M with ritial point κ suh that π(κ) > α, Vα ⊆M and π(A)∩Vα =
A∩Vα. δ is Woodin i� for any A ⊆ Vδ there exists a κ < δ whih is A-strongbelow δ. 107



Lemma 15. Let κ < α < δ, α inaessible, π : V → M with ritial point
κ, π(κ) > α, Vα ⊆ M , π(∆) ∩ Vα = ∆ ∩ Vα where ∆ ∩ Qα is predense on
Qα = Q ∩ Vα. Then ∆ ∩Qκ is semiproper.Proof. If not, then s = {x ⊆ Vκ+1 | There is no x-losed z ∈ Vκ suh that
z end extends x ∩ Vκ and aptures ∆} is stationary, and therefore (Vκ+1, s)is a ondition in Qα. Choose (u, s′) ∈ ∆ ∩ Vα ompatible with (Vκ+1, s). Wean hoose (Vβ, t) ≤ (u, s′), (Vκ+1, s) where β is less than α and (u, s′) ∈ Vβ.Now hoose x ∈ t to ontain (u, s′) and to belong to π(c) ↾ Vβ for eah
c ∈ x∩Vκ+1 whih is CUB on Vκ. Thus x = x∗∩Vβ for some x∗ ∈ π(Vκ) whihis π(x ∩ Vκ+1)-losed. Sine (Vβ, t) ≤ (Vκ+1, s), it follows that x ∩ Vκ+1 ∈ s.Applying π, we have that π(x ∩ Vκ+1) ∈ π(s). Using the de�nition of π(s),there is no π(x∩Vκ+1)-losed z ∈ π(Vκ) suh that z end extends π(x∩Vκ) =
x ∩ Vκ and aptures π(∆). But onsider z = x∗ ∈ π(Vκ). x∗ is π(x ∩ Vκ+1)-losed and end-extends x ∩ Vκ. Also x∗ aptures π(∆), sine x ontains
(u, s′) ∈ ∆ ∩ Vα = π(∆) ∩ Vα and x∗ ∩ u = x ∩ u ∈ s′ sine (Vβ, t) ≤ (u, s′).This is a ontradition. 2Corollary 16. Suppose that δ is Woodin. Then δ has unountable o�nalityin V [G] for Q-generi G.Proof. By Proposition 14 it su�es to show that if p ∈ Q and ∆i, i ∈ ω aredense on Q then there exists q ≤ p and κ < δ suh that q ∈ Qκ and eah
∆i ∩ Qκ is semiproper. To prove this, apply the Woodinness of δ to obtain
κ < δ suh that p ∈ Qκ and κ is A-strong below δ, where A is the join of the
∆i's. Then apply Lemma 15 where α < δ is hosen so that eah ∆i ∩Qα ispredense on Qα. 2Suppose that G is Q-generi. Then we an form an ultrapower Ult (V,G)as follows:
D = {(u, f) | f : P(u)→ V , f ∈ V }
(u, f) ∼ (v, g) i� {x ⊆ u ∪ v | f(x ∩ u) = g(x ∩ v)} ∈ Gu∪v.
(u, f)E(v, g) i� {x ⊆ u ∪ v | f(x ∩ u) ∈ g(x ∩ v)} ∈ Gu∪v.Ult (V,G) has universeD/ ∼ and membership relationE on the∼-equivalenelasses [u, f ].We have: Ult (V,G) � ϕ([u1, f1], . . . , [un, fn]) i� {x ⊆ u | V � ϕ(f1(x ∩
u1), . . . , fn(x ∩ un))} ∈ Gu, where u = ∪iui. Thus we get an elementaryembedding σ : V → Ult (V,G) de�ned by: σ(x) = [∅, cx] where cx(∅) = x.108



Assume that δ is Woodin and that G is Q-generi over V .Lemma 17. (a) Identify the well-founded part of Ult (V,G) with its transitiveollapse. Then every element of Vδ[G] belongs to Ult (V,G) and is ountablein Ult (V,G). All reals of V [G] belong to Ult (V,G).(b) In fat, Ult (V,G) is well-founded.Proof. (a) Suppose that u ∈ Vδ is transitive. By Fodor's Lemma, [u, id]represents σ[u] in Ult (V,G), and therefore u, the transitive ollapse of σ[u],belongs to Ult (V,G). Thus Vδ ⊆ Ult (V,G). Also, as V � x is ountable, foreah x ∈ Gu, we have that Ult (V,G) � [u, id] = σ[u] is ountable and there-fore u, the transitive ollapse of σ[u], is also ountable in Ult (V,G). Finally,
s ∈ Gu i� [u, id]Eσ(s), so as σ ↾ PP(u) belongs to Ult (V,G), it follows that
Gu belongs to Ult (V,G). Thus Vδ[G] ⊆ Ult (V,G). As every ordinal lessthan δ is ountable in Ult (V,G) and hene in V [G], δ is regular in V [G].Thus every real in V [G] belongs to Vδ[G] and therefore to Ult (V,G).(b) Suppose that 〈τn | n ∈ ω〉 is fored by some ondition in Q to be a de-sending sequene of ordinals in Ult (V,G). For simpliity, we assume thatthis ondition is the weakest ondition of Q. Then for eah n, the set of (u, s)suh that for some fn(u,s) : Pω(u)→ ORD in V , (u, s)  τn = [u, fn(u,s)] is denseon Q. Choose q ∈ Q whih aptures eah ∆n. For eah x ∈ sq and eah n,hoose some (u, s) ∈ ∆n∩x suh that x∩u ∈ s and set fn(x) = fn(u,s)(x∩u).We laim that for eah n, fn+1(x) ∈ fn(x) for CUB-many x ∈ sq. Other-wise, t = {x ∈ sq | f

n+1(x) /∈ fn(x)} is stationary, by Fodor we an hoose
(un, sn) ∈ ∆n, (un+1, sn+1) ∈ ∆n+1 suh that x∩un ∈ sn, x∩un+1 ∈ sn+1 and
fn(x) = fn(un,sn)(x∩un), fn+1(x) = fn+1

(un+1,sn+1)
(x∩un+1) for all x in a stationa-ry t′ ⊆ t and then (uq, t

′) ∼ (τn+1 = [un+1, f
n+1
(un+1,sn+1)

] E [un, f
n
(un,sn)] = τn),ontraditing our hypothesis about the τn's. If x ∈ sq belongs to the inter-setion of the CUB sets witnessing fn+1(x) < fn(x), then we get an in�nitedesending sequene of ordinals, ontradition. 2To prove that every set of reals in L(R) is Lebesgue measurable, we onlyneed one more fat.Lemma 18. Suppose that δ is not only Woodin but also the limit of Woodinardinals. Suppose that G is Qδ-generi. Then every real in V [G] is generiover V for a foring of size less than δ.Proof. For any inaessible κ < δ de�ne:109



t = {x ⊆ Vκ+1 | x is ountable and aptures all predense ∆ ⊆ Qκ in x}.Assuming that κ is Woodin, we show that t is stationary. Let c be CUB on
Vκ+1 and assume that for x ∈ c, x ∩ Vα ∈ b whenever α, b ∈ x, b is CUBon Vα. The latter ondition is a CUB ondition, so an be assumed withoutloss of generality. Now let x0 be an arbitrary element of c. If x0 belongsto t then we are done. Otherwise hoose a predense ∆0 ⊆ Qκ in x0 notaptured by x0 and hoose γ < δ in x0 whih is ∆0-strong below κ. Then
∆0 ∩Qγ is semiproper so for CUB-many ountable x ⊆ Vγ+1 we may hoose
z ∈ Vγ end-extending x ∩ Vγ whih aptures ∆0 ∩Qγ and is x-losed. Thereis suh a CUB olletion of x's in x0 so it follows that suh a z exists for
x = x0 ∩ Vγ+1, by our assumption about c. Choose suh a z1 and let x1 bethe smallest element of c suh that z1 ∪ x0 ⊆ x1. Then x1 ∩ Vγ = z1, usingthe x0-losure of z1. If x1 belongs to t then we are done. Otherwise repeatthe above for some predense ∆1 ⊆ Qκ in x1 not aptured by x1, produing z2and x2. We an ontinue in this way, arranging that every predense ∆ ⊆ Qκin ∪{xi | i ∈ ω} is onsidered, resulting in x = ∪{xi | i ∈ ω} suh that x ∈ t.Thus if κ is Woodin, (Vκ+1, t) is a ondition, where t is de�ned as above.Similarly, for any (u, s) ∈ Qκ, {x ∈ t | x ∩ u ∈ s} is stationary and therefore
(u, s) is ompatible with (Vκ+1, t).Now we laim that G ∩ Qκ is Qκ-generi for all Q-generi G ontaining
(Vκ+1, t). It su�es to show that eah q ≤ (Vκ+1, t) is ompatible with eahpredense ∆ ⊆ Qκ. To see this, onsider s′ = {x ∈ sq | ∆ ∈ x} and form theondition q′ = (uq, s

′) ≤ q. As q′ ≤ (Vκ+1, t), x∩Vκ+1 ∈ t for eah x ∈ s′, andin partiular x ∩ Vκ+1 aptures ∆ for eah x ∈ s′. Thus q′ aptures ∆ andtherefore is ompatible with a ondition in ∆. It follows that q is ompatiblewith a ondition in ∆, as desired.Thus if δ is a limit of Woodin ardinals, {p ∈ Qδ | For some κ < δ,
p  G∩Vκ is Qκ-generi} is dense. Thus G∩Vκ isQκ-generi for unboundedlymany κ < δ, proving that every element of Vδ[G], and hene any real in V [G],is generi over V for a foring of size less than δ. 2Theorem 19. Suppose that δ is a Woodin limit of Woodin ardinals. Thenthere exists an elementary embedding L(R) → L(R)V [H] where H is V -generi for Coll(ω,< δ). Therefore, every set of reals in L(R) is Lebesguemeasurable. 110



Proof. Let G be Q-generi over V , where Q = Qδ, the stationary towerforing. Then there is an elementary embedding V → Ult (V,G) where
δ = ω1 of V [G] and Ult (V,G), V [G] have the same reals. Also every realin V [G] belongs to a generi extension of V by a foring of size less than δ.Now in a generi extension of V [G] in whih δ is ountable, we an de�ne asequene G0 ⊆ G1 ⊆ · · · of length ω where Gn ∈ V [G] is generi over V forColl(ω,< δn), the δn's form a o�nal, inreasing ω-sequene of V -inaessiblesless than δ and eah real in V [G] belongs to some V [Gn]. If H is the union ofthe Gn's then V [H ] is generi over V for Coll(ω,< δ) and the reals of V [H ]are preisely the reals of V [G].Thus we have an elementary embedding L(R)→ (L(R) of Ult (V,G)) =
(L(R) of V [G]) = (L(R) of V [H ]), where H is Coll(ω,< δ)-generi over V .By Theorem 12, every set of reals in (L(R) of V [H ]) is Lebesgue measurableand therefore this also holds for L(R). 2.
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