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A fundamental result in classical descriptive set theory is Silver’s di-
chotomy :

Theorem 1 (Silver [10]) If a Borel (or even co-analytic) equivalence rela-
tion on the reals has uncountably many classes, then it has a perfect set of
classes, i.e., there is a perfect closed set of reals, any two distinct elements
of which belong to different classes.

It is convenient to express the conclusion of Silver’s theorem in terms
of the continuous reducibility of equivalence relations. Let id denote the
equivalence relation of equality on Cantor space 2ω. If E,F are equivalence
relations on Polish spaces then we say that E is continuously reducible to F
(written E ≤c F ) iff there is a continuous function f such that E(x, y) iff
F (f(x), f(y)). Then Silver’s theorem says that if E is a Borel equivalence
relation on the reals with uncountably many classes then id is continuously
reducible to E. A more generous notion is Borel reducibility, where the
“reduction” f is allowed to be Borel (we then write E ≤B F ).

In this article we look at Silver’s dichotomy in generalised Baire space.
Let κ be an infinite cardinal such that κ<κ = κ. Then the generalised Baire
space κκ associated to κ is the space of functions from κ to κ topologised
with basic open sets of the form:

Nσ = {f : κ→ κ | f extends σ}
∗The author wishes to thank the FWF (Austrian Science Foundation) for its support
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where σ belongs to κ<κ. Our hypothesis on κ implies that this gives a basis
for the topology of size κ. Borel sets in this space are obtained by closing
the collection of basic open sets under unions and intersections of size κ.
We get closure under complements using the fact that the complement of a
basic open set is the union of at most κ basic open sets. A function from
generalised Baire space to itself is Borel iff the pre-image under this function
of any basic open set under the function is Borel. And the generalised
Cantor space 2κ associated to κ is the closed subspace of κκ consisting of
those functions which map κ to 2. As in the classical setting we have the
corresponding notions of cotinuous and Borel reducibility (again written as
≤c, ≤B, respectively) of equivalence relations on spaces like 2κ or κκ which
are equipped with a notion of Borel set.

As in the classical case, the reducibility of id (the equality relation on
2κ) to an equivalence relation E on κκ can be reformulated as a statement
about perfect sets. We say that X ⊆ κκ is perfect iff X consists of the
κ-branches [T ] through a subtree T of κ<κ which is < κ-closed and has the
property that every node can be extended to a splitting node.

Proposition 2 Suppose that E is an equivalence relation on κκ. Then id is
Borel-reducible to E iff id is continuously reducible to E iff there is a perfect
set X ⊆ κκ any two distinct elements of which belong to different classes of
E.

Proof. Given X = [T ] as above we obtain an order-preserving bijection
between 2<κ and the set of splitting nodes of T ; this induces a continuous
σ : 2κ → [T ] which reduces id to E. Conversely, if f is a Borel function that
reduces id to E then f is continuous on a comeager set and this comeager
set contains a perfect set; we can thin out this perfect set to a perfect subset
whose f -image is the desired perfect set X . 2

Now we ask:

Question. Does Silver’s dichotomy hold for generalised Baire space κκ? I.e.,
if a Borel equivalence relation E on κκ has more than κ classes, is there a
continuous reduction of id on 2κ to E?

The answer is negative in Gödel’s L, in a strong sense.
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Theorem 3 (SDF-Hyttinen-Kulikov [2, 3]) Assume V = L. Then Silver’s
dichotomy fails in generalised Baire space for all uncountable regular κ:
There are Borel equivalence relations with more than κ classes which lie
strictly below id as well as a family of 2κ Borel equivalence relations in-
cluding id which are pairwise ≤B-incomparable. If κ is inaccessible then
there is a family of 2κ Borel equivalence relations which are pairwise ≤B-
incomparable and ≤B-below id.

The problem with Silver’s dichotomy in L derives from the existence of
weak Kurepa trees on a regular cardinal κ. These are trees T of height κ with
more than κ branches of length κ such that every node of T splits and the
α-th level of T has size at most card(α) for stationary-many ordinals α < κ.
We say that T is Kurepa if “stationary-many ordinals” can be replaced by
“all infinite ordinals”.

Lemma 4 Suppose V = L and κ is regular and uncountable. Then there
exists a weak Kurepa tree on κ. If κ is a successor cardinal then there is a
Kurepa tree on κ.

Proof. Our tree will be a subtree of the binary tree 2<κ. For singular α < κ
let β(α) be the least limit ordinal β > α such that α is singular in Lβ.

First assume that κ is inaccessible. Then T consists of all σ ∈ 2<κ such
that:

(∗) For singular cardinals α ≤ |σ| of cofinality ω, σ|α belongs to Lβ(α).

Any node of T can be extended to nodes in T of any greater length (just
add 0’s). And any node of T of length α splits into two nodes in T of length
α + 1 so the α-th splitting level consists of nodes of length α. It follows
that the α-th splitting level of T has size at most card(α) for α a singular
cardinal of cofinality ω.

Main Claim. T has κ+ many branches.

Proof of Main Claim. For a limit ordinal β between κ and κ+ we say that
β is critical if some subset of κ is definable over Lβ but not an element of
Lβ. The set of critical ordinals is cofinal in κ+ and for critical β, the Skolem
hull of κ in Lβ is all of Lβ.

Now for each critical β define:
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(∗) Cβ = {α < κ | The Skolem hull of α in Lβ contains no ordinals between
α and κ}.

Then Cβ is a club in κ for each critical β and moreover if β0 < β1 are
both critical then sufficiently large elements of Cβ1 are limit points of Cβ0 ;
this is because β0 is an element of the Skolem hull of α in Lβ1 for a large
enough α and therefore so is Cβ0 .

In particular the Cβ’s for critical β are distinct. Now we claim that each
Cβ is a branch through T . For this we need only check that if α < κ is a
singular cardinal of cofinality ω then Cβ ∩ α belongs to Lβ(α). This is clear
if α does not belong to Cβ, for then Cβ ∩ α is bounded in α and therfore
an element of Lα. Otherwise note that Cβ ∩ α is definable over Lβ̄+1 where
Lβ̄ is the transitive collapse of the Skolem hull of α in Lβ; as α is regular
in Lβ̄ it follows that β̄ is less than β(α) so Cβ ∩α is an element of Lβ(α), as
desired.

The case of a successor cardinal κ is similar, except one can now obtain
a Kurepa tree on κ as all sufficiently large α < κ are singular. 2 (Lemma)

Now note that if T is weak Kurepa then there can be no continuous
injection from 2κ into [T ], the set of κ-branches through T : If κ is inaccessible
then this would yield a club of α < κ such that the α-th level of T has 2α

many nodes and if κ = γ+ then this would yield an α < κ such that T has
2γ = κ-many nodes on level α. In fact there cannot be such an injection
which is Borel, as any Borel function is continuous on a comeager set and
any comeager set contains a copy of 2κ.

Finally define xET y iff x, y are not branches through T or x = y. Then
ET is a Borel equivalence relation with κ+ classes yet id cannot Borel reduce
to ET for the reasons given above. And ET is Borel reducible to id via the
reduction that sends each branch of T to itself and the non-branches of T to
some fixed non-branch of T . Thus Silver’s dichotomy fails at all uncountable
regular cardinals in L.

On the other hand, Silver [9] also showed that it is possible to get rid
of Kurepa trees on a regular cardinal κ using an inaccessible above κ: If
λ > κ is inaccessible and a Lévy collapse is performed to make λ into κ+

(using conditions of size less than κ) then in the generic extension there are
no Kurepa trees on κ. In fact there not even any weak Kurepa trees on κ in
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Silver’s model. This suggests that a model like Silver’s may obey the Silver
dichotomy for κκ, provided λ is chosen appropriately. Our main theorem
states that this is indeed the case.

To gain further insight into the problem we next consider the following
ZFC-provable negative result.

Theorem 5 Let κ be regular and uncountable. Then there is a ∆1
1 equiva-

lence relation E with κ+ classes such that id is not Borel-reducible to E. So
the Silver Dichotomy provably fails for ∆1

1.

Proof. The relation is xEranky iff x, y do not code wellorders or x, y code
wellorders of the same length. This has exactly κ+ classes. It is ∆1

1 because
the assumption that κ is uncountable and regular implies that wellfound-
edness for linear orders of κ is ∆1

1 (it is even closed). Suppose T were a
perfect tree whose distinct κ-branches were Erank-inequivalent. Now let x
be a generic branch through T (treating T as a version of κ-Cohen forcing)
and let p ∈ T be a condition forcing that x codes a wellorder of some rank
α < κ+. Then any sufficiently generic branch through T extending p codes
a wellorder of rank α, which contradicts the fact that there are distinct such
branches in V . 2

So a first step toward obtaining the consistency of Silver’s Dichotomy
for κκ is the following.

Theorem 6 Assume κ<κ = κ. Then the relation Erank of the previous
theorem is not Borel.

Proof. For α < κ+ let Lα denote the forcing to Lévy collapse α to κ (using
conditions of size less than κ). If g : κ → α is Lα-generic then g∗ denotes
the subset of κ defined by i ∈ g∗ iff g((i)0) ≤ g((i)1) where i 7→ ((i)0, (i)1)
is a bijection between κ and κ× κ.

By induction on Borel rank we show that if B is Borel then there is a
club C in κ+ such that:

(∗) For α ≤ β in C of cofinality κ and (p0, p1) a condition in Lα×Lα, (p0, p1)
forces that (g∗0, g

∗
1) belongs to B in the forcing Lα × Lα iff it forces this in

the forcing Lα × Lβ.
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If B = U(σ0)×U(σ1) is a basic open set then we may take C to consist
of all ordinals greater than κ in κ+. This is because for any α ≤ β, if (p0, p1)
belongs to Lα×Lβ then (p0, p1) Lα×Lβ-forces (g∗0, g

∗
1) ∈ B exactly if (p∗0, p

∗
1)

extends (σ0, σ1) where p∗0 is the set of i such that (i)0, (i)1 are in the domain
of p0 and p0(((i)0) ≤ p0((i)1) (similarly for p∗1); this is independent of the
pair α, β.

Inductively, suppose that B is the intersection of Borel sets Bi, i < κ,
of smaller Borel rank. By intersecting clubs obtained by applying (∗) to the
Bi’s we obtain a club C ensuring the desired conclusion for B, as (p0, p1)
forces (g∗0, g

∗
1) ∈ B iff for each i < κ it forces (g∗0, g

∗
1) ∈ Bi.

Finally if B is the complement of the Borel set B0 then by induction
we have a club C0 such that for α ≤ β in C0 of cofinality κ and (p0, p1) ∈
Lα × Lα, (p0, p1) Lα × Lα-forces (g∗0, g

∗
1) ∈ B0 iff it Lα × Lβ-forces this.

Now thin out the club C0 to a club C so that for α in C of cofinality κ, if
(p0, p1) is in Lα×Lα and there is some β ≥ α in C0 of cofinality κ and some
(q0, q1) in Lα × Lβ below (p0, p1) which Lα × Lβ-forces (g∗0, g

∗
1) in B0 then

there is such a (q0, q1) in Lα×Lα (which then Lα×Lα-forces (g∗0, g
∗
1) in B0).

Then for α ≤ β of cofinality κ in this thinner club C, (p0, p1) Lα×Lα-forces
(g∗0, g

∗
1) in B iff none of its extensions in Lα×Lα forces (g∗0, g

∗
1) in B0 in the

forcing Lα×Lα iff none of its extensions in Lα×Lα forces (g∗0, g
∗
1) in B0 in

the forcing Lα×Lβ iff none of its extensions in Lα×Lβ forces (g∗0, g
∗
1) in B0

in the forcing Lα × Lβ iff (p0, p1) Lα × Lβ-forces (g∗0, g
∗
1) in B, completing

the induction.

It follows that Erank is not Borel, as otherwise we have g∗0E
rankg∗1 where

g0, g1 are sufficiently generic for Lα × Lβ with α < β. 2

Now using an analogous argument we have:

Theorem 7 Suppose that 0# exists, κ is regular in L and λ is the κ+ of
V . Then after forcing over L with the Lévy collapse turning λ into κ+, the
Silver Dichotomy holds for κκ.

Proof. Suppose that E is a Borel equivalence relation in the Lévy collapse
extension L[G]. For simplicity we assume that E has a Borel code in L and
therefore has Borel rank less than (κ+)L. Suppose that E has more than κ
classes in L[G] and let p be a Lévy collapse condition forcing that the Lévy
collapse names (σα | α < λ) are pairwise E-inequivalent. We can assume
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that the σα’s are of size less than λ and choose f : λ → λ in L so that for
each α < λ, σα is an Lf(α)-name where Lβ denotes the part of the Lévy
collapse forcing which collapses ordinals less than β to κ. We may assume
that for each α, the E-equivalence class of σα does not depend on the choice
of Lf(α)-generic, as otherwise this would fail for a pair of mutual Lf(α)-
generics and by building a perfect set of mutual Lf(α)-generics we obtain a
perfect set of distinct E-equivalence classes. It follows that if α < β and
p belongs to Lf(α) then (p, p) forces in Lf(α) × Lf(β) that σα and σβ are
E-inequivalent.

Let I consist of the Silver indiscernibles between κ and λ and for i < j
in I let πij be an elementary embedding from L to L with critical point i,
sending i to j. As p, the sequence (σα | α < λ) and the function f defined
above are constructible, they are L-definable from parameters less than some
i ∈ I together with indiscernibles ≥ λ. Then we have that for j < k in I
above i, σk = πjk(σj) and f(k) = πjk(f(j)). Let I0 be the final segment of
I consisting of all elements of I greater than i.

In analogy to the previous proof we show that for each Borel B there is
a club C contained in I0 such that:

(∗) Suppose that i0 < i1 < · · · < in = j < in+1 = k belong to C,
(p0, p1) ≤ (p, p) belongs to Lf(j) × Lf(j) and is L-definable from the pa-
rameters in i0 ∪ {i0, i1, . . . , in} together with indiscernibles > j. Then
(p0, p1) forces that (σg0j , σ

g1
j ) belongs to B in the forcing Lf(j) × Lf(j) iff

(p0, πi0i1πi1i2 · · ·πin−1inπinin+1(p1)) forces that (σg0j , σ
g1
k ) belongs to B in the

forcing Lf(j) × Lf(k).

Note that the composition πi0i1πi1i2 · · ·πin−1inπink sends (i0, i1, . . . , in)
to (i1, i2, . . . , in+1).

We now prove (∗) (an appropriate choice of C) by induction on the
Borel rank of B. If B = U(τ0) × U(τ1) is a basic open set then (p0, p1)
forces that (σg0j , σ

g1
j ) belongs to B iff both p0 forces that σg0j belongs to

U(τ0) and p1 forces that σg1j belongs to U(τ1); as the latter is equivalent to
πi0i1πi1i2 · · ·πin−1inπinin+1(p1) forces that σg1k belongs to U(τ1) the conclusion
of (∗) follows, where we can take C to be the entire club I0.

Inductively, suppose that B is the intersection of Borel sets Bα, α < κ,
of smaller Borel rank. Then (∗) for the Bα’s implies ensures (∗) for B by
intersecting κ-many clubs.
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Finally suppose that B is the complement of the Borel set B0 and the
club C0 witnesses (∗) for B0. Let C consist of all limit points of C0; we show
that C witnesses (∗) for B. Suppose that i0 < i1 < · · · < in = j < in+1 = k
and (p0, p1) are as in the hypothesis of (∗) where i0, . . . , in+1 belong to C.
Let π denote the composition πi0i1πi1i2 · · ·πin−1inπinin+1 .

If (p0, π(p1)) does not force that (σg0j , σ
g1
k ) belongs to B then there is an

extension (q0, q1) of (p0, π(p1)) in Lf(j) × Lf(k) which forces that (σg0j , σ
g1
k )

belongs to B0. We may assume that (q0, q1) is L-definable from parameters
in i0∪{i0, . . . , in+1} together with parameters < i−1 and indiscernibles > k.
As i0 is a limit point of C0 we can choose i−1 < i0 in C0 (greater than the
parameters used in the definition of (p0, p1)). Now consider the condition
(q0, q

∗
1) in Lf(j) × Lf(j), where q∗1 is defined in L from i−1 < i0 < · · · < in

(together with indiscernibles greater than in = j) just like q1 is defined
from i0 < i1 < · · · < in+1 (together with the same parameters < i−1 and
indiscernibles greater than in+1 = k). By induction, (q0, q

∗
1) forces that

(σg0j , σ
g1
j ) belongs to B0. Moreover (q0, q

∗
1) is an extension of (p0, p1) as

(q0, q1) is an extension of (p0, π(p1)) (this implies that q∗1 is an extension of
p1). So (p0, p1) does not force that (σg0j , σ

g1
j ) belongs to B.

Conversely, suppose that (p0, p1) does not force that (σg0j , σ
g1
j ) belongs to

B. Then there is an extension (q0, q1) of (p0, p1) which forces that (σg0j , σ
g1
j )

belongs to B0. We may assume that (q0, q1) is definable in L from pa-
rameters in i0 ∪ {i0, . . . , in} together with indiscernibles greater than in.
By induction (q0, π(q1)) forces that (σg0j , σ

g1
k ) belongs to B0 where π is the

composition πi0,i1πi1i2 · · ·πin−1inπinin+1 . This condition extends the condi-
tion (p0, π(p1)) and therefore establishes that (p0, π(p1)) does not force that
(σg0j , σ

g1
j ) belongs to B.

Now apply (∗) to the Borel set E, producing a club C. As mentioned
before we can assume that (p, p) does Lf(i)×Lf(i)-force σġ0i Eσ

ġ1
i . It follows

that for i < j in C, (p, p) also Lf(i)×Lf(j)-forces σiEσj , as p is not moved by
any elementary embedding which is the identity below an element of I0. But
this contradicts our assumption that σα, σβ are forced by (p, p) in Lα ×Lβ
to be E-inequivalent when p belongs to Lα and α < β. 2

I close with two remarks. The first is that if 0# exists and κ is an L-
cardinal which is countable in V then the Silver dichotomy holds for κκ in
some inner model with the same cardinals up to κ as L. This is because
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the Lévy collapse forcing which turns the κ+ of V = ω1 of V into the κ+ of
the generic extension has a generic in V (it is built as the limit of countable
generics along the indiscernibles less than ω1 of V ). The second remark is
that I don’t know if the above use of 0# is necessary. Surely one needs to
start with an inaccessible λ > κ to obtain the Silver dichotomy by forcing
over L (preserving cardinals up to κ) but as far as I know it is indeed possible
that inaccessibility is sufficient:

Question. Does the consistency of ZFC plus an inaccessible suffice for the
consistency of ZFC plus the Silver dichotomy for the generalised Baire space
ωω1

1 ?
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