Consistency of the Siilver Dichotomy in Generalised Baire Space

Sy-David Friedman*

November 27, 2013

A fundamental result in classical descriptive set theory is *Silver's dichotomy*:

Theorem 1 (Silver [10]) If a Borel (or even co-analytic) equivalence relation on the reals has uncountably many classes, then it has a perfect set of classes, i.e., there is a perfect closed set of reals, any two distinct elements of which belong to different classes.

It is convenient to express the conclusion of Silver's theorem in terms of the *continuous reducibility* of equivalence relations. Let id denote the equivalence relation of equality on Cantor space 2^{ω} . If E, F are equivalence relations on Polish spaces then we say that E is *continuously reducible* to F(written $E \leq_c F$) iff there is a continuous function f such that E(x, y) iff F(f(x), f(y)). Then Silver's theorem says that if E is a Borel equivalence relation on the reals with uncountably many classes then id is continuously reducible to E. A more generous notion is *Borel reducibility*, where the "reduction" f is allowed to be Borel (we then write $E \leq_B F$).

In this article we look at Silver's dichotomy in generalised Baire space. Let κ be an infinite cardinal such that $\kappa^{<\kappa} = \kappa$. Then the generalised Baire space κ^{κ} associated to κ is the space of functions from κ to κ topologised with basic open sets of the form:

 $N_{\sigma} = \{ f : \kappa \to \kappa \mid f \text{ extends } \sigma \}$

^{*}The author wishes to thank the FWF (Austrian Science Foundation) for its support through Einzelprojekt P 23316 N13.

where σ belongs to $\kappa^{<\kappa}$. Our hypothesis on κ implies that this gives a basis for the topology of size κ . Borel sets in this space are obtained by closing the collection of basic open sets under unions and intersections of size κ . We get closure under complements using the fact that the complement of a basic open set is the union of at most κ basic open sets. A function from generalised Baire space to itself is Borel iff the pre-image under this function of any basic open set under the function is Borel. And the *generalised Cantor space* 2^{κ} associated to κ is the closed subspace of κ^{κ} consisting of those functions which map κ to 2. As in the classical setting we have the corresponding notions of cotinuous and Borel reducibility (again written as \leq_c, \leq_B , respectively) of equivalence relations on spaces like 2^{κ} or κ^{κ} which are equipped with a notion of Borel set.

As in the classical case, the reducibility of id (the equality relation on 2^{κ}) to an equivalence relation E on κ^{κ} can be reformulated as a statement about perfect sets. We say that $X \subseteq \kappa^{\kappa}$ is *perfect* iff X consists of the κ -branches [T] through a subtree T of $\kappa^{<\kappa}$ which is $< \kappa$ -closed and has the property that every node can be extended to a splitting node.

Proposition 2 Suppose that E is an equivalence relation on κ^{κ} . Then id is Borel-reducible to E iff id is continuously reducible to E iff there is a perfect set $X \subseteq \kappa^{\kappa}$ any two distinct elements of which belong to different classes of E.

Proof. Given X = [T] as above we obtain an order-preserving bijection between $2^{<\kappa}$ and the set of splitting nodes of T; this induces a continuous $\sigma: 2^{\kappa} \to [T]$ which reduces id to E. Conversely, if f is a Borel function that reduces id to E then f is continuous on a comeager set and this comeager set contains a perfect set; we can thin out this perfect set to a perfect subset whose f-image is the desired perfect set X. \Box

Now we ask:

Question. Does Silver's dichotomy hold for generalised Baire space κ^{κ} ? I.e., if a Borel equivalence relation E on κ^{κ} has more than κ classes, is there a continuous reduction of id on 2^{κ} to E?

The answer is negative in Gödel's L, in a strong sense.

Theorem 3 (SDF-Hyttinen-Kulikov [2, 3]) Assume V = L. Then Silver's dichotomy fails in generalised Baire space for all uncountable regular κ : There are Borel equivalence relations with more than κ classes which lie strictly below id as well as a family of 2^{κ} Borel equivalence relations including id which are pairwise \leq_B -incomparable. If κ is inaccessible then there is a family of 2^{κ} Borel equivalence relations which are pairwise \leq_B -incomparable and \leq_B -below id.

The problem with Silver's dichotomy in L derives from the existence of weak Kurepa trees on a regular cardinal κ . These are trees T of height κ with more than κ branches of length κ such that every node of T splits and the α -th level of T has size at most card(α) for stationary-many ordinals $\alpha < \kappa$. We say that T is Kurepa if "stationary-many ordinals" can be replaced by "all infinite ordinals".

Lemma 4 Suppose V = L and κ is regular and uncountable. Then there exists a weak Kurepa tree on κ . If κ is a successor cardinal then there is a Kurepa tree on κ .

Proof. Our tree will be a subtree of the binary tree $2^{<\kappa}$. For singular $\alpha < \kappa$ let $\beta(\alpha)$ be the least limit ordinal $\beta > \alpha$ such that α is singular in L_{β} .

First assume that κ is inaccessible. Then T consists of all $\sigma \in 2^{<\kappa}$ such that:

(*) For singular cardinals $\alpha \leq |\sigma|$ of cofinality $\omega, \sigma | \alpha$ belongs to $L_{\beta(\alpha)}$.

Any node of T can be extended to nodes in T of any greater length (just add 0's). And any node of T of length α splits into two nodes in T of length $\alpha + 1$ so the α -th splitting level consists of nodes of length α . It follows that the α -th splitting level of T has size at most card(α) for α a singular cardinal of cofinality ω .

Main Claim. T has κ^+ many branches.

Proof of Main Claim. For a limit ordinal β between κ and κ^+ we say that β is critical if some subset of κ is definable over L_{β} but not an element of L_{β} . The set of critical ordinals is cofinal in κ^+ and for critical β , the Skolem hull of κ in L_{β} is all of L_{β} .

Now for each critical β define:

(*) $C_{\beta} = \{ \alpha < \kappa \mid \text{The Skolem hull of } \alpha \text{ in } L_{\beta} \text{ contains no ordinals between } \alpha \text{ and } \kappa \}.$

Then C_{β} is a club in κ for each critical β and moreover if $\beta_0 < \beta_1$ are both critical then sufficiently large elements of C_{β_1} are limit points of C_{β_0} ; this is because β_0 is an element of the Skolem hull of α in L_{β_1} for a large enough α and therefore so is C_{β_0} .

In particular the C_{β} 's for critical β are distinct. Now we claim that each C_{β} is a branch through T. For this we need only check that if $\alpha < \kappa$ is a singular cardinal of cofinality ω then $C_{\beta} \cap \alpha$ belongs to $L_{\beta(\alpha)}$. This is clear if α does not belong to C_{β} , for then $C_{\beta} \cap \alpha$ is bounded in α and therfore an element of L_{α} . Otherwise note that $C_{\beta} \cap \alpha$ is definable over $L_{\bar{\beta}+1}$ where $L_{\bar{\beta}}$ is the transitive collapse of the Skolem hull of α in L_{β} ; as α is regular in $L_{\bar{\beta}}$ it follows that $\bar{\beta}$ is less than $\beta(\alpha)$ so $C_{\beta} \cap \alpha$ is an element of $L_{\beta(\alpha)}$, as desired.

The case of a successor cardinal κ is similar, except one can now obtain a Kurepa tree on κ as all sufficiently large $\alpha < \kappa$ are singular. \Box (*Lemma*)

Now note that if T is weak Kurepa then there can be no continuous injection from 2^{κ} into [T], the set of κ -branches through T: If κ is inaccessible then this would yield a club of $\alpha < \kappa$ such that the α -th level of T has 2^{α} many nodes and if $\kappa = \gamma^+$ then this would yield an $\alpha < \kappa$ such that T has $2^{\gamma} = \kappa$ -many nodes on level α . In fact there cannot be such an injection which is Borel, as any Borel function is continuous on a comeager set and any comeager set contains a copy of 2^{κ} .

Finally define xE_Ty iff x, y are not branches through T or x = y. Then E_T is a Borel equivalence relation with κ^+ classes yet id cannot Borel reduce to E_T for the reasons given above. And E_T is Borel reducible to id via the reduction that sends each branch of T to itself and the non-branches of T to some fixed non-branch of T. Thus Silver's dichotomy fails at all uncountable regular cardinals in L.

On the other hand, Silver [9] also showed that it is possible to get rid of Kurepa trees on a regular cardinal κ using an inaccessible above κ : If $\lambda > \kappa$ is inaccessible and a Lévy collapse is performed to make λ into κ^+ (using conditions of size less than κ) then in the generic extension there are no Kurepa trees on κ . In fact there not even any weak Kurepa trees on κ in Silver's model. This suggests that a model like Silver's may obey the Silver dichotomy for κ^{κ} , provided λ is chosen appropriately. Our main theorem states that this is indeed the case.

To gain further insight into the problem we next consider the following ZFC-provable negative result.

Theorem 5 Let κ be regular and uncountable. Then there is a Δ_1^1 equivalence relation E with κ^+ classes such that id is not Borel-reducible to E. So the Silver Dichotomy provably fails for Δ_1^1 .

Proof. The relation is $xE^{\operatorname{rank}}y$ iff x, y do not code wellorders or x, y code wellorders of the same length. This has exactly κ^+ classes. It is Δ_1^1 because the assumption that κ is uncountable and regular implies that wellfoundedness for linear orders of κ is Δ_1^1 (it is even closed). Suppose T were a perfect tree whose distinct κ -branches were E^{rank} -inequivalent. Now let xbe a generic branch through T (treating T as a version of κ -Cohen forcing) and let $p \in T$ be a condition forcing that x codes a wellorder of some rank $\alpha < \kappa^+$. Then any sufficiently generic branch through T extending p codes a wellorder of rank α , which contradicts the fact that there are distinct such branches in V. \Box

So a first step toward obtaining the consistency of Silver's Dichotomy for κ^{κ} is the following.

Theorem 6 Assume $\kappa^{<\kappa} = \kappa$. Then the relation E^{rank} of the previous theorem is not Borel.

Proof. For $\alpha < \kappa^+$ let \mathcal{L}_{α} denote the forcing to Lévy collapse α to κ (using conditions of size less than κ). If $g : \kappa \to \alpha$ is \mathcal{L}_{α} -generic then g^* denotes the subset of κ defined by $i \in g^*$ iff $g((i)_0) \leq g((i)_1)$ where $i \mapsto ((i)_0, (i)_1)$ is a bijection between κ and $\kappa \times \kappa$.

By induction on Borel rank we show that if B is Borel then there is a club C in κ^+ such that:

(*) For $\alpha \leq \beta$ in *C* of cofinality κ and (p_0, p_1) a condition in $\mathcal{L}_{\alpha} \times \mathcal{L}_{\alpha}$, (p_0, p_1) forces that (g_0^*, g_1^*) belongs to *B* in the forcing $\mathcal{L}_{\alpha} \times \mathcal{L}_{\alpha}$ iff it forces this in the forcing $\mathcal{L}_{\alpha} \times \mathcal{L}_{\beta}$.

If $B = U(\sigma_0) \times U(\sigma_1)$ is a basic open set then we may take C to consist of all ordinals greater than κ in κ^+ . This is because for any $\alpha \leq \beta$, if (p_0, p_1) belongs to $\mathcal{L}_{\alpha} \times \mathcal{L}_{\beta}$ then $(p_0, p_1) \mathcal{L}_{\alpha} \times \mathcal{L}_{\beta}$ -forces $(g_0^*, g_1^*) \in B$ exactly if (p_0^*, p_1^*) extends (σ_0, σ_1) where p_0^* is the set of i such that $(i)_0, (i)_1$ are in the domain of p_0 and $p_0(((i)_0) \leq p_0((i)_1)$ (similarly for p_1^*); this is independent of the pair α, β .

Inductively, suppose that B is the intersection of Borel sets B_i , $i < \kappa$, of smaller Borel rank. By intersecting clubs obtained by applying (*) to the B_i 's we obtain a club C ensuring the desired conclusion for B, as (p_0, p_1) forces $(g_0^*, g_1^*) \in B$ iff for each $i < \kappa$ it forces $(g_0^*, g_1^*) \in B_i$.

Finally if B is the complement of the Borel set B_0 then by induction we have a club C_0 such that for $\alpha \leq \beta$ in C_0 of cofinality κ and $(p_0, p_1) \in \mathcal{L}_{\alpha} \times \mathcal{L}_{\alpha}$, $(p_0, p_1) \mathcal{L}_{\alpha} \times \mathcal{L}_{\alpha}$ -forces $(g_0^*, g_1^*) \in B_0$ iff it $\mathcal{L}_{\alpha} \times \mathcal{L}_{\beta}$ -forces this. Now thin out the club C_0 to a club C so that for α in C of cofinality κ , if (p_0, p_1) is in $\mathcal{L}_{\alpha} \times \mathcal{L}_{\alpha}$ and there is some $\beta \geq \alpha$ in C_0 of cofinality κ and some (q_0, q_1) in $\mathcal{L}_{\alpha} \times \mathcal{L}_{\beta}$ below (p_0, p_1) which $\mathcal{L}_{\alpha} \times \mathcal{L}_{\beta}$ -forces (g_0^*, g_1^*) in B_0 then there is such a (q_0, q_1) in $\mathcal{L}_{\alpha} \times \mathcal{L}_{\alpha}$ (which then $\mathcal{L}_{\alpha} \times \mathcal{L}_{\alpha}$ -forces (g_0^*, g_1^*) in B_0). Then for $\alpha \leq \beta$ of cofinality κ in this thinner club C, $(p_0, p_1) \mathcal{L}_{\alpha} \times \mathcal{L}_{\alpha}$ -forces (g_0^*, g_1^*) in B iff none of its extensions in $\mathcal{L}_{\alpha} \times \mathcal{L}_{\alpha}$ forces (g_0^*, g_1^*) in B_0 in the forcing $\mathcal{L}_{\alpha} \times \mathcal{L}_{\beta}$ iff none of its extensions in $\mathcal{L}_{\alpha} \times \mathcal{L}_{\beta}$ forces (g_0^*, g_1^*) in B_0 in the forcing $\mathcal{L}_{\alpha} \times \mathcal{L}_{\beta}$ iff $(p_0, p_1) \mathcal{L}_{\alpha} \times \mathcal{L}_{\beta}$ -forces (g_0^*, g_1^*) in B_0 in the forcing $\mathcal{L}_{\alpha} \times \mathcal{L}_{\beta}$ iff $(p_0, p_1) \mathcal{L}_{\alpha} \times \mathcal{L}_{\beta}$ -forces (g_0^*, g_1^*) in B, completing the induction.

It follows that E^{rank} is not Borel, as otherwise we have $g_0^* E^{\text{rank}} g_1^*$ where g_0, g_1 are sufficiently generic for $\mathcal{L}_{\alpha} \times \mathcal{L}_{\beta}$ with $\alpha < \beta$. \Box

Now using an analogous argument we have:

Theorem 7 Suppose that $0^{\#}$ exists, κ is regular in L and λ is the κ^+ of V. Then after forcing over L with the Lévy collapse turning λ into κ^+ , the Silver Dichotomy holds for κ^{κ} .

Proof. Suppose that E is a Borel equivalence relation in the Lévy collapse extension L[G]. For simplicity we assume that E has a Borel code in L and therefore has Borel rank less than $(\kappa^+)^L$. Suppose that E has more than κ classes in L[G] and let p be a Lévy collapse condition forcing that the Lévy collapse names $(\sigma_{\alpha} \mid \alpha < \lambda)$ are pairwise E-inequivalent. We can assume that the σ_{α} 's are of size less than λ and choose $f : \lambda \to \lambda$ in L so that for each $\alpha < \lambda$, σ_{α} is an $\mathcal{L}_{f(\alpha)}$ -name where \mathcal{L}_{β} denotes the part of the Lévy collapse forcing which collapses ordinals less than β to κ . We may assume that for each α , the E-equivalence class of σ_{α} does not depend on the choice of $\mathcal{L}_{f(\alpha)}$ -generic, as otherwise this would fail for a pair of mutual $\mathcal{L}_{f(\alpha)}$ generics and by building a perfect set of mutual $\mathcal{L}_{f(\alpha)}$ -generics we obtain a perfect set of distinct E-equivalence classes. It follows that if $\alpha < \beta$ and p belongs to $\mathcal{L}_{f(\alpha)}$ then (p, p) forces in $\mathcal{L}_{f(\alpha)} \times \mathcal{L}_{f(\beta)}$ that σ_{α} and σ_{β} are E-inequivalent.

Let I consist of the Silver indiscernibles between κ and λ and for i < jin I let π_{ij} be an elementary embedding from L to L with critical point i, sending i to j. As p, the sequence $(\sigma_{\alpha} \mid \alpha < \lambda)$ and the function f defined above are constructible, they are L-definable from parameters less than some $i \in I$ together with indiscernibles $\geq \lambda$. Then we have that for j < k in Iabove i, $\sigma_k = \pi_{jk}(\sigma_j)$ and $f(k) = \pi_{jk}(f(j))$. Let I_0 be the final segment of I consisting of all elements of I greater than i.

In analogy to the previous proof we show that for each Borel B there is a club C contained in I_0 such that:

(*) Suppose that $i_0 < i_1 < \cdots < i_n = j < i_{n+1} = k$ belong to C, $(p_0, p_1) \leq (p, p)$ belongs to $\mathcal{L}_{f(j)} \times \mathcal{L}_{f(j)}$ and is *L*-definable from the parameters in $i_0 \cup \{i_0, i_1, \ldots, i_n\}$ together with indiscernibles > j. Then (p_0, p_1) forces that $(\sigma_j^{g_0}, \sigma_j^{g_1})$ belongs to *B* in the forcing $\mathcal{L}_{f(j)} \times \mathcal{L}_{f(j)}$ iff $(p_0, \pi_{i_0 i_1} \pi_{i_1 i_2} \cdots \pi_{i_{n-1} i_n} \pi_{i_n i_{n+1}}(p_1))$ forces that $(\sigma_j^{g_0}, \sigma_k^{g_1})$ belongs to *B* in the forcing $\mathcal{L}_{f(j)} \times \mathcal{L}_{f(k)}$.

Note that the composition $\pi_{i_0i_1}\pi_{i_1i_2}\cdots\pi_{i_{n-1}i_n}\pi_{i_nk}$ sends (i_0, i_1, \ldots, i_n) to $(i_1, i_2, \ldots, i_{n+1})$.

We now prove (*) (an appropriate choice of C) by induction on the Borel rank of B. If $B = U(\tau_0) \times U(\tau_1)$ is a basic open set then (p_0, p_1) forces that $(\sigma_j^{g_0}, \sigma_j^{g_1})$ belongs to B iff both p_0 forces that $\sigma_j^{g_0}$ belongs to $U(\tau_0)$ and p_1 forces that $\sigma_j^{g_1}$ belongs to $U(\tau_1)$; as the latter is equivalent to $\pi_{i_0i_1}\pi_{i_1i_2}\cdots\pi_{i_{n-1}i_n}\pi_{i_ni_{n+1}}(p_1)$ forces that $\sigma_k^{g_1}$ belongs to $U(\tau_1)$ the conclusion of (*) follows, where we can take C to be the entire club I_0 .

Inductively, suppose that B is the intersection of Borel sets B_{α} , $\alpha < \kappa$, of smaller Borel rank. Then (*) for the B_{α} 's implies ensures (*) for B by intersecting κ -many clubs.

Finally suppose that B is the complement of the Borel set B_0 and the club C_0 witnesses (*) for B_0 . Let C consist of all limit points of C_0 ; we show that C witnesses (*) for B. Suppose that $i_0 < i_1 < \cdots < i_n = j < i_{n+1} = k$ and (p_0, p_1) are as in the hypothesis of (*) where i_0, \ldots, i_{n+1} belong to C. Let π denote the composition $\pi_{i_0i_1}\pi_{i_1i_2}\cdots\pi_{i_{n-1}i_n}\pi_{i_ni_{n+1}}$.

If $(p_0, \pi(p_1))$ does not force that $(\sigma_j^{g_0}, \sigma_k^{g_1})$ belongs to B then there is an extension (q_0, q_1) of $(p_0, \pi(p_1))$ in $\mathcal{L}_{f(j)} \times \mathcal{L}_{f(k)}$ which forces that $(\sigma_j^{g_0}, \sigma_k^{g_1})$ belongs to B_0 . We may assume that (q_0, q_1) is L-definable from parameters in $i_0 \cup \{i_0, \ldots, i_{n+1}\}$ together with parameters $< i_{-1}$ and indiscernibles > k. As i_0 is a limit point of C_0 we can choose $i_{-1} < i_0$ in C_0 (greater than the parameters used in the definition of (p_0, p_1)). Now consider the condition (q_0, q_1^*) in $\mathcal{L}_{f(j)} \times \mathcal{L}_{f(j)}$, where q_1^* is defined in L from $i_{-1} < i_0 < \cdots < i_n$ (together with indiscernibles greater than $i_n = j$) just like q_1 is defined from $i_0 < i_1 < \cdots < i_{n+1}$ (together with the same parameters $< i_{-1}$ and indiscernibles greater than $i_{n+1} = k$). By induction, (q_0, q_1^*) forces that $(\sigma_j^{g_0}, \sigma_j^{g_1})$ belongs to B_0 . Moreover (q_0, q_1^*) is an extension of (p_0, p_1) as (q_0, q_1) is an extension of $(p_0, \pi(p_1))$ (this implies that q_1^* is an extension of p_1). So (p_0, p_1) does not force that $(\sigma_j^{g_0}, \sigma_j^{g_1})$ belongs to B.

Conversely, suppose that (p_0, p_1) does not force that $(\sigma_j^{g_0}, \sigma_j^{g_1})$ belongs to B. Then there is an extension (q_0, q_1) of (p_0, p_1) which forces that $(\sigma_j^{g_0}, \sigma_j^{g_1})$ belongs to B_0 . We may assume that (q_0, q_1) is definable in L from parameters in $i_0 \cup \{i_0, \ldots, i_n\}$ together with indiscernibles greater than i_n . By induction $(q_0, \pi(q_1))$ forces that $(\sigma_j^{g_0}, \sigma_k^{g_1})$ belongs to B_0 where π is the composition $\pi_{i_0,i_1}\pi_{i_1i_2}\cdots\pi_{i_{n-1}i_n}\pi_{i_ni_{n+1}}$. This condition extends the condition $(p_0, \pi(p_1))$ and therefore establishes that $(p_0, \pi(p_1))$ does not force that $(\sigma_j^{g_0}, \sigma_j^{g_1})$ belongs to B.

Now apply (*) to the Borel set E, producing a club C. As mentioned before we can assume that (p, p) does $\mathcal{L}_{f(i)} \times \mathcal{L}_{f(i)}$ -force $\sigma_i^{\dot{g}_0} E \sigma_i^{\dot{g}_1}$. It follows that for i < j in C, (p, p) also $\mathcal{L}_{f(i)} \times \mathcal{L}_{f(j)}$ -forces $\sigma_i E \sigma_j$, as p is not moved by any elementary embedding which is the identity below an element of I_0 . But this contradicts our assumption that σ_{α} , σ_{β} are forced by (p, p) in $\mathcal{L}_{\alpha} \times \mathcal{L}_{\beta}$ to be E-inequivalent when p belongs to \mathcal{L}_{α} and $\alpha < \beta$. \Box

I close with two remarks. The first is that if $0^{\#}$ exists and κ is an *L*-cardinal which is countable in *V* then the Silver dichotomy holds for κ^{κ} in some *inner model* with the same cardinals up to κ as *L*. This is because

the Lévy collapse forcing which turns the κ^+ of $V = \omega_1$ of V into the κ^+ of the generic extension has a generic in V (it is built as the limit of countable generics along the indiscernibles less than ω_1 of V). The second remark is that I don't know if the above use of $0^{\#}$ is necessary. Surely one needs to start with an inaccessible $\lambda > \kappa$ to obtain the Silver dichotomy by forcing over L (preserving cardinals up to κ) but as far as I know it is indeed possible that inaccessibility is sufficient:

Question. Does the consistency of ZFC plus an inaccessible suffice for the consistency of ZFC plus the Silver dichotomy for the generalised Baire space $\omega_1^{\omega_1}$?

References

- Friedman, H., and L. Stanley, A Borel reducibility theory for classes of countable structures, J. Symb. Logic, 54 (1989), 894–914.
- [2] S. Friedman, T. Hyttinen and V. Kulikov, Generalized Descriptive Set Theory and Classification Theory, Memoirs AMS, to appear.
- [3] S. Friedman and V. Kulikov, Failures of the Silver Dichotomy in the Generalised Baire Space, Journal of Symbolic Logic, to appear.
- [4] S. Gao, Invariant Descriptive Set Theory, Pure and Applied mathematics, CRC Press/Chapman & Hall, 2009.
- [5] G. Hjorth and A. Kechris, Recent developments in the theory of Borel reducibility, Fundamenta Mathematicae, volume 170, number 1– 2, pages 21–52, 2001.
- [6] V. Kanovei, Borel equivalence relations. Structure and classification, Unviersity Lecture Series, 44, American Mathematical Society, 2008.
- [7] A. Kechris, *Classical Descriptive Set Theory*, Graduate Texts in Mathematics, Springer-Verlag, 1995.
- [8] A. Kechris, New directions in descriptive set theory, Bull. Symbolic Logic, 5 (1999), 2, 161–174.
- [9] J.H.Silver, The independence of Kurepa's conjecture and two-cardinal conjectures in model theory, in *Axiomatic Set Theory* (D.S.Scott, editor), Proceedings of Symposia on Pure Mathematics XIII, Part I, American Mathematical Society, 1971, pp. 383–390.

[10] J.H.Silver, Counting the number of equivalence classes of Borel and coanalytic equivalence relations, Annals of Mathematical Logic, volume 18, pages 1–18, 1980.