
The Foundations of Set Theory: Past, Present and Future

Summary:

Cantor: Trans�nite counting, Cardinality for in�nite sets

Paradoxes ⇒ ZFC axioms for set theory

ZFC provides a foundation for mathematics

Constructibility, forcing, large cardinals ⇒
Many possible interpretations of ZFC
Many possible interpretations of mathematics

Fundamental question: Which are the preferred interpretations?

We provide some answers



Cantor and Zermelo: The basic picture

Georg Ferdinand Ludwig Philipp Cantor

Berlin doctorate 1867 (number theory)
Halle habilitation 1870 (number theory)
Heine ⇒ Study of trigonometric series ⇒
Set theory

Cantor's results:
Theory of trans�nite numbers and cardinality
Algebraic numbers are countable
Real numbers are not countable
1-1 correspondence between n-dimensional space and the real line

Opposition from Kronecker
Support from Dedekind
Mittag-Le�er: �100 years too soon�



Cantor and Zermelo: The basic picture

Trans�nite counting
C closed set of reals
C ′ = limit points of C (Cantor derivative)
C ⊇ C ′ ⊇ C ′′ ⊇ · · ·
C∞ = the intersection
C∞ ⊇ (C∞)′, maybe strict!
Keep counting: C∞ ⊇ C∞+1 ⊇ C∞+2 ⊇ · · · !

What is 0, 1, ...,∞,∞+ 1, ...?
Wellordering: Linear ordering with no in�nite descending sequence

Cantor: Any 2 wellorderings are comparable
Each wellordering is isomorphic to an ordinal, a special wellordering
ordered by ∈
0 = ∅, 1 = {0}, 2 = {0, 1}, ..., ω = {0, 1, 2, ...},
ω + 1 = ω ∪ {ω}, . . .



Cantor and Zermelo: The basic picture

Cantor's assumption: Every set can be wellordered
Therefore every set is bijective with an ordinal (not unique)

Cardinal = Ordinal not bijective with a smaller ordinal
Every set is bijective with a unique cardinal, its cardinality

Zermelo: Cantor's assumption follows from the Axiom of Choice
So Cantor's theory of cardinality applies to arbitrary sets, assuming
the Axiom of Choice

One major gap! What is the cardinality of the continuum?
Continuum Hypothesis (CH):
Every uncountable set of reals has the same cardinality as the set of
all reals



Cantor and Zermelo: The basic picture

Paradoxes

Cantor, Burali-Forti, Russell
x = all y such that y /∈ y

x ∈ x ↔ x /∈ x!

Zermelo's proposal:
Only use established principles of set-formation
Axiomatic theory: Zermelo set theory
ZFC = Zermelo-Fraenkel set theory with the Axiom of Choice



Cantor and Zermelo: The basic picture

The Universe of Sets V

ZFC reduces V to the ordinals and the power set operation:
V0 = ∅
Vα+1 = all subsets of Vα

Limit ordinal λ: Vλ = union of the Vα, α < λ
V = union of the Vα's

Not a �unique� description:
Even �xing the ordinals, there are many interpretations of the
power set operation!



An abundance of universes: Constructibility

Gödel, late 1930's

Replace power set operation by a weak power set operation:
Vα+1 = all subsets of Vα

Lα+1 = all �simple� subsets of Lα

L = union of the Lα's
L satis�es ZFC
First clearly-described model of ZFC
CH holds in L!

Gödel:
L is not the �correct� intepretation of ZFC
It is only a tool for showing consistency with ZFC

There are many other interpretations of ZFC:



An abundance of universes: Forcing

Cohen forcing:
Add new sets to L, preserving ZFC
R is Cohen over L i�
R belongs to every open dense set of reals which L can �describe�
Add many Cohen reals to L ⇒ Model where CH fails

Solovay forcing:
R in [0, 1] is random over L i�
R belongs to every measure 1 subset of [0, 1] which L can �describe�
Using random reals: Model where every �de�nable� set of reals is
Lebesgue measurable

More generally: �Force� using any partial ordering P

(Cohen forcing: Nonempty open sets under inclusion
Solovay forcing: Closed sets of positive measure)
Yields many di�erent models of ZFC



An abundance of universes: Large cardinals

Example from measure theory:
Countably additive extension of Lebesgue measure to all sets of
reals (⇒ V is not L)

Model of ZFC with such a measure ⇔
Model of ZFC with a measurable cardinal

Measurable cardinal: An example of a �large cardinal hypothesis�

Large cardinal hypotheses play a big role in set theory
(they measure �consistency strengths�)



An abundance of universes: Large cardinals

More than a measurable cardinal is sometimes needed:

A is Wadge reducible to B i�
For some continuous f , x ∈ A i� f (x) ∈ B

Borel sets = smallest σ-algebra containing all open sets

Σ1

1
= continuous image of a Borel set

i1
1

= complement of Σ1

1
set

Σ1

n+1
= continuous image of i1n set

i1
n+1

= complement of Σ1

n+1
set

Projective = Σ1
n or i1n for some n

WPn: If A,B are Σ1
n but not i1n then

A is Wadge reducible to B and vice-versa



An abundance of universes: Large cardinals

WP1 has the �strength� of #'s, a large cardinal hypothesis below a
measurable cardinal.
WP2 has the �strength� of a Woodin cardinal, much stronger than
a measurable cardinal
WPn corresponds to n − 1 Woodin cardinals



An abundance of universes

Summary: Constructibility, forcing and large cardinals yield many
di�erent universes, with di�erent mathematics:

L (Gödel's constructible universe)
CH true
Singular cardinal hypothesis true
A de�nable, non-measurable set of reals
Suslin's hypothesis false
Whitehead conjecture false
Borel conjecture false
Borel-isomorphism of non-Borel analytic sets false
Singular Square principle true



An abundance of universes

L[G ]'s (Cohen-style forcing extensions of L)
CH true, or not!
Singular cardinal hypothesis still true
A de�nable non-measurable set of reals, or not!
Suslin's hypothesis true, or not!
Whitehead's conjecture true, or not!
Borel conjecture true, or not!
Borel-isomorphism of non-Borel analytic sets still false
Singular Square principle still true



An abundance of universes

Big enough K 's (Jensen-style core models)
CH true
Singular cardinal hypothesis true
No de�nable non-measurable set of reals!
Suslin's hypothesis false
Whitehead conjecture false
Borel conjecture false
Borel-isomorphism of non-Borel analytic sets true!
Singular Square principle true



An abundance of universes

K [G ]'s (Forcing extensions of K )
Singular cardinal hypothesis true, or not!
Singular square principle true

Models with very LARGE cardinals
Singular square principle false!

Models where Forcing Axioms hold
CH false!
Suslin's hypothesis true!
Borel's conjecture true!
Singular cardinal hypothesis true!

What an interesting mess!

Q. Which universes should we prefer?



Preferred universes: Computation theory

ω = the natural numbers

A subset A of ω is computable i� there is an algorithm which for
any argument n determines whether or not n belongs to A

i� there is a machine (Turing machine) which given n as input
produces 1 as output if n belongs to A and 0 as output otherwise

ω = the least in�nite cardinal number

Now let α be any in�nite cardinal number

A subset A of α is α-computable i� there is an algorithm which for
any argument β determines whether or not beta belongs to A

i� there is a machine (α-machine) which given β as input produces
1 as output if β belongs to A and 0 as output otherwise

Idea: α-computability should look like (ω-)computability



Preferred universes: Computation theory

Relativised α-computability

A,B subsets of α
A is α-computable relative to B i� there is an (α-)machine with

oracle B which given β as input produces 1 as output if β belongs
to A and 0 as output otherwise
Write A ≤α B for �A is α-computable relative to B�

Fact. For α = ω, (∗)α holds, where:

(∗)α: For any A there exist B0,B1 such that A ≤α B0, A ≤α B1 but
B0 �α B1, B1 �α B0.

Question. Does (∗)α hold for all α?



Preferred universes: Computation theory

Theorem

(a) Any universe (model of ZFC) in which (∗)α holds for all α has a

subuniverse with �many� measurable cardinals.

(b) Conversely, if there is a universe with �many� measurable

cardinals then there is a larger universe in which (∗)α holds for all α.

Therefore (α-)computation theory suggests that we should prefer
universes which have a subuniverse with �many� measurable
cardinals.



Preferred universes: First-order Model theory

Work in progress (Tapani Hyttinen)
In model theory, one typically studies the class of intepretations or
models of a set of axioms or theory T .
Simplest case: T is ��rst-order�

Shelah: �Classi�cation theory�
T is �classi�able� i�
T does not have the maximum number of uncountable models i�
T is �superstable with NDOP and NOTOP�

Another approach to �classi�cation theory�: Consider the
isomorphism relation 'T for models of T

M 'T N i� M,N are models of T and there is an isomorphism
from M onto N

T is �well-behaved� i� 'T is a �simple� equivalence relation



Preferred universes: First-order Model theory

The countable models of T form a nice topological space, indeed a
separable complete metric space, so we can say:

'T is simple on countable models of T i� 'T is a Borel
equivalence relation

For uncountable models, there are di�erent notions of �Borel�:

Strictly-Borel ⊆ ∆ ⊆ Borel∗

Theorem

There are universes in which the following are equivalent:

(a) 'T is ∆ on (su�ciently large) uncountable models of T .

(b) T is Shelah-classi�able.

The universes of the Theorem are those without �Canary Trees�

Model theory ⇒ Prefer universes without Canary Trees!



Preferred universes: Non-�rst-order Model theory

Current model theory also considers the class of models of a theory
T which is not �rst-order: Abstract elementary classes

Shelah has made progress with excellent classes (classes which obey
certain amalgamation conditions):

Fact. Suppose that α < β are uncountable cardinal numbers and C
is excellent. If C has a unique element of size α (up to
isomorphism) then the same holds for β.

The question is: When is a class excellent?



Preferred universes: Non-�rst-order Model theory

Assuming the Weak Generalised Continuum Hypothesis (WGCH):

(∗) If an abstract elementary class has at most ℵn models of
cardinality ℵn for each �nite n then it is excellent.

On the other hand, (∗) fails under a popular but opposing
set-theoretic assumption, Martin's axiom (MA). So we have:

Model theory ⇒ We should prefer universes which satisfy the Weak
GCH over those which satisfy Martin's Axiom!



Preferred universes: Gödel maximality

Two attractive pictures of V :

ause

Minimal one: V = L

Maximal one: ???



Gödel

Gödel (1964):

�From an axiom in some sense opposite to [V=L], the negation of
Cantor's conjecture could perhaps be derived. I am thinking of an
axiom which ... would state some maximum property of the system
of all sets, whereas [V=L] states a minimum property. Note that
only a maximum property would seem to harmonize with the
concept of set ...�



The search for maximal universes

How do we �nd a Maximal Universe?

ause
Problem: V has all sets, so V is trivially maximal

ause
We need to compare V to other possible universes

ause
How do we create other possible universes?

ause
Fact. If V were countable, then we could create many other
possible universes (by forcing, in�nitary logic, ...)

Solution: We temporarily treat V as a countable universe,
embedded into a collection of other possible such universes



The Hyperuniverse

(von Neumann-Zermelo) V is determined by:

Its Ordinals Ord

Its Power Set operation P
V0 = ∅
Vα+1 = P(Vα)
Vλ =

⋃
α<λ Vα

V is countable, so Ord(V ) = some countable ordinal α

Fix α

H = the Hyperuniverse
H = All countable transitive models of ZFC of ordinal height α

Universe = element of the Hyperuniverse

What is α? We will choose α so that there is a �maximal� Universe



The Search for Maximal Universes

V0 is an inner universe of V1 i� V0 ⊆ V1

V0 is an outer universe of V1 i� V1 ⊆ V0

V0,V1 are compatible universes i�
they have a common outer universe

Q. What does it mean for a universe to be �maximal�?



The Search for Maximal Universes: Absoluteness

L = language of set theory
For a universe W :
Φ(W ) = all sentences of L which are true
in some inner universe of W

Obviously: V ⊆W → Φ(V ) ⊆ Φ(W )

Key De�nition:

V is maximal i� V ⊆W → Φ(V ) = Φ(W )

The Inner Model Hypothesis states:
The universe V is maximal



The Inner Model Hypothesis

Is the IMH consistent?

Theorem

(F-Woodin) Assume that there is a Woodin cardinal and a larger

inaccessible cardinal. Then there are maximal universes, so the IMH

is consistent.

Are large cardinals necessary?

Theorem

(F-Welch) The IMH implies that there are inner models with

measurable cardinals of arbitrarily high Mitchell order.



Summary

In summary:
1. Cantor's set theory was highly successful, but su�ered from
paradoxes.
2. The paradoxes were resolved by the development of axiomatic
set theory, ZFC.
3. Constructibility, forcing and large cardinal theory gave rise to an
abundance of universes.
4. Ideas from computation theory and model theory, as well as
maximality principles in set theory provide criteria for preferring one
universe to another.
Will set theory reach a de�nitive picture of the universe of sets?
Only time will tell ...


