Joint work with Katia Fokina and Asger Törnquist (postdocs at the KGRC)

Reals = Baire space ${}^{\omega}\omega$, with the natural topology Basic open sets: $N_s = \{f \mid f \text{ extends } s\}$, $s : n \to \omega$ for some finite n

If *E* and *F* are Borel equivalence relations on the reals then *E* is *Borel reducible to F*, written $E \leq_B F$, iff For some Borel function $f: x \in y$ iff $f(x) \in f(y)$

 \leq_B is reflexive and transitive $E \equiv_B F$ iff $E \leq_B F$ and $F \leq_B E$ (equivalence relation) $[E]_B =$ the equivalence class of E under \equiv_B

Object of study: $\mathcal{B} = \text{Degrees}$ of Borel equivalence relations under Borel reducibility

Work of Silver and of Harrington-Kechris-Louveau identifies an interesting initial segment of \mathcal{B} :

Theorem

B has an initial segment

$$1 < 2 < \cdots < \omega < R < E_0$$

where:

n = Borel equivalence relations with exactly n classes $\omega = Borel$ equivalence relations with exactly \aleph_0 classes R is ($\omega \omega$,=) (equality on reals) E_0 is the equivalence relation xE_0y iff x(n) = y(n) for all but finitely many n

In fact: Any Borel equivalence relation is Borel equivalent to one of the above or lies strictly above E_0 under Borel reducibility.

Question: What happens if we replace "Borel" by "Lightface Borel"?

Write "Hyp" for "Lightface Borel" (= Δ_1^1). Then we define:

If *E* and *F* are Hyp equivalence relations on the reals then *E* is *Hyp reducible to F*, written $E \leq_H F$, iff For some Hyp function $f: x \in y$ iff $f(x) \in f(y)$

 \leq_H is reflexive and transitive $E \equiv_H F$ iff $E \leq_H F$ and $F \leq_H E$ (equivalence relation) $[E]_H =$ the equivalence class of E under \equiv_H

Object of study: $\mathcal{H}=$ Degrees of Hyp equivalence relations under Hyp reducibility

There are some surprises!

Again we have degrees

 $1 < 2 < \cdots < \omega < R < E_0$

defined as follows:

n is represented by xE^ny iff x(0) = y(0) < n - 1 or $x(0), y(0) \ge n - 1$ ω is represented by $xE^{\omega}y$ iff x(0) = y(0) *R*, E_0 are as before: xRy iff x = y xE_0y iff x(n) = y(n) for all but finitely many *n*

Proposition

There are Hyp equivalence relations strictly between 1 and 2!

Explanation:

Let *E* be a Hyp equivalence relation. Recall that the \mathcal{H} -degree *n* is represented by the equivalence relation E^n where:

$$xE^n y$$
 iff $x(0) = y(0) < n - 1$ or $x(0), y(0) \ge n - 1$

Fact 1. E^n is Hyp reducible to E iff at least n distinct E-equivalence classes contain Hyp reals

Proof. Suppose that E^n Hyp reduces to E via the Hyp function f. Each of the n equivalence classes of E^n contains a Hyp real; let x_0, \ldots, x_{n-1} be Hyp, pairwise E^n -inequivalent reals. Then the reals $f(x_i)$, i < n, are Hyp, pairwise E-inequivalent reals. Conversely, if y_0, \ldots, y_{n-1} are Hyp, pairwise E-inequivalent reals then send the E^n -equivalence class of x_i to the real y_i ; this is a Hyp reduction of E^n to E. \Box

Fact 2. E is Hyp reducible to E^2 iff *E* has at most 2 equivalence classes.

Proof. If E is Hyp reducible to E^2 then E has at most 2 equivalence classes because E^2 has only 2 equivalence classes. Conversely, suppose that the equivalence classes of E are A_0 and A_1 . We may assume that A_0 has a Hyp element x. Then A_0 is Hyp as it consists of those reals E-equivalent to x and A_1 is Hyp as it consists of those reals not E-equivalent to x. Now we can reduce E to E^2 by choosing E^2 -inequivalent Hyp reals y_0, y_1 and sending the elements of A_0 to y_0 and the elements of A_1 to y_1 . \Box

So to get a Hyp equivalence relation between 1 and 2 we need only find one with two equivalence classes but with all Hyp reals in just one class. This follows from a classical fact from Hyp theory:

Fact 3. There are nonempty Hyp sets of reals which contain no Hyp element.

Proof. Let A be the set of non-Hyp reals. Then A is Σ_1^1 and therefore the projection of a Π_1^0 subset P of Reals × Reals. P is nonempty. A Hyp real $h = (h_0, h_1)$ in P would give a Hyp real h_0 in A, contradiction. \Box

In a moment we will ask the harder question: Are there incomparable degrees between 1 and 2?

But first we consider what happens between 1 and 3

Let E be a Hyp equivalence relation. We have seen:

 E^n is Hyp reducible to E iff E has at least n equivalence classes containing Hyp reals

E is Hyp reducible to E^2 iff *E* has at most 2 equivalence classes Can we replace 2 by *n* in this last statement?

Fact 4. E is Hyp reducible to E^n iff E has at most n equivalence classes and each equivalence class is Hyp.

Proof. Each equivalence class of E^n is Hyp. If f is a Hyp function reducing E to E^n then each equivalence class of E is the preimage of a Hyp set under a Hyp function, hence is Hyp. Conversely, if E has at most n classes and each class is Hyp, then we obtain a Hyp reduction of E to E^n by assigning E^n -inequivalent Hyp reals to the different classes of E. \Box

Can a Hyp equivalence relation with 3 equivalence classes have a non-Hyp equivalence class? Fortunately, the answer is NO.

Lemma

Suppose that E is a Hyp equivalence relation with countably many classes. Then each equivalence class of E is Hyp.

Proof Sketch. The Silver dichotomy states that every Borel (or even boldface Π_1^1) equivalence relation has either countably many classes or a perfect set of equivalence classes (i.e., R is Borel reducible to it). Harrington's proof of this shows: If E is a Hyp equivalence relation with countably many classes, then every real belongs to a Hyp subset of some equivalence class.

Now let *C* be the set of codes for Hyp subsets of an equivalence class; then C is Π_1^1 . Consider the relation

 $R = \{(x, c) \mid c \text{ belongs to } C \text{ and } x \text{ belongs to } H(c), \text{ the Hyp set coded by c} \}$

Then R is Π_1^1 and can be uniformised by a Π_1^1 function F. As the values of F are numbers, F is Hyp and by Σ_1^1 Separation we can choose a Hyp $D \subseteq C$, D containing Range(F). Now define an equivalence relation E^* on D by:

 $d_0 E^* d_1$ iff $H(d_0) E H(d_1)$, i.e., $H(d_0)$ and $H(d_1)$ are subsets of the same *E*-equivalence class

Then both E^* and its complement are Π_1^1 , so E^* is Hyp. And EHyp reduces to E^* via $x \mapsto F(x)$. But E^* is just a Hyp relation on a Hyp set of numbers, so each of its equivalence classes is Hyp. It follows that also each equivalence class of E is Hyp. \Box

Corollary

Let E be a Hyp equivalence relation. Then E is Hyp reducible to n iff it has at most n equivalence classes. And E is Hyp reducible to ω iff E has countably many equivalence classes.

There are Hyp equivalence relations between 1 and 3 which are incomparable with 2: Take one with 3 classes, one of which contains all Hyp reals.

There are Hyp equivalence relations strictly between 2 and 3: Take one with 3 classes, only two of which contain Hyp reals. Similarly, for any $0 < n_0 < n_1$ finite, there are Hyp equivalence relations which are strictly above n_0 , strictly below n_1 and incomparable with all *n* for *n* between n_0 and n_1 .

Now we discuss the more difficult question: Are there incomparable Hyp equivalence relations between 1 and 2? To answer this we prove:

Theorem

There exists Hyp sets of reals A, B such that for no Hyp function F do we have $F[A] \subseteq B$ or $F[B] \subseteq A$.

Given this Theorem, define E_A to be the equivalence relation with equivalence classes A and $\sim A$ (the complement of A); define E_B similarly. Note that the sets A, B contain no Hyp reals, else there would be a constant Hyp function F mapping one of them into the other. So a Hyp reduction of E_A to E_B would have to send the elements of $\sim A$ (which contains Hyp reals) to elements of $\sim B$, and therefore the elements of A to elements of B, contradicting the Theorem. Similarly with A and B switched.

Theorem

There exists Hyp sets of reals A, B such that for no Hyp function F do we have $F[A] \subseteq B$ or $F[B] \subseteq A$.

Proof Sketch. First we quote a result of Harrington. For reals a, b and a recursive ordinal α we say that a is α -below b iff a is recursive in the α -jump of b.

Fact. For any recursive ordinal α there are Π_1^0 singletons a, b such that a is not α -below b and b is not α -below a.

Now using Barwise Compactness, find a nonstandard ω -model M of ZF^- in which are there are Π_1^0 singletons a, b such that for all recursive α , a is not α -below b and b is not α -below a (i.e., a and b are Hyp incomparable).

Let a, b be the unique solutions in M to the Π_1^0 formulas φ_0, φ_1 , respectively.

The desired sets A, B are $\{x \mid \varphi_0(x)\}$ and $\{x \mid \varphi_1(x)\}$.

If F were a Hyp function mapping A into B, then it would send a to an element F(a) of $B \cap M$; but then F(a) must equal b and therefore b is Hyp in a, contradicting the choice of a, b. \Box

For the remainder of this talk, fix A, B as in the Theorem: There is no Hyp function F such that $F[A] \subseteq B$ or $F[B] \subseteq A$. Using A, B we can easily get incomparable Hyp equivalence relations between n and n + 1 for any finite n, by considering E_A, E_B where the equivalence classes of E_A are A together with a split of $\sim A$ into n classes, each of which contains a Hyp real (similarly for E_B).

We now consider Hyp equivalence relations with infinitely many equivalence classes.

Recall the Silver and Harrington-Kechris-Louveau dichotomies:

Theorem

(a) (Silver) A Borel equivalence relation is either Borel reducible to ω or Borel reduces R.
(b) (H-K-L) A Borel equivalence relation is either Borel reducible to R or Borel reduces E₀.

How effective are these results? Harrington's proof of (a) and the original proof of (b) show:

Theorem

(a) A Hyp equivalence relation is either Hyp reducible to ω or Borel reduces R.

(b) A Hyp equivalence relation is either Hyp reducible to R or Borel reduces E_0 .

Our sets A, B can be used to show that the Silver and Harrington-Kechris-Louveau dichotomies are *not* fully effective:

Theorem

(a) There are incomparable Hyp equivalence relations between ω and R.

(b) There are incomparable Hyp equivalence relations between R and E_0 .

Proof Sketch. (a) Consider the relations

 $E_A(x, y)$ iff $(x \in A \text{ and } x = y)$ or $(x, y \notin A \text{ and } x(0) = y(0))$ E_B : The same, with A replaced by B

Now E^{ω} Hyp reduces to E_A by $n \mapsto (n, 0, 0, ...)$. Also E_A Hyp reduces to R via the map G(x) = x for $x \in A$, G(x) = (x(0), 0, 0, ...) for $x \notin A$ (same for B)

There is no Hyp reduction of E_A to E_B :

If F were such a reduction then let C be $F^{-1}[\sim B]$. As $\sim B$ is Hyp, C is also Hyp and therefore $A \cap C$ is also Hyp. But $A \cap C$ must be countable as F is a reduction. So if $A \cap C$ were nonempty it would have a Hyp element, contradicting the fact that A has no Hyp element. Therefore F maps A into B, which is impossible by the choice of A, B. By symmetry, there is no Hyp reduction of E_B to E_A .

(b) Now we define E_{Δ} on $R \times R$ by: $(x, y)E_A(x', y')$ iff x = x' and either $x \notin A$ or $(x \in A \text{ and } yE_0y')$ E_{R} : Same, with A replaced by B We need two Facts: 1. If $h: R \to R$ is Baire measurable and constant on E_0 classes then h is constant on a comeagre set. 2. If $B \subseteq R^2$ is Hyp then so is $\{x \mid \{y \mid (x, y) \in B\}$ is comeagre}. Now suppose that F were a Hyp reduction of E_A to E_B . Let $\pi(x, y) = x$ for all x and define $h: R \to R$ by: h(x) = z iff $\{y \mid \pi(F(x, y)) = z\}$ is comeagre. Using 1 and 2, h is a total Hyp function. We claim that $h[A] \subseteq B$, contradicting the choice of A, B: Assume $x \in A$. Then for comeagre-many y, $\pi(F(x, y)) = h(x)$. So if $h(x) \notin B$ then F maps more than one E_A class into a single E_B class, contradiction. By symmetry there is no Hyp reduction of E_B to E_A .

Final remarks and questions:

Theorem

(a) For each finite n there are Hyp equivalence relations above n but incomparable with ω .

(b) If a Hyp equivalence relation is above each finite n then it is also above ω .

Questions:

1. If a Hyp equivalence relation is Borel reducible to E_0 must it also be Hyp reducible to E_0 ? (This is true for finite n, ω, R .) 2. E_1 is the equivalence relation on R^{ω} defined by $\vec{x}E_1\vec{y}$ iff $\vec{x}(n) = \vec{y}(n)$ for almost all n. Are there Hyp incomparable Hyp equivalence relations between E_0 and E_1 ? Kechris-Louveau showed that there are no Borel equivalence relations between E_0 and E_1 in the sense of Borel reducibility.

3. Are there any nodes other than 1? I.e., is there a Hyp equivalence relation with more than one equivalence class which is comparable with all Hyp equivalence relations under Hyp reducibility?4. Is there a minimal degree? Are there incomparables above each degree?

There is also a jump operation, which requires further study.

THANK YOU!