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Three Questions

Set theory
Q1. The universe V of all sets has many interpretations. What
should V look like?

(Set-theoretic) Model theory
Q2. How is model theory a�ected by how we interpret V ?

(Set-theoretic) Computation theory
Q3. What are the possibilities for in�nite computation?



Three lectures

Lecture 1: The Hyperuniverse and Gödel Maximality.

Lecture 2: The Internal Consistency and Outer Model
programmes.

Lecture 3: Model Theory and Computation Theory from a
set-theoretic perspective.



Lecture 1: The Hyperuniverse and Gödel Maximality

What should the universe V of sets look like?

Many possibilities:
L (Gödel's constructible universe)
CH true
Singular cardinal hypothesis true
A de�nable, non-measurable set of reals
Suslin's hypothesis false
Whitehead conjecture false
Borel conjecture false
Borel-isomorphism of non-Borel analytic sets false
Singular Square principle true



Interpretations of V

L[G ]'s (Cohen-style forcing extensions of L)
CH true, or not!
Singular cardinal hypothesis still true
A de�nable non-measurable set of reals, or not!
Suslin's hypothesis true, or not!
Whitehead's conjecture true, or not!
Borel conjecture true, or not!
Borel-isomorphism of non-Borel analytic sets still false
Singular Square principle still true



Interpretations of V

Big enough K 's (Jensen-style core models)
CH true
Singular cardinal hypothesis true
No de�nable non-measurable set of reals!
Suslin's hypothesis false
Whitehead conjecture false
Borel conjecture false
Borel-isomorphism of non-Borel analytic sets true!
Singular Square principle true



Intepretations of V

K [G ]'s (Forcing extensions of K )
Singular cardinal hypothesis true, or not!
Singular square principle true
Models with very LARGE cardinals
Singular square principle false!
Models where Forcing Axioms hold
CH false!
Suslin's hypothesis true!
Borel's conjecture true!
Singular cardinal hypothesis true!

What an interesting mess!

Which universe should we pick?



Minimal and Maximal Universes

Two seductive pictures of V :
Minimal one: V = L
Maximal one: ???



Gödel and Scott

Gödel (1964):

�From an axiom in some sense opposite to [V=L], the negation of
Cantor's conjecture could perhaps be derived. I am thinking of an
axiom which ... would state some maximum property of the system
of all sets, whereas [V=L] states a minimum property. Note that
only a maximum property would seem to harmonize with the
concept of set ...�



Gödel and Scott

Scott (1977):

�I see that there are any number of contradictory set theories, all
extending the Zermelo-Fraenkel axioms; but the models are all just
models of the �rst order axioms and �rst-order logic is weak. I still
feel that it ought to be possible to have strong axioms which would
generate these types of models as submodels of the universe, but
where the universe can be thought of as something absolute ... But
really pleasant axioms have not been produced by someone else or
me, and the suggestion remains speculation. A new idea (or point
of view) is needed, and in the meantime all we can do is to study
the great variety of models.�



The Search for Maximal Universes

How do we �nd a Maximal Universe?

Problem: V has all sets, so V is trivially maximal!

We need to compare V to other possible universes

How do we create other possible universes?

Fact. If V were countable, then we could create many other
possible universes (by forcing, in�nitary logic, ...)

Solution: We temporarily treat V as a countable universe,
embedded into a collection of other possible such universes



The Hyperuniverse

(von Neumann-Zermelo) V is determined by:
Its Ordinals Ord
Its Power Set operation P
V0 = ∅
Vα+1 = P(Vα)
Vλ =

⋃
α<λ Vα

V is countable, so Ord(V ) = some countable ordinal α

Fix α

H = the Hyperuniverse
H = All countable transitive models of ZFC of ordinal height α

Universe = element of the Hyperuniverse

What is α? We will choose α so that there is a �maximal� Universe



The Search for Maximal Universes

V0 is an inner universe of V1 i� V0 ⊆ V1

V0 is an outer universe of V1 i� V1 ⊆ V0

V0,V1 are compatible universes i� they have
a common outer universe

Q. What does it mean for a universe to be �maximal�?

Maximal = Maximal under inclusion?
NO! Any universe has a larger outer universe

Instead, use truth in inner universes to de�ne maximality:



The Search for Maximal Universes

L = language of set theory
For a universe W :
Φ(W ) = all sentences of L which are true
in some inner universe of W

Obviously: V ⊆W → Φ(V ) ⊆ Φ(W )

Key De�nition:
V is maximal i� V ⊆W → Φ(V ) = Φ(W )



The Inner Model Hypothesis

The Inner Model Hypothesis states:
The universe V is maximal

Objection! V is not countable!

Three good replies:
We only treated V as countable temporarily. The IMH only
says that V should satisfy sentences which are true in
countable, maximal universes.
In the IMH, we could restrict to universes which are inner
universes of �forcing extensions� of V ; then the IMH is a
principle of ordinary �class theory�.
Are you sure that V is not countable? :)
Maybe we should just �gure out which countable universes are
the good ones.



The Inner Model Hypothesis

Is the IMH consistent?
Theorem
Assume that there is a Woodin cardinal and a larger inaccessible
cardinal. Then there are maximal universes, so the IMH is
consistent.

In favour of the IMH

Suppose the IMH fails.
Then there is an outer universe W such that Φ(V ) $ Φ(W ).
I.e. for some statement ϕ:
ϕ holds in some inner universe of W but in no inner universe of V

But then V is not big enough; we should replace V by W !



The Inner Model Hypothesis

Against the IMH

1. Socio-Political problem: The IMH is too strong!

The IMH implies:

There are no large cardinals in V
(they exist only in inner universes of V )
R# does not exist for some real R

Set-theorists love large cardinals and #'s!

What should we do?

What would Barack Obama do?



Barack Obama and The Inner Model Hypothesis

Obama 1: It's time for �change you can believe in�!

I.e., large cardinals can exist in inner models, but not in V
Not so bad!

Obama 2: Negotiate with large-cardinal theorists!

Compromise: The Relativised IMH

Let T be ZFC + large cardinals.
IMH relative to T : T holds in V and:
V ⊆W , T holds in W → Φ(V ) = Φ(W )

But why assume T?



The Inner Model Hypothesis

2. Mathematical problem: The IMH is not strong enough!

The IMH implies:

Singular cardinal hypothesis true
A de�nable, non-measurable set of reals
Borel-isomorphism of non-Borel analytic sets false
Singular Square principle true

But:

V satis�es IMH, V ⊆W → W satis�es IMH

So: IMH does not resolve the Continuum Problem



The Strong Inner Model Hypothesis

The Strong IMH
The Strong IMH = The IMH with absolute parameters

p is totally absolute i� some formula de�nes p in all outer universes
ω is totally absolute

Is ℵ1 totally absolute?
Probably not: V ⊆W does not imply ℵV

1
= ℵW

1

A cardinal κ is absolute i� some formula de�nes κ in all outer
universes W with the same cardinals ≤ κ
ℵ1, ℵ99, ℵω+1 · · · are absolute

SIMH → c = 2ℵ0 is not absolute
SIMH → c 6= ℵ1,ℵ2,ℵ3, · · · (strong negation of CH!)
But is the SIMH consistent?



The Strong Inner Model Hypothesis

Theorem
Assuming the existence of a Woodin cardinal and a larger
inaccessible cardinal, the SIMH is consistent for the parameter ω1.

Conjecture: The SIMH is consistent relative to large cardinals.



Gödel revisited

Gödel (1964):
�From an axiom in some sense opposite to [V=L], the negation of
Cantor's conjecture could perhaps be derived. I am thinking of an
axiom which ... would state some maximum property of the system
of all sets, whereas [V=L] states a minimum property. Note that
only a maximum property would seem to harmonize with the
concept of set ..."

Does the SIMH ful�ll the wishes of Gödel and Scott?

Answer: Yes, provided it is consistent!



The Internal Consistency and Outer Model programmes

The IMH: Φ(V ) is maximal

Φ(V ) = All sentences true in some inner universe

ϕ is internally consistent i� ϕ belongs to Φ(V ), i.e.,
i� ϕ is true in some inner universe

But what if V = L? Then there is only one inner universe!

Assumption: There are inner universes of V with large cardinals



Internal Consistency

A new type of consistency result.

Con(ZFC + ϕ) = ZFC + ϕ is consistent

Icon(ZFC + ϕ) = ZFC + ϕ holds in some inner universe

Consistency result:
Con(ZFC + LC) → Con(ZFC + ϕ),
where LC is a large cardinal axiom

Internal consistency result:
Icon(ZFC + LC) → Icon(ZFC + ϕ)

Internal consistency is stronger than consistency

Proving Internal Consistency demands new techniques



Internal Consistency

Some Internal Consistency Results

Cardinal Exponentiation: F-Ondrejovi¢, F-Honzík

Costationarity of the Ground Model: Dobrinen-F

Global Domination: F-Thompson

Tree Property: Dobrinen-F



Internal Consistency

Cardinal Exponentiation

Easton: Con(ZFC) → Con(ZFC + 2κ > κ+ for all regular κ)

Easton uses �Easton product forcing�
This gives no internal consistency result.

F-Ondrejovi¢: Instead use �Easton iterated forcing�
Theorem
Icon(ZFC + 0# exists) → Icon(ZFC + 2κ > κ+ for all regular κ)



Internal Consistency

Global Domination

κ an in�nite regular cardinal.
Suppose f , g : κ → κ
f dominates g i� f (α) > g(α) for su�ciently large α < κ
F is a dominating family i� every g : κ → κ is dominated by some
f in F
d(κ) = the smallest cardinality of a dominating family
Fact: κ < d(κ) ≤ 2κ for all in�nite cardinals κ

Global Domination: d(κ) < 2κ for all in�nite cardinals κ



Internal Consistency

Cummings-Shelah: Global Domination is consistent
Proof uses Cohen and Hechler forcings
Corollary to their proof:
Icon(ZFC+ Proper class of supercompact cardinals) → Icon(ZFC+
Global Domination)

F-Thompson: Use Sacks product forcing instead
Theorem
Icon(ZFC + 0# exists) → Icon(ZFC+ Global Domination)



Internal Consistency

The Tree Property

κ regular
A κ-Aronszajn tree is a tree of height κ with no κ-branch
κ has the tree property i� there is no κ-Aronszajn tree

Mitchell: Con(ZFC+ Proper class of weakly compact
cardinals) → Con(ZFC + α++ has the tree property for all
inaccessible α)

Proof uses �Mitchell forcing�
Corollary to proof: Icon(ZFC+ Proper class of supercompact
cardinals) → Icon(ZFC + α++ has the tree property for all
inaccessible α)



Internal Consistency

Dobrinen-F: Use iterated Sacks forcing instead
Theorem
Icon(ZFC+ 0# exists) → Icon(ZFC+ α++ has the tree property for
all inaccessible α)

Further work on Internal Consistency: Singular cardinal problem,
co�nality of the symmetric group, embedding complexity



The Outer Model Programme

The IMH gives us a maximal universe

L = The minimal universe
Attractive consequences of V = L:

Generalised Continuum Hypothesis is true
There is a de�nable wellordering of the universe
Jensen's ♦, � and Morass are all true

V = L is �mathematically strong�



The Outer Model Programme

What's wrong with V = L?

For many interesting statements ϕ:
ConZFC 9 Con(ZFC + ϕ)
But ConZFC→ Con(ZFC + V = L),
so Con(ZFC + V = L) 9 Con(ZFC + ϕ)

V = L is �consistency weak�

Large cardinals give us consistency strength!

Can we combine V = L with large cardinals, i.e.,
Are there �L-like� universes with large cardinals?



The Outer Model Programme

Two approaches:

Inner model programme: Show that any universe with large
cardinals has an L-like inner universe with the same large cardinals

Using �ne structure theory and iterated ultrapowers: Produces
L-like universes with many Woodin cardinals

Outer model programme: Show that any universe with large
cardinals has an L-like outer universe with the same large cardinals

Using iterated forcing: Produces L-like universes for all large
cardinals!



The Outer Model Programme

Large Cardinals

j : V → M means: j is an elementary embedding from (V ,∈) into
the transitive class (M,∈), j 6= identity
Critical point of j = least κ such that κ < j(κ)

j is α-strong i� Vα ⊆ M
Superstrong means j(κ)-strong
n-superstrong means jn(κ)-strong
ω-superstrong means jω(κ)-strong
(jω(κ) + 1)-strong is inconsistent!

So ω-superstrength is at the edge of inconsistency

κ is ω-superstrong i�
κ is the critical point of an ω-supserstrong embedding



The Outer Model Programme

Theorem
Suppose that κ is ω-superstrong. Then there is an outer universe
V ∗ (obtained by forcing) such that:
1. V ∗ � κ is ω-superstrong.
2. V ∗ � There is a de�nable wellordering of the universe.
3. V ∗ � ♦, � (with restrictions) and Gap-1 Morass.

Universes which are even more L-like:

(Brooke-Taylor)-F: Can have Gap-1 Morasses preserving all
ω-superstrong cardinals
Asperó-F: Can have a locally de�nable wellordering of the universe
Can have Strong Condensation



The Outer Model Programme

Summary:

IMH: V is maximal
IMHT (T = Large Cardinals): V is maximal relative to LC's
V = L: V is minimal
V as above: V is �minimal� relative to Large Cardinals

4 nice alternatives!

What is your choice?



Model Theory and Computation Theory from a set-theoretic
perspective

When is Model Theory absolute?

T a countable �rst-order theory.
V ⊆W universes of set theory, T in V
Suppose A,B are models of T ; do we have

A ' B in V i� A ' B in W ?

In general, no:
T = Dense Linear Orderings without endpoints
L0, L1 non-isomorphic, uncountable models of T in V
Choose W ⊇ V so that L0, L1 are countable in W ;
then L0 ' L1 in W

But what if the theory T is �nice� model-theoretically and W is a
�nice� outer universe of V ?



Model Theory

De�nition (Shelah): T is classi�able i� T is superstable and
satis�es both NDOP and NOTOP
Fact: T is classi�able i� models of T of cardinality λ are
characterised by their theory in L∞,λ

De�nition: An outer universe W of V is CR-preserving i� V , W
have the same cardinals and the same reals



Model Theory

Theorem
(Baldwin-Laskowski-Shelah) Suppose that T is a countable
classi�able �rst-order theory in V and W is a CR-preserving outer
universe of V . Then two models A, B of T of cardinality ℵ2 are
isomorphic in V i� they are isomorphic in W .

Another formulation:
De�ne:
I (T ,ℵ2) = {(A,B) | A, B are isomorphic models of T of
cardinality ℵ2}
PI (T ,ℵ2) = {(A,B) | A, B are models of T of cardinality ℵ2
which are isomorphic in a CR-preserving outer universe}
Then for countable classi�able �rst-order T , I (T ,ℵ2) = PI (T ,ℵ2)



Model Theory

In particular: If T is classi�able, then PI (T ,ℵ2) is a set in V (even
though it refers to arbitrary CR-preserving outer universes of V )

F-Hyttinen-Rautila: The converse also holds for the universe L,
assuming that there are enough CR-preserving extensions of L.
What does �enough� mean?

De�nition: �0# exists� i� there is a j : L→ L. Equivalently, there is
a closed unbounded class I of L-indiscernible ordinals
0# = the theory of the structure (L,∈, I ), coded as a set of natural
numbers

If there is a measurable cardinal then 0# exists



Model Theory

Theorem
(F-Hyttinen-Rautila) Suppose that 0# exists. Then the following
are equivalent, for countable �rst-order theories T in L:
(1) PIL(T ,ℵ2)L (L's version of PI (T ,ℵ2)) is a set in L.
(2) T is classi�able.
Moreover, if these conditions fail, then the sets PIL(T ,ℵ2) are
equiconstructible (they belong to the same universes).

The proof uses stationary sets.
S ⊆ ℵ2 is stationary i� S ∩ C is nonempty for any closed
unbounded C ⊆ ℵ2.



Model Theory

Theorem
Suppose that 0# exists and let PNSL(ℵ2) be the set of stationary
S ⊆ ℵ2 in L such that S is not stationary in a CR-preserving outer
universe of L. Then PNSL(ℵ2) and 0# are equiconstructible.

Now suppose that T ∈ L is not classi�able.
De�ne a function S 7→ (AS ,BS) in L such that

S ∈ PNSL(ℵ2) i� (AS ,BS) ∈ PIL(T ,ℵ2)

Then 0# is constructible from PIL(T ,ℵ2).
(The converse can be shown without model theory.)

Current work (F-Hyttinen-(Walczak-Typke)): Extend this work
beyond �rst-order theories, where there is still a good notion of
�classi�able�. A good context is Homogeneous Model Theory.



Computation Theory

ITTM (In�nite Time Turing Machine)

Standard Turing machine, allowed to run trans�nitely
Stages of computation are indexed by ordinal numbers

At the start, and at successor steps: Works in the standard way
At a limit stage λ:
(1) Machine is placed into a special �limit state�
(2) Head of the machine is set all the way to the left
(3) For any cell of the tape, a 1 is written i� a 1 appeared there at
all su�ciently large stages α < λ (�liminf� rule)

Computation ends when the machine reaches the �halting state�, if
ever; otherwise the computation �diverges�



Computation Theory

Use three tapes: Input tape, Work tape and Output tape.
At the start, only 0's are written on the Work and Output tapes.
At each stage, the machine reads the n-th cell of all three tapes, for
some n.

ITTM's are powerful.
Consider the Halting Problem 0′ = {e | ϕe(e) ↓}, where ϕe is the
e-th partial recursive function
There is an ITTM M which gives 0′ as output:
M computes ϕ0(0) for 1 step, ϕ1(1) for 2 steps, etc.
When ϕe(e) converges, M writes a 1 in the n-th cell of its output
tape
After ω steps, the characteristic function of 0′ appears on M's
output tape



Computation Theory

Similarly: There is an ITTM which computes 0′′ in ω + ω steps.
Any set de�nable in arithmetic can be computed in fewer than ωω

steps.
In ωω steps, the truth set for arithmetic can be computed.

We can go much further:
Let (X , <) be a recursive linear ordering of the natural numbers.
There is an ITTM that successively removes the least element of
this linear ordering until only the ill-founded part remains.
Thus there are ITTM's that halt at any recursive ordinal stage and
a single ITTM that can compute the set of indices for recursive
wellorderings.
So any i1

1
set of natural numbers is ITTM computable.

The complement of an ITTM computable set is ITTM computable;
so any Σ1

1
set is ITTM computable, and much more.



Computation Theory

However: By absoluteness, any ITTM computable set of natural
numbers belongs to Gödel's L, and is in fact ∆1

2
.

Which sets of natural numbers are ITTM computable?
This question will be answered below.

If an ITTM computation does not halt then it must repeat: The
con�guration (i.e., head position, state and tape contents) is the
same as at some earlier stage.
In fact this must happen by a countable stage, because the
con�guration at stage ω1 must have occurred already at many
countable stages
Once the con�guration repeats, it will repeat inde�nitely and the
machine will never halt.



Computation Theory

Questions about ITTM computations (on the 0 input):

1. What is the least stage by which all computations either halt or
repeat?
2. What can appear on the output tape during a halting ITTM
computation?
What can appear on the output tape of an arbitrary ITTM
computation?
What can appear on the output tape from some point on in some
ITTM computation?



Computation Theory

F-Welch: The Theory Machine

Recall Gödel's hierarachy of constructible sets:

L0 = ∅
Lα+1 = all subsets of Lα which are de�nable over (Lα,∈)
Lλ =

⋃
α<λ Lα for limit λ.

Using a suitable coding of computations:
The contents of the output tape of an ITTM computation of length
α is de�nable over (Lα,∈)
Therefore: If α < β are limit ordinals and Theory of (Lα,∈) =
Theory of (Lβ,∈), then the con�guration of any ITTM at stage α
repeats at stage β
In fact, �Theory� can be replaced by �Σ2 Theory�, as at limit
stages, ITTM's perform a Σ2 operation (the �liminf� operation)



Computation Theory

Conclusion: Every ITTM either halts or repeats by stage Σ, where
Σ is least so that for some ζ < Σ, (LΣ,∈) and (Lζ ,∈) have the
same Σ2 theory.

The Theory Machine demonstrates the converse:
Theorem
(F-Welch) There is an ITTM M (the Theory Machine) such that
for α ≤ Σ, the Theory of (Lω+α,∈) (coded as a set of natural
numbers) appears on the output tape of M at stage ω2 · (α + 1).
Therefore the con�guration of M �rst repeats at stage Σ.

We can now answer the Questions posed earlier:



Computation Theory

Σ least so that for some ζ < Σ, (Lζ ,∈) and (LΣ,∈) have the same
Σ2 theory
ζ = least such ζ
λ least so that (Lλ,∈) and (LΣ,∈) have the same Σ1 theory.
Then λ < ζ < Σ

Every ITTM either halts or repeats itself by stage Σ.
There is a machine that �rst repeats itself at stage Σ.
The supremum of the halting times of ITTM's is λ.
The reals that appear on the output tape of an ITTM are the reals
in LΣ.
The reals that appear on the output tape of a halting ITTM are the
reals in Lλ.
The reals that appear on the output tape of an ITTM from some
point on are the reals in Lζ .



Computation Theory

Current work: Hypermachines

Use a stronger rule for limit stages of computation

ITTM = Σ2-Hypermachine
These reach the �rst repeat of the Σ2 Theory of (Lα,∈)
n-Hypermachines reach the �rst repeat of the Σn Theory of (Lα,∈)

The proofs for n > 2 require a deeper analysis of the Lα's
Hypermachines also provide new examples for Descriptive Set
Theory: Prewellordering, Uniformisation, Determinacy

α-Hypermachines for trans�nite α?
A question for future study


