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Abstract

I discuss criteria for the choice of axioms to be added to ZFC,
introducing the criterion of stability. Then I examine a number of
popular axioms in light of this criterion and propose some new axioms.

1. Criteria for New Axioms

The incompleteness phenomenon is particularly evident in the field of set
theory: The standard axiom system ZFC for set theory has a vast range of
different types of models. Some people have suggested that this is an essential
feature of set theory, because ZFC exhausts our set-theoretic intuition. A
more optimistic view is that by increasing our knowledge of set theory, we
will arrive at new axioms which are so compelling in their naturalness and
in their ability to clarify the structure of the set-theoretic universe that we
can assert that our intuition is in fact strong enough to justify adding them
to ZFC as standard axioms.

By adopting new axioms, we narrow our view of set theory. Therefore
it is important to suggest criteria for doing so. Below are some criteria to
consider.
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support through grants P16334-NO5 and P16790-NO4.

1



Naturalness. Axioms should be directly concerned with the structure of the
set-theoretic universe V .

Natural axioms typically make assertions about the height or width of the
universe, or assert the existence of certain types of elementary embeddings
between inner models.

Power. Axioms should explain a lot.

Powerful axioms give us more detail about the structure of V than ZFC
alone can provide.

Consistency. Axioms should be consistent (with ZFC).

This criterion presents a problem: How are we to know whether or not
a proposed axiom is consistent? By Gödel’s second incompleteness theorem
there is no way to definitively establish the consistency of an axiom. This
leads to:

An axiom is deemed to be consistent as long as no proof of its

inconsistency is currently known.

Thus what we accept as consistent can change with time. I see no alternative
to this.

The above three criteria are in my view essential to the choice of any new
axiom. The next criterion however is not.

Stability. (a) (Syntactic stability) Axioms should be unaffected by small
changes. In particular, small changes should not lead to inconsistency. (b)
(Semantic stability) A small extension of a model of the axioms should also
be a model.

As with naturalness or power, I do not attempt to give here a rigorous
definition of stability. In particular, I offer no precise definition of the notion
of small extension used to define semantic stability. But surely the addition
of one Cohen real must be viewed as a small extension. And the notion of
small extension cannot be restricted to just set-generic extensions, as class-
forcing provides consistent ways to enlarge the set-theoretic universe in the
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same way that set-forcing does. Although proper classes do not themselves
belong to the universe of sets, via forcing they do produce new sets with
important properties that cannot fairly be excluded from consideration.

As we shall see, stability is very restrictive. Indeed, it is violated by
almost all of the axioms that have been proposed as candidates for addition
to ZFC. Stability is however appealing, as it rules out the choice of axioms
which are obtained by slightly weakening inconsistent principles. And as we
will see below, there are attractive proposals for stable axioms of considerable
naturalness and strength.

2. Examples

I first examine some well-known axioms in terms of the criteria of natu-
ralness, power and stability.

a. V=L

Of course this axiom is natural and very powerful. But by the work of
Cohen we know that V = L is easily contradicted by forcing, and therefore
the criterion of stability is violated. The same problem exists with any axiom
of the form

V = L[G]

where G is P -generic over L for an L-definable forcing P , as one can similarly
violate this easily by further forcing.

b. Large cardinals

Typically these are of the form

There exists j : V → M , where M is ”close” to V .

Certainly such axioms are natural and very powerful. They are however
unstable. If we require M to equal V , we have a contradiction, by Kunen’s
theorem [5]. If we only require M to agree with V up to j(κ) where κ

is the critical point of j, then by stability, we must also allow agreement
up to arbitrary iterates of j applied to κ, another contradiction to Kunen’s
theorem.

c. Determinacy

I am not referring to the full axiom AD, as this contradicts the axiom
of choice, but rather to determinacy for sets of reals that are “definable” in
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some sense. This axiom has proved to be powerful, and in addition appears
to be stable.

Unfortunately the existence of strategies for infinite games is not directly
concerned with the structure of V , in violation of naturalness. I will however
argue below that some definable determinacy is a consequence of natural and
stable axioms, even though determinacy itself does not qualify as one.

d. Generic absoluteness

Absoluteness asserts that the truth of certain formulas is not affected
by enlarging the universe in certain ways. The classical example of this
is Lévy-Shoenfield absoluteness, which says that Σ1(H(ω1)) formulas (with
parameters) are absolute for arbitrary extensions.

Typically, one considers only set-generic absoluteness, in which only set-
generic extensions of the universe are allowed, and only formulas which are
first-order over H(ω2). This is to enable the formulation of consistent prin-
ciples. However such principles fail as soon as more general extensions, such
as class-generic extensions, are allowed. Even when restricted to set-generic
extensions, instability is present: Σ1(H(κ)) absoluteness for ccc forcing ex-
tensions is inconsistent when κ is greater than 2ℵ0. As one typically has
2ℵ0 = ℵ2 in the context of set-generic absoluteness principles, inconsistency
already occurs when κ is ℵ3.

e. Forcing axioms

The most common such axioms assert that for certain set-forcings P and
certain collections X of dense subsets of P , there is a compatible subset G
of P which intersects all elements of X. The classical example is Martin’s
axiom (at ω1), which asserts this for ccc P and collections X of cardinality
ω1.

As with the set-generic absoluteness principles, these axioms are unstable.
For example, one cannot have this forcing axiom for κ-many dense sets with
respect to even ccc forcings when κ is at least 2ℵ0.

Other types of forcing axioms have also been considered. Foreman, Magi-
dor and Shelah proposed:

Every set-forcing either adds a real or collapses a cardinal.

Little is known about this interesting axiom. A stable version would however
require the consideration of more than just set-generic extensions.

An axiom of Chalons (as modified by Larson and then Hamkins) states:
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”If a statement with real parameters holds in a set-forcing extension and all
further set-forcing extensions, then it holds in V ; moreover this property is
not only true in V , but also in all set-generic extensions of V .”

Woodin proved the consistency of this axiom from large cardinals. Unfortu-
nately, even a weak form of this axiom is inconsistent when ”set-forcing” is
replaced by ”class-forcing”. A consistent class-forcing version of this axiom
is not known.

f. Strong logics

These are logics whose set of validities is large and remains unchanged by
set-forcing. One can obtain such a logic as follows: Say that ϕ is ∗∗-provable
iff for some set-forcing P , if P belongs to Vα and Vα satisfies ZFC, then V P∗Q

α

satisfies ϕ for all Q in V P
α . Woodin proposes the use of such a strong logic,

together with the existence of a proper class of Woodin cardinals. This gives
a ∗∗-complete theory of H(ω1) and, assuming that H(ω2) is obtained by
forcing with Woodin’s forcing Pmax over L(R), gives a ∗∗-complete theory of
H(ω2). Therefore under Woodin’s assumptions, the theory of H(ω2) cannot
be changed by set-forcing.

There are several difficulties with this approach.

i. The assumption of the existence of a proper class of Woodin cardinals is
left unjustified.

However I will propose below some natural and stable axioms which lead
to an inner model for this assumption.

ii. Although strong logics are immune to set-forcing, they are not immune
to class-forcing.

As mentioned earlier, class-forcing methods provide consistent ways to
enlarge the set-theoretic universe in the same way that set-forcing methods
do. Therefore adopting as new axioms the validities of a logic with only
set-generic absoluteness does not achieve stability. One needs at least a
plausible notion of “acceptable class forcing” and a corresponding property
of absoluteness for such class forcings.

iii. The axiom asserting that H(ω2) is obtained by set-forcing over L(R) is
easily contradicted by class-forcing, and therefore as in ii. leads to instability.

3. Some stable axioms of strong absoluteness

As mentioned earlier, the typical absoluteness principles which generalise
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Lévy-Shoenfield absoluteness refer exclusively to set-generic extensions, and
are unstable. The Lévy-Shoenfield absoluteness principle itself, however, ap-
plies to arbitrary extensions. The strong absoluteness principles discussed
below are in the tradition of Lévy-Shoenfield and impose no genericity re-
quirement on the extensions considered. This leads to the possibility of
obtaining stable axioms.

By extension of V I shall mean a ZFC model V ∗ which contains V and
has the same ordinals as V . This is best formalised by regarding V as a
countable transitive model of ZFC and allowing V ∗ to range over countable
transitive ZFC models which contain V and have the same ordinal height as
V .

Any consistent generalisation of Lévy-Shoenfield absoluteness must deal
with the following two obstacles:

Counterexample 1. There is a Σ1 formula with parameters from H(ω2) which
holds in some set-generic extension V ∗ of V but not in V .

Counterexample 2. There is a Σ1 formula with parameters from H((2ℵ0)+)
which holds in some ccc set-generic extension V ∗ of V but not in V .

Counterexample 1 is witnessed by the formula “ωV
1 is countable”. Coun-

terexample 2 is witnessed by the formula “There is a real not in P(ω)V ”.

Let us say that a Σ1 absoluteness principle is a principle asserting the
absoluteness of certain Σ1 formulas with certain parameters with respect
to certain extensions of V . Our counterexamples imply that a consistent
Σ1 absoluteness principle must impose some restriction either on the choice
of formulas, on the choice of parameters, on the choice of extensions, or a
combination of the three.

I offer three proposals. The first allows arbitrary parameters, at the cost of
restricting the choice of extensions. The second allows arbitrary extensions,
at the cost of restricting the allowable parameters. And the third weakens
the parameter restrictions of the second proposal, at the cost of restricting
the choice of formulas.

a. Σ1 absoluteness with arbitrary parameters.
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A first attempt to avoid Counterexample 1 is to require that V and V ∗

have the same ω1. But Σ1 absoluteness with parameters from H(ω2) even for
ω1-preserving extensions is also inconsistent: Let A be a stationary subset of
ω1. Then the formula which asserts that A contains a CUB subset is Σ1 and
true in a cardinal-preserving (set-generic) extension; therefore Σ1 absolute-
ness with parameters from H(ω2) for ω1-preserving extensions implies that
A contains a CUB subset. But there are disjoint stationary subsets of ω1,
giving disjoint CUB subsets of ω1, a contradiction.

Even requiring stationary-preservation at ω1 (i.e, that stationary subsets
of ω1 in V remain stationary in V ∗) results in inconsistency:

Theorem 1. There exists an extension V ∗ of V which is stationary-preserving
at ω1 such that some Σ1 sentence with parameters from H(ω2)

V true in V ∗

is false in V .

Proof. By a theorem of Beller-David (see [1]) there is an extension V ∗ with
the same ω1 as V containing a real R such that Lα[R] fails to satisfy ZFC for
each ordinal α. Moreover, V ∗ is stationary-preserving at ω1 (see [2]). Now
suppose that the Theorem fails. Then there is such a real R in V , as this
property of R can be expressed by a Σ1 sentence with parameters R and
ω1. In particular, ω1 is not inaccessible to reals. It is easy to see that the
failure of the Theorem implies that Σ1

3-absoluteness holds between V and its
stationary-preserving at ω1 extensions. It then follows from Lemma 7 of [2]
that ω1 is inaccessible to reals after all, contradiction. 2

One could continue to make further restrictions on the extension V ∗, such
as stationary-preservation at ω1 together with full cardinal-preservation, in
the hope of achieving the consistency of Σ1(H(ω2)) absoluteness (without
imposing the requirement that V ∗ be a set-generic extension of V ). But we
must also reckon with Counterexample 2.

A possible solution is described by the following. I say that an extension
V ∗ of V strongly preserves H(κ) iff the H(κ) of V ∗ equals the H(κ) of V and
all cardinals of V less than or equal to card (H(κ)) = 2<κ remain cardinals
in V ∗.
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Σ1 absoluteness with arbitrary parameters. Suppose that κ is an infinite car-
dinal and a Σ1 formula ϕ with parameters from H(κ+) holds in an extension
V ∗ of V which strongly preserves H(κ). Then ϕ holds in V .

When κ is ω, this is Lévy-Shoenfield absoluteness. When κ is ω1, this
asserts Σ1(H(ω2)) absoluteness for extensions which do not add reals and
which preserve cardinals up to 2ℵ0 . Note that in the presence of ∼ CH,
this axiom does rule out the two standard set-forcings for destroying the
stationarity of a subset of ω1.

b. Σ1 absoluteness for arbitrary extensions.

Counterexample 2 implies that to obtain a consistent version of absolute-
ness for arbitrary Σ1 formulas with respect to arbitrary extensions, we must
impose some restriction on our choice of parameters. A suitable restriction
is perhaps provided by the following definition.

Definition. An absolute cardinal-formula is a parameter-free formula of the
form

ϕ(κ) iff L(H(κ)) � ψ(κ),

where κ ranges over cardinals. We say that the cardinal κ is absolute between
V and an extension V ∗ iff there is an absolute cardinal-formula which has κ
as its unique solution in both V and V ∗.

Σ1 absoluteness for arbitrary extensions. Suppose that the cardinals κ1 <

· · · < κn are absolute between V and V ∗, where V and V ∗ have the same
cardinals ≤ κn. Then any Σ1 formula with parameters κ1, . . . , κn which holds
in V ∗ also holds in V .

Remark. David Asperó and I showed that if one drops the requirement that
cardinals up to κn are preserved, then the above principle is inconsistent.

c. Cardinality and cofinality absoluteness principles.

Other forms of strong absoluteness result by considering special types of
Σ1 formulas. First I introduce a variant of the notion of absolute parameter.

Definition. Suppose that α is an ordinal, P is a subset of V and V ∗ is an
extension of V . Then α is weakly absolute relative to parameters in P between
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V and V ∗ iff there is a formula with parameters from P which defines α not
only in V , but also in V ∗.

For cardinality and cofinality we have the following absoluteness princi-
ples.

Cardinal absoluteness. Suppose that α is an ordinal, V ∗ is an extension of
V and α is weakly absolute relative to bounded subsets of α between V and
V ∗. Then if α is collapsed (i.e., not a cardinal) in V ∗, it is also collapsed in
V .

Cofinality Absoluteness. Suppose that α is an ordinal, V ∗ is an extension of
V and α is weakly absolute relative to bounded subsets of α between V and
V ∗. Then if α is singular in V ∗, it is also singular in V .

The consistency strength of strong absoluteness principles

I do not know if any of the above principles of strong absoluteness are
provably consistent relative to large cardinals. In this subsection I provide
some lower bounds on their consistency strength.

Theorem 2. Σ1 absoluteness with arbitrary parameters implies that the GCH
fails at every infinite cardinal, and for regular uncountable κ, there is no κ-
Suslin tree.

Proof. Suppose that the GCH held at the infinite cardinal κ. Choose S ⊆ κ+

to be a fat-stationary subset of κ+ which does not contain a CUB subset. (S
is fat-stationary iff S ∩ C contains closed subsets of any ordertype less than
κ+, for each CUB C ⊆ κ+.) The existence of such a set is guaranteed by a
result of Krueger [4]. Then the forcing P that adds a CUB subset to S using
closed subsets of S ordered by end-extension has cardinality κ+ and, using the
fatness of S, is κ+-distributive. It follows that H(κ+) is strongly preserved
by P . But a CUB subset of S witnesses a Σ1 formula with parameter S not
true in the ground model, in contradiction to our hypothesis.

Suppose that there were a κ-Suslin tree T for an uncountable regular
cardinal κ. Then forcing with this tree strongly preserves H(κ) and adds
a witness to a Σ1 formula with parameter T not witnessed in the ground
model, in contradiction to our hypothesis. 2
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By work of Mitchell [6]:

Corollary 3. Σ1 absoluteness with arbitrary parameters implies the consis-
tency of a measurable cardinal κ of Mitchell order κ++.

A lower bound for the strength of Σ1 absoluteness for arbitrary extensions
follows from the arguments of [3]:

Theorem 4. Suppose that Σ1 absoluteness for arbitrary extensions holds.
Then there is an inner model with a strong cardinal.

For cardinal absoluteness we have:

Theorem 5. Cardinal absoluteness implies that for each infinite cardinal κ,
κ+ is greater than (κ+ of HOD).

Proof. If G is generic for the Lévy collapse of κ+ to ω, then HOD is the same
in V and in V [G], by the homogeneity of the forcing. This contradicts our
absoluteness hypothesis. 2.

By [7] and [8]:

Corollary 6. Cardinal absoluteness implies that there is an inner model with
a strong cardinal, and, if there is a proper class of subtle cardinals, there is
an inner model with a Woodin cardinal.

It is possible to extend Corollary 6 to obtain inner models with a proper
class of Woodin cardinals containing any given set, under the assumption of
cardinal absoluteness and a proper class of subtle cardinals. This is more
than enough to imply Projective Determinacy.

Corollary 6 also holds for cofinality absoluteness, as the latter implies
cardinality absoluteness.

4. Some Final Thoughts

The most important axioms of set theory that have been explored until
now have arisen unavoidably out of the need to solve central problems in the
field. This is especially true of the large cardinal axioms, which have even
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provided a measure for the consistency strength of virtually all set-theoretic
statements. In my view we should not however impatiently assert that any
axiom is ”correct” until we can derive it from axioms which meet criteria like
the ones discussed above.

I believe that the axioms of finite set theory “capture” the first-order
theory of H(ω), as H(ω) is the unique well-founded model of finite set theory
and no clear examples of ill-founded models are known. PD (projective
determinacy) provides attractive axioms for the first-order theory of H(ω1).
The strong absoluteness axioms of the previous section are stable and natural
axioms which lead to inner models with Woodin cardinals, and therefore to
PD. Therefore PD follows from natural and stable axioms, and in my view can
be judged to be “correct”. Although I have not seen a convincing argument
that PD “captures” the first-order theory of H(ω1), I do believe this to be
the case.

Though the axioms of strong absoluteness lead to the existence of inner

models with Woodin cardinals, they do not produce large cardinals in V .
Fortunately, large cardinals in V do not appear to be necessary to obtain
“correct” axioms which capture the first-order theory of H(ω2), a goal which
in my view is still well beyond our reach.
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