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0. Introducticn

In [9] Johr Steel developed the method of forcing with tagged trees, which he
used 10 settls several important question: concerning models of analysis. The
Steel partial ordering refines the (Lévy-tvpe) partial-ordering for collapsing an
admissible orilinal to w in that it permits a careful computation of the complexity
of the forcing relation whe. restricted to statements of a bounded ordinal rank. (It
is this aspect of the forcing which Leo MHarrington exploited in his proof that
IT!-determinsteness implies O exists [6]'. In addition Steel’s forcing allows one
to generically construct trees on w with complete control over which paths appear
in the generic sxtension. For, a conditicn assigns ordinal ‘tags’ to nodes on the
tree which do rot lie on the intended patis; longer nodes get smaller ordinal tags.
Thus the generic tree is well-founded below any node which receives an ordinal
tag.

Our work here began with a generalivatisn of Steel’s forcing which uses tags
which are nof necessarily ordinals but aie «ets from a given admissible set. The
idea is to require that longer nodes receive ags which descend in the €-relation,
thereby coding sets below nodes on the generic tree. We developed this forcing to
provide a characterization of those admissit ie sets which appear as the pure part
of HYP(4) where # is a structure of finit: similarity type on urelements. This
answers a question posed by Mark Nadel anid Jonathan Stavi who obtained partial
results in [7].

Later a much simpler proof of the abcve characterization was found which
dispenses of forcing in favor of Barwise compactness techniques, especially the
Barwise Haré Core Theorem (see [77). This led us to re-examine Steel’s original
applications of his forcing and to discover e asier, model-theoretic proofs of them.
However our work does not appear to -implify deeper applications of Steel
forcing (as for example in [1]) nor supplant Harrington’s techniques for establish-
ing lightface versions of Steel’s results.

In Section ! we review the aspects of the theory of admissible sets and Barwise
compactness vhich we will need and charac-erize the pure parts of HYP(4) as the
resolvable adznissible sets. Thus if A is resc vable we shall construct a tree 5, (on
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urelements) such that A =pure part HYP(T ,). In Section 2 we embellish this
construction to replace ¥, by £,, a linear-ordering. We also show that A
satisfies the strong global well-ordering principle if and only if A =pure part
HYP(W, <, U) where U is unary and HYP{W, <, INE(W, <) is well-ordering.
Section 3 gives model-theoretic proofs of several of Steel’s results, including Al-
CA+ I1-AC. ;

We are extremely grateful to both John Steel and Leo Harringtor for helpful
discussions and for providing most of the ideas in the simpler proof of our
solution to the Nadel-Stavi problem.

1. The pure part of HYP(4)

Let A be an admissible set, i.e., A is a transitive set closed under pairing, union
and satisfying A,-separation, Ag-bounding. (All admissible sets are taken here to
be without urelements unless explicitly stated otherwise.) We say that A is
resolvable if there exists a function f:ORD(A)-— A such that A =|] Range(f)
and (A, ¢, f) is an admissible structure. Thus A satisfies separation and bounding
for formulas with only bounded quantifiers but where f may occur as a predicate
in_the matrix. Our definition of resolvable diffes from that given in Barwise's
book [2]; A is resolvable in Barwise’s sense if there exists f as 2bove which is
X,-definable over (A, €).

The theory of admissible sets with urelements [2] provides a wealth of examples
of resolvable admissible sets. For, as pointed out by Nadel and Stavi in [7], the
pure part of HYP(#) is always resolvable for any structure .4 (for a finite
language). If o{u)=ORDNHYP(4) is equal to w, then this is clear as
pp HYP(4) = HF, the hereditarily finite sets. Otherwise HYP(M) = L, ,,(.#) and
the function f(3)=pp Lg(4) demonstrates the resolvability of pp HYYP(4().

It is not difficult to produce a non-resolvable admissible set: Define A to be
locally countable if (A, e)EEvery set is countable. Clearly an uncountable, locally
countable admissible set of countable height cannot be resolvable. An example of
such an admissible set is

U {L.ck[F]| F< S, F finite}

where S is an uncountable collection of reals mutually Cohen-generic over L, ck.
Countable nonresolvable admissible sets are more dificult to come by. The
deperdernt choice axiom:

%-DC: Vx 3y olx, Y) = Vx If[f0) = x AVn o(f(n), f(n + 1N], A,

holds in any resolvable locally countable admissible set. Harvey Friedman proved
the existence of a countable, locally countable admissible set in which %;-DC fails
for reals using proof-theoretic methods [3]. We have recently discovered an
explicit forcing construction of such an admissible set.

We shall make extensive use of a version of the Barwise Hard Core Theorem.
Let (A, ¢ ...) be a countable admissible structure and, for Le A s first-order
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language, let 5., be the corresponding frag nent of L, as defined in Barwise [2].
KP denotes kripke—Platek sct theory, a theory in the language of set theory
whose only nc 1logical symbol is the binary relation . The well-fourded models of
KP are precisi’ly the admissible sets.

Hard Core Tieorem. Suppose T is a con.istent theory in L, which includes KP
and is £ -definable over (A, e,. . .). If x belongs to the standard part of every model
of T, then xe A.

The proof is essentially the same as th:t given in [2, Chapter IV, Section 1]
Note that an mmediate corollary of this “heorem is the fact that any consistent
theory X, over (A, ¢, ...) which extends K2 has a model whose stancdard ordinals
all belong to A.

Fix for the remainder of this section a countable resolvable admissible set A
with resolution f:ORD(A)-> A, We mak: the harmless assumptions that f(o) is
transitive for 211 o € ORD{(A) and f(0) =@. Qur goal is to construct a tree J 4 such
that A =pp HYP(F,). It will be fairly :lear from the construction that A
pp HYT(T ). The reverse inclusion follov s onze we show that there is a consis-
tent theory T 2KP which is 3, over {A ¢ f), all of whose models ¢ontain an
isomorphic copy of J,. For then any x € pr HYP(J ) must belong to the standard
nart of every model of T and hence riust belong to A by the Hard Core
Theorem.

We now deicribe I, with the aid of a tagging function hs. A tag is something
in one of the forms =, o, (0,x) whore o€ ORD(A) and x¢&f(¢). Then
hy 1T 4l—{Top Node}— Tags and h, i~ 1sed to control the growth of J . The
pair (7 4, h,) is determined by the following prescription: There is 2 unique top
node. It receives no tag. Infinitely many nudes at level 1 are tagged o; each other
tag appears a: h,(s) for exactly one nod- s at level 1. If hy(s)=c°, then 5 has
infinitely mary immediate extensions tagged with «, for each ceORD(A) a
unique immediate extension tagged with «», and no immecdiate extensions tagged
with (o, x) for any o, x. If ha(s)=ccCRD(A), then for each o'<a, 5 has a
unique immerdiate extension tagged with o' and s has no immediate extension
tagged with ary other tag. Finally if ha(s) = {0, x}, then s has a unique immediate
extension tagged with o for ¢’ <o, a urique imm-.diate extension tagged with
(¢, y) for yex, and no immediate extensin with any other tag.

Note that s is a terminal node of F 4 if ana only if h,(s)=0. Here is a picture
of T4
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A node seJ 4 is in WF(J ), the well-founded part of J 4, if and only if s # top
node of 7, and h, (s) #». If se WF(J ), then the rank of s inJ 4 is an ordinal in
A.
For any o € ORD(A) let F , (o) consist of those nodes in WE(T ) of rank less
than o.

Lemma 1. Acpp HYP(T,).

Pryef. For x€ A choose o =cORD{A} and s€9 4 such that h,(s) ={c, x). Now
T 4 —~T a(0) belongs to HYP(F ) and seT 4 -G Alo).
Define T,, the tree for x, by

T, ={(X0, X1, . - - » X} | Xo=x and V i<n x;sy € x}.

Now x belongs to any admissible set with urelements that contains an isomorphic
copy of T,. But T, is isomorphic to the tree below s in T4~F alo). So
xeHYP(T 4).

It remains to describe a consistent theory T = KP which is 2, over (A. ¢, f} such
that any model of T contains an isomorphic copy of F.. T is a theory in the
language L, where L is the language of (A, € @)aca augmented by a constant
symbol @, a unary function symbol f and .a unary predicate symbol F. Let
KP(f, 7) denote the extension of KP where f, & are ailowed to appear in the
matrix of the axioms for Ag-separation and Ag-bounding. Then the axioms for T
are:

(1) KP(f,- )+ Infinitary Diagram (A, e).

(2) (a) fis a resolution of V, i.e., Domain(f) = ORD and Vx Jorx e flo).

{b) flg)=f(o), for each o € ORD(A).
(¢) f(o) is transitive for ail o

(3) T is a tree (of ordinals) defined from ORD, f, = in exactly the way that 94
was defined from ORD(A), f, .

(4) For each o, (o) ={se F|F-rank(s)< o} is a set.

Lemma 2. If B is a model of T, then B contains an isoniorphic copy of J a.

Proof. If ORD(A)eStandard Part(B), then AcB as A= [%()|o<
ORD{A)}. As J , has an isomorphic copy definable over (A, ¢, f) we are dore by
A, separation.

Otherwise choose a (nonstandard) ordinal o« B A and consider %(o)eB.
The well-founded part of T5(a) consists of those nodes of standard ordinal rank
and thus coincides with the well-founded part of J,. The remainder of §%(o) is
isomorphic to the full tree =, just as is the non well-founded part of J 4. So
¥B(o) is isomorphic to F 4.
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T is clearly 7, (in fact 4,) over {A, ¢ f* and is consistent since ¥, has an
isomorphic copy A, over (4, ¢ f). Thus we have completed the proof in the
countable case of:

Theorem 3. A is resolvable if and only if A=pp HYP(H) for some M iff
A =pp HYP(T ).

Proof. The only issue remaining concerns the case when A is uncountable. But
‘A=ppHYP@ .Y is a IT, property of (A, ):

A =pp HYP(T 4) «» VB(B admissible, A € B implies BEA =
pp HYP(J 4)).

Thus by Lévy-absoluteness A =pp HYP(J ,) holds for uncountable resolvable
admissible sets as well. We are grateful to John Steel for this observation.

2. Linear orderings and p::udo well-orderiags

A tree can be converted into a linear orde ring once a linear ordering is specified
of the immediate extensions of each node.
3
»
Definition. A I'nearized tree (T, R) is a trec J of finite sequences together with a
binary relation R such that:
(a) R(s, )~ s, t are immediate extensicas of a common node in J.
(b) For any r €%, R linearly orders the .mmediate extensions of r in 7.
I (F,R) is & linearized tree, then its cssociated linear ordering £ of [J] is
defined by:
5§ <g te>s properly extends t in &7 or

Fi(sTi=t]i and R(s(i+ 1), i + ).

This is simply a generalization of the usu.l Kleene-Brouwer linear ordering of
finite sequences from o.

Now let A be a countable rzsolvable admissible set. In order to obtain a linear
ordering £ such that A = pp HYP(¥) we saall ‘linearize’ a certain tree & % which
is very similar 10 9 4 (in fact A =pp HYP@%)). The associated linear ordering £%
will be dense and hence there is no hope of having A =pp HYP(¥Y) as
pp HYP(£%) = pp HYP(Q) = HF. Instead we add certain points to £% to obtain a
linear orderiniy £, such that % can be recovered from £, and hence
pp HYP{&,) = A. And, as in the previous section, there will be a consistent
theory I, over (A, ¢ f) all of whose modcls contain an isomorphic copy of L.
Thus pp HYP(£,)= A.

Choose a resolution f: ORD{A)— A such that {A, ¢, f) is an admissibie struc-
ture. As before we assume that f(0) =@ ani f(o) is transitive for all o € ORD{A).
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The tree I% with tagging h¥ is defined just like (T4, h,) except we rzquire that
each node (other than the top node) have infinitely many neighbors with the same
tag. Thus we determine (F%, h%) by the following prescription: % has a vaique
top node which receives no tag. For each possible tag o, (o, x), o there are
infinitely many nodes at level 1 receivicg that tag, If h¥(s)=¢, then s has
infinitely many immediate extensions tagged with «, iniinitely many immediate
extensions tagged with o (for each o s ORD{A)) and ro immediate extensions
tagged with (o, x) for any o, x. if h¥(s)=(o, x), then s has infinitely many
immediate extensions iagged with ¢’ (for each ¢’ <o), irfinitely many immediate
extensions tagged with (o, y) (for each y € x) and no immediate extensions tagged
with o, Finally, if h%(s)=¢, then s has infinitely many extensions tagged with ¢
(for each o' <o) and no immediate extension with any other rag.

Lermma 4. A cpp HYP@Y).

Proof. By the proof of Lemma 1 it is enough to show that F , () s HYP@®) for
eaca a e ORD(A). But F (o) is obtained from T%(o) by identifying adjacent
nodes when they receive the same tag. As h'; |} T%(o) belongs to HYP(F7%) we are
done.

Mow linearize ¥% with a binary relation R which clenssly orders the immediate
extensions of each node in such a way that any tag which appears as the tag of ong
of these immediate extensions actually appears as the tag of a dense se! of them ia
the ordering R. This is easily done using a partition of the rationaic in‘o infinitely
many dense subsets.,

Lerama 5. A 2pp HYP(@X, R).

Proof. It is enouagh to describe a consistent theory T* which is ¥ over (A, ¢, )
and such that any model of T* contains an isomorphic copy of (7%, R). T is
defined in a way similar to the definition of the theory T of Lemina 1. Its axioms
are:

(1) XP(f, 7, R)+Infinitary Diagram (A, €).

(2) Same as for T.

(3) (7, R) is a linearized tree {of ordinals) defined from ORD, f, @ in exactly
the way that (F%, R) was defined from ORD(A), f, .

(4) For each c e ORD F (o) is a set.

Now suppose B is 2 model of T*. If ORD(A) e Standard Part(B), then Ac 8
anl thus B contains an isomorphic copy of (I%, R) since there is such a copy
definable over (A, ¢, ).

Otherwise choose a (nonstandard) ordinal ocB—A and consider
(F"(0), R?(0)) where by definition R¥(¢)= R} 9®(¢)xT8(g). If each node
s¢ WF(T3 (o) is retagged with « (instead of 7 or (v, x) for some nonstandard 1)
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we see that (FB(o), RB(¢)) obeys the pres ription for (I%, R). Thus (3%, R)=
(T®{0), RB(¢)) & B and we are done.

It remains to ¢ nstruct a linear orde-ing ¥, such that HYP(I%, R)=
HYP(Z£,). Let % be the associated lincar ordering (as defined at the beginning
of this section) for the linearized tree (J%, E). % is a dense linear ordering with
a greatest clement. Then £, is obtained from £% by adding a chain of length n
immediately after each point in the £% orduring which represents a node at level
n in £%. More formally, |#£4|={(s i) s and i<level(s) in T%} and (5, i) <
(s i) in ¥, iff s<s'in £* or (s=¢ and i <i').

Lemma 6. HYP(TE, R)Y=HYP(L,).

Proof. As ¥, is simply defined in terms of (%, R) we easily get £, ¢
HYP(FE, R) and hence HYP(£ ) HYP( %, R). For the reverse inclusion begin
by defining a tree I in HYP(Z,) as follov's: The top node of F is the greatest
element of ¥4, The nodes of level n on I are those points on £, with no
immediate predecessor and which begin a succession of n-+1 points, the last of
which has no immediate successor. If s is a node of level » and ¢ a node of level
m, n<m, then  extends s in F iff ¢ is less than s (in L) and ¢ is greater (in £,4)
than all points ¢of level n which are less than s.

Clearly the tree T so defined is exactly <. The relation R can be defined by
R(s, 1) Hff 5, 1 are immediate extensions of :: common node on 7 and s <t in £,.
Thus (%, R)Ye HYP(£,) and hence HYP(T%, R)c HYP(£,).

As in the proof of Theorem 3 a Lévy-abscluteness argument now demonstrates:
Theorem 7. A is resolvable if and only if A =pp HYP(Z ).

Finally we shall characterize those admissible sets which can appear as
pp HYP(#) where HYP() B4 = Universe(40) can be well-ordered. In this case
there is a linear ordering < of HYP(4) such that the function p.(x)=the
<-predecessors of x is ¥, over HYP(4#) and such that HYP(U)F < is a well-
ordering. Thus if A =pp HYP(4) then A obeys the property expressed in the
next definition,

Definition. A satisfies the Strong Global Weli-Ordering Principle (SGWOP) if for
some linear ordeving << of A, {A,p.) is almissible and (A, po)E < is a well-
ordering.

If A satisfies the SGWOP, then A s resolvable for one can define the
associated resolution f(o)=p.(o) such that with this resolution (A,f) is
admissible.
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From our earlier remarks we sec that a necessary condition ior A =
pp HYP(H), HYP(H) =[] can be well-ordered, is that A satisfy the SGWOP,
Our next result implies that this condition is also sufficent:

Theorem 8. Let A be admissible. Then the following arz equivalent:

(3) A satisfies SGWOP.

() A =pp HYP(H) for some A such that HYPL#)E 4| can be well-ordered.

(¢ A=ppHYP(W, <, U) where U is unary and HYP(W, <, UYF(W, <) is a
well-ordering.

In case A is countable then the ordering (W, <) in (c) can be explicitly chosen to
be (a+a -1, <) where @ = ORD(A) and n = orderiype of the rationals.

The basic idea of the proof of Theorem 8§ is similar to that used in the proof of
Theorem 7: Given a countable, resolvable admissible set A which satisfies
SGWOP one first constructs a special type of tree F%* such that A=
pp HYP(@%*). Then by use of an ordering < as in the SGWOP J%* can be
lincarized by a binary relation R such that if £¥* is the associated lincar ordering
then HYP@¥*, R)F £%* is a well-ordering. Moreover there is a consistent theory
T*¥, 3, over (A, €, <) such that any model of T** contzins an isomorphic copy of
(T3*,R). Thus A =pp HYP(T%*, R). The proof is completed by ad:iing certain
points to £X¥, together with a unary predicate U distinguishing them, to obtain a
lincar ordering W, such that HYP(W,, U)FW, is a well-ordering and in
addition HYP(W,,, U)=HYP@%*, R).

‘To demonstrate the key property of the theory T°% it will be recessary to
construct (F¥*, R} in a very canonical fashion (io guarantee that it looks the same
when nonstandard ordinals are allowad). An important point which makes this
possible is the following result which originates in [4}:

Lemma 9. Suppose B is a countable model of KPU with standard ordinal o and
(B,e)EL is a well-ordering. Then c¢ither ordertype(L.) is an ordinal less than « or
ordertype(L) = a + a - 1 -+ o where n = ordertype of the rationals and & is ar ordinal
less than .

This lemma also makes it clear why the unary predicate U in Theorem 8(c) is
necessary as if HYP(W, <)B(W, <) is a well-ordering, then pp HYF(W, <)=L,
where « is admissible. This follows from the lemma and results of Nacdlel and Stavi
in {7].

Fix a countable admissible set A with linear ordering <, as in the SGWOP.
We assume that {x e A | x <, o} is transitive for each ¢. Let f be the resolution of
A associated with <,. We now define the tree F%¥ with its corresponding tagging
function h%¥. In this case tags have one of the three possible forms =, g, (o, %, 7)
where p <a, ¢ is an ordinal closed under ordinal addition and less than a, v <o
ard x € f(o). T%¥ has a unique top node and it reczives no tag. For rny x€ A let
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o, be the least ¢ such that o is closed under addition and x € f{o). Then for each
x € A there is a unique node on level 1 of §%¥ tagged with (o, x, 0) and there are
infinitely many nodes on level 1 tagged wit1 o, No other tag is the tag of a node
of F%* on level L. If h5*(s)=co, then s has a unique immediate successor tagged
with &, for each 7 < ¢, and s has infinitely n-any immediate successors tagged with
w, No other tag is the tag of an immedia'e successor of s on TRE. If hi*(s)=
{o, x, 7), then s has a unique immediate successor tagged with (o, y, p) for each
yeéx, p <o (u may be =7). Also s has a urique immediate successor tagged with
p, for each p <o, and no immediate successors with any other tag.

Finally, if h¥7(s)=g, let & be the great:st ordinal <o which is closed under
addition. Then : has a unique immediate -uccessor tagged with 7 for <& and
infinitely many imrnuediate successors tagge | with + when & =7 <o. No other tag
is the tag of an Immediate successor to s in ¥ ** This coupletes the description of
TEE.

The above definition will appear som:what less peculiar once the binary
relation R for linearizing %% is defined. If 5 and ¢ are nodes of T1* at fevel 1 and
B¥¥(s) = (o, x, 0), then R(s 1) iff KE¥(t)=> or (o, ¥, 0) with x <, y. In addition
R orders {s|s is at level 1, h¥¥(5) =0} iv ordertype @ - m where a = ORD(A),
n =ordertype of the rationals. Suppose h**(ry=oo K s, t are immediate exten-
sions of r, h**(s) = 0. then R(s, t) iff h{*( )= or an ordinal >o. In addition R
orders {s | s immediately extends r, hX*(s) = oo} in ordertype a - m. Next suppose
¥ =(o, x, 7). If 5, t are immediate e stensions of r, then R(s,t) iff either
h¥¥(s)=p and h¥*(1) = p'>p; or hEX(s) = and #X¥(0)=(0, y, ) some y, p';
or h¥¥(s)=(o,v, ), hE¥®) =(o,z,v) wih p<y or with p=v and y <,z
Finally suppose h¥*(r)=¢ and s, t are im mediate ¢xtensions of r. If hi*(5)< 6,
then R(s, ) iff h¥¥(s)<h¥¥1). Also if & <o, then R orders {s|s immediately
extends r, h¥*(s)= G} in ordertype o+ @ {n ordinal closed under addition). This
completes the definition of R.

As in Lemma 4 it is easy to show that £ Spp HYP(@F%¥). The above definition
of (T¥* R) is carefully designed to enable us to show:

Lemma 10. pp HYPFX, R)c A

Praof. Define T™* analogously to T*. Ttas the axioms for T** are:

(1) KP(, &, R) +Infinitary Diagram (-, €).

?) (2) = well-orders the universe; Vx, y (xey—x < y).

b)) Vx (x<sae> Woe,ax=b), for cach ac A.

(3) (. R) is a linearized tree (of ordine 's) defined from ORD, =, « in exactly
the way (F%*, R) was defined from ORD A), <4, «.

{4) For all ¢ € ORD, J o) is a set.
Now suppose B is a model of T** If ORD(A)=«a e Standard Part(B?, then
axioms (2) imply that A & B and thus B contains an isomorphic copy of (3 ** R)
since there is such a copy definable over ‘A, €, <a).
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Otherwise choose a (noustandard) ordinal o€ B—A which is closed under
multiplication and  consider (F%(¢), RB(s))e B  where RP(s)=R!}
T () xT3(a). We claim that this linearized tre= is isomorphic to (T3¥, R).

To see this it suffices to show that, if each node in T"(¢) which is tagged with a
nonstandard tag is retagged with o, then the resulting linearized tree odeys the
prescription for (FX¥, R). (By a nonstandard tag we mean a tag « or (7, x, )
where 7 is not an element of A.) It is the demonstration of this fact that uses the
details of our definition of (I** R).

Using Lemma 9 and the closure property of « it is easy to check that the
ordertype of <® | (<®-predecessors of o) is a+a * n. Thus on the first level of
FB(o) the nodes with nonstandard tags follows the nodes with standard tags
under R? and are ordered by RP in ordertype « * 1. Thus if these nodes are
retagged with o, then the prescription for (T%¥, R) is met as far as nodes at level
1.

Now suppose that s e T%(0) receives a nonstandard tag. We must show that the
immediate extensions of s are linearly ordered by R® in ordertype a +a + 1 with
initial segment consisting of node tagged with ordinals o <a (in tueir natural
order) followed by nodes with nonstandard tags. First consider the case in which s
has an ordinal tag 7. If 7 is closed under addition then the immediate extensions
of s are ordered by R¥ in the odertvpe of the ordinal predecessors of 1. As 1 is
closed under addition this ordertype must be a +a - . And clearly the nodes with
standard ordinal tags form an initial segment (in the natural order) of orcertype «
in this linear ordering. If 7 is not closed under addition, then the immediate
extensions of s are ordered in the ordertype of the ordinal picdecessors to
#+17 - @ with standardly-tagged nodes forming an initial segment (in the natural
order) of ordertype a. But of course ¥+ 7 - w is closed under addition so again this
ordertype is what it should be, a+a - 7.

Now consider the case in which s receives a nonstandard tag (r, x, u). Let
L =ordertype <®1{y |y ¢® x}. Then the immediate extensions of s are ordered
by R® in ordertype =+ L - 7. Note that 7 is closed under addition and bence the
ordinal predecessors of T have ordertype o+« n. It is now sasy to s2e (using
Lemma 9) that 7+ L -+ also has ordertvpe a+« - 7. Also the only inmediate
extensions of s with standard tags have ordinal tags and these nodes form an
initial segment of ordertype of the immediate extensions of s (under R®),

Of course (TB(a), R¥(¢)) and (7%*, R) agree on nodes with standard <ags. This
completes the proof that these two structures are isomorphic and hence Lemma
10 is proved.

Thus we have A =pp HYP(FF*, R). We let ¥%5* denote the lincar ordering
associated to (F%¥, R). Note that HYPT%*, R)k.#%* is a well-ordering: For, let
B be a model of T* such that the well-founded part of B has height =
ORD{A). The existence of such a B follows from the Hard Core Theorem. If
o ¢ ORD(B) let (o) be the linear ordering in B associated to (F%(a), R(0)).
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Then BF.£(0) is a well-ordering so HYPE ¥, R)k £(0) is a well-ordering, since
B contains an isomorphic copy of (%, ). But if e B— A is chosen to be
closed under multiplication then $(o) is isomorphic to 2%¥,

Now enlarge £%¥ 0 a linear ordering W, as follows: To each s e |*¥ which
represents a node at level n of F%* add a chain of n oints immediately after s.
Thus {W4|={(s, ) !5 is a node of F%F at level n, 0<<i=<n} and (s, i) is less than
(s, i in W, iff s is less than §' in &% or (s=+¢ and i<i’). In addition let
U < |W,| consist of those points of the form (s, i) where i >0,

It is easy to sec that HYP@X¥, R) = HP(W,, U). The argument is virtually
identical to the earlier proof that HYF (%, R)=HYP(L,). Finally suppose
HYP(W,, U)E W, is not a well-ordering. "hoose a sequence (Sg, io), (S5, i), ...,
which descends through W, and which belongs to HYP(1W,,, U). Then there must
be an infinite X < o such that Xe HYP(W , D and n,me X, n<m—s,, is less
than s, in W,. Thus HYP(W,, U)=HYT F%* R): W, is not a well-ordering,
contradicting cur earlier clal n.

By invoking Lévy-absoluteness in the 1 ncountnble case, we now have com-
pleted ihe proof of Theorem 8.

Rensarks. (a) ‘n the proofs of Lemmas 2, ¢, 10 the break into cases as to whether
or aot ORD{(A) e Standard Part of B is in fact unnecessary. Instead one may use
the following mild sirengthening of the Herd Core Theorem: I T is a theory I,
over the countable admissible structure (£, ¢, ...} and x belongs to the standard
part of everv model B of T such that ORD{A)¢ B, then x¢ A.

{b) In case A is countable, resolvable :nd A EEvery set can be mapped 1-1
into the ordinals, then ine proof of Theorem 8 becomes much simpler. The
reason is that in this case A is of the form L. [P], P < o, and the structure (W, <, U}
can be taken fo be a nonstandard version of {a, €, P).

3. Applications to models of analysis

The moral of this section is the followin;: By infinitary model theory (as in the
preceding sections) one can build structures M with specific definability-theoretic
properties. By generically collapsing 4 to o these definability properties are not
damaged, thereby yielding structures buiit over w (reals or sets of reals) with
similar properties. This forcing can be viewved as a set-forcing over HYP(#4) (the
collection of forcing conditions forms an :lement of HYP(4)) and thus is easily
analyzed.

In a sense Steel forcing performs boih of the above tasks simultaneously,
thereby necessitating the use of class forciig. However it is more difficult to argue
that admissibility is not destroyved when using class forcing.

We will do three applications. The first is a result of G. Sack.. '] which states
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that if a is a countable admissible ordinal then « :=w! for some T w. This
example reveals the essence of our method. The remaining two applications are to
results of Steel’s thesis which appear in {9]. The first states that if A <{w, then
there are T < « and JI(T)-singletons f, g such that f¢ L,(g, T), gL, (. T). (f is
a IT%(T)-singleton if f is the unique solution to a predicate whick is IT{ in the
parameter T.) This application was observed jointly by Leo Harrisgton and the
author. Finally we prove the existence of an w-model of Aj-CA which does not
satisfy 31-AC, the result which inspired the development of Steetl forcing. An
wo-model of Al-CA is a set of reals & which is closed under pairing end satisfies:

AI-CA: Yn(@Xe(n, X))« ~3YY(n, Y))—=3AZVn (nc Z+«3IX o(n, X))

where ¢ and ¢ are arithmetic formulas involving arbitrary paraneters from & An
w-model of £1-AC must also satisfy:

SI-AC: Vn3Xen, X)—3Y Vre(n, (Y),)
where ¢ is as before and (Y), ={m[2"3™ e Y}.

Theorem 11 (Sacks). Every countable admissible ordinal > is of the form w7 for
some TS w.

Proof. Recall that o] = first ordinal « such that L (T} is admissible. Fix @ tobe a
countable admissible ordinal >w. We let J be the following tree (which is
essentially the tree obtained by Steel forcing over L,): 7 has a unique top node,
tagged with . If se|J] is tagged with o, then ¢ has infinitely many immediate
extensions tagged with  and a unique immediate extension tagged with 8, for
each B<a. If selF] is tagged with B, then s has a unique immed:ate extension
tagged with v, for each -y <. No tags appear other than those mentioned above.

Now consider the theory KP(9)+Infinitary Diagram(L,)+ F i5 a tree of
ordinals defined from ORD, % in exactly the way J is defined from @, o+
VYo (F(0o) is a set). This theory is X, over (L, €) and J has ap isomorphic copy in
any model of this theory. As any theory X, over (L., €) which extends KP has a
model B with a¢ Standard Part(B), we see that HYP(J)NORDc a. As T has a
node of rank B, for each B<a, we actually have HYP(FT)NORD =a. Thus
HYPF) = L, ().

Now collapse [T to @ by doing Lévy forcing over HYP(J). Thus 2 condition is
a finite function p:n -1 Tl n<e, and p<gq iff p extends 4. Forcing is
defined 2 la Cohen. The set of conditions is an element of HYP(F) and from this
it follows easily that the forcing relation is ¥, over HYP(J) when restricted to X,
statements, and that if G is generic over HYP(J) for this forcing then L, (F, G) is
admissible. Define a tree Ty on @ by: 1 extends i in Ty iff G(n) extends G(m)
in J. Then Tg e L (T, G) so L (Tg) is admissible. But as Ty is isomorphic to I
and « = HYP@)NORD, L;(Ts) cannot be admissible for any 8 <(a.



Steel forcing and Bary ise compactness 43

There are simpler proofs of Sacks’ Theorem than that given above. However
we included it as it is the prototype ¢f our t.chnique. Moreover a slight
modification of it yields a simple proof of Stee''s result that, if @} =} =aq, then
for some T @f=oF" =0T =a. The ~aly previously known proof of this
strengthening used Steel’s forcing.

Theorem 12 (Steel). If A is countab’e, then there are TS o and f, g € @* such that
f, g are ITY(T-singletons and f¢ T, (g, T), 3¢ L.(f. T).

Proof (Jointly with Leo Harriagton). Let .4 be countable and admissible. Define
terms 7€ L, so that for any , T each 2lement of L, (f, T) is denoted by some term
t applied to f, T and such that the evaluation of terms is ¥, over L, (f, T). Thus
we wish to construct T and IT(T)-singletons f, g such that for any term 7e L,,
f# (g, T) and g#7(f, T).

Begin by defining the following tree 7, with two distinguished paths f,, g, : 7\
has a unique top node (which equals f,(0. = g, (0)). Each node at level 1 except
£(1), & (1) receives an ordinal tag v <A znd each tag y<A is the tag of only 1
node at level 1. Also f(1)# & (1). Any node tagged with vy has a unique
immediate successor tagged with ', for sach y'<y. Any nrode f,(n) has the
immediate exiension f, (n+1) and an imme diate extension tagsed with v, for each
v << A, Similarly for g, (n).

Thus f,, g are the unique paths through J,. We claim that, if r is a term in L,
and selF,|=, then f, # (g, T\, §) as eleraents of L, (f,, g, F»). Otherwise con-
sider the theory KP(F, f, g)+Infinitary Liiag.am(L,)+(7f, g) is built from A
exactly the way (7, fi, £.) was built from A +s |71 +f=1(g, &, 5). This theory
has a model B whose standard part has he ght A. But there is an automorphism ¢
of I8 fixing 5% sP and moving f%, obtain:d by choosing a descending sequence
Ao>A,>- - - through ORD(B) and (a) switching f%(n+1) with some immediate
extension of (f%(n)) tagged with A,, whenever f®(m)¢s® for all m>n, (b)
corresponding the immediate extensions o! f2(n) with nonstandard tags with the
remaining immediate extensions of ¢(f®(1)) which do not have standard tags.
Thus we get f5# o(f%) = (e(g®), ¢(T®), ¢(s®))=1(g? I°, s%)=f". Contradic-
tion.

Now Lévy collapse |7, ] to @ using finite conditions, viewing L, (7, fi, 8) as the
ground model. Note that for any y<<A, the forcing relation is an element of
L, (F,, g) when restricted to statements of rank < vy not mentioning fi and so can
be named by a term o(TF,, @), oL,

Let G:o — |7, be generic over L,(F,, "\, g.) for this forcing and define Tg by:
n extends m in Ty iff G(n) extends G(m) in J,. Also let fo =G'(fi), & =
G Yg). Then fg, ge are IIY(Tg)-single:ons as fi; =unique path through Tg
extending f5(1), g = unigue path through Tg extending g5 (1).

We claim that for any term & L,, fg # 7 Ts, g6). Otherwise choose a condition
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p such that pi-fe = 7(Tg, g&;). Then sef, o
Ag<pqtG(s)efgeIa=<pqkG(s)e r(1g, gs)

and this last condition can be described vy a term o9, g, p), o€ L, This
contradicts our earlier claim. By symmetry gg # v(Te, fo) and we are done.

We note that Steel's result (included in [9]) on the relativize¢ McLaughlin
conjecture can also be obtained by techniques simila: to those used in Theorem
12. We now proceed to our most elaborate application.

Theorem 13 (Steel). There is an w-model of A}-CA. vhich does not satisfy ¥1-AC.

Proof. Begin by defining the following tree I and collection & of paths through
F: 9 has a unique top node which is untagged. Each untagged node of ¥ has
infinitely many untagged immediate extensions, infinitely many immediate exten-
sions tagged with « and a unique immediate extension tagged with «, for each
a < wf¥ Each node tagged with « has infinitely many immediate extensions
tagged with o and a unique immediate extension tagged with c, for cach a < ¥,
Each node tagged with a <o§™ has a unique immediate extension tagged with 8,
for each B<ea. P is obtained by choosing for each untagged node v a path
through & which passes through + and only untagged nodes.

We consider the theory T =KP+Infinitary Diagram(L,¢<)+a ic an ordinal +
{a>a|a<w¥+Fis a tree, P a set of paths through & defined from a, » in the
same way that (F, ?) was defined from ¥, «. If B is a countable mode! of T
such that w{*¢Standard Part(B), then (F,9) is isomorphic to (F5, @F). So
HYPF, P)NORD = 0f¥.

Claim. If Xcow is 3, over HYP(T, P) in parameters T, fy, ..., .. P (where
firees fa€P), then X is 3, over HYPT, fy,..., f.L.

Proof. Consider the theory T over HYP(T, fy, ..., . whose axioms arc KPU+
Infinitary Diagram(HYP(T, fi,..., )+ @ is a set of paths through I+
fir-- s [, € P+ Any node of J exteadible to a member of 2 has infinitely many
immediate extensions extendible to members of @ +Every set belongs to
HYP(J, #). If B' is a countable model of T’ such that w$*¢ Standard Part(B"),
then (¥, 27" is isomorphic to (J,®). (This is easy 1o see once it & realized that
any node not in the well-founded part of 9 must heve infinitely many immediate
extensions which neither are in the well-founded part of & nor can be extended to
a path in %', This follows as otherwise @$* & Standard Part(B').) Moreaver this
isomorphism can be chosen to fix 7, fy, ..., f..

Now suppose that Xcw is X, over HYP(J,?) in F.f,,....f., P; thus
me X e HYPF, P)Ee(m, ) where ¢ is X, (and we suppress the parameters
Ty f1r .- fn). We assert that me Xo T'Fe(m, 2, and then we will be done.
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Clearly T'Fo(m, ) implies m € X so suppcs: T +~¢@(m, 9 is consistent. Then
T'+~¢{m, ) has a countable model B’ such that o ¢ Standard Part(B"), as
this theory is ¥, over HYPT, f,... ., ) end HYP@, f,, ..., LINORD = ¥,
But B' is isomorphic to HYP(@,®) with isomorphism fixing 7,f,,...,f, so
HYPT, P E~@(m, ®). So m¢ X. The clain is proved.

Now Lévy collapse | to w, generically over HYP(F, ®). Choose a generic
G:w—|J| for this forcing and for H a finite subset of @ let M(H)=
HYP(G, T, H). The model we are looking for is M No™ where M={J{M(H)| H
a finite subset of P}

Suppose X< w is ¥, over M in parameters G, 9, fy, ..., f, where f;,...,f. €
®. Thus for some 3,¢ we have meX<dpeGph(MEo(m G.J,
foo-o s D =3JApeGp-A finite He P {fy,....f,eH and M(H)ke(m, G,
F, fi. ..., fu)). This is in the form 3 pe G ¢ m, p) where ¢ is 2, over HYP(F, @)
in parameters T, fy, ... .f, & as the forcing relation is ¥, over HYP(F, @) when
restricted to X, statements. By our earliur claim we see that X is ¥, over
HYP(G,9,f,...,f). Thus if X is both X, and II, over M in parameters
G.T,fin.... 0, then X is A, over HYP(C, T f,....,f,) and hence XeM. So
MNwe”kA-CA.

It remains 1o show that M Nw*¥%-AC and for this it suffices to see that for
any finite H < @, the members of H are th. only paths through J in M(H). (For

then MM w®kVYn AF:n —- Paths througl Ty but ~3F:w 221, Paths through
T, where T is defined to make G an isc norphism from Tg onto J.) Suppose
se€d and ¢ does not lie on any path in H. We show that for any condition
p:n—F|, pIs can be extended to a path i1 HYP(G, T, H). For, choose a model
B of the theory T such that o™ ¢ Standarc¢ Part{B) and let ¢ be an isomorphism
of (7,9) onto (T8,®%). Choose a nonstadard ordinal a € ORD(B)—~w{¥ and
consider § € B defined by § ={seJ® |ran.(s)<a or s lies on a path in e(H)}.
Then (F, H) is isomorphic 10 (&, o(H): kt ¢ be such an isomorphism. Now if
pls can be extended to a path in HYP(G,T, H), then ¢(p)i-y(s) can be
extended o a path in HYP(G, 9, o(H)). The point is that BEy(s) has an ordinal
rank in ¥. Therefore for no condition q can we have qi-¢(s) can be extended to a
path in HYP(G,F, o(H)) as otherwise {be DRD(B} |3r<q3teF of rank b (ritt
can be extended to a path in HYP(G, J, ( H)))} is a definable class of urdinals of
B with no least element, contradicting B+ KP. Thus we have shown that for no
condition p can we have pits can be extended to a path in HYP(G, 9, H) and
thus M(H)E Any path through 9 belong to H. This completes the proof of
Theorem 13.
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