STEEL FORCING AND BARUISE COMPACTNESS*

Sy D. IRIEDMAN
Massachu;etts Institute of Technology, Univerity of Califnmia at Berkeley, Berkeley, CA, U.S.A.
Received \& May 1979

0. Introduction

In [9] John Steel developed the method of forcing with tagged trees, which he used to settle several important question concerning models of analysis. The Steel partial ordering refines the (Lévy-type) partial-ordering for collapsing an admissible or linal to ω in that it permits a careful computation of the complexity of the forcing relation whe.l restricted to statements of a bounded ordinal rank. (It is this aspect of the forcing which Leo Harrington exploited in his proof that Π_{3}^{*}-determinateness implies $O^{* *}$ exists [6]. In addition Steel's forcing allows one to generically construct trees on ω with complete control over which paths appear in the generi extension. For, a conditic a assigns ordinal 'tags' to nodes on the tree which do rot lie on the intended paths; longer nodes get smaller ordinal tags. Thus the generic tree is well-founded below any node which receives an ordinal tag.

Our work here began with a generalization of Steel's forcing which uses tags which are not necessarily ordinals but are eets from a given admissible set. The idea is to require that longer nodes receive ags which descend in the ϵ-relation, thereby coding sets below nodes on the generic tree. We developed this forcing to provide a chatacterization of those admissit le sets which appear as the pure part of $H Y P(\mathcal{N})$ where \boldsymbol{M} is a structure of finit: similarity type on urelements. This answers a question posed by Mark Nadel and Jonathan Stavi who obtained partial results in [7].

Later a mich simpler proof of the above characterization was found which dispenses of forcing in favor of Barwise compactness techniques, especially the Barwise Hard Core Theorem (see [7]). This led us to re-examine Steel's original applications of his forcing and to discover easier, model-theoretic proofs of them. However our work does not appear to simplify deeper applications of Steel forcins (as for example in [1] nor supplant Harrington's techniques for establishing lightface 'versions of Steel's results.

In Section I we review the aspects of the theory of admissible sets and Barwise compactness which we will need and charac erize the pure parts of $\mathrm{HYP}(\mathcal{M})$ as the resolvable adnissible sets. Thus if \mathbf{A} is rese vable we shall construct a tree \mathscr{F}_{A} (on

[^0]urelements) such that $A=$ pure part $\operatorname{HYP}\left(\mathscr{T}_{A}\right)$. In Section 2 we embellish this construction to replace \mathscr{T}_{A} by \mathscr{L}_{A}, a linear-ordering. We also show that A satisfies the strong global well-ordering principle if and only if $A=$ pure part $\operatorname{HYP}(W,<, U)$ where U is unary and $\operatorname{HYP}(W,<, U) \mathrm{F}(W,<)$ is well-ordering. Section 3 gives model-theoretic proofs of several of Steel's results, including Δ_{1}^{1} $C A \rightarrow \Sigma_{1}^{1}-A C$.

We are extremely grateful to both John Steel and Leo Harringto tor helpful discussions and for providing most of the ideas in the simpler proof of our solution to the Nadel-Stavi problem.

1. The pure part of $\operatorname{HYP}(\mathcal{A})$

Let \boldsymbol{A} be an admissible set, i.e., \boldsymbol{A} is a transitive set closed under pairing, union and satisfying Δ_{0}-separation, $\boldsymbol{\Delta}_{0}$-bounding. (All admissible sets are taken bere to be without urelements unless explicitly stated otherwise.) We say that A is resolvable if there exists a function $f: \operatorname{ORD}(A) \rightarrow A$ such that $A=U$ Range(f) and $\langle A, \epsilon, f\rangle$ is an admissible structure. Thus A satisfies separation and bounding for formulas with only bounded quantifiers but where f nay occur as a predicate in the matrix. Our definition of resolvable differs from that given in Barwise's book [2]; \boldsymbol{A} is resolvable in Barwise's sense if there exists f as obove which is Σ_{1}-definable over $\langle\boldsymbol{A}, \boldsymbol{\epsilon}\rangle$.

The theory of admissible sets with urelements [2] provides a wealth of examples of resolvable admissible sets. For, as pointed out by Nadel and Stavi in [7], the pure part of $\operatorname{HYP}(\mathcal{M})$ is always resolvable for any structure \boldsymbol{M} (for a finite language). If $o(\mathcal{M})=\operatorname{ORD} \cap \mathrm{HYP}(\mathcal{M})$ is equal to ω, then this is clear as pp $\operatorname{HYP}(\mathcal{K})=\mathbf{H F}$, the hereditarily finite sets. Otherwise $\mathrm{HYP}(\mathcal{M})=I_{\text {o }(\mathcal{N})}(\mathcal{M})$ and the function $f(\beta)=\mathrm{pp} L_{\beta}(\mathcal{A})$ demonstrates the resolvability of $\mathrm{pp} \mathrm{H} \boldsymbol{P}(\mathcal{M})$.

It is not difficult to produce a non-resolvable admissible set: Define A to be locally countable if (A, ϵ) F Every set is countable. Clearly an uncountable, locally countable admissible set of countable height cannot be resolvable. An example of such an admissible set is

$$
\bigcup\left\{L_{\omega_{2}} \operatorname{ck}[F] \mid F \subseteq S, F \text { finite }\right\}
$$

where S is an uncountable collection of reals mutually Cohen-generic over L_{ω}, ck.
Countable nonresolvable admissible sets are more dificult to come by. The deperdent choice axiom:

$$
\mathbf{\Sigma}_{1}-\mathrm{DC}: \forall x \exists y \varphi(x, y) \rightarrow \forall x \exists f[f(0)=x \wedge \forall n \varphi(f(n), f(n+1))], \varphi \boldsymbol{\Delta}_{0}
$$

holds in any resolvable locally countable admissible set. Harvey Friedman proved the existence of a countable, locally countable admissible set in which $\Sigma_{1}-D C$ fails for reals using proof-theoretic methods [3]. We have recently discovered an explicit forcing construction of such an admissible set.

We shall make extensive use of a version of the Barwise Hard Core Theorem. Let (A, ϵ, \ldots) be a countable admissible structure and, for $L \in A$ a first-order
language, let s_{A} be the corresponding frag nent of $L_{\omega_{1} \omega}$ as defined in Barwise [2]. KP denotes liripke-Platek set theory, a theory in the language of set theory whose only nd alogical symbol is the binary relation ϵ. The well-fourded models of KP are precis ty the admissible sets.

Hard Core Theorem. Suppose T is a con istent theory in L_{A} which includes KP and is Σ_{1}-defizable over $\langle A, \epsilon, \ldots\rangle$. If x belings to the standard part of every model of T, then $x \in A$.

The proof is essentially the same as thet given in [2, Chapter IV, Section 1]. Note that an mmediate corollary of this heorem is the fact that any consistent theory Σ_{1} ove: $\langle A, \epsilon, \ldots$) which extends K ? has a model whose standard ordinals all belong to A.

Fix for the remainder of this section a countable resolvable admissible set A with resolution $f: \operatorname{ORD}(A) \rightarrow A$. We mak: the harmless assumptions that $f(\sigma)$ is transitive for :ll $\sigma \in \operatorname{ORD}(A)$ nnd $f(0)=\emptyset$. Our goal is to construct a tree \mathscr{F}_{A} such that $A=p p H Y P\left(\mathscr{g}_{A}\right)$. It will be fairly lear from the construction that $A \subseteq$ $\operatorname{ppHYT}\left(\mathscr{T}_{A}\right)$. The reverse inclusion follovs once we show that there is a consistent theory $T \supseteq K P$ which is Σ_{1} over $\langle A \epsilon, f$, all of whose models contain an isomorphic cooy of \mathscr{J}_{A}. For then any $x \in \mathrm{pl} \operatorname{HYP}\left(\mathscr{T}_{A}\right)$ must belong to the standard part of every model of T and hence rust belong to A by the Hard Core Theorem.

We now de:cribe \mathscr{T}_{A} with the aid of a 1 igging function h_{A}. A tag is something in one of the forms $\infty, \sigma,(\sigma, x)$ where $\sigma \in \operatorname{ORD}(A)$ and $x \in f(\sigma)$. Then $h_{A}:\left|\mathscr{F}_{A}\right|-\{$ Top Node $\} \rightarrow$ Tags and h_{A} in sed to control the growth of \mathscr{T}_{A}. The pair $\left(\mathscr{T}_{\mathrm{A}}, h_{\mathrm{A}}\right)$ is determined by the followng prescription: There is a unique top node. It receives no tag. Infinitely many nodes at level 1 are tagged ∞; each other tag appears $a^{*} h_{A}(s)$ for exactly one nod $\because s$ at level 1. If $h_{A}(s)=\infty$, then s has infinitely mary immediate extensions tąged with ∞, for each $\sigma \in \operatorname{ORD}(A)$ a unique immediate extension tagged with r, and no immediate extensions tagged with (σ, x) for any σ, x. If $h_{A}(s)=\sigma \in \operatorname{ORD}(A)$, then for each $\sigma^{\prime}<\sigma$, s has a unique immediate extension tagged with σ^{\prime} and s has no immediate extension tagged with any other tag. Finally if $h_{\mathrm{A}}(s)=(\sigma, x)$, then s has a unique inmediate extension taged with σ^{\prime} for $\sigma^{\prime}<\sigma$, a urique imm diate extension tagged with (σ, y) for $y \in, f$, and no immediate extension with any other tag.

Note that s is a terminal node of \mathscr{T}_{A} if ano only if $h_{A}(s)=0$. Here is a picture of \mathscr{T}_{A} :

A node $s \in \mathscr{T}_{A}$ is in $\mathrm{WF}\left(\mathscr{T}_{A}\right)$, the well-founded part of \mathscr{G}_{A}, if and only if $s \neq$ top node of \mathscr{T}_{A} and $h_{A}(s) \neq \infty$. If $s \in \mathrm{WF}\left(\mathscr{F}_{A}\right)$, then the rank of s in \mathscr{F}_{A} is an ordinal in A.

For any $\sigma \in \mathrm{ORD}(\mathrm{A})$ let $\mathscr{T}_{\mathrm{A}}(\sigma)$ consist of those nodes in $\mathrm{WF}\left(\mathscr{F}_{A}\right)$ of rank less than σ.

Lemma 1. $A \subseteq \operatorname{ppHYP}\left(\mathcal{F}_{A}\right)$.
Proof. For $x \in A$ choose $\sigma \in \operatorname{ORD}(A)$ and $s \in \mathscr{F}_{A}$ such that $h_{A}(s)=(\sigma, x)$. Now $\mathscr{T}_{A}-\mathscr{T}_{A}(\sigma)$ belongs to $\operatorname{HYP}\left(\mathscr{T}_{A}\right)$ and $s \in \mathscr{T}_{A}-\mathscr{S}_{A}(\sigma)$.

Define T_{x}, the tree for x, by

$$
T_{x}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right) \mid x_{0}=x \text { and } \forall i<n x_{i+1} \in x\right\}
$$

Now x belongs to any admissible set with urelements that contains an isomorphic copy of T_{x}. But T_{x} is isomorphic to the tree below s in $T_{A}-T_{A}(\sigma)$. So $x \in \operatorname{HYP}\left(\sigma_{A}\right)$.

It remains to describe a consistent theory $T \supseteq \mathrm{KP}$ which is Σ_{1} over $\langle A, \epsilon, f\rangle$ such that any model of T contains an isomorphic copy of $\mathscr{T}_{A} . T$ is a theory in the language L_{a} where L is the language of $\langle A, \epsilon, a\rangle_{a \in A}$ augmented by a constant symbol \propto, a unary function symbol f and a unary predicate symbol \mathscr{F}. Let $\mathrm{KP}(f, \mathscr{T})$ denote the extension of KP where f, \mathscr{F} are allowed to appear in the matrix of the axioms for $\boldsymbol{\Delta}_{0}$-separation and $\boldsymbol{\Delta}_{0}$-bounding. Then the axioms for T are:
(1) $\mathrm{KP}(f, \mathscr{F})+$ Infinitary $\operatorname{Diagram}\langle A, \epsilon\rangle$.
(2) (a) f is a resolution of V, i.e., Domain $(f)=$ ORD and $\forall x \exists \sigma x \in f(\sigma)$,
(b) $f(\sigma)=f(\sigma)$, for each $\sigma \in \operatorname{ORD}(A)$.
(c) $f(\sigma)$ is transitive for all σ.
(3) \mathscr{T} is a tree (of ordinals) defined from ORD, f, ∞ in exactly the way that \mathscr{S}_{A} was defined from $\operatorname{ORD}(A), f, \infty$.
(4) For each $\sigma, \mathscr{T}(\sigma)=\{s \in \mathscr{F} \mid \mathscr{T}-\operatorname{rank}(s)<\sigma\}$ is a set.

Lemma 2. If B is a model of T, then B contains an isontorphic copy of \mathscr{T}_{A}.
Proof. If $\operatorname{ORD}(A) \in \operatorname{Standard} \operatorname{Part}(B)$, then $A \in B$ as $A=U\left[f^{B}(\sigma) \mid \sigma<\right.$ $O R D(A)\}$. As \mathscr{T}_{A} has an isomorphic copy definable over $\langle A, \epsilon, f\rangle$ we are done by \mathbf{A}_{0} separation.

Otherwise choose a (nonstandard) ordinal $\sigma \in B-A$ and consider $\mathscr{T}^{B}(\sigma) \in B$. The well-founded part of $\mathscr{T}^{B}(\sigma)$ consists of those nodes of standard ordinal rank and thus coincides with the well-founded part of \mathscr{T}_{A}. The remainder of $\mathscr{F}^{3}(\sigma)$ is isomorphic to the full tree $\omega^{\alpha \omega}$, just as is the non well-founded part of \mathscr{T}_{A}. So $\mathscr{F}^{B}(\boldsymbol{\sigma})$ is isomorphic to \mathscr{F}_{A}.
T is clearly Z_{1} (in fact Δ_{1}) over $\left\langle A, \epsilon, f\right.$ and is consistent since \mathscr{T}_{A} has an isomorphic copt Δ_{1} over $\langle A, \in, f\rangle$. Thus we have completed the proof in the countable case of:

Theorem 3. A is resolvable if and only if $\mathrm{A}=\operatorname{pp} \operatorname{HYP}(\boldsymbol{\mu})$ for some $\boldsymbol{\mu}$ iff $A=\mathrm{pp} \mathrm{HYP}\left(S_{A}\right)$.

Proof. The only issue remaining concerns the case when A is uncountable. But ' $A=\operatorname{ppHYP}\left(\mathcal{T}_{A}\right)$ ' is a Π_{1} property of (A,):

$$
\begin{gathered}
A=\operatorname{pp} H Y P\left(\Phi_{A}\right) \leftrightarrow \forall B(B \text { admissi }) \text { le, } A \in B \text { implies } B \vDash A= \\
\left.\operatorname{ppHYP}\left(\mathscr{T}_{A}\right)\right) .
\end{gathered}
$$

Thus by Lévy-absoluteness $A=\operatorname{ppHYP}\left(\mathscr{T}_{A}\right)$ holds for uncountable resolvable admissible sets as well. We are grateful to John Steel for this otservation.

2. Linear orderings and pawdo well-ordenings

A tree can be converted into a linear orde ing once a linear ordering is specified of the immediate extensions of each node.

Definition. A linearized tree (\mathscr{F}, R) is a tre \mathscr{T} of finite sequences together with a binary relation R such that:
(a) $R(s, t) \rightarrow s, t$ are immediate extensions of a common node in \mathscr{F}.
(b) For any $r \in \mathscr{T}, R$ linearly orders the mmediate extensions of r in \mathscr{T}.

If (\mathscr{F}, R) is a linearized tree, then its associated linear ordering \mathscr{L} of $|T|$ is defined by:

$$
\begin{aligned}
s<t & \rightarrow s \text { properly extends } t \text { in } 5 \text { or } \\
& \exists i(s\lceil i=t \upharpoonleft i \text { and } R(s(i+1),(i+1))) .
\end{aligned}
$$

This is simply a generalization of the usu I Kleene-Brouwer linear ordering of finite sequences from ω.

Now let A be a countable resolvable adruissible set. In order to obtain a linear ordering \mathscr{L} such that $A=\mathrm{Fp} \operatorname{HYP}(\mathscr{L})$ we shall 'linearize' a certain tree $\mathscr{V}_{\mathrm{A}}^{*}$ which is very similar $10 \mathscr{T}_{\mathrm{A}}$ (in fact $A=\operatorname{pp} \operatorname{HYP}\left(\mathcal{F}_{\mathrm{A}}^{*}\right)$). The associated linear ordering $\mathscr{L}_{\mathrm{A}}^{*}$ will be dense and hence there is no hope of having $A=\operatorname{ppHYP}\left(\mathscr{L}_{A}^{*}\right)$ as $\mathrm{pp} \operatorname{HYP}\left(\mathscr{L}_{A}^{*}\right)=\mathrm{pp} H Y P(\mathbb{Q})=\mathrm{HF}$. Instead we add certain points to $\mathscr{L}_{\mathrm{A}}^{*}$ to obtain a linear ordering \mathscr{L}_{A} such that \mathscr{S}_{A}^{*} can be recovered from \mathscr{L}_{A} and hence $\mathrm{ppHYP}\left(\mathscr{L}_{\mathrm{A}}\right) \equiv \mathrm{A}$. And, as in the previo is section, there will be a consistent theory Σ_{1} over (A, ϵ, f) all of whose models contain an isomorpnic copy of \mathscr{L}_{A}. Thus pp HYP $\left(\mathscr{L}_{\mathrm{A}}\right)=\mathrm{A}$.

Choose a resolution $f: \operatorname{ORD}(A) \rightarrow A$ st ch that $\langle A, \epsilon, f\rangle$ is an admissible structure. As before we assume that $f(0)=\varnothing$ ani $f(\sigma)$ is transitive for all $\sigma \in \operatorname{ORD}(A)$.

The tree \mathscr{F}_{A}^{*} with tagging h_{A}^{*} is defined just like $\left(\mathscr{F}_{A}, h_{A}\right)$ except we require that each node (other than the top node) have infinitely many neighbors with the same tag. Thus we determine $\left(\mathscr{T}_{\mathrm{A}}^{*}, h_{\mathrm{A}}^{*}\right)$ by the following prescription: $\mathscr{S}_{\mathrm{A}}^{*}$ has a vaique top node which receives no tag. For each possible tas $\infty,(\sigma, x), \sigma$ there are infinitely many nodes at level 1 receiving that tag. $h_{A}^{*}(s)=\infty$, then s has infinitely many immediate extensions tagged with \propto, ininitely many immediate extensions tagged with σ (for each $\sigma \in \operatorname{ORD}(A)$) and no immediate extensions tagged with (σ, x) for any σ, x. If $h_{\mathrm{A}}^{*}(s)=(\sigma, x)$, then s has ininitely many immediate extensions tagged with σ^{\prime} (for each $\sigma^{\prime}<\sigma$), infinitely many inmediate extensions tagged with (σ, y) (for each $y \in x$) and no immediate extensions tagged with ∞. Finally, if $h_{A}^{*}(s)=\sigma$, then s has infinitely many extensions tagged with σ^{\prime} (for each $\sigma^{\prime}<\sigma$) and no immediate extension with any other tag.

Lenma 4. $\mathrm{A} \subseteq \mathrm{pp} \operatorname{HYP}\left(\mathscr{F}_{\mathrm{A}}^{*}\right)$.

Proof. By the proof of Lemma 1 it is enough to show that $\mathscr{T}_{A}(\sigma) \in H Y P\left(\mathscr{T}_{A}^{*}\right)$ for eacia $\sigma \in \operatorname{ORD}(A)$. But $\mathscr{T}_{A}(\sigma)$ is obtained from $\mathscr{T}_{A}^{*}(\sigma)$ by identifying adjacent nodes when they receive the same tag. As $h_{A}^{*} \uparrow \mathscr{T}_{A}^{*}(\sigma)$ belongs to $\mathrm{HYP}\left(\mathcal{J}_{A}^{*}\right)$ we are done.

Now linearize \mathscr{T}_{A}^{*} with a binary relation R which densely orders the immediate extensions of each node in such a way that any tag which appears as the tag of one of these immediate extensions actually appears as the tag of a dense se: of them in the ordering R. This is easily done using a partition of the rationais into infinitely many dense subsets.

Lenama 5. $\mathrm{A} \supseteq \operatorname{pp} \mathrm{HYP}\left(\mathscr{G}_{\mathrm{A}}^{*}, R\right)$.

Proof. It is enough to describe a consistent theory T^{*} which is Γ_{1} over $\langle A, \epsilon, j\rangle$ and such that any model of T^{*} contains an isomorphic copy of (\mathscr{T}_{A}^{*}, R). T^{*} is defned in a way similar to the definition of the theory T of Lemma 1 . Its axioms are:
(1) $\operatorname{KP}(f, \mathscr{T}, \boldsymbol{R})+$ Infinitary Diagram $\langle\boldsymbol{A}, \boldsymbol{\epsilon}\rangle$.
(2) Same as for T.
(3) ($\mathscr{T}, \boldsymbol{R}$) is a linearized tree (of ordinals) defined from ORD, f, e? in exactly the way that $\left(\mathcal{J}_{A}^{*}, R\right)$ was defined from $\operatorname{ORD}(A), f, \infty$.
(4) For each $\sigma \in \operatorname{ORD} \mathscr{T}(\sigma)$ is a set.

Now suppose B is a model of T^{*}. If $\operatorname{ORD}(A) \in \operatorname{Standard} \operatorname{Part}(B)$, then $A \in E$ and thus B contains an isomorphic copy of $\left(\mathscr{F}_{A}^{*}, R\right)$ since there is such a copy definable over $\langle A, \epsilon, f\rangle$.

Otherwise choose a (nonstandard) ordinal $\sigma \in B-A$ and consider $\left(\mathscr{T}^{11}(\sigma), R^{B}(\sigma)\right)$ where by definition $R^{B}(\sigma)=R \mid \mathscr{F}^{-1}(\sigma) \times \mathscr{F}^{B}(\sigma)$. If each node $s \notin \mathrm{WF}\left(\sigma^{\mathbf{B}}(\sigma)\right)$ is retagged with ∞ (instead of τ or (τ, x) for some nonstandard τ)
we see that $\left(\mathcal{T}^{\mathbf{B}}(\sigma), R^{B}(\sigma)\right)$ obeys the pres miption for $\left(\mathcal{J}_{A}^{*}, R\right)$. Thus $\left(\sigma_{A}^{*}, R\right) \simeq$ $\left(\mathscr{T}^{\mathrm{B}}(\sigma), R^{\mathrm{B}}(\sigma)\right) \in \mathrm{B}$ and we are done.

It remains to censtruct a linear orde ing \mathscr{S}_{A} such that $\operatorname{HYP}\left(\mathcal{S}_{A}^{*}, R\right)=$ $H X P\left(\mathscr{S}_{A}\right)$. Let \mathscr{F}_{A}^{*} be the associated linear ordering (as defined at the beginning of this section) for the linearized tree ($\left.\mathscr{F}_{A}^{*}, \boldsymbol{1}\right) . \mathscr{L}_{A}^{*}$ is a dense linear ordering with a greatest element. Then $\mathscr{L}_{\text {a }}$ is obtained fr $m \mathscr{L}_{\mathrm{A}}^{*}$ by adding a chain of length n immediately after each point in the $\mathscr{L}_{\mathrm{A}}^{*}$ ordtring which represents a node at level n in $\mathscr{L}_{\mathrm{A}}^{*}$. More formaily, $\left|\mathscr{L}_{\mathrm{A}}\right|=\left\{(s, i) \mid s \in \bigodot_{\mathrm{A}}^{*}\right.$ and $i \leqslant$ level (s) in $\left.\mathscr{T}_{\mathrm{A}}^{*}\right\}$ and $(s, i)<$ $\left(s^{\prime}, i^{\prime}\right)$ in \mathscr{L}_{A} iff $s<s^{\prime}$ in $\mathscr{L}_{\mathrm{A}}^{*}$ or $\left(s=s^{\prime}\right.$ and $\left.;<i^{\prime}\right)$.

Lemma 6. $\operatorname{HYP}\left(\mathscr{S}_{\mathrm{A}}^{*}, R\right)=\mathrm{HYP}\left(\mathscr{L}_{\mathrm{A}}\right)$.
Proof. As \mathscr{L}_{A} is simply defined in terras of ($\mathscr{F}_{\mathrm{A}}^{*}, R$) we easily get $\mathscr{L}_{\mathrm{A}} \in$ $\operatorname{HYP}\left(\mathscr{G}_{A}^{*}, R\right)$ and hence $\operatorname{HYP}\left(\mathscr{L}_{\mathrm{A}}\right) \subseteq \operatorname{HYP}\left(\mathcal{G}_{\mathrm{A}}^{*}, R\right)$. For the reverse inclusion begin by defining a tree \mathscr{T} in $\operatorname{HYP}\left(\mathscr{L}_{\mathrm{A}}\right)$ as follor s : The top node of \mathscr{T} is the greatest element of \mathscr{L}_{A}. The nodes of level n on \mathscr{T} are those points on \mathscr{L}_{A} with no immediate predecessor and which begin a succession of $n+1$ points, the last of which has no immediate successor. If s is a node of level n and t a node of level $m, n<m$, then t extends $s \ln \mathscr{F}$ iff t is less than s (in \mathscr{L}_{A}) and t is greater (in \mathscr{L}_{A}) than all points of level n which are less than s.

Clearly the tree 5 so defined is exactly \mathbb{C}_{A}^{*}. The relation R can be defined by $R(s, t)$ iff s, t are immediate extensions of a common node on \mathscr{T} and $s<t$ in \mathscr{L}_{A}. Thus $\left(\mathscr{T}_{A}^{*}, R\right) \in \operatorname{HYP}\left(\mathscr{L}_{\mathrm{A}}\right)$ and hence $\left.\mathrm{HYP} \boldsymbol{F}_{\mathrm{A}}^{*}, R\right) \subseteq \mathrm{HYP}\left(\mathscr{L}_{\mathrm{A}}\right)$.

As in the proof of Theorem 3 a Lévy-absluteness argument now demonstrates:

Theorem 7. A is resolvable if and only if $\mathrm{A}=\mathrm{pp} \operatorname{HYP}\left(\mathscr{L}_{\mathrm{A}}\right)$.
Finally we shall characterize those aimissible sets which can appear as pp HYP (\tilde{u}) where $\operatorname{HYP}(\boldsymbol{u})|,|\boldsymbol{u}|=$ Univers: $(\boldsymbol{\mu})$ can be well-ordered. In this case there is a linear ordering $<$ of $\operatorname{HYP}(N)$ such that the function $p_{<}(x)=$ the $<$ predecessors of x is Σ, over $\operatorname{HYP}(\mu)$ and such that $\operatorname{HYP}(\mu)$) $<$ is a wellordering. Thus if $A=p p H Y P(\hat{K})$ then A obeys the property expressed in the next definition.

Definition. A sarisfies the Strong Global Wel-Ordering Principle (SGWOP) if for some linear ordering $<$ of $A,\left\langle A, p_{<}\right\rangle$is a imissible and $\left\langle A, p_{<}\right\rangle F<$ is a wellordering.

If A satisfies the SGWOP, then A is resolvable for one can define the associated resolution $f(\sigma)=p_{<}(\sigma)$ such that with this resolution $\langle A, f\rangle$ is admissible.

From our earlier remarks we see that a necessary condition for $A=$ $\mathrm{pp}|\mathrm{HYP}(\mathcal{M}), \operatorname{HYP}(\mathcal{A})|=|\mathcal{M}|$ can be well-ordered, is that A satisfy the SGWOP. Our next result implies that this condition is also sufficent:

Thsorem 8. Let A be admissible. Then the following are equivalent:
(a) A satisfies SGWOR.
(b) $A=\operatorname{pp} \mathrm{HYP}(\mu)$ for some μ such that $\mathrm{HYP}(\boldsymbol{\mu}) \mathrm{F}, \boldsymbol{\mu}$ can be well-ordered.
(c) $A=\operatorname{pp} \operatorname{HYP}(W,<, U)$ where U is unary and $\mathrm{HY} / \mathrm{P}(W,<, U) F(W,<)$ is a well-ordering.

In case A is countable then the ordering ($W,<$) in (c) can be explicitly chosen to be $(\alpha+\alpha \cdot \eta,<)$ where $\alpha=\operatorname{ORD}(A)$ and $\eta=$ ordenype of the rationals.

The basic idea of the proof of Theorem 8 is similar to that used in the proof of Theorem 7: Given a countable, resolvable admissible set A which satisfies SGWOP one first constructs a special type of tree $\mathscr{T}_{A}^{* *}$ such that $A=$ pp HYP $\left(\mathscr{T}_{A}^{* *}\right)$. Then by use of an ordering $<$ as in the SGWOP $\mathbb{T}_{A}^{* * *}$ can be linearized by a binary relation R such that if $\mathscr{L}_{A}^{* *}$ is the associated linear ordering then $\operatorname{HYP}\left(\mathscr{T}_{A}^{* *}, R\right) \vDash \mathscr{L}_{A}^{* *}$ is a well-ordering. Moreover there is a consistent theory $T^{* *}, \Sigma_{1}$ over $\langle A, \epsilon,<\rangle$ such that any model of $T^{* *}$ contains an isomorphic copy of ($\mathscr{S}_{A}^{: 2 *}, R$). Thus $A=\operatorname{ppHYP}\left(\mathscr{F}_{A}^{* *}, R\right)$. The proof is completed by adting certain points to $\mathscr{L}_{A}^{* *}$, together with a unary predicate U distinguishing tinem, to obtain a linear ordering W_{A} such that $H Y P\left(W_{A}, U\right) \vDash W_{A}$ is a well-ordering and in addition $\mathrm{HYP}\left(\mathrm{W}_{\mathrm{A}}, U\right)=\mathrm{HYP}\left(\mathscr{S}_{\mathrm{A}}^{* *}, R\right)$.
'To demonstrate the key property of the theory $T^{d *}$ it will be necessary to construct ($\mathscr{T}_{A}^{* *}, R$) in a very canonical fashion (to guarantee that it looks the same when nonstandard ordinals are allowed). An important point which makes this possible is the following result which originates in [4]:

Lemma 9. Suppose B is a countable model of KPU with standard ordinal α and $\langle B, \epsilon\rangle \vDash L$ is a well-ordering. Then either ordertype(i) is an ordinal less than α or oriertype $(\mathrm{L})=\alpha+\alpha \cdot \eta+\sigma$ where $\eta=$ ordertype of the rationals and σ is an ordinal less than α.

This lemma also makes it clear why the unary predicate U in Theorem 8(c) is necessary as if $\operatorname{HYP}(W,<) \vDash(W,<)$ is a well-ordering, then $\operatorname{ppHY}(W,<)=L_{\alpha}$ where α is admissible. This follows from the lemma and results of Nadel and Stavi in [7].

Fix a countable admissible set A with linear ordering $<_{A}$ as in the SGWOP. We assume that $\left\{x \in A \mid x<_{A} \sigma\right\}$ is transitive for each σ. Let f be the resolution of A associated with $<_{A}$. We now define the tree $\mathscr{T}_{A}^{* *}$ with its corresponding tagging function $h_{A}^{* *}$. In this case tags have one of the three possible forms ${ }^{0}, \mu,(\sigma, x, \tau)$ where $\mu<\alpha, \sigma$ is an ordinal closed under ordinal addition and less than $\alpha_{+} \tau<\sigma$ ard $x \in f(\sigma) . \mathscr{T}_{A}^{* *}$ has a unique top node and it receives no tag. For tay $x \in A$ let
σ_{x} be the least σ such that σ is closed under addition and $x \in f(\sigma)$. Then for each $x \in A$ there is a unique node on level 1 of $\mathscr{S}_{A}^{* *}$ tagged with $\left(\sigma_{x}, x, 0\right)$ and there are infinitely many nodes on level 1 tagged witi ∞. No other tag is the tag of a node of $\mathscr{T}_{A}^{* *}$ on level 1. If $h_{A}^{* *}(s)=\infty$, then s has a unique immediate successor tagged with σ, for cach $r<\alpha$, and s has infinitely n any immediate successors tagged with ∞. No other tag is the tag of an immediae successor of s on $\mathscr{T}_{A}^{* *}$. If $h_{A}^{* *}(s)=$ (σ, x, τ), then s has a unique immediate st ccessor tagged with (σ, y, μ) for each $y \in x, \mu<\sigma$ (μ may be $\geq r$). Also s has a u ique immediate successor tagged with μ, for each $\mu<\sigma$, and no immediate successors with any other tag.

Finally, if $h_{A}^{* *}(s)=\sigma$, let $\hat{\sigma}$ be the greatest ordinal $\leqslant \sigma$ which is closed under addition. Then s has a unique immediate uccessor tagged with τ for $\tau<\hat{\sigma}$ and infinitely many imnediate successors tagge 1 with τ when $\hat{\sigma} \leq \tau<\sigma$. No other tag is the tag of an immediate successor to s in $J_{A}^{* *}$. This coupletes the description of $\mathscr{S}_{A}^{* *}$.

The above definition will appear som what less peculiar once the binary relation R for linearizing $\mathscr{S}_{A}^{* *}$ is defined. If s and t are nodes of $\mathscr{T}_{A}^{* *}$ at level 1 and $h_{A}^{* *}(s)=\left(\sigma_{x}, x, 0\right)$, then $R(s, t)$ iff $h_{A}^{* *}(t)=e$ or $\left(\sigma_{y}, y, 0\right)$ with $x<_{A} y$. In addition \boldsymbol{R} orders $\left\{s \mid s\right.$ is at level $\left.1, h_{A}^{* *}(s)=\infty\right\}$ ir ordertype $\alpha \cdot \eta$ where $\alpha=\operatorname{ORD}(A)$, $\eta=$ ordertype of the rationals. Suppose $h_{i}^{* *}(r)=\infty$. If s, t are immediate extensions of $r, h_{A}^{* *}(s)=\sigma$, then $R(s, t)$ iff $h_{A}^{* *}()=\infty$ or an ordinal $>\sigma$. In addition R orders $\left\{s \mid s\right.$ immediately extends $\left.r, h_{\mathrm{A}}^{* *}(s)=\infty\right\}$ in ordertype $\alpha \cdot \eta$. Next suppose $h_{\mathrm{A}}^{* *}(r)=(\sigma, x, \tau)$. If s, t are immediate estensions of r, then $R(s, t)$ iff either $h_{A}^{* *}(s)=\mu$ and $h_{A}^{* *}(t)=\mu^{\prime}>\mu$; or $h_{A}^{* *}(s)=\mu$ and $h_{A}^{* *}(t)=\left(\sigma, y, \mu^{\prime}\right)$ some y, μ^{\prime};
 Finally suppose $h_{\mathrm{A}}^{* *}(r)=\sigma$ and s, t are in mediate extensions of r. If $h_{A}^{* *}(s)<\hat{\sigma}$, then $R(s, t)$ iff $h_{A}^{* *}(s)<h_{A}^{* *}(t)$. Also if $\hat{\sigma}<\sigma$, then R orders $\{s \mid s$ immediately extends $r, h_{A}^{* *}(s) \geqslant \hat{\sigma}$ \} in ordertype $\sigma \cdot \omega$ (n ordinal closed under addition). This completes the definition of R.

As in Lemma 4 it is easy to show that $A \subseteq p p \operatorname{HYP}\left(\mathscr{T}_{A}^{* *}\right)$. The above definition of $\left(\Im_{A}^{* *}, R\right)$ is carefully designed to enable us to show:

Lemma 10. pp $\operatorname{HYP}\left(\mathscr{F}_{A}^{* *}, R\right) \subseteq A$.
Pr sof. Define $T^{* *}$ analogously to T^{*}. Tr as the axioms for $T^{* *}$ are:
(1) $\mathrm{KP}(\leqslant, \mathscr{F}, \boldsymbol{R})+$ infinitary Diagram $\langle\kappa, \epsilon\rangle$.
(2) (a) \leqslant well-orders the universe; $\forall x$, $y(x \in y \rightarrow x \leqslant y)$.
(b) $\forall x\left(x \leqslant \mathbb{A} \leftrightarrow W_{0<A} x=b\right)$, for c $\operatorname{chch} a \in A$.
(3) $(\mathscr{F}, \boldsymbol{R})$ is a linearized tree (of ordine is) defined from ORD,\leqslant, ∞ in exactly the way $\left(\mathscr{F}_{A}^{* *}, R\right)$ was defined from ORD A), $<_{A}, \infty$.
(4) For all $c \in \mathrm{ORD}, g(\sigma)$ is a set.

Now suppose B is a model of $T^{* *}$. If $\operatorname{ORD}(A)=\alpha \in \operatorname{Standard} \operatorname{Part}(B$, then axioms (2) imply that $A \in B$ and thus B contains an isomorphic copy of ($G_{A}^{* *}, R$) since there is such a copy definable over $(A, \epsilon,<A\rangle$.

Otherwise choose a (nonstandard) ordinal $\sigma \in B-A$ which is closed under multiplication and consider $\left(J^{B}(\sigma), R^{B}(\sigma)\right) \in B \quad$ where $\quad R^{B}(\sigma)=R \upharpoonleft$ $\mathscr{T}^{3}(\sigma) \times \mathscr{T}^{B}(\sigma)$. We clain that this linearized tres is isomorphic to ($\mathcal{T}_{A}^{* *}, R$).

To see this it suffices to show that, if each node in $\mathscr{T}^{b}(\sigma)$ which is tagged with a nonstandard tag is retagged with ∞, then the resulting linearized tree oseys the prescription for ($\mathscr{S}_{A}^{* *}, \boldsymbol{R}$). (By a nonstandard tag we mean a tag t or (τ, x, μ) where τ is not an element of A.) It is the demonstration of this fact that uses the details of our definition of ($\mathcal{S}_{A}^{* *}, R$).

Using Lemma 9 and the closure properiy of σ it is easy to check that the ordertype of $<^{B} \upharpoonright\left(<^{B}\right.$-predecessors of $\left.\sigma\right)$ is $\alpha+\alpha \cdot \eta$. Thus on the first level of $\mathscr{T}^{13}(\sigma)$ the nodes with nonstandard tags follows the nodes with standard tags under R^{B} and are ordered by R^{B} in ordertype $\alpha \cdot \eta$. Thus if these nedes are retagged with ∞, then the prescription for ($\mathscr{V}_{A}^{* *}, R$) is met as far as nodes at level 1.

Now suppose that $s \in \mathscr{T}^{B}(\sigma)$ receives a nonstandard tag. We must show that the immediate extensions of s are linearly ordered by $R^{\mathcal{B}}$ in ordertype $\alpha+\alpha \cdot \eta$ with initial segment consisting of node tagged with ordinals $\sigma<\alpha$ (in their natural order) followed by nodes with nonstandard tags. First consider the case in which s has an ordinal tag τ. If τ is closed under addition then the immediate extensions of s are ordered by R^{R} in the odertype of the ordinal predecessors of 7 . As τ is closed under addition this ordertype must be $\alpha+\alpha \cdot \eta$. And cleary the nodes with standard ordinal tags form an initial segment (in the natural order) of orcertype α in this linear ordering. If τ is not closed under addition, then the immediate extensions of s are ordered in the ordertype of the ordinal predecessors to $\hat{\tau}+\tau \cdot \omega$ with standardly-tagged nodes forming an initial segment (in this natural order) of ordertype α. But of course $\hat{\gamma}+\tau \cdot \omega$ is closed ander addition so again this ordertype is what it should be, $\alpha+\rho^{\prime} \cdot \eta$.

Now consider the case in which s receives a nonstandard tag (τ, x, μ). Let $L=$ ordertype $<^{B}\left\lceil\left\{y \mid y \in^{B} x\right\}\right.$. Then the immediate extensions of s are ordered by R^{B} in ordertype $\tau+L \cdot \tau$. Note that τ is closed under addition and lence the ordinal predecessors of τ have ordertype $\alpha+\alpha \cdot \eta$. It is now easy to see (using Lemma 9) that $\tau+L \cdot \tau$ also has ordertype $\alpha+\sigma \cdot \eta$. Also the only irmediate extensions of s with standard tags have ordinal tags and these nodes form an initial segment of ordertype of the immediate extensions of s (under R^{B}).

Of course ($\left.\mathscr{T}^{\boldsymbol{B}}(\sigma), R^{B}(\sigma)\right)$ and $\left(\mathscr{T}_{A}^{* *}, R\right)$ agree on nodes with standard ags. This completes the proof that these two structures are isomorphic and hence Lemma 10 is proved.

Thus we have $A=\operatorname{ppHYP}\left(\mathscr{T}_{A}^{* *}, R\right)$. We let $S_{A}^{* * *}$ denote the linear ordering associated to $\left(\mathscr{T}_{A}^{* *}, R\right)$. Note that $\operatorname{HYP}\left(\mathscr{T}_{A}^{* *}, R\right) F \mathscr{L}_{A}^{* *}$ is a well-ordering: For, let B be a model of $T^{* *}$ such that the well-founded part of B has height $\alpha=$ ORD (A). The existence of such a B follows from the Hard Core Theorem. If $\sigma \in \operatorname{ORD}(B)$ let $\mathscr{L}(\sigma)$ be the linear ordering in B associated to $\left(\sigma^{3}(\sigma), R^{\beta}(\sigma)\right)$.

Then $B \vDash \mathscr{L}(\sigma)$ is a well-ordering so HYP($\left(_{A}^{* *}, R\right) \vDash \mathscr{L}(\sigma)$ is a well-ordering, since B contains an isomorphic copy of ($\mathscr{S}^{* *}$, ?). But if $\sigma \in B-A$ is chosen to be closed under multiplication then $\leq(\sigma)$ is is morphic to $\alpha_{A}^{* * *}$.

Now enlarge $\mathscr{L}_{A}^{* *}$ to a linear ordering \boldsymbol{h}_{A} as follows: To each $s \in\left|\mathscr{L}_{A}^{* *}\right|$ which represents a node at level n of $\mathscr{T}_{A}^{* *}$ add a thain of n roints immediaely after s. Thus $\left|W_{A}\right|=\left\{(s, i) \mid s\right.$ is a node of $\mathscr{S}_{A}^{* *}$ at l vel $\left.n, 0 \leqslant i \leqslant n\right\}$ and (s, i) is less than $\left(s^{\prime}, i^{\prime}\right)$ in W_{A} iff s is less than s^{\prime} in $\mathscr{L}_{A}^{* *}$ or ($s=s^{\prime}$ and $i<i^{\prime}$). In addition let $U \subseteq\left|W_{A}\right|$ consist of those points of the form (s, i) where $i>0$.

It is easy to sec that $\mathrm{HYP}\left(\mathscr{T}_{\mathrm{A}}^{* *}, R\right)=\mathrm{H}^{\prime} \mathrm{P}\left(W_{\mathrm{A}}, U\right)$. The argument is virtually identical to the earlier proof that $\operatorname{HYY}\left(\mathcal{T}_{A}^{*}, R\right)=\operatorname{HYP}\left(L_{A}\right)$. Finally suppose $\operatorname{HYP}\left(W_{\mathrm{A}}, U\right)$ ह W_{A} is not a well-ordering. Choose a seque nce $\left(s_{0}, i_{0}\right),\left(s_{1}, i_{1}\right), \ldots$, which descends through W_{A} and which belengs to $\operatorname{HYP}\left(V_{A}, U\right)$. Then there must be an infinite $X \subseteq \omega$ such that $X \in \operatorname{HYP}\left(W_{i}, U\right)$ and $n, m \in X, n<m \rightarrow s_{m}$ is less than s_{n} in W_{A}. Thus $\left.\operatorname{HYP}\left(W_{\mathrm{A}}, U\right)=\mathrm{HYF} \cdot \mathscr{T}_{\mathrm{A}}^{* *}, R\right) \vDash W_{\mathrm{A}}$ is not a well-ordering, contradicting our earlier clai a.

By invoking Lévy-absoluteness in the incountable case, we now have completed the prosf of Theorem 8.

Renarks. (a) n the proofs of Lemmas 2,, 10 the break into cases as to whether or not $\operatorname{ORD}(A) \in$ Standard Part of B is in lact unnecessary. Instead one may use the following mild strengthening of the Hard Core Theorem: If T is a theory Σ_{1} over the countable admissible structure $\langle A, \epsilon, \ldots\rangle$ and x belongs to the standard part of every model B of T such that $\operatorname{OFD}(A) \notin B$, then $x \in A$.
(b) In case A is countable, resolvable and $A \neq$ Every set can be mapped 1-1 into the ordinals, then the proof of The orem 8 becomes much simpler. The reason is that in this case A is of the form $L[P], P \subseteq \alpha$, and the structure $\langle W,<, U\rangle$ can be taken to be a norstandard version of $\langle\alpha, \epsilon, P\rangle$.

3. Applications to models of analysis

The moral of this section is the followin ${ }_{5}$: By infinitary model theory (as in the preceding sections) one can build structures \boldsymbol{M} with specific definability-theoretic properties. By generically collapsing \mathbb{H} to ω these definability properties are not damaged, theseby yielding structures buit over ω (reals or sets of reals) with similar properties. This forcing can be viened as a set-forcing over HYP($\mathcal{M})$ (the collection of forcing conditions forms an slement of $\operatorname{HYP}(\mathcal{N})$) and thus is easily analyzed.

In a sense Steel forcing performs both of the above tasks simultaneously, thereby necessitating the use of class forcing. However it is mole difficult to argue that admissibility is not destroyed when \mathbf{t} sing class forcing.

We will do three applications. The first is a result of G. Sack.. '] which states
that if α is a countable admissible ordinal then $\alpha:=\omega_{1}^{T}$ for somo $T!\Xi \omega$. This example reveals the essence of our method. The remaining two applications are to results of Steel's thesis which appear in [9]. The first states that if $\lambda \ll \omega_{1}$ then there are $T \subseteq \omega$ and $\Pi_{1}^{0}(T)$-singletons f, g such that $f \notin L_{\lambda}(g, T), g \notin L_{\lambda}(f, T),(f$ is a $\Pi_{1}^{0}(T)$-singleton if f is the unique solution to a predicate whicts is $I I_{1}^{0}$ in the parameter T.) This application was observed jointly by Leo Harrivgton and the author. Finally we prove the existence of an ω-model of Δ_{i}^{1}-CA waich does not satisfy $\mathbf{\Sigma}_{1}^{1}-\mathrm{AC}$, the result which inspired the development of Stecil forcing. An ω-model of Δ_{1}^{1}-CA is a set of reals \mathscr{S} which is closed under pairing and satisfies:
Δ_{1}^{1}-CA: $\forall n(\exists X \varphi(n, X) \leftrightarrow \sim \exists Y \psi(n, Y)) \rightarrow \exists Z \forall n(n \in Z \leftrightarrow \exists X \varphi(n, X))$
where φ and ψ are arithmetic formulas involving arbitrary paranieters from \mathscr{S}^{\prime}. An ω-model of Σ_{1}^{1}-AC must also satisfy:
$\mathbf{\Sigma}_{1}^{1}-\mathrm{AC}: \forall n \exists X \varphi(n, X) \rightarrow \exists Y \forall n \varphi\left(n,\left(\mathrm{Y}_{n}\right)\right.$
where φ is as before and $(Y)_{n}=\left\{m \mid 2^{n} 3^{m} \in Y\right\}$.

Theoren 11 (Sacks). Every countable admissible ordinal $>\omega$ is of the form ω_{1}^{T} for some $T \subseteq \omega$.

Proof. Recall that $\omega_{1}^{T}=$ first ordinal α such that $L_{\alpha}(T)$ is admissible. Fix α to be a countable admissible ordinal $>\boldsymbol{\omega}$. We let \mathscr{T} be the following tree (which is essentially the tree obtained by Steel forcing over L_{α}): \mathscr{T} has a unique top node, tagged with ∞. If $s \in|T|$ is tagged with ∞, then s has infinitely many immediate extensions tagged with ∞ and a unique immediate ϵ xtension tagged with β, for each $\beta<\alpha$. If $s \in|\mathscr{T}|$ is tagged with β, then s has a anique immedate extension tagged with γ, for each $\gamma<\beta$. No tags appear other than those mentioned above.

Now consider the theory $\operatorname{KP}(\mathcal{J})+$ Infinitary $\operatorname{Diagram}\left(L_{\alpha}\right)+\mathscr{F}$ is a tree of ordinals defined from ORD, ∞ in exactly the way \mathcal{T} is defined from $\alpha, \infty+$ $\forall \sigma\left(\mathscr{T}(\sigma)\right.$ is a set). This theory is Σ_{1} over $\left(L_{\alpha}, \epsilon\right)$ and \mathscr{T} has an isomorphic copy in any model of this theory. As any theory Σ_{1} over $\left(L_{c}, \epsilon\right)$ which extends KP has a model B with $\alpha \notin \operatorname{Standard} \operatorname{Part}(B)$, we see that $\mathrm{HYP}(\mathscr{F}) \cap O R D \subseteq \alpha$. $A s \mathscr{T}$ has a node of rank β, for each $\beta<\alpha$, we actually have $\operatorname{HYP}(\mathscr{T}) \cap O R D=\alpha$. Thus $\mathrm{HYP}(\mathscr{T})=L_{\alpha}(\mathscr{})$.

Now collapse $|T|$ to ω by doing Lévy forcing over HYP(T). Thus a condition is a finite function $p: n \xrightarrow{1-1}|\Im|, n<6$, and $p \leqslant q$ iff p extends q. Forcing is defined à la Cohen. The set of conditions is an element of HYP($\mathcal{J})$ and from this it follows easily that the forcing relation is Σ_{1} over HYP($\left.\mathcal{F}\right)$ when restricted to Σ_{1} statements, and that if G is generic over HYP($\mathcal{H})$ for this forcing then $L_{\alpha}(\sigma, G)$ is admissible. Define a tree T_{G} on ω by: n extends m in T_{G} iff $G(n)$ extends $G(m)$ in \mathscr{T}. Then $T_{G} \in L_{\alpha}(\mathscr{T}, G)$ so $L_{\alpha}\left(T_{G}\right)$ is admissible. But as $T_{\mathcal{G}}$ is isomorphic to \mathscr{T} and $\alpha=\operatorname{HYP}(\mathscr{J}) \cap O R D, L_{\beta}\left(T_{G}\right)$ cannot be admissible for any $\beta<\alpha$.

There are simpler proofs of Sacks' Therrem than th.dt given above. However we included it as it is the prototype of our + chnique. Moreover a slight modification of it yields a simple proof of Steers result that, if $\omega_{1}^{R}=\omega_{1}^{\mathrm{S}}=\alpha$, then for some $T \omega_{1}^{T}=\omega_{1}^{(R, T)}=\omega_{1}^{(S, T)}=\alpha$. The aly previously known proof of this strengthening used Steel's forcing.

Theorem 12 (Steel). If λ is countab'e, then there are $T \subseteq \omega$ and $f, g \in \omega^{\prime \prime}$ such that f, g are $\Pi_{1}^{0}(T)$-singletons and $f \notin I_{\lambda}(g, T), \xi \notin L_{\lambda}(f, T)$.

Proof (Jointly with Leo Harrington). Let A be countable and admissible. Define terms $\tau \in L_{\lambda}$ so that for any , T each slement of $L_{\lambda}(f, T)$ is denoted by some term τ applied to f, T and such that the evaluation of terms is Σ_{1} over $L_{\lambda}(f, T)$. Thus we wish to construct T and $\Pi_{1}^{0}(T)$-singletens f, g such that for any term $\tau \in L_{\lambda}$, $f \neq \tau(g, T)$ and $g \neq \tau(f, T)$.

Begin by defining the following tree \mathscr{T}_{λ} with two distinguished paths $f_{\lambda}, g_{\lambda}: \mathscr{T}_{\lambda}$ has a unique top node (which equals $f_{\lambda}\left(0 .=g_{\Lambda}(0)\right.$). Each node at level 1 except $f_{\lambda}(1), g_{A}(1)$ receives an ordinal tag $\gamma<\lambda$ end each tag $\gamma<\lambda$ is the tag of only 1 node at level 1. Also $f_{\lambda}(1) \neq \mathrm{g}_{\lambda}(1)$. Any node tagged with γ has a unique immediate successor tagged with γ^{\prime}, for sach $\gamma^{\prime}<\gamma$. Any node $f_{\lambda}(n)$ has the immediate exension $f_{A}(n+1)$ and an imme fiate extension tage eet with γ, for each $\gamma<\lambda$. Similarly for $g_{4}(n)$.

Thus f_{λ}, g_{λ} are the unique paths through σ_{λ}. We claim that, if τ is a term in L_{λ} and $s \in\left|\mathscr{G}_{\lambda}\right|^{<\omega}$, then $f_{\lambda} \neq \tau\left(g_{\lambda}, \mathscr{F}_{\lambda}, s\right)$ as eler ents of $L_{\lambda}\left(f_{\lambda}, g_{\lambda}, \mathscr{T}_{\lambda}\right)$. Otherwise consider the theory $\operatorname{KP}(\mathscr{F}, f, g)+\operatorname{Infinitary} \operatorname{Liag} . \operatorname{dm}\left(L_{\lambda}\right)+(\mathscr{T}, f, g)$ is built from $\boldsymbol{\lambda}$ exactly the way $\left(\mathscr{T}_{h}, f_{\lambda}, g_{k}\right)$ was built from $\lambda+s \in|\mathscr{T}|^{<\cdot i}+f=\tau(g, \mathscr{T}, s)$. This theory has a model B whose standard part has he ght λ. But there is an automorphism φ of \mathscr{T}^{B} fixing g^{B}, s^{B} and moving f^{B}, obtained by choosing a descending sequence $\lambda_{0}>\lambda_{1}>\cdots$ through $\operatorname{ORD}(B)$ and (a) switching $f^{B}(n+1)$ with some immediate extension of $\varphi\left(f^{B}(n)\right)$ tagged with λ_{n}, whenever $f^{B}(m) \notin s^{B}$ for all $m>n$, (b) corresponding the immediate extensions o $f^{B}(n)$ with nonstandard tass with the remaining immediate extensions of $\varphi\left(f^{B}(i)\right)$ which do not have standard tags. Thus we get $f^{B} \neq \varphi\left(f^{B}\right)=\tau\left(\varphi\left(g^{B}\right), \varphi\left(\mathscr{J}^{B}\right), \varphi\left(s^{B}\right)\right)=\tau\left(g^{B}, \mathscr{T}^{B}, s^{B}\right)=f^{B}$. Contradiction.

Now Lévy collapse $\left|\mathscr{F}_{\lambda}\right|$ to ω using finite conditions, viewing $L_{\lambda}\left(\mathscr{T}_{\lambda}, f_{\lambda}, g_{\lambda}\right)$ as the ground model. Note that for any $\gamma<\lambda$, the forcing relation is an element of $L_{\lambda}\left(\mathscr{J}_{\lambda}, g_{\lambda}\right)$ when restricted to statements of rank $\leqslant \gamma$ not mentioning f_{λ} and so can be named by a term $\sigma\left(\mathscr{T}_{\lambda}, g_{\lambda}\right), \sigma \in L_{\lambda}$.

Let $G: \omega \rightarrow\left|T_{\lambda}\right|$ be generic over $L_{\lambda}\left(\mathscr{F}_{\lambda}, \ldots, g_{\lambda}\right)$ for this forcing and define T_{G} by: n extends m in T_{G} iff $G(n)$ extends $G(n)$ in \mathscr{T}_{λ}. Also let $f_{G}=G^{-1}\left(f_{\lambda}\right), g_{G}=$ $G^{-1}\left(g_{\Omega}\right)$. Then f_{G}, g_{G} are $I_{1}^{0}\left(T_{G}\right)$-single ons as $f_{G}=$ unique path through T_{G} extending $f_{G}(1), g_{G}=$ unique path through T_{G} extending $g_{G}(1)$.
We claim that for any term $\left.\tau \in L_{\lambda}, f_{G} \neq \tau^{\prime} T_{G}, g_{G}\right)$. Otherwise choose a condition
p such that $p \Vdash f_{F}=\tau\left(T_{G}, g_{G}\right)$. Then $s \in f_{\lambda} \leftrightarrow$

$$
\exists q \leqslant p q\left\|G^{-1}(s) \in f_{G} \leftrightarrow \exists a \leqslant p q\right\| G^{-1}(s) \in r\left(T_{G}, g_{G}\right)
$$

and this last condition can be described by a tern $\sigma\left(\sigma_{\lambda}, g_{\lambda}, p\right)$, $\sigma \in L_{\lambda}$. This contradicts our earlier claim. By symmetry $g_{G} \neq \tau\left(T_{G}, f_{G}\right)$ and we are done.

We note that Steel's result (included in [9]) on the relativized McLaughlin conjecture can also be obtained by techaiques similan to those used in Theorem 12. We now proceed to our most elaborate application.

Theorem 13 (Steel). There is an ω-model of $\Delta_{1}^{1}-\mathrm{CA}$. which does not satisfy $\mathbf{\Sigma}_{1}^{\prime}$-AC.
Proof. Begin by defining the following tree \mathscr{T} and collection \mathscr{P} of paths through $\mathscr{T}: \mathscr{T}$ has a unique top node which is untagged. Exch untagged node of \mathbb{T} has infinitely many untagged immediate extensions, infinitely many immediate extensions tagged with ∞ and a unique immediate extension tagged with α, for each $\alpha<\omega_{1}^{\mathrm{CK}}$. Each node ragged with ∞ has infinitely many immediate extensions tagged with ∞ and a unique immediate extension tagged with α, for each $\alpha<\omega_{1}^{\mathrm{CK}}$. Each node tagged with $\alpha<\omega_{1}^{\mathrm{CK}}$ has a unique immediate extension tagged with β, for each $\beta<\alpha . \mathscr{P}$ is obtained by choosing for each untagged node τ a path through \mathscr{T} which passes through τ and only untagged nodes.

We consider the theory $T=K P+$ Infinitary Diagram $\left(L_{\omega_{1}^{\mathrm{x}}}\right)+a$ is an ordinal + $\left\{\boldsymbol{a}>\boldsymbol{\alpha} \mid \alpha<\omega_{1}^{\mathrm{CK}}\right\}+\mathscr{F}$ is a tree, \mathscr{P} a set of paths through \mathscr{F} defined from a, ∞ in the same way that (\mathscr{T}, \mathscr{P}) was defined from $\omega_{1}^{\mathrm{CK}}, \infty$. If B is a countable model of T such that $\omega_{1}^{\mathrm{CK}} \notin \operatorname{Standard} \operatorname{Part}(B)$, then $(\mathscr{F}, \mathscr{P})$ is isomorphic to $\left(\mathscr{G}^{B}, \mathscr{P}^{\mathrm{B}}\right)$. So $\mathrm{HYP}(\mathscr{T}, \mathscr{P}) \cap \mathrm{ORD}=\omega_{1}{ }^{\mathrm{CK}}$.

Chaim. If $X \subseteq \omega$ is Σ_{1} over $\operatorname{HYP}(\mathscr{T}, \mathscr{P})$ in parameters $\mathscr{T}, f_{1}, \ldots, f_{n}, \mathscr{P}$ (where $\left.f_{1}, \ldots, f_{n} \in \mathscr{P}\right)$, then X is Σ_{1} weer $\operatorname{HYP}\left(\mathscr{F}, f_{1}, \ldots, f_{n}\right)$.

Proof. Consider the theory T^{\prime} over $\operatorname{HYP}\left(T, f_{1}, \ldots, f_{n}{ }^{\prime}\right.$ whose axioms are $\mathrm{KPU}+$ Infinitary Diagram $\left(\operatorname{HYP}\left(\mathscr{F}, f_{1}, \ldots, f_{n}\right)\right)+\mathscr{F}$ is a set of paths through $\mathscr{T}+$ $f_{1}, \ldots, f_{n} \in \mathscr{P}+$ Any node of \mathscr{T} extendible to a member of \mathscr{P} has infinitely many immediate extensions extendible to members of $\mathscr{P}+$ Every set belongs to $\operatorname{HYP}(\mathscr{T}, \mathscr{P})$. If B^{\prime} is a countable model of T^{\prime} such that $\omega_{1}^{\mathrm{CK}} \notin$ Standard Part $\left(B^{\prime}\right)$, then $\left(\mathscr{F}, \mathscr{P}^{B^{\prime}}\right)$ is isomorphic to $(\mathscr{T}, \mathscr{P})$. (This is easy to see once it is realized that any node not in the well-founded part of \mathscr{T} must have infinitely many immediate extensions which neither are in the well-founded part of $\$$ nor can be extended to a path in $\mathrm{gb}^{\mathrm{B}^{\prime}}$. This follows as otherwise ω_{1}^{K} eStandard $\operatorname{Part}\left(B^{\prime}\right)$.) Moreover this isomorphism can be chosen to fix $\mathfrak{G}, f_{1}, \ldots, f_{n}$.

Now suppose that $X \subseteq w$ is Σ_{1} over $\operatorname{HYP}(\Im, \mathscr{P})$ in $\mathscr{T}, f_{1}, \ldots, f_{n}, \mathscr{F}$; thus $m \in X \leftrightarrow \operatorname{HYP}(\mathscr{F}, \mathscr{F}) \vDash \varphi(m, \mathscr{P})$ where φ is Σ_{1} (and we suppress the parameters $\left.\mathscr{T}, f_{1}, \ldots, f_{n}\right)$. We assert that $m \in X \leftrightarrow T^{\prime} \vdash \varphi(m, \mathscr{P}$, and then we will be done.

Clearly $T^{\prime} \vdash \varphi(m, \mathscr{P})$ implies $m \in X$ so suppcs: $T^{\prime}+\sim \varphi(m, \mathscr{F})$ is consistent. Then $T^{\prime \prime}+\sim \varphi(m, \mathscr{P})$ has a countable model B^{\prime} such that $\omega_{1}^{\mathrm{CK}} \notin \operatorname{Standard} \operatorname{Part}\left(B^{\prime}\right)$, as this theory is Σ_{1} over $\operatorname{HYP}\left(T, f_{1} \ldots, f_{n}\right)$ and $\operatorname{HYP}\left(\mathscr{T}, f_{2}, \ldots, f_{n}\right) \cap O R D=\omega_{1}^{\mathrm{cK}}$. But B^{\prime} is isomorphic to $\operatorname{HYP}(\mathscr{T}, \mathscr{P})$ with isomorphism fixing $\mathscr{T}, f_{1}, \ldots, f_{n}$ so HYP $(\mathscr{T}, \mathscr{P})$) $\sim \varphi(m, \mathscr{P})$. So $n \notin X$. The clain is proved.

Now Lévy collapse $|\mathscr{F}|$ to ω, generically over HYP($\mathscr{T}, \mathscr{P})$. Choose a generic $G: \omega \rightarrow|\sigma|$ for this forcing and for H a finite subset of \mathscr{P} let $M(H)=$ $\operatorname{HYP}(G, \mathscr{T}, H)$. The model we are looking f , is $M \cap \omega^{\omega}$ where $\mathrm{M}=\bigcup\{M(H) \mid H$ a finite subset of 90$\}$.

Suppose $X=\omega$ is Σ_{1} over M in parameters $G, \mathscr{T}, f_{1}, \ldots, f_{n}$ where $f_{1}, \ldots, f_{n} \in$ 9. Thus for some $\Sigma_{1} \varphi$ we have $m \in X \leftrightarrow \exists p \in \operatorname{Gp} \Vdash(M \vDash \varphi(m, G, \mathscr{T}$, $\left.f_{1}, \ldots, f_{n}\right) \leftrightarrow \exists p \in G p \Vdash-\exists$ finite $H \subseteq \mathscr{P}, \quad\left(f_{1}, \ldots, f_{n} \in H\right.$ and $M(H) \vDash \varphi(m, \boldsymbol{G}$, $\left.\mathscr{T}, f_{1}, \ldots, f_{n}\right)$). This is in the form $\exists p \in G \psi m, p$) where ψ is Σ_{1} over $\operatorname{HYP}(\mathscr{F}, \mathscr{P})$ in parameters $\mathscr{T}, f_{1}, \ldots f_{n}, \mathscr{G}^{\star}$, as the forcin: relation is Σ_{1} over HYP($\left.\mathcal{T}, \mathscr{P}\right)$ when restricted to Σ_{1} statements. By our earlit claim we see that X is Σ_{1} over $\operatorname{HYP}\left(G, \mathscr{T}, f_{1}, \ldots, f_{n}\right)$. Thus ii X is both Σ_{1} and Π_{1} over M in parameters $G, \mathscr{T}, f_{1}, \ldots, f_{n}$ then X is Δ_{1} over $\operatorname{HYP}\left(C, G, f_{1}, \ldots, f_{n}\right)$ and hence $X \in M$. So $M \cap \omega^{\prime \prime \prime} \boldsymbol{L}_{1}^{1}-\mathrm{CA}$.

It remains to show that $M \cap \omega^{w} \neq \Sigma_{1}^{1}-A C$ and for this it suffices to see that for any finite $H \subseteq \mathscr{P}$, the members of H are th. only paths through \mathscr{T} in $M(\mathcal{H})$. (For
then $M \cap \omega^{w}$ ह: $\forall n \exists F: n \xrightarrow{1-1}$ Paths througl T_{C} but $-\exists F: \omega \xrightarrow{1-1}$ Paths through T_{G}, where T_{G} is defined to make G an isc norphism from T_{G} onto \mathscr{T}.) Suppose $s \in \mathcal{T}$ and s does not lie on any path in H. We show that for any condition $p: n \rightarrow|\mathscr{T}|$, ply s can be extended to a path in $\operatorname{HYP}(G, \mathscr{T}, H)$. For, choose a model B of the theory T such that $\omega_{1}^{\mathrm{Ck}} \notin$ Standarc $\operatorname{Part}(B)$ and let φ be an isomorphism of $(\mathscr{F}, \mathscr{P})$ onto $\left(\mathscr{T}^{\mathrm{B}}, \mathscr{P}^{B}\right)$. Choose a nonsta dard ordinal $a \in \mathrm{ORD}(B)-\omega_{1}^{C K}$ and consider $\hat{\mathscr{T}} \in \mathrm{B}$ defined by $\hat{\mathscr{F}}=\left\{s \in \mathscr{T}^{B} \mid\right.$ ran $(s)<a$ or s lies on a path in $\left.\varphi(H)\right\}$. Then (\mathcal{F}, H) is isomorphic to $(\hat{T}, \varphi(H))$; lit ψ be such an isomorphism. Now if p Its can re extended to a path in HYP (G, \mathscr{G}, H), then $\psi(p) \Vdash \psi(s)$ can be extended wo path in $\operatorname{HYP}(\boldsymbol{G}, \mathscr{\mathscr { T }}, \varphi(H)$). Tle point is that $B \vDash \psi(s)$ has an ordinal rank in \grave{j}. Therefore for no condition q can we have $q \| \psi(s)$ can be extended to a path in HYP(G, $\hat{\mathscr{F}}, \varphi(H)$) as otherwise $\{b \in) \operatorname{RD}(B) \mid \exists r \leqslant q \exists t \in \hat{\mathscr{T}}$ of rank $b(r \| t$ can be extended to a path in $\operatorname{HYP}(G, \hat{\mathscr{T}}, \varphi(H)))$ is a definable class of ordinals of B with no least element, contradicting $B \neq K P$. Thus we have shown that for no condition p can we have p Hs can be extended to a path in $\operatorname{HYP}(\boldsymbol{G}, \mathscr{\sigma}, H)$ and thus $M(H)=$ Any path through g belong to H. This completes the proof of Theorem 13.

References

[1] F. Abramson, Sacks forcing does not always pr duce a minimal upper bound. Adv. in Math. 31 (1) (1979).
[2] K.J. Barwise, Admissible Sets and Structures (Springer, Hellin, 1975).
[3] H. M. Friedman, Subsystems of set theory and analysis, Ph.D. Thesis, MTT, Cxmbridge, MA (1967).
[4] H.M. Friedman, Countable models of set theories, Lecture Notes in Math. 337 (Springer, Berlin, 1973).
[5] S.D. Friedman, HC of an admissible set J. Symbolic Logvg44 (1) (1979).
[6] L.A. Harrington, Π_{1}^{1}-determinacy and O^{4}, J. Symbolic logic 43 (4) (1978).
[7] M. Nadel and J. Stavi, The pure part of HYP(.4), J. Bymbolic Logic 42 (1) (1977).
[8] E. Sacks, Countable admissible ordinals and hyperdegreas, Adv, in Math. 20 (1976).
[9] J. Steel, Forcing with tagged trees, Ann. Math. Logic 15 (1) (1978).

[^0]: * This researca was supported by a National Sciet ce Fcundation Postdoctoral Fellowship.
 $0003-48 \cdot 3 / 8: / 0000-0000 / \$ 02.75$ (C) 1982 vorth-Holland

