
Annals of Math,.:matk:al Logic 22 (1982) 31.--46 
North-Holland Fublishing Company 

STEEl  FORCING AND BAR¢~ISE COMPACrNESS* 

Sy D. I 'RIEDMAN 

Massachw;elts Institute of Technology, Unitre~iry o~ Calff,~rnia ar Berkeley, Berkeley, CA, 
tLS.A. 

Received 'l May 1979 

hi [9] Joht~ Steel developed the method of forcing with tagged trees, which he 
used co settle: several important question~; concerning models of analysis. The 
Steel partial ~rdering refines the (L6vy-type) partial-ordering for collapsing an 
admissible ordinal to ~o in that it permits a careful computation of the complexity 
of the forcing relation when restricted to statements of a bounded ordinal rank. (It 
is this aspect of the forcing which Leo Iiarrington exploited in his proof that 
H~-determim~teness implies O a exists [6] ~. In addition Steel's forcing ,allows one 
to generically construct trees on to with c~mplete control over which paths appear 
in the generic zxtension. For, a conditicn assigns ordinal 'tags' to nodes on the 
tree which do r~ot lie on the intended paths; longer nodes get smaller ordinal tags. 
Thus the gent:tic tree is well-founded beJ.ow any node which receives an ordinal 

tag. 
Our work llere began with a generaliT.atL~a of Steel's forcing which uses tags 

which are no~ necessarily ordinals but me ~ets from a given admissible set. The 
idea is to req~tire that longer nodes receive '.ags which descend in the ~-relation, 
thereby codin.:g sets below nodes on the generic tree. We developed this forcing to 
provide a cha~:acterization of those admis~dl:~e sets which appear as the pure part 
of HYP(M) where .// is a structure of finit,." similarity type on urelements. This 
answers a quotation posed by Mark Nadel amt Jenathan Stavi who obtained partial 
results in [7]. 

Later a milch simpler proof of the above characterization was found which 
dispenses of iorcing in favor of Barwise c,~mpactness techniques, especially the 
Barwise Hard Core Theorem (see [7]). Thi~; led us to re-examine Steel's original 
applications e, ~ his forcing and to discover e ~sier, model-theoretic proofs ot them. 
However our work does not appear to ,qmplify deeper applications of Steel 
forcing (as fo; example in [t]) nor supplant Hma'ington's techniques for establish- 
ing lightface versions of Ste, el's results. 

In Section I we review the aspects of ~he theory of admissible sets and Barwise 
compactn~s which we will need and charac eriz~" the pure parts of HYP(.a) as the 
resolvable a6,:nissible sets. Thus if A is rest vable we shall construct a tree firA (on 
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32 S.D, Friedman 

urelements) such that A =pure  part HYP(~'A). In Section 2 we embellish this 
construction to replace ffa by ~eA, a linear-ordering. We also show that A 
satisfies the strong global well-ordering principle if and only if A = pure part 
HYP(W, < ,  U) where U is unary and HYP(W, < ,  U3~(W, <)  is well-ordering. 
Section 3 gives model-theoretic proofs of several of Steel's results, including A~- 
CA +~ ~ - A C .  

We are extremely grateful to both  John Steel and Leo Harringto~ for helpful 
discussions ;md for providing most of the ideas in the simple~ p:oof of our 
solution to the Nadel-Stavi problem. 

1. The pure part of HYP(~) 

Let A be an admissible set, i.e., A is a transitive set clo~ed under pah~ng, union 
and satisfying Ao-separation, ~,o-bounding. (All admi~;sible sets are taken here to 
be without urelements unless explicitly stated otherwise.) We say that A is 
resolvable if there exists a function 1': ORD(A)--> A such that A =: k_j Range(/) 
and (A, E, f) is an admissible structure. Thus A satisfies separation and bounding 
for formulas with only bounded quantifiers but where: [ may occur as a predicate 
in_the matrix. Our definition of resolvable diffeo-s from that given :i11 Barwise's 
book [2]; A is resolvable in Barwise's sense if there: exists [ as ~bc:,ve which is 
~l-definable over (A, E). 

The theory of admissible sets with urelements [2] provktes a wealth of examples 
of resolvable admissible sets. For, as pointed out by Nadel and Sta~.i in [7], the 
pure part of HYP(~)  is always resolvable for any st~:ucture ~ (for a finite 
language). If o ( .~ )=ORDNHYP(~t )  is equal to oJ, then this is clear as 
pp H Y P ( ~ ) =  I-IF, the hereditarily finite sets. Otherwise HYP(~'~ = Lo¢.~)(.a) and 
the function f(:3)= pp LB(~) demonstrates the resolvability of pp I-I'~'P(~). 

It is not dh~cult to produce a non-resolvable admissible set: Define A to be 
locally countable if (A, ~)~ Every set is countable. Clearly an uncountable, locally 
countable admissible set of countable height cannot 1>~ re,.;olvable. Av e.xamp~e of 
such an admissible set is 

U {L~ck[F] [ For_. S, F finite} 

where S is an uncountable, collection of reals mutually Cohen-generic over L,o~ck, 
Countable nonresolvable admissible sets are more d ~ c u l t  to come by. The 

depender, t choice axiom: 

Et-DC: Vx ] y  o(x, y) --* Vx =If [.f(0) = x ^Vn q~(j'(n), f(n + 1))], ¢~to 

holds in any resolvable locally countable admissible set. Harvey Friedman proved 
the existence of a countable, locally countable admissible set in which ~x-DC fails 
for reals using proof-theoretic methods [3]. We have recently discovered an 
explicit forcing construction of such an admissible set. 

We shall make extensive use of a version of the Barwi~e Hard Core Theorem. 
Let (A, E . . . .  ) be a countable admissible structure and, for L ~ A a first-order 
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language, let ,~,a be the corresponding frag:nent of L,,,,~ as defined in Barwise [2]. 
KP denotes l~xipke-Platek set theory., a theory in the language of set theory 
whose only nc 1logical symbol is the binary relation ~. The well-foueded models of 
KP are precis~ fly the admissible sets. 

Hard Core T~Lcorem. Suppose  T is a co t t , i s tem theory in L a  which  includes  KP 
a n d  is £ l -de l i~mble  over  (A ,  e . . . .  ). I f  x bet mgs  to the s tandard  part o f  every mode l  

o f  T, then x e A .  

The proof i;~ essentially the same as th::t given in [2, Chapter IV, Section 1]. 
Note that an mmediate coroUary of this :heoxem is the fact that any consistent 
theory ,~  ove~" (A, e . . . .  ) which extends K? ha:; a model whose standard ordinals 
all belong to A. 

Fix for the remainder of this section a cour~table resolvable admissible set A 
with resolutio~t [ :  ORD(A)--~ A. We mak?. the harmless assumptions that f(tr) is 
transitive for ~11 ¢rc ORD(A) n.nd f(0) = ~. Our goal is to construct a tree ~A such 
that A =ppl4YP(~'A). It will be faffly :lear from the construction that A m  
pp HYP(~a). f h e  revers,~ inclusion follov s once we show that there is a consis- 
tent theory T~_KP which is £1 over (A ~,[), all of whose models cmtain an 
isomorphic co.~y of ~'A' For then any x ~ Pt HYP(~a) must belong to the standard 
9arl of every model of 7' and hence r~ust belong to A by the Hard Core 
Theorem. 

We now de:.~cdbe ffA with the aid of a t tgging function h A. A tag is something 
in one of tl~e forms % or, (or, x) where ~r~ORD(A) and xEf(~).  Then 
ha :l~-A[--{To!)Node}--~T:~:gs and ha i~ ~.sed to control the growth of ~'a- The 
pair (-~'a, ha) is determined by the follow:ng prescription: There is a unique top 
node. It receives no tag. Infinitely many at,des at level 1 are tagged c¢; each other 
tag appears a:~ ha(s) for exactly one nod,  s at level 1. If ha(s) =oo, then s has 
infinitely mar.v immediate extensions ta,~ged with oo, for each ¢r~ORD(A) a 
unique immediate extension tagged with ~r, and no immediate extensions tagged 
with (t-,x) fo" any er, x. If hA(s)=~-r~OR.D(A), then for each cr'<tr, s has a 
uniq.ae immediate extension tagged with er' and s has no immediate extension 
tag~ged with m'y other tag. Finally if ha( s )  = (cr, x) ,  then s has a unique immediate 
exlension tag~;ed with or' for ¢r'<er, a urique immediate extension tagged with 
( ~  y) for y ~ .% and no immediate extensi)n ~ith any other tag. 

Note that s is a terminal node of ~'a ff ano .only if ha(s) =0.  Here is a picture 

of fin : 

. . . o ' .  . . . . .  ~:r, x) . . . . . .  o~.. 

I J  " ~  . . . . . .  • . . . . . . . .  y) . . . . . . . . . . .  e r . .  

/ / ~  x x 
. . .  or'. . . . . .  (o~, ,,) etc. 
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A node se~ 'A is in WF(~'~,), the well-founded part of 5"A, if and only if s # t o p  
node of ~'A and hA (s) # oo. If s a WF(ffA), then the rar:k of s in ~'A is an ordinal in 

A. 
For any or ~ ORD(A)  let ~'a(or) consist of those nodes in WF(~A) of rank less 

than or. 

Lemma t .  Ac_ppHYP(~'A).  

l ~ o f .  For x ~ A  choose OrEORD(A) and S ~ ' A  such that hA(s)=~io',x). Now 
~'A-~'A(or) belongs to HYP(~'A) and s ~ ,x-~i 'A(or ) .  

Define Tx, the tree for x, by 

T ={(Xo, Xl . . . . .  x~)[Xo=X and V i < n x i + l E x } .  

Now x belongs to any admissible set with urelements that contains an it~omorphic 
copy of I~,. But T~ is isomorphic to the tree below s in ,°YA--$A(Or). Y~ 

X ~ HYP(SA). 

It remains to describe a consistent theory T ~_ KP which is 2~ over (A, e, D such 
that any model of T contains an isomorphic copy of ~'A. T iS a th,~.ory in the 
language LA where L is the language; of (A, e, a)~, ~, augrr~ented by a constant 
symbol _~, a unary function symbol [ and a unary predicate symbol 9". Let 
KP(/, i f ' )  denote the extension of KP where f, .~  are a~lowed to appear in the 
matrix of the axioms for &o-,separation and &o-bounding. "i"hen the ardoms for T 

a r e :  

(1) Kp(f, 9")+Infinitary Diagram (A, e). 
(2) (a) [ is a resolution of V, i.e., Domain( / )=  ORD ~md Vx 3crx ~-f(or). 

(b) f ( g ) = / ( ~ ) ,  for each Or~ORD(A). 
(c) f(or) is transitive for all or. 

(3) .~a'is a tree (of ordinals) defined from ORD, [, '._~ in exactly the way that ~'A 
was defined from ORD(A),  [, c~. 

(4) For each or, .~(or) = {s ¢ 2Jr~ .St-rank(s) < or} is a set. 

Lemma 2, I [ B  is a model o[ T, then B contains an isomorphic copy Of ~t"A. 

Proof. If ORD(A)~Standard  Part(B), then A , z B  as A = U { j B ( o r ) l ~ r <  
ORD(A)}. As ~'A has an isomorphic copy definable over (A, e, f) we :.,,re done by 

Ao separation. 
Otherwise choose a (nonstandard) ordinal or~ B - - A  and consider ~B(or)~B. 

The well-founded part of ~-8(or) consists of those nodes of standard ordinal rank 
and thus coincides with the well-foumted part of gra. '1"he remainder of ~-B(or) is 
isomorphic to the full tree ¢0 <°', just as is the non well-founded part of ~A- SO 
~B(Or) is isomorphic to ~A. 
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T is clearly .~1 (in fact £a~) over (A, e, f~ and is consistent since ~'A has an 
isomorphic cop~:~ A~ over (A, e, f). Thus ~,z have completed the proof in the 
countable case ~':ff: 

Theorem 3. A is resolvable if and only if A =pp HYP(d~) for some ~ if[ 
A = pp HYP( '~  ). 

Proof, The only issue remaiining concerns ~he case when A is uncountable. But 
'A  =pp  HYP(~',~)' is a Hx property of (A, .~): 

A = PF HYP(FA) ~'~ V B ( B  admissi 91e, A e B implies B gA = 
pp HYP(~ A))- 

Thus by l.~vy-absoluteness A =pp HYP(5 A) holds for uncountable re.solvable 
admissible sets as well. We are grateful to lohn Steel for this observati.an. 

2. lJmear order~lgs and I~,~!o well-ordet~ngs 

A tree can be converted into a linear ord~ ring once a linear ordering is specified 
of the immediate extension~'~ of each node. 

D ~ n ,  A l~.nearized tree (~, R )  is a tre~ 5 r of finite sequences together with a 
binary relation R such that: 

(a) R(s,  t ) -~  s, t are immediate extensio as of a common node in F. 
(b) For any ; e  ~', R linearly orders the :mmediate extensions of r in ~'. 
If (F, R) is :~ linearized tree, then its tssociatcd linear ordering ~g of I~'l is 

defined by: 
s <~  l ~÷ s properly extends t in ~! or 

::ti(s ~ i = t ~ i and R(s ( i  4 1), ~(i + 1))). 

This is simply a generalization of the usu.:~l Kleene-Brouwer linear ordering of 
finite sequence~ from eJ. 

Now let A b~ a countable resolvable adrfissible set. In order to obtain a linear 
ordering ~ such that A = pp HYP(~) we saall 'linearize' a certain tree ~'~ which 
is very similar to ~'A (in fact A = pp HYP(g°~)). The associated linear ordering -~*A 
will be dense and hence there is no ?~ope of having A =ppHYP(.~e*A) as 
pp HYP(~'*A) = pp HYP(Q) = HF. itnstead ~e add certain points to ~ *  to obtain a 
linear ordering ~A such that F*A can be reoavered from LP,x and hence 
pp HYP(~eA)_~! A. And, as in the previo is section, there will be a consistent 
theory ~vl over' (A, e, f) all of whose modt:Is contain an isomorphic copy of ~A- 
Thus pp HYP(~e A) = A. 

Choose a re~olution f :ORD(A) - - ,  A st ch that (A, e,/3 is an admissible struc- 
ture. As befor,~ we assume that f (0 )=¢  an t  f(o-) is transitive for all (r e ORD(A). 
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The tree ff*A with tagging h* is defined just like (~r a, hA) except we require that 
each node (other than the top node) have infinitely many neighbors with the same 
tag. Thus we determine (~'*, h*) by the following prescription: i f* h~s a mhque 
top node which receives no tag. For each possible tag m, (or, x), o" there are 
infinitely many nodes at level 1 receiving that ta~,,. II! h,x(s)- , then s has 
infinitely many immediate extensions ~agged with % infinitely many immediate 
extensions tagged with tr (for each t r a  ORD(A))  and r~o immediate extensions 
tagged with (tr, x) for any or, x. If h*(s)=(tr, x), then s has infinitely many 
immediate extensions tagged with or' (for each t r ' <  a) ,  ir~finitely many immediate 
extensions tagged with (or, y) (for each y e x) and no ~xnmediate extensions tagged 
with ~. Finally, if h*~(s)= tr, then s has infinitely many extensions tagged with tr' 
(for each t r ' <  or) and no immediate extension with any other tag. 

Lermm 4. A _ pp HYP(~'*). 

l~mof. By the proof of Lemma 1 it is enough to show that ~A(tr)E I-I'YP(~'~} for 
each ¢reORD(A) .  But ~A(a)  is obtained from $'~(~r) by identifyirlg adjacent 
nodes when they receive the same tag. As h* I ~r*(cr) belongs to HYP(3~) we are 
done. 

Now linearize ~r* with a binary relation R which dens.ely orders the immediate 
extensions of each node in such a way that any tag wlfich appears as the tag of one 
of these immediate extensions actually appears as the tag of a dense se, ~ of them in 
the ordering R. This is easily done using a partition of the rationa~z into infinitdy 
many dense subsets. 

D * Let.area 5. A - p p  HYP(~'A, R). 

l ~ o f .  It is eJ~oagh to describe a consistent theory T* which is Y~ t~',,er (A, ~, f) 
and such that any model of T* contains an isomorphic copy. of (5*,~, R). T* is 
defined in a way similar to the definition of the theory T of Lemma l. ~ts axioms 
are: 

(1) KP(f, ~,, R ) +  Infinitary Diagram (A, ~}. 
(2) Same as for T. 
(3) (5", R) is a linearized tree (of ordinals) defined fram ORD, f, ?.~ in exactly 

the way that (E'a, R) was defined from ORD(A),  f, ~. 
(4) For each ~r~ORD,~(cr) is a set. 
Now suppose B is a model of T*. If ORD(A)~Standard  Part(B}, t&en A ~_.~ 

and thus B contains an isomorphic copy of (if*A, B:) since there is such a copy 
definable over (A, ~, f). 

Otherwise choose a (nonstandard) ordinal o ~ B - A  and consider 
(~'l~(a),Ra(tr)) where by definition RB(tr)=R~i8(c)×~(tr). If each node 
sd WF(ffa(~r)) is retagged with ~ (instead of • or (% x) for some n6nstandard r) 
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we see that (~r~,(~r), R~0r))  obeys the pres :ription for (5.*a, R). Thus (5"~, R ) =  
(ff'~(~r), R~(cr))~!~ B and we are done. 

It remains to c nstruct a linear orde ' ing  ~ x  such that HYP(ff~, ,R)= 
HYP(~A).  Let ,~"*a be_ the associated linear ~rdering ~as. defined at the beginning 
of this section) for the linearized tree (if*, t,:). ,~* is a dense linear ordering with 
a greatest element.  "llaen Se.~ is obtained from .~* by adding a chain of length n 
immediately after each point in the .~* ord~:ring which represents a node at level 
n in ~ * .  More formally, t~a I={(s ,  i)lse~. :* and i~<level(s) in 9-*} and (s, i ) <  
(s', i') in &ca iff s < s' in ~'*.~ or (s = s' and .; < i'). 

Lemma 6. HYP(9"*, R) = I-IY~'iL~a). 

Proof. As 2~,A is simply defined in terr:ls of (~*, R) we easily get ~ a  
HYP(5.*, R) and hence HYP(~A)~_ HYP(5 *, R). Foi the reverse inclusion begin 
by defining a tree ff in HYP(,~A) as follo~ s: The top node of 5. is the greatest 
element of -~a. The nodes of level n on ~ are those points on ~ a  with no 
immediate predecessor and which begin a succession of n + 1 points, the last of 
which has no immediate successor. If s is a node of level n and t a node of level 
m, n < m, then c extends s in 5" iff t is less t?aan s (in ~A)  and ! is greater (in ~ a )  
than all points of level n which are less than s. 

Clearly the tree 5" so defined is exactly ~.~*. The relation R can be defined by 
R(s, t) iff s, r are immediate extensions of :~ common node on 5" and s < t in ~ a .  
Thus (5"*A, R) ~ H Y P ( ~ a )  and hence HYP~ :~'*, R) _ H Y P ( ~ a ) .  

As in the proof of Theorem 3 a L6vy-abs~:~tuteness argtunent now demonstrates: 

Tl~e~rem 7, A ,is resolvable if and only if -~ = pp H Y P ( ~ a ) .  

Finally we shall characterize those a:lmissible sets which can appear as 
pp ItYP(d~) where HYP(.~t3 ~[~1 = Universe(./d) can be well-ordered. In this case 
there is a linear ordering < of HYP(~ ~) such that the function p<(x)=the  
<-predecessors of x is ~ over HYP(~40 and such that HYP(.,¢/)~< is a well- 
ordering. Thus if A = pp t-tYP(.~) then A obeys the property expressed in the 
next definition. 

Definition, A satisfies the Strong Global Wet-Ordering Principle (SGWOP) if for 
some linear ordering < c4 A, (A, p<) is a lmissible and (A, p<)9 < is a well- 
ordering. 

If A satisfies the SGWOP,  then A ~ resolvable for one can define the 
associated resolution / (o ' )=p<( t r )  such that with this resolution (A, f) is 
admissible. 
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From our earlier remarks we see that a neces~.ary cond~tior~ xor A = 
ppHYP(d/) ,  HYP(.a)gI.R[ can be well-ordered, is thai A satisfy the SGWOP. 
Ott~ next result implies that this condition ~s also saffic::ent: 

"l~are~m 8, Let  A be admissible. Then the following are equivalent: 

(~) A satisfies S G W O P .  
(I:~) A =pp  HxIP(,¢0 for some ./,t such that HYP(,R)I:i.~ I can be we~!l-ordered. 
(c) A =pp  H~/P(W, < ,  U) where U is unary and HYP(W, <,  U ) ~ ( W , < )  is a 

well-ordering. 
In case A is countable then the ordering (W,  <)  in (c) can be explicitly chosen to 

be (at + a • vl, <) where a = O R D ( A  ) and ~ = ordenype of the rationals. 

The basic idea of the proof of Theorem 8 is similar to that used in the proof of 
Theorem 7: Given a countable, resolvable admissible set A which satisfies 
SGWOP one first constructs a special type oi! tree ~rA** such that A = 
pp HYP(~'A**). Then by use of an ordering < as in lhe SGWOP '~ ~ ~r,~ can be 
linc~arized by a binary relation R such that if ~**  is the associated line:at ordering 
then I-IYP(5"A**, R ) g ~ * *  is a weU-ordering. Moreover there is a c~3nsi'.;tent theory_ 
T' i : ,  ~1 over (A, e, <)  such that any model of I '** cont~ins an isomorphic copy of 
(~'~*,R). Thus A =ppHYP(~**,  R). "Iaae proof is completed by addling certain 
points to ~ : ,  together with a unary predicate U distinguishing lhem, to obtain a 
linear ordering WA such that HYP(WA, U)~W~t is a w~tl-ordering and in 
addition H Y P ( ~ ,  U) = HYP(ffA**, R ). 

"['o demonstrate the key property of the theory T ¢* it will be rtecessary to 
construct (~**, R) in a very canonical ~ashion (to guarantee that it looks the same 
when nonstandard ordinals are allowed). An impc,rtar~t point which ~a~es  this 
po~sible is the following result which originates in [4]: 

[ ,emma 9. Suppose B is a countable model of KPU with standard ord~!nal ~ and 
(B, ~)~ L is a welt-ordering. Then either ordertype(L) i~ an ordinal less than c~ or 
onlertype(L) = a + a • ~ + cr where ~ = ordertype of the r~:tionals and cr ~!s an ordinal 
less than ct. 

This lemma also makes it clear why the unary predicate U in Theorem 8(c) is 
necessary as if HYP(W, <)~(W, <)  is a well-ordering, then pp HYP(W, <)~= L,  
where a is admissible. This follows from the lemma and results of Nadel and Stavi 
in [7]. 

Fix a countable admissible set A with linear ordering <A as in the SGWOP. 
We assume that {x e A I x <A Or} is transitive for each cr. Let jf be the resolution of 
A associated with <A. We now define the tree 5rA ** with its corresponding tagging 
function hA**. In this case tags have one of the three p ~ i b l e  forms ~, g, (tr, x, v) 
where/~ < a, ~r is an ordinal closed under ordinal addition and less than a,  ~r <cr 
arid x e f(tr). ~'~* has a unique top node and it rec,~ive~ no tag. For ~tny x ~ A let 
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o~ be the least a such that cr is closed undo r addition and x ~ f(g) .  Then for each 
x ~ A there is a unique node on level 1 of ¢,~A** tagged with (c% x, O) and there are 
infinitely many ~odes on level 1 tagged wit:l oo No other tag is the tag of a node 

of O'A ~* on level 1. If ** hA ( s )=  oo then s has a unique immediate successor tagged 

with or, for each ::r < a ,  and s has infinitely n a n y  immediate successors tagged with 
eo No other tag is the tag of an immedia e successor of s on if**. If h**(s)= 
(cr, x, ~r), then s has a unique immediate st ccessor tagged w~th (or, y, ix) for each 
y ~ x, t~ < cr (ix may be ~ ) .  Also s has a m i q u e  inunediate successor tagged with 

~, for each tz < tr, and no immediate  successors with any other  tag. 

Finally, if h*':(s)= or, let 6- be the great:~st ordinal ~<¢r ¢dqch is closed under 
addition. Then x has a unique immediate uccessor  tagged with T for • < 6 and 
infinitely many imr,  ediate successors tagge 1 with r when dr-'-~ ~" < ~r. No other tag 
is the tag of an ~mmediate successor to s in ~'**. This co.npletes the description of 
y**. 

The above definition will appear som:.what less peculiar once the binary 
relation R for lbaearizing .~'A** is defined. If ~ and t are nodes of if** at level 1 and 
h ~ ( s )  = (o~, x, 0), then R ( s  t) if[ h*A*(t) =~ ~ or  (o" v, y, 0) with x <A Y. In addition 
R orders {s [ s is at level L h,~**(s) = o0} ir ordertype a .  "~ where a = O R D ( A ) ,  
71 = ordertype of the rationals. Suppose h~',*(r)= ~ If s, t are immediate exten- 
sions of r, h*~*(,'~). = o,, then R(s, t) if[ ,,,xl'**t, ) = o0 or an ordinal >~r. In addition R 
orders {s [ s immediately extends r, h*h*(s) = co} in ordertype a • 71. Next suppose 
h~*(r) = (tr, x, ~). If s, t are immediate e ~tensions of r, then R(s, t) iff either 

h*a*(s) =IX and h ~ ( t ) =  Ix '>  ~;  or  h*A*(S) : ~  and h*~*(t)= (tr, y, Ix ' ) some y, Ix'; 
or  h.~x(s) = (o', y, Ix), h~*(t) = (or, z, v) wi h tz < v or with /z = v and y <A z. 
Finally suppose hA*(*(r)= ~r and s, t are iv; mediate extensions of r. If ha  ~s) ~r, 
then R(s, t) if[ ha (~ )<hA (t). Also if 6-<or, then R orders {s Is immediately 
extends r, h** ( s )~  6-} in ordert~r~pe ~r • eo ( ~n ordinal closed under addition). This 

completes the definition of R. 
As in Lemma 4 it is easy to show that ~ ~_ pp FIYP(~'~) .  The above definition 

of v-A~°r**, R) is carefully, designed ~o enabk us to show: 

Lemma  10. pp HYP('3"A**, R)  ~ A. 

l~,:mf, Define T** analogously to T*. Tl-as the axioms for T** are: 

(1) K P ( ~  < ,  .~, R )  + ~nfinitary Diagram (~,, e). 
(2) (a) ~< well-orders the universe; Yx, ~' (x ~ y --~ x ~< y). 

(b) Vx (x~<a~ --~- k,Vt,<A~ x =b) ,  for ~sch a e A .  
(3) (o~', R)  is a linearized tree (of ordine is) defined from O R D ,  ~<, eo in exactly 

the way (~'A**, R) was defined from O R D  A),  <,x, ~. 
(4) For  all c~ e O R D ,  3r(cr) is a set. 

Now suppose B is a model  of T**. If . D R D ( A ) = a  e Standard Part(B), then 
axioms (2) bnply ~:hat A ~: B and thus B c retains an isomorphic copy of (~ A**, R) 

since there is s u d a a  copy definable over  IA, e, <A). 
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Otherwise choose a (nonstandard) ordinal a ' ~ B - A  which is dosed  under  
multiplication and consider (~'B(cr), RB (o,)) ~ 1J where Rn(cr) -~ R 
~rS(o ") x~B(~r). We claini that this linearized tree is isomorphic to (3"*n*, R) .  

To see this it suffices to show that, if each node in ~ ' (~ r )  which is tagged with a 
nonstandard tag is retagged with oo, then the resulting linearized tr~e o ~ y s  the 
pIescription for (5"**, R).  (By a nonstandard tag we mean a tag ~- or  (T, x,/~) 
where ~" is not  an d e m e n t  of A.) It is the demonstrat ion of this fact that uses the 

details of our  definition of (9"A**, R) .  
Using Lemma 9 and the closure property of ~r it is easy to check that the 

ordertype of <B ~ (<8_predecessor s of or) is a + a • 71. Thus on" the first level of 
9"B(cr) the nodes with nonstandard tags follows the nodes with standard tags 
under R B and are ordered by R s in ordertype a • al. Thus if the~;e n~xtes are 
retagged with oo, then the prescription for (5"*A*, R ') is met as far as node~, at level 

1. 
Now suppose that s e f -B(a )  receiw;s a nonstandard tag. We must ,,.how that the 

immediate extensions of s are linearly ordered by R B in ordertype o~ + t~ .  rl with 
initial segment consisting of node tagged with o'rdinals t r < ~  (in theh" natural 
order) followed by nodes with nonstandard tags. First consider the c~se ix~ which s 
has an ordinal tag ~. If r is closed under addition then the ~ ,media te  e~tensions 
of s are ordered by R ~ in the oder~lype of the ordinal predecessors of 7. As  ~r is 
closed under addition this ordertype must be a + a • ~1. And  clearly the n(,des with 
standard ordinal tags form an initial segment (in the n~ttural order) o~! orcert3qge c~ 
in this linear ordering. If r is not closed under addition, then the immediate  
extensions of s are ordered in the ordertype of the ordinal predec~sso~ to 
÷ + z • ¢0 with standardly-tagged nodes forming an initial segment  (i~a th,~ natural 
order) of ordertype a. But of course ÷ + r • ~o is clo~sed under  addi*~ion so e~gain this 
ordertype is what it should be, a + o , .  rl. 

Now consider the case in which s receives a nonstandard tag (~-, x, t~). Let  
L =order type  <~ I{Y ] Y ~ x}. Then the immediate  extensions of s are ordered 
by R "  in ordertype ~" + L • ~'. Note that r is dosed  under addition and l'.ence the 
ordinal predecessors of ~- have ordertype a + a ,  ~q. It is now easy to s,~e (using 
Lemma 9) that r + L • • also has ordertype a + ~t • ~. Also the only iramediate 
extensions of s with standard tags have ordinal tags and these nodes forth an 
initial segment e.f ordertype of the immediate extensions of s (under R~) .  

Of course (~'n(¢r), R~(cr)) and (:~-~**, R) agree on no,des with standard :ass. This 
completes the proof that these two structures are iso~:norphic and henct', l_~mma 
10 is proved. 

Thus we have A = p p  HYP(5~*,  R).  We let ,~*~* denote  the linear ordering 
associated to ( ~ ,  R). Note that HYP(~*A*, R)~,~g*n* is a well-c~rdering: For, let 
B be a model of T** such that the well-founded part of B has height a = 
O R D ( A ) .  q ~ e  existence of such a B follows from the Hard Core Theorem,  If 
~r c O R D ( B )  let ~(~r) be the: linear ordering in B associated to (~ (~ r ) ,  RJ:~(er)). 
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Then  B ~ ( ~ r )  is a well-ordering so HST(~*a*, R)g~(cr )  is a well-ordering, since 
B contains an isomorphic copy of (~:.~x*,~). But if t r e B - A  is chosen to be 
closed u~ader multiplication then 2~(tr) is i'~ramorphic to ",~*. 

Now enlarge .¢/'~*(* to a linear ordering ~ a  as follows: To each s ~ I.se**l which 
represents a node at level n of ~'*a* add a ~:hain of n ?oints immedia~ely after s. 
Thus lW~i={(s,  i ) ! s  is a n~.)de of ~'~** at l~:vel n, O<-i<.n} and (s, i) is less than 
(s', i') ill WA iff :~ is less than s' in &e** or (s = s' and i<i ' ) .  In addition let 
U m--[WAi consist of those points of the form (s, i) where i >  0. 

I~ is easy to see that HYP(~**, R ) = H V P ( W A ,  U). The argument is virtually 
identical to tl~e earlier proof that IetYt:(~T~, R)=HYP(LA) .  Finally suppose 
HYP(WA, U)t:- WA is not  a well-ordering. Choose a sequ~ ?ace (So, i0), (s~, i~) . . . . .  
which descends through W.x and which bel~,ngs to HYP(WA, U). Then there must 
be an infinite X m_ to such t~at X e HYP(V~ ~, U) and n, m e X, n < m ---, s,, is less 
than s, in WA. Thus HYP(W,~, U)=HYl:~Sr*a*, R)~ WA is not a well-ordering, 
contradicting cur  earlier clai a. 

By invoking Lrvy-absoluteness in the ~ ncountable case, we now have com- 
pleted tl~e pro~f of l 'heo:rem 8. 

Ren~ar~s. (a) ~n the proofs of Lemmas 2, ~:, 10 the break into cases as to whether 
or act  O R D ( A ) e  Standard Part of B is in ~act unnecessary. Instead ooe may use 
the following inild strengthening of the H~.rd Core Theorem: If T is a theory 2;~ 
over the countable admissible structure ( z ,  ~ . . . .  ) and x belongs to the standard 
part of every, model B of T such that OI~D(A)~B,  then x E A .  

(b) In case A is countable, resolvable ~nd A ~Every set can be mapped 1-1 
into the ordinals, then :i~e proof of Theorem 8 becomes much simpler. The 
reason is ~:hat in this case A is of the form L [P], p m  a, and the structure (W, < ,  U) 
can be t~.ken to be a non, standard version of (a, E, P). 

3. A4~pl~Itio1~ to mo~,als of analysis 

The moral of this section is the followin ~: By ir~finitary model theory (as in the 
precedir~g sect~ions) one can build structur~:s .~. with specific definability-theoretic 
properties. By generically collapsing ~4~ to to these definability properties are not 
damaged, the~eby yielding structures b u i t  over o~ (reals or sets of reals) with 
similar properties. This forcing can be vie;red as a set-forcing over HYP(~)  (the 
collection of forcing conditions forms an ~.~ement of HYP(A~)) and thus is easily 
an'~yzed. 

In a sense Steel forcing performs bo~tt of the above tasks simultaneously, 
thereby necessitating the use of class forcing. However it is tool ~ difficult to argue 
that admissibility is not destroye~ when t~ing class forcing. 

We will do three appl;~cations. The tarst is a result of G. Sac~, ~] which states 
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that if a is a countable admissible ordinal then a :::to~ for som0 T cto. This 
example reveals the essence of our method. The remaining two appl_~zations are to 
results of Steel's thesis which appear in [9]. The first states that if A <:to~ tt.en 
there are T _  to and H°(T)-singletoas f, g such that f !  Lx(g, T), g¢|Lx(]; T). (f is 
a H°(T)-singleton if f is the unique solution to a predicate wlfic~l is II  ° in the 
parameter T.) This application was observed joirttty by Leo Harri~gton and the 
author. Finally we prove the existence of an to-model of A[-CA ~aich does not 
satisfy ~ - A C ,  the result which inspired the development of Ste~|l forcing. An 
to-model of A~-CA is ~ set of reals S a which is closed under pairing ~ d  satisfies: 

A~-CA: Vn (~X~(n ,X) .~ ,  ~3Y~(n ,  Y ) ) - - ~ Z  Vn (~ ~Z., . -~Xq,(n,  X)) 

where ¢ and ~ are arithmetic formulas involving ~urbitrary paran;ete~ from ,9: An 
to-model of Ii;[-AC must also satisfy: 

~I-AC: Vn 3Xcc(n, X) ~ ~ Y  Vn ¢(n, (Y),) 

where ~ is as before and (Y), ={m 12"3 '~ e Y}. 

Theo~m 11 (Sacks). Every countable admissible ordi,tal >to is of tf::e form to~ for 
some T ~ ta. 

Drool Recall that tot = first ordinal ct such that L,,~(T) is admissible. Fix a to be a 
countable a~lmissibte ordinal >to. We let ~" be the following t:ee (which is 
essentially the tree obtained by Steel forcing over Lo): ff has a unique top node, 
tagged with co If s ~ 10"1 is tagged with oo, then ,~ ha!; ir:finitely many :~mmediate 
extensions tagged with oo and a unique immedi,~.te extension tagg~:d ~ith 8, for 
each /3 < a. If s ~ t0"1 is tagged with /3, then s has a anique imrnediate extension 
tagged with % for each -y </3. No tags appear other than those mentioned above. 

Now consider the theory KP(0")+Infinitary Di~gram(L,)+ .~" is .~ tree of 
ordinals defined from ORD, 0o in exactly the way0" is defined from c~, o0+ 
Vtr (~r(cr) is a set). This theory is -X1 over (L~, e) and IY has ao isomorpt, ic copy in 
any model of this theory. As any theory 2~ over (L~:, e) which extends KP has a 
model B with a¢~ Standard Part(B), we see that H~? ( 0 ) N  O R D _  .~. ?.~s 0- has a 
node of r~nk /3, for each /3<c~, we actually have HYP(ff)f30!RD = ct. Thus 
HYP(~) = L~ (~). 

Now collapse [ff[ to ¢~ by doing l_~vy forcing over HYP(ff). Thus z condition is 
a finite function p : n  ~ ]if], n < o ,  and p :~<q iff p extends q. Forcing is 

defined ~t la Cohen. The set of conditio~ts is an element of HYP(ff) and from this 
it follows easily that the forcing relation is £~ over EIYP(ff) when restricted to £~ 
statements, and that if G is generic over HYP(~) for this forcing then L~(ff~ G) is 
admissible. Define a tree To on to by: n extends m :in T~ iff G(n) extends G(m) 
in 9". Then To E L~(ff, G) so L, (Tc)  is admissible. But as TG is isomorphic to ~" 
and a =HYP(~)f 'IOt~D,/-~(To) cannot be admi~ible for any ~ < a .  
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There are simpler proofs of Sacks' The.,rem than tkat given above. However 
we included it as it is the prototype cf our ~chnique. Moreover a slight 
modification ef it. yields a simple proof of iSteers result that, if to~ = co s = a, then 
for some T or- to~r~=tot t s 'T~-a . ,  - - . The , ' ,dy previously known proof of this 
strengthening used Steel's forcing. 

l 'ho}r~ta 12 (~teel), I f  X is countab!e, then there are T ~_ co and f, g e co" such that 
f, g are II~(T~-singletons and f~  t.~(g, T), !:~ Lx(f, T). 

Proof (Jointly with Leo Harr;agton). Let x be countable ana admissible. Define 
t e r m s ,  ~ Lx so that for a n y ,  T each ~!eme nt of Lx(f, T) is denoted by some term 
~- applied to f, T and such that the evalua~:ion of terms is ~1 over Lx(f, T). Thus 
we wish to construt:t T and//~(T)-singlet,~ns f, g such that for any term ? ~ L~, 

f ~  ~(g, T) and g#  ~(f, T). 
Begin by defining the ~ollowing tree ~'x ,vith two distinguished paths fx, gx : ~-x 

has a unique top node (which equals f~(ff = ga(0)). Each node at level 1 except 
fx(1), gx(1) receives an ordimd tag ? < A  ~nd each tag ~/<A is the tag of only 1 
node at level 1. Also /x(1)~:g~(l). An} node tagged with ,y has a unique 
immediate successor tagged with ~', for =ach 3/<3t. Any r~ode fx(n) has the 
immediate exfension ]~(n + 1) a~ld an immeSiate extension tagLe~ with ?, for each 
3,<A. Similarly for gx(n). 

Thus fx, ga are the unique paths throug~ ~x. We claim that, ff ~" is a term in Lx 
and s ~ I~'x I < ' ,  then fx # T(ga, ~~, s) as eler tents of Lx (fx, ga, ~'x). Otherwise con- 
sider the theory KP(~', f, g)+Infinitary 1-:iag.am(Lx)+(°d',f, g) is built from k 
exactly the w,~y ($'x, fx, g~) was built from A +s  ~ 11Jr] <" + f  = ~-(g, ~ s). This theory 
has a model B whose standard part has he ght A. But there is an automorphism ~0 
of 9 "B fixing g e  s~ and moving fB, obtaine.d by choosing a descending sequence 
Ao> hi > " "  through O R D ( B )  and (a) switching fB(n + 1) with some immediate 
extension of q~(f~(n)) tagged with X,, w~tenever fB(m)6s  B for all r e > n ,  (b) 
corresponding the immediate extensions ol fS(n)  with nonstandard tags with the 
remaining immediate extensions of ~0(fB(t)) which do not have standard tags. 
Thus we get lB.# tc(fB)= ?(~0(g~), q~(a/a), ~O(SB))= ~(g~,9-~, S ~) =f~.  Contradic- 

tion. 
Now L6vy collapse [5AI to to using finite ,:onditions, viewing Lx(9"x, f~, ga) as the 

ground model. Note that for any 3' < A, the forcing relation is an element of 
L~($'~, ga) wt~en restricted to statements of rank ~< 3" not mentioning fx and so can 
be named by a term cr(9"~, ga), t reLx.  

Let G :to --* tS'x[ be generic over L~(ff~, :~, gx) for this forcing and define T~ by: 
n extends rn in Tc. iff G(n) extends G(m)  in 5"x. Also let f~ = G-~(fx), g~ = 
G-~(g~.). Then f~, ~ are I~(T~)-sing~.e:ons as /~ =unique path through To 
extending/~(1),  g6 =unique path througl T~ extending g6(1). 

We claim that for any term r ~ L~,/~ ~ 7 (T~, g6). Otherwi~,e choose a condition 
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p such that plFf~ = ~'(To. g~). Then s ~ h * *  

. :]q~pqlFG-~(s)E[~,-~:lq<~pqlF~-t(s)e .r('l~, g~) 

and this last condition can be described by a te~:n ¢r(ff x, g~, p), ~re'L~.;, This 
contradicts our earlier claim, By symmetry go # r(T~:;, fc~) and we arc done. 

Vle note that Steel's result (inchtded in [9]) on the relativized McLaughlin 
conjecture can also be obtained by techniques similm to those used in Theorem 
12. We now proceed to our most elaborate appl!ication. 

Theorem 13 (Steel). There is an to-model of A~-CA which does not satisfy ~]-AC, 

Proof. Begin by defining the following tree ~" and collection ~ of paths through 
~:  ~" has a unique top node which is untagged. F, ach untagged node of ~ has 
infinitely many untagged immediate extensions, intinitely many immediate exten- 
sions tagged with ~o and a unique immediate e,~:ten.,;ion tagged with a, for each 
a < to cK. Each node tagged with oo has infinitely many immediate extensions 
tagged with ~o and a unique immediate extension tag~,ed with a, for each a < t o c r  
Each node tagged with ct < toc~ has a unique immedi:ate extension tagged ~ith 13, 
fo~ each /3 < a .  ~ is obtained by choosing for each untagged node V a path 
through 9" which passes through $ and only untagged nodes. 

We consider the theory T = KP+ Infinitary Diagi am(L,4~) + a i,, a~ ordinal + 
{a > ¢t I a < tocx} + ~ ' i s  a tree, ~ a set of paths thr¢,uli~h 3"rdefined from a, ~_ in the 
same way that (~', ~ )  was defined from ~cr~, o¢ If i3 is a countable model of T 
such that tocz~Standard Part(B), then (~' ,~) is isomorphic to (~s, ~s ) .  So 
HYP(~', ~)  f30RD = e~ c~. 

Cl:~tim. If X ~ t o  is E1 over HYP(9",~) in parameters $',f~ . . . . .  f., ~ (where 
f~ . . . . .  f .  e ~) ,  then X is E~ 9ver HYP(~, f~ . . . . . .  f.'k 

Proof. Consider the theory T'  over HYP(~, ft . . . . .  f,~ ":'hose axioms arc KPU+ 
Infinitary Diagram(HYP(°3,/~ . . . . .  f , ) ) + ~  is a set of paths through ~'+ 
f~ . . . . .  f, e ~ +  Any node of ~" extendible to a member of ~ has infinitely many 
immediate extensions extendible to member,'s of ~ + E v e r y  set belongs to 
HYP(~', ~) .  If B' is a countable model of T'  such rhat cocK~ Standard Part(B'), 
then (~', ~B') ~s isomorphic to (~, ~). (This is easy to see once it ~; realized that 
any node not in the well-founded part of ~ must have infinitely many immediate 
extensions wh,~ch neiflaer are in the well,-fotmded part of 5" nor can t'~e extended to 
a path in ~9 ~'. This follows as otherwise to~-K~ Standard Part(B').) ,VIoreover this 
isomorphism can be chosen to fix ~', f~ . . . . .  f,. 

Now suppose that X ~  is ,~  over HYP(tT,9) in ~,f~ . . . . . .  [~, ~ ;  thus 
meX,,~HYP(~,~P)gq~(m,~)  where ~¢ is X~ (and we suppress the parameters 
~,f~ . . . . .  f,). We assert that m e X*~-~ T'kq;(m, ,~?, and then we wi!l be done, 
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Clearly T'l-q~(m, 9 a) implies m ~ X so suppo,;~ T ' + - ~ 0 ( m ,  ~ )  is consistent. Then 
T'+--q~(na, ~ )  has a countable model B '  such that ~o~:K¢~ Standard Part(B'),  as 
this theory is ~l  over H Y P ( ~ , [ I  . . . . .  ~,) ~ltd HYP(ff , /~ . . . . .  ~ , ) f T O R D = ~  :~:. 
But B '  is isomorphic to HYP(3 . ,~ )  with isomorphism fixing 3., [x . . . . .  f ,  so 
HYP(3., ~ )  ~ ~ q~(m, ~) .  So ~t: ~ X. The clain is proved. 

Now l_~vy collapse l~'lrl to to, generically over  HYP(~ ,  ~) .  Choose a generic 
G : to ---13.1 for this forcing and for H a finite subset of ~ let M ( H ) =  
HYP(G,  fr, H). The model  we are looking f Jr is M ¢'1 to ~ where M = I J {M(H) I H 
a finite subset of ~}. 

Suppose X~_--co is .~  over M in paramet::rs G,,°Y,f~ . . . . .  f,, where f~ . . . . .  f ,  
;9. Thus for some ~ o  we have n l ~ X ~ - - ~ 3 p ~ G p l ~ - ( M ~ q ) ( m , G , ~ ,  
f~ . . . . .  f , ) ) , - -~3p~Gpib : : l  tinite Hc.9~, ~t . . . . .  [ ~ H  and M(H)~q)(m,G,  
3., fl . . . . . .  [,))~ This is ,;n the form ::t p ~ G q~:m, p) where q~ is Xl over HYP(~', ~ )  
in parameters 3", [~ . . . . .  f,, i f '  as the forcinl: relation is 1~t over HYP(~,  ~ )  when 
restricted to ,~ statements. By our earli:,r claim we see that X is Y2~ over  
Hh'P(G, 3",/x . . . . .  f,,). Thus if X is both v~ and 1I~ over M in parameters 

G, 3",ft . . . . .  L then X is Zi I over  HYP((  , '3",/i . . . . .  f,,) and hence X e M .  So 
M Cl to ~' I :~I -CA.  

It remains lo show that M G  ¢ o ~ I - A C  and for this it sultices to see that for 
any finite H ~ ga the members of H are th, only paths through ~" in M(H).  (For 

then Mf3to '<,l~vn ::IF: vl: ~ Paths througl  T~ but ~=1 F :  ~o ~-L> Paths through 

7);, where T6 is defined to make G an isc norphism from T~ onto 9".) Suppose 
s e ~  and s does not 'tie on any path in H. We show that for any condition 
p :n --~ l~t, pl~ s can be extended to a path i~ H Y P ( G , ~ ,  H).  For, choose a model 
B of the theory T such that ¢ o c ~  Standard Part(B) and let q~ be an isomorphism 
of (3",~) onto (3"~,!91~). Choose a nonsta ldard ordinal a ~ O R D ( B ) - o ~  :K and 

consider ~" ~ 11 defined by ~ = {s ~3"~t I ran , , ( s )<  a or s lies on a path in ~0(H)}. 
Then (3", H) is isomorphic to (~', ~(H)) ;  h t t) be such an isomorphism. Now if 
plbs can be extended to a path in H ~ P ( C , , ~ , H ) ,  then O(p)lt-~(s) can be 
extended to a path in HYP(G,  ~ ,  ,¢(H)). T I e  point is that B ~t0(s) has an ordinal 
rank in ~. Therefore  for no ,:ondition q can we have q It-tk(s) can be extended to a 
path in HYP(G, ~-, q~(H)) as otherwise {b e~ )RD(B)  l B r ~< q ~ t e ~" of rank b (r It- t 
can be extended to a path in HYP(G,  if, q~( 5/)))} is a definable class of ordinals of 
B with no least element,  contradicting B b KP. Thus we have shown lhat for no 
condition p can we have plt-s can be ext~ aded to a path in HYP(G, 3", H) and 
thus M(H)!=Any path through 3" belong: to H. This completes the proof of 

Theorem 13, 
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