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We present here a refinement of the method of Jensen coding [7] and apply it
to the study of admissible ordinals. An ordinal « is recursively inaccessible if it is
both admissible and the limit of admissible ordinals. Solovay asked if it is
consistent to have a real R such that the R-admissible ordinals equal the
recursively inaccessible ordinals. This is a problem in class forcing as any real in a
set generic extension of L must preserve the admissibility of a final segment of the
admissible ordinals.

Our main theorem provides an affirmative solution to Solovay’s problem.

Theorem. Con(ZF)— Con(ZF + 3R c w (R-admissibles = Recursively Inacces-
sibles)).

Our proof strategy is described by:

Main Lemma. Let M be a transitive model of ZF+V =L. Then there.is a
A,(M)-class forcing notion P for producing a generic real R and A =« ORD(M)
such that:

(a) «a is A-admissible iff « is recursively inaccessible, for « e ORD(M).

(b) M[R] is a model of ZF.

(c) ANais Ay(L.(R)) for all admissible o € M.

(d) If @ € M is A-admissible, then « is R-admissible.

Thus our solution to Solovay’s problem is based on a ‘strong coding’ theorem,
in which a certain predicate A ¢ ORD is coded by a real R in such a way that the
decoding of A N « from R can be carried out in L,[R] for every admissible a.
Note that it is possible to define A ¢ ORD(M) so as to obey (a) above, A A, over
M. However we find it necessary to build A simultaneously with the generic real
R which strongly codes it.

Jensen’s coding methods do not suffice as the recovery of A N & from R when o
is admissible cannot necessarily be carried out in L,[R]. In fact, Jensen coding is

0168-0072/87/$3.50 (© 1987, Elsevier Science Publishers B.V. (North-Holland)

Bibliotheek
*entrumvoor Wiskuncs en informatica

Amctarciern



2 S.D. Friedman

designed so as to guarantee this recovery only when every L,-cardinal is a
cardinal of L.

Our coding method is an amalgamation of Jensen-style codings ?*, one for
each ordinal B which is either admissible or the limit of admissible ordinals. ¥ is
designed to produce a real R generic over Lg such that AN B is A,(Lg(R)). This
alone could be accomplished as in Jensen [7] by a ‘reverse iteration’ of almost
disjoint set forcings, based on the cardinals in the sense of Ls. However the
different P? forcings must fit together in a special way, so that reals exist which
are generic simultaneously for each of them.

It is this last coherence condition that is the main source of complexity in our
construction. It requires that the conditions used in ## be built out of sets which
are partially generic for earlier forcings ##, B’ <pB. Obtaining these partial
generics is one of the main lemmas in our proof and draws on fine structure
techniques from Friedman [5]. By defining ## in this way as a ‘generic Jensen
coding’ we can guarantee that any P-generic real is 2P-generic for each B, where
P=g P~ "

The key lemma in Jensen [7] is the distributivity lemma, which is needed to
show that his forcing is cardinal-preserving. An easier lemma is established first,
the extendibility lemma, which states that a forcing condition can be extended
‘arbitrarily far’ in order to code more of the ground model. Similar lemmas occur
here, however the built-in genericity of our conditions requires that both
extendibility and a strengthened form of distributivity be established together, by
a simultaneous induction.

Variants of our Main Lemma can be used to realize other ‘admissibility spectra’
by a class-generic real. The key hypothesis needed at this point is a strong
definability assumption on the spectrum.

Corollary to Proof. Suppose B < ORD and for all p.r. closed B, B N B is Ay(Lg),
uniformly. Let A= admissible limits of B. Then Con(ZF)— Con(ZF+3Rc w
(R-Admissibles = A)).

Some final remarks before we begin the proof: (a) The (original) Jensen coding
method does suffice to prove a weak form of our theorem: Con(ZF)— Con(ZF +
3R (Every R-admissible is recursively inaccessible)). This was established
independently in David [2], where it is shown that ‘is recursively inaccessible’ can
be replaced by ‘belongs to X°, X any X)-class of admissibles containing all
L-cardinals. Strong coding is not required for this result as the primary goal is to
destroy admissibility, not to preserve it. (b) Further techniques of Jensen [7] will
be used in Section 2, Part E to show: If 0¥ exists, then there is a real R such that
R-admissibles = Recursively Inaccessibles.

I would like to thank Judy Romvos for patiently typing an illegible manuscript
which went through far too many changes. Thanks also to the Cambridge-area
logicians, whose moral support was essential to the completion of this work.
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SECTION ONE: THE CONDITIONS

A. Introduction

We will inductively define forcings # for § € Adm = {8 | B is either admissible
or the limit of admissibles}. A PP-generic set over Lg determines a real R and
Acf such that A is Ay(Lg[R]) and for a<fB: a is A-admissible iff o is
recursively inaccessible. The definition of ?# depends not only on the definitions
of #%, B'<pB but is only comprehensible given that certain fundamental
properties of these ‘earlier forcings’ have been established. We therefore begin by
listing these properties in the form of lemmas, to be proved later by a
simultaneous induction on .

The definition of the %* forcing requires us to define auxiliary forcings %2
where B eAdm and x e B-Card={y |y is an infinite B-cardinal or y =0}. If
K € B-Card let (x*)™ denote the least infinite B-cardinal greater than x if there is
such, B otherwise (thus 0" = @ and we think of w as a successor cardinal). A set
PE-generic over Lg determines a subset X of (k*)* and A c B such that A is A,
over Lg[X] and for a€e[kx, B)={y|k<sy<B}:a is A-admissible iff a is
recursively inaccessible. We shall have: #f = @£,

Lemma 1A.1. Suppose f belongs to Adm, k € B-Card. Then:

(@) P Ly and is uniformly A, over (Lg, B-Card).

(b) If B>B' e Adm, Kk <p’, then P c PE. Whenever p,, p,€ P2 are com-
patible in P2, say p € PL and p <p,, p,, then p’ <p,, p, for somep' € P&, p<p’
and hence p,, p, are compatible in PE. If p,, p,€ P are incompatible in P~,
p1€ PE, then p,, p; are incompatible in P2 for some p5e P£', p,<p).

Proof. Deferred.

Suppose 2 is a partial ordering of a subset of Lg. We say that Gc P is
P-generic over Ly if:
(i) peG, p<q—>q€G. p,, p,e G—p,, p, are compatible in P.
(ii) p,, p,€ P—>3qe G (g =<p,, p, or q is incompatible with p; or q is
incompatible with p,).
(iil) D eLs, P predense on P>GND+#P, where P is predense on P if
9*={p | p <some q € D} is dense on P.

Lemma 1A.2. There is a function f(k, B, X) such that:
(a) If xepB-Card, pe Adm, Xc|k, B), then f(x,B,X)cLg is .A, over
(Lg[X N (x*)], B-Card).
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(b) If Gc Ly is PE-generic over Lg, then G =f(x, B, X) for some unique
X c [k, B). Moreover, X N B’ is uniformly A, over Lg[G] for admissible ordinals
B’ < B (and this definition is independent of X, B’, G).

Proof. Deferred.

The function f describes the ‘decoding’ process. Intuitively, Lemma 1A.2 says
that a set P2-generic over Ly determines and is uniquely determined by a subset
of (x*)%. Note that it follows from Lemma 1A.2 that if f(x, B, X) is P£-generic
over Lg, then X is uniquely determined by X N (x*)".

Preserving the admissibility of an A-admissible ordinal § requires that we
consider a stronger form of genericity.

Definition. Suppose ? is a partial ordering of a subset of Lg and T < & X y for
some ¥ < fB. Let D(T) consist of all p € P such that either:

(i) for some 6 <y, q<p—(q,08)¢T, or

(ii) forall 6<y, Ty ={p € ?|(p, 8) € T} is dense below p (i.e., g<sp—3Ir=<
q, r € Tp).

We say that G c P is P-Z-generic over Lg if G is P-generic over Lg and
GND(T)#P for all Tc PXy, y<pPB which are X, over Lg and persistent

((p, 0)eT, g<p—(q, 0)eT).

Remark. In most cases the condition ‘X, over Lg’ can be replaced by the stricter
‘A, over Lg’ by considering T* = {(p, ) | for some ¢=p, L,kq € T;, where
y = L-rank(p)}; under reasonable hypotheses 2(T*) < %(T), T* is A, over Ly,
T* is persistent. This is useful in the proof of Lemma 1D.2.

The point of Z-genericity is that if P KP (=admissibility theory) and the
forcing relation of 2 restricted to ranked sentences is X, then (L4[G), G) i
admissible whenever G ¢ 2 is P-X-generic over Lg. For, the Truth Lemma hold
for ranked sentences (using X-genericity) and so if f:y— 8 is 2,{Lg[G], G)
then 2-genericity implies that p I f is total, for some p € G. Then p I f is bounde:
as ? I+ KP.

Lemma 1A.3 (Genericity Lemma). Suppose B, <P, belong to Adm, k € 8.
CardN B;. If D € Ly, is predense on PE:, then 9D is predense on P2 If B, .
recursively inaccessible and T < P2 x y, y <P, is persistent and Z,(Lg), the
9(T) is predense on P2

Proof. Deferred.

Corollary 1A.4. Suppose B € Adm, k € B-Card, G is PE-generic over Lg ar
f(x, B, X) =G. Then:
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(@) If B>PB' €Adm, k<B’, then GN Ly is also P2 -generic over Ly and
f(x,B', XNBY=GNLg. If in addition B' is recursively inaccessible, then
G N Lg. is PE'-3-generic over L.

(b) G is A, over Lg[X N (x*)™).

Proof. (a) The genericity of G N L;. follows immediately from the Genericity
Lemma and Lemma 1A.1(b). Suppose f(x, ', X') = G N Lg.. By the uniformity
in Lemma 1A.2(b), X N B’ has the same A,-definition over Lg[G] as X' does
over Lg[G N Lg]. Of course Lg[G]=Lg[GNLg]so X'=XNP"

(b) There are two cases (so the A;-definition is not uniform): If there is a
greatest f-cardinal, then this follows from Lemma 1A.2(a) since in this case
pB-Card is A;(Lg). Otherwise it follows from (a) above that GNLg =
f(x, B', XN B') whenever (k*)¢<B'<p, B’ e Adm. But then G is A, over
Lg[X N (x*)"#] as G N L. is uniformly A, over Lg[X N (x*)"] for such g'. 0O

Corollary 1A.4(b) is important as we will later use it to conclude that AN B is
A, over Lg[X N (x*)"] whenever f(k, B, X) is Pi-generic over Lg. Thus it
follows from Corollary 1A.4 that if G is ?-generic over L where ?=J {?*| B €
Adm}, then for some X «ORD, GNLg=f(0, B, XN B) for all B € Adm and
hence AN B is Ay(Lg[X N w]) for all B e Adm. So X N o ‘strongly codes’ A.

Lemma 1A.5 (The Generic Existence Lemma). Suppose B e Adm, k € B-Card
and p>P is p.r. closed, L, Fcard(B)<k. Then pe P2—>3GeL, (G is P%-
generic over Lg, peG). If in addition B is recursively inaccessible, then
peP2—>3AGe L, (G is PE-3-generic over Lg, p € G).

Proof. Deferred.

As was suggested earlier the forcing conditions in %£ are built out of sets which

are generic for forcings #£., B’ <pB. The Generic Existence Lemma says that
these sets exist in abundance.

Lemma 1A.6 (The Distributivity Lemma). If B is recursively inaccessible,
K € B-Card, then P8 is S-distributive over Lg; that is, if {T;|i <k} is a collection
of predense subsets of P2 and {(i, p) | p € T;} € Z1(Lg), then for any p € P% there
exists g<p, qe (N {T!|i<k}.

Proof. Deferred.

The Distributivity Lemma is used for cardinal preservation, in the proof of the
Generic Existence Lemma and in establishing that the forcing % preserves
recursively inaccessibles. A much stronger form of distributivity will in fact be
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established later which is concerned with certain collections {%;|i <k} of
predense sets on P£ which are not necessarily definable over Lg.

Lemma 1A.7 (Factoring, Chain Condition). If B € Adm, x € B-Card, then for all
y € B-Card Nk, PE is equivalent to an iteration P+ PS5~ (the two forcings have
dense subsets which are isomorphic via a A,(Lg) isomorphism). Moreover, if B is
recursively inaccessible, then P2\ PS< has the T-x*-c.c. (any =,(Lg[G,], G, )-
predense D < P$~ can be effectively thinned to a predense D' < D which is an
element of Lg of B-cardinality <k).

Proof. Deferred.

Lemma 1A.8 (A,-Definability of Forcing). If B is recursively inaccessible,
K € B-Card, then the forcing relation for P2 is A,(Lg) when restricted to ranked
sentences.

Proof. Deferred.

The above lemmas imply that if R is a P-generic real, then every recursively
inaccessible ordinal is R-admissible. Indeed choose X ¢ ORD so that XNw =R
and U {f(0, B, X N B) | B € Adm} = G is P-generic (this is what we mean by the
phrase ‘R is P-generic’). Then G N L; is PP-generic over L; for B € Adm by the
Genericity Lemma and thus by the A;-definability of Forcing, Distributivity,
Factoring and Chain Condition we have that 8 recursively inaccessible, LgFx a
cardinal— Lg[R] F k a cardinal. So it suffices to consider recursively inaccessible 8
such that L; has a largest cardinal x. Now G N P* is P#-Z-generic over L and so
by Factoring, the A,-definability of Forcing, the Chain Condition and 2-
distributivity if f:x— B is Z,(Ls[R]) there exists pe GN PP so that p=
(Pe, (P))Hf is bounded (where I refers to PP = P+ PC). The fact that
P-generic reals destroy the admissibility of successor admissibles will follow easily
from the definition and Extendibility properties of %.

Having stated some of the basic properties of the forcings 22 we now begin to
describe the conditions used to code at successor cardinals.

B. Successor cardinal coding I: Generic codes

The forcings ?% are in fact defined in terms of the more basic forcings %%,
where s is a certain type of partial characteristic function. We now describe the
functions s that we wish to consider.

For B eAdm, ke B-Card we define a collection S# of characteristic functions
on proper initial segments of [k, (x*)) = {y | k <y <(x*)**}. If B is a limit of
admissibles, we simply define S2=J{S? |k <pB’'<pB, B’ € Adm}. So we now
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focus on the case where B is a successor admissible. For any ordinal y let ¥
denote the least admissible greater than y and y~ = sup(y N Adm).

Now fix a successor admissible B where B e Adm and let x € B-Card. For
notational simplicity we use k* to denote (x*)™. We let O(x) denote {§ €
[k, k*) | Lgkcard(§) = x}. For & € O(x) define:

ug=sup{ug | &' <8} (=kifE=x),
uit! =least p.r. closed u > pi s.t. L, Fcard(§) = k,

pe =sup{uz|ic w}.

Note that either L, Fu¢=x" or pg < U2 < pe. Also extend the definition of u;
to all £ € [k, k™) by setting u; = u% where &' = inf(O(x) — §). Now S consists of
all s :[k, |s])— 2, k <|s| <k such that: Either s € S or § </|s| € O(x) and:

(a) Let X, = {8 €[x, B)|s(6) =1}. Then f(x, B, X;) is PE-generic over Ly (if
B is recursively inaccessible it is PF-Z-generic over Lg) and (Lg,s | B) is
inadmissible if B is a successor admissible.

(b) For k <E=ls|, s | &is AF(L(u?)).

Remarks. (1) Condition (a) has the intuitive meaning that s [ B is ‘generic’. (b)
exerts some control on the initial segments of s. Both the structure &/(v) and the
notion of Af-definability are described later in this part. The condition “s | & is
A}(#(ug))” is much stronger than “s [ e L,;”.

(2) The function &— p; is strictly increasing on 0(x) and discontinuous at each
limit ordinal in O(x). If & € [(x*)"#, B), then uz = B and u? = (x*)™.

(3) In the above, we include the case xk = f, in which case clause (a) says
nothing.

Now define S2=1{J{S£| B’ € AdmN B} whenever k € B-Card, B a limit of
admissibles. Thus we have defined S? whenever e Adm, k € B-Card. Also
extend the definitions of uj to all £ € [k, (x*)™*) for such B, k. Note that if 8 < g’
belong to Adm, xep'-Card, E e[k, (x*)™), then the u: have the same
definitions in Lg as they do in Lg.. We next prove some basic facts about the §%’s.

Lemma 1B.1. Suppose € Adm, k € f-Card. Then SE+ S8 only if k=gcB=
largest B-cardinal.

Proof. If x <gc B, then pg is not defined (in Lz) so (b) in the definition of S5
implies that |s| < B whenever s € S2. So S8=88. O

The ‘only if’ in this lemma can be strengthened to ‘if and only if’. This follows
from Lemma 1.B4 and (a strong form of) the Generic Existence Lemma.

Lemma 1B.2. s € S8— puj; <|s| <py
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Proof. The inequality |s|<py, is easily established using the definition of u.
Now given s € S2 let ¥ € Adm be least so that s € ST. Then y <|s| (else s € S¥ and
hence s € S2 for some 6 €e AdmN y, contradicting choice of y). But then p) <7
and hence y = pjg<|s|. O

Note that s € &, £<|s| does not in general imply that s | [k, &) e S£. For,
suppose Ly, k k™ exists where |s| is admissible, & = (x*)" <|s|. Thus & ¢ O(x) so
s | [k, &) ¢ S&. The purpose of the next lemma is to show that this describes the
only obstacle to the above implication.

Lemma 1B.3. Suppose B belongs to Adm, se€S? and Ee O(x)N|s|. Then
s | [x, E) e SB.

Proof. It’s enough to show that s | [k, £) € SE. Let B’ = uz = (€)". By Corollary
1A.4(a), f(x, B', X, N B") is P2 -generic over Lg. (and PE-3-generic over L. if
B’ is recursively inaccessible). But X, N B’ =X, . g s0 (a) is satisfied. (b) is
satisfied as it holds for s and can be verified inside any L, such that s [ §e€ L,,
L, Ex =largest cardinal. [

The next lemma is useful in establishing that a partial function s belongs to § 4
It also points out a redundancy in our definition of S%.

Lemma 1B.4. Suppose B € Adm, k =gc B, s:[x, B)—2, s is A}(A(u3)). Define
X, as in (a) above. If f(k, B, X;) is @g-generic over Lg (PE-3-generic over Lg if B
is recursively inaccessible), then s € S.

The proof of Lemma 1B.4 depends upon a technical fact concerning the
forcings P2. This fact intuitively states that conditions in ?£ are constructed out
of element of the various S%.

Lemma 1B.5. Suppose BeAdm, ke B-Card, s:[x, B)—2 and f(x, B, X,) is
PB-generic over Lg. Let x<k'ef-Card. Then s![k',E)eSE for Ee
((x")*) N O(x').

Proof. Deferred.

Now we can provide:
Proof of Lemma 1B.4. We must verify that (b) holds for s. Note that
|s| = B € O(x) as K is the greatest B-cardinal. We must show that & € O(x) N g —

s & is AY(L(uD). But E€ O(k)NB— & <(x*) so by Lemma 1B.5 we have
that s | & € 5. Thus by definition of S{ we have that s | §is Af(s#4(ug)). O
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Lemma 1B.4 implies that the definition of S would remain unchanged were
condition (b) replaced by “s | & is AT(H(u?)) for all £ € O(x)N[B, |s|].” This is
the redundancy referred to earlier.

We end this discussion of the $%’s by stating a lemma concerning extendibility.
It is closely related to the Generic Existence Lemma.

Lemma 1B.6. Suppose § € Adm, k € B-Card, s.€ SE. Then for all £ < (x™)"* there
exists tos, te SE, |t| = &.

Proof. Deferred.

Generic codes

A condition in %% is obtained by fitting together elements of S5 for
kK <y e B-Card. The part of the condition in S? helps to code the part of the
condition in S, into a subset of y* (where y* denotes (y*)").

Fix B € Adm and let y be.a f-cardinal less than gc 8. To simplify notation we
use y* throughout to denote (y*)™. Also fix s € S5.. We wish to describe the
forcing R® for coding s into a subset of y*. This is a variant of almost disjoint
coding (with generic codes). The following lemma is proved in the appendix to
Jensen [7]:

Lemma (Jensen). There exists a sequence (bs|y* <&E<y**) of subsets of y*
such that bg is (uniformly) definable over L, and whenever g:y—[§, v*™),
g € Lg, the sequence (b, |i <v) is Cohen generic (as a sequence) over L.

Jensen establishes this lemma using & and a gap-1 morass at y*.

The above lemma can be used as in [7] to code s into a subset D of y* by
requiring: s(§)=1 iff DNS(g) is bounded in y* (where S(b)=
{Code(b i) |i<y™} = y™). This coding is not good enough for our purposes.
The reason is that we must have that initial segments of (the characteristic
function) of D belong to S, and are thus generic codings for forcings associated
with elements of Adm N y*. Thus we want that not only are the bs’s mutually
generic but the same is also true of the restrictions b N for many a € AdmnN
y* (with respect to some appropriate forcing). Cohen forcing can no longer be
used as Cohen genericity for b implies that for large intervals (a;, a,) below y™,
b: N (a;, &) =9. In fact the appropriate forcings €* must be defined by
induction on «.

Now it is too much to ask that b N a be €*-generic for every a as by <> there
are stationary many o < y* such that bz N « is constructed in L ‘quickly’ after a.
Instead we require that b; N « is either generic or coincides with some b2, where
the b’s relate to & much as the b;’s relate to y™.

Fitting the above requirements together requires the use of a gap-1 morass at
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y*. In fact we shall make use of the particular morass constructed in Stanley [8].
Our construction of the bg’s is similar in spirit to Jensen’s proof of the above
lemma, but is complicated by the fact that we require so much genericity.

A word of explanation: the generic codes construction in this part is not
sufficient for the correct definition of R°. We include it, however, both as
motivation for the supergeneric codes of Part C and as a model for later
extendibility arguments.

We now describe the construction of a morass in [8]. First we review the
S-hierarchy for L (see Devlin [3]). The Sg’s, B € ORD are increasing transitive
sets such that |J{S;|B€ORD}=L and S NORD =g for limit ordinals B.
Moreover Sg., = Rudimentary Closure of Sg U {Sg} and S carries a 3;-definable
well-ordering, uniformly in B. The usual Skolem hull and transitive collapse
arguments from L work inside each Sg, B a limit ordinal. Fix a limit ordinal 8.
The 3,-projectum of B, p5, is the least ordinal y such that there is a
2,(Sg)-injection from B into y. Jensen showed that if X is a bounded subset of
pE, X is %,(Ss), then X € S5. He also proved the existence of a Z,-master code for
B; a set A c p® which is 3,(Sg) such that B c pf is Z,(L,s, A) iff B is Z,..(Sp).
We let A? denote a canonical choice for a 3,-master code as in [3].

Now for all o let T, ={v | v is p.r. closed, L, k « is the largest cardinal}. For
any v € T, we set B(v)=least  s.t. v is singular in Sﬂm, n(v)=least n s.t. v is
3,.(Sgvy)-injectible into a, p(v) = pht,,—; and A(v) = Af,)_;. Also p(v) =least p
s.t. there is a X,(S,(,), A(v))-injection of S, into a with parameter p. Finally
L(v) = (S, A(V)). We write a(v) = o when ve T,.

If ¥, v are p.r. closed we write f:v=>v if f: aﬁ(v)—-—> A(v), Range(f) 2
{a(v), p(v)} (and v eRange(f) if v<p(v)). Also A(f)=supf[¥] and C, =
{A(f)|f:¥> v for some ¥, A(f) <v}.

It is convenient to modify the definition of C, in the case where C, is bounded
in v. In that case there is a least parameter g(v) s.t. the X;(s(v))-Skolem hull of
{p(¥), g(v)} is unbounded in v (when intersected with v). '

Let h, be the canonical X;-Skolem function for /(v) and let £} be the
canonical ordinal code for L, Nh,[n X {p(v), g¢(v)}] and define &= (EL, E})
where (£!|new) is an w-sequence cofinal in v which codes a A;(v)-Master
Code for (v); i.e., a subset of L, is A; over &(v) iff it is A; over
(L,,{€!|new)). This is easily accomplished using the fact that X,-
cof(4(v)) = Zi(£(v))-cof(v). Then set C, = {E%|n € w}. Also choose the £ so
that part (e) of the Jensen theorem below remains true. See Lemma 6.41 of
Beller-Jensen—Welch [1]. Define C, = {&},| n € w} if C, is bounded in v; C,=C,
otherwise. Jensen (essentially) proves:

Theorem (Jensen). (a) C, is uniformly p.r. in v, B(v) and is-closed unbounded in
v.

(b) If v’ is a limit point of C,, then C,.=C,Nv'.

(c) Ordertype(C,) < a(v).
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(d) Iff:9>v, then f | Ly:(Ly, C}) => (L,, C})

>

(e) If g:{Ly, C) = (L,, C.), then C = C,, and g extends uniquely to f:v=> v,
fe(¥)) =p(v).

We are almost ready to define a gap-1 morass at y*. A Q-formula is one of the
form Vo 3o’ > o ¢ where ¢ is 2, (and o, ¢’ are variables for ordinals). Suppose
f:d— s is a monomorphism of amenable structures. We write f: 43 o if
whenever y(ay, ..., a,) is a Q-formula with parameters a, ..., 4, from A,
AEY(@,...,ad,) iff LEY(f@,),...,f(a,)). In this case we say that f is a
Q-embedding. A 3y-embedding which is cofinal is automatically a Q-embedding.
A Q-embedding need not be a X,-embedding and a X;-embedding need not be a
Q-embedding.

We also define here the notion A7 which is used in (b) of the definition of Sf.
Let ve T, and let & = #(v). Then X c L, is () if X can be defined over
(L,, C)) by a X ;-formula. If both X, L, — X are (&), then we say that X is
AF(sf). It can be shown that A,() c A (4) c Ax(s4). An important property of
A} (sf)-sets is that if f: s/ — o is a cofinal X;-embedding, p(v) € Range(f) and
XcL,is Af(), then f7'[X] is Af(s8). This will be useful in our discussion of
the forcing R® in Part D.

Work now in Lg. Let % consist of all « € Adm, o>y such that L, Ey is the
largest cardinal. (Recall that y is a B-cardinal<gcB.) T=U{T,|ae¥U}. If
v, ve T we write ¥ <v if there exists g:¥=> v such that g | «(v) =id | a(¥),
g(a(¥))=a(v) and g | L;:L;5 L,. Moreover, g is unique and we write
g | Ly=m;,. Also define v <v iff (v <v and ¥ # v). It is shown in [8] that we
have defined a gap-1 morass at y* in this way. Thus the following properties
hold:

(M1) If ¥ <, then &y, maps T,;)N ¥ into T, N v so that (denoting 7.(¥) by
v):
(a) 7 imitial in T 45y—> v initial in T 4.,
(b) 7 the T ,()-successor of B— y the T,,-successor of B = m5,(B),
(c) 7 a limit point of T )~ v a limit point of T ,,).
M2) v<v, yeT,syNv—>¥=<my(y)=7v and 75, = 75, | Ls.
(M3) {a(¥)| v <v} is closed in a(V).
(M4) v not maximal in T, y— {«(¥) | ¥ < v} is unbounded in a(v).

(M5) {a(¥)| ¥ <v} unbounded in a(v)— L, =|J {Range(x;,) | ¥ <v}.

(M6) v a limit of T,;y, v<<v, A={J(Range(7;,)Nv)—=> V<1 and m;, [ v=
oy r v.
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(M7) Suppose v is a limit point of T,;), v=<v and &, is cofinal. If
ae{a(y)| y<y<m,(y)} forall y € T, N ¥, then a € {a(y) | ¥<y=<v).

The verification of (M1-7) can be found in [8]. The need for Q-embeddings (as
opposed to X;-embeddings) is in the verification of M1(c).

We now define the morass relation 4. Set ¥ <, v if ¥ immediately precedes v in
<. Then t4vif there are ¥ <, v, T€ T o5 NV, T <, T<7;,(7).

Lemma 1B.7. (a) is a tree.
(b) Tdv—a(r)<a(v)
(c) If <, v and m, is cofinal, then v is a limit in 4 and a(v) = {a(7)| 71

v}.

Proof. (a) This is clear, using M2.
(b) If t4v, then a(7) < a(7’) where 7' = 7;,(7) and T <, 7. But &(7') = a(v).
(c) For T € T,;3)N ¥ let n(T) be defined by T <, (7)< 7;:,(%). Then v is the
+limit of the 7(z). By M7, a’' =\ {a(n(%)) | T € T o3y N ¥} must equal a(v') for
some v' such that v <v'<v. As ¥<_, v we must have v' =v. O

We now proceed to discuss the generic codes b: for € T+ ={§|§& is p.r.
closed, £ <B, LgFy" is the largest cardinal}. To do so we must define a number
of auxiliary notions. For ve T let W(v)=T,;y)— v where v <, v (if such a ¥
exists). To define the bg’s, § € T+ we must in fact define sets b, for all v € T. The
definition of b, for a(v)<a e is by an induction on « in which we
simultaneously define b,., v € W(v), a(v)<a and forcings €% where X € I, is
described below. For a € U, v(a) denotes max(T,) if T, #0, « otherwise. Also
set T, =T, U {v(a)+1}.

Definition. Suppose o€ U, o<t belong to T,. Then T(o,7)={veT,|o=<
v<t}. For BeWU set Iy={T(o,7)|o<7 belong to T, o=min7T, and
aeUNP}.

We attempt to offer some explanation for the sets I;. We wish to obtain
genericity for an arbitrary y-sequence (b, |j<y) as in Jensen’s lemma. It is
convenient to only consider sequences of a special form (and argue that this is
sufficient). Using I; we can describe which sequences from {b, | v € T3} that we
allow: We typically consider (b, | v € T(o, 7)) where T(0, t)els, <7 € T},
7 =7.... One type of condition in €% is such a sequence where X = T(o, 1),
B < a. Note that we can have v = the T,-successor of g, in which case T (o, 1)
is a singleton.

We now define the b,’s, b,,’s, €%’s. We want to maintain the following
properties:

(@) by:[y, [b,)=2, bue:ly, |byc])—>2 where |b,|=a(v), |b.|=0a(v) if te
W(v).
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(b) v<v—>b;ch,.

() v<,v—b,;=b,.

(d) t4v, e W(v)—>b,,cb,,.

(e) If pe€% then dom(p)=Xel, and for some |p|<a, all ieX,
p(@):[v, Ip))—2, pG) 2b.. If p, q € 6%, then p <gq iff p(i) 2q(i) for all i e X. If
oy, < a, belong to U, then €% < €% for all X e l,,. If p € €%, n <a, then there
exists g <p, |q| = 1. :

Let €x=\J{%6%|ae¥ and Xel,}. For X=T(o, v) we use |X| to denote
a(0).

(f) Suppose p € €x and n > |X|. Then p" € €x where p”(i) =p(i) | 7.

(g) Suppose X =T(o, 7), min(X)=min(Tx) =0, T<1'€T,. Define p by
p()=b,, for ieX, where #=m,.. Then pe éy. Also for each ie X let
€@, )={q 1 (X—i)|qe €% and q(j)cp(j) for all jeXNi} and G(p,i)=
{re €%_;|r(j) cp() for all je X—i}. Then G(p,i) is €(p, i)-generic over
Lu(p 1)

A special case of the last statement in (g) is when i = o: Then we are asserting
that {q € €% | p <q} is 6%-generic over L, .

By induction on « € % we define {b, | a(v)<a}, {b,.|a(v)<a«a}, €% for
X e L,. If & = min(%), then I, =@ so there is nothing to define. If « is the limit of
elements of U, then €3=J{€% |a'eUNa, Xel,} for all X € I,. Also note
that b,., b, for a(v) < « are already defined by induction. Now suppose that «' is
the least element of U greater than & € U and we want to define {b, | a(v) = a},
{b,.| @(v)=a}, €% for Xel,..

The definition of b,,, b, for a(v) = a, T € W(v) breaks into cases. Fix v such
that a(v) = a.

Case 1: v is initial in <. Set b,(n) =0 for all n €[y, a(v)).

Case 2: v a limit in <. Then b, = {b, | t<v}.

Case 3: v a successor in <. Let v<, v and & = a(¥).

(3a) v is initial in T,. Let X=T(V, v(&) +1)=T5 Then X € I,. Choose the
L-least G such that G is €%-generic over L, (the existence of G is justified by
Lemma 1B.9 below). For te Ty,=W(v) let b, = {p(r) |p € G} and b, = b;.

(3b) v a successor element of T,. Then v is a successor in ; let v’ immediately
precede v in 4. Define X = T(¥, v(a) + 1) = W(v). Then X €l,. Alsolet Y =T,.

We define the forcing €% by: p belongs to €% iff p =q [ X where g € €% and
q(i)c b, forall ie Y — X =T ;N#. Define p(i)=b,, for i € X. Then p € €%
(to be justified later). Now let G be the L-least €x-generic over L, such that
p€eG (the existence of G will be justified later). For te X set b,, =
U{p'(®)|p' € G} and b, =b.s.

(3c) v is a limit in T,. Let A=\ n.[v]. If A=, then set b,. =\ {b,| ¥'A
v} and b,=b,,. If A<v set v<,v' <A, X=T(¥, v(&)+1)=W(v) and
Y=T,

We define the forcing €% by: p belongs to 6% iff p =¢q | X where g € €y and
q(iyc b, ¢ forallieY —X=T;N". Define p(i)=b,, for i e X. Then p € €%
(to be justified later). Now let G be the L-least G such that p e G and G is
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€y-generic over L,. (The existence of G will be justified later). For 7€ X set
b,.=U{p'(r)|p'€G} and b, = b,s.

This completes our construction of the b,’s, b,,’s.

We now consider €% for X €l,. First we define {p € €% | |p| = @} when
X el,. This consists of all p such that pe L, , Dom(p) =X, p(i):[y, a)—2,
p(i) 2 b; for all i e X and:

(i) Let X,(p) = {i € X | p(i) is equal to b, for some v € T,}. Then X,(p) is an
initial segment of X. If i belongs to Xo(p), then p(i) = b, ;) where i <v(i) e T,. If
i <j belong to Xo(p), then v(i) = 7, ;(i).

(ii) Suppose o = sup(Xo(p)) and o € Xy(p), 0 <, v(0). Then p(i) 2 b, for all
ieX—o.

(ili) For each ie X let G(p,i)={q € €% q(j) = p(j) for all j € X —i} and
G(p, i)y={r | (X —1i)|r e 6% and r(j) cp(j) for all j € X Ni}. If i € Xo(p), then
G(p, i) is €(p, i)-generic over L, (p 'i). Suppose X;(p) =X — Xo(p) is non-
empty and let v(p) =min(X,(p)). Then G(p, v(p)) is €(p, v(p))-generic over
Ly (@ 1 v(2)).

Continue to assume that X € I,. We now want to define €% (including those p
such that |[p| > «). Basically we put little restriction on p(i) | [«, |p|) but we do
want a key property: p(i) | [, |p|) uniquely determines {p(j) | [, |p|) |j<i),
at least for p.r. closed ordinals |p|. This is captured by the following definition:
p € 6% iff p e €% or:

(i") Dom(p)=X, p(i):[y, [p|)—>2forallie X, a<|p|<c«'

(ii") Suppose i <j belong to X and (a +i, &) <|p|. Then p()({x +i, §))=
p()(E). ({-,-) is a canonical pairing on ORD X ORD).

(iii') Define p” by p™(i) =p(i) | n. Then p* € €% and p” € L, for all 7.

If Xel, —1,, then €% consists of all p such that p(i)o b, for all ie X and p
obeys (i'), (ii') and (iii") with “p*e€ €% deleted. If p, g € €%, then p <g iff
q =p" for some 7. This completes the definition of the forcings €%.

We now must verify properties (a)-(g) and justify the various steps in the
construction of the b,’s, b,.’s. This verification is dependent upon a number of
lemmas, the key one being the Extendibility Lemma for €% (Lemma 1B.9).

Lemma 1B.8. (a) If p € €% and > |X|, then p" € €%.
(b) If p, q € €%, |Ip| € U and p(i) = q(i), then p(j) = q(j) for all j e X Ni.

Proof. (a) We can assume that |p| e % and min(X) = min(7'x;) =i. By defini-
tion, G(p, i) is €(p, i)-generic over L, so it follows that p” | (X —i) € €(p, i)
for each 7 e (|X], |p]). But X —i =X and €4(p, i) = €' so p" e €% for such 7. It
is clear that for n=|p|, p"=p € 6%.

(b) By induction on |p| =|g|. If |p| is a limit of elements of %, then the resul
follows from (a) and induction. If |p| is a successor element of %, then by
definition of €% we have that p(j)}(§)=p@)({a+j, §))=q@)({a+j, &)=
g()(&) for all & <|p|, where a = %U-predecessor to [p|. O
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Our most important lemma in this part is the following Extendibility Lemma
for €%:

Lemma 1B.9. Suppose x e UNy* and X el,.

(@) If p € €%, then there exists G € L, such that p e G and G is €x-generic
over L., 4.

(b) If p € €%, n < a, then there exists q <p, |q|= 1.

Proof. By induction on o € U Ny™. If & is a successor element of U, argue as
follows: Let 8 be the ‘U-predecessor of a and first suppose that X € Is. By (b)
applied to B we have that {q € €%||q|=n} is dense on €% for all 7 <p, so by
(a) applied to B we have Vp € €% 3q <p (|g| = B). But it is obvious that p € €%,
lp|=B—3q<p (q|=n) for any n <a. So (b) holds for a. If X € I, — I5, then
(b) clearly holds. To get (a) for « note that v(«) = a, so we are only concerned
with predense sets which belong to L,. This type of genericity is very weak: Any
G < €% which is compatible, closed upward and contains conditions g of
arbitrarily large length |g| < a, is automatically €%-generic over L,. To satisfy (a)
for a pick go=<p, |q0| = B and let G = {q € 6% | 90, g are compatible, g(i)(n) =1
iff either qo(i)(n)=1 or n={(B+j, &) where jeXNi and q(j)(§)=1}.
Elements g of G of large length can be easily constructed by defining g(i)
inductively on i € X.

Now suppose that o is a limit of elements of %, o <y™. Then (b) follows
trivially for & by induction. To prove (a) for « fix p € €% and let = fB(«),
n=n(a), p=pi_,, d=9oA(a)=(S,, A(a)) where A(x) is a Z,_,-master code
for B. Note that v(a) <P as L, F @ is a cardinal. ‘

First suppose that C, is unbounded in a. Let €% consists of all g € €% such that
Xo(q) =9 (equivalently: X = X,(q)). Now define a sequence po=p,;=p,=- - - of
conditions in €% inductively as follows: po=p; p;+1 = L-least ¢ <p; in €% such
that |p;| <|q| € Cy; p» =\ {p: | i <A} for limit A < ordertype(C,). We claim that
p; is a condition in €% for each i and that G = {q € €%|p;<q for some i} is
€x-generic over Ly, GeL,,.

The proof that p; € €% for each i goes by induction on i. The case of i a
successor ordinal follows by applying (a) inductively. Suppose now that i=4, a
limit ordinal. The fact that C, N|p;|=Cy, implies that p,eL,,, as Cp, is
definable over Lgg,), B(pil) <pp- So we need only verify that G, ={qe
¢! | p; < q for some i <A} is €@ l-generic over L,,),. For i >0 let a; = |p,| and
choose f;:v:> a, A(f}) = ;. Define o;=|JRange(f;). Let h be the canonical
XP-Skolem function for &/ where p =p(a) and for each o <p let h, be the
canonical X2-Skolem function for &, = (S,, A(a) N o) (when this structure is
amenable). &, is amenable as o € Range(f;)— A(a)N o€ Range(f;). And,
o; < p since o € Range(f))— U (h,[@ X y] N @) is less than « (as « is a cardinal in
Sp)— U (hs[w X yY] N @) e Range(f;); so Range(f,) unbounded in p—
Range(f;) N & unbounded in | (k[w X y] N &) = &, contradicting A(f;) = o; < a.
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Similarly h,[w X o] N & = a; as for each a' € Range(f)) N a, o€ Range(f;) we
have U (h,Jow X &']N &) € Range(f), so (h,[ow X &])N aclJ(Range(f;)U
a)=q; Let m;:T;3h,[w X a;] be the inverse of the transitive collapse of
hs[®w X o;]. Then by Jensen’s extension of embeddings lemma (Devlin [3, p.
100]) there is &; such that T; = (S% _, A% ;). Thus for i <j we have &j 'em; =
m;(S% A% ,)—> (S5 _,,Af,). But note that T/ka; is a cardinal (or
ORD(T}) = ;) and yet there is a partial cofinal X,(7;)-function from y; into «;.
As L, Ey is the largest cardinal, it follows that &; = f(«;), T = #(«;). Thus we
have Xj-embeddings m;:(a;)— H(a;) for i<j and hence Z,_;-embeddings
#i: Sy Sp(ay- FOI limit j, Sg,y = Direct Lim((Sps, | i <j), fy).

In particular, Sg(,,)=Direct Lim({Sp, | i <A), #a). Suppose D€ L,
is predense on €%. Then 9 € Range(#;) for some i <A, Xe€L,. Then &=
A7U(D)=DNL,, is predense on €% as either “P is predense on €% is a
Xy-statement over Sg(,,) (When f(a;) > a;) or 9 € L,, (when B(a;) = a3). (In the
latter case, 9 is predense on €¥ as if p, g € €% are compatible in €%, they must
be compatible in €%.) If v(a;) < B(a;), we can assume that v(a;) € Range(#,).
In this case it follows that 9; € L, (., as v(®) = #3'(v(a)). If v(ay) = B(an),
then either n > 1, in which case v(a;) = B(a;) so again &, € L, (,,, or n = 1. In this
final case (v(ay) = B(ay), n = 1) we know that B(a;) is a limit point of T, as the
0;/s, i<A are p.r. closed and cofinal in 0, and Lg,,) is isomorphic to a
2-elementary substructure of L, . Thus we can assume that & € L, for some
1€ T, — {v(a)} and hence for sufficiently large i <A, %; € L,,, Thus in all
cases we can assume that %, € L,,,. As p; € ¥ we have that p,<some q € 9,
and hence G, meets 9.

Next we consider what happens if C, is bounded in a. In this case there is a
cofinal increasing ,(s4(a))-function g': w — p(a). As before let A(x) = AS_;;
if (Sg ) A(@)Ng'(i)) were amenable for each i € w we could proceed much as
before. Instead we take a different approach. First suppose that p(«) is a limit of
p.r. closed ordinals (this is automatic if n(a)>1). Define g:w— p(«&) to be
cofinal and X,(#(«)) so that A(a) N g(i) € S;¢+1) for each i € w. We also assume
that p(a) € S, and g(i) is a limit ordinal for each i. There are two cases:
p(a)>a and p(«a)=a. First assume the former. Let H;=h ;.o X (YU
{A(a) Ng(i)})] where hg4q) is a Z*)-Skolem function for Sg;.q). Let &;: Tf =
H; be the inverse of the transitive collapse of H; and set o; = T; N . Then Tk a;
is a cardinal, yet there is a X;(T;)-injection of a; into y. So T =Sg,, and
n(a;)=1. As before let €% denote {q € €%|Xi(q)=X}. Define po=p and
piv1=L-least g=<p, such that g€ €%, XelLy,, |g|=«; for some j>i Let
G ={q € 6% | p;=<q for some i}. We claim that G is 6%-generic. Indeed, suppose
D € L, is predense on €% Then for some i, D € H; as | J{H,|i€ 0} =L,
and p(a)>a. We can assume that &9 € L, where o € T, N H; (since p(«a) is a
limit of p.r. closed ordinals). Thus %;,=% NL,, belongs to L, and hence
pi<some q € ¥;. So G meets 9.

We must consider the possibility that p(a) = a. If n(«@)=1, then B(a)=a is
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inadmissible with X,-cofinality @ (as otherwise C, is unbounded in «). Choose a
>,(L,)-cofinal sequence (&; |i € ) and given p, € €% define €5 and (p; |i € »)
as before. Then P € L,, 9 predense on €% implies & € L,, for some i, so p;
meets 9. Thus G = {q € €% | p; < q for some i} is €%-generic over L,. Similarly
if B(a) = &, n(a)>1, then choose a Z,((a))-cofinal sequence (a;|i<w) in a
and given po € €% define €% and (p; |i(w) as before. Then G ={g € €% |p;<q
for some i} is again €%-generic over L,.

So we can assume that n(a)>1, B(a)>a. Let j<n(a)—1 be the largest j
such that pf®>q (0<j exists since B(a)> ). Let p'(a)=pf®, '(a)=
(Spay AP®) and p'(@)=least p €S, such that there is a 2y(L'(®))-
injection of S, into « with parameter p. Now choose g:w—a to be
>,(A(a)), cofinal and define ay<a;<---, Hyc H,c--- inductively by:
H, = 3%'-Skolem hull of g(0) inside &'(@), ao=HyN a; H;,; =% *-Skolem
hull of g(i +1)U{a;} inside &'(«), a;1;=H;,;Na. Then U{a;|iew}=a.
Given po € €% define €%, p; as before. If & € L, ), then P € H, for some i as
v(ie)sp'(a), U{H/|iew}=o"(a). If v(a)<p'(a), then DN L, €L,
provided v(a) € H,. If v(a)=p'(a) then v(a;) = ORD(T;) where m;: T; =H; is
the transitive collapse of H;, since z; is a X;-embedding into &'(«). So again
P UL, €Ly, Thus, if @ is predense on €%, it follows that p; meets & N L,,
and hence G = {q € €% | p; <q for some i} meets 9. Thus, G is €%-generic over
Lo

\(?V)e consider the case: C, bounded, p(a) > a but where p(a) is not the limit of
p.r. closed ordinals. Thus we have p(a) = B(a), n(a)=1. The argument that we
used earlier succeeds if v(a) < f(a) for then P € L, (o) implies XN L, € L,,,
for some i such that v(a)e H;,, We are left with the case v(a)=B(«x) is a
successor element of T,. Choose a cofinal X,(Lg))-function g:w— B(«&). Our
main claim is that if poe €%, i€ w, then there exists p <p, in €% such that
p € @* for all predense @ c 6%, 9 € H; = 35*-Skolem hull of y inside L. To
prove this define po=p,=- - - by: p, is defined. Bo=0. p;., =least p <p, in 6%
such that for some & € H; as above, p € D*, p; ¢ D*. B;,1=Hj,1Na where

11=25@-Skolem hull of [p]+1 imside Ly, pi=U{p:li<i}, Bi=
\U{B: | i <A} for limit A. Then p, is a condition for limit A. The desired p <p, is
ps where & is least so that ps,, is undefined. Now given this claim, for any
Do € €% we can choose py = qo= g, = - - successively in 6% so that | {|q.| |i<
o)} =a and g;,, € 9* for all predense 9 c €%, 9 € H.. Thus G={q € €% lg:<q
for some i} is €%-generic over L, ,), as desired. [

We next want to establish a version of the preceding lemma for the forcings
é(p, i). To do so we need a somewhat more general class of forcings to consider.

Definition. Suppose min Tz = 0, <7 <v belong to Tz and let X = T(0o, 1),

Y=T(t, v). Suppose peCx. Then %5 consists of all ge € el such that
lal €

p q € 6xuy-
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Lemma 1B.10. Let X, Y be as in the preceding definition.

(a) Suppose p € 6y, |p| =a €U and q € €%. Then there exists GeL, , g€ G
such that G is 65-generic over Ly(P)-

Moreover, if g(G) is defined by q(G)(i) = {q(i) | g € G} for each i €Y, then
pUq(G) € €xuy-

(b) Suppose p € €x, q € 6%, n<|p|=a € U. Then there exists q' <q in 6%,

"= n.
lq (lc) Let re¥by, |[rl=aeU and suppose that G=G(r | (X—-0)={pe
é(r, o) | p()) cr(i) for all ie X~ o} is €(r, o)-generic over L,(r | o) where
b, = r(0) if 0 € Xo(r); v = v(a) otherwise. Also suppose that H is €’-generic over
Lyo(r). Then {pUq|peG,qeH, |p|=|ql} is €L Z,uygeneric over
L.(r | o).

(d) Suppose pe €x, p’<pin bx, |p'|=aecU andre bxyy, r | X=p. Then
there exists r' <rin €xyuy, r' | X=p'. Conversely, if r€ €x_y, thenr | X € 6.

Proof. By a simultaneous induction on & € U. We prove (c) using (d) for ¢’ < «,
(a) using (c) and (b) for o’ < a, (d) using (a) and finally (b) using (d) and Lemma
1B.9.

(c) Suppose @ € L,(r | o) is predense on 6%'%,y. We wish to find p € G,
g € H so that p U g meets 9. Let 9y={p € 6(r, o) | p=p' | X for some p’' € D}.
We claim that &, is predense on €(r, o). Indeed, if p,€ €(r, o), then by (d)
inductively we can find g, so that p,U go € €% %,y and then choose p’ <p,U ¢,
meeting 9. Then py=p’ | X — o meets 9, and py € €% by the second clause of
(d), .inductively. Now, as %, is predense on 4(r, 0) and Zye L, (r | 0), the
genericity of G implies that 2, = {g € €% | p Uq € 9@ for some p € G} is predense
on €%. The genericity of H over L,.,(r) and the fact that @, € L,,)(r)=
L.(G) imply that H meets 2;. So {pUq |p € G, g€ H, |p| =|q|} meets 2.

(a) To prove the first statement the idea is to imitate the proof of Lemma
1B.9(a), using (b) inductively in replace of 1B.9(b). To verify that the argument
goes through one need only note two facts: First, the fine structure theory that we
applied to the structures H(«), a € U (and H(v),veT) still works when
relativized to a predicate p ¢ L,(p < L,(.), respectively). This is because L, F v is
the largest cardinal so when Skolem hulls inside s#”(«) (the relativized version of
#A(a)) are collapsed, p collapses to p N Lg for some B < a and Jensen’s extension
of embeddings lemma therefore still applies (similarly for &#°(v)). The predicate
p that we must consider is of course the p in the statement of (a), or more
properly {ge éx|p=<q,p#q} <L, Second, we claim that p preserves the
property “L, ka is a cardinal” or equivalently “L,)ky" exists”. In other
words if p € 6x, |p| = a, then L,(,)[p] F o is a cardinal.

To prove this last assertion we first make the following observations: The proof
of Lemma 1B.9 showed that €% is y-distributive in L,,). Indeed, note that in the
course of building a €%-generic set over L, the components of any given
y-sequence from L,,(,,)ﬁof predense sets are all met by some stage of the
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construction. Also one has the following general forcing fact: If PelL, is
y-distributive in L,, L, Fy™ exists, then L,[G]Ey" exists for any G which is
P-generic over L,.

Now we can establish our earlier assertion. First note that for all n <v(a),
g,=p 1 {ieX|p(@)=b, for some v=<n} belongs to L, for there exists
teT,, T<n and o<t such that ¢q,(i)=b, (i) for all i (namely set 7=
sup{v | b, € Range(p), v <n}); thus g, is definable over &(7) and so belongs to
L, (). Now suppose that L, ,)(p) F a is not a cardinal and choose n < v(«) so that
L,(p)Ea is not a cardinal. But p=gq,Up’ where p'=p [ X', X'=X~-
Dom(g,) and G(p') is €%-generic over L,, 7 =least element of T, greater than
7. But then (by induction) G(p') is generic over L, for a forcing ? € L, which is
y-distributive in L,. So L.(G(p'))=L.(p')=L.(q,, p’) = L.(p) k « is a cardinal,
contradicting the choice of n <7.

We now consider the second statement in (a). To verify that p U q(G) € €xuy
it suffices to show, letting r =p Uq(G), that G(r, i) is (sufficiently) €(r, i)-
generic for all i € Xo(p) U {v(p)}. (Condition (ii) in the definition of €y is met
as g(G) is the union of conditions in 4%; if ie Xy(r) U {v(r)}, then either
ie Xo(p)U{v(p)} or i=minY, in which case the genericity of G(r, i) follows
from the choice of G.) But this follows immediately from (c), replacing X — ¢ in
(c) by X—i, r by p and noting that the genericity of G(p | X —i) = G(p, i)
follows from the fact that p € €x.

(d) The first statement follows immediately from (a) by replacing p by p’ and ¢
by r [ Y. For the second statement we need only check that G(r | X, i) is
sufficiently 4(r | X, i)-generic for ieXo(r } X)U {v(r | X)}. We know that
G(r,i) is sufficiently %€(r, i)-generic for ieXy(r)U{v(r)}2Xy(r } X)U
{v(r | X)}. Now let & be an appropriate predense set on 6(r | X, i) which we
wish to show is met by G(r | X, i). Let 9'={qeb6(r,i)|q | (X -i)eD}. It
suffices to show that 9’ is predense on €(r, i) for then the genericity of G(r, i)
implies that G(r | X, i) meets 9. So let r' € €(r, i) and choose p’' <7r' | (X —i),
p' meets 9. But now by the first statement in (d), there exists " <r’ such that
r" 1 (X —i)=p' and therefore r" meets 9'.

(b) This follows from (d), replacing p by p'!, p’ by p, r by (p!?)) U g and then
the desired g’ isr'" [ Y. O

We need one more lemma in order to complete our study of the generic codes.
As with the preceding lemma, though we have only one property in mind to
establish (part (b) in Lemma 1B.10) we must ‘carry along’ a number of other
statements in order to provide an inductive argument. The property that we are
now after is the claim “Then p € €x” in property (g). Conditions of the form
p(i) = b, where x is a morass map (& = &, for some o < t) are called standard
conditions. Thus we are trying to show that p defined in this way is in fact a
condition (in €y, X = Dom(p)).
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Establishing this depends upon other properties which are based on the idea of
‘thinning’.

Definition. Suppose p € €x where X =T(0, ), o=minT|y. Suppose X =
T(5, ), 6 =min T|g where T<7'€e XU {7} and 7= Ty A thinning of p is a
function g of the form ¢ (i) = p(«(i)) where Dom(q) = X, & are as above.

Lemma 1B.11 (Thinning Lemma). (a) Suppose X e I,, sup(X) =t <71€ T, and
p is defined on X by p(i)=b,_. Then p € €x.

(b) Suppose X=T(o,t), Y=T(t,n) where minTz=0<t<neT; and
peby, |lp|=aelU. Suppose G is 6%-generic over L, (p). Define q by
g(@)=U{q'() | q' € G} for i € Y and suppose that p U § is a thinning of pUgq, p
a thinning of p, q a thinning of q. Then G(q)={G’ € 6%|q'(i) = g(i) for all
i € Y} is 65-generic over L.,,(p) where ¥ = Dom(§).

(c) If p € €x, |p| = @ and q is a thinnning of p, then q € €.

(d) Suppose X=T(o,t), Y=T(zr,v) where minTz=0<t<veTs and
pe%bx, lp|=aeU. Suppose v<v'eXUYU{v} and let X=x"[X], Y=
x (Y] where & = n;,.. Suppose q € €% and G(i) 2 q(n(i)) for each i € Y where
p=pen X, pUGe%bzuy and G(G)={G' €6%|G=<q'} is €%-generic over
L, 2)(P). Then there exists q' < q in €, such thatpUgq' € €xuyand q'on | Y =3.

(e) Suppose p € €x is a thinning of p € 6x and G<p in €%, |G| = a € U. Then
there exists g <p in 6x such that g is a thinning of q.

Proof. By induction on a € U%. We prove (a) using (c) and induction, (b) using
(e) for B < a, (c) using (b) and (a) for B < a, (d) using (e) for B < & and (e) using
Lemma 1B.8, (a), (d). (Lemma 1B.10 is also used.)

(a) We can assume that 7 is a T,-successor or 7 is a T,-limit and =x;,[%] is
cofinal in 7. For, otherwise replace t by t’' =sup w;,[7] and then (M6) implies
that T < t’. We must show that for i € X, G(p, i) is sufficiently €(p, i)-generic.

Let & € L,;(p [ i) be predense on €(p,i). If 7 is a <-limit, then we can
choose ©’ <7 so that & € Range(n,,). Choose i’ € T, so that i’ <z (i); this is
possible as it is easily checked that (in general) o<1, '€ Range(r,.),
o<v<1—3v'<7'(a(v')=a(v)). Note that P eRange(w;,;) and
@D N Lyery= 2. By induction p' € €x_; where p'(j)=b,_;, and therefore
G(p’) meets @ N Ly, since D N L,y € L (p*™ | i). So G(p, i) meets 9.

Now suppose that 7’ <, 7. By (c) it suffices to consider the case 7’ = 7. First
suppose that 7 is a T,-successor. Let X'=(X —i)— {7} (TeX since T is a
T yry-successor and T =sup X). Let p’=p | X' and & = a(7). Then by construc-
tion b, =\ {q(%) | g € G} where G is sufficiently €%. _,-generic. Now pick any
v' <v = T,-predecessor of 7, ¥ = (T s-predecessor of 7)<v’, & € Range(r,.,).
Then by induction q' € €x. where q'(j)=b,_ . and also G(q) is sufficiently
%%, —+-generic where g€ G, |q|=a(v’'). It follows from Lemma 1B.10 that
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q'Uq e €r_;and hence ¢"=q' U {(7, b, )} € €x_.. Now as before G(q") meets
D N Loy so G(p, i) meets D.

If 7is a T,-limit, then pick v' 47 so that & € Range(x,..) where v <, ¥' <7’ =
7(v). Let p’=p } (X —i)N¥ and note that for each jeT,N[¥, T], b,,;=
U {q(j) | g € G} where G is a (fixed) sufficiently %%, _;-generic set. By Lemma
1B.10, p' Uq' € €r,n;;, v) Where q'(j)=b,.; for je TzN [V, 7]. Thus G(p' Uq’)
meets & N L, and hence G(p, i) meets P. :

(b) Let 9 € L,(,)(P) be predense on 6%; we want to show that G(§) meets 9.
Let D={q' € €%|q'onm | Y € D} where 7 ‘witnesses’ the fact that § is a thinning
of q. It suffices to show that & is predense on 6% for then the genericity of G
implies that G(g) meets 9. Given q' € €% let §' extend q'°x | Y, §' meets 9.
By (e) inductively there exists g” < g so that ¢’ is a thinning of ¢". Of course the
witness to this last fact must be z | Y and so q" meets 9.

(c) This is clear from (a) if Xy(p) = X. So we can assume that v(p) is defined.
Again by (a), g | v(q) € €x,,)- By Lemma 1B.10 it suffices to show that
G(q, v(q)) is sufficiently €(q, v(q))-generic. By definition, g | Xy(q) is a thinning
of p | Xo(p) so (b) applies to show the genericity of G(g, v(q))-

(d) This is proved much like Lemma 1B.10(a), whose proof is patterned in
turn on the proof of Lemma 1B.9(a). In this case we want to successively extend
g to meet predense sets on €5 which belong to L,,)(p) but with the restraint
imposed on all conditions ¢g” that ¢"°(x | Y) € G(g). (If we succeed in meeting
all of those predense sets in this way, then we have constructed a sufficiently
€%-generic G and hence by Lemma 1B.10 we have the desired q' defined by
q'@)=U{q"() | q" € G}.) The key question is whether the restraint imposed
interferes with meeting predense sets. It does not provided that given an
appropriate 9 which is predense on €% and ¢” € €% such that g"-(x | Y) € G(§),
we can extend q” to q" meeting @ so that g"o(x | V) e G(g). 9= {q"°
(w1 Y)| g" € @} is predense on 6% by (e) inductively. Thus the proof reduces to
the following:

Lemma 1B.12. Suppose p € €y, p UG € €z where X, XUYel,, |p|=13|=
[P UgG|=a e Uand Xo(p U q) < X. Also suppose that p is a thinning of p € €y and
Range(g§) NRange(p)=0. Then G(§)={G' € €%|G=<q'} is 6%generic over
Lv(a)(p)-

Proof. Deferred to Part C.

(e) Choose 7' € T, to be sup{v € T, | b, € Range(g)}. Pick 7 < 7', 7 € T x (this
is possible by (M7), the ‘second continuity principle’ for morasses). Then
p' € €xn. where p'(i) =b,_ | [p|, by (a) inductively. But p | 7 agrees with p’
on cofinally many ie XN7 so p | t=p' by Lemma 1B.8(b). So we define
qi)=b,_u for ieXNt. Also G(@G!(X—7%)) is %(g, T)-generic over
Ly)(G I T) where Te Tz, T<7. So by (d) there exists ¢’ € €x_,, (¢ I (XN
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T))Uq' € 6y, q'°om | (X — %) = § (where x ‘witnesses’ that p is a thinning of p).
Finally let g =(q | (XN 1)) Ugq’. Then q is as desired. O

At last we can verify properties (a)—(g) and show that the construction of the
b,’s, b,,’s is well-defined. The assertions “|b,|= a(v)”, “|b,.|=a(v)” in (a)
follows from 1B.11(a) and 1B.10(b), using the definition of 6%. (b), (c), (d) are
clear by construction. (e) is clear, its last statement following from Lemma
1B.9(b). (f) follows from Lemma 1B.8(a). (g) follows from 1B.11(a) and from the
definition of €.

Now for the construction of the b,’s, b,,’s: Case (3a) is handled by 1B.9(a).
For (3b) use Lemma 1B.10(a). Case (3c) uses 1B.10(a), including its second
statement to justify “p € €%”.

C. Successor cardinal coding II: Supergeneric codes

In this part we refine the construction of the generic codes given above. The
need for this is to establish Lemma 1B.12, which is not true for the generic codes
as built in Part B. This ‘mutual-genericity’, or ‘amalgamation’ property is also
needed in the proof of extendibility for the forcing R® to be defined in Part D. We
also deal with X-genericity in this part.

We must now define {pebx||pl=a} for all Xel, simultaneously to
guarantee the desired mutual genericity. In order to also establish forms of
Lemmas 1B.10, 1B.11 in this new context we are led to the definitions below.

As before we define {b, |ve T.,}, {b,.|veT,, e W(v)} and €% Xel,
by induction on e U=U(y) (where U=% of Part B and 7., denotes
U{T | @' € UN a}). The heart of the matter is to define {p € €% | |p| = &} for
X €1, where o’ = U-successor of a. For XU Y e I,, X and Y disjoint and p € 6y,
lp| = a we let €% denote (as before) {q € €%|p'7'U q € €xuy}. Also for p € €y,
lp|=a, Xo(p) denotes {oce€X|p(c)=>b, for some veT,}). Set €¢4={qe
| X((pUg)) X for all neUU(X|,|qll}U{gy} where Dom(gy)=Y,
gy(i) = b; for all i e Y. (This definition of €% is not entirely unrelated to the @y
defined in the proof of Lemma 1B.9.)

To each ‘a-condition’ ¢ is associated a canonical condition p(c) in €x,,
|p(c)| = a. The notion of ‘a-condition’ is explained by:

Definition. An a-condition is a sequence ¢ = (po, (p1, p1), - - - , (ph, p»)) Where,
setting Y; = Dom(p;):

(a) Either po =0 or: po€ Gy, |pol = a is standard; i.e., po(o) € {b, | v € T} for
og€Y,.

(b) pi+1 is a thinning of p(pe, (p1, P1), - - -, (Pi> P))-

() pir1€ %QI}

(d) v(aii1) € Yiyq where a;. =Y.
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If ¢ is an a-condition as above, then X(c) denotes Dom(p,Up,) and
length(c)=n. Also set o(c)=sup{v|b, e Range(po)} if po##; o(c)=0
otherwise.

We note that the trivial thinnings p = g o, 7 =id are allowed to occur in (b)
above.

Once we have defined p(c) for the a-conditions ¢, {p € 6% | |p| = &} can be
defined to consist of all thinnings g of conditions of the form p(c), ¢ an
a-condition, which have domain X, together with all g’ obtainable from such g as
follows: Pick ip<---<i, from XU {{UX+1}, Bo,...,B.€U. Then define
q'(i)= q(i) for ie X so that the least k, i<i,, is even. Define q'(i) [ Br =
g(@) | Bx, q'()(n)=0 for all ne[B, @) if the least k,i<i,, is odd. (The
introduction of the conditions g’ is necessary for the proof of the Genericity
Lemma for R°. See Sublemma 1D.3.)

The conditions {p(c) | c an a-condition of length n} are defined by induction
on n. We wish to maintain the following properties:

(a)—(f) as in Part B.

(g) As in Part B but with the final added clause “and G(p, i) is €(p, i)-2-
generic over L, (p | i) if & (i) is p | i-admissible”.

The next property is a slightly modified version of Lemma 1B.12. As suggested
above, we must introduce certain ‘dummy’ conditions into 6x; €% is obtained by
discarding them from %€y and is defined just before Fact 2 below. '

(h) Suppose pe by pUGe iy Xo(PUG)cX and |p|=|g|=[pUg|=
aeU(y). If p is a thinning of p, Range(q) NRange(p)=49, then G(g) is
@Z-generic over L, (p) (is 63-2-generic over L,,(p) if v(«) is p-admissible).
(=Lemma 1B.12).

(i) ¢ an a-condition, BeC,, ¢’ a B-condition— p(c)=< p(c?) (where if
¢=(po, (P4 P1)s - - - » (Prs Pn)) then P = @F, @, pY), ..., (0.F, pn)))-

(j) Suppose ¥ <,v and let X, =T, NV, Y, =T,u) — X,. Let c(v) be the
a(v)-condition (1, (7, qy,)) where Dom(x,) = X,, 7, (i) = b, (i) for all i € X,,.
Then for j € Y, by; = p(c())(j).

(k) Suppose ¥<, v, ¢ an a(v)-condition, o(c)=v. Also suppose that c¢=
(Pos (Pi: P> (pr’v pn))- Then p(c) =p(c’) where c¢'= (7, (7, QYV)’
(pi: pl)’ ety (pr'v pn))

(1) Suppose v'4v, ¢ an a(v)-condition and ¢*®” an a(v’)-condition. Then
p(c)<p(c*™).

To express the remaining of our properties we introduce the morass relation
4I’. This relation applies in each of three situations:

(1) Suppose aeU(y), a=v(a) and a*=(2;-projectum of a)=y. Let
B,={a'<a|(a)* =7, p(a’)=p(a), C.r=C,Na'}. Then B4’ aiff € B,.

(2) Suppose v=v(&)>a, v*=a and v is <-minimal. For any a’ <« define
H. = Z,-Skolem hull of a’'U {p(v)} inside L,. Then o' v if o is <-minimal,
o* = a(0) and L, = H}(0).
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(3) Suppose v=v(a)>, ¥ and v* = . Define H},. as in (2). Then o’ v if
v<,0,0*=a(o) and L, = H,.

Remarks. (a) Note that C, ¢ B, in (1) above. If « is admissible in (1), then B, is
7,(L,) and unbounded in «. Also in (2), (3) we have that X,-cof(v) = «a and so
{a'<a|a’'=H) Na} is unbounded in a.

(b) Suppose a' is a successor point of C, in (1). Then B, N a’ is A,(L,). This
is important for our treatment of X-genericity when « is admissible as in (1). If v
is admissible as in (2), (3), then we will use the m,(L,)-regularity of v* = a. See
the Fact in the proof of Lemma 1C.3. Note that if v is admissible as in (1), (2) or
(3), then {o | o4’ v} is m,(L,).

In the course of our construction we shall define the property “v is active” for v
as in Cases (1), (2), (3) above. We set ol v iff (o' v is active) for v as in
(2), (3) and Bl a iff (Bl' @ and either B is active or B € C,) in (1). We cannot
define “v is active” at present as its definition is influenced by the outcome of our
construction.

We can now introduce:

(m) Suppose v’ 4l v, ¢ an a(v)-condition and ¢*®” an a(v')-condition. Then
p(c) <p(c*™).

In property (m) we mean to include the possibility v' = a(v'), v=a(v) in
which case v’ 4’ v is defined via (1) above. We will prove a number of lemmas
below which imply that the relation I’ is well-behaved and interacts well with -
and the C,’s.

We now discuss the definitions of b,(a), {by(a)s| € W(v(a))} (f v(a) is a
<-successor) and p(c) for a@-conditions ¢. Our major concern is to arrange
condition (h), which necessitates consideration of the following forcings.

Motivation. We want to define p(po, (p1, P1),-- -, (Pis1, Pi+1)) SO that its
restriction to Y., =Dom(p;,,) is %%fj;—generic over L,(pi+1). Of course the
forcing €% is defined in terms of p(po, (P1, P1), - - -, (P, p;))) which is itsell
generic; thus we are dealing here with a finite iteration. What we actually need tc
consider is many such finite iterations with the following coherence property: If c.
d are a-conditions with a largest common initial segment e, then p(c) | X
p(d) 'Y should be mutually-generic over L,,)(p(e)) and p(c) | X(c)—X
p(d) } X(d) —Y should be thinnings of p(e), where X = {i e X(c)|p(c)(i) ¢
Range(p(e))} and Y = {i € X(d) | p(d)(i) ¢ Range(p(e))}. Thus we must deal wit]
a ’tree’ of iterations. The nodes of this tree are ‘a-names’, defined below.

Definition. An «-name is a sequence ¢ = (po, (P1, P1)s - - - > (Pn>» Pn)) Where
setting Y; = Dom(p,):

(a) Either po=0 or: poe €y, |po| = a is standard; i.e., po(c) € {b, | ve T,} fc
o€y,
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(b) p, is a thinning of p, and p, € €8. Also let €(po, (1, p1)) ={q € €% | g =<
p1} and let G' denote the generic for forcing with €(po, (91, p1)) over L, ) (Po)-
In addition set G(p,, (71, p1)) =p1U G* (where G' is naturally identified with a
function on Y)).

(c) For some (py,...,p))<(py,...,p:), (Pi,-..,Pi)lFPisq1 is a thinning of
G(po, (51, P1)s---» (Pi» ;) and p;. € €41, where I refers to the p.o.
€(Po, P1, ) *- - * €(po, P1, P1)s - - - » (P> Pi))-

(d) (o, 1, P1)s - - - » P15 Pix1)) ={q <Ppin1 I for some (py,...,pi)s
(pI’ s e :pi)’ (pi: AR pt,) ”_q € %%.:11} and G(Po, (ﬁl’ Pl)’ e (p—i+1’ pi+1)) =
pirt UG (G™' denotes the generic for forcing with €(p,,

(B1 P1), - - - » (Birr, Pis1)) OVer Lyoy(po, 6., G).)
(€) v(;4y) € Yiyq Where a;,q = Y44l

Note that we have chosen ‘canonical names’ in the sense that the p,’s are not
terms but restrictions to Y; of actual elements of € We shall also assume that
Pi+1 is a term of the form G(py, (1, p1), - - - » (Pi» Pi))° Wiv1, Where ;4 Is as in
the definition of thinning.

To each a-name ¢ = (po, (P1, 1), - - - » (P, P»)) We have the associated itera-
tion %*(5) = (6(1)0’ (ﬁlr pl)) Heoo K <g(PO) (ply pl)’ ttt (p_n’ pn)) NOW_lCt JO(“)
denote all a-conditions ¢ such that o(c) <v(a). Similarly define Jy(a)= all
a-names ¢ such that o(¢) (=sup{v e T, |b, € Range(p,), po = 1st component of
¢}) is less than v(a). If € is an a-name, i <length(¢), then ¢(=i) denotes the
a-name (p0, (p_l’ pl)’ tet (p_i’ pi))) where ¢ = (pO: (ply pl)’ M (p_m pn))

Let @y(a) = {finite D c Jo(«) | ¢ € D— é(<i) € D for all i}. Then we define the
forcing ?(a, D) to consist of all functions f with domain D such that for all
ceDedya): fE)=(q1,---,q)€C*() and & <& f(6)<f(E2) (s<i
denotes “‘s is an initial segment of ¢”’). Thus P(«, D) is a ‘tree-iteration’ of the
forcings €*(¢), ce D.

We think of a P(a, D)-generic set G as an assignment of a sequence
(80,81, - - - » 8k)» Gi€Cy,={hEY;|he€r} where o =|Y| to each a-name
¢= o, (B1, P1)s - - - » (P> Px)) € D, Y;=Dom(p;). (Namely: go=p, and for i>
0, &=U{q:|@q1,---,q)ef(€) for some feG}.) We want to associate
p(¢) € €xr), X(¢)=Dom(p, U p,) to each ‘proper’ a-name € Jo(a) so that the
assignment €= (po, (P1, P1); - - - » (B> P)) > (@(Po), P(Po, (P1, 1)) | Dom(p,),

.o, P(Pos - - - » Bx, Pr)) | Dom(p,)) is P(a, D)-generic over L, (is ?(a, D)-
Z-generic over L, if v(@) is admissible), for each D € 9y(«) consisting solely
of ‘proper’ a-names. (The notion of ‘proper’ is defined inductively, simul-
taneously with the definition of the p(c)’s.) If -this is done, then we can define
p(c) for any ¢ € Jy(a) by canonically assigning a ‘proper’ a-name ¢ € Jo(a) to each
c € Jo(«) and setting p(c) = p(C). As a result properties analogous to (a)—(m) for
a-names will be maintained. We shall also define p(c), p(¢) when c is an
a-condition, ¢ a ‘proper’ a-name but o(c) = 0(¢) = v(«).

Our next two lemmas deal with {-sequences. (We will use the relation -l tc
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deal with X-genericity but use  instead to obtain regular genericity.) Let
E={aeU(y)|C, is bounded in « and either B(v(a)) <B(«a) or a =v(a)<
B(a)}.

Lemma 1C.1. Suppose a € U(y), a <v(«). Then EN« is an L, stationary
subset of a.

Proof. Suppose C €L, where the <,-least closed unbounded subset of a
disjoint from E N« and let v = greatest p.r. closed v’ such that C ¢ L,.. Then
v<v(a). Let n=1 - where ) is the least f#=B(v) such that Ce L, and
p(n) = (least p such that L, = X;-Skolem hull of o U {p} inside L,).

Now consider H = X;-Skolem hull of y U {p(n)} inside L, and let # =H N q,
L; = collapse(H). We claim that a € E N C, contradicting the choice of C.

Note that L;F& is a cardinal, yet the X;-projectum of 7 equals y. So
A(&) =Ly, p(&) =1 and & <v(&)— B(v(@)) <B(a)=1 (v(&) <i) as 7] is not
p.r. closed). Also CNaeL; and CNa& is unbounded in & As C is closed,
aeC.

Let J = X;-Skolem hull of {y, p(&)} inside L;. Then J contains the image of C
under w:H 5 L; (=C N &) and hence that of v, B(v), B(v) - n for each n. Thus J
is unbounded in L; But then JNa& is unbounded in & since J contains
& N (Z,-Skolem hull of y U {p(&)} inside Lgs,.,) for each n, where ¥ = collapse
of v. We have shown that C;=0. So ae E. O

Lemma 1C.2. There exists (Ds|d€eE) €Ly such that for each a<v(a),
(Ds |6 € EN @) € Ly is a O(E N @)-sequence for L, y; ie., {(deENa|XN
0 = Ds} is L, y-stationary for each X c &, X € L, ().

Proof. Define D; exactly as in Jensen [6]: Pick the least {D;, Cs) such that C, 1s
a closed unbounded subset of 8, {8'€e ENS|DsNS' =Ds}NCs=@. The
proof that this works is exactly as in [6]. O

Our next group of lemmas is concerned with the relations -l’, 4, < and their
interaction with the sets C,.

Lemma1C.3. (a) ' isatree. If v* = a(v) < vis not a <-limit, then {a(0) | o I’ v}
is a closed subset of a(v). If a* =y, a € U(y), then {B | B ' &)} is a closed subset
of a.

(b) If v is admissible, v* < v and v* € U(y) U {y}, then v is either a <-limit or
a '-limit.

Proof. (a) The first statement is clear as if L, = HY,, and 7 <0, then L, = Ho

iff L, =Hy,). For, if m:L, =H},), then Hy,,=n[H%). To verify the second
statement we need the following.
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Sublemma 1C.4. Suppose veT,, v*<v and n:Ly,— L, is a Q-embedding,
p(v) € Range(). If 3,-cof(v) = a, then n is 2 -elementary.

Given the Sublemma we make the following observations. Suppose v* =
a(v) <v is not a <-limit. Then X;-cof(v) = a(v) for otherwise for all a’ < a(v)
there exists a” < a@(v) so that "= «' and H}-N ORD is cofinal in v; but then
H).=L,# L, since v* = a(v) and thus o <v. This contradicts the assumption
that v is not a <-limit. Thus Sublemma 1C.4 applies to v and in fact to any o' v
as in that case L, = Hy(,) <z, L, and thus X;-cof(0) = a(0). So the assertion that
o is <-minimal (that ¥ <, o) is equivalent to the assertion that X,-Skolem hull
(yU {p(0)}) in L, equals L, (that X,-Skolem hull (a(¥)+1U {p(0)}) in L,
equals L,). (Note that the canonical Z,-Skolem function for L, needs only p(o)
as parameter.)

We now prove the second statement in (a). If (o;|i<A) is an increasing
sequence so that o;’ v for all i, then let &’ =\ {&(0;) |i<A} and L, =H,.
Clearly (0')* = a’ as for each i <A, HZ, does not contain &(0;,;) (using the
fact that o}, = a(0;+1)). To see that o' is <-minimal (that v<, o0') if v is
<-minimal (if ¥ <, v) it is enough to show that 2,-Skolem hull of y U {p(c’)} in
L, equals L, (that X,-Skolem hull of a(¥) +1U {p(0’)} in L, equals L,). But
this is clear, using the fact that this is true for the ¢;’s and L, =\ {HZ,, | i <A}.

The third statement in (a) is easily verified. The Sublemma will be proved after
we verify (b).

(b) If v*=y, then v=a € U(y) and we need only observe that C, c B, is
unbounded in «. So assume that ve T,, v* =« and v is not a <-limit. Given
a' < a we can choose &= a’ so that {a,} is X,-definable in L, with parameters
from yU {p(v)} (from a(¥) U {a(¥), p(v)}) if v is <-minimal (if ¥ <, v). Now
inductively define Hy=HY,,,, oi=H,Nea,... , H;=H ., ¢;;,=H Ng,...
and let «"={«a!|i<w}, L,=H}.. Then o*=a"=a(o) as H, does not
contain « as an element. Also the X,-Skolem hull of yU {p(0)} in L, (the
=,-Skolem hull of (%) + 1U {p(0)} in L,) contains a;, hence «; for each i < w,
hence all of L,. We have proved that ¢ is <-minimal (that ¥ <, o) and so o' v,
provided we argue that ¢ # v. Note that IT;-cof(o) = IT,(L,)-cof(a(0)) = w.

Fact. Suppose X,-cof(B) > k and Lg k k is regular. Then x is IT,(Lg)-regular.

Proof of Fact. This is really Lemma 2.3 of Sacks—Simpson [10]. Suppose f:y— k
is IT,(Lg), y<k and let A,={8|8<f())}={6|Vd'<d ~¢(i, 6')} where
f(i)=46 iff ¢(i, 8), ¢ IT,(Lg). As Z,-cof(f) =k we know that A; is Z,(Lg),
uniformly in i. But (A;|i<y) must belong to Lg (and hence Range(f) is
bounded since Lgkk is regular) as otherwise the first x stages of a 1-1
Z,(Lg)-enumeration of | {A; |i<y} gives a X,(Lg)-injection of x onto the
y-union of sets of size <k; this injection belongs to Lg as Z;-cof(8) >k,
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contradicting the hypothesis that LgFk is regular. This proves the Fact, and
hence the lemma is reduced to Sublemma 1C.4.

Proof of Sublemma 1C.4. It is enough to show that any Z,-predicate on L, with
parameter p is (~Q)-definable over L, with parameter (p, p(v)). Work in L.
Suppose A = {x | 3y Vz ¢(x, y, z)} where ¢ is A, with parameter p. Then x € A
iff 38 <a[BeDom(h) and Vz ¢(x, h(B), z)] where h is a partial Z,-function
from a onto the universe (=L,) with parameter p(v). But then xe A iff
{o|VYo'<0o (least B<a s.t. BeDom(h”) and Vz e L, ¢(x, h(B), z) if exists
#least < as.t. B e Dom(h°) and Vz € L, ¢(x, h(B), z))} is bounded, using the
fact that ;-cofinality =a«. This proves the Sublemma. O

Lemma 1C.S. Suppose veT, is a <-limit. Then for sufficiently large B < a,
B € C, — there exists v <v such that a(V) = B.

Proof. First assume that f(v(a)) = B(a), n(v(a))=n(a). Then v(a) is not a
<-limit: For some § < &, p(a) € 2;-Skolem hull of B U {p(v(«))} inside () =
A(v(a)) since the Z;-Skolem hull of o U {p(v(a))} inside of(a) equals (a).
But then ¥ <v(a) implies a(v)<p as of(a)=Z;-Skolem hull of yU {p(a)}
inside (). So we have that v # v(«) and we can assume that C, is unbounded
in a.

Now choose g: & = a such that Range(g) N v(«) contains an ordinal >v. This
is possible, as otherwise for some p, Range(g)cp <p(«) for all such g
(0 € Range(g) — (2,-Skolem hull of « inside #, = (L,, A(a)N o)) Nv(a) has
supremum in Range(g)); this implies that C, is definable over #,, contradicting
the fact that « is regular in o(a). Let v'=sup(Range(g) N v(a))<v(a),
p' =sup(Range(g)) < p(a). Choose B < a so that h: & > a, A(h) = B— Range(h)
contains an ordinal =p’; for example, let B be greater than the supremum of
a N (Z;-Skolem hull of y U {p(a)} inside <}).

We claim that h:a = «, A(h) = B implies that A(h) = &(¥) for some ¥ < v’ (if
v(@) is a limit of elements of T,) or for some ¥ < v, = T,-predecessor to v(a).
The latter case follows easily as if v(«) is a T, -successor, then we can assume that
vo € Range(h) and hence (v,)€ Range(h), (Z,-Skolem hull A(h)U {p(vo)}
inside #(vo)) N a = A(h) so A(h) = a(¥) where ¥ is the height of the transitive
collapse of this latter Skolem hull. Now suppose that v(«) is a T,-limit so v’ € T,.
We next determine /(v'): Let H = X-Skolem hull of & U {p(v(a))} inside &,
and let « be the transitive collapse of H, with collapsing map n: H 5 &. Then by
extension of embeddings lemma, & = (7 (v(«))) and p(7(v(a))) = n(p(v(a))).
But HNv(a)=v' so & =A(v'), n(p(v(a)))=p(v'). We can now show that
Mh) = a(¥) for some v <v': Indeed, (Z;-Skolem hull of A(h) U {p(«)} inside
p) N a=A(h) where p=|JRange(h). But as p(v(a))=least p such that
p(@) € X;-Skolem hull of o U {p} inside #(a), p(v(a)) € the preceding Skolem
hull. It follows that (Z;-Skolem hull of A(k) U {p(v(a))} inside &£,.) N & = A(h)
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so applying 7, (2;-Skolem hull of A(h) U {p(v')} inside #(v')) N a =A(h). But
now let ¥ = the height of the transitive collapse of this last Skolem hull.

To conclude this case (f(«) = B(v(«)), n(a) = n(v(«))) note that, if v(a) is
a T,-successor, then if v, = the T,-predecessor to v(a) we must have {a(¥) | ¥ <
vo} — B = {a(¥)| ¥<v'} for some B <« (choose B = a(¥) where m;,, has v’ in
its range, if v’ # vy).

Now suppose B(a) # B(v(a)) or n(a) #n(v(«)). The preceding argument can
be modified as follows: First assume that n(a) =1, so B(a) = p(a) > v(a). Then
we show that B e {a(¥)| ¥ <v(a)} for sufficiently large B € C,: For sufficiently
large B € C, we can choose g: &= a such that A(g) =B and Range(g) ¢ v(a).
Then v(a) € Range(g) and so #(v(«)) € Range(g) and (Z,-Skolem hull S U
{p(v(a))} inside H(v(a)))Na=p. Thus B=a(V) where ¥=height of the
collapse of this Skolem hull and ¥ <v(«). Now assume that n(a)>1 so
p(a) = a. Suppose g: & = a and let g: Lg—> Lg(,, be the canonical extension of g
to a X, ,)-embedding (via the extension of embeddings lemma). If B(«) > v(a),
assume that v(«) € Range(g). Otherwise we know that p(v(a)) € Range(g) since
g is 2, -clementary and n(v(a)) <n(a). In either case we can find such a g with
A(g) = B, for sufficiently large 8 € C,, and then we know that (Z;-Skolem hull of
Ag)U{p(v(a)} inside sA(v(a))Na=A(g). Thus if (B(¥(e)), n(v(a)))+*
(v(a), 1), then Be{a(¥)|v<v(a)} for sufficiently large B € C,. Similarly, if
B(a) > B(v(a)) or n(a) =3, then we can replace X; by X, in the above Skolem
hull and obtain the same result.

There remains the case: (B(v(«a)), n(v(a)))=(v(x),1), (B(a), n(a))=
(v(a)), 2). For this case we need Sublemma 1C.4. If X;-cof(v(«a)) = «, then v(a)
is not a <-limit for otherwise by Sublemma 1C.4 and the definition of v < v(«)
we cannot have X,-projectum(v(a)) = y. So we can assume that v as given in the
hypothesis of the lemma is less than v(«). But we have already established that
{a(¥) | there exists g: L,=5 Ly, p(v (o)) € Range(g)} contains a final segment
of C,, which easily gives the same assertion for {a(¥)|¥<v}. Finally, if
3,-cof(v(a)) < @, then g:L; = L), p(v(@)) € Range(g) implies ¥ <v(a) for
sufficiently large such v, a(v) < « as, if a(¥) is large enough, the corresponding
g:L; = L), P(v(a)) € Range(g) must be cofinal. O

Lemma 1C.6. Suppose v <, v € T, and either n;, is cofinal into v or v is not a
T,-limit. Then for all B € C, there exists v' 4 v such that a(v') = B.

Proof. The argument of the preceding lemma showed that if
B((@)), n(v(@) #(v(a), 1) and (B(a), n(a))# (B(v(a)), n(¥(a))), then
v(a) is a <-limit. Also note that by Sublemma 1C.4 we also have that v(«a) is a
<-limit in the case: (B(v(a)), n(v(a)))=(v(a),1)#(B(a), n(a)), ;-
cof(v(a)) < a. The hypothesis of this lemma implies that if (8(v(a)), n(v(a))) =
(v(a), 1), then Z;-cof(v) < a. (Also note v = v(a).) Thus we can conclude that
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in the present situation we must have: (8(«), n(@)) = (B(v(«)), n(v(«))) and so
A(a) = A(v(a)).

Our next claim is that if g:&=> « then a(¥)e Range(g). First note that
p(v(a)) =p(v) e Range(g): Indeed p(v)=least p such that p(a) e Z;-Skolem
hull of U {p} inside #(«), and in general, if A is X;-definable with parameter
p, then the least element of A belongs to the X;-Skolem hull of {p}. This proves
that p(v) € =,-Skolem hull of {p(«), a} inside #(a) so p(v) € Range(g). Now
let B < « be least so that p(a) € 2;-Skolem hull of y U {8, p(v(a))} inside (o).
Then B=a(v) as (2;-Skolem hull a(¥)U {p(v(«))}) N v(a)= Range(sx;,) #
v(). But since ¥<,v we have that the ZX)-Skolem hull of a(v)U
{a(¥), p(v(@))} inside f(a) must equal H(a) so B=a(V). Thus a(V)e ;-
Skolem hull of {p(«), 7, p(v(«))} inside #(a) and so a(¥) € Range(g).

Now to conclude note that unboundly many v’ € Range(g) N v(a) must belong
to the X;-Skolem hull of a(v)U {p(v(«))} inside (), since this Skolem hull
has unbounded intersection with v(«) (it contains Range(r;,)). Thus v =
U (Range(g) N v(@)) is a limit of elements of Range(n;,) and v<v, else
U (Range(g) N v(@)) = v(a) which would imply that A(g)=a. Pick v' <9,
v 4v(a).

As in the preceding lemma we determine #/(v): Let H = X-Skolem hull of
o U {p(v(«))} inside A, = (L,, A(o) N o) where o =|_Range(g). Let 7:H 3
s be the transitive collapse. By the extension of embeddings lemma & =
A(x(v(a))) and p(a(v(a))) =n(p(v(a))). But HNv(a)=7V so A =HL(V),
a(p(v(«@))) = p(¥). Now by the definition of v’ we have that a(v’) = (Z;-Skolem
hull of a(v) U {a(¥), p(¥)} inside #(¥)) N a. But this equals (Z,-Skolem hull of
a(v) U {a(¥), p(v(a))} inside &,) N «, by applying . This latter intersection
equals | (Range(g) N @) and so A(g) = a(v’). O

Lemma 1C.7. Suppose v<,v=v(a), A=Um[¥]<v. Let v<,A<A. If
B e C,, B<a(l), then B = a(0) for some o4v. If v* = a, B €C,, then v(B) ' v.

Proof. Suppose B e C, and g:0 > «, A(g) = B. Let g be the canonical extension
of g to a X;-elementary map from &(v(6)) to A(v) if A(v)+# A(«) (and
therefore v* = a). As in the proof of Lemma 1C.6, (V) € Range(g). Note that
a(A) = & N (Z;-Skolem hull of «(¥)U {a(¥), p(v)} inside #(A)) and therefore
B =A(g) < a(l) iff LU (Range()Nv)<A. Thus as in Lemma 1C.6, B < a(X)
implies that v(B) 44 since Range(g) N Range(;;) must be cofinal in Range(g) N
v and thus & <, v(B) < m;7(6) where & = sup{o | w;;(0) € Range(g)}.

Now suppose that v* = « and let o =|_J (Range(g) N v)<v. Then let x:L,=
Hg. We know that X)-cof(v) =« as otherwise v is a <-limit, so the function
a'—|J (Hy - NORD) is X,-definable over L, with parameter p(v) and maps «
cofinally into v. As g is X,-elementary, we have that Hg= Hg and therefore
Ly=HY} = Hp, 6= a(5). Also ¥v<0 as the 3,-elementariness of 7;, (see
Sublemma 1C.4) implies that of x~'ex;, = 7,5 To see that ¥ <, & note that
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3,-Skolem hull (a(¥) U {a(¥), p(0)}) in L, must contain Range(g) and hence all
of L5 But X;-cof(5) = a(6) so o < & implies that 7, is 2,-elementary. [l

Note. The proof of Lemma 1C.7 shows that 8 € C,, B = «(A) implies o -v(B)
whenever o 4A. This fact will be of use later.

Lemma 1C.8. Suppose v is <-minimal, v* = a(v) = a. If B € C,, then v(B) I’ v.

Proof. The argument of Lemma 1C.7 shows that if 8 € C,, then B = a(5) where
L,=H}s), Z;-cof(6)=p, p(B)=p(«x) and 6*=p. Note that p(«)=0 as
otherwise there is 7<v, a(t)=J(Z;-Skolem hull of {y} inside #(a)). But
7 < & implies 7;; is 25-elementary, so 7;; = identity. O

Lemma 1C.9. Suppose o <v = v(«) is neither a <-limit nor a T,-limit. Then C, is
bounded in «.

Proof. As v(«) is not a T,-limit, X-cof(v(a)) = w. Thus (&)= A(v(a)) for
otherwise for sufficiently large o’ < a, (2,-Skolem hull of o' U {p(v(«))} inside
L,)) is cofinal in but unequal to L,.,); so v(a) is a <-limit. Now let
v~ = T,-predecessor to v if v# min(7,), = « if v=min(T,). If p(v) ¢ L,-, then
g:0 > a implies | JRange(g)=v and hence A(g)= . Otherwise let g = (-
Skolem hull of & U {p(v)} inside L,-)N a, where a=a(v) if V<, v, =yif vis
<-minimal. Then A(g) > B— | Range(g) =v—A(g) = a. So C, is bounded by
g. O

Lemma 1C.10. Suppose 6 <oe T, Nv(a).

(@) If C, is unbounded in «, then for sufficiently large e C,, 6 <t <0 for
some T € Tp.

(b) If v(«) is a +-limit (i.e., « =\ {a(¥) | ¥4v(a)}), then for sufficiently large
v4v(a), 0 <t <0 for some T €T y).

(c) If v(&) is a A'-limit, then for sufficiently large V' v(a), 6 <t <0 for
some T € T 4.

Proof. (a) follows from Lemma 1C.5 as clearly o is a <-limit (o € T, N v(«)).
For (b), first choose o' >0, o' € T, N Range(7,,(,)) Where <, v(a). Then if
T =700, a(¥)e{a(n) |t <n<o'} for all ¥4v(a), 1) (V)>0'. But
for sufficiently large n’ <o', there exists 7 <o such that a(n)= a(n’). This
proves (b). For (c), choose a’ < & so that o € X;-Skolem hull of o’ U {p(v(a))}
inside L, 4. Then for sufficiently large ¥’ v(«), a(¥) > a' and ¥ <v € T, where
a € 3-Skolem hull of a’'U {p(v(«@))} inside L,. Then a(v)= a(t) for some
1<o0as @y, | L,:L,— L, is elementary, where t=n5,(c). O

Remarks. (1) The reason for introducing dl is to deal with >-genericity. Lemma
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1C.3(b), which also holds for 4, is the key property. It allows us to divide the
task of meeting predense sets P(W,), e€ L,(,) into a sequence of steps by
following the relation -l or by reflection, using the relation <.

(2) Lemmas 1C.5-1C.8 are needed to see that coherence restrictions (in the
inductive construction of the b,’s) imposed by the relations 4, 4l do not conflict
with those imposed by the C,’s. These lemmas essentially show that we have in
fact a ‘morass with linear limits’ (see Velleman [9] and Donder [4]).

(3) Lemmas 1C.9, 1C.10 are needed to justify certain steps in the construction
of the b, ’s.

(4) Note that o4rHv—>o-v. This is useful in verifying that there is no
conflict between the coherence conditions imposed by A, .

Now for the construction of {b, | ve T}, {b,, | 0 € W(¥), v =v(a)} (if v(a) is
a <-successor) and p(¢) when € is a ‘proper’ a-name. The collection of proper
a-names is defined by induction on a: the idea is to arrange that if ¢ =
(o, (B1, P1)s - - - » (P, Pn)) i proper, g =p(po, (131,_P1): .-+, (P p;)) and
g | Dom(p;)<gq;<p; for each i<iy<n, then d=(po, (F1,41)---,
Pip» 9i0)> Dig+1s Pig+1)s - - - » (Pn> Pr)) is also a proper a-name. This closure
property does not hold for the collection of all a-names as the choice of the g;’s
‘rules out’ certain a-names.

Fix a (E)-sequence (Ds |8 €E) for Ly as in Lemma 1C.2, where E =
{ceU(y) | B(v(8))<B(8) or 6 =v(8)<B(8), and Cs is bounded in 8} (as
before). The construction breaks up into a number of cases.

Case 1: C, is unbounded in «.

Case 1A: v(a) is <-minimal.

Set b,=\U{b,|o<v} for veT,Nv(a) and define b,y [y, ¥)—2 by
b,(ay(n) =0 for all . We must define p(C) for each proper a-name ¢. Note that
0(¢) < v(a) since v(«) is <-minimal.

We know (by Lemma 1C.10(a)) that for sufficiently large B € C, there exists
v € T; such that ¥<o(¢) (if o(¢)#0). Thus for sufficiently large feC,, ¢?
=8, B%, p1)s - - - (B8, pa)) if €=(Po, B1, P1), - - -, B, Pn))) is @ PB-name.
We say that ¢ is proper if ¢# is proper for such 8 € C,. And, as suggested by
condition (i), p(&) =U {p(¢®)| B e C,, €# a B-name}. (It will follow from our
definition of properness that ¢? proper, B’ € Cs, ¢ a B’-name— &# proper.)

Case 1B: v(«) is a <-limit.

Set b, =\ {b,| o<} forall veT,. Asin Case 1A, if  is an a-name then for
sufficiently large B € C,, ¢? is a B-name; we say that ¢ is proper if ¢# is proper for
such B and in this case define p(¢) = {p(c?) | B € C,, ¢® a B-name}.

Case 1C: v(a) is a <-successor. Let v <, v(«a).

Case 1C(>i): v(a) is T,-minimal.
Case 1C(ii): v(a) i‘i,a T, -successor.
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Due to our hypothesis that C, is unbounded in «, these last two cases cannot
occur. See Lemma 1C.9.

Case 1C(iii): v(a) is a T,-limit, Range(yy () bounded in v(a). Let
X=Tu»N¥, Y=T,s—X and define the a-name c(v(@))=
(T v(ay (Tuiay qy)) bY: DOom(7, (o)) = X, Tyay(i) = b, ,,(0)- For sufficiently large
BeC,, c(v(@))? is a proper B-name (as o(c(v(a)))<v(@)) and we define
pe(v(a))) =U {p(c(v(@))?) | Be Cay c(v(a))® a p-name}. Now for je
W(V(@)), byiay=PC((@)()- And, byioy = bycays-

If ¢ € Jo(«), then for sufficiently large B € C,, ¢# is a B-name; in this case C is
proper iff ¢# is proper for such B and then p(&)=U{p(e®)|BeC,, ¢* a
B-name}. If ¢ =(po, (1, P1), - - - » Bu, Pn)) is an a-name of length >0, o(¢) =
v(«), then p, is a thinning of p(c(v(a))) and we identify ¢ with the a-name
d = (Tyiay (Tuiap Gv)s B1,P1)s - - - » (Pn» Pa)) and define: ¢ is proper iff d is
proper, in this case p(¢) = p(d). Note that o(d) < v(a) so p(d) is already defined.
If length(¢) = 0, then ¢ = (p,) is proper and p(¢) = po.

Case 1C(iv): v(a) is a T,-limit, Range(7;y(,)) unbounded in v(«). For each
o 4v(a) and for o =v(a) let X, =T,; N3, Y, =T, — X, where 6<.0 and
define m, by: Dom(xw,)=X,, #,(i)=b, , for each i. Also consider the
a(o)-name c¢(0) = (7,, (75, qv,))- Then o0,410,4v(a) implies p(c(0;))=<
p(c(0y)). Define p(c(v(a))) =U {p(c(0)) | o 1v(a)}(c(v(a)) is proper). Now for
j € W(v(a)) set by =p(c(v()))(j) and by = by(ays-

If ¢ e Jo(a), then c# is a B-name for sufficiently large 8 € C,; € is proper if £” is
proper for such B and in this case p(¢) = {p(¢?) | B € C,, ¢* a B-name}. If ¢ is
an a-name of positive length, ¢ = (po, (P1, p1)s - - - » (Pn> P»)) and o(C) = v(a),
then for sufficiently large o 4v(a), p§‘® is a thinning of p(c(0)) and we form the
a(o)-name d, = (75, (%o, qv,)s BT, p1)s - .., BPED, p,)); we say that ¢ is
proper if d, is proper for such o. Then p(¢)=J{p(d,)|o4v(@), d, an
a(o)-name}. (As suggested by condition (1), we have that 0,4 0,, d,, a proper
a(0;)-name— p(d,,) <p(d,).) If length(¢)=0, then &= (p,) is proper and
p(€) = po.

Case 1D: v(a) = a.

In this case o(¢) =0 for all a-names ¢. For sufficiently large 8 € C,, ¢# =¢; we
say that ¢ is proper if ¢ is proper for such §. Finally let p(¢)=U {p(cP)|Be
C,, ¢ = &*}, for proper ¢.

Case 2: C, is bounded in «.
Case 2A: v(«) is <-minimal.

Case 2A(i): v(a)*# a. Set b, = {b, | 0 <v} for v e T, N v(a) and define
by(ey:[¥> )= 2 by b,(oy(n) =0 for all n < a. If ¢ is an w-name, then o(C) < v(«)
since v(a) is <-minimal.

As C, is bouned in « it follows that there exists a IT,(#(a)) w-sequence
sup(C,) = ap<a;<--- cofinal in « such that for any oeT,Nv(a), ;€
{a(5) | < o} for sufficiently large i.
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Now fix a sequence ap<a;<--- as above and suppose C=
(Po» (P1, P1)s - - - » (Bu» Pn)) is an a-name, Y; =Dom(p;). Then &% is an a;-name
for sufficiently large j. We now describe the process of “extending ¢ along the
a;’s,” which will be used repeatedly in the remaining cases. The definition is by
induction on n. Let jg, j1, . . . be those j such that ¢* is an &;-name and for all
i<n:j=j., for some m. Let jo=j3=Jo, jm =Jm=Jjms+1 for m>0 (there is a
reason for omitting j;: See the proof of Lemma 1C.11). Let ¢;,=¢c(<n —1); *
(Gn> pn) Where g, thins G(¢(<n — 1), ) as p, thins G(¢(<n — 1)), if n>1; ¢;, =%

if n=1. We say that ¢ is proper iff ¢; is a proper a;-name. Now ¢; =
&(<n —1),,.,*(dn g-) where Dom(g,)=Y,, qa(k)=p(;)(k) for keY,, g,
thins G(¢; , (Sn—1)) exactly as p, thins G(¢(sn-1)), if n>1; ¢; =
(p&m+1, (§1, 1)) Where Dom(g,) = Y1, q4(k) =p(¢; )(k) for k € Y;, G, thins pginn
as p, thins p,, if n=1. Note that p(Ejmz) sp(éjml) if my=sm,. Set p(¢)=
U{p(;,) |m=0}.

In the next two cases define o4l v(«a) iff o4l 'v(a), o is active.

Case 2A(i): v(a)*=a, v(a) a Hl-limit. Then v(a) is active. Set b, =
U {b, | 6 <v} for ve T, Nv(a) and define b,yy:[y, )= 2 by b,@4(n) =0 for
all n. If ¢ is an a-name, then o(¢) < v(&) so by Lemma 1C.10(c), ¢*? is an
a(o)-name for sufficiently large ol v(a). We say that ¢ is proper if ¢*@ is
proper for such o and, as suggested by condition (m), p(¢) = {p(c*”) | o
v(&), ¢*? an a(o)-name}.

Case 2A(iii): v(a)* = a, v(a) not a Hl-limit. Let o = the -l -predecessor to
v(a), if it exists. As in Case 2A(i) we can choose a IT,(&f(«)) w-sequence
ao< @y < - - - cofinal in a such that for any v e T, N v(«&), «; € {a(¥) | ¥ <v} for
sufficiently large i; also choose a,= a(0) if v(«) is a Hi-successor, &p=sup(C,)
otherwise.

Set b,=U{b,|o<v} for ve T, v(e) and define b, :[y, a)—>2 by
byy(n) =0 for all n. If ¢ is an a-name, then ¢% is an a;-name for sufficiently
large j. If ¢% is an ay-name, then we say that ¢ is proper iff c*° is proper.

Choose a (canonical) partial X,(L,,))-function h, from « onto L, ). We say
that € < a a-codes the pair (D, e) if D € 9y(a) consists solely of proper a-names
¢ such that ¢* is an a-name and h,(€) = (D, e). For such a pair (D, ¢) consider
f € P(a, D) defined by: if ¢ € D is of the form (po, (P1, p1)s - - - » (Pus Pn)), then
f(©)=(qi,--.,q9.) where g;=p(¢*(s<j)) | Dom(p;). Then (D, e) is alive if
f¢ D(W?), where W,=eth 3,(L,,))-set and W} ={(p, 8)|p=<gq for some
(g, ) e W.N P(a, D) X a}. (Recall that D(T)={p | T; is dense below p for all
d<aorforsome d<a, q<p—q¢T,}, for persistent T ¢ P X «a.)

Now let & < a be the least a-code of an alive pair (D, e) (if there is one). We
define 9'(W}) to consist of all fe Z(W)) so that either for some <,
[f'<f—f ¢(W?)s or for some Wc W;, WelL,q,, W;is dense below f for all
6 < a. Then let f' <f be the L, least f' in 9'(W?) (if such an f' exists) so that
f' is 1-1 and for some fixed 0, (r, ..., ;) € Range(f')— |r| = n for all i. If  and
f' as defined above do exist, then v(o) is active; otherwise v(«a) is not active and
set D =@. Choose i, so that Range(f') = L‘,,,,o, should f' exist.
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If ¢= o, (P1,P1)s - - - » (Pu> Pn)) €Jo(@) we define properness for ¢, p(¢) as
follows: First, if ¢ is an ap-name, then let & = (po, (G1, 91)s - - - » (Gn> G1))
where g; = p(¢*(<i)) | Dom(p;) and §;,, thins G(C,(=<i)) as p;4; thins G(c(=<i)).
Otherwise let ¢, =¢, §;=p;, q;=p:;. Second, suppose that ¢(<i) € D for some
i=1. Then let d=(po, Fi, 1), - - - » s Ty Gms1s Gmt1)s - - - > (@ns Gn)) yvhere
m is largest so that ¢(<m) e D, f'(¢(sm))=(r,, ..., I,) and 7, thins G(d(=i))
as p;., thins G(¢(<i)). Define ¢ is proper, p(¢) to coincide with d is proper, p(d)
where the latter are defined by extending d along the a;’s. Lastly suppose that
¢(<1) ¢ D. Then we extend ¢, so as to ‘code’ € at level a;, some i > iy: Namely,
we can canonically identify ((p,, p1), - - - , (P, p»)) With an ordinal 8 < «, using
the canonical well-ordering <;. Then choose i > i, to be least so that f < «; and
¢$ is an a;-name. Now pick (1, . . ., r,) € €*(¢,) so that |r;| = & + B for each j,
1<j<n. Thenletd = (po, (Fi, 1), - - - » (F», 1)) Where F;,; thins G(d(<i)) as P41
thins G(&(=<i)) and define ¢ is proper, p(¢) to coincide with d is proper, p(d), the
latter being defined by extending d along the a;’s.

The fact that we have ‘coded’ ¢ into d in the last case above is important for the
proof of Lemma 1C.11.

Case 2B: v(«) is a <-limit.

Case 2B(i): a ¢ E. Set b, =\ {b, | 6 <v} for v € T,. Also choose a cofinal
I1,((«)) w-sequence sup C, = ap<a;<--- below a so that &; € {a(0)| o<
v(a)} for each i >0. Then, if  is an a-name, it follows that £% is an &;-name for
sufficiently large j. Define properness for ¢ and p(¢) by extending ¢ along the «;’s.

Case 2B(ii): a € E. For v € T, define b, =\ {b, | 0 <v}. Let ap=sup C,.
If ¢* is an @ -name, then we say that C is proper exactly if ¢*° is proper.

In this case we make use of the canonical O(E)-sequence (D; | 8 € E). First
we need to define a generalization of the forcing ?(«, D), defined earlier for
D € ().

We say that D € @(a) if D is a finite subset of J(«), ¢ € D— &(<i) € D for all i.
(Note that J(a)€ Ly as a € E.) Now for D € 9(a), P(a, D) consists of all
functions f with domain D such that for ¢ e D, f(¢) € €*(¢), ¢, <cC, implies
£(E) <f(E). _

Say that « is active if D, c o codes a triple (Lg(,), D, ¥) where D € 9(a)
consists of proper a-names & such that £ is an a,-name, w? divides B(a) where
d=card(D) and ¥ € Lg, is predense on P(a, P). (This means that D, =
{0, oy, ;) | (@1, @) e RYU {(1, no), {2, n;)} where for some h, h:{a, R) 3
(Lg(eys €)5 h(no) =D, h(n,) = %.) If « is not active, then proceed exactly as in
Case 2B(i). Otherwise choose (Lg(,), D, &) as above. Also insist that ay<a; <
- - - be IT,(#4(«)) and have the following ‘stability property’: Pick a limit ordinal
B<PB(a), peLs and n € w so that D(a), D, ¥, p(a), a, are all X,(Sp) with
parameter p. Then we require that for i >0, (Z,,s-Skolem hull of a; U {p} inside
Sg) N & = a; (this is possible as « is regular in Lg,)). Then ¢ an a;-name— ¢ an
a;-name for sufficiently large i.

Now define D' to consist of all a-names ¢ = (py, (P1, P1)s - - - » (Pn> Pn)) such
that for some d € D, p, = first component of d and (p,, ..., p,) € €*(d). Note
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that e D'—¢(<i)e D' for all i. We first define properness for & p(¢) for
¢ € D', by induction on length(¢) =n. We will also need to ‘code’ ¢ at various
points in the construction, much as in Case 2A(iii). Let S be the ordinal code for
((P1, P1)s - - - » (Pn, pn)) using <,. Note that each q; is a limit of p.r. closed
ordinals and ¢% an a;-name— f§ < a;.

First suppose that length(¢) =1, so &= (po, (1, p1))- Then ¢ is proper. We
shall more or less ‘“‘extend ¢ along the a;’s””, but with some changes. Let
dy, ..., d, be those elements d of D such that p,=first component of d,
p1€ €*(d) and let D,=D — {d+#d,|d(<1)=4d,}, for 0<t<s. Then D, € 9(a)
for each t. Also set &, ={f | D,|fe &}. Then &, is predense on P(«a, D,). By
Lemma 1C.13, #(a, D*) is y-distributive and obeys the (<a)-chain condition in
Lgy for any D* € @(a) (consisting of proper a-names ¢ such that ¢ is an
agp-name) of cardinality <card(D). Thus for any f,€ ?(a, {d,}) and any g,
P(«a, D, — {d,}) there exists a maximal antichain M, in {ge€ P(a, D,—{d,}) |g=<
g} and f; <f. in P(a, {d,}) such that for all g € M, f; Ug <some h € &,. Then ir
fact it follows that for any f, € ?(a, {d,}) there exists f; <f, in P(a, {d,}) suct
that for all g, € ?(«, D,— {d,}) there exists a maximal antichain M, in {ge
P(«, D,—{d,})|g=<g} suchthatge M, —>f,Ug <some h € ¥,. Lastly note tha
if f<{(d, p1)} in P(a, {d,}), then f]e P(a, {d,}) for all ', 0t <s, wher
fi@d,)=f(d). Thus we get: if felJ{P(a, {d})|0=<t<s}, then there exist:
f'<f (in P(a, {d}) where fe P(a, {d})) such that for all ge P(a, D, —
{d.})(0=t'=s), there exists a maximal anti-chain M, in {g’'€ P(«, D, -
{d.})| g’ <g} such that g’ e M,— f,. U g’ <some h € &,. This property is exactl
what we need to provide the proper definition of p(¢).

Let d,=(po, (51, p%)) and d = (po, (51, 7)) where ry(k) =U {pi(k) | 0<r=<s
for each k € Dom(p,). (Then d =d,, for some t,.) Let jy, j;, . . . be those j suc
that ¢% is an «;-name and let jo = jo, jm =jm+1 for m>0. We define a sequenc
Cjp» Cj,» - - - Of names as follows: Let ¢;,=¢%, ¢;,=(poh, (41, 1)) where g, =
p(¢;) ' Y, (Y, =Dom(p,)) and G, thins pgh exactly as P thins p, (this is exactly a
before). Now let {(d, ¢,)} <{(d, q1)} in P(«, {d}) be the least obeying th
property expressed in the preceding paragraph, where f={(d, q,)} and f'=
{(d, q2)}. Also choose |q,| =7’ + B where y' is p.r. closed (this is to ‘code’ €
Then g, € L, by the way the a;’s were defined. Set ¢;, = (pg”, (§2, 42)) Where ¢
thins pg exactly as p, thins p,. Then ;, = (pg’, (q3, q3)) where g;=p(c;,) ')
and §; thins p§s as p, thins p,. More generally, for m>1 let {(d4, qz,,,)}
{(d, g2m—1)} in P(a, {d}) be the least so that |q,,|=7y’ + B where y’ is p.
closed. |

Set ¢;, = (P&, (G2m> G2m)) Where G, thins pgi- exactly as p, thins p,. The
Cipnas = (&1, (Gom+15 dom+1)) Where gopmi1=p(S;,) I Y1 and Gppmy thins pgi
as p, thins p,. Then set p(¢) = {p(¢; ) | m = 0}. Thus we have defined p(¢) t
“extending along the a;’s”, but we have also taken care to arrange that p(;
meets certain dense sets.

Now we consider the general case, length(¢)=k+1>1, so ¢
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®os (1 P1)s - - - » (B> P)s (Pres1s Prc+1)- Let do, - - - , d, be those elements d of D
such that p,=first component of d and (p,, ..., Px+1) € €*(d) and let D,=
D-{d#d,|d(<k+1)=d,}, for 0<t<s. Also let Di={deD,|d<d(<i) or
d(<i)=d,(=<i)}, for 0<t<s, 1<isk+1. By Lemma 1C.13, for any fe
P(«, DY) there exists f; <f,in P(a, D?) such that for all g, € ?(a, D, — D;), there
exists a maximal antichain M, in {g € ?(a, D, — D;}) | g <g,} such that g e M, —
fiugssome he ¥, (={f | D,|f e ¥}). Thus the property satisfied by f; in the
preceding statement is dense in P(a, D}). Let ¥; be a maximal antichain of
conditions in P(«, D;) satisfying the above property. Now by applying the same
reasoning to &* and P(a, D?) we get: For any f! € P(a, D?) there exists (f})' <f}
in ?(a, D?) such that for all g; € P(a, D! — {¢ € D?| length(¢) = 2}), there exists
a maximal antichain M, below g} such that g € M,:— (f})’' Ug <some h € ¥;, or
g(d.(<1)), (f))'(d(<1)) are incompatible. Let ¥ be a maximal antichain of
conditions in ?(&, D?) obeying the above property satisfied by (f})’. Continuing
inductively, we finally obtain a maximal antichain $* in P(a, D¥) and the
following property: (%), for any ffe P(a, DF*') there exists (f¥)' <f¥ in
P(a, D¥*') such that for all gfe P(«, Df—{d,}), there exists a maximal
antichain M« below gf such that g e M«— (f;)’ Ug <some h € ¥y, or g(d,(<
k), (f¥)'(d.(<k)) are incompatible. Note that Df*'={d|d <d,}. Finally, as
before we can allow ¢ to vary: For any f e U {?(a, Df*') |0t =<s} there exists
f'<f (in P(a, DF*Y) if fe P(a, DF™Y)) such that for all g e P(a, Df —{d,})
(0<t' <s) there exists a maximal antichain M, below g in P(a, Dy — {d,.}) such
that g' e M,—f, Ug’' € ¥, or g'(d.(<k)), fi(d.(<k)) are incompatible (where
fid(=i)) = £(d(<).

Now we can define p(¢). We assume inductively that for each i <k we have
assigned sequences jo, ji, j5, . . . and &(<i)y;, €(<i)ji, . .. to the a-name &(<i).
Let jg, ji, - - - be those j such that ¢% is an a;-name and for all i <k: j =j}, for
some m. Let jo=jst'=j; and j,=j"' =] for m>0. Let ¢, =é&(<k),,*
(Go> Pr+1) Where g, thins G(€(<k),,) as pr.1 thins G(¢(<k)). Then ¢ is proper iff
G, is a proper aj-name. Let ¢; =c(sk);*(4:, q1) where q,=p(G) [ Yin
(Yi+1 = Dom(p1)), G, thins G(C(<k);) as P+, thins G(¢(=k)). (So far we are
just extending ¢ along the a;’s.) Write ¢;, = (pg', (F1, 1), - - - » (Fe» 7e)> (@15 91))-
Now let f, € P(a, D¥*?) for all ¢ € [0, s] be defined by f(d,(<i))=(ry, ..., r) if
i<k, f(d)=(n,...,n qi)- By induction we assume that (p(é(<
Y, ...,p(E(sk)) | Yy) is €*(C(<k))-generic over Lg,,; thus there exists
(rs-- > 1w g2)<(n, . - -, 1, q1) such that (p(¢(<i)) | Y;) <r; for all i and for all
t, f; obeys the property of the preceding paragraph, where f=f, f'=f, and
fie P(a, D¥*Y) is defined by: fi(d(<i))=(r},...,r)) if i<k, fi(d)=
(rt, ..., i, q2). Also choose |q,| =y’ + B where y' is p.r. closed. We can also
have |ri|, ..., |ri, 92| < a;, by the choice of the a;’s. Set ¢;, = C(<k);,* (G2, 42)
where g, thins G(¢,(<k)) exactly as py., thins G(¢(=k)). Then j;=j;,, and
G, = &(<k), * (g5, 4s) Where g thins G(G,(<k)) as y.: thins G(é(<k)) and
q3=p(C;) | Yess.
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More generally, for m>0 let (r1, ..., 7% gom) <(1, - - - » T, @2m—1) (Where
Cipns = (PGm-1, (Ao1), ..., (T i) (G2m—1> 92m-1))) be such that p(c(<
i)) 1 Y;<r; for all i and |g,m|=7'+ B where y’ is p.r. closed. We can have
Iril, . .. |7ks 1g2ml < @, by choice of the a;’s. Set ¢;, =¢&(<k);, *(Gam> Gom)
where §,,, thins G(¢;, (<k)) as px4+, thins G(¢(<k)). Then ¢;, A =c(<k),,,., *
(G2m+1> Gom+1) Where Gomsy thins G(¢;, . (<k)) as py., thins G(¢(<k)) and
Gom+1=P(C;,,) | Yirs

Finally, set p(¢) =U {p(G;,) | m =0}.

If ¢ ¢ D', then proceed as follows. Let ¢(<m)e D’ for some largest m =0.
Thus p(é(=m)) is already defined. Then define p(¢) by starting with p(¢(<m))
and then extending along the a;’s (beginning with the sequence jg', j7, -
resulting from the construction of p(¢(=<m))) exactly as in the case ¢ € D', with
the exception that all reference to f, is omitted. In this way we have still coded ¢
into p(¢).

Case 2C: v(«a) is a <-successor. Let v <, v(«a).

Case 2C(i): v(«) is T,-minimal. Choose a IT,(f(a))-sequence a(V) = a;,p <
a;<--- cofinal in &« so that oeU(y) for each i I ¢=
(Po> (P1, P1)s - - - » (Pu> Pn)) is an a-name, o(¢) < v(a) (hence o(¢) =0) then ¢¥ is
an a;-name for sufficiently large j. Then define properness for ¢, p(c) by
extending ¢ along the a;’s.

In particular we have defined p((9, (9, gv))) where Y =T ., Let by(a)o=
p((®, (8, gv)))(0) for o € T o5y = W(v()). Then by o) = by(ays-

If ceJ(a), o(c)=v(ae) and length(c)>0, then we identify c=
(pO: (ﬁl} pl)’ st (P—m Pn)) with the _ a-name d= (ﬂ’ (ﬂ’ qY)’ (pl: pl))_' L
(Pn> pn)) and define: ¢ is proper iff d is proper; in this case p(¢)=p(d). If
length(¢) =0, then ¢ is proper and if ¢ = (p,), then p(Z) = po.

Case 2C(ii): v(a) is a T,-successor. Let o be the T, -predecessor to v(«) and
o' the 4-predecessor to v(a). Choose a IT;(#(«)) w-sequence a(0') = ap<a; <
.- - cofinal in « so that a; € {@(6) | 6 < o} for each i. If  is an a-name such that
o(¢) < v(«), then ¢% is an a;-name for sufficiently large j. Define properness for
¢, p(C) by extending ¢ along the g;’s.

Finally define the proper a-name c(v(a@)) to be (), (Ty(a) 9y)) Where
Y =T, — a(¥) and Dom(7,(4)) = T o3y N ¥is defined by 7, (i) = b"%’)(i)' As
v(@) is a T,-successor we have that o(c(v(@))) <v(a) so p(c(v(a))) has been
defined. For jeW(v(a)) let b,a)=pc(V(®)))(), bye)y=byaw If =
(Po> (P1, P1)s - - - » (Pn> Pn)) is an a-name of positive length, o(¢) = v(«), then we
identify ¢ with the a-name d = (7,(a), (Tv(a) qv)> P1> P1)> - - - » (Pn> Pn)) and
define: ¢ is proper iff d is proper; in this case p(¢) = p(d). If ¢ = (po), then ¢ is
proper and p(C) = po.

Case 2C(iii): v(«@) is a T,-limit, Range(7y, (o)) is bounded in v(a). Let
A=U Range(:r \"v(af))'

Case 2C(iii)(a): v(a)*#a. Let ¥<,0<21 and choose a IT(#(a)) w-
sequence ao< a; <- - - cofinal in a so that for any v € T, N v(a), o; € {a(7) | <
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v} for sufﬁmently large i. Also, define ap = max(a(0), sup C,). If ¢ € Jy(), then
define properness for ¢, p(¢) by extending ¢ along the a;’s.

Finally the proper a-name ¢(v(@))= (7, (nv(a), qy)) €Jo(@) is defined
exactly as in Case 2C(ii) as are b,,y;, j € W(v(a)) and p(¢), o(¢) = v(a).

Case 2C(iii)(b): v(a)* = a, v(a) a Hl-limit. Then v(«) is active. Proceed
exactly as in Case 2A(ii) to define b,, v € T, N v(a) and p(c) when o(C) < v(a).
Then proceed exactly as in Case 2C(ii) to define b, (), j € W(v(«)) and p(c),
o(¢) = v(a).

Case 2C(iii)(c): v(@)* = @, v(«@) not a H|-limit. Define a, to be the largest
of a(o), sup C, and a(o’) where ¥ <, 0<A and ¢’ = Hl-predecessor to v(«a), if
exists. Then proceed exactly as in Case 2A(iii) to define b,, ve T, N v(«) and
p(¢) when o(¢) < v(a). Proceed as in Case 2C(ii) to define b, j € W(v(a))
and p(¢), o(¢) = v(a).

Case 2C(iv): v(a) is a T,-limit, Range(s,(s)) is unbounded in v(a). For
o 41v(«&) and for o0 = v(«&) define X,, Y,, x, as in Case 1C(iv). Also define b,
for j € W(v(a)) as in that case. If ¢ eJy(a), then ¢*® is an &(o)-name for
sufficiently large o 4v(a); € is proper if ¢*¢® is proper for such ¢ and in this case
p@)=U {p@E*®)| o4v(@), ¢ an a(o)-name}. If ¢ is an a-name of positive
length, € = (po, (B1, P1)s - - - » (Pn> P»)) and 6(¢) = v(@), then for sufficiently large

gdv(a) we form the a(o)-name d,=(x,, (%, qy,), G, py),.
52 p,)) and say that [5 is proper if d, is proper for such o. Then
p(©)=U{p(d,) | 01v(a), d, an a(0)-name}. If length(¢) = 0, ¢ = (p,), then ¢ is
proper and p(¢) = po.
Case 2D: v(a) = a.

Case 2D(i): « € E. Choose a IT,(HA(«a)) w-sequence oy < a; <--- cofinal in
« so that a; € U(y) for all i, ap=sup C,. Then proceed exactly as in Case 2B(ii)
to define properness, 9(«), P(a, D) for D € @(a) and p(¢) for proper a-names
C.

Case 2D(ii): a*=«, o ¢ E. Choose o< ;< - - as in Case 2D(i) and then
proceed exactly as in Case 2B(i).

In the next two cases we define B4l « iff B’ & and either B is actlve or BeC,.

Case 2D(iii): «* =Yy, « a HI-limit. Then « is active. If ¢ is an a-name, then &*
is also a B-name for sufficiently large B 4l a. Then ¢ is proper iff ¢” is proper for
such B and in that case p(¢) =\ {p(¢®) | Bl &, ¢” a B-name}.

Case 2D(iv): a* =y, a not a Hl-limit. Let B be the U(y)-predecessor to «,
should it exist. If B exists, we must define €% when X € I,, in order to complete
the definition of ‘a-name’ in this case. By induction we have defined p(¢) for all
proper B-names C; if X € I, then {p € €%||p| = B} consists of all p, Dom(p) =
X, which are thinnings of conditions of the form p(¢), ¢ a proper B-name or
which can be obtained from such g as follows: Pick iz <---<i, from XU
{UX+1)}, ay, . . - , a, € U. Then define p(i) = q(i) for i € X so that the least k,
i <i. is even. Define p(i) | o = q(i) | ax, p(i)(n) =0 for all n €[ay, B) if the
least k, i <i,, is odd.
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Then we define €% (for X € I;) much as in Part B. Let U(y) = {n | L, kv is the
largest cardinal} — U(y). Then p € €% iff p € 6% or:

(i) Dom(p)=X, p(i):[y, lpl)—>2 forie X, B<|p|<a and p(z)c U(y) for
each i € X. (This last requirement is needed for the proof of Lemma 1D.2.)

(ii) Suppose i <j belong to X and (B +i, £) <|p|. Then p()({B+i, &)=
p(E)(8).

(iii) Define p" by p"(i)=p(i) | n. Then pfe €% and p" is Af(sd(n)) for
neT,={v|visp.r. closed and L, kv is the largest cardinal}.

If Xel, — I, then €% consists of all p obeying (i), (ii), (iii) with “p? e €%”
deleted, such that p(i) 2 b; for all i € X. Finally, €% is defined by closing €%
under the earlier operation: Pick ip<:--<i,from XU {{JX+1}, Bo, ..., B, €
U. Then define p(i) = q(i) for i € X so that the least k, i <i, is even. Deﬁne
p() 1 B = q() | B, p(i)(n) =0 for all n € [By, a) if the least k, i <iy, is odd.

This completely defines €% for X €1, and therefore €%, @ (pebx, XU
Y eI,, X and Y disjoint). Then the collection of a-names can be fully defined.

Now let B’ = the -l-predecessor of « if it exists; B’ = 0 otherwise. We no longer
assume that § exists; if it does not, then set f = '. We define “c is proper” and
p(c) for a-names ¢ = (@, (8, p1), - - ., (Pn, P»)) by induction on n. We want to do
this in such a way that each b € Range(p(¢) | Y,) ‘codes’ the w-name ¢ (where
Y, = Dom(p,,)). Now using the canonical well-ordering <, we can identify ¢ with
an ordinal é = ord(¢) =rank of ¢ in <;. We say that b:[y, a)— 2 codes ¢ if for
d<a:b={n|b(n)=0} is almost disjoint from x5 = {(0, (8, )) | ne O(y) N
a} (i.e., b Nx; is bounded in a) iff 6 =ord(¢). Given any s:[y, ¢')—>2, o' <«
and c, 1t is easy to construct b o s which codes c.

We must also deal with Z-genericity. As in Case 2A(iii) choose a (canomcal)
partial X,(L,)-function A, from y onto L,. We say that € <y a-codes the pair
(D, e) if D € 9y(a) consists solely of a-names ¢ such that &#" is a proper f’-name
and h.(¢€) = (D, e). For such a pair consider f € ?(«, D) defined by: if ¢ € D is of
the form (9, (8,p1), - - -, (Bn, P»)), then f(€)=(gs, .- -, g») where g;=p(c¥ (<
j)) | Dom(p;). Then we deﬁne “(D, e) is alive” as follows. Let 8” = max C,. Ther
(D, e) is alive if B”" =0 or if hs(€) = (Ds, ;) is alive at unboundedly many active
stages 8| B”, or if (D3, e5) is alive at unboundedly many stages 6 4l 8”, wher
hs(é') = (D3, e5), €' <é. (By induction we have defined “(Dj, e5) is alive’
at -l-successor stages 6 < «).)

~ First suppose that y is L,-regular. Choose & <y to be the least a-code of a
alive pair, if there is one. Then choose the L,-least f' <fso that {f'} X yc W
possible; otherwise choose the L,-least f' <f so that for some 8 <y we hav
{f'} x6<W? but {f} X6 & W}, where W, =eth X,(L,)-set. Also require th:
f' is 1-1 and for some n=B:(r, ..., r)) € Range(f')— |r;| = n for all i. We sa
that « is active iff €, f' both exist. If & or f' as above does not exist, then s«
D=@.

If y is L,-singular, fix the L,-least sequence (y; |i <L,-cof(y)=k) soastot
continuous, increasing and cofinal. Then choose i < x to be least so that there
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an a-code & of an alive pair such that & <y, Also let f' <f be least so that for
some such &<y, and some & <é we have that {f'} X6 c W} but {f} X6 ¢ W,
where k(€)= (D, e), f' and f belong to ?(a, D) and W, = rth X;(L,)-set. Also
require that f’ is 1-1 and for some 1= B:(r, . . ., n) € Range(f')— |r;| =  for
all i. We say that « is active iff both &, f’ as above exist. If € or f' as above do not
exist, then set D = 0.

Now suppose n=1. Then &= (0, (8, p,)) is proper. If |p;|/<p’, then let
co=(0, (8, g.)) where q,=p(e?). If ¢eD, then let d=(@, (8, r)) where

=f'(¢). Then as in the proof of Lemma 1B.9 we can easily extend r, to s, so
that Dom(s,) = Dom(ry), s,(i):[y, @)—2, s7(i) = O(y) and s,(i) 2 (i) for each
i, s, obeys (ii), (iii) above and s,(i) ‘codes’ ¢ for all i. Set p(¢) =s,. If ¢ ¢ D, then
let d = (@, (8, r,)) where r, = p(ch) if B’ <pB, = q, otherwise, and then using this
definition of d proceed as above. If |p,| € [8’, B), then let d = (@, (B, r;)) where

= p(¢P) and proceed as above. If |p,| = B, then let d = ¢ and proceed as above.

Now suppose that we have defined “c¢ is proper” and p(¢) for a-names of
length kand ¢=(9, 8, p1), ..., (Pr+1, Prs+1)) is an a-name of length k£ + 1. Let
Pi+1 thin p(C(<K)) as Pyiq thms G(c(=<k)). Then ¢ is proper exactly if ¢(<k) is
proper and p;. € @8+, Y =Dom(p,.,). If this is the case we define p(¢) as
follows: If ¢#" is a B’-name, then let &,= (8, (B, q1), . . ., (Gx+1, 9x+1)) Where
g; =p(cP (si)) | Dom(p;), §Gi+1 thins G(Co(<i)) as p',-+1 thins G(é(<i)). If
c(=i)eD for some i=1, then let d=@, B, r),..., Fn Tm) (Gm+1>
Gm+1)s - - - » (Gr+1> Gr+1)) Where m is largest so that ¢(<m)e D, f'(¢(s=m))=
(r1,...>T,) and 7., thins G(d(<i)) as p;, thins G(¢(<i)). Now if |gi.1| =B,
then extend gi,; tO Sgi; SO that Dom(s,.;) = Dom(q+1), Sk+1(i):[y, @)—2,
sr+1()) € O(y) and s;41(i) 2 gr+1(i) for each i, s;.1.Usi.; obeys (ii), (iii) above
and sg.1(i) ‘codes’ ¢ for each i, where s;,; thins p(d(<k)) as pi.; thins
G(e(<k)). Set p(€) =si+1Usi+1- If |gr+s| <P, then by Fact 4 below we can
choose a canonical B-name d, so that p(d(<k))? is obtained from p(d,) as in the
definition of €%; then do* (Fe1, i+1) is @ proper B-name where 7., thins G(d,)
as prsy thins G(E(<k)). Let riyy=p(do* (Fes1, gi+1)) | Dom(pyyy) and then
define §;.1, Sk+1, p(€) as above, using r, ., in place of g, ;. If £(<1) ¢ D, then let
3: (ﬂ, (ﬂ, rl): . (rk+1: rk+1)) where £ _p(CO(<l)) rDom(pl) and r:+1 thins
G(d(<i)) as p,+1 thins G(é(=<i)), if B’ <B; d =¢, otherwise. Then proceed as
above with this definition of d. If ¢#" is not a B’-name but &” is a S-name, then let
‘2 = (ﬁ’ (ﬁ, rl)’ MR (fk+1: rk+1) where f =p(éﬁ($l)) fDom(p,-), ’_'i+1 thins G(J(S
i)) as p;,, thins G(¢(<i)). Then proceed as above.

If ¢# is not a B-name and |p,.| =B, then let d = and proceed as above. If
[pe+1]l < B, then by Fact 4 below we can choose a canonical f-name d, so that
p(¢(<k))? is obtained from p(d,) as in the definition of €%; then do * (§x+1, Px+1)
is a B-name, where §i., thins G(dy) as p., thins G(¢(sk)). Let gy =
P(do* (Gi+15 Pr+1)) | Yir1s d=(8,®,p), .., Pr Pr), Br+1, gx+1)) and pro-
ceed as above. This completes Case 2D(iv).

Finally we set €3=U{6%|BeU(y)Na, Xelz} when Xel, and a is a
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U(y)-limit. This completes the definition of {b, | ve T}, {b,, | v a <-successor,
o € W(v)}, p(¢) for proper a-names ¢ and €% for X € I, (a € U(y)).

Remarks. (5) The ‘essential’ steps in the above induction are the cases:
4l-successor, « € E. The former deals with 2-genericity and the latter with regular
genericity. Note that Lemmas 1C.3, 1C.7, 1C.8 also hold for the relation A
Lemma 1C.3(a) is clear as o4l viff (64’ v, ois active) and the -I’-limit of active
ordinals is active (for v as in (2), (3). The argument for v as in (1) is similar.) To
argue. for Lemma 1C.3(b) see the proof of the Genericity Lemma 1C.13. Fo:
Lemmas 1C.7, 1C.8 note that BeC,, g:0>a, A(g)=p implies tha
g :A(v(6))— A(v(«@)) is Tr-elementary and hence v(f) is the Hi’-limit of active
ordinals. So v(B) 4l v(a) as v(B) 4!’ v(a) and v(B) is active.

(6) The need to work with a-names rather than a-conditions is that defining
the collection of a-conditions of length k>1 requires that we have alread
defined p(c) for a-conditions c of length <k; but we want p(c) to depend on th
definition of p(d) for a-conditions d of length =k, for the sake of the mutua
genericity property (h). The collection of a-names can be defined at the start.

(7) ‘Properness’ for a-names reveals its meaning only in the last case of th
above induction. In all other cases the properness of an a-name ¢ is reduced t

that of a f-name, < a.

Now as promised we associate a proper a-name ¢ to each a-conditio
¢ =Po, 1, P1); - - - » (P, Pn))- (We do this while simultaneously defining p(c) t
be p(¢) where ¢ is the a-name associated to c.) Namely, to ¢ we associat
¢=(po, P1, P1)s - - < » (B> Pn)) Where pyiy = G(E(<k))omy, if pisy = p(c(<k))
7, (thus Py, thins G(C(<k)) exactly as p;., thins p(c(=<k))). We must verif
that ¢ is proper. But the following is easily verified.

Fact 1. Suppose ¢ = (po, (B1, P1), - - - » (Pn, Pr)) is an a-name. Then ¢ is proper i
for all k <n, pi., € G2, where Yy, =Dom(py..).

Proof. By induction on a. All cases except a a U(y)-successor are easy as w
have defined p(¢) to extend p(d) for a B-name d, B < a, and have defined ¢
proper «>d is proper. If a is a U(y)-successor, then this is immediate from tl
definition of proper in Case 2D(iv). [

Now the properness of ¢ follows from Fact 1 and the definition of a-conditio
Similarly, Fact 1 can be used in conjunction with properties (i)—(m) to justify t|
properness of names considered in the construction.

Let €x={p € €x|for all ie Dom(p), %) N« is unbounded in « whe

o= |p(i)| € U(y)}-

Fact 2. Suppose p € €% where X € I, |p| = a € U(y). Then p is a thinning of p\
for some proper a-name ¢.
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Proof. Let o' = U(y)-successor to a. Then pe €% as o' <BeU(y), pe €%,
lp| <a’'—p € €% can be checked by induction on f. But then the conclusion is
clear by the definition of {p € €% | |p| = &} given in Case 2D(iv). O

Fact 3. Suppose p € €x, |p| <n <y™*. Then there exists q <p in 6x, |q| =1.

Proof. We can assume that p € €.

It is easily checked by induction that |p(¢)(i)| = a for any proper a-name ¢,
i e Dom(p(¢)). Note that Fact 1 implies that if ¢ = (po, (P1, P1)s - - - » Pn> Pn)) 1S
an a-name, |p;| = |p;.,| for all i <n, then ¢ is proper. Now we prove Fact 3 by
induction on 7. If n is not a limit of elements of U(y), then the result is easy,
using induction and the definition of p(¢), ¢ a proper a-name, o a U(y)-
successor. Thus we can assume that |p| = B € U(y). Now let a = least element of
U(y) greater than B and if p is a thinning of ¢ = (po, (1, P1), - - - » Pns> Pn))s
define d=(®, (8, 90), (41, 91); - - - » (§n, 44)) DY: go=qy, Where Y,=Tp, q;=
p(¢(<i)) 1'Y; (Y; = Dom(p,)) and g, thins G(d(<i)) as p;,, thins G(¢(=i)), for
i>0. To define g, choose o, & so that po(i) = b, and p;=G((po))°o. Then
g1=G((8, (8, go)))°cmo0. Then |g;|=p for all i>0 so d” is a proper 7-name.
But then g <p where g = p(d"), |g| =7 and we are done. O

Fact 4. Suppose p € 6x, |X|<n <|p|. Then p" € 6x.

Proof. This is clear if |p| is not a limit of elements of U(y), using the definition of
p(¢) given in Case 2D(iv). Otherwise let p be obtained from a thinning of p(¢) as
in the definition of €%, where ¢ is a proper |p|-name. An inspection of the
construction shows that p(¢) is the union of conditions of the form p(d), d a
proper a-name for some & < |p|. Thus p” is obtained from a thinning of p(d)” for
some proper a-name d, « <|p| and so by induction p"€ €x. O

Fact 5. Suppose p € €x, |p| <a € U(y). Then there exist qo, g, <p in €% such
that qq, q, are incompatible.

Proof. This is clear from the definition of €% in Case 2D(iv). O

Fact 6. Suppose ¢ = (po, (P1, P1)s - - - » (Pn» Pn)) is a proper a-name of positive
length, BeU(y)Na and &P is a B-name. Then p(€)*=p(Ps, (B%, q1), .- ..,
(P2, q,)) for some (q4, . - . , 4,,) € €*(¢) N L.

Proof. By induction on a. If C, is unbounded in o and o(¢) is a <-limit, then the
result follows by induction as p(¢) = {p(€®) | B € C,, ¢” a B-name} and B € C,,
¢? a B-name— €*(eP)=€*(€)NLg. If o(C) is a <-successor, then p(Z) =2
UA{p(%o, (7o, gv,), BT, P1)s - -» (2@, pa)) | 04v(@), €% an a(o)-name};
but ¢# a B-name— B<a(o) for all o4v(a)—>E&*? an a(o)-name for all
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o4v(a). So we are again done by induction unless v(«) is 4-minimal. But then
an inspection of Case 2C(j) reveals that p(¢) <p(¢*™) where ¥ <, v(«) and we
can then apply the induction hypothesis as < a(¥). If v(a) is a 4-limit (is a
{-limit) and o(¢) is a <-limit, then p(¢)=U{p(€*®)|o4v(a), ¢ an
a(o)-name} (=U {p(*) | o1 v(«), ¢ an a(o)-name}) and we are done by
induction once again.

In all other cases, except Cases 2A(iii), 2B(ii), 2C(iii)(c), 2D(i), 2D(iv), p(¢) is
defined by “extending ¢ along the a;’s” for some appropriate sequence
@< a;<--- cofinal in « (this process is described in Case 2A(i)). Then
p@©)=U{p(,)|m=0} and an inspection of the definition of ¢; shows that
p(é)%'":p(pgj"" —ixj'"’ ql)» st (p_gi"': qn)) for some (ql’ MR qn) € (6*(6) N Laj .
Then we can apply the induction hypothesis by selecting «; > B. In Cases 2A(iii),
2C(iii)(c), p(¢) is defined by replacing ¢ by d = (po, (71, 1), - . . , (7, 1)) Where
(1, - .., 1) € €%(C) and F,,, thins G(d(<i)) exactly as p;,, thins G(¢(<i)), and
then p(¢) = p(d) is defined by extending d along the «;’s. For all k, p(¢)% =
p(p&, (GFxry),..., (P, ry)) for some (ry,...,r,)€6*(d)NL, (where
jo» j1» - - - » come from extending d along the a;’s). Then (ry, ..., 1) ek‘é*(é) SO
we can apply the induction hypothesis, selecting a;, > B. Cases 2B(ii), 2D(i)
constitute a variation on “extending along the «;’s” which does not alter the
above argument.

Finally we consider Case 2D(iv). Then B =< (U(y)-predecessor to a)=a. If
B = &, then the Fact follows easily from the definition of p(¢). Otherwise we can
apply the induction hypothesis to the @&-name d where p(d)=p(c)?,

d=@ 0% q1), ..., Pr 4.), (@1 ---,4.)€€*(@)NLs O

Fact 7. Suppose p € €% and b = p(i) for some i € X. Then b < U(y).
Proof. By induction on |b|. If |b| is a U(y)-limit, then the result is clear by
induction. Otherwise the result follows from clause (i) of the definition of €% in

Case 2D(iv). O

Fact 7 is needed in the extendibility proof for R’.

Definition. An «-name ¢ = (py, (P1, P1)s - - - » (P, Pn)) 1S canonical if v(a) ¢
<-successor, b, € Range(p(¢))— b, € Range(py).

Recall that p € 6y is standard if p(i) = b ;(;, for some morass map .

Lemma 1C.11 (Canonical a-Names). Suppose p € €%, |p|=a € U(y) and p i
not standard. Then there is a unique canonical proper a-name C such that p is .
thinning of p(C), p is not a thinning of p(¢(<i)) for any i <length(¢).



Strong coding 47

For any a-name ¢ define Range(¢) = U {Range(p(¢(=<i))) | 0<i=<Ilength(c)}.
Then if p,c are as in the lemma, we have Range(p)c Range(?),
Range(p) ¢ Range(é(=i)) for i <length(¢).

If p € €%, |p| = @ € U(y), then the canonical a-name associated to p is (p) if p
is standard, is the canonical proper a-name ¢ of the lemma if p is not standard.

Proof of Lemma 1C.11. We actually show somewhat more, by induction on a: If
b:[y, a)—2, b¢{b,|veT,}, then there is at most one canonical proper
a-name ¢ such that b € Range(¢), b ¢ Range(¢(=i)) for i <length(¢). Note that
by Fact 2 there does exist a proper a-name ¢ such that p is a thinning of p(¢).
Also note that if ¢ is not canonical then there exists a canonical d such that
p(¢)=p(d). Then by replacing d by d(<m) where m is least so that p is a
thinning of p(d(<m)), we have established the existence part of the lemma.

Now we establish the above claim. Suppose that ¢ =(po, (P1,p1),-- -
(Pn» P»)) and d =(qo, (G1, q1), - - - » (Gm» )) are canonical proper a-names of
positive length such that b e Range(¢) — Range(é(sn —1)), b e Range(d)—
Range(d(<m — 1)). We will show that ¢ =d.

If C, is unbounded in a, then for sufficiently large B e C,, p(c)?=p(ch),
p(d)?=p(d®), b} B¢{b,|veT;} and therefore by induction p(c?)=p(d®).
Again by induction either ¢ =d” for such B, d® = unique canonical S-name &
such that p(é) = p(¢?) for such B or ¢# =unique canonical B-name € such that
p(&) = p(dP) for such B. The first case implies that ¢ =d and the other two cases
imply that ¢ =d or one of ¢, d is not canonical. _

If v(a) is a +limit (is a -|-limit, respectively) then p(¢) = {p(¢*)| o 4
v(e), ¢ an a(o)-name} (= {p(*?)|odv(x), ¢* an «&(c)-name},
respectively) and as the same is true for p(d), we have ¢ =d by induction once
again, using the fact that for sufficiently large o 4 v(a)(o -l v(a), respectively) we
have b | a(0) ¢ {b, | v € T o(0}-

In all other cases, except Cases 2A(iii), 2B(ii), 2C(iii)(c), 2D(i), 2D(iv), p(¢)
and p(d) are defined by “extending along the «;’s” for some appropriate
sequence &y < a;- - - cofinal in a. (It is here that we use the fact that “j; was
omitted” in the definition of “extending along the a;’s.””) Thus we have defined
sequences (;, |k =0), (d;: | k=0) where ¢; is an «;-name, d;; is an a;;-name
and we defined p(¢)=\J{p(c,) | k=0}, p(d)=U{p(d;)|k=0}. Note that
{jx | k =0} and {j} | k =0} each contain a final segment of w. Thus by induction
for sufficiently large j, p(¢;) =p(d;) and b | a; ¢ {b, | v € T, }, hence either ¢; = d;
or ; = unique canonical «;-name ¢é such that p(€) = p(d;) or d; = unique canonical
a;-name € such that p(€) = p(;). But the last two possibilities are ruled out if j is
chosen large enough so that j—1le{j,|k=0}N{j{|k=0} and a; ,>
max(B, B*) where Dom(po) c Ty, Dom(q,) = Tg-. (For example, the second
possibility implies that Dom(c;(<0)) = Dom(p,) is contained in T, _.) So we
know that for sufficiently large j, ¢, =d;. Thus in particular, p(&(<i)) = p(d(<i))
for each i.




48 S.D. Friedman

We now show that &(<i) = d(=i) for i =0, by induction on i. Suppose i = 1.
Let (ji1|k=0) and (ji,|k=0) be the sequences used to define p(¢(<1)),
p(d(<1)) by extending along the a;’s. If jo; =j§ , then we must have &(<1)=d
(<1) as otherwise by induction p(¢(<1);,)) #p(d(<1);,,) and hence p(E(<1);) #
p(d(=1),) for all sufficiently large j. So assume that j,; <jg, (without loss of
generality). Let j =5, =jr+1,1. Then p(¢(<1);) = p(p§, (71, r)) where |n|=a;, ,,
and p(&(ﬁl)j) =p(q¥, (51, 51)) where |s,|= @j;,- But jii #Jo,1 as Jk1 Wwas
‘omitted’ from the sequence (jg 1, j11,j3.1, - - -)- Thus p(6(<1),) # p(d(<1);) and
this contradicts p(é(<1)) = p(d(<1)).

Now suppose i =i'+1>1. We know by induction that ¢(<i') =d(<i') and
this allows us to repeat the preceding argument: Let (j, ;| k=0) and {j;;| k=0)
be the sequences used to define p(&(<i)), p(d(=i)) by extending along the @;’s.
If jo.=jo:, then we must have ¢(<i)= d(<i) as otherwise by induction
p(&(<i);, ) # p(d(<i);;,) and hence p(&(<i);) # p(d(<i);) for all sufficiently large
j. So assume without loss of generality that j,;<jg. Let j=ji;= Je+1,- Then
p(e(=i)) =pp¢, (F, 1), ..., (7, 1)) where |nl=gqa;, and p(d(si))=
p(q®, (51, 51), - - -5 (5, 5;)) where [si]| = aj;,. But ji;#jg; as ji; was ‘omitted’
from the sequence (i3, jis - . -)- Thus p(¢(=i);) # p(d(=<i);) and this contradicts
p(E(<) = p(d(<D). _ _

In Cases 2A(iii), 2C(iii)(c), p(¢) and p(d) are defined by replacing ¢, d by some
appropriate ¢’, d’ and then extending ¢’, d’ along the «;’s. Thus the preceding
argument shows that p(¢) = p(d)— ¢' = d’. But an inspection of the definitions o
¢', d’ reveals that ¢’ =d'— ¢ =d (as ¢, d were ‘coded’ into &', d'). Similarly, i
Cases 2B(ii), 2D(i) we are dealing with a variant of “extending along the a;’s” i1
which: € # d— ¢ # d; for all j for which both ¢;, d; are defined (we have ‘coded’ .
into each ¢;_ where jo, ji, . . . come from the defintion of p(¢); at j,,.; we ar
just “extending along the a;’s””). Thus once again, ¢ = d follows as in the abov
argument. :

Finally we consider Case 2D(iv). By the definitions given in that case, we mus
have that p(¢) | i =p(d) | j where p(€)(i) =p(d)(j)=b (see clause (ii) in th
definition of €%). But ¢ is coded into p(¢)(i) for all i e Dom(p,) and d is code
into p(d)(j) for all j € Dom(q,,) (see the definition of code in Case 2D(iv)). Tht
as b=p(&)(i)=p(d)(j) for some ieDom(p,), jeDom(g,) we must hay

c=d. O

We can now begin the verification of properties (a)-(m). The key generici
properties (g), (h) will be dealt with in Lemmas 1C.13-1C.16.

Lemma 1C.12. Properties (a)—(f), (i)—(m) hold.
Proof. (a)—(d) follow just as they did in Part B. Fact 3 yields the last statement

(e) (the rest of (e) is clear). Fact 4 handles property (f). It remains to ver
(i)—(m), which we proceed to do by a simultaneous induction on a, discussi
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each case separately. Note that it suffices to verify these properties with
‘condition’ replaced by ‘name’ throughout.

Case 1A. Property (i) is easily verified by examining the construction. There
are no new cases of (j), (k) or (1). Property (m) is verified using Lemma 1C.8, the
fact that C, is unbounded in & and induction.

Case 1B. Property (i) follows from the construction. There are no new cases of
()~(m).

Case 1C(iii). Property (i) is clear. (j), (k), are clear from the construction. (I)
holds by induction and the Note after Lemma 1C.7. (m) follows by induction and
the last statement of Lemma 1C.7.

Case 1C(iv). Property (i) follows from Lemma 1C.6 and the construction
(using induction). Properties (j), (k), (1) are clear from the construction and
induction. There are no new cases of (m).

Case 1D. Property (i) is clear. There are no new cases of (j), (k), or (1).
Property (m) follows from the Note after Lemma 1C.7.

Case 2A(i). Property (i) follows from the fact that &, =sup(C,) and from the
fact that ¢** a proper a,-name— p(C) < p(¢*°) (this is easily seen by checking the
construction of “extending along the a;’s”’). There are no new cases of (j)—(m).

Case 2A(ii). Property (i) follows from the construction, Lemma 1C.8 and
induction. There are no new cases of (j), (k), (1) and property (m) follows from
the construction.

Case 2A(iii). Property (i) follows from Lemma 1C.8, induction, the fact that
ao = a(o) where o immediately -l-precedes v(«&) (or a,=sup(C,)) and the fact
that we defined p(¢) to extend p(c*°) when ¢ is a proper a,-name. There are no
new cases of (j), (k), (I). Property (m) is checked as was property (i).

Case 2B(i). Property (i) holds as we chose a,=sup(C,) and p(¢)=p(c®)
when ¢™ is a proper ay-name. There are no new cases of (j)—(m).

Case 2B(ii). Same as Case 2B(i).

Case 2C(i). By Lemma 1C.6, C, =@. Thus there are no new cases of property
(i). Property (j) is clear from the construction. Properties (k)—(m) present no new
cases.

Case 2C(ii). Property (i) follows from Lemma 1C.6, the construction and
induction. Properties (j), (k), (I) are clear from the fact that we chose a, = a/(0")
where o' immediately 4-precedes v(a). There are no new cases of (m).

Case 2C(iii)(a). Property (i) follows from induction, the Note after Lemma
1C.7 and the definition of a,. Also (j), (k), (1) are clear from the construction.
There are no new cases of (m).

Case 2C(iii)(b). Property (i) follows fromr Lemma 1C.7 and induction.
Properties (j), (k), (1) follow from the construction as 0 4v(a), T4 v(a)—> o1
Property (m) follows from the construction.

Case 2C(iii)(c). Argue as in Case 2A(iii) for (i), (m). Properties (j), (k), (1)
follows as in Case 2C(ii).

Case 2C(iv). Just like Case 1C(iv), using Lemma 1C.6 to verify property (i).
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Cases 2D(i), (ii), (iii). Property (i) follows from the construction and the
choice of ay. There are no new cases of (j)—(1). Property (m) is verified by
examining the construction.

Case 2D(iv). Note that we have defined p(¢) to extend p(¢?) if ¢# is a proper
pB-name, where B = -i-predecessor to « (if it exists). We can then verify property
(). Properties (j)—(I) present no new cases. Property (m) follows from the above
remark and induction. [

We now come to the main lemma of this part.

Lemma 1C.13 (Genericity Lemma). For any proper «-name ¢ = (p,,
(B1, P1)s - - -5 (Pn»Pn)) let g(€)=(81,---,8n) where g;=p(E(<i)) | Dom(p,).
Suppose D € Dy(«) consists solely of proper a-names. Then the assignment
¢ g(C) is P(a, D)-generic over L, (is P(«, D)-Z-generic over L, if v(a) is
admissible). Moreover, if B(v(a))<p(a) or a=v(a)<pB(«), then for any
D e 9(a) consisting solely of proper a-names: w®*' divides B(a) (where
d = Card(D))— P(«, D) has the (<a)-chain condition in Lg), and hence the
assignment (C+—> g(C)) is P(a, D)-generic over Lg.

Remark. Much as in the proof of (T a k-tree, T(<k)-c.c.— T(<k)-distributive)
it can be easily shown that P(«, D) has the (<a)-c.c. in Lg,)— P(«, D) is
(<a)-distributive in Lg,).

Proof. We establish the first assertion by induction on «. The different cases are
examined, according to the nature of C,, v(«).

C, unbounded. Suppose v(a)>a. If ¥ €L, is predense on P(a, D) then,
as v(a) is either a <-limit or a 7,-limit, there exists 6 <o €T, such that
¥ € Range(;,). Then by induction we can choose such a & so that ¢+ g(¢)*® is
P(a(5), D)-generic over L, where if g(¢)=(gy,...,8.) then g(&)"=
(gl,---,8&"), and where D is defined as follows: By Fact 6, for each ¢ € D we can
choose d so that p(é*®) = p(d) where for some (g4, . . ., q,) € €*(), €*(d) =
(G e €*(€*®)|G<(q1,.-.,q,)}. Let D consist of all such d. Thus {Ge
P(a(5), D) | g <some element of w;3(¥)} is dense. So (¢ g(¢)*®) meets
w52(F) and (¢+—>g(¢)) meets ¥. This proves genericity over L, . If v(«@)=a,
then genericity over L, = L, is trivial.

Now to prove X-genericity over L, if v(«) is admissible: First note that we
can assume that v(a)* < o as otherwise 2-genericity reduces to genericity (since
P(a, D)c L,). Moreover, if v(a)=a, then we can assume that a*=1y:
Otherwise « is the limit of a-stable ordinals 8 and the X-genericity of (¢ g(¢))
follows from that of (¢~ g(¢)?) for the a-stable f (using Fact 6). If v(a) is a
<-limit, then the Z-genericity of (€ g(¢)) reduces to that of (¢+> g(¢)**) for
o <v(a).

So we can assume that v(a) is not a <-limit and v(a)*=a <v(a) or
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v(a)* = y. But then by Lemma 1C.3(b), v(a) is a HI-limit. We show now that our
definitions from Cases 2A(iii), 2C(iii)(c), 2D(iv) imply the ZX-genericity of
(c—g(c)). Let G(¢—g(¢)) = P(a, D) be the collection of conditions f extended
by (¢+—g(¢)).

First consider the case: v(a) is <-minimal. As « is the largest v(a)-cardinal it
suffices to show: For e € L, there exists f € G(¢— g(c)) such that f e D(W;),
where W, = W} =eth X,(L,,)-set. Pick & < a so that h,(€) =e, where h, is
the (canonical) X,(L,)) partial function from « onto L,) (with parameter
p(v(@))). Notice that if vl v(a), a(v)>¢e, fe D'(W;, ), then fe D'(W])c
D(W?), using the fact that H{$3 = L,. Also by the Fact of Lemma 1C.3 we know
that IT;-cof(v(a)) is equal to a. We can now show by induction on € that there
exists vl v(a) so that f, = (c—g(c*™)) e D(W}), where e = h,(€). Indeed, as
{f, | vt v(a)) is IT,(L,(a)) We can choose v Hl v(«a) sufficiently large so that either
f, <some element of D(W; ) or & is the least a(v)-code of an alive pair. In
the latter case, either (a) (W), is dense below f, for all § < «, in which case by
the admissibility of v(«), (W) is dense below f, for all 6 < a for some W € L,(,),
WcW:. As L, =H{}, the same is true for W} ) and thus by construction
f,<some element of @'(Wj__ ); or (b) there is a least v’ I’ v(«), v’ = v so that
for some f'<fin L,, 6 <a(v') we have g<f'—g ¢ (Wj . ()s- But then by
construction f,.€ 9(W7) and v’ is active. So v' 4l v(a) and G(C+> g(c)) meets
D(W?).

The case of v(a) a <-successor is exactly the same, using the construction
defined in Case 2C(iii)(c).

Finally suppose v(a)=a. We must show that if h,(é) = (D, e), then there
exists Bl a so that fz = (¢ g(c®)) € D(W}), where W, =eth 3,(L,)-set. First
we show this when y is L,-regular. In this case Il;-cof(a) =y and hence the
function é’—least B € C, so that hg(€’) is not alive (at stage B) is bounded on
{é'| &' <&}, provided we show that it is total. To see this, by induction choose
Bo € C, so that hg(e') is not alive at stage B, for all &’ <& and argue as follows: If
hs(€) is not of the form (Dj, eg) where Dy is a member of %y(B), then of course
we are done. Otherwise, (Dg, eg) is alive at only boundedly many stages 8 as the
function (6 —least B € C,, B> B, so that f; <some g, (g, 6) € W}, () is II;,(L,)
and hence either bounded (if its Domain is not all of y) or has constant value
p1=least element of C, greater than B, (if fg, has an extension g so that
{g} X y € W (s); this uses the fact that B, =sup(Z,-Skolem hull of {B,, p(«)}
inside L,)).

Now if B € C, is the least stage in C, at which hg(€) is not alive, then either
{fs} XycsW. or hg(é) is active at only boundedly many stages<p. Let
Bo = C,-predecessor to B. As B = sup(Z;-Skolem hull of {B,, p(a)} inside L,) it
must be that g<f;— (g, 6)¢ W, where & is least so that (fz, 6)¢ W;. So
fs € D(W?) and we are done.

When y is L,-singular and (y;|i <k) is the L,least continuous, increasing
cofinal sequence below y, k = L,-cof(y), then we argue that (i—least B € C, so
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that hg(e') is not alive at stage B for all &' <y,) is total and bounded on any
io < k. To see this we use the fact that the partial function (&, 6)+> (least 8 € C, so
that (g, 8) € Wi ) restricted to {(¢', 8) | &' <y;, 6 <&'}, is not cofinal in any
B € C, of L,-cofinality y;". (The condition fg, is defined in P(«, D;) as f is
defined in #(a, D), where h,(é')= (D, e).) Such B’s exist (for example let
B=U(Z;-Skolem hull of y;U{p(a)} in L,)) and the above function is
Lg-definable when intersected with Lg. Now we argue for the desired result by
induction on i,. As II;(L,)-cof(x) =k there must be a stage B e C, so that
L,-cof(B) =y} and ip=<Ileast i so that hg(e’) is alive at stage fp for some &' <y,
But then iy <least i so"that hg(€é’) is alive at stage B for some &' <7, since
La'COf(ﬂ)> Yio-

Now for any i < k pick ﬁ € C, to be least so that hg(e’) is not active at stage f
for all e'<y,. If B’'=C,-predecessor of B, then B =sup((Z;-Skolem hull
{B’, p(«)} in L,) N ORD) and this Skolem hull contains the parameter i. Thus
for -any &’ <y; we must have that either hg(€’) is not of the form (D, e) or
{fs} x&'cW; ) or for some d<e’, (g 8)¢W; ey for all g<fz. Thus
G(¢—>g(¢)) meets (W) forallee L,.

C, bounded. By the first argument in the ‘C, unbounded’ case the genericity of
(¢ g(c)) over L, follows easily if v(a) is either a T,-limit a <-limit or if
v(a) = a. By Lemma 1C.3(b) if v(«) is admissible and projectible, then v(«) is a
-l-limit and we can apply the argument in the ‘C, unbounded’ case to establish
the X-genericity of (¢+—g(¢)). If v(«) is admissible and nonprojectible, then
either 2-genericity reduces to ordinary genericity (if v(a)> «) or Z-genericity
can be established using the fact that v(a) = « is a limit of a-stable ordinals.

So it remains to establish genericity of (C+>g(c)) over L,,, when v(«a) is
either T,-minimal or a T, -successor and either <-minimal or a <-successor (and,
we must establish the last assertion of the lemma). We shall deal only with the
case (v(a@) a T,-successor, <-successor) as the other cases are handled in almost
exactly the same way.

Suppose & € L, (4 is predense on P(a, D). Let ap<a;,<--- be as defined in
Case 2C(ii) and let d = Card(D). We can choose i so large that for j=i: """
divides B(a;), ¥ N L,, € Lg(a; and for each ¢ € D, ; is defined where ¢, ¢4, . . . is
obtained by cxtendmg ¢ along the a;’s. Let D= {c |¢ e D}. It suffices to show
that (¢;—g(¢,)) is P(ai.1, D)-generic over Lg,,,), as g(¢)<g(¢;). But this
follows by induction from the last assertion of this Lemma.

This last assertion is proved by induction on d. Suppose « is as given in that
assertion. We can assume that C, is bounded in «, as otherwise the claim follows
easily by induction. The proof of Lemma 1C.1 shows that E N a is stationary in
Lgy and that (D5 |8 € EN a) is a O(E)-sequence for Lg,). Now suppose that
& € Lpa) is predense on P(a, D). The hypothesis that @“** divides B(«) implies
that for unboundedly many 6 e ENa, D; < codes (Lges), D, &) where o?
divides B(8), D ={c®|ée D}, #={f|for some fe Ff(c?)=f(¢)e L, for all
¢ e D} is predense on P(8, D). We can also assume that sup C; = 8, is large
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enough so that ¢ is a §p-name for all ¢ € D. Then by construction (see Case
2B(ii)) if for each ¢ € D we let &' € J(8) be defined (via Fact 6) by p(¢') = p(¢)?,
then we have that (¢°— g(¢')) meets & and hence (¢~ g(¢)) meets &. Note that
the construction in Case 2B(ii) makes use of this lemma, inductively. We have

established the desired genericity for (c+>g(c)). But note that (using the
definition of %) the above argument shows that f <some element f' of &,
f'(¢) e Ls for all ¢ € D, for any f € P(a, D) such that |f(¢)|= & for all ¢ € D.
Thus if & were an antichain in ?(a, D) we have shown that f € $— [f(¢)| < 8 for
all ¢ € D and thus & has cardinality < a in Lg,). O

Now using the Canonical a-Names Lemma 1C.11 and the Genericity Lemma
1C.13 we can establish property (h). First we need the following:

Fact. Suppose that €(¢) and P(«, D) are defined as were €(¢), P(a, D) but with
65! replaced by €%+'. Then the Genericity Lemma holds for P(«, D).

Proof. It suffices to show that if ¢=(po, (P1,P1),-- -, (Pn, pn)) is a proper
a-name, then there exists (¢4, . . . , g,) € 6*(¢) so that (ry, ..., r,) € €*(¢), (r,

)<, ---, q.)—(n, ..., r,) € €*(). This is clear if o(¢) is not a
<-limit, and we can assume that n =1. Let ¢' = min(Dom(p,)). Let 1, < 0(¢),
¢*™ an a(1o)-name, ap = a(7,) and choose ¢, <p, in €4} so that g, =p(d*) | ¥,
where d*=(p&, (51,51), (P1, p1)) and §;#p§. Now suppose n<q, n¢
€*(¢)=%(¢) and thus r(o’)=b, for some t1€T3, PB=|n| Let 7,€7},
pi(0)=b,, (a) for 6 e Dom(p,) and o=JDom(p,)<7t,. Then by Fact 6
(assuming without loss of generality that o' <, t;) we have that r(0') | ap=
bey 1 eto=p((Teps (Tai, 42 ))0")* = (%, (7, 9))) Where . is as in Case
1C(iii) and q € €((Ts;, (s, 4x,)))- But 1(0") | & = g1(0") = p(d*)(0") and this
contradicts the Canonical a-Names Lemma 1C.11.

Lemma 1C.14. Property (h) holds.

Proof. By induction on «, and for fixed a by induction on length (d) where d is
the canonical proper a-name associated to p U §. If length(d) =0, then p U g is
standard so Xo(p U §) = X U Y and there is nothing to prove. We will assume that
v(@) is not p-admissible, as otherwise the argument is the same with ‘X-generic’
replacing ‘generic’.

First assume that p UG =p(d) and o(p)<v(a). Let 6=minY and n=
length(d). There are three possibilities. First, it may be that &= 5, where
0, = least o such that (p U §)(0) ¢ Range(p(d(<n — 1)). Then by the Genericity
Lemma, G(g) is %%-generic over L,)(p(d)—p(¢), p(¢)) where d is the
canonical a-name associated to p and ¢ is the longest common initial segment of
d and d. (Indeed, apply the Genericity Lemma and the Fact above to
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D ={e|e<d or e<d}. Note that ¢ <d(sn — 1) as Range(g) N Range(p) =4.)
Thus we get that G(g) is 6%-generic over L,,)(p(d)) 2 L,(o)(P)-

Second, it may be that &> G,. Then p must be trivial thinning of p (due to the
definition of €%) and it suffices to show that G(§) is €%-generic over Ly(oy(D)-
But by the Genericity Lemma we have that G((pUG) I (XUY — &) is
%%L?’_ao-generic over L,(p | 6p) and this implies that G(p | (X —5)) is
%%ng-generic over Ly(P I 00), G(q) is €%-generic over L.,(p | &y,
P 1 (X — 8,)) (we are writing €z, as a two-step iteration). So we are done.

Third, it may be that & < &,. By induction (on length(d) =n) we know that
G(g | o) is €%ns-generic over L,)(p) and, as in the first case, by the
Genericity Lemma we get that G(§ | Y —0Go) is ‘6’;—,‘1‘7{,‘5 %_generic over
L., G | 8). Putting this together we have that G(§) is 6%-generic over
Lv(a)(p)' -

Now if pUg=p(d) but o(p)=v(e) we must use induction on a. For
n <v(«) let o, =least o € Dom(p) such that p(0) ¢ {b,|7€T,Nn} and p, =
p | (Dom(p) —o,). It suffices to show that for unboundedly many 7 <
v(a), G(g) is €%-generic over L,(p,). Now also let o, =0, if Range(p)c
Range(p | 0,) and o, =least o such that Range(p) < Range(p [ o), otherwise. If
weset p,=p | (Dom(p) o,), then it suffices (by the product lemma) to show
that G(p,) is %% omZp) o;-generic over L,(p U g), for unboundedly many n <
v(«). First suppose that v(a) is a T,-limit, so we need only establish the
preceding for T,-successors 1 <v(«). Choose a <-successor T<7; then by
induction (on a) we have that G((p;)*®) is €5 om(p ) generic over L. ((pU

§)*®). But as 1 is a T,-successor we have that (5 U §)*® = (5,)°® U (5, U §)*®
where (p )"‘(’)— p"‘(’) ' {o|p*™(c)eL,} belongs to L,. Note that G((p1
q)“‘:)) is ‘GDom(pluq) generic over L., so G((p,)*®)x G(p;U§)*™) i
‘6’,’30,,’,(2,:3 X €¢ Dom(pIUq) -generic over L.. As n., is 2;-elementary for each T <n we
get that G(p,,) X G(p,Uq) is ‘6{5([;(',, .y — €Dom(p,ug)-generic over L, and hence
G(p,) is %Domzp .y-generic over L,(G(p;U§g))=L,(pUg), as des1red Now, if
v(a) is a T,-successor or T,-minimal, use the last statement of the Genericity
Lemma to establish (inductively) that for n € (v', v(a)), v’ = T,-predecessor to
v(e)(= @ if v(a) is T,-minimal) we have: G(p,) is €B.o0,,_ _o;-gENETIC Over
L,(pUg). For Z-genericity we can reflect along {rjr<v(af)} if v(o) is a
<-limit and otherwise along {7 | 74l v(a)} (as Z-genericity reduces to genericity
unless v(a)* = a).

Finally suppose p U § # p(d). We can assume that p U § = p(d) > where x is a
morass map different from the identity, as otherwise the genericity of G(g)
follows from that of G(p(d)—p). Let &=min(Dom(§)) and o=nx(5). If
X =Dom(p), |X|= a(0), then by the preceding two paragraphs we know that
G(p(d) | (Dom(p(d)) — 0)) is GBnipiay—o-generic over L,(p). If |X| < a(0),
then if we set 7, = least T € Dom(p) such that Range(p) = Range(p | 7), either 1,
is not defined or the hypothesis of the lemma holds with p, g, p replaced by
p I 70, (p—p ! 1), p(d). In either case the arguments of the preceding two
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paragraphs show that G(p(d) | (Dom(p(d)) — o)) is €2} 73, _.-generic over

Ly(y(p). Thus as g is a thinning of p(d) — o (via n) we need only show: If
re %Dfm(’p‘{d)) _o=%€ and if D € L,(,y(p) is dense on 6%, then there exists 7’ <r in
€ such that r’' oz meets D. A

Let 0, = least o such that Range(p) = Range(p(d) | 0). If 0,= 0, then clearly
r’ as above must exist, for by the density of D we can choose 7 <re°sw to meet D
and then there exists r' € €, r'ow =7. If 0,< 0, then argue as follows: If r’ does
not exist, then by the %‘ng,{pzﬁ))n[ao »-genericity of p(d) | [00, o) over L,(p),
there must be s € G(p(d) | [0y, 0)) such that s I there is no r' <r in %géi)(;(‘;")))“‘j
such that 7' ot meets D. We can assume that [r| = |s|. But by the density of D we
can choose s’ Ur' <sUr in G2 )_q, S0 that s’ <5 in €Domi)nioo0y) and

r' et meets D; this contradicts the choice of s. O

Remark. The last part of the preceding proof is very similar to the argument in
Lemma 1B.11(d). Of course we can now carry out that argument successfully by
establishing ‘enough’ of Lemma 1B.12. As we remarked earlier, it is precisely this
argument that necessitates our construction of the super-generic codes.

To complete our study of supergenericity we establish (g). The argument is
very similar to that used in the preceding proof.

Lemma 1C.15. Suppose p € €%, pUq € €%uy, where X, XUY el,, |p|=|q|=
lp Uql| = @ € U(y) and if o = min(Y), then q(0) = b, for some v € T,. Then G(q)
is €%-generic over L,(p) (is €5 2-generic over L,(p) if v is p-admissible).

Proof. By induction on «. First assume that v is not p-admissible. Suppose
nel,NvisaT, -successor and chose a <-successor T < 7. By induction we know
that G((p, U q)*®) is €& "-generic over L.(p§®), where Y;={ie XUY|(p U
q)@)¢L,} and po=p (X Y1), p1=p | Y. As nis a T,-successor we have that
7is a T 4(r)-successor and so po(') €L,. As 7., is 2-elementary for such 7 we get
that G(p; U q) is €5-generic over L, = L, (p,). Thus G(q) is €5-generic over
L,(p), by the product lemma (and induction). So we have shown that if v is a
T,-limit, then G(q) is 6%-generic over L, (p), as desired. If v is a T,-successor or
T,-minimal, use the last statement of the Genericity Lemma to inductively
establish that for 7 € (v', v), v' = T,-predecessor to v (= « if v is T,-minimal) we
have: G(q) is €%-generic over L, (p).

For X-genericity note that we have Range(p) € L,. Thus we can assume that
v* = o as otherwise X-genericity reduces to genericity. If v is a <-limit, then we
can reflect along {7 | 7 < v} and apply induction. Otherwise use the relation 4l (as
in the proof of the Genericity Lemma) to see that all appropriate dense sets
P(W,) are met. [

The proof of Lemma 1C.15 really shows a bit more than property (h). The
following will be useful in Part D.
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Corollary 1C.16. Suppose pe 6%, pUGe Cxup Pl=|dl=1pUg|l=acU(y)
and §(6)=b, where veT,, 6=minY. Also suppose p is a thinning of p and.
Range(g) N Range(p) =@. Then G(q) is €%-generic over L, (p) (is €%3Z-generic
over L,(p) if v is p-admissible).

Relativization

We have defined supergeneric codes b, for o€ T,, a € U(y). However the
definition of R® in Part D requires that we relativize the above construction so as
to define codes b, for s € S,, a € U(y). The collection of strings S, is defined in
Part D, in analogy with our earlier definition of § B, In particular each s € S, obeys
the strict definability condition: & <|s|—>s I §is A,(Lyg, Cpe)-

This last condition allows us to define a ‘quasi-morass’ (see [1, p. 247] as
follows: § <s iff § € S,¢), § € S4(s) and there exists g: u?=> u? such that g | a(§) =
id | «(3), g 1 (Lo, 51 ud) is a OQ-embedding into (L, s | uJ).

Now repeat the construction of the supergeneric codes, using quasi-morass
maps rather than morass maps. Thus for s €S, one defines b, and €% for
Xel,={X|for some §€S; &eU(y)Na, X=X(<5) or X =X(<5)} where
X(=<§) = all initial segments of § in S,), X(<5) = all proper initial segments of §
in S, and considers a, s-conditions, defined like a-conditions but with the
requirement that u € ¥,=Dom(po)— po(u) = b, where m:5§<s’ is a quasi-
morass map, § €S|y, §' =s. Then we obtain the following genericity property
analogous to property (h): Suppose j € €%., p UG € €3uy.s, Xo(p UG)c X and
Pl=1q1=1p U gl=aeU(y). If p is a thinning of p, Range(g) N Range(p) =9,
then G(g) is %.-generic over L, (p) (is €% ,-=-generic over (L, (p),
s | v(@)) if v(a) is p, s-admissible).

D. Successor cardinal coding III: The forcing R’

In this part we define the forcing R* and discuss its basic properties. This
forcing is a type of almost disjoint forcing where supergeneric codes as
constructed in Part C are used.

Fix § € Adm and let y be a B-cardinal less than gc B (= greatest B-cardinal if
exists, = B otherwise). We use y* to denote (y*)™ and fix s € S5.. The forcing R
is designed to code s into a subset of y™.

We will have use of a canonical procedure b+>S(b) of converting distinct
subsets b;, b, of y* into almost disjoint subsets S(b;), S(b,) of y* (we say that
¢, 2yt are almost disjoint if ¢;Nc, is bounded in y*). Let x—>x* be a
canonical injection of 2<*" into y* (say x— <, -rank(x)) and for bcy*, n<y*
we let b [ 1 denote the element of 2" defined by (b | n)(§) =1iff £ e b N 7n. Then
S(b)={(0, (b | n)*) | n<y™, n € b}. The trick of adding the clause “n € b” will
be useful in the proof of Lemma 1D.2.
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Definitipn. A condition in R’ is a pair (¢, 7) in L,; such that:

() teSEic (b, el s(E)=1, EcO()).
(i) For some o < pu?, a(0) <|t| we have that I < {b, ;¢ | u: € Range(7,,0)}.

It is convenient to let 7 denote {n | #(n) =1} for t € S&. If (¢;, &;) and (15, ;) are
conditions in R®, we define (t,, ) <(t,, L) if: 21, 1126, bet,—{NS(b)c
7.

Note that the set of (¢, 7,) € R® satisfying the following property is dense in R®: 7
is of the form {b,¢|s(E)=1, Ee O(y*) and p; € range(,,9)} for some o < puy,
a(0) =< [t|. The restriction on 7 in (ii) is necessary to show extendibility for R’.

We will show that p e R°, n<y*—3g=<p, |q|=n (where if g = (¢, 7), then
lgl =|¢]). From this it follows that if G is R°-generic over L, then, setting
g=U{t|( ) e G}, we have: s(§)=1 iff gNS(b,,,) is bounded in y* for
E € O(y*). Moreover, g uniquely determines G=G(g) by: G={(t, ) |t=g | |¢],
g N S(b) citfor b et}. In this case we say that g is R°-generic over L.

We want to establish some basic lemmas about R’, such as extendibility. Much
as in the discussion of the generic codes in Part B, the analysis of the R* forcing
requires the definition of ‘localized’ versions of the R° forcing, defined at morass
points below y™.

Note that even though we have defined O(x), u: for €€ O(x) only when
K € B-Card for some B e Adm, these definitions make sense in a much more
general context. Namely for any y let U(y) denote {a€ Adm|L,Ey is the
largest cardinal} and fix a € U(y). First let 0'(«) consist of all £= & such that
Lk« is a cardinal, Lgkcard(§) < o (we do not require that LgF & is a cardinal).
Now consider the inductive definition, for § € 0'(«):

u=sup{us | &' <&} (=aif&=a),
pgt! =least p.r. closed p > puj s.t. L, Fcard(§) = & if such a u exists,
uz =sup{ui|i<w}, if the ug’s are defined.

The ordinal u; need not be defined for all & € 0'(a) because we require that
L,k ais a cardinal. Let O(a) = {§ € 0'() | us. is defined for all &' € 0'(a) N &)}
(= {E € 0'(a) | pis deﬁned}) Clearly O(«) has a maximum which we denote by
E(@). If & < E(a), define ui = p}., where &' =inf(O(a) — &).

We can now define S, in analogy to our earlier definition of S£. Thus let
B = max(0(«) N Adm). We have already defined S8 Now S, consists of all
s:[a, |s|)=2, a=<|s| € O(«) such that either s € S or B <]|s| and:

(a) Let X, = {6 € [a, B) | s(8) = 1}. Then f(e, B, X,) is PE-generic over Lg (if B
is recursively inaccessible, then f(a, B, X;) is PE-Z-generic over Lg) and
(Lg, s | B) is inadmissible if B is a successor admissible.

(b) For all a<&=<|s|,s | Eis Af(H4(u?)) where L(u?), A} are defined as in
Part B.

As before we have that se€ S,, §€ O(a)—s | & €S,. Note that (b) need only
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be verified for & = (a*)"; and for £> B we have #(u2) =L, Also let u;= pj
(when defined).

Next we want to extend the definition of the forcing R’, given above for
s€Sh., to alls€S,, € U(y). In this case a condition in R’ is a pair (¢, 7) € L, (a)
such that:

() teSs,tc{b,:|s(E)=1}.

(ii) For some o <7 e T,, (o)< |t| we have that 7c {b, ;| us € Range(r,,) U
{7}}.

Extension of conditions is defined as before. Note that it is possible for v(«) to
equal u?, in which case we have that {& | b, € 7} is bounded in |s| (if |s| limit).
If u<v(w), then R* € L, where v =least member of 7, greater than u. It is
easy to see that this definition generalizes the old one for s € $%- in the sense that
the latter is a dense subordering of the former. AlsoscteS,—R*=R'NL,.

We now discuss extendibility for R°.

Lemma 1D.1. Suppose s€ S,, « € U(y) and (t,t) e R°. Then for all n < « there
exists (t', ') <(t, ©) in R’ such that |t'| = n.

This lemma is to be proved by induction on «. In order to carry out this
induction we must prove a stronger statement, which we now describe.

Definition. A labeled «, s-string is a pair (p, §) where for some a € U(y), XeI,,
s€S, we have pe €5, and §:[5| =2, |5|=sup{|u|+1|ue X}, ueX—>ucs In
this case

Range(p) = {p(5 1 §) |5 1 Ee X},
Range(p, 5)={p( 1 §) |5 1 e X, 5(§) =1}

and

Range*(p)={pG 1 &) I n|5 1 EeX, ne U(y)N(X], &]},
Range*(p, §) = {p( | &) | n € Range*(p) | 5(§) = 1}.

Two labeled a, s-strings (pq, §,), (p2,$,) are compatible if for all be
Range*(p,) N Range*(p,): b € Range*(p,, §,) iff b € Range*(p,, 55).

Lemma 1D.2. Suppose s € S,, |s| = &(«) = max(0(«)) where o € U(y) N y™*. Also
suppose that te Sy, F is a finite, pairwise compatible collection of labeled
«, s-strings and (p, u) € F— |Dom(p)| <|t|. Then:

(a) There exists g < R’,tc g such that g is R°-generic over L, (is R*-Z-
generic over (L., s | v(a)) if v(a) is recursively inaccessible) and such that
gNS(b) ciforall bel{Range(p, u)|(p, u) € F}. Moreover, g is Aj(sd(a)).
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(b) For n <« there exists t' 2t in Sy such that lt'|=n and ¥ N S(b) ¥ for all
b e U {Range(p, u) | (p, u) € F}.

Note. We abbreviate the final clauses of (a), (b) above by saying that “g avoids
F>, “t' avoids F”’, respectively.

Lemma 1D.2 is analogous to Lemma 1B.9 and is proved by induction on «,
using an analysis much like the one used in the proof of that lemma. We need to
consider labeled a, s-strings for the following reason: We are of course primarily
interested in the case where F contains only a single standard «, s-string (p, u)
(that is, where p is standard); this case establishes extendibility for R®. But in the
course of handling this case we are led to consider p”, which is possibly
nonstandard, and another (standard) labeled 7, §-string. To ‘close off’ this
process we are forced to conmsider arbitrary finite collections of compatible
a, s-strings.

We will also need to assume extendibility for S,., a’ € U(y) N a. The following
will be established in Section Two:

Lemma. Suppose s € Sg, B € U(y). Then there exists s' o, s’ € Sg, |s'| = E(B).

Proof of Lemma 1D.2. We follow the basic outline of the proof of Lemma 1B.9.
We prove (a), (b) by a simultaneous induction on a.

First we prove (b). If « is a U(y)-limit, then we can choose f € U(y) N« so
that |¢|, n <B and T; =@. Then clearly we are done by applying induction to the
forcing R? (viewing @ € Sz) and F? = {(p®, u) | (p, u) € F}. If a = U(y)-successor
to BeU(y)U{y} and [tj]<pB, then define s'eS; by: |s'|=sup{&|b;sz€
Range*(p) for some §, some (p,u)eF} and s'(§)=1 iff b;, ;€
U {Range*(p, u) | (p, u) e F} for some 5. It is easy to check that s’ in fact
belongs to S, as for some (p, u) € F, s’ =\ {n(u | §) | § e Dom(u)} where x is
the quasi-morass map determined by p(i) = b.). Now by induction we can apply
(a) to R* and ¢ to obtain ¢’ o, |¢'| =, t' avoids F. To arrange that ¢’ belongs to
$% we must be sure that if B is a successor admissible, then § is ¢’-indamissible
(this is easy: let #'(8) =1 iff 6= (1, 8’) where &' € Cg, for 8 €[B’, B), B=PB")
and if |s'|” = B* is recursively inaccessible, then (¢’ Us’) | B* is P& =~ P§ * RCe-
Z-generic over Lg. (the above factoring, where Gz denotes the P4 -generic
subset of (8*)"#, will follow from the definition of %; see the Factoring Property
1A.7). Given this, we can assume that |t| = B, in which case (b) is trivial as we
can simply define ¢’ ¢, || = 1 by setting ¢'(6) =0 for  €[|t|, 7). The avoidance
condition is vacuous as ' c 7.

To establish the X-genericity of ¢’ Us’ note first that the R*'-genericity of ¢’
over {(L,@),s' | v(B)) implies that in fact ¢ is R* 'P"-Z-generic over
(Lg+, s’ | B*), thanks to the remark immediately following the definition of
3-generic, as well as the fact that R* has the (8%)*"-c.c. in Lg.[s'] (this is clear,
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using the definition of R*" and the fact that s’ preserves f*-cardinals). Now we
are done using:

X-Generic Product Lemma. Suppose Pc L, is a A,(L,)-partial ordering,
PIQc L,[G] is A(L.[G]) and G c P is P-Z-generic over L,, Hc Q1 is
Q19 generic over L,[G]. Also suppose that P\ Q has the Z-c.c. in L,[G]
(that is, PIrany Z(L.[G])-predense D < Q can be effectively reduced to a
predense set D* € L,[G], D* c D) and that the P-forcing relation is X, for ranked
sentences. Then G*H ={(p, q) | p € G, q € H} is P * Q-Z-generic over L,.

Proof. Suppose Tc(?*Q)Xxy is XZ(L,) and persistent, y<a. Consider
Ts = {(q, 8) | for some p € G, ((p, q), 8) € T}. Then by the Z-genericity of H
there is g € H such that either (i) 6 <y— (7g)s is dense below g, or (ii) for some
6<y, r<q—>(r,8)¢Ts. As Q™! has the Z-c.c. we can construe (i) as a
IT,>-sentence (bounded universal followed by X;) and thus by the X-genericity
of G, if (i) holds, then p I (i) for some p € G. But then (p, q) e Z(T)N G +H.
Similarly, (ii) is a II;-sentence, so if it is true, we can choose p € G so that
p |- (ii). Then once again (p, q) e H(T)NG*H. O

This completes the proof of (b).

The proof of (a) when & = U(y)-successor of § € U(y) U {y} is also trivial as by
induction we can assume that |¢{|= B and then let g be defined by g(8) =1 iff
6=(1, ') where &' e C,, for 8 €[t|, «). The genericity property is automatic
as any 9 € L, which is predense on R? is met by (¢', @) for all sufficiently long
t'eSy.

Noriv we turn to the proof of (a) when a is a U(y)-limit. The cases are similar to
those in the proof of Lemma 1B.9.

Suppose that C, is unbounded in & and v(«a) is not recursively inaccessible. Let
ay<a,<--- enumerate C, N (|t|, ®). For each i canonically choose f;:y;,=>
a, A(f}) = «; and let o; =|_J Range(f;) < p(a). Let h be the canonical X5-Skolem
function for o(a) where p =p(a) and for each i let h; be the canonical
2%-Skolem function for (S,, A(a)No;) cH(a). Let m;:Tish,[JoXa), T
transitive. Note that (y*)"= qa; and that T, = <(a;). We have Z;-embeddings
7y A(a;)—> A(e;) defined by m;=m;"om; and these extend to X,y ;-
embeddings 7;:Sg(,)—> Sps) We also have #;:SB(a;)—> Sp). (Note. The S’s
here refer to the S-hierarchy for L.)

Define s; =s°#;. It is easy to check that s;€S,, |s;| = &(a;). (This uses the
definability property (b) in the definition of S,.) Also for i <j, s; =s;°#; and the
functions #; | v(«;) =98, are morass maps from v(a;) into some o;eT,
(0; =\URange(§;)). Thus for each i, if Si,-(s,- | &) =bs; | 6;(§), then (§;, s;) is ¢
labeled a;, s;-string. We can assume that v(q;) is not s;-admissible for each i a:
h,low X ;] contains a parameter witnessing that v(a) is not s-admissible fo
sufficiently large i.
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Now we claim that for sufficiently large i, (6;, s;) is compatible with (p, u) for
all (p, u) e F. Indeed, we claim that in general if (p, u), (g, v) are labeled
@, s-strings, p is standard and b, ¢ Range(p), then (p, u) is compatible with
(g, v). This is proved by induction on «. By examining cases as in the
supergeneric codes construction it is easy to produce B <a so that (p®, u),
(¢%, v) are labeled B, sg-strings for some sz € S; and either p? = p? | Xy(p?) is
standard, or Range*(p”) NRange*(¢®) c Range*(p” | Xo(p?)). If b, ¢
Range(pf), we are now done by induction (applied to arbitrarily large such
B < a). Otherwise note that we can also choose B so that b,, € Range(p AN
Range(q”)— b,, € Range(p®, u) iff b,, € Range(q”, v). This proves our claim.
Finally to establish the compatibility of (0, s;), (p®, u) for sufficiently large i,
note that the above shows that (§;, s,), (p, u) are compatible; by applying ;" we
get that (8, s;) and (p%, u) are compatible (for i and j sufficiently large).

Now define t;=t,=- - - inductively below ¢ as follows. For i =0, t/,, =least
t'<t; which is R*-generic over L, such that t' is Aj(#(a;;,)) and
(p, u) € FU {(8,::1, 5:)}, b € Range(p, u)— ' N S(b) c &. This is possible by the
induction hypothesis. Let ¢, =1t/ Us;,,. For limit A let t, ={J {t;|i <A} Us;,.
Note that #, avoids F as b € Range(p)— b < U(y) when p € €% (see Fact 7 from
Part C).

We must check that for limit A, ¢' ={J{t;|i <A} is R*-generic. Then ¢ is a
member of §7+ for all i and the above induction defines the desired R®-generic
ty» o= ordertype(C,). So suppose & €L, is predense on R%. Then 9 €
Range(# i | Ly(a,) for some i <A and so by induction (w;, %) meets #;'(P) for
some u; ct], ;; = {b,, z|5:(8) =1}, T, € L, But by definition of 4, .5, ...
we have that (f, 7;(%)) < (w;, #;(#.)) for i <j <A and the latter condition meets
A71(D). (This is where we use the fact that #,, ‘avoids’ (6;,.1,5,).) So
(th, (@) < (w;, #:1(%)) and G(¢3) meets 9.

Next we consider the situation where C, is bounded in «, v(«&) not recursively
inaccessible. First suppose that p(«) > « is the limit of p.r. closed ordinals. As C,
is bounded in & we can take a canonical Af(#(a)) w-sequence po<p;<:--
cofinal in p(a) and let H; = Z§-Skolem Hull of yU {A(@)Np;, s | {E|pe<
p:}} inside L, ,, a; = H; N « for each i. (We are assuming that the p,’s are p.r.
closed, p(a) e L,, and A(a)Np;, s | {§|u:<p;} eL,,, for each i.) Then the
transitive collapse of H; is Lg(,, and n(a;) =1 for all i. Also \_;H;= L, and
Uia;=a. Let @;: Loy 3 H;, mi(o;)=a and set x;=n;"om; for i<j. Then
0;=my; I v(e) (=7, | B(a;)) is a morass map from v(a;) into some o€ T,,.
Define s; =sox; | {&|u: <p;} and s; 2s;, |si| = E(a;). Then for each i, j, (6;, s;)
is a labeled a;-string, where 6;(s; | £) = bs; | 8,(E).

Now define ¢, =t,= - - - inductively below ¢ as follows. For i =0 let ¢/, = least
t' <t; which is R**-generic over L, such that ¢’ is Af(&(a;4,)) and ¥ —7F
‘avoids’ F U {(6; 41, s:)}. Then ;. =1/, Us/,; and ¢, = {t; | i<w}. We need
to check that t,, is R°-generic over. L,,). This is clear for if &9 € L, (4, is predense
on R°, then & € Range(w; | L,(,,) for some i (as B(q;) is p.r. closed) and so
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(u;, &) € R* meets a7 (D) for some (u; f;) so that (u;, m,(f;)) is extended by
(¢, 7,(%)) for all j >i. So (u;, 7:(%;)) € G(t;,) and t,, is generic.

Now consider the possibility that p(a) = a. If B(a) = «, then R’ is just $7 and
we can easily build the desired R°-generic ¢’ by choosing a IT;(L,)-sequence of
admissible ordinals (a;|i<w) cofinal in &« and picking t,=1,=--- below ¢,
lt1= a;, t' = {t;| i <w}. Note that this covers the case: n(a)=1.

Next if n(a)>1, B(a)> o we do a construction similar to that for the case
p(a)> a a limit of p.r. closed ordinals, but working with &'(«) instead of #(a),
where of'(@) = (S, A'(®)) is defined by p'(a) = pf*®, A'(a) = AP with j
so that pf%) =p(a)=a. Let p'(a)=least p €S, such that ’'(«) is the
>-hull of & U {p} and choose a Af(H(a))-sequence {a; |i<w) cofinal in a so
that o, = H; N « for each i, where H;=3;-Skolem hull of a; U {p'(«)} inside
A'(a) for some «; < «;. We again have x;: T; 3 H;, T; transitive and T; = #(a;) as
7; is a 3;-embedding into &' (&) = A(v(«a)) and a; < a;. We define s; = s °x; and
6; = m; | v(a;) and 5,—,-(s,- [ ) =bs; | 6;(§). Then define t;,=1,=- - - below ¢ by
choosing t/,; extending f; to be R*+-generic over L., A7(£(a&;+1)) and so
that 7/,, — 7 avoids FU{((6,:+1), 5:)}; tix1=tir1Usin. Set t,=U {4 |i<w}.
G(t,,) is R*-generic as if @ € L, (4, is predense on R, then 9 € Range(7; | L,(,,)
for some i (as 7; is a 2,-elementary function into L., and p'(a) = v(«)) and so
(u:, &) € R* meets w7 (D) for some (w;, ;) so that (u;, m;(%;)) is extended by
(4, (%)) for all j >1i. So (u;, m;(%;)) € G(t,,) and we are done.

We are left with the case: p(«) > a is not the limit of p.r. closed ordinals (and
the cases where v(«) is recursively inaccessible). The argument for the case
(p(a)>« is the limit of p.r. closed ordinals) actually succeeds whenever
B(«) > v(«): The main point was to get a given & € L, ,, into Range(; [ L,(,,)
for some i so that induction could be applied; but if 8(a)> v(«), then we can
arrange this as v(a) € Range(n;) for sufficiently large i. (Also, if B(a) = p(a) is
not a limit of limit ordinals, then one must use a Z?(*-Skolem hull in Sg,,—,, in
defining H;: otherwise choosing the p,’s to be limit ordinals and taking &';-hulis
will suffice.) We are therefore left with the case: v(a) = B(«) is a T,-successor.

This is the first of the ‘active’ cases. First assume that F =@ and v =(T,-
predecessor of v(a)) is not a T,-limit (v could be «). We begin with the
following.

Claim. R°is (<a)-distributive in L, .

Proof of Claim. Suppose (%;|i<y)eL,q, are predense on R’. Note that
{bs1z|s(E)=1} c L, (indeed s € L,) as each y; is a T,-limit. Choose vy=v so
that (@;|i<y)elL,, and set v;=v,+ «-i for i<y. Now inductively define
Hy=X,-Skolem hull of yU{p(B), s, (Z:|i<y)} inside L,, ao=HyNa;
H,,, = Z-Skolem hull of H;U{a;|j=<i} inside L, , &, =H. Na; Hy=
\U{H;|i<A}, &, = H, N« for limit A<1y. Also let x;: T, 3 H;, T; transitive and
S; =8°1; € L4,

=
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Now given (¢, %) € R’ inductively define (¢, f,) = (t,, ;) = - - as follows. For
all i=0, (ti4q, %) is the least (,7)<(f,%) in R® so that |t|=a;, T2
{bse|s(n7'(8)) =1}, (1, F) meets 9,. Then (¢, 7) exists since s | Range(r;) €
L) For limit A define (#;, 7)) = (U {t;|i<A}, U{#%|i<A}) and 4 =1, Us;.
We claim that (¢,, 7,) is a condition for limit A < y. The thing to check is that ¢; is
R%-generic over L, But this follows as before, using the fact that 7., —¥
avoids {b,, ;| s.(8) =1, & e Range(x;)} at all stages j=i. [ (Claim).

Given the Claim we can finish the (special) case at hand. Let §,<f,<:--bea
final segment of C,«) with p(a), (t,f)eLg, and C,={ap<a;<---}. Now
define Ho= X;-Skolem hull of yU {p(a)} in Lgz, Hj,,=X;-Skolem hull of
yU{a/, a;} inside Ly, a; = H; N a for all i < w. Next define (t;, {;) = (t,, ;) =
- - - below (¢, 7) in R® so that (¢,,, 7;+,) meets all predense % on R*, & € H]. This
is possible by the Claim. Then ¢, = {t; |i <w} is R*-generic over L, ,;

Now to extend the above argument to the general case it will suffice to show
the following.

Sublemma 1D.3. Given (t,0) in R°, 9 €L, predense on R’ and F a finite
pairwise compatible collection of labeled a, s-strings, (p, u) € F— |[Dom(p)|=<|¢|
there exists (t',1')<(t,0) in D* such that ¥ —f avoids F (i.e. (p,u)e€F,
b e Range (p, u)— ' NS(b) ci).

Proof of Sublemma. Here is the second key use of the genericity property of the
supergeneric codes (the other was Lemma 1B.12). We can assume that v(a) is
not a T,-limit and not a <-limit as otherwise let v <v(a) be T,-least so that
9, (t,7) € L, and choose ¥ < v, ¥ a <-successor, so that {b, ,¢|s(§) =1, p: <v},
9, (1, t) e Range 7;,. Then by applying the Sublemma to R’§=s°mx;,), 9 =
a70(P) and (¢, x5, (f)), we obtain it for R*, 9, (¢, 7).

If a is not a U(y)-limit, say B = U(y)-predecessor of « (= y if @ = min(U(y))),
then the Sublemma follows by the induction hypothesis of the lemma: We need
only extend (¢, ¥) = (¢, §) to (', §) avoiding F of arbitrarily large length |¢'| < a.
But, if we can achieve |t'| =, then we are done for then we can let t'(n) = 0 for
all n €[B, |'|) and the avoidance condition is trivial. To extend ¢ to ¢’ of length S
we need only avoid the finite collection of compatible B-strings {(p?, u) | (p, u) €
F} which is possible by the induction hypothesis of the lemma.

Now as we are assuming that v(«) is not a T,-limit, not a <-limit we can form
Fy€ 9y(a, s) by replacing each (p, u) € F by some «, s-name ¢, such that p is a
thinning of p(¢,) and b, ¢ Range(first component of ¢,). In fact we assume that
p =p(c,) and that i <length(¢,)— C,(<i) e F,. (If p #p(c,) for some p, then a
small modification of the argument below will suffice.) Assume that the
Sublemma fails. Then by the P(a, Fp)-genericity of the assignment G:&—
(81,---,8,), CeF (see Lemma 1C.13) there must be a condition r:¢c+—>
91, --.,9,)€ €*(C), ceF, such that rikg, g “No (¢, ) =<(t, §) meeting D
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avoids | {Range(G(c,), u) | (p, u) € F}”. (Here we are using Range(G(c,), u)
to denote {g.(u ! &)|u(E)=1 and u | £ e Dom(g,)} where g/,1=8:+1Ug+1,
gi+1 thins g; as p;., thins p(C,(<i)), & = (po, (P1,P1)s - - - (Pn, Pn))-) We can
assume that |g;| <7 for all (g4, ..., q,) € Range(r) where 7 is some element of
U(y) greater than |¢] such that ¢ € F,— ¢" is an n-name. To each ¢ € F, ¢ = (p,
(ﬁl: Pl)’ st (pm pn))’ associate the 7-name & = (p(')’, (p;" ql)’ et -:,1, qn))
where r(¢)=(q;,---,g,.)- Then by induction we can extend (¢, 8) to (¢’, 9)
avoiding | {Range(p(d), u)) | (p, u) € F, d associated to ¢, as above} and so that
|t'| = n. By the predensity of 9 choose (t*, 7*) <(t’, @) below some element of
9; let n* =length(¢*). Finally consider the condition r* € P(«a, F,) defined as
follows: Let f have domain [n, n*) and be defined by f(i) =0 for all i € [n, n*).
Now if ¢ = (po, (P1,P1)s - --> (Pn, prn)) € Fy define r*(c) = (p7, ..., pr) where
pF(w) = p(d(si))(w) *f, where d is the n-name associated to é. Then r*<r. But
the definition of S$(b) implies that rI-(¢t*, 7*)<(s,#) meets P and avoids
U {Range(G(&,), u) | (p, u) € F}. This is a contradiction. [0 (Sublemma)

The Sublemma allows us to complete the case: v(«a) = B(«) is a T,-successor.
Indeed the (<a)-distributivity of R* in L, can now be shown by repeating the
proof in the special case except now we use the Sublemma to choose ¢, avoiding
{bs = | sz (E)) =1} and avoiding F. (b, is also avoided if b, ;: € %, v(a) = T,-
successor of pz.) One should note that the definability property (b) from the
definition of S, follows for # as the definition of p(¢) for proper a-names ¢ is
AY((a)). The last part of the argument is the same, using the (<a)-
distributivity (with ‘F-avoidance”) to build the desired R’-generic.

Now suppose that v(a) = « is recursively inaccessible. We can assume that « is
X,-projectible as otherwise =-genericity for R? c L, reduces to ordinary generi-
city: f W< R*x y is ,(L,), then a not X,-projectible— for some B < a, any
condition ¢ € R, |t|= B meets D(W*) N Ly =“P(W* N Lg) in the sense of Lg”.
(Recall that W* = {(q, 6) | g <p for some (p, 6) e W}.)

Thus C, is unbounded in a and f € C, — B is inadmissible. First suppose that
F = 0. The following is analogous to our earlier distributivity claim for R".

Claim. Suppose (W;|i<1y') is a uniformly X,(L,)-sequence of persistent subsets
of R®*x y (i.e., (p, 8)e W, and p'<p—(p', 8)e W,) and y' <7y. Then for any
t € R® there exists t' <t such that t' € D(W,) for all i <y'.

Proof of Claim. First assume that y is a-regular and suppose that the Claim fails.
Now define t=¢,=¢t,=-- - inductively by: ¢, =least t'<¢,; in R? so that for
some j<y', § <y we have {t'} xdc W¥lbut {t}x s EWHl; t, = {t;]i<A}
for limit A. Then [4] is inadmissible for limit A and so #, is a member of S7 for
limit A as genericity for #, follows automatically. The desired ¢’ < ¢ is ;) where i, is
least so that ¢; ., is not defined. Such an i, exists as otherwise y is the a-finite
union of y'-many sets of a-cardinality <.
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If y is singular in L,, then notice that we can assume that W, ¢ R? X y, for all i,
where y,< y. Then proceed as above. [0 (Claim)

Remark. It follows from the Claim that R? is Z-distributive over L.

Given the Claim and ¢ e S we build a R®-Z-generic g ot as follows. Write
C,={a;|i <7} and canonically choose f;:y; = a so that A(f) = a;. Let t,=t¢ and
ti.i=least t'<t; in R® so that |¢'|e C, and '€ (W2 for all e € Range(f)
(where (W&|e<a) is a canonical enumeration of the sets W < L, which are
S(Ly)); t=U{t;|i<A}. Then || is inadmissible for limit A and so ¢, is a
condition in R? as before. Finally g = {t; | i < ¥} is the desired =-generic.

Now to carry out this argument successfully when F#@ we only need a
strengthened form of the Claim where we require that ¢’ avoids F. To prove the
stronger Claim, form Fye %y(a) as before by replacing each (p, u) e F by an
a-name C, such that p is a thinning of p(c,); we assume that p =p(¢,) and
i <length(c,)—>c,(<i) e ;. Let G ¢ P(a, k) be the P(a, F)-Z-generic defined
by Lemma 1C.13, G:¢+— (g4, ..., 8,)- Modify the definition of ., when 7y is
a-regular as follows: t;,; =least ¢’ <t in R? such that ¢’ avoids F and either (a)
for some i<y', § <y we have {t} x 6 c WV, {£} x 8 £ W, or (b) for some
p < G (= that condition in ?(a, F,) defined by G(¢) = (g, I |t], . . ., & I |t:])
we have |p|<|t’| and p It can be extended to " obeying (a). Thus the idea is to
keep extending ¢; if either (a) occurs or can be forced to occur by some condition
extending G'!' of length >|].

Now note that « is admissible relative to G (by the X-genericity of G) so there
is a stage i so that ¢, has no extension ¢’ avoiding F which obeys (a). So again by
2-genericity, there is n <« so that this fact is forced by G". It follows that if
t' <t is defined to avoid F and have length 7, then ¢’ is as desired. The case
where 7 is a-singular can be similarly handled.

Finally we consider the case: v(a) > « is recursively inaccessible. Then (L, a),
s | v(@)) is admissible as either |s|” = v(@) (and so s | v(a) is PL?-Z-generic
over L, hence admissibility follows by the ZX-distributivity of 2y*) or
Is|” > v(@) (in which case the result follows from the fact that s | |s|~ preserves
cardinals).

Claim. Suppose (W;|i<a') is a uniformly Z(L,) s | v(«))-sequence of
persistent subsets of R° X o« and o' <a. Then for any (t,t) € R® there exists
(', ¥)<(t,7) such that (t',1') e D(W,) forall i< o'.

Proof of Claim. We define (¢1,7)=(tp, %)= (t;, 1) =--+ and vo<v;<---<
v(a) inductively as follows: Suppose (¢, ;) and v; are defined and «; = |t;|. Let
H; = Z,-Skolem hull of o; U {p} inside (L, s | v(a)) where p is a parameter
both for defining (W; |i < a') and for defining a 2;(L,(a), s | v(a))-injection of
v(a) into «. (Note that we can assume that v(a) is X;-projectible relative to
s ! v(a) as otherwise X-genericity for R* reduces to ordinary genericity.) We
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assume that HNa=q; and v,={J(H;NORD), for i>0. Choose 7 =7 U
{bs1£|s(8)=1, EeH;} and if i is even, let (t}.q, F.41) < (¢, 7)) be least so that
either for some j<a’', § <a we have that (¢, ') < (t/+1, L+1) = (', T') ¢ (W)s,
or for some j<a', Wc W, WelL,, we have that (W) is predense below
(ti+1, fi4q) for all 6 <« (and this is not true if (¢/,,, ;+1) = (f;, 7})). Now let
H; ., = %;-Skolem hull of ;U {p, (ti+1, fiv1)} inside (L, s | v(@)), aiy=
H;,1N a and obtain (t;,4, f;+,) from (¢ .4, f;+,) by extending so that |t, | = a;,;.
Also v;,, = (H;,;NORD). If i is odd, then let (¢,.,, f;+;) < (¢, f;) be the least
so that 7,,, = and if &;,1 = |t;14], then a;,; = H;.; N @ where H,,, = X;-Skolem
hull of a;,,U{p, (t, #)} inside (L,a), §|v(a)) and such that if v, ,=
U (H;,, N ORD), then s | v;»; meets all P(T*)c PU* where T < PLY X « is
21(L(ay) with parameter x € H; ;.

For limit A take unions. Note that as IT;-cof(L,,), s | v(«)) = & it must be
that «; is undefined for some i < «. In fact the same argument shows that for limit
A if IT;-cof( L, (s, som,) = a; (wWhere m,: L, =H,), then ¢; is undefined for
some i <A. We conclude that (L,,,), s°m,) is inadmissible and hence v(a,) is
not recursively inaccessible whenever A is a limit ordinal so that «; is defined, as
otherwise by construction sem; is P*)-Z-generic over L,,, and hence
(Ly(ay), s°m,) would be admissible. It is now easy to verify that «; defined—
(t;, %) defined and that if (¢, 7') = {(s, %) | & is defined}, then (¢', ¥') € D(W)
for all i < «’. (We are using the fact that R’ has the Z-c.c. in (L,(,), s | v(«)).)
This proves the Claim. 0

Given the Claim, we can dispose of the case at hand, assuming F = @. Indeed,
let C, =all B € C, such that (Z;-Skolem hull of BU {p} in (L), s | v(a)))N
a = B, where p = least p such that there is a (L, ), s | v(«))-injection of v(a)
into & with parameter p. If C, is unbounded in a, then define (t,, %,) = (¢, 9),
(tis1, Trr) S (8, F) so that £, avoids {b,,:|s(§)=1, EeH;} and (f4y, is1)
meets all P(W,) for e<a; (where C, = (a;|i<y,), H:=Z;-Skolem hull of
o, U{p} in (L, s v(a)) and (W, |e<a) is a canonical X;-listing of the
2 (Lywy, s | v(a))-persistent subsets of R* X &). It is easy to verify that
g=U{t:|i<yo} is as desired. If C, is bounded, then use a A} (Hf(a))
w-sequence ao<a;<--- to guide the |t|’s. (This is possible as s | v(a) is
A1<Lv(a): Cv(a))')

To carry out this argument successfully when F #@ we only need a strength-
ened form of the Claim where we require that ¢’ avoids F. To prove the stronger
Claim, we proceed in a manner similar to the way we handled the case v(a) = a:
form K and G < P(a, F,) as in that case. Assuming for the moment that
Zi-projectum(v(@)) = @, we can then assume that Fye %o(a, s) as 0 <v(a)—
M ov(a) 1S bounded in v(a). Now proceed as in the proof of the preceding claim
with the following modification: choose (¢4, f;4,) so that ¢/,, avoids F and the
condition of the earlier proof holds or is forced to hold by some p <G,
lp| <|ti+1]- As v(a) is admissible relative to G (see the version of property (h)
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stated at the end of Part C), there must be i < a so that the condition of the
earlier proof does not hold; by the X-genericity of G this fact is forced by some
G*. Then if (¢, F')<(t,, ;) is defined to avoid F and have length «; we see
that (¢, ) e (W) for all i < o'.

It now remains only to show that 3;-projectum (L, s | v(«)) = a implies
3-projectum(L,,)) = @ To prove this we use the fact that 2}(* is equivalent to
S%(* (in fact the latter is a dense open subset of the former) and for s,, 5, € S%®,
s; is stronger than s, in 2Y*® exactly if s, extends s,. Now given this, we can
show: If X;-projectum(L,,)) = v(&) > a, 5o € P%* and (W, | i < &) is a uniformly
Z,-sequence of subsets of P, then there exists s*<s, in P so that
s*eD*(W,)={p|p<some qgeW, or g<p—>q¢W,} for all i<a. Indeed,
define so=s,=s5," - - effectively by letting s5;,, =least s’ <s; such that for some
i<a, L F(s" €W, for some s"=5', 5;¢ W,). It is easy to check that 5, =<, s;
is a member of S$Y*® for limit A. Now this induction must terminate in some
s*=|J{s;| alli}, else there is a cofinal X;-partial function from « into v(«) in
contradiction to the hypothesis that v(«) is ;-nonprojectible.

Having shown the preceding, we can now use the X-genericity of s to argue
that (L, s) is not X;-projectible. For, if f* is (a definition for) a partial
21(Ly(q), 5 )-function from « into v(«) we can let W, = {s’ | L, £f*'({) = B, some
B} and the preceding implies that & = {s' | for some B, Range(f*) < B for all
s"<s'} is dense open and 7; over L,,). But the Z-genericity of s implies that s’
meets & for some s’ =s and we have shown that Range(f®) is bounded in v(a).
This completes the proof of our assertion and of Lemma 1D.2. O

The following was demonstrated in the course of proving Lemma 1D.2.

Lemma 1D 4. R® is (<a)-distributive in L, ,,. If @ = v(a) is admissible then R® is
2-distributive over L.

We now discuss the antichain property for R°. A similar property will also be
demonstrated for the limit coding, but via a more difficult argument. In both
cases the key fact to establish is a form of the following genericity property.

Lemma 1D.5 (Genericity Property for R*). Suppose s —t belong to S,, a € U(y)
and & € L, is predense on R°. Then 9 is predense on R".

Proof. Suppose not. Let (i, &1, U it;) € R* be incompatible with each element of
9D, where o {bs | E<|s|} and i, {b, | E=s|}. Then (u, ii,) € R* and we
can assume that Range(ii,) = Range(p), Range(ii;) = Range(q) c {b, ;| & =|s|}
where p Ugq € €x, is standard, Xel,, |pUgq|=a. By Lemma 1C.15, G(q) is
€Dom(q).-generic over L,. But then as in the proof of Sublemma 1D.3, the
genericity of G(q) implies that (i, ii, U iZ;) must be compatible with some element
of @: Let §={JX and § € G(q) force that “(u, i, U {GEF | £)|5(§)=1}) is
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incompatible with each element of 9. But as in Sublemma 1D.3 there exists
q' =< q which forces the negation of the preceding statement. This contradiction
establishes the Lemma. O

Lemma 1D.6 (Chain Condition for R°). Suppose a e U(y),s€ S, and B=pu?
where B is admissible, LgF ) is a cardinal. Also suppose that B is admissible
relative to g =s | u? and (a™)" = (a*)"8. Then R® has the =-a*-c.c. in Lg[g);
e, if D RE=\J{R’|s€S,, scg} is X, over Lg[g] and predense on RE, then
D N L is predense on RE for some & <(a™*)"s.

Proof. First note that if (uy, #;), (u,, #,) € R® are incompatible, then u; #u,
(and so R# has the (a™)™-c.c. in Lg[g]). For, on page 61 we showed that any two
standard labeled «, s-strings (p,, u;), (p,, 4,) are compatible, provided b, ¢
Range(p;) N Range(p,). Thus, if u; =u,, then by Lemma 1D.2 we can extend
(uy, ;) to (uy, 1) avoiding ii,, where o, Ui, So (uy, ) is a common
extension of (u,, &), (u,, &,).

If B> (") and @ c R® is Z;(Lg[g]) and predense it must be that & contains
a predense 2* € Lg[g], as R® € Lg[g]. Now pick & <(a*)™ so that L; contains a
maximal antichain M c {p | p <some element of $*}. It follows that & N L is
predense on RS.

The interesting case is where B = (a*)*. Then we can pick £ <p so that
(D)*sle 181 is predense on R2'% (where (2)™:¢ '¥ is obtained by relativizing the
Z1(LglgD]definition of P to Le[g | £]). But ()" ¥l is an element of L, so by
Lemma 1D.5, & N L is predense on R%. O

The preceding Lemma is what one needs on order to show that admissibility is
preserved by the successor cardinal coding. An important step in that argument is
the following.

Lemma 1D.7 (A,-Definability of Forcing for R*). Suppose that «, B, g are as in
the preceding lemma. Then the relation p I+ ¢ (p € R%, ¢ a ranked sentence from
Lglg]) is A; over Lglg].

Proof. The case > (a*)™ is clear as then R® is a set forcing over Lg[g].
Otherwise we show the following by a X';-induction on ¢: Given p € R® we can
effectively extend p to g <p to decide ¢ (i.e., gl-¢ or g I-~¢, and we know
which one). If ¢ has no (ranked) quantifiers, then the result is easy. If ¢ is a
negation, then the result follows trivially by induction. The interesting case is
where ¢ is of the form Vx,y(x,) where y <p and x, ranges over sets of rank less
than y. By induction we can effectively build dense X(Lg[g])-sets 2, for T a term
of rank < y so that g € 9, — g decides (7). By the proof of Lemma 1D.6 we can
effectively produce §<pf so that &, N L, is predense for each 7. Thus either
p |- ¢ or we can effectively find g <p, 7 so that g € @, N Lg, g I+ ~y(1). We have
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completed the induction. Finally note that we can define p I ¢ as follows: First
effectively build a dense X;(Lg[g])-set @ = R® so that g € D — g decides ¢ and

then effectively find §<pB so that P N L, is predense. Then pl-¢ iff g<p,
gePNLg—>qit¢. O

E. Limit cardinal coding

Suppose B € Adm, k is a limit B-cardinal and s e S£. We now consider how to
code s into a subset of k. This coding is similar to the one used in
Beller-Jensen—Welch [1]; however, due to the requirement that our forcing
preserve recursively inaccessibles we must introduce some further restraint.

We begin by reviewing the basic coding strategy from [1]. The following follows
from results proved there.

Lemma (Jensen) (V =L). One can associate to each singular B-cardinal x a
continuous cofinal increasing sequence of PB-cardinals y§<yy<--- of length
A, < K such that:

(@) (yF|li<A.) is definable as an element of L, whenever u> x is p.r. closed,
L, £k singular. This definition is uniform in k.

(b) If k' is a limit point of (y¥|i<A.), then y¥ = y¥ for i <A..

(c) If k' is a successor point of (y¥|i<A.), then k' is a successor B-cardinal.

We shall use the singular sequences provided by the Lemma in defining the
coding at singular B-cardinals.

Now suppose that k is a singular B-cardinal and s € S%. The forcing #* c L, is
designed to code s into a subset of | {((vF)*, (y")**)|i<A}. A condition
p € #° will be defined to be a special type of function from S-Card N k into L,
which associates a pair p(y) = (p,, p,) to each y e Dom(p). In addition we will
have p(y) e RPv+, p [ ye PP for all y as well as some special requirements at
limit B-cardinals y € Dom(p). Extension is defined by: p <gq iff p(y) <q(y) in
RPr+ for all y. Our coding strategy at singular cardinals is to define almost disjoint
codes (b: | E<|s|) so that b U {((¥})*, (¥©)**)|i<A.} and to arrange that
s(&) =0 iff b is almost disjoint from p = {p, | y e Dom(p)}. (In this context
we say that x, y ¢ k are almost disjoint if x Ny is bounded in k.)

Now we must define the bg’s. Suppose that x is a limit B-cardinal, y € B-
CardNk and §e O(x)NP. For any n<w let MZ, = transitive collapse of the
2,-Skolem hull of yU {x} inside L,; (for n=w, puz=pug=ps=sup{ug|n<
@}). Then p%, denotes the canonical <,-code for M%,+. For L, -singular x we let
b§ = {<1: pEy.K> | i< Atc} where Pey = p(EDy Thus b& c U {((Yf)+’ (Yf)-H’) |l <
Ac}. For L, -inaccessible k it is convenient to define b to be the function on
kN B-Card defined by bi(y)= (1, p%y). Our strategy for coding at L,-
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inaccessibles is to arrange that s(§) = 0 iff for sufficiently large n <, {y | b3(y) €
p} is nonstationary in L,,. '

Having described the coding strategy at limit cardinals, we now turn to the
major restraint that we wish to impose on our conditions. Suppose k is a limit
B-cardinal, seSf For [s|>k let s*={u,1:|E€O)N]|s|} and P==
U{P '¥|EeO(x)N|s|}. Also define v,=max(u;, uJ). We require that if
peP — P, then {q € P=° | p <q} is P -generic over L, [s*], in a weak sense.

Definition. For pe % and y<k let (p),=p [ (Dom(p)—y) and (p)'=
p | (Dom(p) N y). Suppose & = P~ is predense on P~°. Then p € P reduces P
if for some y <k, {q € ?""| q <(p)” and q U (p), <some element of P} is dense
below (p)” in P¥r.

Now it is certainly too much to require that p € #°* — P=° be P~'-generic over
L, [s*] as this implies for example that for all n <y*, |p,| = n which is ridiculous.
However, it is reasonable to require that p at least reduces each predense
PP, DelL,[s*] and this is precisely what we do. This will enable us to
establish properties for the limit codings = which are analogous to those for the
forcings R®.

In order to deal with the special case v, = u? is recursively inaccessible we must
build a bit more ‘predensity reduction’ into the definition of our conditions. This
further requirement is based on an effective version of .

Lemma 1E.1. Suppose « is admissible. There is a A,(L,)-sequence {(Dg | B < )
such that:

(a) Dgc B foral B.

b) If Dcais A(L,) and Cc a is 2,(L,) and closed unbounded in «, then
there exists B € C such that DN B=Dg (i.e., {B|Dg=D NP} is Z,-stationary
over L,).

Proof. It suffices to consider A,(L,) closed unbounded C in (b) as any
2(L,)CUB C contains a A;(L,)CUB set. Now let ¢, ¢;, ... be an effective
listing of the X,(L,)-formulas of one free variable and let f:o¢— a* be a
3(Ly)-injection where a* = 3;-projectum of a. Define (Dg | B < a) as follows.
At stage B, pick the least j so that f~'(j) =i is defined by stage B, B € Lim(¢; )™
and for no B’ € Lim(¢, )** N B do we have (¢,)** N B’ = Dg.. (We use (¢,)™* to
denote {y <B|LgE¢:(y)} and i = (iy, i;).) If there is no such j let Dy =@ and
otherwise let Dg = (¢,,)"*. This completes the construction.

Now say that j < a* is active at stage B if action is taken as above at stage B to
define Dg = (¢, )™ where f'(j) = (io, i;). Now as the function j~> (stage at
which j is active) is a partial (L, )-function it follows that for any j < a* there is
a stage f; after which no j’ <j is active.

Suppose that D c o is A(L,) and C c « is both A,(L,) and CUB. To verify
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(b) we can assume that we have X,-formulas ¢,, ¢, which define D, C,
respectively and that B e C— (¢,)*=CN B, (¢,)* =D N B (this may require
thinning C). Let j = f({io, {)) and pick a stage B € Lim(C) greater than ;. Then
either D N B’ = Dy. for some B’ <P or Dy =(¢,)*=DNP. O

We next improve the result of Lemma 1E.1 in two ways. The first improvement
is to require that the sequence of Dg’s ‘live on’ some A,-stationary set E c a.
(E c a is A,-stationary if E N C# ¢ whenever C c « is both CUB and A,(L,).)
This is not difficult to arrange. The more serious improvement is to arrange that
(Dg | B< &) be independent of a, in the sense that a, < a,— the Dg-sequence
for a; is an initial segment of that for «,. Notice that the proof of Lemma 1E.1
made use of a X;(L,)-injection a— a* which requires a parameter p(«). The
key idea for obtaining the desired independence of a is to ‘guess’ at this
parameter.

Lemma 1E.2. Suppose EN « is A,-stationary and uniformly A, over L, for all
admissible a. Then there exists a sequence {(Dg | B € E) such that

(@) Dgc B forall BeE.

(b) {BeE|DNB=Dg} is A-stationary over L, whenever D c a is A,(L,),
for all admissible «.

(c) (Dg|B €ENa) is uniformly AI(L‘,,) for admzsszble o.

Proof. Repeat the proof of Lemma 1E.1 except only consider 8’s which belong
to E and at stage B replace f by f* defined as follows: Let A:w X L— L be the
canonical X;-Skolem function for L and define fP(i) =least (n,j) <pB* so that
h(n, {j, p(B))) =i, where ‘least’ is in the sense of the canonical enumeration of
Graph(h). If B* = we can assume that f = identity. In addition, when defining
Dg one should only consider 8’ < B in E such that p(8') = p(B), (B’)* = B*

Now the assertion of the second paragraph should be weakened to say that for
any j < a* there is a stage 8; < & such that no j’ <j is active at a stage B € (8;, @)
such that 8* = a*, p(B) = p(«). This has content only if a* < ¢, but note that it
suffices to establish (b) for this case, as the general case can be reduced to it using
reflection by considering successor a-stables (which are X' ;-projectible).

Finally note that if a* < a, then {8 <« | B* = a*, p(B) =p(«@)} is A,(L,) and
CUB. Thus in the final argument we can choose 8 € Lim(C) N E to belong to this
set and thereby complete the proof. [

We have a particular A,-stationary set E in mind and this is described in the
next lemma.

Lemma 1E.3. Suppose « is admissible. Then E = {8 < « | G is bounded in B} is
A,-stationary over L. '
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Proof. We can assume that « is 2;-projectible (a* < &) as otherwise the lemma
can be reduced to this case by considering successor a-stables. Thus a* =k =
largest a-cardinal.

Now given a A,(L,) CUB set C pick a parameter y <k so that C has a
Ay(L,)-definition with parameter (p(a), y). (This is possible as ¥;-Skolem hull
(kU{p(a)}) in L, =L,.) We can pick < a so that p(B) = p(«), L,-cofinality
(B) is greater than y and C N B is CUB in B, A,(Lg) with parameter {p(«), y).
Let B’ = (y + 1)st element of Cg, when (g is enumerated in increasing order.

We claim that B8’ e C. Indeed, it follows from Lemma 6.29(b) of Beller-
Jensen—Welch [1] that B’ = sup X;-Skolem hull({8", p(B)}) in Lg, where " = yth
element of Cgz. But clearly y € Z;-Skolem hull({8", p(8)}) in Lg as y = ot(Cg-) so
CNnp is A(Lg) with parameter from 2;-Skolem hull({8", p(B)}) in Lg. It
follows that B’ is the limit of elements of C and hence belongs to C. O

Our last improvement of the preceding version of effective O(E) is to adapt it
to amenable structures (Lg, s) where B is p.r. closed and s:B—2. Thus let
a,b,... range over structures of this form and set E={a|C, is bounded in
ORD(a)} where C, is defined as in [1, p. 210]. We wish to define (D, |beE)
with properties analogous to those of Lemma 1E.2. This ‘tree version’ of { is
summarized in the next lemma.

Lemma 1E4. (1) If a is admissible, then for any CUB C c ORD(a), C
Ay(a)—a | B €E for some B e C. (“ENais A-stationary over a”.)
(2) There exists a sequence (D, |b € E) such that:
(a) D, < ORD(b) for allbeE.
(b) If a is admissible, D c ORD(a), D A,(a) then {beE|bca, DN
ORD(b) = D} is A,-stationary over a.
(c) (D, |bca,beE) is uniformly A,(a) for admissible a.

Proof. Just like Lemmas 1E.2, 1E.3. O

Remark. We are primarily interested of course in structures b = (Lg, s) as above
where B € O0(k), s € S, |s| = B. Actually this ‘tree version’ could be discarded for
the linear one if we only had a method for guaranteeing that a € O(x), s € S,,
|s|= &« and « recursively inaccessible— s is ITZ-generic over L,. This would
enable us to arrange that any CUB C c a which is A;(L,, s) in fact contains a
CUB C' ¢ o which is Ay(L,); this in turn would enable us to do all of our
guessing with a fixed, uniformly A,(L,) <-sequence.

We can now describe the added ‘predensity reduction’ requirement that we
need. Fix x a limit f-cardinal. Also fix the (E)-sequence (D, |beE) of
Lemma 1E.4 where E = {b| C, is bounded in ORD(b)}. For any p € #° where
s€S,, ug=P, (Lg, s | B) =beE we require the following: Suppose D, = (the
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collection of ordinal codes for) a predense subset of 2= '#. Then we require that
p reduces Dy, |

The purpose of the above restriction is to enable us to establish properties for
the #=° forcings analogous to those of Part D for R’, especially the fact that the
forcing relation for ranked sentences is A, for #<° when ul is recursively
inaccessible. We now begin a discussion of these properties.

Lemma 1E.5 (Distributivity for %°). Suppose yef-CardNk and P} =
{(p), |p € P=°}. Then P;° is (<y*)-distributive in L,[s*], whenever v, is
recursively inaccessible. ~

Proof. Deferred.

Lemma 1E.6 (Genericity Property for 2?~°). Suppose s =t belong to S, and
D € L, [s*] is predense on P=. Then D is predense on P'.

Proof. It suffices to show that if p € #° — P=°, then p is compatible with some
element of &. By definition, p reduces & so there is y € B-Card Nk so that
{qg e P*|qg=<(p)” and q U (p), <some element of P} is dense below (p)”in P?.
Thus in fact there exists p’ <p so that (p'), = (p), and p’' <some element of Z.
So p is compatible with some element of & (in a strong sense). O

Lemma 1E.7 (Chain Condition for #<°). Suppose ud< ' where B' is recursively
inaccessible, B’ = u? or Lg .k u? is a cardinal. Also suppose that B’ is admissible
relative to s | u and B’ =ul or Lg|s | ullkul is a cardinal. Then P~ has the
S-x*-c.c. in Lg[s | ug).

Remark. We will eventually be able to conclude that the second hypothesis is
redundant, for recursively inaccessible B’

Proof. As in the proof of Lemma 1D.6 in the case ' > u? we have that 2= is an
element of Lg[s | u)] and thus any Z(Lgfs | uj]) predense & contains a
predense @* € Lg[s | ul]. But then for some &=pug<pu? we must have that
@*N P ' belongs to L,, [(s | £)*] and is predense on 2= '%. Now it follows
from predensity reduction that * N P<* ¥ c 9 N L; is predense on P=".

So suppose that B’ = u? and @ < P<* is A(Lul[s | ul]) and predense on P=°.
Then C={E<ul|E=p) and D NL,=P™ is predense on P<'%} is
Ay(Lg[s 1 u?]) and CUB (in pu?). By the O(E)-property of (D, |beE) we can
find B € C so that (Lg,s | B) =beE and D, = (the collection of ordinal codes
for) 9N Lg. Then P N L, is predense on P= '# so by predensity reduction
9 N Ly is predense on P<*. As any Z;(Lug[s | uJ]) predense 9 ¢ = contains a
Ay(Lpd[s | ul]) predense set, we are done. O
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Lemma 1E.8 (A,-Definability of Forcing for =°). Suppose that s, B’ are as in the
preceding lemma. Then the relation pl-¢ (p e P, ¢ a ranked sentence of
Lg[s t ul]) is A, over Lg.[s | us].

Proof. Just as in Lemma 1D.7. 0O

F. The definition of %,

We can now define the desired forcing. We first define &, for s € S% where
7, kK € B-Card, y <k by induction on B, k, |s|. In addition the definition of %
will depend on that of P£ for f’e AdmNB, y e€B’-Card and the latter
definition will be given afterward. (This is actually a double induction.) It is
worthwhile to first isolate a few properties of the forcing.

(a) A condition p € %;, will be a function on -Card N[y, k) which assigns to
each & a pair (ps, ps) € RP*+.

(b) Each p € ?& will be of the form p’ U {(x', (s, #))} for some p' e %,
s eS8, B'<pB. (We also allow p’ to be empty, k' =7.)

(c) If p, g € P, then p <gq iff p(6) <¢q(8) in R?** for each 6 <k.

(d) If p, ge PE, then we define p<gq as follows: Let 6 =max(Dom(p) N
Dom(q)). If 86 = max(Dom(g)), then we say p <gq iff (p)°<(q)°®in P2, q5 < ps.
(Recall that (r)® =r | [y, 8) and (r); = r — (r)°.) Otherwise we must have g € P’
with B’ <|ps| and we insist that both (p)°=<(g)?in %% and that (), € P4 is a
condition in the %% -generic determined by ps | B’. (Note that as ps € S5 it
follows that ps | B’ is P4 -generic over Lg..)

We now define % when seS% kepB-Card, yeB-CardNk. A condition
p € %, is a function in L, that assigns to each 6 € -Card N[y, k) a pair (ps, ps)
such that either p € ;°=J{®}'%| £ € O(x) N |s|} U 2% or:

(1) (Smoothness) (p)°e #2¢ for all 6 eDom(p), 6>y. If y is a limit
B-cardinal in Dom(p), 8 > v, then (p)° € P25 — P5Ps.

(2) If k=67 is a successor B-cardinal, then p(d) € R°.

(3) (Predensity Reduction) If x is a limit B-cardinal, then:

(a) p reduces all predense % < P~ which belong to L,[s*]. If v, is
recursively inaccessible, T ¢ P~ X y’, y’' <w, is persistent and 3,(L,[s*], s*),
then p reduces 9(T).

(b) fb= (Lo, s | u?) € E and D, is predense on =, then p reduces D,,.

(4) (Coding) (i) If L, Fx is singular, then s(&)=0 iff b:NUJ{ps | €
Dom(p)} is bounded in k, for all £ € O(x) N |s|.

(ii) If L, EK is inaccessible, then s(§)=0 iff for sufficiently large i < w,
{6 € Dom(p) | b(8) € ps.+} is non-stationary in L,,, for all £ € O(x) N s].

(5) (Code Thinning) If x is a limit B-cardinal and p is X,(L,), x Z,(L,)-
regular, then there isa CUBCck, C 2,(L,) so that 6 e C—~p; =4.

(6) (Growth Condition) If x is a limit B-cardinal, x X,(L,)-singular, p is
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2.(L,)— 2,-4(L,), then there is a CUB CcknNp-Card, C X,(L,) so that
8eC—CNdeZ,e)Lye) (Wherep | 6 € 3, 5)(Lyis)) — Znisy-1(Lycs))) and such
that given any pair (#, 7i)) <(n, n) (lexicographically) and parameter x € L,
lps|=Hs N 6" for sufficiently large & € C, where Hj;=ZX;-Skolem hull of
O0U{Kk,x}in L.

(7) (Restriction) If k is a limit S-cardinal, then & € O(x) N |s|— p =< g for some
qeg;ré_ g);srs.

This completes the definition of #. Now we define 2% (B € Adm, y € 8-Card)
to consist of all conditions of the form p’' U {(x', (s', #))} where for some B’ < g,
k'€ B’-Card, k' =y and s’ € S% we have p'e %, and k' a limit B'-cardinal—
p' ¢ P7°. We allow the possibility p’ =@, k' =y. Thus if y =gc B, then P% is
essentially the same as S¥. Extension of conditions is defined as in (c), (d) above.

We also introduce the following notation. If p € %5, then |p| denotes the least &
such that p € 2}'%. Note that we require in (1) of the definition of %, that for
limit B-cardinals 6 € Dom(p), 8 >y: |(p)°| = |ps|-

Finally set %, ?f equal to %}, P§, respectively, and 2, = {??| 8 € Adm},
P=%. Our aim is to show that PIFZFC and IR c w (R-admissibles =
Recursively Inaccessibles).

Remarks. (i) The Restriction Property (7) implies that Predensity Reduction
holds in the stronger form: If &= 0(x), £</|s|, then p reduces all predense
%@ < #= "¢ which belong to L,[(s | £)*]. And, if b=(L,, s | u2) €E, E<|s|,
then Dy, predense on < ' *— p reduces D,

(ii) Both the Growth Condition and Code Thinning are useful in the proof of
the Extension Lemma in the next section.

(iii) As in [1, p. 45] if s € S& where K is a limit B-cardinal and p € %%, |p| =,
then for sufficiently large n < w there exists y, < kx such that 6 € Dom(p) — y,—
pZ%s> |ps+|- Thus p has not yet coded s(&).

The rest of this part is devoted to establishing earlier lemmas whose proofs
have been deferred, with the assumption of distributivity and extendibility. Both
distributivity and the following form of extendibility will be established in Section
Two.

Lemma 1F.1 (Extension Lemma). Suppose p € % and f € Lg, Dom(f) c f-Card
is thin in Lg (Lg EDom(f) N k' is nonstationary for regular '), f(y) <(y*)™* for
each y e Dom(f). Then there exists q <p in P& such that y e Dom(f), y=x—
y € Dom(q), Iq| =f(y). The same is true for P, with Lg replaced by L, .

Thus we wish to reduce the proof of our theorem to that of Lemmas 1A.6 and
1F.1. We must establish Lemmas 1A.1, 1A.2, 1A.3, 1A.5, 1A.7, 1A.8, 1B.5,
1B.6, the lemma immediately preceding the proof of Lemma 1D.2 and Lemma
1E.S.
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Proof of Lemma 1A.1. (a) and the first statement of (b) are clear from the
definition of 2. (Note that in fact there is a uniformly A,(Lg)-definition of P&
for B’s which are limits of admissibles: P& =|_J{P% | B’ € N Adm}.) To prove
the second statement of (b), suppose that p, g € P2 are compatible in P2; let
r<p, q belong to ?2. If Dom(p) = Dom(g), then in fact p, g have a lower bound
7o defined by ro(8) = (res, Ps U §s) Where ros 2 ps Uqs and roe PE. Otherwise
assume without loss of generality that & =max(Dom(p)NDom(g))<
max(Dom(p)). If § <max(Dom(g)), then assume without loss of generality that
6’ =(least ' e Dom(q) greater than &) is greater than max(Dom(p)). (This
follows if ' >least y e Dom(p) greater than §.) But then we can assume that
(r)s-=(q)s- and hence re P?. Finally suppose that &=max(Dom(q)). If
|gs| <y =1least y e Dom(p) greater than , then p, g have the lower bound r, as
defined earlier. If |q,| =y, then in fact |q,| = max(Dom(p)) and p, q have the
lower bound r; defined by Dom(r;) =Dom(q), n(n)=(n,, p,Yg,) where
g 2P U g, for n <98, r(8)=q(6). The proof of the last statement in (b) is
similar. O

Proof of Lemma 1A.2. We must describe the ‘decoding process’. Suppose
X, c [k, (x*)¥). We first describe the decoding function f'(k, B, X,) which
produces X c [k, B). By induction on & €[k, B) we define c(§), where c=
characteristic function of X. If £ <(x*)*#, then c(§) =1 iff £ € X,. Otherwise let
u = E be least so that either 4 € Adm or L, k& € O(y), where y € B-Card. Such a
u exists as if the former case fails, then g = 8’ where B’ < & < B and & € O(gc B).
In the former case let y = u-card(§) = gc u. Then & € O(y) and if v is a successor
pu-cardinal, then c(§)=1 iff b is almost disjoint from X Ny; if y is a limit
p-cardinal, then we decode c(§) inside L, ,, as in (4) of the definition of ;. In
the latter case the decoding is the same, using the latter definition of the
p-cardinal y.

It is easy to see that X c [k, B) so defined is A,{L4[Xp], f-Card), uniformly in
K, B. Notice that it is important when decoding c(&) to isolate an admissible u
and u-cardinal y so that § € O(y).

Now to define f(x, B, X). If X#f'(x, B, XN (x")™*), then f(x, B, X)=4.
Otherwise p € f(k, B, X) iff for all 6 e Dom(p), ps = ¢ = characteristic function of
X and bep;— S(b)NX cps. Thus f(x, B, X) is uniformly A, over (Lg[X N
(xk*)e], B-Card). If G is PB-generic over Lg, then let Xo=\J{ps|peG,
6 e Dom(p)}. Clearly pe G—pef(k, B, Xs) and X; is determined by the
condition f(x, B, Xg)=G. Alsoc(n)=1, n<p'e Adm—Ipe GNLg, p(n)=
1: For, if ps(n) =1, p € G, then either (p)°U {(8, (ps, #))} e GN Lg or ps | B’
is %P5 -generic over Lg, in which case (p)°UqeGNLg for some qe P§,
n €ds. The same is true with 1 replaced by 0. Thus, we can conclude that
Xs N B’ is uniformly A, over Lg.[G] for admissible B’ < .

To show that pef(x, B, Xo)>p€eG we need only show that p, g€
f(x, B, X6c)— D, q are compatible (see condition (ii) in the definition of %-
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generic). We establish this by induction on . If Dom(p) = Dom(q), then it is
easy to check that there is a condition r defined by r(8) = (15, Ps U §s) Where
rns 2ps Uqgs. Otherwise suppose without loss of generality that &=
max(Dom(p) N Dom(q)) < max(Dom(p)) and let y =least y e Dom(p) greater
than 8. We can assume without loss of generality that either 6 = max(Dom(gq)) or
y' = (least y' € Dom(q) greater than §) is greater than max(Dom(p)). If |g5| =y,
then for some B’ <pB, p € ¢ and g, | B’ is P4 -generic over Ly, hence it follows
by induction that (p), € generic determined by g, | 8'. In this case r < p, g where
r(n)=(ry, PyUdy) and r,op,Ug, for n <8, (r)s=(q)s- If |gs|<v and
6 = max(Dom(q)), then r<p, g where r is defined as in the case Dom(p) =
Dom(q).

There remains the case where 4 <max(Dom(q)) (and so y’ > max(Dom(p)) is
defined) yet |gs| <7y. By the Extension Lemma 1F.1 choose r* € G so that for
some &' <34, |r}|=max(Dom(p)). Then r} | B’ is P5.-generic over Lg where
B’ =sup(|r}| N Adm). It follows that ri. | [8, B’) is P§-generic over Lg and
hence by induction (p)s, (g)s | B'-Card belong to the generic determined by
r. | [6, B'). Finally let r be defined by r(n)=(r,, p, Ug,) and r, 2p, Ug, for
n<é’; r(8)=r*") if y'<B’, r(6')=q(d8') if y'=p’ (and hence 6’ =9);
(r)y=(q),ify'=p".Thenr<p,q. O

Before turning to Lemma 1A.3, we first establish the Factoring property.

Proof of Lemma 1A.7. We let G, denote a name for | {p. | p € G} (where G
names the generic object for #£) and PS¢+ denotes | {#; |s € S&, s = G,}. The
fact that P is equivalent to PE+ PSx is clear. The fact that PEI- P$= has the
X-k"-c.c. if B is recursively inaccessible follows from Lemmas 1D.6, 1E.7: Use
1E.7 if k is a limit B-cardinal and 1D.6 together with a factoring P& * R® % PSs if
k= 06". In both cases we must know that if s: [k, B)— 2 is PE-generic over Lg,
then s preserves (k*)™ and if in addition s is PE-Z-generic over Lg, then s
preserves admissibility. The former assertion follows from distributivity. To prove
the latter assertion first note that by X-distributivity, if k' = gc 8, then s | [x’, B)
preserves admissibility as it is Z-generic and the forcing relation for %%, is clearly
A, when restricted to ranked sentences. And P&~ has the (x’)*-Z-c.c. in Ls[G,]
where G,. = generic corresponding to s [ [k, B). By Lemmas 1D.7, 1E.8 the
forcing relation for %« is A, when restricted to ranked sentences. Now we can
show admissibility-preservation by the usual antichain argument: Suppose f is a
name for a X,(Lg[G,])-function from k’ into B and p € P, p I-f is total. By the
(x")*-Z-c.c. of PC, for each y < k' there is a predense below p set D, € Lg[G /]
such that g e D,—for some 6 <f, qI-f(y)=4. By the admissibility of S,
p - Range(f) = 6y, for some 6,<pB. We have shown that 2. |- KP and 2%. I+

(PG I+ KP). So P2I+rKP and the X-genericity of s implies that s preserves
admissibility. [
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We return now to the Genericity Lemma.

Proof of Lemma 1A.3. It suffices to show that for § € m, K € B-Card k < B we
have G Q’E-generic over Lg—> G N P8 is PE-generic over Lg, and if in addition B
is recursively inaccessible, then G g’é—generic over Ls— G N P is PB-3-generic
over Lg. First suppose that k' = gc B < 8. Then %% is equivalent to P » PE+ (the
latter is empty if k = k') and 2£ is equivalent to PE. PS¥. If s:[x’, B)—2 is
Q’E,-generic over L, then by definition of Sﬁl, s | [x', B) is P2.-generic over Lg
(is PE.-X-generic over Lg if B is recursively inaccessible) and by Lemmas 1D.5,
1E.6 any P >-generic over Lg[s] is 25 '1*"#)generic over Lg[s]. So we conclude
that any P-generic over Lj is P£-generic over L, (when intersected with %),
Also if B is recursively inaccessible, then we get P£-S-genericity over Lg, using
the second statement of part (a) of Predensity Reduction (when k'’ is a limit
B-cardinal). If gc B = B, then we can again use the second statement of part (a) of
Predensity Reduction to obtain the desired result (when B is a limit B-cardinal.
Note that in this case v, g =vg=p, B is recursively inaccessible and
PP = B ) If B is a successor B-cardinal, then use Factoring and Lemma
1ID.5 when s € §,, |s| =« and thus R°=2$. O

Proof of Lemma 1A.S. This follows immediately from the extension Lemma. [

Proof of Lemma 1A.8. By induction on B. If LgF(there is a largest cardinal),
then we are done by Lemmas 1D.7, 1E.8 and Factoring. (If gcB =k’ is a
successor B-cardinal, then factor P# as PE.x PS<+ PC k'=8§*. The A,-
definability of ranked forcing is clear for #%., follows from Lemma 1D.7 for
PG = RS and is clear for the set forcing #©%). If there is no largest B-cardinal,
then use Lemma 1A.3 and induction to write plt¢ < (plt¢ in P2) for an
admissible B'<B, p, peLg. O

Proof of Lemma 1B.5. This is clear from the definition of 5. O
Proof of Lemma 1B.6. This is clear from the Extension Lemma. O

Proof of Lemma immediately preceding Proof of Lemma 1D.2. This is clea
from the Extension Lemma. O

Proof of Lemma 1E.S. This follows from Distributivity (Lemma 1A.6), Lemm
1E.6 and Factoring. - [
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SECTION TWO: EXTENDIBILITY

A. Introduction

Our proof of Extendibility comes in two parts. In the first part, Extendibility I,
we establish Lemma 1E.5 and the last statement of Lemma 1F.1 by a
simultaneous induction on |s|, assuming Extendibility for all B’ <fB. Then we
establish Extendibility IT, which asserts extendibility for S2 for all x € 8-Card:
seSt n<(x*)*—>3teS? sct, |t|=n. From this full Extendibility will be
derived. .

Suppose k is a limit B-cardinal, s € S&, p € #5°, y € B-Card N k and we wish to
extend p to g € %, such that |gq| =|s|. (If kx is a successor B-cardinal, then the
desired results follow easily from Extendibility for R®, distributivity for R° and
induction.) Our treatment of Predensity Reduction is closely modelled on the
proof of Lemma 1B.9 where if u? belongs to Adm, then u?, v, play the role of a,
v(a)~. Our treatment of Coding when |s| = & + 1 requires that we first establish
the last statement of Lemma 1F.1, by a subinduction on the level of L at which f
is defined. These arguments split into two cases, depending on whether or not
L,o= oAJF K is singular.

As in Jensen [7] the key technique for building transfinite sequences of
conditions is to meet certain auxiliary dense sets 2%. In fact we shall prove
extendibility for &, distributivity for #;* and density for 3%, ge o, =L, by a
simultaneous induction.

We now define the sets 3%. Say that X ¢ xk N B-Card is thinin L, if L, EXN
is nonstationary in 8 for all L, -regular 6 <k. Then g eF(s) if ge L, , Dom(g) is
thin in L, and for all 6 e Dom(g), L, Fg(d) has cardinality< 4. And g € 2% if g
is incompatible with p or (g<p and 6 eDom(g), D predense on RPs*,
D eg(6)N L,  — q(6) meets D).

Our definition of 2% is somewhat simpler than Jensen’s due to the fact that we
have built Predensity Reduction into our definition of %) at limit cardinals.
However, unlike [7] we cannot separate the Distributivity and Extendibility
arguments; in fact both depend on the density of the 3%’s.

First we establish the density of the 3%’s, assuming extendibility. The following
lemma will be needed in our inductive proof of Extendibility I in Parts B, C.

Lemma 2A.l1. Suppose n<u,, pe»#NL,, geF(s)NL, and if x is L,-
inaccessible, L, F Dom(g) is nonstationary in k. If k is singular in L,, then also
suppose that for all feL,, f(6)<6™ for all 6 e x N B-Card there exists q <p,
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ge P NL, and CUBC ck so that 6 € C—|qs|=f(8), 6e CU{k}>CNdis
Z',,(a)(L,,(a)) (where q r o€ En(a)(Ln(é)) - Zn(é)—l(Ln(G)))' Then there exists q=p,
gePNL,, qe2?

Proof.- Without loss of generality assume that |p| = |s|. We first suppose that x is
the limit of limit S-cardinals. Then choose 7' <7 and k € w so that p, g are
Ai(L,’) with parameter x € L,.. We claim that we can choose ¢’ <p so that
q'ePNL,anda CUBCcksothat € CU{k}— CNdis Z,;)(Las) (Where
q' 16 €25 (Lnsy) — Zn@ey-1{Lne)) and 8 e C—|gj| =h(d) = Transitive
Collapse (Z;-Skolem hull of 6 U {k, x} in L, )N ORD. This is clear if k is
L,-singular by hypothesis. Otherwise let D = {6 | 6 = k N[Z;-Skolem hull of
dU{k,x} in L,]} and C=limits of D. Then Ce L, is CUB and note that
6 € C— m5(s) = ps (Where 7, is the transitive collapse map for 2,-Skolem hull of
dU{k,x} in L,) since p | 6 codes ps just as p codes s. Now by induction
successively extend p | 6 for e Cto g’ [ e P** so that q' [ 6 € 2p1(Lacsy) —
Zw(Lysy)- Doing this in the L-least way guarantees that this last property also
obtains at limit points of C. Thus we have constructed the desired q’, C.

Now define C = {k;<k,<---} and g; by induction on i. First we set go=p. If
g; has been defined, then obtain g,., from g; by extending gq; | [x;, k;+1) so that
Gier | K€ Zg'rrx'fﬁ‘. This is possible by induction. For limit A let ¢,(6) =
U {g«8)|i<A}. We must verify that g, is a condition for limit A. But this is
clear as (q;|i<A) is Z,)(Lnxy) Where g’ | kj € 2,4)(Ln,y)- Finally let
q = {q: | i <ordertype(C)}.

If k is not the limit of limit B-cardinals, then the result is easy, using induction
and distributivity for the RPs+-forcings. [J

We next describe how the 2%’s are used by establishing a version of the key
lemma for constructing transfinite sequences of conditions.

Lemma 2A.2. Suppose ul<n<pu, and L, kcard(ud)=xk. Let (g;|i<A),
(p;|i<A) be sequences of elements of F(s)NL,, % NL, respectively so that
lpol =Isl, i <j—p;<pi, Pir1 €25, pir1(8) =pi(8) if 8:(8) = {g;(5) |j <i} for
each i, n'<mn, ke w—>p; ¢ 2. (L,) for some i and for each 6 € p-Card Nk,
\U {g:(8) | i <A} = Hy = X,-Skolem hull of 6U{q,s*} in L, whenever 6 € H,
(where q € L, is a fixed parameter). If (p; | i <) is Z,(L,) with parameter q, then
there exists p € °, p <p; for each i.

Proof. (Notation: i(n) =i,, 6(n)=46, forn=0,1,....) Let ns:L,, 3 H,. We
claim that if 8 € Hs, then p5=\J{p,|i<A} is Pi-generic over Lg,, where
75(Bs)=1n". (Recall that n~ =sup(n N Adm).) Note that L,-Ful=x" (or
n” < u).

Suppose that 6 € Hs. If Ds € Lg, is predense on P8, then D =ms(D;) is
predense on #} and for some i(0) <A, D €g;c(d). Now by Predensity
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Reduction for p, and the P} -genericity of s | n~ there must exist 6(0) e -
Card N (8, k) so that D((Po)s)) = {q € P50 | q U (Po)smy< some element of
D} is dense below (pg)°©@ on P3%0. Note that we can choose 8(0) € Hs() and
hence D((po)swy) belongs to g;)(8(0)) for some i(1) <A. We can also assume
that Da(o)((po)a(o)) belongs to dllji(l)é(O) where D6(O)((p0)6(0)) = th(lo)(D((po)a(o))), as
U A{IPise) | i<A}=HspNO@0)". Moreover by the Genericity Lemma,
D 50)((Po)sy) is predense below (pg)®® (and hence below (pi1))*”) on P5wso.
If 5(0) is a limit B-cardinal we can apply the same reasoning to D s.)((Po)s(0));
Py as above to obtain 6(1) e B-Card N (4, 6(0)) so that D 5 ((P0)s@)((Pivy)sy)
is dense below (p;1y)°® on Pgwsw. If 8(0) is a successor B-cardinal, then the
distributivity of RP« and the chain condition for 2§ (G RP™se-generic over
af},,.(,)&(o)) imply that if &<d8(1)ep-Card, 6(1)*=6(0), then {qe
RPs@ | D 50)((Po)s@)(q) is predense below (p;n))’® on P$®} is dense on
RP™sq below p;;)(6(1)). So by definition of I%® we have that p;y.+1(8(1))
meets the latter dense set and hence D 5i)((Po)s)((Piy+1)say) is dense below
(Piny+1)°® on PEo+1sm_ If we continue in this way we either produce an infinite
descending sequence 6(0) > 6(1)>- - - or we obtain d(n) =4 for some n. But
then pims+1 meets D. We have shown that G, = {p € P§ | m5(p) <p;Uq for
some i <A, g € G(s | n7)} is P%-generic over Ly, (where G(s | ) denotes the
1" -generic associated with s | 7). But clearly p5=\J{ps | p € G5} so we are
done. The same argument demonstrates the P5-Z-genericity of pj over Lg, if B5
is recursively inaccessible using the X-genericity of s [ 7~ and Predensity
Reduction.

Now suppose that 6 ¢ H;. Then p;= 75, (p,) where y € B-Card, y <k is least
so that 6 <y € H; NORD and 75, =7, om;. For, pj is coded by U {p, | i <4,
8 < 8} just as p, is coded by U {p;, | i <A, 7<v} and 75,(p; | 8)=p; I v.

Now we can define the desired condition p. Write G5 = f(9, Bs, X;) for 6 € H;
and let pj be the characteristic function of Xj, restricted to [J, B5). Then
ps =p3Uns(s) for 6 € Hs and ps =a5,(p,) for 6 ¢ Hs, y=min[(H; — )N
ORD)]. And ps =\U{p,|i<A}, p(6)=(ps, Pps)- We show that p | 6 € #** by
induction on 6 € §-Card, 6 <«k.

First note that p; € S5. Indeed by the above we need only verify that p; is
AT((ud,)) when 8 € Hs. But (up,)=L,, and p; is Ay(L,,). By induction pj
can be decoded from p; (over Lg,) and thus ps is A;(L,,). As in general any
A, (s4(v))-subset of v is AT(A(v)) it follows that p; is AT(HL(u3,))-

We now verify properties (1)—(7) in the definition of &, for p | 6. If ' is a
limit B-cardinal less than §, then smoothness for p [ §' is clear: p | 6' € P®* as
pld' €L, and p | 8’ ¢ P<P* as the function 8"+ |p,| eventually dominates
all functions on 8’ N B-Card in L,,. To see that p(6') e R? if 6 =(8")" just
notice that p, is included in {b,, ;| E€Rangen;'om,} and mz'e
ws | {ps | E| E<|p5-|} is a quasi-morass map.

Predensity Reduction (a) follows as v,, = 75"(v,) and so a predense 9 ¢ P~7°,
@ e L,, [p3] is reduced since for some & < up, we have that DN Ly =D N Ly is



82 S.D. Friedman

predense on PP 1# GNLye L,, .. 1(ps I uz)*] and hence 9 is reduced by
virtue of the fact that [p b 6| = E for some i < A (if 6 ¢ H,, use the fact that p, My
is a condition in %7). Also note that any ;(L.,[p3], p3)-subset of u), is
actually an element of va [p3] for 8 € Hs. Both of these facts use distributivity
for PP to argue that uj, is a cardinal in L., [ps] Predensity Reduction (b) is
vacuous in this case as the definition of Dy, in Part E of Section 1 implies that D, is
A(b).

Coding for p | 6 follows from the fact that each p; i1s a condition and
pléeLy,. For Code Thinning just notice that if 6 is a limit p-cardinal,
0 2,(L,,)-regular, then we can choose for each i <A a CUB C; c -CardN é so
that 5, =@ for ye G and (G |i<A) is Zy(L,,); then let C=M{C|i<A}e
2,(L,,). The growth condition is clear for we can use the CUB set C; = 8-
Card N 8. Restriction is clear as the p;’s are conditions. [

When used in conjunction, Lemmas 2A.1 and 2A.2 supply the needed method
for the inductive extension of conditions, in the successor case (Part B). The limit
case (Part C) will make use of an altered version of Lemma 2A.2 whose proof is
virtually the same.

B. Extendibility I: The successor case

We assume in this part that |s| is a successor ordinal £+ 1 and if t=s5 | £E€ S,
we show that each p € 7, |p| = £ has an extension g in %, |q| = & + 1. There are
two subcases, defined according to whether or not &, = L, F k is regular.

Subcase 1: &,k k regular (hence A, k k inaccessible).

In this subcase we closely follow the argument of Jensen [7].

By definition of %' we can pick a least CUB Ce L,, so that 6 e C—ps =§.
Also choose ng so that p, C € L,n. For each n=nq set C, = {6 <k |6 =k NHEs
where H%s = (Z,-) Skolem hull of 6 U {p, C} inside L,,}. Then C, is CUB as
Ly kx regular and no<n <m— C, ¢ limit points (C,), C, c C.

Recall that our goal is to define g < p so that #(§) = 0 iff for sufficiently large n,
{6 | b3(6) g} is nonstationary in L,,, where b%(8) = (1, pZs) and pZs is the
ordinal code for M%;+ = transitive collapse (Skolem hull of 6™ U {k} in L,;).
Notice that for large enough 6 €C, , |ps+|<bz(d) since p € Skolem hull of
6" U {Kk} in L, for large enough 6 € C,,.

Now define g, € %’ by induction on n = n,: If y € B-Card N k is not of the form
6%, 6eC,, then set gq,(y)=p(y). Do the same if y=46% 8eC,, but
ps+| = bg"(é) Now if y=8%, 8€C,, |ps+|<b(8), then let gn, =P, and
choose q,, € §, to be least so that (q,, » Py) <(py, Py) in RPr+ and qnoy(b""(é)) =
s(&). ThlS is poss1b1e since p, restricts ordmals of the form (0, n) from entering
q,,oy but not of the form (1,7n) such as b?(8). More generally define
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qn+1=<qn(n =ng) in precisely the same manner as above but with p replaced by
Gns Gno DY qn+1 and C, by C, ;.

We claim that g, € & for each n=n, But note that g,_, belongs to the
Skolem hull of 6 U {p, C} inside L,; for 6 € C, and hence gn-1[96, C,NS
belongs to Lgy,; where L = transitive collapse of this Skolem hull. But then
qnl0€LycL,, ast collapses to ps (see the argument in Lemma 2A.2). The
remaining propertles of a condition are now easy to verify for g, as if 6 ¢ C, then
d», 4.1 differ only on a bounded part of 4.

Now note that the hypothesis of Lemma 2A.1 holds in this context, with s
replaced by 7. Thus we know that for any q € %, g € F(¢) there exists ¢’ <q in ¥
so that ¢’ € ¢, by Lemma 2A.1. Now modify the construction of q,,, §n,+1, -
t0 Gry> Gno+1> - - - SO as to require in addition that g,,, € % where g,(67) =
Skolem hull of 6" U {p, C} in L for all 6 € C,; g.(y) undefined otherwise. As
before we can verify that g, is a condition for each n.

Now we argue as in the proof of Lemma 2A.2 to show that there is a condition
g<gq, for each i, ge ?, |q| =&+ 1=|s|. Indeed if 6 ¢ C, =, C,, then we set
q'(0)=U, q.(8) and then we can argue as in 2A.2 that UJ, q,,is =qs is
PB-generic over Lg,. Thus we set q(8) = (g5, G5) Where g5 = q3 U mt5'(¢), as in
Lemma 2A.2. If § € C,, then g,(6) = p(8) for all § (as q,,, = #~'(¢) for all n) and
so we set q(8)=(ps U {(§, s(§))}, ps) where ms(E)=E. Note that ps =9 for
0 € C, so this is in fact an element of R”*". It is clear that g | 6 € 2,(L,,;) — Zy(L ;)
as q [ & can be defined relative to L, just as q was defined relative to L, = L,
Preden51ty Reduction for g | 8 is trivial as 1., =pe is not a fixed pomt of
n—ud (so (Luy,,» q5) ¢ E and v,, = ug, is not recursively inaccessible). Clearly
g | 8 codes g5 properly as gs(&) = 0 iff (&) =0 iff g5+(b3(8))=0for 6 C, NS
and each G, N 6 belongs to Ly, Lastly, if L, Fo is Z,-regular, then C, N J is
CUB, belongs to 2,(L,,) and 6eC,Né— qé = ps=@. The Growth Condition
and Restriction are easﬂy verified. This completes the proof that g [ 6 € % for
6 € C, U {k} and thus g € &'.

Subcase 2: ., kK is singular.

The main thing that we must demonstrate in this subcase is that p € ,, f € &,
f(8) <8 for all 6 € B-Card N x— there exists g<p in % and a CUB Cck so
that 6 e C—|gs|=f(6), e CU{k}—=>CNS is Zysy(Lys)y) (Where gl de
326y (Ln(s)) — Zi(sy-1(Lnesy))- (This is as in Lemma 2A.1.) To do this we first
extend p to g € # so that q € 2,(L,) — Z;_.(L,), k Z(L,)-singular and then
proceed by induction on the least pair (7, k) so that f € Zx(L,) — Z_1(L,).

So suppose that k is Zz(Ly)-regular where (7, k) is least so that p'is Zz(L;)
and let (n, k) > (7, k) be least so that k is Z(L, )-singular. First suppose that
k>1. Now for each 6 € xk N B-Card let Hy = 3, _,-Skolem hull of § U {k, x} in
L, where x is a parameter for defining p as a X,_;(L,)-function. Then
C={8| 6 =k N Hy} is closed; if it is unbounded, then as in the proof of Lemma
2A.1 construct g <p so that 6 € H;— |q5| = H, N 6*: List C = {ko, k1, . ..} and
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inductively extend p | (k;, k;4,) so that 6 € B-Card N (x;, K;41)— lgs| = Hs N 8™
This is possible by induction, using the fact that z;'(s) = ps for 6 € C and the
3, -definability of C N & over transitive collapse (H,) for 6 a limit point of C.
Then clearly q € Z(L,) — Zx—1(L,) and it can be verified as in the proof of
Lemma 2A.1 that g € . If C is bounded in k, then as k is %, _,(L,)-regular it
must be that X (L, )-cofinality of x equals w. Then choose ko<k;<---to be a
cofinal sequence of successor f-cardinals below kx and extend p(k;) successively
so that |q.|=H, Nk;. Once again the resulting g belongs to (Zx(L,)—
(L) N '

If k =1, n limit, then choose a continuous 2';(L, )-cofinal sequence 7, < 1; <
.- - below 71 of length X;-cof(n)=ko<k. (This is possible as we know that
n > B(u?) and hence Z;-cof(n) <k; as k is X;(L,)-singular we get 3;-cof(n) <
k.) Also note that by the leastness of (1, k) = (n, 1) it must be that ko= X(L,)-
cofinality of k. If ko= w, then the desired result is easily obtained by extending
p(k;) successively so that |, | = H} N k", where ko <k;<---is a y(L,)-cofinal
sequence of successor B-cardinals below k, H *. = 2,-Skolem hull of x; U {k, p} in
L,. Similarly, if ko> w, let C={ko<k;<---} be a closed X\(L,)-cofinal
sequence of B-cardinals below k; we also assume that (k; li<A) is uniformly
3y(L,,) and that k; ¢ H}, = Z,-Skolem hull of x, U {k, p} in L,,. This is possible
as we can choose CUB sets C;e L,  sothat 6eC,—d ¢ H’ and C, =) C; for
limit A; then let x; =min(C;). Now extend p [ [k;, k;;;) successively so that
d € B-Card N [k;, k;41)—>|qs] = HsN 6*. Note that p(k;) need not be extended
for limit A < k. The resulting g obeys the growth condition at k,, as witnessed by
(k;|i<A), so qe P, qgeX(L,)— L, as desired. Finally the case n a successor,
k =1 can be treated just like the case ko, = @ above, using H) = X;-Skolem hull of
k;U{k,p}inL,_,.

Thus we can assume now that we are given p e ,, p € 2i(L;) — Zi_1(L3),
k Z7(Ly)-singular and our goal now is to show that for any f € &, f(6) <4™ for
all 8 € B-Card Nk, there exists g<p in % and a CUBCck so that e C—
lgs| =1(8), e CU{k}—=>CNJS is Zys)(Lyi)) (Where g [ 6 € Ziisy(Lyes)) —
Z6)-1(Lns)))- Now in fact it suffices to show the following: Given p as above
and (1, k) € u® X (w — {0}) there exists g <p in P N[Z,,1(L,) U Ze(Ly)] so that
for some CUB C < p-Card N x we have that:

(a) 6eCU{k}—>CNS is Zis)(Llyey), Wwhere qlde€Zie(Lnesy)—
Zk(é)—l(Ln(‘S))'

(b) For any x € L,, |q5| = H5N 6™ for sufficiently large 6 € C, where Hj = ;-
Skolem hull of 6 U {x, x} in L,,.

We prove the above assertion by induction on (7, k). Note that the Growth
Condition on p implies the desired conclusion when (7, k) is less than (), k)
(letting ¢ = p). So assume that (7, k) < (7, k) and fix a continuous X z(L;)-cofinal
Ko-sequence ko< k; < - - - of B-cardinals below k, ko= Zz(L5)-cof(x).

First suppose that k=1, 7 limit. Choose a continuous 2X,(L,)-sequence
No<m1<--- cofinal in 7 of ordertype X;-cof(n) = y,. Let x € L, be a parameter
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so that (k;|i<ko), {(m:|i<yo), p are Zy(L,) with parameter x. If (7}, k)=
(n, k), we then can conclude that y, = K, and in this case we assume that the 7,’s
are chosen so that (k; |j<i), p | k; are ,(L,,) with parameter x, uniformly for
i <yo. Now define H%=X,-Skolem hull of 8 U{k, x} in L,, for each 6 € f-
Card N k and let g; e F(£) N L, ,, be defined by g/(8) = H’ for 6 € H}, 6 = ko. By
Lemma 2A.1 and induction, X¢ is dense in #* N L, for eachge PN L,, ., and
each i < y,.

If (), k) <(n, k), then we can assume that (k; |j<x,), p € H} and we choose
P=qo=q:1=""" successively so that ¢,.,e #NL, , g.+1€2% By Lemma
2A.2, g, € & for limit A<y, Let ¢=gq,,€Z,(L,) NP Then x;e H,=; H,
for each j < k, and so ¢ is as desired, letting C = {k; | i <ko}. If (}, k) = (n, k),
then we choose p=qo=q,=--- successively so that (g;+1).+=(p) and
giv1 | K; € 22! 5 and so that uniformly for limit A< y,, {(g; | k;|i<A) is Zy(L,,)
in parameter x. This is possible by induction and by the fact that (k; li<d),
p | kx; are uniformly X,(L,,) with parameter x. It is then easy to verify as in
Lemma 2A.2 that g, is a condition in & for limit A. (Note however that we do
not have g, € L, as p ¢ L,.) Then q = q,, is the desired condition.

A similar argument can be used when k =1, 7 successor using 2;-Skolem hulls
in L, _, instead of 2;-Skolem hulls in L,,.

Now we consider the case k> 1. By induction (if (%, k) <(7, k)) or by the
Growth Condition for p (if (7, k) =(n, k)) choose q'<p in %(L,) and a
CUB Cc pB-CardNk, CeZ(L,) so that § e CU{k}—>CNJ is Zyey(Lnsy)
(where g’ | 8 € Zi(s)(Luesy) — Zis)-1(Lnsy)) and for any x € L,, |q5|=H5N 8"
for sufficiently large & € C, where Hj =3, _;-Skolem hull of 6 U {k, x} in L,.
Now let x € L, be a parameter so that C, g’ are 2(L,) with parameter x and for
each 8 e C, 8’ € B-Card N 6 let H3. = 3;-Skolem hull of 6’ U {k, x} in Hs. Then
U {HS | & € C} = 3;-Skolem hull of 8’ U {x, x} in L,, for each 8’ € f-Card N k.
By induction we can successively extend g’ | 6 for sufficiently large 6 € C so that

| 6 € 2. (H%) and |qo |=H3. N(8")" for 8’ e B-CardN &, for & e C. (We have
assumed that CN 8, q’ | 8 are X (H3) for § € Limits Points(C), a property easily
arranged by thinning C.) We must of course require that if ko <k, <--- are the
elements of C, then g’ is extended to go=q,=--- where ¢, [ k; € Zgj P& and
g{(8')=HY% for &' e p-CardN [k, k;), 6'€ Hy. This guarantees that as in
Lemma 2A.2, g; is a condition for limit A=< y,=ordertype(C). Finally let
q = q,,, the desired extension.

Having now established the property stated at the beginning of this subcase we
can now easily prove extendibility. Indeed the above argument shows the
following: say that g’ € L, belongs to % if q' obeys all the conditions for
belonging to %° with the possible exception of the Coding property (clause (4) in
the definiton of %°). Then given p € ? the above shows that there exists g’ <p,
qg'e? so that q'e€3I)L,.,) and for some xeL,.;, |q5=Transitive
Collapse(H%) N ORD for all sufficiently large & € f-Card Nk, 6 € H3 (where
H = 3;-Skolem hull of 6 U {k, x} in L, ;).
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Thus ¢’ is our desired extension of p except for the fact that we may not have
s(§)=0 iff §g'=\J{Gs|8ep-CardNk} 1is almost disjoint from b, =
{(1, pgy) | y=7yF for some i<A.}. But note that (1, ps,) ¢ Dom(q)+) for
sufficiently large y € B-Card Nk so extend g’ to g by extending each ¢,+ to g+
for y = yf so that s(&§) =0 iff ¢,+({1, pg,)) = 0. The only thing to check is that for
8 = y%, A limit we have that g | 6 € % = 2% But this is clear as (pg, | y <8) is
3,-definable over Transitive Collapse(H?3) (and thus so is g [ 6) and we can
assume that A < 6 (and so 6 € H%).

C. Extendibility I: The limit case

The proof here is similar in outline to that of Lemma 1D.2 (whose proof in turn
is based on that of Lemma 1B.9). As in that proof we divide into two subcases.

Subcase 1: v, = max(ul, u;") is not recursively inaccessible.

We are given p € 2~ and we wish to construct g <p, q € ?° — P~°. First we

make some observations concerning the simplest possibility: v, = u. If b= (L,
s | ud) €eE and D, is predense on = we can extend p to g’ € =* so that g’
meets D,. Otherwise note that Predensity Reduction is trivial for g € #° — 2~
Thus if v, =pu) we need only extend p to geL, so as to meet the other
conditions for belonging to %”.

Now we begm with the case: C, is unbounded in u?, v, a limit of admissibles.
Let uo<pu,<--- enumerate a ﬁnal segment of C,o so that v, ,g,,)- is inadmis-
sible. There are canonical 2,0, elementary embeddings 7;:Sg(.,)— Sg(, for
i <j < Ao = ordertype(C,0). Now for each i define g; e F(s | B(u;)”) by: gi(6) =
Hs=ZX,,0-Skolem hull of d U{k, p(u;)} inside #(u;), if 8 € H5. Then by
Lemma 2A.1, 2% is dense on P~ for g€ #=°. Now define p,=p,=---
inductively by: po= p, p;+1 =least g <p; such that g € 2%(q(6) = p;(d) if g,(6) =
U {gi(d) |j<i}), pa=U{p:|i<A} (as in Lemma 2A.2) for limit A <2, We
must verify that this is a valid induction at limit stages A. Note that p, is
2 nun+1(8 guy); using this the Growth Condition is easily verified. The main thing
to check is Predensity Reduction (the other properties follow as in the proof of
Lemma 2A.2). So suppose D € L, [s3] is predense on #=* where s; =5 | B(u;)".
We must show that p, reduces D. This is clear if v, = usl, for then D e L, [s/]
for some i < A and hence p,+1 reduces D. Otherwise let k' = (,usl) in the sense of

L, (x'=v,if L, F u? is the largest cardinal) and choose a limit ordinal
E e [u?, k') so that De L, [s3] (viewing & € O(u,) in the definition of ug). Now
s 1 [k, ug) is R*'1-8).generic over L, as it is R°-generic over L, [G],
G = 2,3 -generic corresponding to s, r[u&, v,,). So we can pick g € H=RC "5
genenc correspondmg to s, | [x, u2] so that gD is predense on P<H=

U {2~ | (s, 5) € H for some 5§}, where D is a name for D.

Now as v,, (and hence k') is a limit of admissibles we can choose i <A so that
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E, q, D e Range(n;) and in addition there is an admissible a€(§, v,)N
Range(7z). Then qI-n;'(D) is predense on P<H where H = RS ' generic
corresponding to s; | [k, p;) and G = PZ-generic corresponding to s; | [u;, &),
(& 8) = (mz!(a), m5'(8)).

But then g D N L, is predense on =" by Predensity Reduction for elements
of ?<¥ and the elementariness of 7;,,,. So we have shown that any predense
D c P=%, D € L, [si] contains a predense D' € L,g. Thus as v,, is inadmissible,
Predensity Reduction follows from the simple case ug, = v,. (Also note that
(Lyg, s | 1ug,) ¢ E for limit A.) The above argument also works in the case: C,o
unbounded in pu?, v; = ((u7)" in the sense of L, ) is a limit of admissible ordmals

Suppose next that C,p is bounded in u? and p(u?) > u? is the limit of admissible
ordinals. As C, is bounded in ug we can choose a IT,(sf(u?))-cofinal w-sequence
Po<pPr1<--- of admissible ordinals below p(u?); also arrange that A(ud)N
pieL,,m, where A(u) = X ,.0-1-Master Code for B(uf). Let Hi = 3;-Skolem
hull of 6 U {k, p(u)), A(u?)Np;—,} inside L, and p,=H:Nyu? for all i€ w,
8 € B-Card N u?. Define g;(8) = H for & € H and construct p =po=p,=---in
P~ by requiring p;,, =least g <p; in 2% Then ¢ = {p; |i € ®} (as in Lemma
2A.2) is a member of #°: We need only check that each predense D € L, [s*] is
reduced by p. But as in the preceding case, we can use the genericity of s | [k, u?)
to show that D € L, [s*], D predense on ?=*— D o a predense D' € L,o and thus
p reduces D.

The above arguments also work if p(u?) is not the limit of admissible ordinals
but p(ud) > v, = (u?)* in the sense of L, . For if C,o is bounded in u?, then we
can choose p, < p; <- - - cofinally in p(ys) (f p(ud) i 1s a limit of limit ordinals) so
that (p;|iew) is Z‘l(Sp( o), Vi<po and let Hj=X,-Skolem hull of U
{x, p(u?), v;} in L,,. Then we can still argue that D € L, [s*], D predense— D o
a predense D', D' e Lo since v, € Range(n) for all i. (If p(u?) is not the limit of
limit ordinals, then write p(u )=p'+ w and let Hs= 3;-Skolem hull of 6 U
{k, x} in L, where p(uJ), v; can be assumed to be L, -definable with parameter
x.) If C,o is unbounded in pd, then proceed as in the case where v, is a limit of
admissible ordinals except note that we can choose po<p;<--- to be a final
segment of C o so that v; € Range(s;, ) for all i.

So we are left with the cases: p(u?)=u?, p(ud)=v. is not the limit of
admissibles. The latter case is contained in the former one as it implies that
p(ud)=B(ud)=v, is a successor admissible and hence either B(ud)=pu? or
3 -projectum(B(u?)) = u? (contradicting the definition of p(u?)). The former case
is easily handled if n(u?) =1 for then v, = (u?) = u? and Predensity Reduction is
trivial for g € ?* — #=°; thus if C,o is bounded in u?, we can simply choose a
II(L,g) w-sequence po<p;<--- cofinal in u?, let Hs= 3 -Skolem hull of
dU{k,p(ud)} in L, and proceed as before. Then D€L, [s*]=L, =L, —
DelL, =L, for some i so D is reduced by p,,,. (We assume that y; = ug for
some 4, €S,, t;cs.) A similar argument suffices if C, is unbounded in p). So
assume that n(ud)>1 and consider o'(ud) = (L, 0, A'(1?)) where p'(ul)=
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pfED > 0 pPUD = k0 A'(u?) = 3;-Master Code for B(u7). Let p'(u;) =least p
so that of'(u?) = X;-Skolem hull of pdU {p} in &'(ud). Now if C, is bounded in
u? we can choose a Hl(.szi(us)) w-sequence pPo<p,<--- coﬁnal in u? so that
u; = ud N (Z;-Skolem hull of p} U {k, p'(ud)} in o' (u? )) for some u; <pu; and
define H’s = 3,-Skolem hull of 6 U {K, p(u;)} inside (u;) for 6 € B-Card N uJ,
i € w. Note that &f(y;) = Transitive Collapse of X;-Skolem hull of ; U {k, p'(uJ)}
in o' (u?); let m;: f(uw;)— <'(u7) be the collapsing map. Then if we define
Po=p1=- - by po=p, Pis1 =least ¢ <p,, q € 38(g,(6) = H5 for & € H}) we see
that g =J {p;|i€ a)} (as in Lemma 2A.2) is a condition, provided p’(u) is
either greater than v; or the limit of admissibles; for in that case we can show that
any predense D € Lvs[s*] contains a predense D' € L,o and hence is reduced by g,
using the fact that v, <p (us) Ly@oyc U {Hy|iew}.

If C o is unbounded in 1l but p(ud) = u?, n(u?)>1 and p’(u?) is either greater
than v/ or the limit of admissibles, then a similar argument suffices. (Indeed, if
p'(u?) is the limit of admissibles, then so is v; and the argument has already been
provided.)

Finally consider the case: v; = p (1) is a successor admissible. It follows that
v, = v, and Z;-projectum(v,) = u? <v,. (We may have n(u?)>2.) This case will
be easy to handle after we establish the following.

Claim. Suppose ¥ € L,[s*] is a collection of predense sets on P=*, L,[s*]F
card(¥) = k. Then for all p € P~ there exists ¢ <p in P~ so that q reduces D for
al D e &.

Proof. By the R°'¥*)_genericity of s | [k, u?) it suffices to show that if
r=(re, %) €R°* T =R and p € P, then there exists 7' <r and g <p so that
r'+q meets D for all D € &, where & is a name for &. Choose a limit ordinal
B < v, so that rank(¥)<p, Lvs-cof(ﬁ) = k. Now define kx-sequences po=p,=

-, rp=n=---and Bo< B, <--- as follows: po=p, r,=r, Bo=least ordinal <
B so that rank(%) < . If p,, r;, B; have been defined, then first define (7,41, pis1)
to be least so that pl,, € P, pl.<p;, ri,<r,in R°'¥P and r], +pi.,
reduces the ith element of & (in the least well-ordering of & of length k). Also
require that (i) = (p;)". Then choose B;,; to be the least limit ordinal greater
than B,, ri., € R '¥P+) and set Hi = X,-Skolem hull of 8 U {k, p/s1, ris1, &,
s M [ul, Bis1)} in L,,‘,+ , g,(o) H if 6 € H%. Then choose p; ., <pj., to be least
so that p;,, € Z‘g , (p,+1) (p) Also define r,,, <r/,; so that r;,,, meets all
predense de H.. For limit A let n={J{rn|i<A} (as in Lemma 1B.9),
pa=U{p:|i<A} (as in Lemma 2A.2) and B, ={J{B:;|i<A}. Then g =p,,
r'=r. = {r;|i <k} are as desired. This proves the Claim.

Now to build the desired g <p, g€ % — P when C, is bounded in pJ,
choose a IT;(H(u?)) w-sequence po< i, <--- cofinal in u?, let Bo<B;<:-- be
defined by B;=J[(Z;-Skolem hull of y; U {p(v,)} in L,) N ORD] and ¥;=all



Strong coding 89

predense D ¢ #<°, D e X;-Skolem hull of p;U {s*, p(v,)} in Lg[s*]. Define
pPo=p,=- -+ as follows: p, = p; if g;(8) = H = Z;-Skolem hull of 6 U {k, p;, u;,
¥, s*} in Lg [s*] for 6 € H, then p,,,<p; is least so that p,,, € 3%, p;.
reduces all predense D € %,. Then g =\J{p;|i€ w} (as in Lemma 2A.2) is a
condition in #° — #=°, |

If C,o is unbounded in pf, then let po<p, <--- list C,9 and let Bo<B;<---
be defined by B;=\J[(Z,-Skolem hull of u;U{p(v,)} in L,)NORD]; set
¥, = all predense D < <, D € X;-Skolem hull of u; U {s*, p(v;)} in Lg[s*] and
define po=p,=- - - as follows: p, =p; if g;(6) = Hs = 2;-Skolem hull of 6 U {x,
pi» Wi, &, s*}in Ly [s*]for b e H, then p;,, <p; is least so that p; ., € 2%, p;.,
reduces all D € &, p;+1(6) = p:(8) whenever & <i and g,(8) cU {g;(8) |j <i};
for limit A <A,=order type(C,o) set p,={J {p;|i<A} (as in Lemma 2A.2).
Then g = p,, is a condition in #° — 2=, This completes Subcase 1.

Subcase 2: v, is recursively inaccessible.

We begin with the following observation: We can assume that p=2X;-
projectum L,[s*]<pu). For, if y'<v,, Tc P<xy', T Z,(L,[s*]), then the
k*-c.c. of = in L,[s*] implies the Z-x*-c.c. of #=* in L,[s*] if p > pu and
hence P(T)={peP<|(Vn<y'T, is dense below p) or An<y'Vg<p
(g, m) ¢ T)} is (2, v IT,)-definable over L, [s*]. But again, if p > u?, then 9(T)
is an element of L, [s*] and thus X-genericity follows from Subcase 1. From the
proof of Lemma 1D.2 we can actually conclude that v} = X;-projectum(L,, ) < u?.
So v, =puJ or L, Eu) is the largest cardinal.

First suppose the former and that x is regular in L, . We use the following.

Claim. Suppose (W;|i<&8,) is a uniformly =,(L,, s*)-sequence of persistent
subsets of P=° X k and 8,< k. Then for any p € P~ there exists q <p, q reduces
D(W,) for each i < &,.

Proof of Claim. First fix i{;<d, and we describe a certain procedure for
extending p to g so that g € 9(W,). Define po=p and if p; has been defined,
construct p;,, as follows: First locate the least pair (7, r) € L5, = B-card(i) so
that r < (p;)?, r € #%s and for no r’ <r do we have r’ U (p;)s € (W, )¥| = amount
of (W,,), enumerated over (L, , s*) by stage |p;|. If (n, r) does exist when p; is
replaced by p’ for all p’ <p,, then p;,, is undefined. Otherwise let p/., =least
extension of p; for which this is not true and such that (p/,)° = (p;)°; then obtain
pi+1 from p/,, by defining g,(y) = H;, = =;-Skolem hull of yU{k, pi,;, x} in

Mp;,y TOT ¥ € Hy (where x is a parameter for defining (W; |i< o)) and letting
pi+1 be the least extension of piy; in ZB™, 'p,(y)=pia(y) i g(y)=
U {g;(y) | j <i}; for limit A let p, =\ {p; | i <A} (as in Lemma 2A.2). If i is least
so that p,,, is not defined, then it must be that p’ <p; as above does not exist.
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(Note that |p,| is inadmissible relative to s* for limit A, so -genericity need not
be shown.)

Now there are two possibilities. If i =k then p, € #(W,) because for each
n<k, (W;)ex+={re PP+ |rU(p.),-€(Wy),} is dense by construction below
(P«)"" and hence (W,), is dense below p,.. If i < k, then for some 8 € B-Card N k
and 7 <& we can extend (p,)° to re PPs so that no extension of rU (p.)s
belongs to (W,),,. Thus r U (py)s € D(W,).

We need a refinement of the above procedure. Namely fix 6 € f-Card N x and
Do € P=°. Then the above procedure provides a method of extending p, to ¢ s.t.
(9)°=(po)® and such that for some extension r= (po)‘s in P% we have
ru(q)s € 2(W,;). Now we iterate this procedure for all pg<p, (po)s =(p)s-
(Thus we obtain g<p, (g)°=(p)° so that (W, )Ds={re P®|ruU(q)se
PD(W,)} is dense below (p)® in $%.) The difficulty will be that the procedure
po—>r1, q is IT;(L,, s*) and thus we have definability problems at limit stages. So
as in Subcase 1 we resort to the genericity properties of s: it is enough to show
that for € S, p € P there exists ¢’ <t, ¢ <p such that g € ?" and (q9)° = (p)?,
D(W ;)9 is dense below (p)®in P%, as s is Z-generic. But this is not difficult as
we can define po=p,=---and {,=¢,=- - - as follows: po=p, t,=1¢; if p;, ¢, have
been defined then first pick pi., <p;, tj,;<¢ to be least so that p;,, € ?*! and
Pi+1)°=(P:))® rUPis1)s € D(W,,) where r<(pg)® and ps <p, (p3)s = (p)s is
least so that this fails with p;,, replaced by p,. Then pick t;,, <t},,, pis; € P,
Pir1=pis so that p, ., € 221, (p.,,)° = (p)° where g,(y) = H, = X;-Skolem hull
of yU{k, tix1, x} in L,, for y € H,. Then p,,, is undefined for some i <8** as
the function i~>p; is IT;(L,) and hence bounded on &**> B-Card{pi <
Pl (P8)s = (p)s}. If g =p; where i is least so that p;,, is undefined, then g is as
desired.

It is now easy to prove the Claim. In fact we can apply the above argument so
as to show that for any 6 € f-Card Nk, 8 > 6, and any p € #=° there exists g <p
such that (¢)°=(p)? and i < §,— D(W;)? is dense below (p)°. The construc-
tion is identical to the previous one except we consider all the @(W,), i < 8,. This
is possible as 8, << 6. This completes the proof of the Claim.

We can now construct the desired g <p, g € ?° — ?~° using the Claim. Note
that we can assume that X;-projectum (L, , s*) = k and hence (as in the proof of
Lemma 1D.2) X;-projectum (L,)=k. As v, is admissible, we have that C,_is
unbounded in v, and v € C, — v is inadmissible. Now construct py=p,=-- - as
follows: po=p; if p; is defined, then p/,, is the least extension of p; such that
Ipiiil € C.,, (Pi’+1)i++ = (Pi)i++’ s MpisallFple: reduces (W) for all jeX,-
Skolem hull of i* U {k, p;, p(v,)} in L, [s] (where s is a name for the ?"-generic
s, W, P=* X k is the Z,(L,[s])-set with index j) and p,,,<p|,, is defined to
be least so that |p,.,|€C,,, p;+; €38 where g,(8)= H&—Zl-Skolem hull of
ouU {K p(’Vs) pz+l} in Lﬂlp o\ for e Hd: p,+1(6) p,((S) if 6<i” ’ g,(é) =
U {g;(8) |j <i}. Then p= U {p; | i <A} is a condition for limit A < k and we set
q = P, This completes the case: u? = v,, k regular in L,,.
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If u)=v, and « is singular in L, , then it suffices to reduce sets of the form
P(W) where W P~ xy, y<k is XZ(L,,s*), for if W P~ xk, then
consider W' ¢ = X y,, yo= L, -cof(x) defined by (p, n) e W' iff Vi <f(n) (W),
is dense below p and then g € 9(W')— (W), is dense below g for all i <k or
Vq'<sq ~Vi<f(n) (W), is dense below ¢q’, for some 7. Thus if g reduces all
W', W cP=xy, y<k, then g also reduces all Z(W), W P~ xk
(W, W’ =(L,, s*)). Now using our previous construction it is easy to establish
the following version of the previous Claim: If (W;|i<&,) is a uniformly
>(L,, s*)-sequence of persistent subsets of P<*x d,, o<k, then for all
p € P=° there exists g <p, q reduces D(W,) for each i < §,. Indeed we can insist
that (q)%°=(p)®. The new point here is that we cannot use the fact that
IT;-cof(L, ) = k to argue that the sequence (p;|i<&8¢™) is an element of L, ;
instead just note that the collection of stages at which p, ., is defined is the range
of a partial (L, )-function on a subset of L;.

Given this new version of the Claim we can proceed as before to define g <p,
except now the construction takes L, -cof(x) = vy, steps instead of x many. (Note
that IT,-cof(L, , s*) = ¥,.)

- We now turn to the case v,>u2. We wish to establish the following Claim
analogous to the earlier one in the case v, = u?. Let u denote u.

Claim. Suppose (W;|i<k) is a uniformly X,(L,[s*])-sequence of persistent
subsets of P=° X u. Then for any p € P~* there exists q <p, q reduces D(W,) for
each i < k.

To establish this Claim we must first show the following: Given W ¢ = X yu,
WZ(L,[s*]) and p € =, & € B-Card Nk, there exists g <p, (¢)°" =(p)°" and
q reduces (W). As in Lemma 1D.2 we use the fact that IT;-cof(L, [s*]) = pu to
do this. (We also use the X-genericity of s [ u to deal with definability at limit
stages.) Define po=p,=-- - as follows: p,=p; if p; is defined, then p;,, <p; is
least so that (p/.,)®" = (p)°" and for some r < (p)®" in PP+ we have r" <r so that
either ¢’ <r"U (pi+1)s+—q' ¢ (W), for some 1 <p or for some w ¢ W such that
welL,[s*], (w), is predense below r" U (p/.,)s+ for all n <y (and this is not true
if pi.1=p;). Then let p,.,<p/,, be least so that |p;,,| = u N (Z;-Skolem hull of
pisi| U {pis1, 1, x} in <Lv,: s [ [, v5))), s ! pisil Fpis:1 has the above pro-
perties (where x is a parameter for a X,(L,, s | [u, v;))-injection of L, into u
and I+ refers to P5!vl=RMw¥)) and if g(y)=H)=(Z,-Skolem hull of
YU {K, pis1} in Lulp;ﬂl) for y e H,, y >4, then p;,, € Z5*'. Set p, = {p I i<
A} (as in Lemma 2A.2) at limit stages A. Then g = p; where i is least so that p; ., is
not defined satisfies that D(W)@s* = {r € P%* | rU(q)s+ € D(W)} is predense on
P%+ and (q)°" = (p)®’. Note that we are using IT;-cof(L, [s*]) > 6" to argue that
g € L, for limit A and the pu-2-c.c. of = over L, [s*] to argue that in fact Z(W)
is reduced by q.

Now we can establish the Claim. Indeed define po=p,=- - - by setting po = p;
if p; has been defined choose p),; <p; to be least so that (p/.,)" =(p;,)"" and
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(W)@ is predense below (p;)’" on P+1*. Then let p,,, <p.., be least so
that [pr.s| = g 0 (Zy-Skolem hull of |piss| U{plss, %} in (Lo, s | [, v,))),
s 1 |pi+1| Fplsy is as above and if g;(y) = H', = X,-Skolem hull of y U {x, p/,,} in
Ly,. ) for y € H, then p;.; € 35, pii(y) =pinaly) if g:(v)=U {gi(y) i <i}.
For limit A set p, = {p;|i<A} (as in Lemma 2A.2). Then p, e P< is a
condition since IT,-cof(L,[s*]) =u > K and p, = q satisfies the Claim.

We now can complete the case at hand. First suppose that C, = {1 €C, |1 =
u N Z;-Skolem hull of @ U {u, x} in (L., s | [u, v.)))} is unbounded in u. Note
that the proof of the Claim in fact shows that for any y € f-Card N k we can in
fact require in the conclusion of the Claim that (p)*" =(q)?". Now inductively
define po=p,=- - - as follows: p, = p; if p; has been defined then p;,; <p, is least
so that (pl)" =(p:)", pl«1 reduces all P(W,) for jeZX;-Skolem hull of
xkU{p;,x} in L,[s*] (where (W;|jeL,[s*]) is a Zy(L,[s*])-listing of the
(L, [s*])-subsets of P<* x p). Then p;,; <p/,, is least so that s | |p;44| Fp/sq is
as above; |p;.1| € G, and if g,(y) = H), = Z;-Skolem hull of y U {k, p{,,} in Ly,, ,
for y e H',, then p;,; € Z5*, p,yi(v) =pin(y) if g(y)=U/{g(y)|j<i}. For
limit A let p, = {p; | i <A} (as in Lemma 2A.2) and then g = p, where A is least
so that |p;| =|s| is the desired extension. If C, is bounded in u, then use a
AF(sA(u))-cofinal w-sequence po<p,<--- below u in place of C,. This
completes the case ul < v,.

D. Extendibility II

In this part we use the ideas of Extendibility I to show the following: Suppose
BeAdm, ke B-Card, n<(xk*)"* and s eSS Then there exists ros, te S~
|t| = n. We show this by induction on B. Clearly it suffices to treat the case § = &,
a € Adm, k =gcB. We can also assume that k < a as otherwise the result is
easily established (let t=sUs’ where Dom(s’) ={|s|, n) and s'(n’) =0 for all
n’' € Dom(s’)). Thus in fact our real goal is to obtain a Pg-generic G
(Pg-Z-generic G if o is recursively inaccessible) so that G is ‘sufficiently’
definable. (More precisely if y=(x*)'=, then G=f(x, a, X) where XNy is
A1 (4(7))-)

The key technical tool for doing this is the method of ‘critical projecta’ from
Friedman [5]. We begin by reviewing those aspects of that method which are
relevant here.

If a<p’, new— {0}, then the (n, B’)-projectum of « is the least y such that
there is a X,(Sg)-injection of « into y. The pair (n, B’') is «-critical if
(n, B')-projectum of « is less than « and (n’, ") <(n, B’)— (n’, B")-projectum
of o> (n, f’')-projectum of a (where (n’, f”)<(n, ') means that "<’ or
B"=pB' and n’'<n). There are only finitely many a-critical pairs (n,, ;) <
(ny, B)<---<(ni, Bx) and we have that (n,, B;)-projectum of a equals
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k =gc B. It is easily proved (see Lemma 9 of [5]) that py = (n;, B;)-projectum of
@, ks ph<a

It is convenient to define ps = B’ for all B’. Then we set p; = (n;, B;)-projectum
of o, p}=pP_,, ;= (S,, A;) where A, is a 3, _;-master code for B; (4;=49 if
n; =1). Thus X;-projectum(s;) = p3% = p,. The following lemma is very useful.

Lemma 2D.1. (a) The II;-cofinality of s, is at most p; = pi*.
(b) If v is a regular «-cardinal, p; <y < p;_,, then IT,(s4;)-cof(y) = II,-cof(;).

Proof. (a) Let f:p;— p; be 1-1 and X,(); with parameter x. We are certainly
done if X;-cof(s;) < p;. Otherwise consider g(y) = sup(H, N ORD) where H, =
2;-Skolem hull of y U {x} in &,. Then g is IT,(&;) and cofinal.

(b) Choose a cofinal IT,(«;) g:vy;— p; where y;= II,-cof(sf;). As in (a),
choose f:p;— p; to be 1-1 and X,(sf;) with parameter x. Given y as in the
hypothesis consider h:y,— y as defined by h(j) =sup(y N H;) where H,=2;-
Skolem hull of p; U {x} in (L, A; N Lg;,) (if the latter structure is amenable;
otherwise let H, = X;-Skolem hull of p; U {x, A; N L,;} in L.y and assume
that A; N Lg(jy € Lgj+1y for all j). Then h(j) <y for all j as otherwise y is not
A-regular, hence not L,-regular since (n;, B;) is a-critical and y <p;_,. But
\URange(h) =y as U {H;|h<7v,} =, and y <pj (in fact y <p}). Finally & is
IT,(4;) so we are done. O

The above lemma helps .to explain our strategy for building the desired

*.generic G. First we build a #§ -generic G,. (The construction will be AT(#,)
and hence G, will obey the desired definability condition.) This is done much as
in Extendibility I but where instead of building a condition ¢ = {p; |i <A} we
actually build an entire generic set G,. This is reasonable because IT(H;)-
cof(y*) = II,-cof(4,) for all ye a-Card, y=p,; and hence we can arrange
U {lpsl | i<A}=A" for all such y, A =m-cof(sf,). Next let f(p,, a, X;) =G,
s1:[p1, pT)— 2 be defined by s,(n) =1 iff n € X; and build a 7 *-generic G, in
m-cof(sd,) steps, where 255 =J{%P,,|t<s,, te€S3}. Then we have a P5 =
P x PS1-generic set G, * G,. Continuing in this way we finally obtain the desired
G=G,*Gy*---*xGy.

Step 1. We build G,. Let 4, = IT,-cof(A,) < p,. We obtain G, as the ‘union’ (as
in Lemma 2A.2) of a sequence {p,;|i<A,) where the p,’s are not necessarily
conditions in %5, but instead ‘quasiconditions’.

Definition. p € S,,; is a P -quasicondition if Dom(p) is an initial segment of
a-Card N [p;, @) and p obeys properties (1)—(7) in the definition of & at all
a-cardinals 6 € (p,, a). If p, g are P; -quasiconditions, then p<gq iff p [ 6 =<
qléforall d<a.
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We also define F; to consist of all g € S,; so that Dom(g) ¢ @-Card N [p,, «) is
thin in S,;, Range(g) c L,, and for all 6 e Dom(g), L, Fcard(g(6))<4. Ifpe S,
is a PJ -quasicondition and g € F;, then 3% is defined as before: q € 2% iff g is
incompatible with p or (g <p and 6 e Dom(g), D predense on R?s+, D e g(6) N
Ly ,— q(6) meets D).

First assume that « is not recursively inaccessible. Choose a AT(sf,)-cofinal
g1:Y1— P, vi=II-cof(s4;,). Define a y,-sequence (p;|i<y,) of Pg-
quasiconditions as follows: Let x be a parameter so that (2;-Skolem hull of
p1U{x} in &) equals ;. Then p,=@; if p, has been defined, then let
g:(6) = Z,-Skolem hull of 8 U {x} in {S;u, 41N S,,)) = Hs for d € Hs and let
Pis1=<p; be least so that p;,; € 2%, p,.1(8) =p;(8) if Hs=\J {H}|j<i} (if &
can be defined so that the structures (S, ), A; NS, )) are amenable; otherwise
let Hi=X-Skolem hull of dU{x, A;NS,} in S+ and assume that
AN S, i) € Sgu+1) for all i). For limit A <y, let p, = U {p:|i<A} (as in Lemma
2A.2).

Now exactly as in Extendibility I it can be shown that if p is a 2g-
quasicondition, then for each i <y, there exists g < p such that lgs| = H5N 6™ for
all 8 € @-Card N [p;, «). Thus exactly as in Lemma 2A.1 the 2%”s are dense in
the partial order of P; -quasiconditions. And as in Lemma 2A.2 the above
induction is well-defined at limit stages (using Lemma 2D.1(b) for successor
a-cardinals y).

If A=y,, define p,=G,={reP% |p;<r for some i<A}. The proof of
Lemma 2A.2 shows that s=\J{r, |reG,} is P5-generic over L, where
n:{Ls A) 3\ {H), |i <y} is the transitive collapse and 7(&) = a. But x is the
identity since | {H}, |i <y,} = &, and thus s (equivalently: G,) is P5 -generic
over L.

If « is a successor admissible, we must also guarantee that G; kills the
admissibility of o. Note that in this case p; = gc &, (n;, B1) = (1, @) and then the
construction of G, is particularly simple: we are just choosing successively longer
elements soc s, <+ of S5 using a II,(L,)-cofinal g,:y, = II,-cof(a)— a. To
guarantee that the admissibility of « is killed, if necessary replace s = ) {s;|i <
y,} by svt where t:[p;, )—2 is the characteristic function of C, and
svi2n)=s(n), s vi2n +1)=1t(n).

Finally suppose that « is recursively inaccessible. If o* = @ (« is nonprojec-
tible), then X-genericity for % reduces to regular genericity as in that case a is
the limit of a-stables. If a* <a, then p; =gca, (n,, B1) = (1, @) and as above
we are just choosing successively longer elements socs;<--- of S5 using a
II,(L,)-cofinal g,:y,=II,-cof(L,)— «. We must modify this construction as
follows: First we Claim that if p; is L,-regular, (W;|i<4&) is a uniformly
21(L,)-sequence of persistent subsets of %5 X p; and 6 <p,;, then for any
p € P, there exists g<p, qge P(W,) for all i<d. To prove this define
po=p;=--- by setting po=p and, if p; has been defined, let p;,, <p, be least
so that for some j<6, n<p;, {pis1} X nc WP but {p;} X n¢& W}, where
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W7 = amount of W, enumerated by stage o < a; for limit 4 let p, = U {p:|i<A}.
Then p;., is undefined for some i < a as « is admissible— the function (j— last
stage at which W, is considered) is totally defined and IT;-cof(L,) = p; > 6. Also
note that A limit— |p,| is inadmissible as otherwise by the same argument, p; .,
would be undefined for some i <A. Thus g = {p; | p: is defined} is as desired.
Given the Claim we see how to modify our earlier construction of the sequence
soc=S;<- - when p, is L,-regular. Namely, choose s;; so that s;,, € (W) for
all j € Z;-Skolem hull of g,({)U {x} in L,, where g,:y,— p; is Af(L,)-cofinal
and (W, |jeL,) is a uniformly X,(L,)-listing of the =;(L,) persistent subsets of
P35 X py. Then U {s; | i <y,} is as desired, using the fact that IT;-cof(L;,) < p, at
limit stages A. If p, is L,-singular, then in the Claim replace #§ X p, by g X v,
y < p;, and in the construction of the s;’s replace s;,; € D(W,) by s;,1 € D(W?)
where (W}|jeL,) is a uniformly Z,(L,)-listing of the X,(L,) persistent subsets
of 25 X g1(i). This completes Step 1.

Step j+1. This step is handled in two parts. First we build a ‘P -
quasicondition’ p where s; = {r, | r € G;}. This p will code ail of s; and reduce
all predense D € Lvsj[s}"]. Then much as in Step 1 we build a IT;-cof(H;,1) = ;41
sequence p=po=p,=--- of ‘PJ -quasiconditions’ so that G.,={re
P, | pi<r for some i <y;,,} is the des1red P, -generic.

Definition. 2% =\ {?P,,, |tcs;, te Pg}. A Py -quasicondition is a function

p:a-Card N [p;+1, pj))— L, such that p is E,,,H(S g.) and p obeys conditions
(1)-(7) in the definition of % at all a-cardinals 6 € (p;.1, p;].

Now exactly as in Extendibility I we can construct a %}  -quasicondition
p ¢ 2.7, Indeed, were 5;€ Sy, ' for some a’ € Adm, then the construction of such
apis prec1sely the constructlon of pe #} ., |p|=ls;|. But that construction was
A7 (s4(p;")) and hence only required that s; was P;-generic and the fact that p; is
a cardinal in the sense of #(p;)=4,. Note that p is X, (Sg) and hence

Z,.(Sg.,) Also note that we obtain |p5|<6+ for 6 € a-Cardﬂ[p,+1, p;) (as
required by the definition of quasicondition) as if H; = X;-Skolem hull of é U {x}
in &, x €Sy, then H; N 67 is an ordinal less than 6*.

Finally to build the desired G;.;, a 27 -generic over L,[s;] (a #,7->-generic
over L,[s/] if « is recursively inaccessible) it suffices to define a AY(sH,44)
Yj+1-Sequence p =po=p,=- - - of P -quasiconditions so that for 6 € a-Card N
i1 ), ULlpol | {lpil | i <341} = 6" (where 7, = IT-cof(s4;.1)). For, as p
is a P, -quasicondition, p ¢ 77, it must be that all predense D € L., [s/] =

L.[s;] (all predense (W), W a X,{(L.[s}], s/) persistent subset of g><s, X v,
y < «) are reduced by p and hence met by some p;.

To build the sequence p =po=p,=--- proceed as follows: Define F;.; to
consist of all geS,,, so that Dom(g) c a-CardN{p;,4, p;) is thin in S, ,
Range(g) = L, and for all 6 e Dom(g), L,Fcard(g(8))<é. If g is a Py

Pj+1
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quasicondition, g € § Pt and g e F;,, then 27 is defined as before: r € X7 iff 7 is
incompatible with g or r <gq and 6 €e Dom(g), D predense on R%-+, D e g(é)N
Ly .~ r(6) meets D. If p/,, > p;, then as in Extendibility I we can show that the
Zq’s are dense in the partial order of all 2] -quasiconditions belonging to S, .

If p;+1 = p;, then note that g € L, and so Z" is dense by induction.

Now choose a A (#,.1)-cofinal function 8:Vi+1—> Pj+1, Yj+1 = II1-cof(H; )
and if p/,,=p; we assume that p [ g(A) is (L, 1N Lgay) for limit
A<¥;,;. (This is possible as p is X, , (Sg,,,) and hence X,(H;.,).) Set po=p; if p;
has been defined, then let p;,, <p; be least so that p;., € 2% p,,,(6)=p;(0) if
g(8)=U{g(8) |j<i}, where g(6)=2;-Skolem hull of dU{x} in (S,
A;1NS,) = Hs for e Hs, 6 =p;,; (where x €S, is such that X,-Skolem
hull of p;,; U {x} in &, = &;,,. Also, if these structures are not amenable, then
use the X,-Skolem hull of 6 U {x, &;,1 N S,;)} in Sg;41), having arranged that
A1 N Seiy € Sgivn)-) Then p, = {p;|i<A} (as in Lemma 2A.2) is a P} -

Pj+1

quasicondition for limit A < y;,,. If A=y;,,, then p; = G, = {re 2% | p;<r for

some i <A} is the desired ;% -generic (the desired 2-generic if « is recursively
inaccessible).

By the Factoring Lemma 1A.7 we have that G, *G,*- - -G, =G is Pg-
generic over L, (is Pg-X-generic over L, if « is recursively inaccessible). As G is
Af(A) = A (AL(1Y)), v =(x*)’=, G also meets the required definability condi-
tion. This completes the proof of Extendibility II.

E. Conclusion

We now establish Lemmas 1A.6 (Distributivity) and 1F.1 (Extendibility).

Proof of Lemma 1A.6. If f-Card N [k, B) is finite, then the result follows from
the X-distributivity of the R°-forcings and Factoring. We can also assume that f is
3,-projectible as otherwise the result follows by induction using a sufficiently
large B-stable ordinal. So let y =largest limit B-cardinal; by the above remarks
we need only show the I-distributivity of ?5° where s:[y, y*)—2 is P%->-
generic over Lg, y* denoting (y*)™ < B. An inspection of the Claims in Subcase
2 of Part C reveals that given p € ?5° and a X, (Lg[s*], s*)-sequence (D; |i<k)
of predense sets there exists g <p so that g reduces each D; and in fact for some
fixed d e(k, y), D@* is predense on P%¥ for each i. We also know by
admissibility of (Lg[s*], s*) that the D;s can be thinned to D;s so that
(D;]i<x)eLg[s*] and each D, is predense. So we can in fact assume that
D; =D, and thus D¢ L, w19 3] for each i. Then by induction choose r<gq, r | 6
meets D{* for each i. So r < <p, r meets each D;. O

Proof of Lemma 1F.1. We can assume that Dom(f) has a maximum element 9.
By Extendibility II we can extend p so that |ps|=f(8), Dom(f) is thin in L,, .
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Then we are reduced to the last statement of the lemma. But that statement is
precisely Extendibility I. O

Note that the proof of Lemma 1A.6 actually shows that if S <ORD is
3 -admissible k € B-Card, then # is 3, -distributive over Lg. Thus by Factoring,
if (D;|i<k) is a Z,(L)-sequence of predense subclasses of P =PFRP=
U {P5|BeAdm)} and p € P, then there exists g<p and (d;|i<k)eL such
that d; c D;, d; is predense below g for each i. This is enough to prove that
P I+ ZFC. The proof of our Theorem is now complete.

Before listing some open questions we describe how a technique from Jensen
[7] can be used in the present context to obtain a # ‘pseudo-generic’ below 0%.

Theorem. There is a real R € L[0*] such that A(R) = Recursively Inaccessibles.

Proof. We construct s:[w, ©)—2 definably over L[0*] so that s |[w, k) is
@, <) _generic over L+ for each kx € L-Card N (w, ). This is accomplished in
w steps; at stage i we define (s"’ lvel ) (p"’ | v e I) where I =canonical Silver
indiscernibles, s € S,+ (=8:") and p” € #%,. Moreover we have the following
coherence properties:

(@ v<tinI->s"=p%, py+=0, p" v=p" | v.

(b) j<i—s"cs" and p¥<p” in P,

(c) p* is uniformly X,(L) with parameter (v, T;,..., 7;) for any v<t; <

-+ <7;in L

To begin let s =8, p®(8) = (8, 9) for all v €I, § € L-Card. Now suppose that
5", p* are defined for v € I. Pick v € I and we shall define s“*V¥, p¢*¥. Choose
any 7,<---<7; from I so that v<t, and let g,,(d)=2;-Skolem hull of
dU{¥, ty,..., 7} in L for 6 e L-CardNv, 8 €q,(8). Then p¥*" is least so
that p®* Y <p™ in """ and p*Y e 32", Define sV =p¢tV" for rel,
T> V.

Now by indiscernibility, v<t in I—p” }v=p™ |v. Also p¥ -pv and
s% = p%. (the latter by definition, the former by coding). Moreover, p* =# since
if C,, C, are the least CUB’s contained in L-Card N v, L-Card N 1, respectively so
that ye C,—p> =0, ye C,— p¥ =0, then we get that C,=C,Nv and hence
veC(C,.

Let p’ = {p" | v € I}. Note that for 6 € L-Card we have | {|p}| |i e 0} = 6*
since | {g:(6) |iew} 26" for any vel, v> 4. Now consider G=all ge P,
such that for some i, p* < q where p’ differs from p’ only on a finite u = I, where
veu—p,=pY. (Thus the only differences between p’ and p' is that p
may be nonempty for veu.) We claim that G is P,-generic over L. Indeed
suppose D € L is the least predense set not met by G. Pick the least L-cardinal
so that D € Ls+. Choose g € G so that D e L,, . To get a contradiction we need
only show that G N P3% is P;%-generic over L,,.If 6 is a limit L-cardinal, then
q | 6 reduces D and so by the minimality of é and the definition of G, G meets
D Iféd=y%isa successor L-cardinal, then we can find ¢’ < g in G so that g'(y)
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reduces D (this is where the definition of G comes in): Namely, choose g’ so that
q'(y) =p™(y) where v=1y is the min of I —y and D eg;(y). Again we have
contradicted the minimality of 6.

If Dclw, (w)") is defined as U {p’,|i € w}, then choose Rcw to be
PP-generic over L[D] where PP = {®° | s c p’, for some i}. This can be done
in L[0¥] as wi!P1= T is countable in L[0¥]. Then R is P-generic over L and
hence A(R) = Recursively Inaccessibles. [

We conclude with some open questions.
(1) Which L-definable classes can occur as A(R) for some real R?

(2) Which L-definable classes can be A,-definable over L[R] for some real R,
0% ¢ L[R]?

(3) Is there a model of ZFC + Post’s Problem is false for HC, obtainable as a
generic extension of L?

The above questions appear to require further improvements on the strong
coding method.
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