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ation theory and 0#Sy D. Friedman Tapani Hyttinen� Mika Rautila�August 9, 2001Abstra
tWe 
hara
terize the 
lassi�ability of a 
ountable �rst-order the-ory T in terms of the solvability (in the sense of [2℄) of the potential-isomorphism problem for models of T .1 Introdu
tion[2℄ studies the solvability of a number of problems 
on
erning 
onstru
tiblesets under the assumption that 0# exists. As an example, 
onsider the
olle
tion of 
onstru
tible subsets S of a regular L-
ardinal � su
h that Shas a 
ub subset in a 
ardinal-preserving extension of L. If � is (�1)L, thenthis set is 
onstru
tible (as it is just the 
olle
tion of 
onstru
tible subsets of(�1)L whi
h are stationary in L), and therefore we may say that this problemis �solvable�. But if � is a regular L-
ardinal greater than (�1)L, then this
olle
tion is not in L but equi
onstru
tible with 0#. Thus in the latter 
asewe have an �unsolvable� problem. [2℄ studies a number of related problemsin terms of their solvability in this sense.In this arti
le we relate the solvability of problems de�ned in terms ofpotential-isomorphism to stability theory. In parti
ular we show (Theo-rem 3.5):Assume that 0# exists and let T be a 
onstru
tible �rst-order theory whi
his 
ountable in L. Then the following are equivalent:(i) The potential-isomorphism problem in 
ardinal- and real-preserving ex-tension of L for 
onstru
tible models of T of size (!2)L is solvable.(More pre
isely: The 
olle
tion fhA;Bi 2 L j A and B models T withuniverse (�2)L whi
h are isomorphi
 in an extension of L with thesame 
ardinals and reals as Lg is 
onstru
tible.)�The resear
h was partially supported by A
ademy of Finland grant 40734 and theMittag-Le�er Institute 1



(ii) The theory T is 
lassi�able (i.e., superstable with NDOP and NOTOP).Potential isomorphism with respe
t to set-generi
 extension was studied in[6℄, [1℄, [5℄, and [3℄. However the question raised in the present arti
le require
lass-for
ing, as the existen
e of an isomorphism between two 
onstru
tiblemodels in a set-generi
 extension of L is 
learly an L-de�nable property.2 PrerequisitesWe assume throughout that 0# exists. The following two de�nitions and thetheorem are from [2℄.De�nition 2.1 ([2℄) (i) By a 
ardinal preserving extension of L we meana transitive model 
ontaining all the ordinals whi
h satis�es AC, is
ontained in a set-generi
 extension of V and has the same 
ardinalsas L. The notions of P(�)-preserving and real-preserving extensions ofL are de�ned analogously.(ii) A subset X of L is �CP1 if and only if X 
an be written in the form:a 2 X i� '(a) holds in a 
ardinal-preserving extension of Lfor some �1-formula ' with 
onstru
tible parameters.De�nition 2.2 ([2℄) Suppose that hX0;X1i and hY0; Y1i are pairs of disjointsubsets of L. Then we writehX0;X1i �!L hY0; Y1iif and only if there is a fun
tion f 2 L su
h thata 2 X0 ! f(a) 2 Y0;a 2 X1 ! f(a) 2 Y1:If X1 is the 
omplement of X0 within some 
onstru
tible set, we write X0instead of hX0;X1i, and similarly for hY0; Y1i.By S�� we denote the set of all ordinals � < � su
h that 
f(�) = �.De�nition 2.3 Let � be an in�nite 
ardinal in L and let (�+ = �)L.(i) Let T (�) denote the set of trees t 2 L on � of height �.(ii) Let TCP (�) denote the set of trees t 2 T (�) su
h that in a 
ardinal-preserving extension of L there is a �-bran
h in t.2



(iii) Let T �CP (�) denote the 
olle
tion of trees t 2 TCP (�) su
h that t is �1-de�nable over L� from the parameter � and in a 
ardinal-preservingextension of L, t has a �-bran
h,(iv) Let T �P (�) denote the 
olle
tion of trees t 2 TCP (�) su
h that t is �1-de�nable over L� from the parameter � and there is a 
ardinal- andP(�)-preserving extension of L in whi
h t has a �-bran
h,(v) Let S(�) denote the 
olle
tion of sets S 2 L su
h that S � (S�!)Lis stationary in L and in a 
ardinal-preserving extension of L, �nS
ontains a 
ub.(vi) Let Sr(�) denote the 
olle
tion of sets S 2 L su
h that S � (S�!)L isstationary in L and in a 
ardinal- and real-preserving extension of L,�nS 
ontains a 
ub.Theorem 2.4 ([2℄) (i) If X is �CP1 , then X is 
onstru
tible from 0#.(ii) Suppose � is an in�nite 
ardinal in L and (�+ = �)L.(a) The set TCP (�) is equi
onstru
tible with 0#.(b) 0# �!L hT �P (�);T (�)nT �CP (�)i.(
) If � is regular in L and > !, then 0# �!L S(�).(d) If � is regular in L and > !, then 0# �!L Sr(�).The rest of the se
tion is from [4℄. Let � be a 
ardinal. By t�� we denotethe tree whose universe <�� is ordered by end-extension. For the exa
tde�nitions of the tree operations supremum (�), sum (+), and produ
t (�)we refer to [4, Se
tion 2℄. A (�; �)-tree is a tree with the following properties:Every node of the tree has < � immediate su

essors and the tree does not
ontain bran
hes of length �.De�nition 2.5 A lexi
ally ordered (�; �)-tree t is a tuplet = (U;<;<1; <2)whi
h satis�es the following 
onditions:(i) The pair hU;<i is a (�; �)-tree.(ii) For all x 2 U , <1 �su

(x) is a linear order.(iii) If x <1 y, then x; y 2 su

(z) for some z 2 U .(iv) For all x; y 2 U it holds that x <2 y if and only if x < y or x
 <1 y
where 
 is the least ordinal with x�
 6= y�
, and x
 (y
) is the nodeon level 
 whi
h is below x (y).3



Let M be a model of ZFC. Suppose that � is a regular un
ountable 
ardinaland t is a (�+; � + 1)-tree in M . In [4, proof of Theorem 3.4℄ two unaryoperations on trees are de�ned. We now shortly des
ribe the operationswithout giving the exa
t de�nitions. The �rst operation, 
(t), gives a lexi-
ally ordered tree whi
h is obtained by starting from the tree t and adding� 
opies of t on every node of t. This adding of the tree t is done ! timesand on round n+1 the tree t is added only on those nodes that were addedto the resulting tree on round n, i.e., on the previous round. The nodesadded to the tree on round n are 
alled phase n nodes and the phase of anode x 2 
(t) is denoted by p(x). We do not need the exa
t de�nition of therelation <1 only that if N is a model of ZFC extending M and having thesame 
ardinals as M , then in N there is no x 2 t su
h that the su

essors ofx has an as
ending <1-sequen
e of length �.The other tree, m(t), is obtained by multiplying every node on su

essorlevel in t by �.The lexi
ally ordered trees and linear orders in the next de�nition are fromthe proofs of Theorem 3.4 and Corollary 3.6 in [4℄. These are the basi
ingredients used in building very equivalent but non-isomorphi
 models forunstable theories.De�nition 2.6 Let � be an un
ountable regular 
ardinal, u a (�+; �)-tree,and t� = 
(t��);t�(u) = 
�m�(M�<��) � u+ 1��;u�(u) = (Mn<! n) � u;�� = Q � (univ(t�); <2);��(u) = Q � �univ(t�(u�(u))); <2 �:The Ehrenfeu
ht-Mostowski model related to a model I, whi
h is 
alledthe index model (often it is a linear order but not always), is denoted byEM(I;	) where 	 is the template. The set of sequen
es from EM(I;	)indexed by I is 
alled the skeleton. For the exa
t de�nitions see, e.g., [7℄ or[4, Se
tion 8℄.3 The resultsFor the sake of simpli
ity, we study only 
ountable theories.4



Lemma 3.1 Let M � N be models of ZFC with the same 
ardinals, � anin�nite 
ardinal in M , and (�+ = �)M . Suppose that (�<� = �)M and u isa (�+; �)-tree in M .(i) In N there is a �-bran
h in u�(u) if and only if there is a �-bran
hin u.(ii) If in N there is a �-bran
h in t�(u), then there is also a �-bran
h in u.(iii) If in N there is an as
ending <2-sequen
e of length � in t�(u), thenthere is a �-bran
h in t�(u).(iv) If in N there is a �-bran
h in u, then t� �= t�(u).(v) If in N there is an as
ending �-sequen
e in ��(u), then there is anas
ending <2-sequen
e of length � in t�(u).(vi) Let T be an unstable 
ountable theory and the template 	 as in [7℄. If(P(�))M = (P(�))N and in N it holds thatEM(��;	) �= EM(��(u);	);then in N there is an as
ending �-sequen
e in ��(u).Proof. (i) Follows from the de�nition of u�(u).(ii) Suppose b 2 N is a �-bran
h in t�(u). Let t = (L�<� �) � u + 1 andt0 = m(t). For n 2 !, let xn 2 b be the least node with p(xn) = n if there issu
h a node, and otherwise let xn be the root of t�(u). Now, if the bran
hb 
ontains a node from every phase, the mapping n 7! ht(xn) is unboundedin �. Clearly this 
ontradi
ts the assumption (�+ = �)N . Hen
e there isr 2 b and n < ! su
h that for ea
h x 2 b, if x > r then p(x) = n. Letbx = fy 2 b j y > xg. Sin
e t is a �proje
tion� of t0, bx determines a �-bran
hin t. Thus there is a �-bran
h b0 in (L�<� �) �u. Sin
e � is a regular 
ardinalin N , there is a �-bran
h in u.(iii) This follows from the fa
t that in N there is no node x 2 t�(u) su
hthat the su

essors of x 
ontains an as
ending <1-sequen
e of length � and[4, Lemma 3.1(iii)℄.(iv) By Theorem 3.4 in [4℄, there is, in M , a winning strategy w for player9 in EF2u(t�; t�(u)). Without loss of generality we may assume that t� andt�(u) are disjoint. Sin
e in M it holds that �<� = �, there is a bije
tionf 2M from � to t� [ t�(u). Work in N . Let b = hbi j i < �i be a �-bran
hin u. Sin
e every initial segment ofhhf(i); bii j i < �i5



is in M , the play

hf(i); bii j i < ��; 
w(hf(0); b0i; : : : ; hf(i); bii) j i < ���determines an isomorphism between t� and t�(u).(v) Follows from the de�nition of ��(u).(vi) Let � = �� and �0 = ��(u). First we note that (EM(�;	))M =(EM(�;	))N . If follows from (P(�))M = (P(�))N and (�+ = �)N that(P�(�))M = (P�(�))N . Sin
e EM(�;	) �= EM(�0;	) in N , some of theassumptions used in the proof of Theorem 4.9 in [4℄, whi
h shows thatthe Ehrenfeu
ht-Mostowski models are non-isomorphi
, must not hold inN . Sin
e in N there are no new subsets of � of 
ardinality < �, the onlyassumption that 
an fail is the following assumed in Lemma 5.3 in [4℄: �0does not 
ontain as
ending �-sequen
es. Hen
e in N there is an as
ending�-sequen
e in �0 = ��(u). (3.1)�Theorem 3.2 Suppose � is an in�nite 
ardinal in L and (�+ = �)L. Thenthe following �CP1 sets are equi
onstru
tible with 0#.(i) The 
olle
tion of trees t0 2 L on � su
h that there is a 
ardinal-preserving extension of L in whi
h t� �= t0. This 
olle
tion of treesis denoted by Ct� .(ii) The 
olle
tion of pairs of (�+; �)-trees on � ht; t0i 2 L su
h that in a
ardinal-preserving extension of L it holds that t �= t0. This 
olle
tionis denoted by Cisom.(iii) The 
olle
tion of pairs of models hA;Bi 2 L su
h that univ(A) =univ(B) = �, the similarity type of A and B is a subset of � , and ina 
ardinal-preserving extension of L there is an elementary embeddingfrom A toB or from B to A where � is a similarity type, whi
h 
ontainsat least two 
onstant symbols and one binary relation symbol. This
olle
tion of pairs of models is denoted by Celem.(iv) If in (iii), elementary embedding is repla
ed by embedding, the 
laimstill holds.Proof. By Theorem 2.4(i) it su�
es to show that there is a redu
tion of0# to ea
h of the sets.(i) Work in L. Let the fun
tion f with domain ! be de�ned byf(n) = tnwhere tn is as in [2, proof of Theorem 3(a)℄ for n 2 !. So, we have n 2 0# $tn 2 TCP (�). De�ne a mapping g bytn 7! t�(tn):6



The mapping g Æ f demonstrates that 0# �!L Ct� . To see this, suppose�rst that tn 2 TCP (�). Let N be a 
ardinal-preserving extension of L inwhi
h tn has a �-bran
h. By 3.1(iv), t� �= t�(tn) = g(tn). Suppose then thattn 2 T (�)nTCP (�). For a 
ontradi
tion assume that in a 
ardinal-preservingextension N of L it holds that t� �= t�(tn). Then, in N , there is a �-bran
hin t�(tn). So, by 3.1(ii), there is a �-bran
h in tn 
ontradi
ting tn =2 TCP (�).Hen
e g(tn) =2 Ct� .(ii) Work in L. Let the fun
tion f be as in the previous 
ase. De�ne amapping g by tn 7! ht�; t�(tn)iThe fa
t that g Æ f redu
es 0# to Cisom 
an be seen as in the previous 
ase.(iii) Let t and t0 be (�+; � + 1)-trees. Without loss of generality, we mayassume that t and t0 are disjoint. Choose distin
t obje
ts x and y not in t[t0.Let M(t; t0) be the stru
ture (U;<; 
; d) satisfying the following 
onditions:(1.1) U = t [ t0 [ fx; yg.(1.2) (
)M(t;t0) = x and (d)M(t;t0) = y.(1.3) For all a; b 2 U , a < b if and only ifa = x ^ b 2 t _ a = y ^ b 2 t0 _a; b 2 t ^ a <t b _ a; b 2 t0 ^ a <t0 b:Work in L. Let the fun
tion f be as in previous 
ases. De�ne a mapping gby tn 7! hM(t�; t�(tn));M(t�(tn); t�)i:We show that g Æ f redu
es 0# to Celem. First assume that tn 2 TCP (�). LetN be a 
ardinal-preserving extension of L whi
h witnesses this. By 3.1(iv),t� �= t�(tn) in N . It follows thatM(t�; t�(tn)) �=M(t�(tn); t�):Hen
e g(tn) 2 Celem.Suppose then that tn 2 T (�)nTCP (�). For a 
ontradi
tion assume that N isa 
ardinal-preserving extension of L su
h thatM(t�; t�(tn)) �M(t�(tn); t�):Hen
e there is a �-bran
h in t�(tn). By (ii) of Lemma 3.1, there is a �-bran
hin tn when
e tn =2 T (�)nTCP (�). Hen
e g(tn) =2 Celem.(iv) As above. (3.2)�7



Theorem 3.3 Suppose � is an in�nite L-
ardinal, (�+ = �)L, T 2 L is a
omplete unstable theory with (jT j = !)L, the template 	 is as in [7, Lemma1.2℄, and A = EM(��;	).(i) Let CA� be the 
olle
tion of models B 2 L of T with universe � su
hthat there is a 
ardinal- and P(�)-preserving extension of L in whi
hA �= B. Then 0# �!L CA� .(ii) Let CA;ee� be the 
olle
tion of models B 2 L of T with universe � su
hthat in a 
ardinal- and P(�)-preserving extension of L there is an ele-mentary embedding from A to B. Then 0# �!L CA;ee� .Proof. (i) Let f : ! ! T (�) be the fun
tion given by (ii-b) in Theo-rem 2.4, i.e., f redu
es 0# to (T �P (�);T (�)nT �CP (�)). Let t�n = f(n). De�nea mapping g by t�n 7! EM(��(t�n);	):Then g Æ f redu
es 0# to CA� . To see this assume �rst t�n 2 T �P (�). Let N bea 
ardinal- and P(�)-preserving extension of L in whi
h t�n has a �-bran
h.By 3.1(iv), g(tn) 2 CA� .Suppose then that t�n 2 T (�)nT �CP (�). Towards a 
ontradi
tion assume thatin a 
ardinal- and P(�)-preserving extension N of L it holds that A �= g(tn).Then, by (vi), (v), (iii), and (ii) of Lemma 3.1, t�n has a �-bran
h. But thent�n =2 T (�)nT �CP (�) and hen
e we have proved that 0# �!L CA� .(ii) The proof is based on the fa
t that by the proof of Theorem 4.9 in [4℄there is no elementary embedding from EM(��;	) = A to EM(��(t�n);	).Otherwise the proof goes exa
tly as in the previous 
ase. �As in the proof of Theorem 3.3, one 
an 
ombine known model 
onstru
tionswith results from [2℄. Below we give two more results but only sket
h theproofs.Theorem 3.4 Suppose � is a regular L-
ardinal > !, (�+ = �)L, T 2 L isa 
omplete unsuperstable theory with (jT j = !)L. Let DT� be the 
olle
tion ofpairs (A;B) 2 L of models of T with universe � su
h that there is a 
ardinal-preserving extension of L in whi
h A �= B. Then DT� is equi
onstru
tible with0#.Proof. By (i) and (ii-
) in Theorem 2.4, it is enough to show the following:For all stationary S � S�! there are models A;B 2 L of T of power � su
hthat in any 
ardinal-preserving extension of L,A �= B i� �nS 
ontains a 
ub set.8



Let the trees J0 2 K!tr and J1 2 K!tr be as in [3, Lemma 7.29℄ and A =EM(J0;	) and B = EM(J1;	), see [3, Se
tion 7℄ and noti
e that this model
onstru
tion is originally due to S. Shelah.If in a 
ardinal-preserving extension of L, �nS 
ontains a 
ub set, then inthe extension A �= B holds by the proofs of [3, Lemmas 7.31 and 7.15℄(noti
e that when the isomorphism is 
onstru
ted along the 
ub, the partialisomorphisms may not be in L but this is not a problem).On the other hand, if �nS does not 
ontain a 
ub set in a 
ardinal preserv-ing extension of L, then the S-invariants of J0 and J1 are di�erent in theextension, see [8℄ or [4, Lemmas 8.14 and 8.20℄. Sin
e the trees J0 and J1are of power �, it is easy to see that the properties (< �;bs)-stable and lo-
ally (�;bs;bs)-ni
e are preserved in 
ardinal-preserving extensions of L (aswell as the truth of �rst-order formulas and �being an Ehrenfeu
ht-Fraïssémodel�). So A 6�= B by [8℄ (or [4, Theorem 8.13℄). (3.4)�Theorem 3.5 Suppose � is a regular L-
ardinal > !, (�+ = �)L, T 2 L is a
omplete theory with (jT j = !)L. Let P T� be the 
olle
tion of pairs (A;B) 2L of models of T with universe � su
h that there is a 
ardinal- and real-preserving extension of L in whi
h A �= B. Then the following are equivalent:(i) P T� is 
onstru
tible,(ii) T is 
lassi�able (i.e. superstable with NDOP and NOTOP).Proof. If T is 
lassi�able, then any two models of T are isomorphi
 in a
ardinal- and real-preserving extension of L if and only if they are isomorphi
in L, see [1℄. Hen
e P T� is 
onstru
tible.For the other dire
tion, assume that T is not 
lassi�able. By (i) and (ii-d) in Theorem 2.4, it is enough to show the following: For all stationaryS � S�! there are models A;B of T of power � su
h that in any 
ardinal-and real-preserving extension of L it holds thatA �= B i� �nS 
ontains a 
ub set.If T is unsuperstable, this 
an be seen exa
tly as in the proof of Theorem 3.4.If T is superstable with OTOP or DOP, then we use the following obser-vation: Firstly, we have Ehrenfeu
ht-Fraïssé models over linearly orderedskeletons with the linear order de�nable by a formula whi
h is absolute for
ardinal- and real-preserving extensions of L. (In fa
t, in the OTOP 
asethe formula is absolute for all extensions and in the DOP 
ase, for modeltheoreti
 reasons, the formula is absolute in the models of T for 
ardinal-preserving extensions.) Se
ondly, the trees in K!tr 
an be 
oded into linearorders so that the bs-type of a sequen
e of elements of the tree determines9



the bs-type of the 
orresponding sequen
e in the linear order and the treeorder 
an be de�ned by a quanti�er free formula in the linear order. Hen
ethe proof 
an be 
ompleted analogously to the proof of Theorem 3.4. (3.5)�Noti
e that by the proof of Theorem 3.5, Theorem 3.4 holds also for 
ountablesuperstable theories with OTOP or DOP.The model 
onstru
tion in the proof of the following theorem is a modi�
a-tion of a 
onstru
tion in [9℄.Theorem 3.6 Suppose � is a regular L-
ardinal � ! and (�+ = �)L. LetA� be the set of all models A 2 L with universe � su
h that there is a 
ardinal-preserving extension of L in whi
h A has a non-trivial automorphism. ThenA� is equi
onstru
tible with 0#.Proof. For every tree t on � of height and 
ardinality �, a model At isde�ned as follows. First some some preliminary de�nitions are given.For every � < �, let t� denote the set of all elements of t of height �, andlet G� be the set of all �nite subsets of t�. Make G� to an Abelian groupby letting a + b = a4b (the symmetri
 di�eren
e). For all � < � < � and� 2 t�, let ���(�) denote the unique element � 2 t� with � < �.For all � < � < �, de�ne fun
tion F�� : G� ! G� so that F��(a) =��2af���(�)g. Note that F�� is a homomorphism and that for 
 < � < � <�, F�
 = F�
 Æ F�� .For all � < �, let G� denote the set of all fun
tions g on � su
h that for all� < �, g(�) 2 G� and for all 
 < � < �, g(
) = F�
(g(�)), and we makeG� to an Abelian group by de�ning + 
oordinate-wise.Now we are ready to de�ne At. Let the universe of At be S�<�G�, andequip At with the following relations and fun
tions: For every g 2 S�<�G�de�ne the relation Sg bySg(g0; g1) i� 9� < �(g; g0; g1 2 G� ^ g0 = g1 + g)and for every � < � de�ne the fun
tion F� byg0 7! g0��:(So if g0 2 G� and � < �, F�(g0) = g0.) There are in�nitely many relationsand fun
tions but, if wanted, the relations and fun
tions 
an be 
oded sothat the similarity type be
omes �nite.By (i) and (ii-a) of Theorem 2.4 it su�
es to show that for all trees t on �,if t has height �, then At 2 Ak i� t 2 TCP (�):10



Assume �rst that t 2 TCP (�). Fix a 
ardinal-preserving extension of L inwhi
h there exists a �-bran
h b in t. Let g : �! S�<�G� be su
h that forall � < �, g(�) = b \ t�. De�ne fun
tion fg : At ! At so that if g0 2 G�,then fg(g0) = g0+g��. It is easy to see that fg is a non-trivial automorphismof At.Assume then that At 2 A�. Fix a 
ardinal-preserving extension of L inwhi
h there is a non-trivial automorphism f of At. Let the fun
tion s :� ! S�<�G� be su
h that for all � < �, s(�) = ;, and let the fun
tiong : � ! S�<�G� be su
h that for all � < �, g�� = f(s��). If g = s, thenit is easy to see that f is the trivial automorphism. So g 6= s and sin
e �is still a su

essor 
ardinal in the extension, there are non-zero n < ! and� < � su
h that for all � < � < �, jg(�)j = n. With this it is easy to �nd a�-bran
h from t (in fa
t, n many of them). (3.6)�Question 3.7 (i) Does Theorem 3.3 need preservation of subsets of �?Does Theorem 3.5 need real-preservation?(ii) Are there other dividing lines within �rst-order theories whi
h 
an be
hara
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