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Abstract

We characterize the classifiability of a countable first-order the-
ory T in terms of the solvability (in the sense of [2]) of the potential-
isomorphism problem for models of T'.

1 Introduction

[2] studies the solvability of a number of problems concerning constructible
sets under the assumption that 0% exists. As an example, consider the
collection of constructible subsets S of a regular L-cardinal « such that S
has a cub subset in a cardinal-preserving extension of L. If  is (R;)", then
this set is constructible (as it is just the collection of constructible subsets of
(Nl)L which are stationary in L), and therefore we may say that this problem
is “solvable”. But if & is a regular L-cardinal greater than (X;)%, then this
collection is not in L but equiconstructible with 0%. Thus in the latter case
we have an “unsolvable” problem. [2| studies a number of related problems
in terms of their solvability in this sense.

In this article we relate the solvability of problems defined in terms of
potential-isomorphism to stability theory. In particular we show (Theo-
rem 3.5):

Assume that 0% ezists and let T be a constructible first-order theory which
s countable in L. Then the following are equivalent:

(i) The potential-isomorphism problem in cardinal- and real-preserving ex-
tension of L for constructible models of T of size (wg)L s solvable.
(More precisely: The collection {(,B) € L | A and B models T with
universe (NQ)L which are isomorphic in an extension of L with the
same cardinals and reals as L} is constructible.)
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(1i) The theory T is classifiable (i.e., superstable with NDOP and NOTOP ).

Potential isomorphism with respect to set-generic extension was studied in
[6], [1], [5], and [3]. However the question raised in the present article require
class-forcing, as the existence of an isomorphism between two constructible
models in a set-generic extension of L is clearly an L-definable property.

2 Prerequisites

We assume throughout that 0% exists. The following two definitions and the
theorem are from [2].

Definition 2.1 ([2]) (i) By a cardinal preserving extension of L we mean
a transitive model containing all the ordinals which satisfies AC, is
contained in o set-generic extension of V and has the same cardinals
as L. The notions of P(\)-preserving and real-preserving extensions of
L are defined analogously.

(i) A subset X of L is ST if and only if X can be written in the form:
a € X iff p(a) holds in a cardinal-preserving extension of L

for some 31 -formula @ with constructible parameters.

Definition 2.2 ([2]) Suppose that (Xo, X1) and (Yo, Y1) are pairs of disjoint
subsets of L. Then we write

(Xo, X1) —1 (Yo, Y1)
if and only if there is a function f € L such that

aEX0—>f(a)EY0,
a € X1 — f(a) € V7.

If X1 is the complement of Xy within some constructible set, we write Xy
instead of (Xo, X1), and similarly for (Yo, Y1).

By S§ we denote the set of all ordinals a < & such that cf(a) = .

Definition 2.3 Let A be an infinite cardinal in L and let (At = k).

(1) Let T (k) denote the set of trees t € L on k of height k.

(i1) Let Tep(k) denote the set of trees t € T (k) such that in a cardinal-
preserving extension of L there is a k-branch in t.



(iii) Let T55(k) denote the collection of trees t € Top(k) such that t is A -
definable over L, from the parameter X\ and in a cardinal-preserving
extension of L, t has a k-branch,

(iv) Let T (k) denote the collection of trees t € Top(k) such that t is Aq-
definable over L, from the parameter \ and there is a cardinal- and
P(N)-preserving extension of L in which t has a k-branch,

(v) Let S(k) denote the collection of sets S € L such that S C (SF)"
is stationary in L and in a cardinal-preserving extension of L, k\S
contains a cub.

(vi) Let Sr(k) denote the collection of sets S € L such that S C (%)™ is
stationary in L and in a cardinal- and real-preserving extension of L,
k\S contains a cub.

Theorem 2.4 ([2]) (i) If X is ©¢T, then X is constructible from 0%.
(ii) Suppose X is an infinite cardinal in L and (AT = K)L.

(a) The set Top(k) is equiconstructible with 0%,

() 0% 1 (T2 (5), T\ T ().

(c) If X is reqular in L and > w, then 0% — 1 S(k).
(d) If X is regular in L and > w, then 0% — Sr(k).

The rest of the section is from [4]. Let s be a cardinal. By £ we denote
the tree whose universe <%k is ordered by end-extension. For the exact
definitions of the tree operations supremum (@), sum (+), and product (-)
we refer to [4, Section 2]. A (k, a)-tree is a tree with the following properties:
Every node of the tree has < x immediate successors and the tree does not
contain branches of length «.

Definition 2.5 A lexically ordered (), «)-tree t is a tuple
t=(U, <, <1,<2)
which satisfies the following conditions:
(i) The pair (U, <) is a (X, o)-tree.
(i1) For all x € U, <y [succ(z) is a linear order.

(iii) If © <y y, then z,y € succ(z) for some z € U.

(iv) For all x,y € U it holds that x <y y if and only if x <y or x, <1 y,
where 7y is the least ordinal with x|y # ylvy, and z~ (y,) is the node
on level v which is below x (y).



Let M be a model of ZFC. Suppose that k is a regular uncountable cardinal
and t is a (k7,k + 1)-tree in M. In [4, proof of Theorem 3.4 two unary
operations on trees are defined. We now shortly describe the operations
without giving the exact definitions. The first operation, c(t), gives a lexi-
cally ordered tree which is obtained by starting from the tree ¢t and adding
k copies of ¢t on every node of t. This adding of the tree ¢ is done w times
and on round n + 1 the tree ¢ is added only on those nodes that were added
to the resulting tree on round n, i.e., on the previous round. The nodes
added to the tree on round n are called phase n nodes and the phase of a
node z € ¢(t) is denoted by p(z). We do not need the exact definition of the
relation <; only that if N is a model of ZFC extending M and having the
same cardinals as M, then in N there is no z € ¢ such that the successors of
x has an ascending <;-sequence of length x.

The other tree, m(t), is obtained by multiplying every node on successor
level in t by k.

The lexically ordered trees and linear orders in the next definition are from
the proofs of Theorem 3.4 and Corollary 3.6 in [4]. These are the basic
ingredients used in building very equivalent but non-isomorphic models for
unstable theories.

Definition 2.6 Let k be an uncountable regular cardinal, u a (k*,K)-tree,
and

te = C(tﬁ),
te(u) = C(m((@ a)-u+1)),
Uy (u) = (@ n) - u,

e = Q- (univ(ty), <2),
Ne(u) = Q- (univ(t, (ue(u))), <2 ).

The Ehrenfeucht-Mostowski model related to a model I, which is called
the index model (often it is a linear order but not always), is denoted by
EM(I,¥) where U is the template. The set of sequences from EM(T, ¥)
indexed by I is called the skeleton. For the exact definitions see, e.g., [7] or
[4, Section 8§].

3 The results

For the sake of simplicity, we study only countable theories.



Lemma 3.1 Let M C N be models of ZFC with the same cardinals, X\ an
infinite cardinal in M, and (AT = ,%)M. Suppose that (5<F = k)™ and u is
a (KT, k)-tree in M.

(1) In N there is a k-branch in u.(u) if and only if there is a k-branch
mn u.

(13) If in N there is a k-branch in t.(u), then there is also a k-branch in .

(iii) If in N there is an ascending <g-sequence of length k in t(u), then
there is a k-branch in t(u).

(iv) If in N there is a k-branch in u, then t,; = t,(u).

(v) If in N there is an ascending k-sequence in ne(u), then there is an
ascending <s-sequence of length k in t,(u).

(vi) Let T be an unstable countable theory and the template U as in [7]. If
PONM = (PN and in N it holds that

EM (5, ¥) = EM(n(u), ),

then in N there is an ascending k-sequence in 1y (u).

Proof. (i) Follows from the definition of u,(u).

(ii) Suppose b € N is a k-branch in t.(u). Let t = (P, @) -u+ 1 and
t' = m(t). For n € w, let z, € b be the least node with p(x,) = n if there is
such a node, and otherwise let z,, be the root of t.(u). Now, if the branch
b contains a node from every phase, the mapping n — ht(z,) is unbounded
in k. Clearly this contradicts the assumption (AT = /-c)N. Hence there is
r € b and n < w such that for each z € b, if > r then p(r) = n. Let
by ={y €b|y > x}. Sincet is a “projection” of ¢', b, determines a x-branch
in ¢. Thus there is a k-branch b’ in (., «@)-u. Since & is a regular cardinal
in N, there is a k-branch in wu.

a<k

(iii) This follows from the fact that in N there is no node z € t,(u) such
that the successors of z contains an ascending <-sequence of length x and
[4, Lemma 3.1(iii)].

(iv) By Theorem 3.4 in [4], there is, in M, a winning strategy w for player
3 in EF2(t,, t,(u)). Without loss of generality we may assume that t, and
t.(u) are disjoint. Since in M it holds that k<% = k, there is a bijection
f €M from k to t, Ut,(u). Work in N. Let b= (b; | ¢ < k) be a s-branch
in u. Since every initial segment of

((f()bi) | i < K)



is in M, the play
(((F@)sbi) | i < w), (w((f(0),bo), ..., (f(2),03)) | i < K))

determines an isomorphism between t, and t,(u).
(v) Follows from the definition of 7, (u).

(vi) Let n = n, and o' = n.(u). First we note that (EM(n, ¥))M =
(EM(n, ¥)N. If follows from (P(A)M = (P(A)Y and (At = k)" that
(Pe(k)M = (Po(r))Y. Since EM(n, ¥) = EM(r/, ¥) in N, some of the
assumptions used in the proof of Theorem 4.9 in [4], which shows that
the Ehrenfeucht-Mostowski models are non-isomorphic, must not hold in
N. Since in N there are no new subsets of k of cardinality < &, the only
assumption that can fail is the following assumed in Lemma 5.3 in [4]: 7/
does not contain ascending k-sequences. Hence in N there is an ascending
k-sequence in n' = 1, (u). (3.1)m

Theorem 3.2 Suppose X is an infinite cardinal in L and (A = K)L. Then
the following X¢T sets are equiconstructible with 0% .

(i) The collection of trees t' € L on k such that there is a cardinal-
preserving extension of L in which t, = t'. This collection of trees
is denoted by Cy,, .

(11) The collection of pairs of (KT, k)-trees on k (t,t') € L such that in a
cardinal-preserving extension of L it holds that t = t'. This collection
15 denoted by Cisom.

(i1i) The collection of pairs of models (A,B) € L such that univ(A) =
univ(B) = k, the similarity type of A and B is a subset of T, and in
a cardinal-preserving extension of L there is an elementary embedding
from A to B or from B to A where T is a similarity type, which contains
at least two constant symbols and one binary relation symbol. This
collection of pairs of models is denoted by Celom-

(iv) If in (iii), elementary embedding is replaced by embedding, the claim
still holds.

Proof. By Theorem 2.4(i) it suffices to show that there is a reduction of
0% to each of the sets.
(i) Work in L. Let the function f with domain w be defined by

f(n) =ty

where ¢, is as in [2, proof of Theorem 3(a)] for n € w. So, we have n € 0% ¢«
tn € Top(k). Define a mapping g by

tn — te(tn)-



The mapping g o f demonstrates that 0% —s7, C, . To see this, suppose
first that ¢, € Tep(k). Let N be a cardinal-preserving extension of L in
which ¢, has a k-branch. By 3.1(iv), tx = t«(tn) = g(tn). Suppose then that
tn € T(k)\Top (k). For a contradiction assume that in a cardinal-preserving
extension N of L it holds that t, = t.(¢,). Then, in N, there is a k-branch
in t,(tn). So, by 3.1(ii), there is a k-branch in t,, contradicting t,, ¢ Top(k).
Hence g(tn) ¢ C, -

(ii) Work in L. Let the function f be as in the previous case. Define a
mapping g by

tn = (b, te(tn))

The fact that g o f reduces 0% to Cisom can be seen as in the previous case.

(iii) Let t and ¢’ be (kT,k + 1)-trees. Without loss of generality, we may
assume that ¢ and ¢’ are disjoint. Choose distinct objects  and y not in tU?'.
Let M(t,t") be the structure (U, <, ¢, d) satisfying the following conditions:

(1.1) U =tUt' U{z,y}.
(1.2) (MG = g and (d)MGL) =4,
(1.3) For all a,b € U, a < b if and only if
a=xAbet V a=yAbet Vv

a,bEtANa<;b V abet ANa<yb.

Work in L. Let the function f be as in previous cases. Define a mapping ¢
by
tn = (Mte, te(tn)), M(te(En), t))-

We show that g o f reduces 0% to Cejem. First assume that t, € Top(k). Let
N be a cardinal-preserving extension of L which witnesses this. By 3.1(iv),
te =ty (tn) in N. It follows that

M (te, t(tn)) = M(te(tn), t)-

Hence ¢(t5) € Celem-

Suppose then that ¢, € T(k)\Tcp(k). For a contradiction assume that N is
a cardinal-preserving extension of L such that

M(te, t(tn)) 2 M(te(tn), t)-

Hence there is a x-branch in t(¢,). By (ii) of Lemma 3.1, there is a x-branch
in t,, whence t, ¢ T (k)\Tcp(k). Hence g(tn) ¢ Celem.

(iv) As above. (3.2)m



Theorem 3.3 Suppose X is an infinite L-cardinal, (\T = ,%)L, TeLisa
complete unstable theory with (|T| = w)L, the template U is as in [7, Lemma
1.2], and A = EM(ny, ¥).

(i) Let C* be the collection of models B € L of T with universe  such
that there is a cardinal- and P(X)-preserving extension of L in which
A =B. Then 07 — 1 C2.

(1) Let C2 be the collection of models B € L of T with universe k such
that in a cardinal- and P(\)-preserving extension of L there is an ele-
mentary embedding from A to B. Then 0% — chbee,

Proof. (i) Let f : w — T (k) be the function given by (ii-b) in Theo-
rem 2.4, i.e., f reduces 0% to (75 (k), T (k)\T&p(k)). Let t; = f(n). Define
a mapping g by

tn = EM(n,(ty,), ©).

Then go f reduces 0% to C. To see this assume first ¢ € T2 (k). Let N be
a cardinal- and P(\)-preserving extension of L in which ¢} has a s-branch.
By 3.1(iv), g(t,) € C2.

Suppose then that ¢ € T (k)\7&p (k). Towards a contradiction assume that
in a cardinal- and P())-preserving extension N of L it holds that 2 = g(t,,).
Then, by (vi), (v), (iii), and (ii) of Lemma 3.1, ¢} has a sk-branch. But then
t5 ¢ T(k)\T&p(x) and hence we have proved that 0% —s , C2.

(ii) The proof is based on the fact that by the proof of Theorem 4.9 in [4]
there is no elementary embedding from EM(n,, ) = 2A to EM(n,(t%), V).
Otherwise the proof goes exactly as in the previous case. |

As in the proof of Theorem 3.3, one can combine known model constructions
with results from [2]. Below we give two more results but only sketch the
proofs.

Theorem 3.4 Suppose X is a reqular L-cardinal > w, (AT = m)L, TelLis
a complete unsuperstable theory with (|T| = w)”. Let DT be the collection of
pairs (A,B) € L of models of T with universe k such that there is a cardinal-

preserving extension of L in which A =2 B. Then D! is equiconstructible with
0% .

Proof. By (i) and (ii-c) in Theorem 2.4, it is enough to show the following;:
For all stationary S C S[ there are models 2,8 € L of T of power s such
that in any cardinal-preserving extension of L,

2A =B iff kK\S contains a cub set.



Let the trees Jy € Kg and J; € K¢ be as in [3, Lemma 7.29] and 2 =
EM(Jp, ¥) and B = EM(Jy, ¥), see |3, Section 7| and notice that this model
construction is originally due to S. Shelah.

If in a cardinal-preserving extension of L, k\S contains a cub set, then in
the extension 20 = 9B holds by the proofs of [3, Lemmas 7.31 and 7.15]
(notice that when the isomorphism is constructed along the cub, the partial
isomorphisms may not be in L but this is not a problem).

On the other hand, if \S does not contain a cub set in a cardinal preserv-
ing extension of L, then the S-invariants of Jy and J; are different in the
extension, see [8] or [4, Lemmas 8.14 and 8.20]. Since the trees Jp and J;
are of power &, it is easy to see that the properties (< &, bs)-stable and lo-
cally (k,bs,bs)-nice are preserved in cardinal-preserving extensions of L (as
well as the truth of first-order formulas and “being an Ehrenfeucht-Fraissé
model”). So 2 2 B by [8] (or [4, Theorem 8.13|). (3.4)m

Theorem 3.5 Suppose X is a reqular L-cardinal > w, (AT = m)L, TeLisa
complete theory with (|T) = w)’. Let PT be the collection of pairs (U,B) €
L of models of T with universe k such that there is a cardinal- and real-
preserving extension of L in which 2 22 5. Then the following are equivalent:

(i) PT is constructible,

(1i) T is classifiable (i.e. superstable with NDOP and NOTOP).

Proof. 1If T is classifiable, then any two models of T are isomorphic in a
cardinal- and real-preserving extension of L if and only if they are isomorphic
in L, see [1]. Hence P! is constructible.

For the other direction, assume that T is not classifiable. By (i) and (ii-
d) in Theorem 2.4, it is enough to show the following: For all stationary
S C Sf there are models A,B of T of power x such that in any cardinal-
and real-preserving extension of L it holds that

2 =B iff kK\S contains a cub set.

If T is unsuperstable, this can be seen exactly as in the proof of Theorem 3.4.
If T is superstable with OTOP or DOP, then we use the following obser-
vation: Firstly, we have Ehrenfeucht-Fraissé models over linearly ordered
skeletons with the linear order definable by a formula which is absolute for
cardinal- and real-preserving extensions of L. (In fact, in the OTOP case
the formula is absolute for all extensions and in the DOP case, for model
theoretic reasons, the formula is absolute in the models of T for cardinal-
preserving extensions.) Secondly, the trees in K can be coded into linear
orders so that the bs-type of a sequence of elements of the tree determines



the bs-type of the corresponding sequence in the linear order and the tree
order can be defined by a quantifier free formula in the linear order. Hence
the proof can be completed analogously to the proof of Theorem 3.4. (3.5)H

Notice that by the proof of Theorem 3.5, Theorem 3.4 holds also for countable
superstable theories with OTOP or DOP.

The model construction in the proof of the following theorem is a modifica-
tion of a construction in [9].

Theorem 3.6 Suppose X is a reqular L-cardinal > w and (AT = m)L. Let
Ay be the set of all models A € L with universe k such that there is a cardinal-
preserving extension of L in which & has a non-trivial automorphism. Then
A, is equiconstructible with 0%,

Proof. For every tree t on k of height and cardinality x, a model 2; is
defined as follows. First some some preliminary definitions are given.

For every a < k, let t, denote the set of all elements of ¢ of height «, and
let G, be the set of all finite subsets of ¢t,. Make G, to an Abelian group
by letting a + b = aAb (the symmetric difference). For all & < f < k and
n € tg, let m34(n) denote the unique element & € ¢, with § < 7.

For all @ < f < &, define function Fg, : Gg — G so that Fg,(a) =
Ynea{mpa(n)}. Note that Fjg, is a homomorphism and that for y < 8 < a <
K, Fay = Fgy 0 Fagp.

For all & < &, let G, denote the set of all functions g on « such that for all

B < a, g(B) € Gp and for all vy < B < «, g(y) = Fpy(9(8)), and we make
G to an Abelian group by defining + coordinate-wise.

Now we are ready to define ;. Let the universe of ; be (J,.,. Ga, and
equip 2y with the following relations and functions: For every g € (J, ., Ga
define the relation Sy by

Sg(g0, 1) iff o < K(g, 90,91 € Ga Ago = g1 +9)
and for every a < k define the function F, by
g =gl
(So if ¢ € Gg and B < a, Fu(g') = ¢'.) There are infinitely many relations

and functions but, if wanted, the relations and functions can be coded so
that the similarity type becomes finite.

By (i) and (ii-a) of Theorem 2.4 it suffices to show that for all trees ¢ on &,
if ¢ has height «, then

A, € Ag iff t € Top(k).
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Assume first that ¢ € Top(k). Fix a cardinal-preserving extension of L in
which there exists a x-branch b in t. Let g : & — |, Ga be such that for
all @ < K, g(a) = bNt,. Define function f, : Ay — Ay so that if ¢’ € G,
then f4(¢') = ¢’ +gla. It is easy to see that f, is a non-trivial automorphism
of Qlt.

Assume then that 2; € A,. Fix a cardinal-preserving extension of L in
which there is a non-trivial automorphism f of 2. Let the function s :
k = Uger Ga be such that for all o < &, s(a) = 0, and let the function
g : K = Uper Ga be such that for all @ < K, gla = f(s[a). If g = s, then
it is easy to see that f is the trivial automorphism. So g # s and since &
is still a successor cardinal in the extension, there are non-zero n < w and
a < k such that for all & < 8 < k, |g(8)| = n. With this it is easy to find a
k-branch from ¢ (in fact, n many of them). (3.6)m

Question 3.7 (i) Does Theorem 3.3 need preservation of subsets of A%
Does Theorem 3.5 need real-preservation?

(ii) Are there other dividing lines within first-order theories which can be
characterized along the lines of Theorem 3.57

References

[1] J. T. Baldwin, M. C. Laskowski, and S. Shelah. Forcing isomorphism. J.
Symbolic Logic, 58(4):1291-1301, 1993.

[2] Sy D. Friedman. Cardinal-preserving extensions. Preprint.

[3] Taneli Huuskonen, Tapani Hyttinen, and Mika Rautila. On potential
isomorphism and non-structure. Preprint.

[4] Tapani Hyttinen and Heikki Tuuri. Constructing strongly equivalent
nonisomorphic models for unstable theories. Ann. Pure Appl. Logic,
52(3):203-248, 1991.

[5] M. C. Laskowski and S. Shelah. Forcing isomorphism. II. J. Symbolic
Logic, 61(4):1305-1320, 1996.

[6] Mark Nadel and Jonathan Stavi. L y-equivalence, isomorphism and
potential isomorphism. Trans. Amer. Math. Soc., 236:51-74, 1978.

[7] Saharon Shelah. The number of non-isomorphic models of an unstable
first-order theory. Israel Journal of Mathematics, 9:473-487, 1971.

[8] Saharon Shelah. Existence of many L x-equivalent, nonisomorphic mod-
els of T of power X\. Ann. Pure Appl. Logic, 34(3):291-310, 1987. Stability
in model theory (Trento, 1984).

11



[9] Saharon Shelah, Heikki Tuuri, and Jouko V&&nanen. On the number of
automorphisms of uncountable models. J. Symbolic Logic, 58(4):1402—

1418, 1993.

Institute for Logic
University of Vienna
Vienna

AUSTRIA

Department of Mathematics
P.O.Box 4
00014 University of Helsinki
FINLAND

Department of Mathematics
P.O.Box 4
00014 University of Helsinki
FINLAND

Stonesoft Corp.
Itdlahdenkatu 22 A
00210 Helsinki
FINLAND

12



