
Classi�ation theory and 0#Sy D. Friedman Tapani Hyttinen� Mika Rautila�August 9, 2001AbstratWe haraterize the lassi�ability of a ountable �rst-order the-ory T in terms of the solvability (in the sense of [2℄) of the potential-isomorphism problem for models of T .1 Introdution[2℄ studies the solvability of a number of problems onerning onstrutiblesets under the assumption that 0# exists. As an example, onsider theolletion of onstrutible subsets S of a regular L-ardinal � suh that Shas a ub subset in a ardinal-preserving extension of L. If � is (�1)L, thenthis set is onstrutible (as it is just the olletion of onstrutible subsets of(�1)L whih are stationary in L), and therefore we may say that this problemis �solvable�. But if � is a regular L-ardinal greater than (�1)L, then thisolletion is not in L but equionstrutible with 0#. Thus in the latter asewe have an �unsolvable� problem. [2℄ studies a number of related problemsin terms of their solvability in this sense.In this artile we relate the solvability of problems de�ned in terms ofpotential-isomorphism to stability theory. In partiular we show (Theo-rem 3.5):Assume that 0# exists and let T be a onstrutible �rst-order theory whihis ountable in L. Then the following are equivalent:(i) The potential-isomorphism problem in ardinal- and real-preserving ex-tension of L for onstrutible models of T of size (!2)L is solvable.(More preisely: The olletion fhA;Bi 2 L j A and B models T withuniverse (�2)L whih are isomorphi in an extension of L with thesame ardinals and reals as Lg is onstrutible.)�The researh was partially supported by Aademy of Finland grant 40734 and theMittag-Le�er Institute 1



(ii) The theory T is lassi�able (i.e., superstable with NDOP and NOTOP).Potential isomorphism with respet to set-generi extension was studied in[6℄, [1℄, [5℄, and [3℄. However the question raised in the present artile requirelass-foring, as the existene of an isomorphism between two onstrutiblemodels in a set-generi extension of L is learly an L-de�nable property.2 PrerequisitesWe assume throughout that 0# exists. The following two de�nitions and thetheorem are from [2℄.De�nition 2.1 ([2℄) (i) By a ardinal preserving extension of L we meana transitive model ontaining all the ordinals whih satis�es AC, isontained in a set-generi extension of V and has the same ardinalsas L. The notions of P(�)-preserving and real-preserving extensions ofL are de�ned analogously.(ii) A subset X of L is �CP1 if and only if X an be written in the form:a 2 X i� '(a) holds in a ardinal-preserving extension of Lfor some �1-formula ' with onstrutible parameters.De�nition 2.2 ([2℄) Suppose that hX0;X1i and hY0; Y1i are pairs of disjointsubsets of L. Then we writehX0;X1i �!L hY0; Y1iif and only if there is a funtion f 2 L suh thata 2 X0 ! f(a) 2 Y0;a 2 X1 ! f(a) 2 Y1:If X1 is the omplement of X0 within some onstrutible set, we write X0instead of hX0;X1i, and similarly for hY0; Y1i.By S�� we denote the set of all ordinals � < � suh that f(�) = �.De�nition 2.3 Let � be an in�nite ardinal in L and let (�+ = �)L.(i) Let T (�) denote the set of trees t 2 L on � of height �.(ii) Let TCP (�) denote the set of trees t 2 T (�) suh that in a ardinal-preserving extension of L there is a �-branh in t.2



(iii) Let T �CP (�) denote the olletion of trees t 2 TCP (�) suh that t is �1-de�nable over L� from the parameter � and in a ardinal-preservingextension of L, t has a �-branh,(iv) Let T �P (�) denote the olletion of trees t 2 TCP (�) suh that t is �1-de�nable over L� from the parameter � and there is a ardinal- andP(�)-preserving extension of L in whih t has a �-branh,(v) Let S(�) denote the olletion of sets S 2 L suh that S � (S�!)Lis stationary in L and in a ardinal-preserving extension of L, �nSontains a ub.(vi) Let Sr(�) denote the olletion of sets S 2 L suh that S � (S�!)L isstationary in L and in a ardinal- and real-preserving extension of L,�nS ontains a ub.Theorem 2.4 ([2℄) (i) If X is �CP1 , then X is onstrutible from 0#.(ii) Suppose � is an in�nite ardinal in L and (�+ = �)L.(a) The set TCP (�) is equionstrutible with 0#.(b) 0# �!L hT �P (�);T (�)nT �CP (�)i.() If � is regular in L and > !, then 0# �!L S(�).(d) If � is regular in L and > !, then 0# �!L Sr(�).The rest of the setion is from [4℄. Let � be a ardinal. By t�� we denotethe tree whose universe <�� is ordered by end-extension. For the exatde�nitions of the tree operations supremum (�), sum (+), and produt (�)we refer to [4, Setion 2℄. A (�; �)-tree is a tree with the following properties:Every node of the tree has < � immediate suessors and the tree does notontain branhes of length �.De�nition 2.5 A lexially ordered (�; �)-tree t is a tuplet = (U;<;<1; <2)whih satis�es the following onditions:(i) The pair hU;<i is a (�; �)-tree.(ii) For all x 2 U , <1 �su(x) is a linear order.(iii) If x <1 y, then x; y 2 su(z) for some z 2 U .(iv) For all x; y 2 U it holds that x <2 y if and only if x < y or x <1 ywhere  is the least ordinal with x� 6= y�, and x (y) is the nodeon level  whih is below x (y).3



Let M be a model of ZFC. Suppose that � is a regular unountable ardinaland t is a (�+; � + 1)-tree in M . In [4, proof of Theorem 3.4℄ two unaryoperations on trees are de�ned. We now shortly desribe the operationswithout giving the exat de�nitions. The �rst operation, (t), gives a lexi-ally ordered tree whih is obtained by starting from the tree t and adding� opies of t on every node of t. This adding of the tree t is done ! timesand on round n+1 the tree t is added only on those nodes that were addedto the resulting tree on round n, i.e., on the previous round. The nodesadded to the tree on round n are alled phase n nodes and the phase of anode x 2 (t) is denoted by p(x). We do not need the exat de�nition of therelation <1 only that if N is a model of ZFC extending M and having thesame ardinals as M , then in N there is no x 2 t suh that the suessors ofx has an asending <1-sequene of length �.The other tree, m(t), is obtained by multiplying every node on suessorlevel in t by �.The lexially ordered trees and linear orders in the next de�nition are fromthe proofs of Theorem 3.4 and Corollary 3.6 in [4℄. These are the basiingredients used in building very equivalent but non-isomorphi models forunstable theories.De�nition 2.6 Let � be an unountable regular ardinal, u a (�+; �)-tree,and t� = (t��);t�(u) = �m�(M�<��) � u+ 1��;u�(u) = (Mn<! n) � u;�� = Q � (univ(t�); <2);��(u) = Q � �univ(t�(u�(u))); <2 �:The Ehrenfeuht-Mostowski model related to a model I, whih is alledthe index model (often it is a linear order but not always), is denoted byEM(I;	) where 	 is the template. The set of sequenes from EM(I;	)indexed by I is alled the skeleton. For the exat de�nitions see, e.g., [7℄ or[4, Setion 8℄.3 The resultsFor the sake of simpliity, we study only ountable theories.4



Lemma 3.1 Let M � N be models of ZFC with the same ardinals, � anin�nite ardinal in M , and (�+ = �)M . Suppose that (�<� = �)M and u isa (�+; �)-tree in M .(i) In N there is a �-branh in u�(u) if and only if there is a �-branhin u.(ii) If in N there is a �-branh in t�(u), then there is also a �-branh in u.(iii) If in N there is an asending <2-sequene of length � in t�(u), thenthere is a �-branh in t�(u).(iv) If in N there is a �-branh in u, then t� �= t�(u).(v) If in N there is an asending �-sequene in ��(u), then there is anasending <2-sequene of length � in t�(u).(vi) Let T be an unstable ountable theory and the template 	 as in [7℄. If(P(�))M = (P(�))N and in N it holds thatEM(��;	) �= EM(��(u);	);then in N there is an asending �-sequene in ��(u).Proof. (i) Follows from the de�nition of u�(u).(ii) Suppose b 2 N is a �-branh in t�(u). Let t = (L�<� �) � u + 1 andt0 = m(t). For n 2 !, let xn 2 b be the least node with p(xn) = n if there issuh a node, and otherwise let xn be the root of t�(u). Now, if the branhb ontains a node from every phase, the mapping n 7! ht(xn) is unboundedin �. Clearly this ontradits the assumption (�+ = �)N . Hene there isr 2 b and n < ! suh that for eah x 2 b, if x > r then p(x) = n. Letbx = fy 2 b j y > xg. Sine t is a �projetion� of t0, bx determines a �-branhin t. Thus there is a �-branh b0 in (L�<� �) �u. Sine � is a regular ardinalin N , there is a �-branh in u.(iii) This follows from the fat that in N there is no node x 2 t�(u) suhthat the suessors of x ontains an asending <1-sequene of length � and[4, Lemma 3.1(iii)℄.(iv) By Theorem 3.4 in [4℄, there is, in M , a winning strategy w for player9 in EF2u(t�; t�(u)). Without loss of generality we may assume that t� andt�(u) are disjoint. Sine in M it holds that �<� = �, there is a bijetionf 2M from � to t� [ t�(u). Work in N . Let b = hbi j i < �i be a �-branhin u. Sine every initial segment ofhhf(i); bii j i < �i5



is in M , the play

hf(i); bii j i < ��; 
w(hf(0); b0i; : : : ; hf(i); bii) j i < ���determines an isomorphism between t� and t�(u).(v) Follows from the de�nition of ��(u).(vi) Let � = �� and �0 = ��(u). First we note that (EM(�;	))M =(EM(�;	))N . If follows from (P(�))M = (P(�))N and (�+ = �)N that(P�(�))M = (P�(�))N . Sine EM(�;	) �= EM(�0;	) in N , some of theassumptions used in the proof of Theorem 4.9 in [4℄, whih shows thatthe Ehrenfeuht-Mostowski models are non-isomorphi, must not hold inN . Sine in N there are no new subsets of � of ardinality < �, the onlyassumption that an fail is the following assumed in Lemma 5.3 in [4℄: �0does not ontain asending �-sequenes. Hene in N there is an asending�-sequene in �0 = ��(u). (3.1)�Theorem 3.2 Suppose � is an in�nite ardinal in L and (�+ = �)L. Thenthe following �CP1 sets are equionstrutible with 0#.(i) The olletion of trees t0 2 L on � suh that there is a ardinal-preserving extension of L in whih t� �= t0. This olletion of treesis denoted by Ct� .(ii) The olletion of pairs of (�+; �)-trees on � ht; t0i 2 L suh that in aardinal-preserving extension of L it holds that t �= t0. This olletionis denoted by Cisom.(iii) The olletion of pairs of models hA;Bi 2 L suh that univ(A) =univ(B) = �, the similarity type of A and B is a subset of � , and ina ardinal-preserving extension of L there is an elementary embeddingfrom A toB or from B to A where � is a similarity type, whih ontainsat least two onstant symbols and one binary relation symbol. Thisolletion of pairs of models is denoted by Celem.(iv) If in (iii), elementary embedding is replaed by embedding, the laimstill holds.Proof. By Theorem 2.4(i) it su�es to show that there is a redution of0# to eah of the sets.(i) Work in L. Let the funtion f with domain ! be de�ned byf(n) = tnwhere tn is as in [2, proof of Theorem 3(a)℄ for n 2 !. So, we have n 2 0# $tn 2 TCP (�). De�ne a mapping g bytn 7! t�(tn):6



The mapping g Æ f demonstrates that 0# �!L Ct� . To see this, suppose�rst that tn 2 TCP (�). Let N be a ardinal-preserving extension of L inwhih tn has a �-branh. By 3.1(iv), t� �= t�(tn) = g(tn). Suppose then thattn 2 T (�)nTCP (�). For a ontradition assume that in a ardinal-preservingextension N of L it holds that t� �= t�(tn). Then, in N , there is a �-branhin t�(tn). So, by 3.1(ii), there is a �-branh in tn ontraditing tn =2 TCP (�).Hene g(tn) =2 Ct� .(ii) Work in L. Let the funtion f be as in the previous ase. De�ne amapping g by tn 7! ht�; t�(tn)iThe fat that g Æ f redues 0# to Cisom an be seen as in the previous ase.(iii) Let t and t0 be (�+; � + 1)-trees. Without loss of generality, we mayassume that t and t0 are disjoint. Choose distint objets x and y not in t[t0.Let M(t; t0) be the struture (U;<; ; d) satisfying the following onditions:(1.1) U = t [ t0 [ fx; yg.(1.2) ()M(t;t0) = x and (d)M(t;t0) = y.(1.3) For all a; b 2 U , a < b if and only ifa = x ^ b 2 t _ a = y ^ b 2 t0 _a; b 2 t ^ a <t b _ a; b 2 t0 ^ a <t0 b:Work in L. Let the funtion f be as in previous ases. De�ne a mapping gby tn 7! hM(t�; t�(tn));M(t�(tn); t�)i:We show that g Æ f redues 0# to Celem. First assume that tn 2 TCP (�). LetN be a ardinal-preserving extension of L whih witnesses this. By 3.1(iv),t� �= t�(tn) in N . It follows thatM(t�; t�(tn)) �=M(t�(tn); t�):Hene g(tn) 2 Celem.Suppose then that tn 2 T (�)nTCP (�). For a ontradition assume that N isa ardinal-preserving extension of L suh thatM(t�; t�(tn)) �M(t�(tn); t�):Hene there is a �-branh in t�(tn). By (ii) of Lemma 3.1, there is a �-branhin tn whene tn =2 T (�)nTCP (�). Hene g(tn) =2 Celem.(iv) As above. (3.2)�7



Theorem 3.3 Suppose � is an in�nite L-ardinal, (�+ = �)L, T 2 L is aomplete unstable theory with (jT j = !)L, the template 	 is as in [7, Lemma1.2℄, and A = EM(��;	).(i) Let CA� be the olletion of models B 2 L of T with universe � suhthat there is a ardinal- and P(�)-preserving extension of L in whihA �= B. Then 0# �!L CA� .(ii) Let CA;ee� be the olletion of models B 2 L of T with universe � suhthat in a ardinal- and P(�)-preserving extension of L there is an ele-mentary embedding from A to B. Then 0# �!L CA;ee� .Proof. (i) Let f : ! ! T (�) be the funtion given by (ii-b) in Theo-rem 2.4, i.e., f redues 0# to (T �P (�);T (�)nT �CP (�)). Let t�n = f(n). De�nea mapping g by t�n 7! EM(��(t�n);	):Then g Æ f redues 0# to CA� . To see this assume �rst t�n 2 T �P (�). Let N bea ardinal- and P(�)-preserving extension of L in whih t�n has a �-branh.By 3.1(iv), g(tn) 2 CA� .Suppose then that t�n 2 T (�)nT �CP (�). Towards a ontradition assume thatin a ardinal- and P(�)-preserving extension N of L it holds that A �= g(tn).Then, by (vi), (v), (iii), and (ii) of Lemma 3.1, t�n has a �-branh. But thent�n =2 T (�)nT �CP (�) and hene we have proved that 0# �!L CA� .(ii) The proof is based on the fat that by the proof of Theorem 4.9 in [4℄there is no elementary embedding from EM(��;	) = A to EM(��(t�n);	).Otherwise the proof goes exatly as in the previous ase. �As in the proof of Theorem 3.3, one an ombine known model onstrutionswith results from [2℄. Below we give two more results but only sketh theproofs.Theorem 3.4 Suppose � is a regular L-ardinal > !, (�+ = �)L, T 2 L isa omplete unsuperstable theory with (jT j = !)L. Let DT� be the olletion ofpairs (A;B) 2 L of models of T with universe � suh that there is a ardinal-preserving extension of L in whih A �= B. Then DT� is equionstrutible with0#.Proof. By (i) and (ii-) in Theorem 2.4, it is enough to show the following:For all stationary S � S�! there are models A;B 2 L of T of power � suhthat in any ardinal-preserving extension of L,A �= B i� �nS ontains a ub set.8



Let the trees J0 2 K!tr and J1 2 K!tr be as in [3, Lemma 7.29℄ and A =EM(J0;	) and B = EM(J1;	), see [3, Setion 7℄ and notie that this modelonstrution is originally due to S. Shelah.If in a ardinal-preserving extension of L, �nS ontains a ub set, then inthe extension A �= B holds by the proofs of [3, Lemmas 7.31 and 7.15℄(notie that when the isomorphism is onstruted along the ub, the partialisomorphisms may not be in L but this is not a problem).On the other hand, if �nS does not ontain a ub set in a ardinal preserv-ing extension of L, then the S-invariants of J0 and J1 are di�erent in theextension, see [8℄ or [4, Lemmas 8.14 and 8.20℄. Sine the trees J0 and J1are of power �, it is easy to see that the properties (< �;bs)-stable and lo-ally (�;bs;bs)-nie are preserved in ardinal-preserving extensions of L (aswell as the truth of �rst-order formulas and �being an Ehrenfeuht-Fraïssémodel�). So A 6�= B by [8℄ (or [4, Theorem 8.13℄). (3.4)�Theorem 3.5 Suppose � is a regular L-ardinal > !, (�+ = �)L, T 2 L is aomplete theory with (jT j = !)L. Let P T� be the olletion of pairs (A;B) 2L of models of T with universe � suh that there is a ardinal- and real-preserving extension of L in whih A �= B. Then the following are equivalent:(i) P T� is onstrutible,(ii) T is lassi�able (i.e. superstable with NDOP and NOTOP).Proof. If T is lassi�able, then any two models of T are isomorphi in aardinal- and real-preserving extension of L if and only if they are isomorphiin L, see [1℄. Hene P T� is onstrutible.For the other diretion, assume that T is not lassi�able. By (i) and (ii-d) in Theorem 2.4, it is enough to show the following: For all stationaryS � S�! there are models A;B of T of power � suh that in any ardinal-and real-preserving extension of L it holds thatA �= B i� �nS ontains a ub set.If T is unsuperstable, this an be seen exatly as in the proof of Theorem 3.4.If T is superstable with OTOP or DOP, then we use the following obser-vation: Firstly, we have Ehrenfeuht-Fraïssé models over linearly orderedskeletons with the linear order de�nable by a formula whih is absolute forardinal- and real-preserving extensions of L. (In fat, in the OTOP asethe formula is absolute for all extensions and in the DOP ase, for modeltheoreti reasons, the formula is absolute in the models of T for ardinal-preserving extensions.) Seondly, the trees in K!tr an be oded into linearorders so that the bs-type of a sequene of elements of the tree determines9



the bs-type of the orresponding sequene in the linear order and the treeorder an be de�ned by a quanti�er free formula in the linear order. Henethe proof an be ompleted analogously to the proof of Theorem 3.4. (3.5)�Notie that by the proof of Theorem 3.5, Theorem 3.4 holds also for ountablesuperstable theories with OTOP or DOP.The model onstrution in the proof of the following theorem is a modi�a-tion of a onstrution in [9℄.Theorem 3.6 Suppose � is a regular L-ardinal � ! and (�+ = �)L. LetA� be the set of all models A 2 L with universe � suh that there is a ardinal-preserving extension of L in whih A has a non-trivial automorphism. ThenA� is equionstrutible with 0#.Proof. For every tree t on � of height and ardinality �, a model At isde�ned as follows. First some some preliminary de�nitions are given.For every � < �, let t� denote the set of all elements of t of height �, andlet G� be the set of all �nite subsets of t�. Make G� to an Abelian groupby letting a + b = a4b (the symmetri di�erene). For all � < � < � and� 2 t�, let ���(�) denote the unique element � 2 t� with � < �.For all � < � < �, de�ne funtion F�� : G� ! G� so that F��(a) =��2af���(�)g. Note that F�� is a homomorphism and that for  < � < � <�, F� = F� Æ F�� .For all � < �, let G� denote the set of all funtions g on � suh that for all� < �, g(�) 2 G� and for all  < � < �, g() = F�(g(�)), and we makeG� to an Abelian group by de�ning + oordinate-wise.Now we are ready to de�ne At. Let the universe of At be S�<�G�, andequip At with the following relations and funtions: For every g 2 S�<�G�de�ne the relation Sg bySg(g0; g1) i� 9� < �(g; g0; g1 2 G� ^ g0 = g1 + g)and for every � < � de�ne the funtion F� byg0 7! g0��:(So if g0 2 G� and � < �, F�(g0) = g0.) There are in�nitely many relationsand funtions but, if wanted, the relations and funtions an be oded sothat the similarity type beomes �nite.By (i) and (ii-a) of Theorem 2.4 it su�es to show that for all trees t on �,if t has height �, then At 2 Ak i� t 2 TCP (�):10



Assume �rst that t 2 TCP (�). Fix a ardinal-preserving extension of L inwhih there exists a �-branh b in t. Let g : �! S�<�G� be suh that forall � < �, g(�) = b \ t�. De�ne funtion fg : At ! At so that if g0 2 G�,then fg(g0) = g0+g��. It is easy to see that fg is a non-trivial automorphismof At.Assume then that At 2 A�. Fix a ardinal-preserving extension of L inwhih there is a non-trivial automorphism f of At. Let the funtion s :� ! S�<�G� be suh that for all � < �, s(�) = ;, and let the funtiong : � ! S�<�G� be suh that for all � < �, g�� = f(s��). If g = s, thenit is easy to see that f is the trivial automorphism. So g 6= s and sine �is still a suessor ardinal in the extension, there are non-zero n < ! and� < � suh that for all � < � < �, jg(�)j = n. With this it is easy to �nd a�-branh from t (in fat, n many of them). (3.6)�Question 3.7 (i) Does Theorem 3.3 need preservation of subsets of �?Does Theorem 3.5 need real-preservation?(ii) Are there other dividing lines within �rst-order theories whih an beharaterized along the lines of Theorem 3.5?Referenes[1℄ J. T. Baldwin, M. C. Laskowski, and S. Shelah. Foring isomorphism. J.Symboli Logi, 58(4):1291�1301, 1993.[2℄ Sy D. Friedman. Cardinal-preserving extensions. Preprint.[3℄ Taneli Huuskonen, Tapani Hyttinen, and Mika Rautila. On potentialisomorphism and non-struture. Preprint.[4℄ Tapani Hyttinen and Heikki Tuuri. Construting strongly equivalentnonisomorphi models for unstable theories. Ann. Pure Appl. Logi,52(3):203�248, 1991.[5℄ M. C. Laskowski and S. Shelah. Foring isomorphism. II. J. SymboliLogi, 61(4):1305�1320, 1996.[6℄ Mark Nadel and Jonathan Stavi. L1�-equivalene, isomorphism andpotential isomorphism. Trans. Amer. Math. So., 236:51�74, 1978.[7℄ Saharon Shelah. The number of non-isomorphi models of an unstable�rst-order theory. Israel Journal of Mathematis, 9:473�487, 1971.[8℄ Saharon Shelah. Existene of many L1;�-equivalent, nonisomorphi mod-els of T of power �. Ann. Pure Appl. Logi, 34(3):291�310, 1987. Stabilityin model theory (Trento, 1984). 11
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