THIN STATIONARY SETS AND DISJOINT CLUB SEQUENCES

SY-DAVID FRIEDMAN AND JOHN KRUEGER

ABSTRACT. We describe two opposing combinatorial properties related to adding
clubs to wa: the existence of a thin stationary subset of P, (w2) and the exis-
tence of a disjoint club sequence on w2. A special Aronszajn tree on ws implies
there exists a thin stationary set. If there exists a disjoint club sequence, then
there is no thin stationary set, and moreover there is a fat stationary subset of
w2 which cannot acquire a club subset by any forcing poset which preserves wq
and ws. We prove that the existence of a disjoint club sequence follows from
Martin’s Maximum and is equiconsistent with a Mahlo cardinal.

Suppose that S is a fat stationary subset of wo, that is, for every club set C' C
wo, SN C contains a closed subset with order type w; + 1. A number of forcing
posets have been defined which add a club subset to S and preserve cardinals
under various assumptions. Abraham and Shelah [1] proved that, assuming CH,
the poset consisting of closed bounded subsets of S ordered by end-extension adds
a club subset to S and is wy-distributive. S. Friedman [5] discovered a different
poset for adding a club subset to a fat set S C wo with finite conditions L This
finite club poset preserves all cardinals provided that there exists a thin stationary
subset of P, (w2), that is, a stationary set T' C P,,, (w2) such that for all 8 < wa,
{ang:a € T}| < wp. This notion of stationarity appears in [9] and was discovered
independently by Friedman. The question remained whether it is always possible to
add a club subset to a given fat set and preserve cardinals, without any assumptions.

J. Krueger introduced a combinatorial principle on ws which asserts the existence
of a disjoint club sequence, which is a pairwise disjoint sequence (C,, : a € A) indexed
by a stationary subset of wy N cof(wy), where each C, is club in P, («). Krueger
proved that the existence of such a sequence implies there is a fat stationary set
S C ws which cannot acquire a club subset by any forcing poset which preserves
wy and ws.

We prove that a special Aronszajn tree on ws implies there exists a thin stationary
subset of P, (w2). On the other hand assuming Martin’s Maximum there exists
a disjoint club sequence on ws. Moreover, we have the following equiconsistency
result.

Theorem 0.1. Each of the following statements is equiconsistent with a Mahlo
cardinal: (1) There does not exist a thin stationary subset of P, (w2). (2) There
exists a disjoint club sequence on wa. (8) There exists a fat stationary set S C wo

such that any forcing poset which preserves w1 and wo does mot add a club subset
to S.

Date: June 2005.

2000 Mathematics Subject Classification. 03E35; 03E40.

Both authors were supported by FWF project number P16790-N04.
LA similar poset was defined independently by Mitchell [7]

1



2 SY-DAVID FRIEDMAN AND JOHN KRUEGER

Our proof of this theorem gives a totally different construction of the following
result of Mitchell [8]: If x is Mahlo in L, then there is a generic extension of L in
which Kk = ws and there is no special Aronszajn tree on ws. The consistency of
Theorem 0.1(3) provides a negative solution to the following problem of Abraham
and Shelah [1]: if S C wsy is fat, does there exist an wi-distributive forcing poset
which adds a club subset to S?

Section 1 outlines notation and background material. In Section 2 we discuss
thin stationarity and prove that a special Aronszajn tree implies the existence of
a thin stationary set. In Section 3 we introduce disjoint club sequences and prove
that the existence of such a sequence implies there is a fat stationary set in wq
which cannot acquire a club subset by any forcing poset which preserves w; and
wy. In Section 4 we prove that Martin’s Maximum implies there exists a disjoint
club sequence. In Section 5 we construct a model in which there is a disjoint club
sequence using an RCS iteration up to a Mahlo cardinal.

Sections 3 and 4 are due for the most part to J. Krueger. We would like to
thank Boban Velickovi¢ and Mirna Dzamonja for pointing out Theorem 2.3 to the
authors.

1. PRELIMINARIES

For a set X which contains wy, P, (X) denotes the collection of countable subsets
of X. Aset C C P, (X)is club if it is closed under unions of countable increasing
sequences and is cofinal. A set S C P, (X) is stationary if it meets every club. If
C C P,,(X) is club then there exists a function ' : X <“ — X such that every a in
P,,(X) closed under Fisin C. If F: X<¥ — P,, (X) is a function and Y C X, we
say that Y is closed under F if for all 4 from Y<¥ F(¥) CY. A partial function
H: P,,(X) — X is regressive if for all a in the domain of H, H(a) is a member of
a. Fodor’s Lemma asserts that whenever S C P, (X) is stationary and H : S — X
is a total regressive function, there is a stationary set S* C .S and a set « in X such
that for all a in S*, H(a) = =.

If k is a regular cardinal let cof(k) (respectively cof(< x)) denote the class of
ordinals with cofinality x (respectively cofinality less than k). If A is a cofinal
subset of a cardinal A and x < A, we write for example A U cof(k) to abbreviate
AU (AN cof(k)).

A stationary set S C k is fat if for every club C' C k, SN C contains closed
subsets with arbitrarily large order types less than . If k is the successor of a
regular uncountable cardinal p, this is equivalent to the statement that for every
club C C k, SN C contains a closed subset with order type p+ 1. In particular, if
A C kT Ncof(p) is stationary then A U cof(< u) is fat.

We write 0 >  to indicate 0 is larger than 22",

A tree 7 is a special Aronszajn tree on ws if:

(1) 7 has height wy and each level has size less than ws,

(2) each node in 7 is an injective function f : & — wy for some a < wo,

(3) the ordering on 7 is by extension of functions, and if f is in 7 then f [ § is
in 7 for all 8 < dom(f).

By [8] if there does not exist a special Aronszajn tree on ws, then ws is a Mahlo
cardinal in L.

If V is a transitive model of ZFC, we say that W is an outer model of V if W is
a transitive model of ZFC such that V' C W and W has the same ordinals as V.
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A forcing poset P is k-distributive if forcing with P does not add any new sets of
ordinals with size .

If P is a forcing poset, @ is a P-name, and G is a generic filter for P, we write a
for the set a“.

Martin’s Maximum is the statement that whenever P is a forcing poset which
preserves stationary subsets of wy, then for any collection D of dense subsets of P
with |D| < wy, there is a filter G C P which intersects each dense set in D.

A forcing poset PP is proper if for all sufficiently large regular cardinals 8 > 2/FI,
there is a club of countable elementary substructures IV of (H (6), €) such that for all
pin NNP, there is ¢ < p which is generic for N, i.e. q forces N[G]NOn = NNOn.
If P is proper then P preserves w; and preserves stationary subsets of P, (\) for
all A\ > wy. A forcing poset P is semiproper if the same statement holds as above
except the requirement that g is generic is replaced by ¢ being semigeneric, i.e. g
forces N [G] Nwi = N Nuw;. If P is semigeneric then P preserves w; and preserves
stationary subsets of w;.

If P is wy-c.c. and N is a countable elementary substructure of H(6), then P
forces N[G] N On = N N On; so every condition in P is generic for N.

We let <“Omn denote the class of finite strictly increasing sequences of ordinals.
If n and v are in <“Omn, write n < v if 5 is an initial segment of v, and write n < v
if n<Qv and n # v. Let I(n) denote the length of . A set T'C <“On is a tree if for
allpin T and k < I(n), n | kisin T. A cofinal branch of T is a function b : w — Kk
such that for all n < w, b [ nisin T.

Suppose I is an ideal on a set X. Then IT is the collection of subsets of X
which are not in I. If S'is in I let I | S denote the ideal I NP(S). For example if
I = NS,, the ideal of non-stationary subsets of x, a set S is in [T iff S is stationary.
In this case NS, | S is the ideal of non-stationary subsets of S and (NS, | S)7 is
the collection of stationary subsets of S.

If k is regular and A > & is a cardinal, then COLL(x, A) is a forcing poset for
collapsing A to have cardinality x: conditions are partial functions p : kK — A with
size less than k, ordered by extension of functions.

2. THIN STATIONARY SETS

Let T be a cofinal subset of P, (w2). We say that T is thin if for all § < ws
the set {a N B : a € T} has size less than wo. Note that if CH holds then P, (w2)
itself is thin. A set S C P, (w2) is closed under initial segments if for all a in S
and 0 < wg,aNPisin S.

Lemma 2.1. If S C P, (w2) is stationary and closed under initial segments, then
for all uncountable § < wa, the set SN P, (B) is stationary in P, (0).

Proof. Consider f < wy and let C' C B, (8) be a club set. Then the set D = {a €
P, (w2) :anp e C}is a club subset of P, (w2). Fix a in SN D. Since S is closed
under initial segments, a N G is in SN C. (I

Lemma 2.2. If there exists a thin stationary subset of P, (w2), then there is a
thin stationary set S such that for all uncountable 8 < wa, SN P, (B) is stationary

in P, (0).

Proof. Let T be a thin stationary set. Define S ={anNp:a €T, <ws}. Then S
is thin stationary and closed under initial segments. (I
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A set S C P, (w2) is a local club if there is a club set C' C wy such that for all
uncountable « in C', SN P, (o) contains a club in P,, («) (see [3]). Note that local
clubs are stationary.

Theorem 2.3. If there is a special Aronszajn tree on ws, then there is a thin local
club subset of P, (w2).

Proof. Let T be a special Aronszajn tree on we. For each f in 7 with dom(f) > wy,
define Sy = {f7'“ : i < w1}. Note that Sy is a club subset of P,, (domf). For
each uncountable 8 < wq define Sg = | J{Sy : f € T,dom(f) = B}. Then Sz has
size wi. Now define S = [J{S3 : w1 < 8 < wa}. Clearly S is a local club. To show
S is thin, it suffices to prove that whenever 3 < 7 are uncountable and « is in S,
then an B isin Sg. Fix fin 7 and i < w; such that a = f~1%. Then f | B is in
T,s0 (f 1 B)~ ¥ is in Sg. But (f | B)%i = (f1%)N g =anp. 0

In later sections of the paper we will construct models in which there does not
exist a thin stationary subset of P,,, (w3). Theorem 2.3 shows that in such a model
there cannot exist a special Aronszajn tree on ws, so by [8] we is Mahlo in L.
Mitchell [8] constructed a model in which there is no special Aronszajn tree on wy by
collapsing a Mahlo cardinal in L to become w9 with a proper forcing poset. However,
in Mitchell’s model the set (P,, (x))” is a thin stationary subset of P, (w2).

Lemma 2.4. Suppose S C P, (w2) is a local club. Then S is a local club in any
outer model W with the same wy and wo.

Proof. Let C be a club subset of ws such that for every uncountable a in C, SN
P, (o) contains a club in P,, (o). Then C' remains club in W. For each uncountable
a in C, fix a bijection g, : w1 — a. Then {g,“i : i < w1} is a club subset of P, ().
By intersecting this club with S, we get a club subset of SN P, («) of the form
{a$ : i < w1} which is increasing and continuous. Clearly this set remains a club
subset of P,, (a) in W. O

Proposition 2.5. (1) Suppose there exists a thin local club in P, (w2). Then there
exists a thin local club in any outer model with the same wy and wa. (2) Suppose k
is a cardinal such that for oll p < Kk, p* < K, and assume P is a proper forcing poset
which collapses Kk to become wy. Then P forces there is a thin stationary subset of
Pu.)l (WQ) .

Proof. (1) is immediate from Lemma 2.4 and the absoluteness of thinness. (2) Let
G be generic for P over V and work in V[G]. Since P is proper, w; is preserved and
the set S = (P, (k))Y is stationary in P, (wa). We claim that S is thin. If 8 < wy
then {aNB:a € S} = (P,,(3))". By the assumption on &, there is £ < k and a
bijection f : & — (P,,(8))V in V. In V[G] there is a surjection of w; onto & and
hence a surjection of wy onto {aN G :a € S}. O

As we mentioned above, if CH holds then the set B, (w2) itself is thin. We show
on the other hand that if CH fails then no club subset of P, (wz) is thin. The proof
is actually due to Baumgartner and Taylor [2] who proved that for any club set
C C P,,(w2), there is a countable set A C wy such that C' N P(A) has size at least
2¢. Their method of proof, which is described in the next lemma, is key to several
of our results later in the paper.
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Lemma 2.6. Suppose Z is a stationary subset of wy Ncof(w) and for each o in Z,
M, is a countable cofinal subset of a. Then there is a sequence (Zs,&s : s € <¥2)
satisfying:

(1) each Zs is a stationary subset of Z,

(2) if s <t then Zy C Z,

(3) if s in Zs then & is in M,

(4) if a is in Zs~¢ and B is in Zs~1, then &s~¢ is not in Mg and £s~1 is not in
M,.

Proof. Let Z(y = Z and &y is undefined. Suppose Z; is given. Define X as the
set of € in wy such that the set {o € Z; : £ € M, } is stationary. A straightforward
argument using Fodor’s Lemma shows that X, is unbounded in wy. For each « in
Z¢ such that X3 N« has size w1, there exists £ < a in X such that £ is not in M,.
By Fodor’s Lemma there is a stationary set Z;Al C Zs and &5~ in X such that
for all v in Z.~,, £5~¢ is not in M,. Let Z/~ denote the set of a in Z such that
&s~0 is in M, which is stationary since £,~g is in Xs. Now define Y; as the set
of £ in wy such that {a € Z/~, : £ € M,} is stationary. Then Y is unbounded in
ws. So for each o in Z’ - such that Yy N« has size wi, there is { < a in Y, which
is not in M,. By Fodor’s Lemma there is {s~1 in Y and Z;~¢ C Z!~ stationary
such that for all o in Zs~q, £s~1 is not in M,. Now define Z,~1 as the set of « in
Z!~, such that &~ is in M,,. O

Theorem 2.7. Assume CH fails. Then for any club set C C B, (w2), C is not
thin.

Proof. Let F : ws“ — ws be a function such that any a in P,,, (w2) closed under F
is in C. Let Z be the stationary set of a in wy N cof(w) closed under F'. For each
a in Z fix a countable set M, C « such that sup(M,) = o and M, is closed under
F. Fix a sequence (Z4,&, : s € <“2} as described in Lemma 2.6.

For each function f : w — 2 define by = clp({&fjn : » < w}). Then by isin C.
Note that if n < w and « is in Zy},, then clp({&fm : m < n}) € M,. For by
Lemma 2.6(2), for m <n, Zsjp C Zfm. So a is in Zyyy,, and hence &5y, is in M,
by (3). But M, is closed under F.

Let v = sup({&s+1: s € <“2}). Since <2 has size w, 7 is less than wy. We claim
that for distinct f and g, by N~y # by Ny. Let n < w be least such that f(n) # g(n).
If by Ny = by N+, then there is k > n such that {;,11) is in clp({Efpm : m < k}).
Fix o in Zy. By the last paragraph, §;(n41) is in M,. But « is in Zgj,41) by
(2), which contradicts (4). O

Let x be an uncountable cardinal. The Weak Reflection Principle at k is the
statement that whenever S is a stationary subset of P, (k), there is a set Y in
P, (k) such that w; CY and SN P,, (Y) is stationary in P,, (Y). Martin’s Maxi-
mum implies the Weak Reflection Principle holds for all uncountable cardinals x [4].
The Weak Reflection Principle at ws is equivalent to the statement that for every
stationary set S C P, (w2), there is a stationary set of uncountable 8 < wq such
that S N P, (B) is stationary in P,, (). This is equivalent to the statement that
every local club subset of P,, (w2) contains a club. The Weak Reflection Principle
at we is equiconsistent with a weakly compact cardinal [3].

Corollary 2.8. Suppose CH fails and there is a special Aronszajn tree on wo. Then
the Weak Reflection Principle at wo fails.
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Proof. By Theorems 2.3 and 2.7, there is a thin local club subset of P, (w2) which
is not club. Hence the Weak Reflection Principle at wq fails. (]

In Sections 4 and 5 we describe models in which there is no thin stationary
subset of P, (wz2). On the other hand S. Friedman proved there always exists a
thin cofinal set.

Theorem 2.9 (Friedman). There exists a thin cofinal subset of P, (w2).

Proof. We construct by induction a sequence (S, : w1 < a < ws) satisfying the
properties: (1) each Sy, is a cofinal subset of B,,, (o) with size wy, (2) for uncountable
B<~,ifaisin Sy then aNFisin J{Sa w1 <a <G} and (3)if B < v < wa, ais
in P,, (), and aNf isin Sg, then there is b in S, such that a C band aNB = bNS.

Let S,, = wy. Given Sy, let S,41 be the collection {dU{a} : b € S, }. Conditions
(1), (2), and (3) follow by induction. Suppose vy < ws is an uncountable limit ordinal
and S, is defined for all uncountable o < 7. If cf(y) = wy then let S, = [J{S, :
w1 < a < v}. The required conditions follow by induction.

Assume cf(y) = w. Fix an increasing sequence of uncountable ordinals (v, : n <
w) unbounded in v. Let T, be some cofinal subset of P,, () with size wi. Fix
n < w. For each z in T, and a in S,, define a set b(a,z,n) in P, () inductively
as follows. Let b(a,z,n) Ny, = a. Given b(a,z,n) N7y, in S, = for some m > n,
apply condition (3) to vV, Ym+1, and the set

(b(aa wvn) N Ym) U ((‘T N [’7m57m+1))

to find y in S, such that y N vy, = bla,z,n) N vy and = O [V, Ym+1) S ¥
Let b(a,xz,n) N ymt1 = y. This completes the definition of b(a,z,n). Clearly
bla,z,n) Ny, =a, z\ yn C b(a,z,n), and for all k > n, b(a,z,n) Ny isin S, .

Now define S, = {b(a,z,n) : n < w,a € S,,,x € T,}. We verify conditions
(1), (2), and (3). Clearly S, has size wi. Let § < v and consider b(a,z,n) in
S,. Fix k > n such that § < 7. Then b(a,z,n) Ny is in S,,. So by induction
bla,z,n) N G is in J{Sa : w1 < o < B}. Now assume a is in P, (7), 8 < 7, and
an Bis in Sg. Choose z in T, such that a C z. Fix k such that § < 73. By the
induction hypothesis there is a’ in S,, such that anN~y, C ¢’ and o’ NG =a N g.
Let ¢ =b(a’,z,k). Then cisin Sy, cNf = (cNy)Nf=aNB=anp, and a C c.

To prove S, is cofinal consider a in P,, (y). Fix « in T}, such that a C z. By
induction S, is cofinal in P,, (7). So let y be in S, such that £ N~y C y. Then
a is a subset of b(y, z,0).

Now define S = [J{S3 : w1 < 8 < we}. Conditions (1) and (2) imply that S is
thin and cofinal in P, (w2). O

3. Di1sjoINT CLUB SEQUENCES

We introduce a combinatorial property of ws which implies there does not exist
a thin stationary subset of P,,, (w2). This property follows from Martin’s Maximum
and is equiconsistent with a Mahlo cardinal. It implies there exists a fat stationary
subset of we which cannot acquire a club subset by any forcing poset which preserves
w1 and ws.

Definition 3.1. A disjoint club sequence on ws is a sequence (Co : a € A) such
that A is a stationary subset of wa N cof(wy), each Cy is a club subset of P, (a),
and Co, NCg is empty for all o < B in A.
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Proposition 3.2. Suppose there is a disjoint club sequence on wy. Then there does
not exist a thin stationary subset of P, (w2).

Proof. Let (C, : a € A) be a disjoint club sequence. Suppose for a contradiction
there exists a thin stationary set. By Lemma 2.2 fix a thin stationary set 7" C
P, (w2) such that for all uncountable § < wy, T N P, (B) is stationary in P,, (5).
Then for each 3 in A we can choose a set ag in CgNT'. Since cf(8) = wy, sup(ag) < G.
By Fodor’s Lemma there is a stationary set B C A and a fixed 7 < w2 such that
for all 8 in B, sup(ag) =~. If a < § are in B, then a, # ag since C, NCg is empty.
So the set {ag : § € B} witnesses that 7" is not thin, which is a contradiction. 0O

Lemma 3.3. Suppose there is a disjoint club sequence (Co : v € A) on wo. Let W
be an outer model with the same wy and wso in which A is still stationary. Then
there is a disjoint club sequence (Dy, : v € A) in W.

Proof. By the proof of Lemma 2.4, each C, contains a club set D,, in W. Since w;
is preserved, each « in A still has cofinality w;. O

Theorem 3.4. Suppose (C,, : o € A) is a disjoint club sequence on wo. Then
AU cof(w) does not contain a club.

Proof. Suppose for a contradiction that AU cof(w) contains a club. Without loss of
generality 2! = wo. Otherwise work in a generic extension W by COLL(wg, 2¢1):
in W the set AU cof(w) contains a club and by Lemma 3.3 there is a disjoint club
sequence (D, : a € A).

Since 2! = wy, H(wq) has size wy. Fix a bijection h : H(ws) — we. Let A
denote the structure (H(ws2), €,h). Define B as the set of « in wy N cof(w;) such
that there exists an increasing and continuous sequence (N; : i < w;) of countable
elementary substructures of A such that:

(1) for i < w1, Nj; is in NiJrl,

(2) the set {N; Nws : i < wy}is club in B, (a).

We claim that B is stationary in ws. To prove this let C' C wy be club. Let B
be the expansion of A by the function « — min(C \ «). Define by induction an
increasing and continuous sequence (N; : i < wq) of elementary substructures of B
such that for all ¢ < wy, N; is in Nj4q1. Let N = J{N; : i < w1}. Then w; C N so
N Nwsy is an ordinal. Write @« = N Nwy. Then o is in C and {N; Nwy : i < w1} is
club in B, (a). So awis in BN C.

Since A U cof(w) contains a club, A N B is stationary. For each « in A N B fix
a sequence (N : i < wq) as described in the definition of B. Then {N® Nwy :
i < w1} NCqy is club in P, (a). So there exists a club set ¢, C w; such that
{Nf Nwy : i € ¢o} is club and is a subset of C,. Write i, = min(c,) and let
do = o \ {ia}-

Define S = {Nf:a € ANB,i€dy}. If Nisin S then there is a unique pair «
in AN B and 7 in do such that N = N. For if N = N/ :Njﬁ, then N Nws is in
CaNCpg, so a = 3. Clearly then i = j. Also note that if N{* is in .S then N is in
N{*. So the function H : S — H(wz) defined by H(N;*) = N;* is well-defined and
regressive.

We claim that S is stationary in P,, (H(w2)). To prove this let F': H(w2)<¥ —
H(ws) be a function. Define G : w5 — wq by letting G(ap, ..., a,) be equal to
h(F(h=Y(ap),...,h 1 (ay))). Let E be the club set of a in wy closed under G. Fix
ain ENANB. Then there is ¢ in d, such that N> Nws is closed under G. We claim
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that N is closed under F. Given ag,...,a, in N, the ordinals h(aop),...,h(an)
are in N®* Nwse. So v = G(h(ag),...,h(an)) = h(F(ag,...,an)) is in N Nws.
Therefore h=1(y) = F(ao, - .., ay) is in N,

Since S is stationary and H : S — H(ws) is regressive, there is a stationary set
S* C S and a fixed N such that for all N in §*, H(N) = N. The set S*, being
stationary, must have size ws. So there are distinct o and § such that for some i
in do and j in dg, N and N are in §*. Then N = N2 = N. So N Nw, is in
Co N Cg, which is a contradiction. d

Abraham and Shelah [1] asked the following question: Assume that A is a sta-
tionary subset of ws N cof(wy). Does there exist an wi-distributive forcing poset
which adds a club subset to A U cof(w)? We answer this question in the negative.

Corollary 3.5. Assume that (Co, : o € A) is a disjoint club sequence. Let W be
an outer model of V' with the same wy and wy. Then in W, AU cof(w) does not
contain a club subset.

Proof. If A remains stationary in W, then by Lemma 3.3 there is a disjoint club
sequence (D, : a € A) in W. By Theorem 3.4 A U cof(w) does not contain a club
in W. O

4. MARTIN’S MAXIMUM

In this section we prove that Martin’s Maximum implies there exists a disjoint
club sequence on ws. We apply MM to the poset for adding a Cohen real and then
forcing a continuous wq-chain through P, (w2) \ V.

Theorem 4.1 (Krueger). Martin’s Maximum implies there exists a disjoint club
sequence on ws.

We will use the following theorem from [1].

Theorem 4.2. Suppose P is wi-c.c. and adds a real. Then P forces that (P, (w2)\
V) is stationary in P, (w2).

Note: Gitik [6] proved that the conclusion of Theorem 4.2 holds for any outer
model of V' which contains a new real and computes the same wj.

Suppose that S is a stationary subset of P,,(ws2). Following [3] we define a
forcing poset P(S) which adds a continuous wj-chain through S. A condition in
P(S) is a countable increasing and continuous sequence (a; : i < 3) of elements
from S, where for each i < 8, a; Nw; < a;+1 Nwi. The ordering on P(S) is by
extension of sequences.

Proposition 4.3. If S C P,, (w2) is stationary then P(S) is w-distributive.

Proof. Suppose p forces f tw — On. Let 8 > wsy be a regular cardinal such that
fisin H (9). Since S is stationary, we can fix a countable elementary substructure
N of the model
(H(0),€,5,P(S),p, f)

such that N Nwy is in S. Let (D,, : n < w) be an enumeration of all the dense
subsets of P(S) in N. Inductively define a decreasing sequence (p, : n < w) of
elements of N NP such that pg = p and p,,+1 is a refinement of p,, in D, "N. Write
U{pn:n <w}=(b;:i<7). Clearly |J{b; : i <7} = NNws. Since NNws isin S,
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the sequence (b; : i < ) U {(y, N Nws)} is a condition below p which decides f(n)
for all n < w. O

Theorem 4.4. Suppose P is an wi-c.c. forcing poset which adds a real. Let S be
a name such that P forces S = (P, (w2) \ V). Then P «IP(S) preserves stationary
subsets of w1 .

Proof. By Theorem 4.2 and Proposition 4.3, the poset P x IP’(S) preserves wi. Let
A be a stationary subset of wy in V. Suppose p * ¢ is a condition in P P(S) which
forces C' is a club subset of w1.

Let G be a generic filter for P over V' which contains p. In V]G] fix a regular
cardinal 8 > w9 and let

A= (H(0),€,4A,8,q,C).
Fix a Skolem function F': H(6)<% — H(f) for A. Define F* : ws¥ — P, (w2) by
letting
F*(ag,...,an) =crp({ag,...,an}) Nws.
Smce P is wy-c.c. there is a function H : ws* — P, (w2) in V such that for all @ in
@ F*(a) C H(d). Let Z* be the stationary set of o in wo N cof(w) closed under
H .

Working in V, since A is stationary we can fix for each a in Z* a countable
cofinal set M, C « closed under H with M, Nw; in A. By Fodor’s Lemma there is
7 C Z* stationary and ¢ in A such that for all « in Z, M,Nw; = §. Fix a sequence
(€5, Zs : s € <¥2) satisfying conditions (1)—(4) of Lemma 2.6.

Let f : w — 2 be a function in V[G] \ V. For each n < w let M, denote
A0 U {&fm : m < n}). Define M = |J{M,, : n < w}. Note that M is closed
under H and hence it is closed under F*. Therefore N = clp(M) is an elementary
substructure of A such that N Nwy = M.

As in the proof of Theorem 2.7, for all n < w, if a is in Zf}, then M,, C M,.
Note that M Nw; = 4. For if v is in M Nws, there is n < w such that ~ is in M,,.
Fix ain Zfpp. Then v is in My Nwy = 4.

We prove that M is not in V' by showing how to compute f by induction from
M. Suppose f [ n is known. Fix j < 2 such that f(n) # j. We claim that & ¢,)~;
is not in M. Otherwise there is k > n such that §y,)~; is in Mg. Fix o in Zgpp
Then &(f1n)~; is in My. But « is in Zg}(,41), contradicting Lemma 2.6(4). So f(n)
is the unique ¢ < 2 such that §(},)~; is in M. This completes the definition of f
from M. Since f is not in V', neither is M.

Let (D,, : n < w) enumerate the dense subsets of P(S) lying in N. Inductively
define a decreasing sequence (g, : n < w) in NNP(S) such that ¢o = g and ¢, 41 is in
D, NN. Write (J{gn : n <w} =(b; : i < ). Clearly U{b; : i <~} = NNuws =M,
and since M is not in V, r = (b; : i < v) U {(y, M)} is a condition in P(S). By an
easy density argument, r forces that N Nw; = ¢ is a limit point of C', and hence is
in C. Let # be a name for . Then p*7 < px ¢ and p 7 forces § isin ANC. O

The proof of Theorem 4.4 above is similar to the proof of Theorem 4.2.
Now we are ready to prove that MM implies there exists a disjoint club sequence
on wa.

Proof of Theorem 4.1. Assume Martin’s Maximum. Inductively define A and (C,
a € A) as follows. Suppose « is in wy Ncof(w1) and ANa and (Cg : € ANa) are
defined. Let o be in A iff the set |J{Cs : 8 € AN «} is non-stationary in P, («).
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If & is in A then choose a club set C,, C P,, (o) with size w; which is disjoint from
this union.

This completes the definition. We prove that A is stationary. Then clearly
(Cq : w € A) is a disjoint club sequence. Fix a club set C' C ws.

Let ADD denote the forcing poset for adding a single Cohen real with finite
conditions and let S be an ADD-name for the set (P, (w2) \ V). By Theorem 4.4
the poset ADD % P(S) preserves stationary subsets of w;. We will apply Martin’s
Maximum to this poset after choosing a suitable collection of dense sets.

For each o < wo fix a surjection f, : w1 — a. If B is in A enumerate Cg as

<aiﬁ i i < wy). For every quadruple i, j, k,l of countable ordinals let D(i,j,k,1)
denote the set of conditions p * ¢ such that:

(1) p forces that ¢ and j are in the domain of ¢, and for some §; and 3;, p forces
i = sup(q(i)) and B; = sup(q(j)),

(2) there is some ¢ < w; such that p forces ¢ is the least element in dom(q) such
that £, () € d(C),

(3) there is € in C' larger than §; and (3; such that p forces £ is the supremum of
the maximal set in ¢,

(4) if fs;(k) = v is in A, then there is z such that p forces z is in the symmetric
difference ¢(i)Aa; .

It is routine to check that D(i,j, k,1) is dense.

Let G * H be a filter on ADD x P(S) intersecting each D(i, 7, k,1). For i < w,
define a; as the set of B for which there exists some p * ¢ in G * H such that p
forces i € dom(g) and p forces 3 is in ¢(¢). The definition of the dense sets implies
that (a; : i < wy) is increasing, continuous, and cofinal in P,, («) for some « in
CNcof(wr). By (4), for each vin ANa, {a; : i < wi} is disjoint from C,,. Therefore
U{Cy : v € AN a} is non-stationary in P, (c), hence by the definition of A, « is
in ANC. So A is stationary. O

5. THE EQUICONSISTENCY RESULT

We now prove Theorem 0.1 establishing the consistency strength of each of the
following statements to be exactly a Mahlo cardinal: (1) There does not exist a thin
stationary subset of P, (w2). (2) There exists a disjoint club sequence on wa. (3)
There exists a fat stationary set S C w2 such that any forcing poset which preserves
w1 and ws does not add a club subset to S.

By [5] if there exists a thin stationary subset of P, (w2) then for any fat sta-
tionary set S C ws, there is a forcing poset which preserves cardinals and adds a
club subset to S. So (2) and (3) both imply (1), which in turn implies there is no
special Aronszajn tree on wy. So wy is Mahlo in L by [8].

In the other direction assume that « is a Mahlo cardinal. We will define a revised
countable support iteration which collapses k to become ws and adds a disjoint club
sequence on we. At individual stages of the iteration we force with either a collapse

forcing or the poset ADD * P(S) from the previous section. To ensure that w; is
not collapsed we verify that ADpD % P(S) satisfies an iterable condition known as the
[-universal property. Our description of this construction is self-contained, except
for the proof of Theorem 5.9 which summarizes the relevant properties of the RCS
iteration. For more information on such iterations and the I-universal property

see [10].
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Definition 5.1. A pair (T,1) is a tagged tree if:

(1) T C <¥On is a tree such that each n in T has at least one successor,

(2)1:T — V is a partial function such that each I(n) is an ideal on some set
X, and for each n in the domain of I, the set {a:n"a € T} is in (I(n))*,

(8) for each cofinal branch b of T, there are infinitely many n < w such that
b [ n is in the domain of 1.

If i is in the domain of I, we say that 7 is a splitting point of T. It follows from
(1) and (3) that for every n in T there is n <0 v which is a splitting point.

Definition 5.2. Let I be a family of ideals and (T,I) a tagged tree. Then (T,T) is
an I-tree if for each splitting point n in T, I(n) is in L.

Suppose T C <“On is a tree. If 7 is in T, let T denote the tree {veT:
v<norn<v}. AsetJ CTis called a front if for distinct nodes in J, neither is
an initial segment of the other, and for any cofinal branch b of T' there is n in J
which is an initial segment of b.

Definition 5.3. Suppose (T, 1) is tagged tree. Let 0 be a reqular cardinal such that
(T,X) is in H(0), and let <g be a well-ordering of H(6). A sequence (N, :n € T)
is a tree of models for 0 provided that:

(1) each Ny is a countable elementary substructure of (H(0), €, <, (T,1)),

(2) ifn<tv inT, then N, < N,

(3) for each n in T, n is in Ny.
Definition 5.4. Suppose (T,1) is an I-tree, and 6 is a regular cardinal such that

H(6) contains (T,I) and I. A sequence (N, :n € T') is an I-suitable tree of models
for 0 if it is a tree of models for 0 and for every n in T and I in INN,, the set

{ve T v is a splitting point and I(v) = I}
contains a front in T,

Definition 5.5. Let (T,I), I, and 0 be as in Definition 5.4. A sequence (N, :n € T')
is an w1 -strictly T-suitable tree of models for 0 if it is an I-suitable tree of models
for 6 and there exists § < wi such that for all n in T, Ny Nwy = 9.

If (N,, :np € T) is a tree of models and b is a cofinal branch of T, write N, for
the set (J{Nyn : n < w}. Note that if (N, : 7 € T') is an w;-strictly I-suitable tree
of models for 6, then for any cofinal branch b of T, Ny Nwy = Ny Nws.

Lemma 5.6. Let (T,I), I, and 6 be as in Definition 5.4, and let (N, : n € T') be an
wi -strictly I-suitable tree of models for 6. Suppose n<v in T and (N, Nwa) \ N,, is
non-empty. Let~y be the minimum element of (N, Nwa2)\Ny. Then v > sup(NyNws).

Proof. Otherwise there is 3 in N,y Nwy such that v < 8. By elementarity, there is a
surjection f :w; — Bin N,. So f~1(y) € N,Nwy = N,;Nw;. Hence f(f~1(v)) =~
is in N, which is a contradiction. (I

Let I be a family of ideals. We say that I is restriction-closed if for all I in I, for
any set A in IT, the ideal I | A is in I. If u is a regular uncountable cardinal, we
say that I is p-complete if each ideal in I is p-complete.

Definition 5.7. Suppose that I is a non-empty restriction-closed ws-complete fam-
ily of ideals and let P be a forcing poset. Then P satisfies the I-universal property
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if for all sufficiently large regular cardinals 0 with T in H(0), if (N, :n € T) is an
wi -strictly T-suitable tree of models for 6, then for all p in Ny NP there is ¢ < p

such that q forces there is a cofinal branch b of T such that Np[G] Nwy = Ny Nws.

Definition 5.7 is Shelah’s characterization of the I-universal property given in
[10] Chapter XV 2.11, 2.12, and 2.13. Note that in the definition, ¢ is semigeneric
for Nyy. In 2.12 Shelah proves that there are stationarily many structures N for
which N = Ny for some w;-strictly I-suitable tree of models (N, : n € T'). So by
standard arguments if P satisfies the I-universal property then P preserves w; and
preserves stationary subsets of w;. Note that any semiproper forcing poset satisfies
the I-universal property.

Theorem 5.8. Let I be the family of ideals of the form NS, [ A, where A is a
stationary subset of wy Ncof(w). Let S be an ADD-name for the set (P, (w2) \'V).

Then ADD * P(S) satisfies the T-universal property.
Proof. Fix a regular cardinal § > wy and let (N,, : n € T) be an w;-strictly I-

suitable tree of models for §. Let p * ¢ be a condition in (ADD * P(S)) N Nyy. We
find a refinement of p % ¢ which forces there is a cofinal branch b of T' such that
Nb[G * H] Nwyp = N<> Nwi.

We use an argument similar to the proof of Lemma 2.6 to define a sequence
(ns,&s + 8 € <¥2) satisfying:

(1) each ng is in T, each & is in N, Nwa, and s <t implies 1, <7,

(2) if s70 <t then &£~ is not in V,,, and if s71 < wu then &~ is not in NN, .

Let ¢y = () and £y = 0. Suppose 7 is defined. Choose a splitting point v in
T above 7;. Let Z denote the set of @ < wy such that vs~ « is in T. Since v; is a
splitting point, by the definition of I the set Z is a stationary subset of ws N cof(w).
For each o in Z, o is in N(,,, ~4) and has cofinality w, so N(, ~,)Na is a countable
cofinal subset of a. Define X as the set of £ in wy such that the set

{aE Z:fEN(VSAa)ﬂOé}

is stationary. An easy argument using Fodor’s Lemma shows that X is unbounded
in we. For all large enough « in Z, the set (X \ sup(V,, Nwsz)) N« has size wy. So
there is a stationary set Z; C Z and an ordinal £,~¢ in X, such that £,~q is larger
than sup(NV,, Nws) and for all a in Z7, {5~¢ is not in N, ~o) Na. Let Z; be the
stationary set of a in Z such that §s~¢ is in N(,,~q) N a. Now define Y5 as the set
of £ in ws such that the set
{aeZy: €€ Nw,~a) Na}

is stationary. Again we can find Zy C Z| stationary and &;~; in Y, such that £~
is larger than sup(N,, Nws) and for all a in Zp, £s~1 is not in Ny, ~ayNa. Let Z3
be the stationary set of a in Zj such that £~ is in N, ~q) N o

Now define ns~g to be equal to vy~ « for some « in Zy larger than &~1, and
define n,~1 to be v~ for some (3 in Z; larger than £,~¢. By definition £~ is in
Ny, -, and &~ is in N, .

We claim that if n,~9 < v in T, then &~ is not in N,. Since « is in Zy, &~
is not in N, .y Na. But §5~1 < a, s0 £s~1 is not in N, .y. By Lemma 5.6 the
minimum element of N, Nws which is not in N, . ), if such an ordinal exists, is
at least sup(N(,, -,y Nwa) > a > §~1. So {s~1 is not in N,,. Similarly if n,~; Qv
in T, then £~ is not in NV,,. This completes the definition. Conditions (1) and (2)
are now easily verified.
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Since [P is wi-c.c., the condition p itself is generic for each IV,,. Let G be a generic
filter for ADD over V which contains p. Then for all n in 7', N, [G]Nwy = Ny Nws.
So for any cofinal branch b of T in V[G], Np[G] Nwa = U{Npjn Nw2 : n < w}; in
particular, Ny[G] Nwy = Ny Nw.

Let f : w — 2 be a function in V[G] \ V. Define by = J{nsn : n < w}. We
prove that Np, Nwz is not in V' by showing how to define f inductively from this
set. Suppose f | n is known. Fix j < 2 such that f(n) # j. We claim that
§" = &(sn)~j is not in Ny, Nwa. Otherwise there is k > n such that £* is in
Ny But f [ (n+1) < f [ k. So by condition (2), £* is not in N, , which is a
contradiction. So f(n) is the unique i < 2 such that §(},,)~; is in Ny, N wo.

Let (D, : n < w) enumerate all the dense subsets of P(S) lying in Ny, [G].
Inductively define a sequence (g, : n < w) by letting g9 = ¢ and choosing g,+1 to
be a refinement of ¢ in D, N Ny, [G]. Let (b; : i <) = [J{gn : n < w}. Clearly
U{bi =i < v} = Ny, Nwa. Since Ny, Nwy isnot in V, r = (b; : i < v) " (Np, Nwo) is a
condition in P(S) below ¢ and r is generic for N, [G]. So r forces Ny, [G] [H]Nw; =
Ny, [G]Nwi = Ny Nw;. Let 7 be a name for 7. Then p*7 < p*q is as required. [

We state without proof the facts concerning RCS iterations which we shall use.
These facts follow immediately from [10] Chapter XI 1.13 and Chapter XV 4.15.

Theorem 5.9. Suppose (P;,Q; : i < «o,j < «) is an RCS iteration. Then P,
preserves wy if the iteration satisfies the following properties:

(1) for each i < « there is n < w such that Piy, IF |P;] < wi,

(2) for each i < « there is an uncountable regular cardinal k; and a P;-name HZ
such that P; is k;-c.c. and IP; forces HZ is a non-empty restriction-closed k;-complete
family of ideals such that Q; satisfies the I;-universal property.

Theorem 5.10. Let o be a strongly inaccessible cardinal. Suppose that (P;,Q; :
1 < ,j < a)is a revised countable support iteration such that P, preserves wy and
for alli < a, |P;| < a. Then Py, is a-c.c.

Suppose « is a Mahlo cardinal and let A be the stationary set of strongly in-
accessible cardinals below k. Define an RCS iteration (Pi,Qj 11 < K,j < K) by
recursion as follows. Our recursion hypotheses will include that each P, preserves
w1, and is a-c.c. if a is in A.

Suppose Py, is defined. If v is not in A then let Q,, be a name for COLL(w1, [Py])-
Suppose « is in A. By the recursion hypotheses P, forces & = wo. Let Q4 be a
name for the poset ADpD % P(S).

If « is not in A then choose some regular cardinal , larger than |P,|, and let
I, be a name for some non-empty restriction-closed k,-complete family of ideals
on Kq. Then P, is ky-c.c., and since @a is proper, P, forces @a satisfies the I,,-
universal property. Suppose « is in A. Then let o = k, and define I, as a name
for the family of ideals on ws as described in Theorem 5.8. Then P,, is k4-c.c. and
forces Q, satisfies the I,-universal property.

Suppose 8 < k is a limit ordinal and PP, is defined for all & < (. Define Pg
as the revised countable support limit of (P, : @ < ). By Theorem 5.9 and the
recursion hypotheses, Pg preserves wy. Hence if §is in A U {x}, then Pg is f-c.c.
by Theorem 5.10.

This completes the definition. Let G be generic for P,. The poset P, is k-c.c.
and preserves wy, so in V[G] we have that k = we and A is a stationary subset of
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wa N cof(wy). For each v in A let C,, be the club on P,, («) introduced by Q. If
a < fare in A, then C, and Cg are disjoint since Cg is disjoint from V[G | f]. So
(Cqo : v € A) is a disjoint club sequence on wsy in VI]G].

We conclude the paper with several questions.

(1) Assuming Martin’s Maximum, the poset ADD * P(S) is semiproper. Is this
poset semiproper in general?

(2) Is it consistent that there exists a stationary set A C wy N cof(w;) such that
neither AU cof(w) nor wy \ A can acquire a club subset in an w; and wa preserving
extension?

(3) To what extent can the results of this paper be extended to cardinals greater
than ws? For example, is it consistent that there is a fat stationary subset of wg
which cannot acquire a club subset by any forcing poset which preserves wy, ws,
and ws3?
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