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Abstract. We describe two opposing combinatorial properties related to adding
clubs to ω2: the existence of a thin stationary subset of Pω1(ω2) and the exis-
tence of a disjoint club sequence on ω2. A special Aronszajn tree on ω2 implies
there exists a thin stationary set. If there exists a disjoint club sequence, then
there is no thin stationary set, and moreover there is a fat stationary subset of
ω2 which cannot acquire a club subset by any forcing poset which preserves ω1

and ω2. We prove that the existence of a disjoint club sequence follows from
Martin’s Maximum and is equiconsistent with a Mahlo cardinal.

Suppose that S is a fat stationary subset of ω2, that is, for every club set C ⊆
ω2, S ∩ C contains a closed subset with order type ω1 + 1. A number of forcing
posets have been defined which add a club subset to S and preserve cardinals
under various assumptions. Abraham and Shelah [1] proved that, assuming CH,
the poset consisting of closed bounded subsets of S ordered by end-extension adds
a club subset to S and is ω1-distributive. S. Friedman [5] discovered a different
poset for adding a club subset to a fat set S ⊆ ω2 with finite conditions 1. This
finite club poset preserves all cardinals provided that there exists a thin stationary
subset of Pω1(ω2), that is, a stationary set T ⊆ Pω1(ω2) such that for all β < ω2,
|{a∩β : a ∈ T }| ≤ ω1. This notion of stationarity appears in [9] and was discovered
independently by Friedman. The question remained whether it is always possible to
add a club subset to a given fat set and preserve cardinals, without any assumptions.

J. Krueger introduced a combinatorial principle on ω2 which asserts the existence
of a disjoint club sequence, which is a pairwise disjoint sequence 〈Cα : α ∈ A〉 indexed
by a stationary subset of ω2 ∩ cof(ω1), where each Cα is club in Pω1(α). Krueger
proved that the existence of such a sequence implies there is a fat stationary set
S ⊆ ω2 which cannot acquire a club subset by any forcing poset which preserves
ω1 and ω2.

We prove that a special Aronszajn tree on ω2 implies there exists a thin stationary
subset of Pω1(ω2). On the other hand assuming Martin’s Maximum there exists
a disjoint club sequence on ω2. Moreover, we have the following equiconsistency
result.

Theorem 0.1. Each of the following statements is equiconsistent with a Mahlo
cardinal: (1) There does not exist a thin stationary subset of Pω1(ω2). (2) There
exists a disjoint club sequence on ω2. (3) There exists a fat stationary set S ⊆ ω2

such that any forcing poset which preserves ω1 and ω2 does not add a club subset
to S.
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1A similar poset was defined independently by Mitchell [7]
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Our proof of this theorem gives a totally different construction of the following
result of Mitchell [8]: If κ is Mahlo in L, then there is a generic extension of L in
which κ = ω2 and there is no special Aronszajn tree on ω2. The consistency of
Theorem 0.1(3) provides a negative solution to the following problem of Abraham
and Shelah [1]: if S ⊆ ω2 is fat, does there exist an ω1-distributive forcing poset
which adds a club subset to S?

Section 1 outlines notation and background material. In Section 2 we discuss
thin stationarity and prove that a special Aronszajn tree implies the existence of
a thin stationary set. In Section 3 we introduce disjoint club sequences and prove
that the existence of such a sequence implies there is a fat stationary set in ω2

which cannot acquire a club subset by any forcing poset which preserves ω1 and
ω2. In Section 4 we prove that Martin’s Maximum implies there exists a disjoint
club sequence. In Section 5 we construct a model in which there is a disjoint club
sequence using an RCS iteration up to a Mahlo cardinal.

Sections 3 and 4 are due for the most part to J. Krueger. We would like to
thank Boban Veličković and Mirna Dzamonja for pointing out Theorem 2.3 to the
authors.

1. Preliminaries

For a set X which contains ω1, Pω1(X) denotes the collection of countable subsets
of X . A set C ⊆ Pω1(X) is club if it is closed under unions of countable increasing
sequences and is cofinal. A set S ⊆ Pω1(X) is stationary if it meets every club. If
C ⊆ Pω1(X) is club then there exists a function F : X<ω → X such that every a in
Pω1(X) closed under F is in C. If F : X<ω → Pω1(X) is a function and Y ⊆ X , we
say that Y is closed under F if for all ~γ from Y <ω, F (~γ) ⊆ Y . A partial function
H : Pω1(X) → X is regressive if for all a in the domain of H , H(a) is a member of
a. Fodor’s Lemma asserts that whenever S ⊆ Pω1(X) is stationary and H : S → X

is a total regressive function, there is a stationary set S∗ ⊆ S and a set x in X such
that for all a in S∗, H(a) = x.

If κ is a regular cardinal let cof(κ) (respectively cof(< κ)) denote the class of
ordinals with cofinality κ (respectively cofinality less than κ). If A is a cofinal
subset of a cardinal λ and κ < λ, we write for example A ∪ cof(κ) to abbreviate
A ∪ (λ ∩ cof(κ)).

A stationary set S ⊆ κ is fat if for every club C ⊆ κ, S ∩ C contains closed
subsets with arbitrarily large order types less than κ. If κ is the successor of a
regular uncountable cardinal µ, this is equivalent to the statement that for every
club C ⊆ κ, S ∩ C contains a closed subset with order type µ + 1. In particular, if
A ⊆ κ+ ∩ cof(µ) is stationary then A ∪ cof(< µ) is fat.

We write θ ≫ κ to indicate θ is larger than 22|H(κ)|

.
A tree T is a special Aronszajn tree on ω2 if:
(1) T has height ω2 and each level has size less than ω2,
(2) each node in T is an injective function f : α → ω1 for some α < ω2,
(3) the ordering on T is by extension of functions, and if f is in T then f ↾ β is

in T for all β < dom(f).
By [8] if there does not exist a special Aronszajn tree on ω2, then ω2 is a Mahlo

cardinal in L.
If V is a transitive model of ZFC, we say that W is an outer model of V if W is

a transitive model of ZFC such that V ⊆ W and W has the same ordinals as V .
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A forcing poset P is κ-distributive if forcing with P does not add any new sets of
ordinals with size κ.

If P is a forcing poset, ȧ is a P-name, and G is a generic filter for P, we write a

for the set ȧG.
Martin’s Maximum is the statement that whenever P is a forcing poset which

preserves stationary subsets of ω1, then for any collection D of dense subsets of P

with |D| ≤ ω1, there is a filter G ⊆ P which intersects each dense set in D.
A forcing poset P is proper if for all sufficiently large regular cardinals θ > 2|P|,

there is a club of countable elementary substructures N of 〈H(θ),∈〉 such that for all

p in N ∩P, there is q ≤ p which is generic for N , i.e. q forces N [Ġ]∩On = N ∩On.
If P is proper then P preserves ω1 and preserves stationary subsets of Pω1(λ) for
all λ ≥ ω1. A forcing poset P is semiproper if the same statement holds as above
except the requirement that q is generic is replaced by q being semigeneric, i.e. q

forces N [Ġ] ∩ ω1 = N ∩ ω1. If P is semigeneric then P preserves ω1 and preserves
stationary subsets of ω1.

If P is ω1-c.c. and N is a countable elementary substructure of H(θ), then P

forces N [Ġ] ∩ On = N ∩ On; so every condition in P is generic for N .
We let <ωOn denote the class of finite strictly increasing sequences of ordinals.

If η and ν are in <ωOn, write η E ν if η is an initial segment of ν, and write η ⊳ ν

if η E ν and η 6= ν. Let l(η) denote the length of η. A set T ⊆ <ωOn is a tree if for
all η in T and k < l(η), η ↾ k is in T . A cofinal branch of T is a function b : ω → κ

such that for all n < ω, b ↾ n is in T .
Suppose I is an ideal on a set X . Then I+ is the collection of subsets of X

which are not in I. If S is in I+ let I ↾ S denote the ideal I ∩P(S). For example if
I = NSκ, the ideal of non-stationary subsets of κ, a set S is in I+ iff S is stationary.
In this case NSκ ↾ S is the ideal of non-stationary subsets of S and (NSκ ↾ S)+ is
the collection of stationary subsets of S.

If κ is regular and λ ≥ κ is a cardinal, then Coll(κ, λ) is a forcing poset for
collapsing λ to have cardinality κ: conditions are partial functions p : κ → λ with
size less than κ, ordered by extension of functions.

2. Thin Stationary Sets

Let T be a cofinal subset of Pω1(ω2). We say that T is thin if for all β < ω2

the set {a ∩ β : a ∈ T } has size less than ω2. Note that if CH holds then Pω1(ω2)
itself is thin. A set S ⊆ Pω1(ω2) is closed under initial segments if for all a in S

and β < ω2, a ∩ β is in S.

Lemma 2.1. If S ⊆ Pω1(ω2) is stationary and closed under initial segments, then
for all uncountable β < ω2, the set S ∩ Pω1(β) is stationary in Pω1(β).

Proof. Consider β < ω2 and let C ⊆ Pω1(β) be a club set. Then the set D = {a ∈
Pω1(ω2) : a ∩ β ∈ C} is a club subset of Pω1(ω2). Fix a in S ∩ D. Since S is closed
under initial segments, a ∩ β is in S ∩ C. �

Lemma 2.2. If there exists a thin stationary subset of Pω1(ω2), then there is a
thin stationary set S such that for all uncountable β < ω2, S ∩Pω1(β) is stationary
in Pω1(β).

Proof. Let T be a thin stationary set. Define S = {a ∩ β : a ∈ T, β < ω2}. Then S

is thin stationary and closed under initial segments. �
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A set S ⊆ Pω1(ω2) is a local club if there is a club set C ⊆ ω2 such that for all
uncountable α in C, S ∩Pω1 (α) contains a club in Pω1(α) (see [3]). Note that local
clubs are stationary.

Theorem 2.3. If there is a special Aronszajn tree on ω2, then there is a thin local
club subset of Pω1(ω2).

Proof. Let T be a special Aronszajn tree on ω2. For each f in T with dom(f) ≥ ω1,
define Sf = {f−1“i : i < ω1}. Note that Sf is a club subset of Pω1(domf). For
each uncountable β < ω2 define Sβ =

⋃
{Sf : f ∈ T , dom(f) = β}. Then Sβ has

size ω1. Now define S =
⋃
{Sβ : ω1 ≤ β < ω2}. Clearly S is a local club. To show

S is thin, it suffices to prove that whenever β < γ are uncountable and a is in Sγ ,
then a ∩ β is in Sβ. Fix f in T and i < ω1 such that a = f−1“i. Then f ↾ β is in
T , so (f ↾ β)−1“i is in Sβ . But (f ↾ β)−1“i = (f−1“i) ∩ β = a ∩ β. �

In later sections of the paper we will construct models in which there does not
exist a thin stationary subset of Pω1(ω2). Theorem 2.3 shows that in such a model
there cannot exist a special Aronszajn tree on ω2, so by [8] ω2 is Mahlo in L.
Mitchell [8] constructed a model in which there is no special Aronszajn tree on ω2 by
collapsing a Mahlo cardinal in L to become ω2 with a proper forcing poset. However,
in Mitchell’s model the set (Pω1(κ))L is a thin stationary subset of Pω1(ω2).

Lemma 2.4. Suppose S ⊆ Pω1(ω2) is a local club. Then S is a local club in any
outer model W with the same ω1 and ω2.

Proof. Let C be a club subset of ω2 such that for every uncountable α in C, S ∩
Pω1(α) contains a club in Pω1(α). Then C remains club in W . For each uncountable
α in C, fix a bijection gα : ω1 → α. Then {gα“i : i < ω1} is a club subset of Pω1(α).
By intersecting this club with S, we get a club subset of S ∩ Pω1(α) of the form
{aα

i : i < ω1} which is increasing and continuous. Clearly this set remains a club
subset of Pω1(α) in W . �

Proposition 2.5. (1) Suppose there exists a thin local club in Pω1(ω2). Then there
exists a thin local club in any outer model with the same ω1 and ω2. (2) Suppose κ

is a cardinal such that for all µ < κ, µω < κ, and assume P is a proper forcing poset
which collapses κ to become ω2. Then P forces there is a thin stationary subset of
Pω1(ω2).

Proof. (1) is immediate from Lemma 2.4 and the absoluteness of thinness. (2) Let
G be generic for P over V and work in V [G]. Since P is proper, ω1 is preserved and
the set S = (Pω1(κ))V is stationary in Pω1(ω2). We claim that S is thin. If β < ω2

then {a ∩ β : a ∈ S} = (Pω1(β))V . By the assumption on κ, there is ξ < κ and a
bijection f : ξ → (Pω1(β))V in V . In V [G] there is a surjection of ω1 onto ξ and
hence a surjection of ω1 onto {a ∩ β : a ∈ S}. �

As we mentioned above, if CH holds then the set Pω1(ω2) itself is thin. We show
on the other hand that if CH fails then no club subset of Pω1(ω2) is thin. The proof
is actually due to Baumgartner and Taylor [2] who proved that for any club set
C ⊆ Pω1(ω2), there is a countable set A ⊆ ω2 such that C ∩ P(A) has size at least
2ω. Their method of proof, which is described in the next lemma, is key to several
of our results later in the paper.
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Lemma 2.6. Suppose Z is a stationary subset of ω2 ∩ cof(ω) and for each α in Z,
Mα is a countable cofinal subset of α. Then there is a sequence 〈Zs, ξs : s ∈ <ω2〉
satisfying:

(1) each Zs is a stationary subset of Z,
(2) if s E t then Zt ⊆ Zs,
(3) if α is in Zs then ξs is in Mα,
(4) if α is in Zs b 0 and β is in Zs b 1, then ξs b 0 is not in Mβ and ξs b 1 is not in

Mα.

Proof. Let Z〈〉 = Z and ξ〈〉 is undefined. Suppose Zs is given. Define Xs as the
set of ξ in ω2 such that the set {α ∈ Zs : ξ ∈ Mα} is stationary. A straightforward
argument using Fodor’s Lemma shows that Xs is unbounded in ω2. For each α in
Zs such that Xs ∩α has size ω1, there exists ξ < α in Xs such that ξ is not in Mα.
By Fodor’s Lemma there is a stationary set Z ′

s b 1 ⊆ Zs and ξs b 0 in Xs such that
for all α in Z ′

s b1, ξs b 0 is not in Mα. Let Z ′
s b 0 denote the set of α in Zs such that

ξs b 0 is in Mα, which is stationary since ξs b 0 is in Xs. Now define Ys as the set
of ξ in ω2 such that {α ∈ Z ′

s b1 : ξ ∈ Mα} is stationary. Then Ys is unbounded in
ω2. So for each α in Z ′

s b0 such that Ys ∩ α has size ω1, there is ξ < α in Ys which
is not in Mα. By Fodor’s Lemma there is ξs b 1 in Ys and Zs b 0 ⊆ Z ′

s b0 stationary
such that for all α in Zs b0, ξs b 1 is not in Mα. Now define Zs b 1 as the set of α in
Z ′

s b1 such that ξs b 1 is in Mα. �

Theorem 2.7. Assume CH fails. Then for any club set C ⊆ Pω1(ω2), C is not
thin.

Proof. Let F : ω<ω
2 → ω2 be a function such that any a in Pω1(ω2) closed under F

is in C. Let Z be the stationary set of α in ω2 ∩ cof(ω) closed under F . For each
α in Z fix a countable set Mα ⊆ α such that sup(Mα) = α and Mα is closed under
F . Fix a sequence 〈Zs, ξs : s ∈ <ω2} as described in Lemma 2.6.

For each function f : ω → 2 define bf = clF ({ξf↾n : n < ω}). Then bf is in C.
Note that if n < ω and α is in Zf↾n, then clF ({ξf↾m : m ≤ n}) ⊆ Mα. For by
Lemma 2.6(2), for m ≤ n, Zf↾n ⊆ Zf↾m. So α is in Zf↾m, and hence ξf↾m is in Mα

by (3). But Mα is closed under F .
Let γ = sup({ξs+1 : s ∈ <ω2}). Since <ω2 has size ω, γ is less than ω2. We claim

that for distinct f and g, bf ∩γ 6= bg ∩γ. Let n < ω be least such that f(n) 6= g(n).
If bf ∩ γ = bg ∩ γ, then there is k > n such that ξg↾(n+1) is in clF ({ξf↾m : m ≤ k}).
Fix α in Zf↾k. By the last paragraph, ξg↾(n+1) is in Mα. But α is in Zf↾(n+1) by
(2), which contradicts (4). �

Let κ be an uncountable cardinal. The Weak Reflection Principle at κ is the
statement that whenever S is a stationary subset of Pω1(κ), there is a set Y in
Pω2(κ) such that ω1 ⊆ Y and S ∩ Pω1(Y ) is stationary in Pω1(Y ). Martin’s Maxi-
mum implies the Weak Reflection Principle holds for all uncountable cardinals κ [4].
The Weak Reflection Principle at ω2 is equivalent to the statement that for every
stationary set S ⊆ Pω1(ω2), there is a stationary set of uncountable β < ω2 such
that S ∩ Pω1(β) is stationary in Pω1(β). This is equivalent to the statement that
every local club subset of Pω1(ω2) contains a club. The Weak Reflection Principle
at ω2 is equiconsistent with a weakly compact cardinal [3].

Corollary 2.8. Suppose CH fails and there is a special Aronszajn tree on ω2. Then
the Weak Reflection Principle at ω2 fails.
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Proof. By Theorems 2.3 and 2.7, there is a thin local club subset of Pω1(ω2) which
is not club. Hence the Weak Reflection Principle at ω2 fails. �

In Sections 4 and 5 we describe models in which there is no thin stationary
subset of Pω1(ω2). On the other hand S. Friedman proved there always exists a
thin cofinal set.

Theorem 2.9 (Friedman). There exists a thin cofinal subset of Pω1(ω2).

Proof. We construct by induction a sequence 〈Sα : ω1 ≤ α < ω2〉 satisfying the
properties: (1) each Sα is a cofinal subset of Pω1(α) with size ω1, (2) for uncountable
β < γ, if a is in Sγ then a∩β is in

⋃
{Sα : ω1 ≤ α ≤ β}, and (3) if β < γ < ω2, a is

in Pω1(γ), and a∩β is in Sβ , then there is b in Sγ such that a ⊆ b and a∩β = b∩β.
Let Sω1 = ω1. Given Sα, let Sα+1 be the collection {b∪{α} : b ∈ Sα}. Conditions

(1), (2), and (3) follow by induction. Suppose γ < ω2 is an uncountable limit ordinal
and Sα is defined for all uncountable α < γ. If cf(γ) = ω1 then let Sγ =

⋃
{Sα :

ω1 ≤ α < γ}. The required conditions follow by induction.
Assume cf(γ) = ω. Fix an increasing sequence of uncountable ordinals 〈γn : n <

ω〉 unbounded in γ. Let Tγ be some cofinal subset of Pω1(γ) with size ω1. Fix
n < ω. For each x in Tγ and a in Sγn

define a set b(a, x, n) in Pω1(γ) inductively
as follows. Let b(a, x, n) ∩ γn = a. Given b(a, x, n) ∩ γm in Sγm

for some m ≥ n,
apply condition (3) to γm, γm+1, and the set

(b(a, x, n) ∩ γm) ∪ ((x ∩ [γm, γm+1))

to find y in Sγm+1 such that y ∩ γm = b(a, x, n) ∩ γm and x ∩ [γm, γm+1) ⊆ y.
Let b(a, x, n) ∩ γm+1 = y. This completes the definition of b(a, x, n). Clearly
b(a, x, n) ∩ γn = a, x \ γn ⊆ b(a, x, n), and for all k ≥ n, b(a, x, n) ∩ γk is in Sγk

.
Now define Sγ = {b(a, x, n) : n < ω, a ∈ Sγn

, x ∈ Tγ}. We verify conditions
(1), (2), and (3). Clearly Sγ has size ω1. Let β < γ and consider b(a, x, n) in
Sγ . Fix k > n such that β < γk. Then b(a, x, n) ∩ γk is in Sγk

. So by induction
b(a, x, n) ∩ β is in

⋃
{Sα : ω1 ≤ α ≤ β}. Now assume a is in Pω1(γ), β < γ, and

a ∩ β is in Sβ . Choose x in Tγ such that a ⊆ x. Fix k such that β < γk. By the
induction hypothesis there is a′ in Sγk

such that a ∩ γk ⊆ a′ and a′ ∩ β = a ∩ β.
Let c = b(a′, x, k). Then c is in Sγ , c∩β = (c∩ γk)∩β = a′ ∩β = a∩β, and a ⊆ c.

To prove Sγ is cofinal consider a in Pω1(γ). Fix x in Tγ such that a ⊆ x. By
induction Sγ0 is cofinal in Pω1(γ0). So let y be in Sγ0 such that x ∩ γ0 ⊆ y. Then
a is a subset of b(y, x, 0).

Now define S =
⋃
{Sβ : ω1 ≤ β < ω2}. Conditions (1) and (2) imply that S is

thin and cofinal in Pω1(ω2). �

3. Disjoint Club Sequences

We introduce a combinatorial property of ω2 which implies there does not exist
a thin stationary subset of Pω1(ω2). This property follows from Martin’s Maximum
and is equiconsistent with a Mahlo cardinal. It implies there exists a fat stationary
subset of ω2 which cannot acquire a club subset by any forcing poset which preserves
ω1 and ω2.

Definition 3.1. A disjoint club sequence on ω2 is a sequence 〈Cα : α ∈ A〉 such
that A is a stationary subset of ω2 ∩ cof(ω1), each Cα is a club subset of Pω1(α),
and Cα ∩ Cβ is empty for all α < β in A.
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Proposition 3.2. Suppose there is a disjoint club sequence on ω2. Then there does
not exist a thin stationary subset of Pω1(ω2).

Proof. Let 〈Cα : α ∈ A〉 be a disjoint club sequence. Suppose for a contradiction
there exists a thin stationary set. By Lemma 2.2 fix a thin stationary set T ⊆
Pω1(ω2) such that for all uncountable β < ω2, T ∩ Pω1(β) is stationary in Pω1(β).
Then for each β in A we can choose a set aβ in Cβ∩T . Since cf(β) = ω1, sup(aβ) < β.
By Fodor’s Lemma there is a stationary set B ⊆ A and a fixed γ < ω2 such that
for all β in B, sup(aβ) = γ. If α < β are in B, then aα 6= aβ since Cα ∩Cβ is empty.
So the set {aβ : β ∈ B} witnesses that T is not thin, which is a contradiction. �

Lemma 3.3. Suppose there is a disjoint club sequence 〈Cα : α ∈ A〉 on ω2. Let W

be an outer model with the same ω1 and ω2 in which A is still stationary. Then
there is a disjoint club sequence 〈Dα : α ∈ A〉 in W .

Proof. By the proof of Lemma 2.4, each Cα contains a club set Dα in W . Since ω1

is preserved, each α in A still has cofinality ω1. �

Theorem 3.4. Suppose 〈Cα : α ∈ A〉 is a disjoint club sequence on ω2. Then
A ∪ cof(ω) does not contain a club.

Proof. Suppose for a contradiction that A∪cof(ω) contains a club. Without loss of
generality 2ω1 = ω2. Otherwise work in a generic extension W by Coll(ω2, 2

ω1):
in W the set A ∪ cof(ω) contains a club and by Lemma 3.3 there is a disjoint club
sequence 〈Dα : α ∈ A〉.

Since 2ω1 = ω2, H(ω2) has size ω2. Fix a bijection h : H(ω2) → ω2. Let A
denote the structure 〈H(ω2),∈, h〉. Define B as the set of α in ω2 ∩ cof(ω1) such
that there exists an increasing and continuous sequence 〈Ni : i < ω1〉 of countable
elementary substructures of A such that:

(1) for i < ω1, Ni is in Ni+1,
(2) the set {Ni ∩ ω2 : i < ω1} is club in Pω1(α).
We claim that B is stationary in ω2. To prove this let C ⊆ ω2 be club. Let B

be the expansion of A by the function α 7→ min(C \ α). Define by induction an
increasing and continuous sequence 〈Ni : i < ω1〉 of elementary substructures of B
such that for all i < ω1, Ni is in Ni+1. Let N =

⋃
{Ni : i < ω1}. Then ω1 ⊆ N so

N ∩ ω2 is an ordinal. Write α = N ∩ ω2. Then α is in C and {Ni ∩ ω2 : i < ω1} is
club in Pω1(α). So α is in B ∩ C.

Since A ∪ cof(ω) contains a club, A ∩ B is stationary. For each α in A ∩ B fix
a sequence 〈Nα

i : i < ω1〉 as described in the definition of B. Then {Nα
i ∩ ω2 :

i < ω1} ∩ Cα is club in Pω1(α). So there exists a club set cα ⊆ ω1 such that
{Nα

i ∩ ω2 : i ∈ cα} is club and is a subset of Cα. Write iα = min(cα) and let
dα = cα \ {iα}.

Define S = {Nα
i : α ∈ A ∩ B, i ∈ dα}. If N is in S then there is a unique pair α

in A ∩ B and i in dα such that N = Nα
i . For if N = Nα

i = N
β
j , then N ∩ ω2 is in

Cα ∩ Cβ , so α = β. Clearly then i = j. Also note that if Nα
i is in S then Nα

iα
is in

Nα
i . So the function H : S → H(ω2) defined by H(Nα

i ) = Nα
iα

is well-defined and
regressive.

We claim that S is stationary in Pω1(H(ω2)). To prove this let F : H(ω2)
<ω →

H(ω2) be a function. Define G : ω<ω
2 → ω2 by letting G(α0, . . . , αn) be equal to

h(F (h−1(α0), . . . , h
−1(αn))). Let E be the club set of α in ω2 closed under G. Fix

α in E∩A∩B. Then there is i in dα such that Nα
i ∩ω2 is closed under G. We claim
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that Nα
i is closed under F . Given a0, . . . , an in Nα

i , the ordinals h(a0), . . . , h(an)
are in Nα

i ∩ ω2. So γ = G(h(a0), . . . , h(an)) = h(F (a0, . . . , an)) is in Nα
i ∩ ω2.

Therefore h−1(γ) = F (a0, . . . , an) is in Nα
i .

Since S is stationary and H : S → H(ω2) is regressive, there is a stationary set
S∗ ⊆ S and a fixed N such that for all Nα

i in S∗, H(Nα
i ) = N . The set S∗, being

stationary, must have size ω2. So there are distinct α and β such that for some i

in dα and j in dβ , Nα
i and N

β
j are in S∗. Then N = Nα

iα
= N

β
iβ

. So N ∩ ω2 is in

Cα ∩ Cβ, which is a contradiction. �

Abraham and Shelah [1] asked the following question: Assume that A is a sta-
tionary subset of ω2 ∩ cof(ω1). Does there exist an ω1-distributive forcing poset
which adds a club subset to A ∪ cof(ω)? We answer this question in the negative.

Corollary 3.5. Assume that 〈Cα : α ∈ A〉 is a disjoint club sequence. Let W be
an outer model of V with the same ω1 and ω2. Then in W , A ∪ cof(ω) does not
contain a club subset.

Proof. If A remains stationary in W , then by Lemma 3.3 there is a disjoint club
sequence 〈Dα : α ∈ A〉 in W . By Theorem 3.4 A ∪ cof(ω) does not contain a club
in W . �

4. Martin’s Maximum

In this section we prove that Martin’s Maximum implies there exists a disjoint
club sequence on ω2. We apply MM to the poset for adding a Cohen real and then
forcing a continuous ω1-chain through Pω1(ω2) \ V .

Theorem 4.1 (Krueger). Martin’s Maximum implies there exists a disjoint club
sequence on ω2.

We will use the following theorem from [1].

Theorem 4.2. Suppose P is ω1-c.c. and adds a real. Then P forces that (Pω1(ω2)\
V ) is stationary in Pω1(ω2).

Note: Gitik [6] proved that the conclusion of Theorem 4.2 holds for any outer
model of V which contains a new real and computes the same ω1.

Suppose that S is a stationary subset of Pω1(ω2). Following [3] we define a
forcing poset P(S) which adds a continuous ω1-chain through S. A condition in
P(S) is a countable increasing and continuous sequence 〈ai : i ≤ β〉 of elements
from S, where for each i < β, ai ∩ ω1 < ai+1 ∩ ω1. The ordering on P(S) is by
extension of sequences.

Proposition 4.3. If S ⊆ Pω1(ω2) is stationary then P(S) is ω-distributive.

Proof. Suppose p forces ḟ : ω → On. Let θ ≫ ω2 be a regular cardinal such that
ḟ is in H(θ). Since S is stationary, we can fix a countable elementary substructure
N of the model

〈H(θ),∈, S, P(S), p, ḟ〉

such that N ∩ ω2 is in S. Let 〈Dn : n < ω〉 be an enumeration of all the dense
subsets of P(S) in N . Inductively define a decreasing sequence 〈pn : n < ω〉 of
elements of N ∩P such that p0 = p and pn+1 is a refinement of pn in Dn∩N . Write⋃
{pn : n < ω} = 〈bi : i < γ〉. Clearly

⋃
{bi : i < γ} = N ∩ω2. Since N ∩ω2 is in S,
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the sequence 〈bi : i < γ〉 ∪ {〈γ, N ∩ ω2〉} is a condition below p which decides ḟ(n)
for all n < ω. �

Theorem 4.4. Suppose P is an ω1-c.c. forcing poset which adds a real. Let Ṡ be
a name such that P forces Ṡ = (Pω1(ω2) \ V ). Then P ∗ P(Ṡ) preserves stationary
subsets of ω1.

Proof. By Theorem 4.2 and Proposition 4.3, the poset P ∗ P(Ṡ) preserves ω1. Let

A be a stationary subset of ω1 in V . Suppose p ∗ q̇ is a condition in P ∗ P(Ṡ) which

forces Ċ is a club subset of ω1.
Let G be a generic filter for P over V which contains p. In V [G] fix a regular

cardinal θ ≫ ω2 and let
A = 〈H(θ),∈, A, S, q, Ċ〉.

Fix a Skolem function F : H(θ)<ω → H(θ) for A. Define F ∗ : ω<ω
2 → Pω1(ω2) by

letting
F ∗(α0, . . . , αn) = clF ({α0, . . . , αn}) ∩ ω2.

Since P is ω1-c.c. there is a function H : ω<ω
2 → Pω1(ω2) in V such that for all ~α in

ω<ω
2 , F ∗(~α) ⊆ H(~α). Let Z∗ be the stationary set of α in ω2 ∩ cof(ω) closed under

H .
Working in V , since A is stationary we can fix for each α in Z∗ a countable

cofinal set Mα ⊆ α closed under H with Mα ∩ω1 in A. By Fodor’s Lemma there is
Z ⊆ Z∗ stationary and δ in A such that for all α in Z, Mα∩ω1 = δ. Fix a sequence
〈ξs, Zs : s ∈ <ω2〉 satisfying conditions (1)–(4) of Lemma 2.6.

Let f : ω → 2 be a function in V [G] \ V . For each n < ω let Mn denote
clH(δ ∪ {ξf↾m : m ≤ n}). Define M =

⋃
{Mn : n < ω}. Note that M is closed

under H and hence it is closed under F ∗. Therefore N = clF (M) is an elementary
substructure of A such that N ∩ ω2 = M .

As in the proof of Theorem 2.7, for all n < ω, if α is in Zf↾n then Mn ⊆ Mα.
Note that M ∩ ω1 = δ. For if γ is in M ∩ ω1, there is n < ω such that γ is in Mn.
Fix α in Zf↾n. Then γ is in Mα ∩ ω1 = δ.

We prove that M is not in V by showing how to compute f by induction from
M . Suppose f ↾ n is known. Fix j < 2 such that f(n) 6= j. We claim that ξ(f↾n)b j

is not in M . Otherwise there is k > n such that ξ(f↾n)b j is in Mk. Fix α in Zf↾k.
Then ξ(f↾n)b j is in Mα. But α is in Zf↾(n+1), contradicting Lemma 2.6(4). So f(n)
is the unique i < 2 such that ξ(f↾n)b i is in M . This completes the definition of f

from M . Since f is not in V , neither is M .
Let 〈Dn : n < ω〉 enumerate the dense subsets of P(S) lying in N . Inductively

define a decreasing sequence 〈qn : n < ω〉 in N∩P(S) such that q0 = q and qn+1 is in
Dn ∩ N . Write

⋃
{qn : n < ω} = 〈bi : i < γ〉. Clearly

⋃
{bi : i < γ} = N ∩ ω2 = M ,

and since M is not in V , r = 〈bi : i < γ〉 ∪ {〈γ, M〉} is a condition in P(S). By an

easy density argument, r forces that N ∩ ω1 = δ is a limit point of Ċ, and hence is
in Ċ. Let ṙ be a name for r. Then p ∗ ṙ ≤ p ∗ q̇ and p ∗ ṙ forces δ is in A ∩ Ċ. �

The proof of Theorem 4.4 above is similar to the proof of Theorem 4.2.
Now we are ready to prove that MM implies there exists a disjoint club sequence

on ω2.

Proof of Theorem 4.1. Assume Martin’s Maximum. Inductively define A and 〈Cα :
α ∈ A〉 as follows. Suppose α is in ω2 ∩ cof(ω1) and A∩α and 〈Cβ : β ∈ A∩α〉 are
defined. Let α be in A iff the set

⋃
{Cβ : β ∈ A ∩ α} is non-stationary in Pω1(α).
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If α is in A then choose a club set Cα ⊆ Pω1(α) with size ω1 which is disjoint from
this union.

This completes the definition. We prove that A is stationary. Then clearly
〈Cα : α ∈ A〉 is a disjoint club sequence. Fix a club set C ⊆ ω2.

Let Add denote the forcing poset for adding a single Cohen real with finite
conditions and let Ṡ be an Add-name for the set (Pω1(ω2) \ V ). By Theorem 4.4

the poset Add ∗ P(Ṡ) preserves stationary subsets of ω1. We will apply Martin’s
Maximum to this poset after choosing a suitable collection of dense sets.

For each α < ω2 fix a surjection fα : ω1 → α. If β is in A enumerate Cβ as

〈aβ
i : i < ω1〉. For every quadruple i, j, k, l of countable ordinals let D(i, j, k, l)

denote the set of conditions p ∗ q̇ such that:
(1) p forces that i and j are in the domain of q̇, and for some βi and βj , p forces

βi = sup(q̇(i)) and βj = sup(q̇(j)),
(2) there is some ζ < ω1 such that p forces ζ is the least element in dom(q̇) such

that fβi
(j) ∈ q̇(ζ),

(3) there is ξ in C larger than βi and βj such that p forces ξ is the supremum of
the maximal set in q̇,

(4) if fβj
(k) = γ is in A, then there is z such that p forces z is in the symmetric

difference q̇(i)△a
γ
l .

It is routine to check that D(i, j, k, l) is dense.

Let G ∗ H be a filter on Add ∗ P(Ṡ) intersecting each D(i, j, k, l). For i < ω1

define ai as the set of β for which there exists some p ∗ q̇ in G ∗ H such that p

forces i ∈ dom(q̇) and p forces β is in q̇(i). The definition of the dense sets implies
that 〈ai : i < ω1〉 is increasing, continuous, and cofinal in Pω1(α) for some α in
C ∩cof(ω1). By (4), for each γ in A∩α, {ai : i < ω1} is disjoint from Cγ . Therefore⋃
{Cγ : γ ∈ A ∩ α} is non-stationary in Pω1(α), hence by the definition of A, α is

in A ∩ C. So A is stationary. �

5. The Equiconsistency Result

We now prove Theorem 0.1 establishing the consistency strength of each of the
following statements to be exactly a Mahlo cardinal: (1) There does not exist a thin
stationary subset of Pω1(ω2). (2) There exists a disjoint club sequence on ω2. (3)
There exists a fat stationary set S ⊆ ω2 such that any forcing poset which preserves
ω1 and ω2 does not add a club subset to S.

By [5] if there exists a thin stationary subset of Pω1(ω2) then for any fat sta-
tionary set S ⊆ ω2, there is a forcing poset which preserves cardinals and adds a
club subset to S. So (2) and (3) both imply (1), which in turn implies there is no
special Aronszajn tree on ω2. So ω2 is Mahlo in L by [8].

In the other direction assume that κ is a Mahlo cardinal. We will define a revised
countable support iteration which collapses κ to become ω2 and adds a disjoint club
sequence on ω2. At individual stages of the iteration we force with either a collapse
forcing or the poset Add ∗ P(Ṡ) from the previous section. To ensure that ω1 is

not collapsed we verify that Add∗P(Ṡ) satisfies an iterable condition known as the
I-universal property. Our description of this construction is self-contained, except
for the proof of Theorem 5.9 which summarizes the relevant properties of the RCS
iteration. For more information on such iterations and the I-universal property
see [10].
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Definition 5.1. A pair 〈T, I〉 is a tagged tree if:
(1) T ⊆ <ω

On is a tree such that each η in T has at least one successor,
(2) I : T → V is a partial function such that each I(η) is an ideal on some set

Xη and for each η in the domain of I, the set {α : η̂α ∈ T } is in (I(η))+,
(3) for each cofinal branch b of T , there are infinitely many n < ω such that

b ↾ n is in the domain of I.

If η is in the domain of I, we say that η is a splitting point of T . It follows from
(1) and (3) that for every η in T there is η ⊳ ν which is a splitting point.

Definition 5.2. Let I be a family of ideals and 〈T, I〉 a tagged tree. Then 〈T, I〉 is
an I-tree if for each splitting point η in T , I(η) is in I.

Suppose T ⊆ <ωOn is a tree. If η is in T , let T [η] denote the tree {ν ∈ T :
ν E η or η E ν}. A set J ⊆ T is called a front if for distinct nodes in J , neither is
an initial segment of the other, and for any cofinal branch b of T there is η in J

which is an initial segment of b.

Definition 5.3. Suppose 〈T, I〉 is tagged tree. Let θ be a regular cardinal such that
〈T, I〉 is in H(θ), and let <θ be a well-ordering of H(θ). A sequence 〈Nη : η ∈ T 〉
is a tree of models for θ provided that:

(1) each Nη is a countable elementary substructure of 〈H(θ),∈, <θ, 〈T, I〉〉,
(2) if η ⊳ ν in T , then Nη ≺ Nν ,
(3) for each η in T , η is in Nη.

Definition 5.4. Suppose 〈T, I〉 is an I-tree, and θ is a regular cardinal such that
H(θ) contains 〈T, I〉 and I. A sequence 〈Nη : η ∈ T 〉 is an I-suitable tree of models
for θ if it is a tree of models for θ and for every η in T and I in I ∩ Nη, the set

{ν ∈ T [η] : ν is a splitting point and I(ν) = I}

contains a front in T [η].

Definition 5.5. Let 〈T, I〉, I, and θ be as in Definition 5.4. A sequence 〈Nη : η ∈ T 〉
is an ω1-strictly I-suitable tree of models for θ if it is an I-suitable tree of models
for θ and there exists δ < ω1 such that for all η in T , Nη ∩ ω1 = δ.

If 〈Nη : η ∈ T 〉 is a tree of models and b is a cofinal branch of T , write Nb for
the set

⋃
{Nb↾n : n < ω}. Note that if 〈Nη : η ∈ T 〉 is an ω1-strictly I-suitable tree

of models for θ, then for any cofinal branch b of T , Nb ∩ ω1 = N〈〉 ∩ ω1.

Lemma 5.6. Let 〈T, I〉, I, and θ be as in Definition 5.4, and let 〈Nη : η ∈ T 〉 be an
ω1-strictly I-suitable tree of models for θ. Suppose η ⊳ ν in T and (Nν ∩ω2) \Nη is
non-empty. Let γ be the minimum element of (Nν∩ω2)\Nη. Then γ ≥ sup(Nη∩ω2).

Proof. Otherwise there is β in Nη ∩ω2 such that γ < β. By elementarity, there is a
surjection f : ω1 → β in Nη. So f−1(γ) ∈ Nν ∩ω1 = Nη ∩ω1. Hence f(f−1(γ)) = γ

is in Nη, which is a contradiction. �

Let I be a family of ideals. We say that I is restriction-closed if for all I in I, for
any set A in I+, the ideal I ↾ A is in I. If µ is a regular uncountable cardinal, we
say that I is µ-complete if each ideal in I is µ-complete.

Definition 5.7. Suppose that I is a non-empty restriction-closed ω2-complete fam-
ily of ideals and let P be a forcing poset. Then P satisfies the I-universal property
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if for all sufficiently large regular cardinals θ with I in H(θ), if 〈Nη : η ∈ T 〉 is an
ω1-strictly I-suitable tree of models for θ, then for all p in N〈〉 ∩ P there is q ≤ p

such that q forces there is a cofinal branch b of T such that Nb[Ġ]∩ ω1 = N〈〉 ∩ ω1.

Definition 5.7 is Shelah’s characterization of the I-universal property given in
[10] Chapter XV 2.11, 2.12, and 2.13. Note that in the definition, q is semigeneric
for N〈〉. In 2.12 Shelah proves that there are stationarily many structures N for
which N = N〈〉 for some ω1-strictly I-suitable tree of models 〈Nη : η ∈ T 〉. So by
standard arguments if P satisfies the I-universal property then P preserves ω1 and
preserves stationary subsets of ω1. Note that any semiproper forcing poset satisfies
the I-universal property.

Theorem 5.8. Let I be the family of ideals of the form NSω2 ↾ A, where A is a

stationary subset of ω2 ∩ cof(ω). Let Ṡ be an Add-name for the set (Pω1(ω2) \ V ).

Then Add ∗ P(Ṡ) satisfies the I-universal property.

Proof. Fix a regular cardinal θ ≫ ω2 and let 〈Nη : η ∈ T 〉 be an ω1-strictly I-

suitable tree of models for θ. Let p ∗ q̇ be a condition in (Add ∗ P(Ṡ)) ∩ N〈〉. We
find a refinement of p ∗ q̇ which forces there is a cofinal branch b of T such that
Nb[Ġ ∗ Ḣ ] ∩ ω1 = N〈〉 ∩ ω1.

We use an argument similar to the proof of Lemma 2.6 to define a sequence
〈ηs, ξs : s ∈ <ω2〉 satisfying:

(1) each ηs is in T , each ξs is in Nηs
∩ ω2, and s ⊳ t implies ηs ⊳ ηt,

(2) if ŝ0 E t then ξs b 1 is not in Nηt
, and if ŝ1 E u then ξs b 0 is not in Nηu

.
Let η〈〉 = 〈〉 and ξ〈〉 = 0. Suppose ηs is defined. Choose a splitting point νs in

T above ηs. Let Z denote the set of α < ω2 such that νŝα is in T . Since νs is a
splitting point, by the definition of I the set Z is a stationary subset of ω2 ∩ cof(ω).
For each α in Z, α is in N(νs bα) and has cofinality ω, so N(νs bα) ∩α is a countable
cofinal subset of α. Define Xs as the set of ξ in ω2 such that the set

{α ∈ Z : ξ ∈ N(νs bα) ∩ α}

is stationary. An easy argument using Fodor’s Lemma shows that Xs is unbounded
in ω2. For all large enough α in Z, the set (Xs \ sup(Nνs

∩ω2))∩α has size ω1. So
there is a stationary set Z ′

1 ⊆ Z and an ordinal ξs b 0 in Xs such that ξs b 0 is larger
than sup(Nνs

∩ ω2) and for all α in Z ′
1, ξs b 0 is not in N(νs bα) ∩ α. Let Z ′

0 be the
stationary set of α in Z such that ξs b 0 is in N(νs bα) ∩ α. Now define Ys as the set
of ξ in ω2 such that the set

{α ∈ Z ′
1 : ξ ∈ N(νs b α) ∩ α}

is stationary. Again we can find Z0 ⊆ Z ′
0 stationary and ξs b 1 in Ys such that ξs b 1

is larger than sup(Nνs
∩ω2) and for all α in Z0, ξs b 1 is not in N(νs bα) ∩α. Let Z1

be the stationary set of α in Z ′
1 such that ξs b 1 is in N(νs bα) ∩ α.

Now define ηs b 0 to be equal to νs ̂α for some α in Z0 larger than ξs b 1, and
define ηs b 1 to be νŝβ for some β in Z1 larger than ξs b 0. By definition ξs b 0 is in
Nηs b 0

and ξs b 1 is in Nηs b 1
.

We claim that if ηs b 0 E ν in T , then ξs b 1 is not in Nν . Since α is in Z0, ξs b 1

is not in N(ηs b 0) ∩ α. But ξs b 1 < α, so ξs b 1 is not in N(ηs b 0). By Lemma 5.6 the
minimum element of Nν ∩ ω2 which is not in N(ηs b 0), if such an ordinal exists, is
at least sup(N(ηs b 0) ∩ ω2) ≥ α > ξs b 1. So ξs b 1 is not in Nν . Similarly if ηs b 1 E ν

in T , then ξs b 0 is not in Nν . This completes the definition. Conditions (1) and (2)
are now easily verified.
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Since P is ω1-c.c., the condition p itself is generic for each Nη. Let G be a generic
filter for Add over V which contains p. Then for all η in T , Nη[G]∩ ω2 = Nη ∩ω2.
So for any cofinal branch b of T in V [G], Nb[G] ∩ ω2 =

⋃
{Nb↾n ∩ ω2 : n < ω}; in

particular, Nb[G] ∩ ω1 = N〈〉 ∩ ω1.
Let f : ω → 2 be a function in V [G] \ V . Define bf =

⋃
{ηf↾n : n < ω}. We

prove that Nbf
∩ ω2 is not in V by showing how to define f inductively from this

set. Suppose f ↾ n is known. Fix j < 2 such that f(n) 6= j. We claim that
ξ∗ = ξ(f↾n)b j is not in Nbf

∩ ω2. Otherwise there is k > n such that ξ∗ is in
Nηf↾k

. But f ↾ (n + 1) E f ↾ k. So by condition (2), ξ∗ is not in Nηf↾k
, which is a

contradiction. So f(n) is the unique i < 2 such that ξ(f↾n)b i is in Nbf
∩ ω2.

Let 〈Dn : n < ω〉 enumerate all the dense subsets of P(S) lying in Nbf
[G].

Inductively define a sequence 〈qn : n < ω〉 by letting q0 = q and choosing qn+1 to
be a refinement of q in Dn ∩ Nbf

[G]. Let 〈bi : i < γ〉 =
⋃
{qn : n < ω}. Clearly⋃

{bi : i < γ} = Nbf
∩ω2. Since Nbf

∩ω2 is not in V , r = 〈bi : i < γ〉̂(Nbf
∩ω2) is a

condition in P(S) below q and r is generic for Nbf
[G]. So r forces Nbf

[G][Ḣ ]∩ω1 =
Nbf

[G]∩ω1 = N〈〉∩ω1. Let ṙ be a name for r. Then p∗ ṙ ≤ p∗ q̇ is as required. �

We state without proof the facts concerning RCS iterations which we shall use.
These facts follow immediately from [10] Chapter XI 1.13 and Chapter XV 4.15.

Theorem 5.9. Suppose 〈Pi, Qj : i ≤ α, j < α〉 is an RCS iteration. Then Pα

preserves ω1 if the iteration satisfies the following properties:
(1) for each i < α there is n < ω such that Pi+n  |Pi| ≤ ω1,

(2) for each i < α there is an uncountable regular cardinal κi and a Pi-name İi

such that Pi is κi-c.c. and Pi forces İi is a non-empty restriction-closed κi-complete
family of ideals such that Q̇i satisfies the İi-universal property.

Theorem 5.10. Let α be a strongly inaccessible cardinal. Suppose that 〈Pi, Qj :
i ≤ α, j < α〉 is a revised countable support iteration such that Pα preserves ω1 and
for all i < α, |Pi| < α. Then Pα is α-c.c.

Suppose κ is a Mahlo cardinal and let A be the stationary set of strongly in-
accessible cardinals below κ. Define an RCS iteration 〈Pi, Q̇j : i ≤ κ, j < κ〉 by
recursion as follows. Our recursion hypotheses will include that each Pα preserves
ω1, and is α-c.c. if α is in A.

Suppose Pα is defined. If α is not in A then let Qα be a name for Coll(ω1, |Pα|).

Suppose α is in A. By the recursion hypotheses Pα forces α = ω2. Let Q̇α be a
name for the poset Add ∗ P(Ṡ).

If α is not in A then choose some regular cardinal κα larger than |Pα|, and let

İα be a name for some non-empty restriction-closed κα-complete family of ideals
on κα. Then Pα is κα-c.c., and since Q̇α is proper, Pα forces Q̇α satisfies the İα-
universal property. Suppose α is in A. Then let α = κα and define İα as a name
for the family of ideals on ω2 as described in Theorem 5.8. Then Pα is κα-c.c. and
forces Q̇α satisfies the İα-universal property.

Suppose β ≤ κ is a limit ordinal and Pα is defined for all α < β. Define Pβ

as the revised countable support limit of 〈Pα : α < β〉. By Theorem 5.9 and the
recursion hypotheses, Pβ preserves ω1. Hence if β is in A ∪ {κ}, then Pβ is β-c.c.
by Theorem 5.10.

This completes the definition. Let G be generic for Pκ. The poset Pκ is κ-c.c.
and preserves ω1, so in V [G] we have that κ = ω2 and A is a stationary subset of
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ω2 ∩ cof(ω1). For each α in A let Cα be the club on Pω1(α) introduced by Qα. If
α < β are in A, then Cα and Cβ are disjoint since Cβ is disjoint from V [G ↾ β]. So
〈Cα : α ∈ A〉 is a disjoint club sequence on ω2 in V [G].

We conclude the paper with several questions.
(1) Assuming Martin’s Maximum, the poset Add ∗ P(Ṡ) is semiproper. Is this

poset semiproper in general?
(2) Is it consistent that there exists a stationary set A ⊆ ω2 ∩ cof(ω1) such that

neither A∪ cof(ω) nor ω2 \A can acquire a club subset in an ω1 and ω2 preserving
extension?

(3) To what extent can the results of this paper be extended to cardinals greater
than ω2? For example, is it consistent that there is a fat stationary subset of ω3

which cannot acquire a club subset by any forcing poset which preserves ω1, ω2,
and ω3?
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