Set Forcing

Suppose M is a countable transitive model of ZFC Then M has many set-generic extensions (uncountably many)

Turn this around: *M* is a *set-generic restriction* of *V* iff *V* is a set-generic extension of *M*

Questions:

1. How many set-generic restrictions does a countable V have?

2. Can we "characterise" the set-generic restrictions of V?

Laver's Theorem

In fact, a countable V has only countably many set-generic restrictions:

Theorem

(Laver) Suppose that V is a set-generic extension of M. Then M is a definable inner model of V (with parameters).

Proof. Choose a V-regular κ so that P belongs to $H(\kappa)^M$, where V is P-generic over M. We need three facts:

1. $M \kappa$ -covers V: Any subset X of M in V of size $< \kappa$ in V is a subset of such a set in M.

This is because if f maps some ordinal $\alpha < \kappa$ onto X then for each $i < \alpha$ there are $< \kappa$ possibilities for f(i), given by the $< \kappa$ different forcing conditions.

Laver's Theorem

2. $M \ \kappa$ -approximates V: If X is a subset of M in V all of whose size $< \kappa M$ -approximations (i.e., intersections with size $< \kappa$ elements of M) belong to M, then X also belongs to M.

This is because if X is forced not to be in M then we can choose for each condition a set in M whose membership in \dot{X} is not decided by that condition; no condition can force the intersection of \dot{X} with the resulting size $< \kappa$ set of elements of M to be in M. 3. If N is an inner model which κ -covers and κ -approximates V such that M, N have the same $H(\kappa^+)$ then M = N.

By κ -approximation it's enough to show that any set X of ordinals of size $< \kappa$ in M also belongs to N (and vice-versa). Build a κ -chain $X = X_0 \subseteq X_1 \subseteq \cdots$ of sets of size $< \kappa$ such that $X_{2\alpha+1}$ belongs to M and $X_{2\alpha+2}$ belongs to N. If Y is the union of the X_{α} 's then by κ -approximation, Y belongs to $M \cap N$. But as M, N have the same $H(\kappa^+)$ they also have the same subsets of the ordertype of Y and therefore the same subsets of Y. It follows that X belongs to N.

Finally: All of this holds with M, V replaced by $H(\lambda)^M, H(\lambda)$ for *V*-regular cardinals $\lambda > \kappa^+$. So $H(\lambda)^M$ is definable in *V* from λ , $H(\kappa^+)^M$ uniformly in λ , so *M* is *V*-definable.

Global Covering

Another easy consequence of set-genericity is the following.

Proposition

Suppose that V is a set-generic extension of M. Then M globally covers V: For some V-regular κ , if $f : \alpha \to M$ belongs to V then there is $g : \alpha \to M$ in M such that $f(i) \in g(i)$ and g(i) has V-cardinality $< \kappa$ for all $i < \alpha$.

To see this define g(i) to be the set of possible values of f(i) given by the different forcing conditions. We can choose any κ so that the forcing is κ -cc.

Suprisingly, we now know enough to characterise set-generic restrictions.

Theorem

(Bukovsky) Suppose that M is a definable inner model which globally covers V. Then V is a set-generic extension of M.

I'll give a proof of this and discuss some refinements and open questions.

First suppose that V = M[A] for some set of ordinals A; we'll get rid of this extra hypothesis later.

Fix a V-regular κ such that A is a subset of κ and M globally κ -covers V, i.e., if $f : \alpha \to M$ in V then there is $g : \alpha \to M$ in M so that $f(i) \in g(i)$ and g(i) has V-cardinality $< \kappa$ for each $i < \alpha$.

The language $\mathcal{L}^{QF}_{\kappa}(M)$

The formulas of $\mathcal{L}_{\kappa}^{QF}(M)$ are defined inductively by:

1. Basic formulas $\alpha \in \dot{A}$, $\alpha \notin \dot{A}$ for $\alpha < \kappa$.

2. If $\Phi \in M$ is a size $< \kappa$ set of formulas then so are $\bigvee \Phi$ and $\bigwedge \Phi$.

Each formula can be regarded as an element of $H(\kappa)^M$. The set of formulas forms a κ -complete Boolean algebra in M, denoted by \mathcal{B}_{κ}^M .

 $A \subseteq \kappa$ satisfies φ iff φ is true when A is replaced by A.

 $T \vDash \varphi$ iff for all $A \subseteq \kappa$ (in a set-generic extension of M), if A satisfies all formulas in T then A also satisfies φ .

The above is expressible in M for T, φ in M and by Lévy absoluteness, $T \vDash \varphi$ in M iff $T \vDash \varphi$ in V.

Quotients of \mathcal{B}_{κ}^{M} : Suppose that T is a set of formulas in $\mathcal{B}_{(2^{<\kappa})^{+}}^{M}$. Then \mathcal{I}_{T} is the ideal of formulas in \mathcal{B}_{κ}^{M} which are inconsistent with T.

Now we prove the genericity of A over M.

Recall that M globally κ -covers V. Let f be a function in V from subsets of \mathcal{B}_{κ}^{M} in M to \mathcal{B}_{κ}^{M} such that:

If A satisfies some $\psi \in \Phi$ then A satisfies $f(\Phi) \in \Phi$.

Using a wellorder in M we can regard f as a function from some ordinal into M. Apply global κ -covering to get g in M so that $g(\Phi) \subseteq \Phi$ has size $< \kappa$ and $f(\Phi) \in g(\Phi)$ for each Φ . Consider the following set of formulas T in $\mathcal{B}^M_{(2 \leq \kappa)^+}$:

 $T = \{ (\bigvee \Phi \to \bigvee g(\Phi)) \mid \Phi \subseteq \mathcal{B}_{\kappa}^{M}, \ \Phi \in M \}.$ Let P be the forcing $(\mathcal{B}_{\kappa}^{M} \setminus \mathcal{I}_{T})/\mathcal{I}_{T}$ the set of T-consistent formulas modulo T-provability.

Claim 1. $P = (\mathcal{B}_{\kappa}^{\mathcal{M}} \setminus \mathcal{I}_{\mathcal{T}})/\mathcal{I}_{\mathcal{T}}$ is κ -cc.

Proof. Suppose that Φ is a maximal antichain in *P*. We show that $g(\Phi) = \Phi$ (and therefore Φ has size $< \kappa$). It suffices to show that any $\varphi \in \Phi$ is *T*-consistent with some element of $g(\Phi)$. Choose any $B \subseteq \kappa$ which satisfies $T \cup {\varphi}$ (this is possible because φ is *T*-consistent). As *T* includes the formula $\bigvee \Phi \rightarrow \bigvee g(\Phi)$ it follows that *B* also satisfies $\bigvee g(\Phi)$ and therefore ψ for some $\psi \in g(\Phi)$. So φ is *T*-consistent with $\psi \in g(\Phi)$. \Box

Claim 2. Let G(A) be $\{ [\varphi]_{\mathcal{I}_{\mathcal{T}}} | \varphi \text{ belongs to } \mathcal{B}^{\mathcal{M}}_{\kappa} \text{ and } A \text{ satisfies } \varphi \}$. Then G(A) is *P*-generic over *M*.

Proof. Suppose that Φ consists of representatives of a maximal antichain X of equivalence classes in P. Then $T \models \bigvee \Phi$, else the negation of $\bigvee \Phi$ represents an equivalence class violating the maximality of X. As A satisfies the theory T it follows that A satisfies some element of Φ and therefore G(A) meets X. \Box

It now follows that M[A] is a *P*-generic extension of *M*, as M[A] = M[G(A)].

This proves Bukovsky's theorem assuming that V = M[A] for some set of ordinals A.

But the same proof shows that M[A] is a κ -cc generic extension of M for any set of ordinals $A \in V$. Choose A so that M[A] contains all subsets of $2^{<\kappa}$ in V. Then M[A] must equal all of V: Otherwise for some set B of ordinals in V, M[A, B] is a nontrivial κ -cc generic extension of M[A] and therefore adds a new subset of $2^{<\kappa}$ to M[A]. The above proof shows that for M a definable inner model of V:

V is a κ -cc forcing extension of M iff M globally κ -covers V

Is there a similar characterisation with " κ -cc" replaced by "size at most κ "?

 $M \kappa$ -decomposes V iff every subset of M in V is the union of at most κ -many subsets, each of which belongs to M.

Proposition

V is a size at most κ forcing extension of M iff M globally κ^+ -covers and κ -decomposes V.

Proof. For the easy direction, suppose that V = M[G] where G is *P*-generic and *P* has size at most κ . As *P* is κ^+ -cc it follows that *M* globally κ^+ -covers *V*. To show that *M* κ -decomposes *V*, suppose that $X \in V$ is a subset of *M* and choose $Y \in M$ that covers *X*. Let \dot{X} be a name for *X* and for each $p \in G$ let X_p consist of those $x \in M$ such that *p* forces $x \in \dot{X}$. Then the X_p 's give the desired κ -decomposition of *X*.

Bukovsky's Theorem: Refinements

Conversely, suppose that M globally κ^+ -covers and κ -decomposes V. By Bukovsky's Theorem, V is a P-generic extension of M for some P which is κ^+ -cc. We want to argue that P is equivalent to a forcing of size at most κ . We may assume that P is in fact a complete κ^+ -cc Boolean algebra which we write as B.

Write V as M[G] where G is B-generic over M. Take a B-name for a κ -decomposition $\dot{G} = \bigcup_{i < \kappa} \dot{G}_i$ of \dot{G} , where each \dot{G}_i is forced to belong to M. For each $i < \kappa$ let X_i be a maximal antichain of conditions in B which decide a specific value in M for \dot{G}_i . For each p in X_i let $p(\dot{G}_i)$ denote the value of \dot{G}_i forced by p and b(p) the meet of the conditions in $p(\dot{G}_i)$; b(p) is a nonzero Boolean value because if G_p is generic below p then G_p must contain a condition below each element of $p(\dot{G}_i)$. Let D be the set of b(p) for p in the union of the X_i 's. Claim. D is dense in B.

If q belongs to P then some r below q forces that q belongs to G_i for some i; we can assume that r extends some element p of X_i . But then as p decides a value for G_i , it also forces that q belongs to G_i and therefore q is extended by $b(p) \in D$. \Box

We have characterised κ -cc generic extensions and size at most κ generic extensions in terms of covering and decomposition properties. As a result, these properties are Π_2 properties of V with a predicate for M.

Question. Is the property "V is a set-forcing extension of M" a strictly Σ_3 property of V with a predicate for M?

Bukovsky's Theorem: Refinements

Class Forcing

I don't know a good version of Laver, Bukovsky for class forcing. Below is a special case.

Morse-Kelley Class Theory MK: Can form new classes by quantifying over classes.

Models of MK (with global choice) correspond to models of:

- 1. ZFC⁻ (without Power)
- 2. There is an inaccessible cardinal κ
- 3. Every set has cardinality at most κ

Call this theory SetMK.

Theorem

Suppose that $M \subseteq V$ are models of SetMK, M is definable in Vand κ is the largest cardinal of V. Then every element of V is in a κ -cc set-generic extension of M iff: (*) For any V-definable function $f : M \to \kappa$ there is an M-definable $g : M \to \kappa$ which dominates f.

In terms of models of MK (with global choice) this says:

Bukovsky's Theorem: Refinements

Theorem

Suppose that $(M, C^M) \subseteq (V, C^V)$ are models of MK with global choice and C^M is definable in (V, C^V) (by a formula which quantifies over classes). Then each class in C^V belongs to a class-generic extension of (M, C^M) via a class forcing whose antichains are sets iff: (*) For any (V, C^V) -definable function f from C^M to M there is an (M, C^M) -definable function g from C^M to M such that $f(x) \in g(x)$ for each $x \in C^M$.

If one goes beyond class theory to hyperclass theory (hyperclasses of classes) then the situation simplifies greatly. In the other direction, working with a weak class theory like Gödel-Bernays looks very difficult.