Trapping Cofinality

Sy-David Friedman (KGRC Vienna)

December 7, 2021

We begin with a simple observation about the inner model L[Card], where Card denotes the class of infinite cardinals. If m is a mouse built from measures which is *active* (i.e. has a measure at the top) then a *good* Ord-iteration of m is an iteration of m of length Ord using total measures whose iteration map sends the top measurable of m to Ord in the iterate. A good Ord-iterate of m is the result of a good Ord-iteration.

Proposition 1 Let $m = m_1^{\#}$ be the least mouse with a measurable limit of measurables.

(a) There is a good Ord-iterate m^+ of m with \aleph_1^V as its least measurable whose truncation to Ord contains L[Card] as an inner model.

(b) There is a good Ord-iterate m^- of m with \aleph^V_{ω} as its least measurable whose truncation to Ord is contained in L[Card] as an inner model.

The iterate m^+ is obtained by iterating measurables of $m_1^{\#}$ and its iterates which are below the top measurable to cardinals of V. The measurables of m^+ below Ord are the infinite successor cardinals of V and therefore Card is definable over $m^+|\text{Ord.}$ The iterate m^- is obtained by iterating the measurables of $m_1^{\#}$ and its iterates which are below the top measurable to limit cardinals of V. The measurable cardinals of m^- below Ord are the successor limit cardinals of V (i.e. the limit cardinals of V which are not limits of limit cardinals of V), and the measure in m^- on such a cardinal is determined by the tail filter on the cardinals below it. It follows that $m^-|\text{Ord}$ is definable over L[Card].

We say that the mouse $m_1^{\#}$ traps the inner model L[Card].

Corollary 2 The subsets of \aleph_1^V in L[Card] are those of m^- (= those of m^+). Thus \aleph_1^V is weakly compact in L[Card] and the GCH holds in L[Card]

up to and including \aleph_1^V . The reals of L[Card] are those of $m_1^{\#}$.

The Corollary follows because $m^-|\text{Ord}$ is a simple iterate of $m^+|\text{Ord}$ (i.e. an iterate using total measures) and \aleph_1^V is the critical point of this iteration. Thus L[Card] has the same subsets of \aleph_1^V as these models and as \aleph_1^V is measurable in $m^+|\text{Ord}$ it is weakly compact in $m^-|\text{Ord}$ and hence in L[Card]. Also note that if a mouse m has a measure at the top with critical point κ then m and $m|\kappa$ have the same bounded subsets of κ^2 .

The aim of this paper is to establish a similar result for the model L[Cof], where Cof denotes the proper class function that assigns to each limit ordinal its cofinality. For this result we make use of the least mouse with a measurable κ of Mitchell order $\kappa + 1$, which we denote by m_{Cof} .³

Our result requires that we be clear about what we mean by "mouse" in this paper. The modern notion of mouse (see [8]) allows the use of partial extenders (in the present setting, partial measures), facilitating good condensation properties. The classical notion (see [6]) made use only of total extenders. The difference is often just cosmetic as the hierarchy of total extenders of a classical mouse can be reorganised into a hierarchy with partial extenders, producing a modern mouse with the same sets. However the distinction is important in this paper⁴.

To produce our desired smaller iterate of m_{Cof} we need to assume that the universe is rich in inaccessible cardinals. This is guaranteed by assuming that *Ord is* Δ_2 -*Mahlo*, i.e. that every club of ordinals which is Δ_2 -definable in V contains an inaccessible.

¹Actually, as discussed later in this paper, [7] characterises L[Card] as a hyperclassgeneric extension of the model $(m^{-}|Ord, C)$ of class theory, where C consists of the subclasses of $m^{-}|Ord$ belonging to m^{-} , via a cardinal- and GCH-preserving Prikry Product forcing. This yields the stronger result that all infinite successor V-cardinals are weakly compact in L[Card] and the GCH holds everywhere in L[Card].

²This is true not only for "modern" mice built from partial measures, but also for the "classical" mice used in this paper which are built from only total measures.

³Normal measures on a cardinal κ are ordered by $U_0 < U_1$ iff U_0 belongs to the ultrapower of the universe by U_1 . In a mouse this is a wellorder. The *Mitchell order of a measure* is the ordertype of the measures below it in this order and the *Mitchell order of* κ is the ordertype in this order of all measures with critical point κ . Thus if there is just one normal measure on κ , this measure has Mitchell order 0 and κ has Mitchell order 1.

⁴The reason is that we will only recover the total measures of the truncation to Ord of an Ord-iterate of m_{Cof} using Cof, and it is therefore important to know that these are the only measures of that truncation.

Theorem 3 Regard m_{Cof} as a classical mouse (presented with only total measures).

(a) There is an Ord-iterate m^+ of m_{Cof} with \aleph_1^V as its least measurable such that $m^+|Ord \text{ contains } L[Cof]$ as an inner model. If Ord is Δ_2 -Mahlo then m^+ is a good Ord-iterate of m_{Cof} .

(b) Assume that Ord is Δ_2 -Mahlo. Then there is a good Ord-iterate m^- of m_{Cof} with \aleph_{ω} as its least measurable such that L[Cof] contains $m^-|Ord$ as an inner model.

Corollary 4 Assume that Ord is Δ_2 -Mahlo. Then letting m^+ and m^- be as in Theorem 3, the subsets of \aleph_1^V in L[Cof] are those of m^- (= those of m^+). Thus \aleph_1^V is weakly compact in L[Cof] and the GCH holds in L[Cof]up to and including \aleph_1^V . The reals of L[Cof] are those of m_{Cof} .

Again the Corollary follows from the Theorem because L[Cof] is trapped by m_{Cof} : The weasels $m^-|\text{Ord}$ and $m^+|\text{Ord}$ compare simply (i.e. with total measures) below Ord and \aleph_1^V is the critical point of the comparison. It follows that L[Cof] has the same subsets of \aleph_1^V as these models. The reals of m_{Cof} are the same as the reals of m^+ and m^- ; as these mice have measures at the top with critical point Ord (thanks to the goodness of the Ord-iterations that yield m^+ and m^-), all of these reals appear in $m^+|\text{Ord}$ and $m^-|\text{Ord}$.

An iterate containing L[Cof]

We prove Theorem 3 (a).

Let $(\aleph_{\alpha}^* \mid \alpha \in \text{Ord})$ be the increasing enumeration of the infinite regular cardinals of V. (Thus for example $\aleph_n^* = \aleph_n$ for finite $n, \aleph_{\omega}^* = \aleph_{\omega+1}$ and for weakly inaccessible $\alpha, \aleph_{\alpha}^* = \alpha$.) Suppose m is a mouse (presented with only total measures) and U is a measure in m with critical point κ . We say that U is satisfied iff

U has (Mitchell-) order α in m and κ has cofinality greater than \aleph_{α}^{*} (in V).

Our iteration is defined as follows. Let m_0 be m_{Cof} , the least mouse (presented with only total measures) containing a measurable κ of order $\kappa + 1$. For limit ordinals α we take m_{α} to be the direct limit of the m_{β} , $\beta < \alpha$. Now suppose that m_{α} is defined and we wish to define $m_{\alpha+1}$. Let U_{α} be the least measure of m_{α} which is not satisfied (where measures are ordered by their critical points and for a fixed critical point by their orders). Note that U_{α} exists as the top measure of m_{α} has order $\kappa =$ the top measurable of m_{α} and therefore is not satisfied. Then we take $m_{\alpha+1}$ to be the ultrapower of m_{α} via the measure U_{α} . Let κ_{α} denote the critical point of the measure U_{α} .

Note that the critical points κ_{α} used in the iteration are strictly increasing: When the measure U_{α} on κ_{α} is applied, all smaller measures have been satisfied and will continue to be satisfied as measures in the ultrapower of m_{α} by U_{α} . Moreover the only measures in $m_{\alpha+1}$ with critical point at most κ_{α} are smaller than U_{α} in m_{α} . So κ_{α} cannot be re-used in the iteration. It follows that for each α , κ_{α} is at least α and therefore m_{α} has ordinal height greater than α . And as taking an ultrapower does not increase cardinality, m_{α} has the same cardinality as α for infinite α (m_n is countable for finite n).

Lemma 5 Let κ_{α}^{-} denote the sup of the κ_{β} , $\beta < \alpha$ ($\kappa_{0}^{-} = 0$). If κ is greater than κ_{α}^{-} and is regular in m_{α} then κ has V-cofinality \aleph_{0} .

Corollary 6 If κ_{α}^{-} (defined as in the previous Lemma) is less than κ_{α} then κ_{α} is the least measurable of m_{α} greater than κ_{α}^{-} .

The Corollary follows from the Lemma since $\kappa =$ the least measurable of m_{α} greater than κ_{α}^{-} is regular in m_{α} and therefore by the Lemma of *V*-cofinality \aleph_0 ; so the (order 0) measure on κ in m_{κ} is not satisfied.

Proof of Lemma 5. Note that as $m_{Cof} = m_0$ is sound and Σ_1 -projectible to ω , every element of m_0 is Σ_1 -definable in m_0 . It follows that every element of m_α is Σ_1 -definable in m_α from parameters in κ_α^- . Also note that m_0 is closed under taking transitive closures. But then if for each transitive x in m_0 and Σ_1 formula φ we let $a_{x,\varphi}$ consist of those elements of κ which are Σ_1 -definable in $\pi_{0\alpha}(x)$ from parameters in κ_α^- via the formula φ , we see that the $a_{x,\varphi}$'s are bounded in κ , using the regularity of κ in m_α . And their union is all of κ as the union of the $\pi_{0\alpha}(x)$'s is all of m_α . As there are only V-countably many $a_{x,\varphi}$'s it follows that κ has V-cofinality \aleph_0 . \Box

To satisfy the measures on a κ of order κ we need κ to be weakly inaccessible (in V) and V might not have any weak inaccessibles. However we can satisfy every measure below the top if we assume that Ord is Δ_2 -Mahlo:

Lemma 7 Assume that Ord is Δ_2 -Mahlo. Then the class of α for which all measures with critical point below the top measurable of m_{α} are satisfied forms a closed unbounded class.

Proof. Say that the pair (α, γ) is good if γ is below the top measurable of m_{α} and there is a β at least α such that $\pi_{\alpha\beta}(\gamma)$ is less than κ_{β} . We show that all pairs (α, γ) with γ below the top measurable of m_{α} are good. If not, choose a bad pair (α_0, γ_0) . If there is an α_1 greater than α_0 and γ_1 less than $\pi_{\alpha_0\alpha_1}(\gamma_0)$ such that (α_1, γ_1) is bad, choose such a bad pair (α_1, γ_1) . And if there is an α_2 greater than α_1 and γ_2 less than $\pi_{\alpha_1\alpha_2}(\gamma_1)$ such that (α_2, γ_2) is bad, then choose such a bad pair (α_2, γ_2) . Continue this, choosing bad pairs (α_n, γ_n) . This sequence cannot be infinite, as that would contradict the wellfoundness of the iterate $m_{\alpha_{\omega}}$ where α_{ω} is the sup of the α_n 's. So there is some $\alpha = \alpha_n$ and $\gamma = \gamma_n$ such that (α, γ) is a bad pair and for all β at least α , $\pi_{\alpha\beta}(\gamma)$ is the least δ so that the pair (β, δ) is bad.

We may choose β_0 large enough so that $\pi_{\alpha\beta_0}(\delta)$ is less than κ_{β_0} for all δ less than γ , using the fact that (α, δ) is good for such δ . Then we may choose β_1 greater than β_0 so that $\pi_{\beta_0\beta_1}(\delta)$ is less than κ_{β_1} for all δ less than $\gamma_1 = \pi_{\alpha\beta_0}(\gamma)$, using the fact that (β_0, δ) is good for such δ . Note that for δ less than γ , $\pi_{\alpha\beta_1}(\delta)$ is equal to $\pi_{\alpha\beta_0}(\delta)$, as κ_{β_0} is the critical point of $\pi_{\beta_0\beta_1}$. If we continue this for ω steps we reach a β greater than α such that for all n, $\pi_{\beta_n\beta}(\delta)$ is less than κ_β for all δ less than $\pi_{\alpha\beta_n}(\gamma)$. It follows that $\gamma_\omega = \pi_{\alpha\beta}(\gamma)$ is at most κ_{β} . By the badness of the pair (α, γ) , we have that γ_{ω} in fact equals κ_{β} . By iterating further, we can create a club C of such β 's. Choose some β in C. If κ_{β} is not the top measurable of m_{β} then let δ be the order of κ_{β} . If δ is less than κ_{β} then choose β^* in C of V-cofinality \aleph_{δ}^* . But then $\pi_{\beta\beta^*}(\kappa_{\beta}) = \pi_{\beta\beta^*}(\pi_{\alpha\beta}(\gamma)) = \pi_{\alpha\beta^*}(\gamma) = \kappa_{\beta^*}$, which is a contradiction since δ = the order of κ_{β} is also the order of κ_{β^*} by elementarity and therefore all measures with critical point κ_{β^*} are satisfied. If δ equals κ_{β} then choose β^* in C to be V-regular, using the Δ_2 -Mahloness of Ord. Then we again reach a contradiction as all measures with critical point κ_{β^*} are satisfied. So it must be that κ_{β} is the top measurable of m_{β} and therefore we have found a β such that all measures in m_{β} with critical point below the top measurable are satisfied.

This proves that the class of ordinals in the statement of the Lemma is unbounded. It is closed because if β is the limit of ordinals α such that κ_{α} is the top measurable of m_{α} , then κ_{β} is also the top measurable of m_{β} . \Box The iteration continues for Ord steps, resulting in an iterate $m_{Ord} = m^+$ of height greater than Ord. It follows from Lemma 7 that if Ord is Δ_2 -Mahlo then the top measurable of m_0 is sent to Ord under the iteration map from m_0 to m^+ . So Ord is the top measurable of m^+ in that case. We denote $m^+|\text{Ord by } m_0^+$.

Next we characterise the measurables of m_0^+ together with their orders. Let $\text{Meas}(\alpha)$ denote the class of measurables of order α . And recall that \aleph_{α}^* denotes the α -th regular cardinal.

Lemma 8 Let α be greater than 0. If κ is a measurable of order at least α in m_0^+ then κ has V-cofinality at least \aleph_{α}^* . Conversely, if κ has V-cofinality at least \aleph_{α}^* and is regular in m_0^+ then κ is measurable of order at least α in m_0^+ .

Proof. We prove that the Lemma holds up to κ_{γ} (i.e. for κ less than or equal to κ_{γ}) by induction on γ . For $\gamma = 0$ this is vacuous as the least measurable of m_0^+ is greater than κ_0 and, as κ_0 is countable in V, the least ordinal of uncountable V-cofinality is also greater than κ_0 .

Suppose that $\gamma > 0$, the Lemma holds up to κ_{δ} for $\delta < \gamma$ and we want to verify it up to κ_{γ} . If $\gamma = \delta + 1$ is a successor then by Corollary 6 κ_{γ} is the least measurable of m_{γ} greater than κ_{δ} and therefore there are no measurables of m_0^+ in the interval $(\kappa_{\delta}, \kappa_{\gamma}]$. Also by Lemma 5 the m_{γ} -regulars and therefore also the m_0^+ -regulars in this interval have V-cofinality \aleph_0 . So the Lemma holds vacuously on this interval and therefore by induction up to and including κ_{γ} .

So assume that γ is a limit. Again by Lemma 5 there are no instances of the Lemma to verify in the interval $(\kappa_{\gamma}^{-}, \kappa_{\gamma}]$ so it will suffice to verify the Lemma at κ_{γ}^{-} . First suppose that κ_{γ} is greater than κ_{γ}^{-} and therefore all measures in m_{γ} on κ_{γ}^{-} , if any, are satisfied.

We first verify the Lemma at κ_{γ}^{-} in the case $\alpha = 1$; the proof in the general case will be similar. Let κ denote κ_{γ}^{-} . If κ is measurable in m_{0}^{+} then it is measurable in m_{γ} and therefore the order 0 measure on κ in m_{γ} is satisfied; it follows from the definition of satisfaction that κ has uncountable V-cofinality. Conversely, suppose that κ has uncountable V-cofinality and is regular in m_{0}^{+} and therefore also in m_{γ} . We use the following variant of Lemma 5.

Lemma 9 For all α , if κ is regular in m_{α} then κ is either measurable in m_{α} or has V-cofinality \aleph_0 .

Proof. By induction on α . The claim is vacuous for $\alpha = 0$ as m_0 is countable.

Suppose the result holds for m_{α} and we want to verify it for $m_{\alpha+1}$. If κ is less than κ_{α} then the result follows by induction. If κ equals κ_{α} then either κ is measurable in $m_{\alpha+1}$ (because the measure U_{α} which was applied to obtain $m_{\alpha+1}$ has order > 0) or κ has cofinality \aleph_0 in V (because U_{α} has order 0 and is not satisfied). If κ is greater than κ_{α} then we can apply Lemma 5 to infer that κ has V-cofinality \aleph_0 .

So assume that α is a limit and the result holds for all β less than α . As before let κ_{α}^{-} denote the sup of the κ_{β} , $\beta < \alpha$. If κ is greater than κ_{α}^{-} then again by Lemma 5 it has V-cofinality \aleph_0 and if κ is less than κ_{α}^{-} then the result follows by induction. So suppose that κ equals κ_{α}^{-} and assume that κ has uncountable V-cofinality. Choose $\beta < \alpha$ and $\bar{\kappa}$ in m_{β} so that $\pi_{\beta\alpha}(\bar{\kappa})$ equals κ . If $\bar{\kappa}$ has uncountable V-cofinality then by induction $\bar{\kappa}$ is measurable in m_{β} and therefore by elementarity, κ is measurable in m_{α} . So suppose that for all $\beta < \alpha$, if $\pi_{\beta\alpha}(\bar{\kappa})$ equals κ then $\bar{\kappa}$ has V-cofinality \aleph_0 and therefore the map $\pi_{\beta\alpha}$ restricted to $\bar{\kappa}$ is not cofinal into κ . But then using the uncountable V-cofinality of $\kappa = \kappa_{\alpha}^{-}$, we can choose $\beta < \alpha$ and $\bar{\kappa}$ so that $\pi_{\beta\alpha}(\bar{\kappa})$ equals κ and $\bar{\kappa}$ is the critical point κ_{β} of $\pi_{\beta\alpha}$. It follows that $\bar{\kappa}$ is measurable in m_{β} and by elementarity, κ is measurable in m_{α} . \Box (Lemma 9)

Now returning to our verification of Lemma 8 at κ_{γ}^{-} when $\alpha = 1$, if $\kappa = \kappa_{\gamma}^{-}$ has uncountable V-cofinality and is regular in m_{0}^{+} we can apply Lemma 9 to conclude that κ is measurable in m_{γ} and therefore also in m_{0}^{+} (as κ is less than κ_{γ}).

The case $\alpha > 1$ is a natural generalisation of the case $\alpha = 1$: If $\kappa = \kappa_{\gamma}^{-}$ has order at least α in m_{0}^{+} then as all measures in m_{γ}^{-} with critical point κ are satisfied (recall our assumption that $\kappa = \kappa_{\gamma}^{-}$ is less than κ_{γ}) it follows that κ has V-cofinality greater than \aleph_{β}^{*} for each $\beta < \alpha$ and therefore has V-cofinality at least \aleph_{α}^{*} . Conversely, assume that κ has V-cofinality at least \aleph_{α}^{*} and is regular in m_{0}^{+} . We want to show that κ has order at least α in m_{0}^{+} . We prove this using the following analogue of Lemma 9:

Lemma 10 For all β , if κ is regular in m_{β} then κ either has order at least α in m_{β} or has V-cofinality less than \aleph_{α}^* .

Proof. By induction on β . The claim is vacuous for $\beta = 0$ as m_0 is countable.

Suppose the result holds for m_{β} and we want to verify it for $m_{\beta+1}$. If κ is less than κ_{β} then the result follows by induction. If κ equals κ_{β} then either κ has order at least α in $m_{\beta+1}$ (because the measure U_{β} which was applied to obtain $m_{\beta+1}$ has order at least α) or κ has V-cofinality less than \aleph_{α}^{*} (because U_{β} has order less than α and is not satisfied). If κ is greater than κ_{β} then by Lemma 5, κ has V-cofinality \aleph_{0} .

Assume that β is a limit and the result holds for all γ less than β . Let κ_{β}^{-} denote the sup of the κ_{γ} , $\gamma < \beta$. If κ is greater than κ_{β}^{-} then it has V-cofinality \aleph_0 by Lemma 5. If κ is less than κ_{β}^{-} then the result follows by induction. So suppose that κ equals κ_{β}^{-} and assume that κ has V-cofinality at least \aleph_{α}^{*} . Choose $\gamma < \beta$ and $\bar{\kappa}$ in m_{γ} so that $\pi_{\gamma\beta}(\bar{\kappa})$ equals κ . If $\bar{\kappa}$ has V-cofinality at least \aleph_{α}^{*} then by induction $\bar{\kappa}$ has order at least α in m_{γ} and therefore by elementarity κ has order at least α in m_{β} . So suppose that for all $\gamma < \beta$, if $\pi_{\gamma\beta}(\bar{\kappa})$ equals κ then $\bar{\kappa}$ has V-cofinality less than \aleph_{α}^{*} and therefore the map $\pi_{\gamma\beta}$ restricted to $\bar{\kappa}$ is not cofinal into κ . Recall that $\kappa = \kappa_{\beta}^{-}$ has V-cofinality at least \aleph_{α}^{*} . For each $\alpha_0 < \alpha$ we can choose $\gamma < \beta$ and $\bar{\kappa}$ of V-cofinality at least \aleph_{α}^{*} so that $\pi_{\gamma\beta}(\bar{\kappa})$ equals κ and $\bar{\kappa}$ is the critical point κ_{γ} of $\pi_{\gamma\beta}$. The measure U_{γ} must have order at least α_{0} in m_{γ} . By elementarity, κ has order greater than α_{0} in m_{β} , and since $\alpha_{0} < \alpha$ was arbitrary, κ has order at least α in m_{β} . \Box (Lemma 10)

Returning to our verification of Lemma 8 at κ_{γ}^{-} for $\alpha > 1$, if $\kappa = \kappa_{\gamma}^{-}$ is a limit cardinal of V-cofinality at least \aleph_{α}^{*} which is regular in m_{0}^{+} we can apply Lemma 10 to conclude that κ has order at least α in m_{γ} and therefore also in m_{0}^{+} (as by assumption κ is less than κ_{γ}).

Finally, we must treat the case where γ is a limit and $\kappa_{\gamma} = \kappa_{\gamma}^{-} =$ the sup of the κ_{β} , $\beta < \gamma$. So some measure on κ_{γ} in m_{γ} is not satisfied. For simplicity of notation denote κ_{γ} simply by κ .

First suppose that α equals 1. Suppose $\kappa = \kappa_{\gamma}$ is measurable in m_0^+ and therefore in m_{γ} . If U_{γ} is the order 0 measure on κ in m_{γ} then κ would not

be measurable in m_0^+ , contrary to hypothesis. So the order 0 measure on κ in m_{γ} is satisfied and therefore κ has uncountable V-cofinality. Conversely, if κ has uncountable V-cofinality then the measure U_{γ} is not the order 0 measure on κ and therefore κ remains measurable in m_0^+ .

For $\alpha > 1$: If $\kappa = \kappa_{\gamma}$ has order at least α in m_0^+ then the measure U_{γ} has order at least α and therefore κ has V-cofinality greater than \aleph_{β}^* for each $\beta < \alpha$. It follows that κ has V-cofinality at least \aleph_{α}^* . Conversely, if κ has V-cofinality at least \aleph_{α}^* then the measure U_{γ} must have order at least α in m_{γ} ; it follows that κ has order at least α in m_0^+ as well.

This completes the proof of Lemma 8 in all cases. \Box

Using Lemmas 9 and 8 we can now show:

Lemma 11 Cof is definable over m_0^+ .

Proof. We define the V-cofinality of β by induction on β in the model m_0^+ . This is trivial for β finite, so assume that β is infinite. If β is not regular in m_0^+ then the V-cofinality of β is the same as the V-cofinality of the m_0^+ cofinality of β , so we can apply induction to compute the V-cofinality of β . If β is m_0^+ -regular and not measurable in m_0^+ then by Lemma 9, β has V-cofinality \aleph_0 . If β is measurable of order α in m_0^+ then by Lemma 8, β has V-cofinality \aleph_{α}^* . Note that the sequence ($\aleph_{\alpha}^* \mid \alpha \in \text{Ord}$) is definable in m_0^+ as for $\alpha > 0$, \aleph_{α}^* is the least measurable of order α in m_0^+ . \Box

Thus $m^+|\text{Ord} = m_0^+$ contains L[Cof] as a definable inner model, completing the proof of Theorem 3(b).

An iterate contained in L[Cof]

For this second iteration, which yields the smaller iterate m^- of m_{Cof} , we assume that Ord is Δ_2 -Mahlo. We use a different notion of "satisfied measure". Let $((m_{\beta}, U_{\beta}) \mid \alpha \in \text{Ord})$ be an iteration (with total measures) of m_{Cof} and let κ_{β} denote the critical point of U_{β} . Let U be a measure on κ of order $\alpha < \kappa$ in some m_{β} . A critical predecessor of κ is an ordinal $\bar{\kappa} < \kappa$ such that for some $\bar{\beta} < \beta$, $\bar{\kappa} = \kappa_{\bar{\beta}}$ and $\pi_{\bar{\beta}\beta}(\bar{\kappa}) = \kappa$. Then U is satisfied if the set of V-regular critical predecessors of κ is cofinal in κ and has ordertype at least \aleph_{α} . Our iteration is defined analogously to the previous iteration: Let m_0 be m_{Cof} . For limit ordinals β we take m_β to be the direct limit of the m_γ , $\gamma < \beta$. If m_β is defined and we wish to define $m_{\beta+1}$, we let U_β be the lesat measure of m_β which is not satisfied. If all measures of m_β below the top measure of m_β are satisfied then we let U_β be the top measure of m_β . Then we take $m_{\beta+1}$ to be the ultrapower of m_β via the measure U_β . Let κ_β denote the critical point of the measure U_β .

As before the critical points κ_{β} used in the iteration are strictly increasing, so κ_{β} is at least β and m_{β} has ordinal height greater than β for each β . And $\kappa_{\beta+1}$, the least critical point of an unsatisfied measure in $m_{\beta+1}$, is the least measurable of $m_{\beta+1}$ greater than κ_{β} .

Using the Δ_2 -Mahloness of Ord we can again satisfy every measure below the top.

Lemma 12 The class of β for which all measures with critical point below the top measurable of m_{β} are satisfied forms a closed unbounded class.

Proof. Follow the proof of Lemma 7. The only difference is in the choice of β^* in C: We now choose it to be a limit of V-regular elements of C which has V-cofinality at least \aleph_{δ} . This is possible by the Δ_2 -Mahloness of Ord and yields the desired contradiction. \Box

The iteration continues for Ord steps, resulting in an iterate $m_{Ord} = m^-$ of height greater than Ord. It follows from Lemma 12 that the top measurable of m_0 is sent to Ord under the iteration map π_0 from m_0 to m^- . So Ord is the top measurable of m^- . We denote $m^-|\text{Ord by } m_0^-$.

We show that using the predicate Cof we can identify the measurables of m_0^- as well as the measures attached to them. Let M be the unary relation defined by $M(\beta)$ iff κ_β has no critical predecessors and let R be the binary relation defined by: $R(\beta, \gamma)$ iff $M(\beta)$, γ is V-regular and κ_β is a critical predecessor of γ .

Given the relation R we can determine the measures of m_0^- : κ is measurable in m_0^- if for some β there are cofinally-many V-regular $\gamma < \kappa$ such that $R(\beta, \gamma)$ holds. For such a κ and β , the V-regular critical predecessors of κ are those V-regular $\gamma < \kappa$ such that $R(\beta, \gamma)$ holds. The order α measure on κ is generated by the tail filter on the V-regular critical predecessors of κ

which have order α in m_0^- (the latter can be determined inductively). So to show that m_0^- is an inner model of L[Cof] it suffices to define the relation R in (L[Cof], Cof).

Lemma 13 The relation R is definable over (L[Cof], Cof).

Proof. By induction on the infinite cardinal δ we define the relations M and R up to δ (i.e. we define M on $\beta \leq \delta$ and R on pairs (β, γ) where $\beta < \gamma \leq \delta$). The case $\delta = \aleph_0$ is vacuous. If $\delta = \aleph_1$ then the only instances of M and R up to δ are M(0) and $R(0, \delta)$. Given that we have defined M and R up to the uncountable cardinal δ , we can define it up to δ^+ by declaring: $M(\delta+1)$ to hold if δ is a limit cardinal (this is because $\kappa_{\delta+1}$, the least measurable of $m_{\delta+1}$ greater than δ , is the least critical predecessor of δ^+ if δ is a limit V-cardinal), $R(\beta, \delta^+)$ holds iff $R(\beta, \delta)$ holds if δ is a successor V-cardinal and $R(\beta, \delta^+)$ holds iff $\beta = \delta + 1$ if δ is a limit V-cardinal.

Suppose that δ is a limit V-cardinal. We say that $\overline{\delta} < \delta$ is *initial* if $M(\overline{\delta})$ holds. An initial $\overline{\delta}$ is *convergent below* δ if $\pi_{\overline{\delta}\delta}(\kappa_{\overline{\delta}})$ is less than κ_{δ} . The latter is definable from the relation R below δ as it is equivalent to the statement that the ordertype of the V-regular $\gamma < \delta$ such that $R(\overline{\delta}, \gamma)$ is at least \aleph_{α} , where α is the order of $\kappa_{\overline{\delta}}$ in m_0^- (which can be computed inductively). And $\overline{\delta}$ is *divergent below* δ if it is not convergent below δ . Now $M(\delta)$ holds iff all initial $\overline{\delta} < \delta$ are convergent below δ . To define $R(\overline{\delta}, \delta)$ for $\overline{\delta} < \delta$ we use the following Claim.

Claim. There are only finitely many initial $\overline{\delta} < \delta$ which are divergent below δ .

Proof of Claim. Suppose that $\bar{\delta}_0 < \bar{\delta}_1 < \ldots$ were initial and divergent below δ . For some n, $\pi_{\bar{\delta}_n \bar{\delta}_{n+1}}(\kappa_{\bar{\delta}_n})$ must be at most $\kappa_{\bar{\delta}_{n+1}}$, else the sup of the $\kappa_{\bar{\delta}_n}$'s would not be wellfounded. If $\pi_{\bar{\delta}_n \bar{\delta}_{n+1}}(\kappa_{\bar{\delta}_n})$ were less than $\kappa_{\bar{\delta}_{n+1}}$ then it would be convergent below δ as $\kappa_{\bar{\delta}_{n+1}}$ is the critical point of $\pi_{\bar{\delta}_{n+1}\delta}$. So $\pi_{\bar{\delta}_n \bar{\delta}_{n+1}}(\kappa_{\bar{\delta}_n})$ equals $\kappa_{\bar{\delta}_{n+1}}$, contradicting the assumption that the latter is initial. \Box (*Claim*)

Now suppose that $R(\bar{\delta}, \delta)$ holds. Then $\bar{\delta}$ is initial and divergent below δ . Let $\bar{\delta}_0$ be the largest initial ordinal less than δ which is divergent below δ ; $\bar{\delta}_0$ exists by the Claim. We argue that $\bar{\delta}_0$ equals $\bar{\delta}$: Otherwise, $\pi_{\bar{\delta}\bar{\delta}_0}(\kappa_{\bar{\delta}})$ cannot equal $\kappa_{\bar{\delta}_0}$ as $\bar{\delta}_0$ is initial, it cannot be less than $\kappa_{\bar{\delta}_0}$ as the latter is the critical point of $\pi_{\bar{\delta}_0\delta}$ and therefore $\bar{\delta}$ would be convergent below δ and it

cannot be greater than $\kappa_{\bar{\delta}_0}$ else $\bar{\delta}$ would not be a critical predecessor of δ in light of the fact that $\pi_{\bar{\delta}_0\delta}(\kappa_{\bar{\delta}_0})$ is at least δ . In conclusion: $R(\beta, \delta)$ holds iff δ is V-regular and β is the largest initial ordinal which is divergent below δ . This completes the proof of Lemma 13. \Box

This also completes the proof of Theorem 3(b). \Box

Some Inner models of L[Cof]

We have seen that we can trap L[Cof] with iterates of the mouse m_{Cof} . With smaller mice we can trap smaller inner models of L[Cof]. Let Reg denote the class of V-regular cardinals.

Theorem 14 Regard 0-sword, the least mouse with a measure of order 1, as a classical mouse (presented with only total measures).

(a) There is an Ord-iterate m^+ of 0-sword with \aleph_1^V as its least measurable such that $m^+|Ord\ contains\ L[Reg]$ as an inner model.

(b) There is an Ord-iterate m^- of 0-sword with \aleph_{ω}^V as its least measurable such that L[Reg] contains $m^-|Ord$ as an inner model and L[Reg] is hyperclass-generic over $(m^-|Ord, C)$, where C consists of the subclasses of $m^-|Ord$ belonging to m^- , via a Magidor iteration of Prikry forcings.

(c) If Ord is Δ_2 -Mahlo then m^+ and m^- are good Ord-iterates of 0-sword.

The Ord-iterate m^+ is obtained by iterating measurable cardinals below the top measurable of 0-sword to V-regular cardinals. Every V-regular will be measurable in the final iterate: Suppose that κ is V-regular and choose $\beta < \kappa$ and $\bar{\kappa}$ so that $\pi_{\beta\kappa}(\bar{\kappa}) = \kappa$. As κ is V-regular we may further suppose that $\bar{\kappa} = \kappa_{\beta}$ is the critical point of $\pi_{\beta\kappa}$ and therefore by elementarity κ is measurable in m_{κ} . But then again as κ is V-regular, the critical point of π_{κ} , the iteration map from m_{κ} to m^+ , must be greater than κ and therefore κ is measurable in m^+ . It follows that Reg is definable over $m^+|\text{Ord}$ as the class of measurables of $m^+|\text{Ord}$.

The iteration that produces m^- moves measurables below the top measurable through ω -many V-regular cardinals, generating a Prikry sequence for their supremum. All but finitely-many V-regulars will appear in one of the Prikry sequences generated: If κ is V-regular then κ has an initial critical predecessor $\bar{\kappa}$; if $\bar{\kappa}$ converges below Ord then κ belongs to the Prikry sequence generated by it. By the analogue of the Claim in Lemma 13 there are only finitely-many initial $\bar{\kappa}$ which do not converge below Ord and for each such $\bar{\kappa}$ there are only finitely-many V-regulars having it as a critical predecessor. It follows that L[Reg] is contained in $m^-|\text{Ord}[\vec{P}]$ where \vec{P} is the sequence of Prikry sequences generated. The fact that \vec{P} (and therefore the entire model $m^-|\text{Ord}[\vec{P}]$) is definable over (L[Reg], Reg) follows again from the analogue of the Claim in the proof of Lemma 13 (saying that there are only finitely-many initial, divergent ordinals below any V-regular cardinal), as we can use this to inductively recover the Prikry sequences and the measures they generate from the predicate Reg.

The above iterations need not be good because it could be that not all measurables below the top measurable of 0-sword and its iterates get used in the iteration (for example if there are no weakly incressibles in V). But if we assume that Ord is Δ_2 -Mahlo, then as in Lemmas 7 and 12, all measures below the top measurable get used.

In an Appendix below we discuss the Magidor iteration of Prikry forcings. For the following Corollary to Theorem 14 it suffices to note that this forcing is GCH- and cardinal-preserving.

Corollary 15 GCH holds in L[Reg]. The reals of L[Reg] belong to 0-sword and if Ord is Δ_2 -Mahlo then they equal the reals of 0-sword. There are no measurables in L[Reg].

The Corollary follows because L[Reg] is a hyperclass-generic extension of $m^-|\text{Ord}$ via a GCH- and cardinal-preserving forcing which does not add reals. If Ord is Δ_2 -Mahlo then the iteration to produce m^- is good and therefore Ord is the top measurable in m^- ; it follows that all reals in m^- (i.e. all reals in 0-sword) belong to $m^-|\text{Ord}$. Every measurable that appears in the iteration either gets iterated to the supremum of an ω -limit of V-regulars, and therefore is singular in L[Reg], or gets iterated past the ordinals. So there are no measurables in L[Reg].

Between L[Reg] and L[Cof] is the model $L[\text{Reg}, \text{Cof}_{\omega}]$, where Cof_{ω} denotes the class of ordinals of V-cofinality ω . We can trap this model using m_2 , the least mouse with a measure of order 2 (presented with only total measures):

Theorem 16 Assume that Ord is Δ_2 -Mahlo. (a) There is a good Orditerate m^+ of m_2 with least measurable \aleph_1^V such that $m^+|Ord$ contains $L[Reg, Cof_{\omega}]$ as an inner model. (b) There is a good Ord-iterate m^- of m_2 with least measurable \aleph_{ω}^V such that $m^-|Ord$ is contained in $L[Reg, Cof_{\omega}]$ as an inner model.

Corollary 17 Assume that Ord is Δ_2 -Mahlo.

GCH holds in $L[Reg, Cof_{\omega}]$ up to and including \aleph_1^V and \aleph_1^V is weakly compact in $L[Reg, Cof_{\omega}]$. The reals of $L[Reg, Cof_{\omega}]$ are those of m_2 and there are no measurables in this model.

The iteration that produces m^+ of Theorem 16 moves the order 0 measures to ordinals of uncountable V-cofinality and moves the order 1 meaures to V-regulars. The predicate $\operatorname{Cof}_{\omega}$ is definable over $m^+|\operatorname{Ord}$ using its order 0 measures, as in the proof of Theorem 3(a). The predicate Reg is definable over $m^+|\operatorname{Ord}$ using its order 1 measures, whose critical points are the V-regulars greater than \aleph_1^V .

The iteration that produces m^- of Theorem 16 moves all measures to ω limits of regular cardinals. As in the proof of Theorem 3(b), the predicates $\operatorname{Cof}_{\omega}$, Reg can recover the Prikry sequences that are generated by the order 0, order 1 measures, respectively, and therefore can recover the enrire truncated iterate $m^-|\operatorname{Ord}$.

Similarly, for any finite n, the inner model $L[\operatorname{Reg}, \operatorname{Cof}_{\omega}, \operatorname{Cof}_{\omega_1}, \cdots, \operatorname{Cof}_{\omega_{n-1}}]$ can be trapped by the mouse $m_{n+1} =$ the least mouse with a measure of order n+1, where $\operatorname{Cof}_{\omega_i}$ is the class of ordinals of V-cofinality ω_i . To produce m^+ the measures of order i < n move to ordinals of V-cofinality \aleph_{i+1} and the measures of order n move to V-regulars. To produce m^- the measures of order i < n move to ω_i -limits of V-regulars and the measures of order nto ω -limits of V-regulars.

Open questions

As in [7] (for the model L[Card]) and Theorem 14(b) (for the model L[Reg]) it is sometimes possible to show that an inner model is a hyperclassgeneric extension (via a known forcing) of the truncation to Ord of an iterate of a mouse that traps it. Can this be done for L[Cof]?

Question 1. Is L[Cof] hyperclass-generic over $m^-|Ord|$ (with its subclasses in m^- as classes) for some Ord-iterate m^- of m_{Cof} ?

Conjecture 2. The GCH holds in L[Cof], the reals of L[Cof] are those of m_{Cof} and there are no measurables in L[Cof].

The methods of this paper appear to depend heavily on the predicate Reg and therefore only apply to inner models at least as large as L[Reg].

Question 3. Is there a mouse that traps $L[\operatorname{Cof}_{\omega}]$? Does $L[\operatorname{Cof}_{\omega}]$ satisfy GCH?

A natural inner model, far larger than L[Cof] is the Stable Core of [3]. In [4] it is shown that the Stable Core is contained in an iterate of Mighty Mouse (the least mouse with a definably-Woodin measurable).

Question 4. Is the Stable Core trapped by Mighty Mouse, i.e. does it lie between the truncations to Ord of two Ord-iterates of Mighty Mouse?

Appendix: The Magidor iteration of Prikry forcings

Suppose that to each measurable cardinal α is associated a normal measure U_{α} of order 0 (i.e. concentrating on non-measurables). The Magidor iteration P_{β} of length β is defined by induction on β . Conditions in P_{β} are β -sequences p where for $\alpha < \beta$, $p(\alpha)$ is 0 if α is not measurable and is of the form $(s_{\alpha}, \dot{A}_{\alpha})$ otherwise. For limit β , P_{β} consists of all β -saequences p such that $p|\alpha$ belongs to P_{α} for all $\alpha < \beta$ and for only finitely-many measurable $\alpha < \beta$ is $p(\alpha)$ of the form $(s_{\alpha}, \dot{A}_{\alpha})$ with s_{α} nonempty. If β is not measurable then $P_{\beta+1}$ consists of all $\beta + 1$ -sequences p such that $p|\beta$ belongs to P_{β} and $p(\beta)$ is 0. If β is measurable then $P_{\beta+1}$ consists of all $\beta + 1$ -sequences p such that $p|\beta$ belongs to P_{β} and forces in P_{β} that $p(\beta) = (s_{\beta}, \dot{A}_{\beta})$ belongs to the Prikry forcing for the measure \dot{U}_{β} on β in $V[\dot{G}_{\beta}]$ extending U_{β} which is defined as follows (where \dot{G}_{β} denotes the P_{β} -generic):

A belongs to \dot{U}_{β} iff $A = \dot{A}^{\dot{G}_{\beta}}$ for some P_{β} -name \dot{A} such that in the forcing $j_{\beta}(P_{\beta}), \beta$ is forced into $j_{\beta}(\dot{A})$ by some condition q in $j_{\beta}(P_{\beta})$ with $q|\beta$ in \dot{G}_{β} and $q(\alpha)$ not of the form $(s_{\alpha}, \dot{A}_{\alpha})$ with s_{α} nonempty for any α at least β .

Lemma 18 For each measurable β , \dot{U}_{β} as defined above is forced by the trivial condition of P_{β} to be a normal measure on β in $V[\dot{G}_{\beta}]$ which extends U_{β} .

If p belongs to P_{β} then a *direct* extension of p is a condition q extending p such that $p(\alpha)$ and $q(\alpha)$ have the same first component for each measurable α less than β .

Lemma 19 For each β , the Magidor iteration P_{β} of length β satisfies the Prikry property: For any sentence φ of the forcing language, any condition has a direct extension which decides φ .

Lemma 20 If G_{β} is P_{β} -generic then G_{β} adds ω -sequences $\vec{C} = (C_{\alpha} \mid \alpha < \beta, \alpha \text{ measurable})$ where each C_{α} is Prikry over $V[\vec{C}|\alpha]$ for the measure $\dot{U}^{\dot{G}_{\beta}}$ extending U_{α} . Moreover G_{β} is definable from \vec{C} in $V[\vec{C}]$.

We say that \vec{C} is P_{β} -generic if it arises as in the previous lemma. [2] establishes the following "Mathias-style" characterisation of P_{β} -genericity, generalising the result of [5] for the case of discrete sequences of measures.

Lemma 21 A sequence of ω -sequences $\vec{C} = (C_{\alpha} \mid \alpha < \beta, \alpha \text{ measurable})$ is P_{β} -generic iff $\vec{C} \mid \beta_0$ is P_{β_0} -generic for each $\beta_0 < \beta$ and whenever $\vec{A} = (\dot{A}_{\alpha} \mid \alpha < \beta, \alpha \text{ measurable})$ is a sequence where for each α the trivial condition of P_{α} forces that \dot{A}_{α} is of measure one for the measure $\dot{U}^{\dot{G}_{\alpha}}$, then the union of the C_{α} 's is contained in the union of the $\dot{A}^{G_{\alpha}}_{\alpha}$'s with only finitely-many exceptions (where G_{α} is the P_{α} -generic with associated Prikry sequences $\vec{C} \mid \alpha$).

Mouse iteration can be used to produce a generic for the Magidor iteration of the iterate. To accomplish this we must use an iteration in which each order 0 measure is "used cofinality ω times". We call such iterations *Prikry iterations*.

Definition 1 Let m be a mouse with exactly one order 0 measure at each measurable cardinal (and possibly neasures of higher order). An iteration $(m_{\alpha} \mid \alpha \leq \beta)$ hitting order 0 measures of m with final iterate $m_{\beta} = m^*$ is a Prikry iteration of critical length λ iff it is normal (i.e. critical points are increasing) and for measurable κ of m^* less than λ , the set of $\alpha < \beta$ such that $\pi_{\alpha\beta}(\kappa_{\alpha}) = \kappa$ (where the iteration map $\pi_{\alpha\beta}$ from m_{α} to m_{β} has critical point κ_{α}) has ordertype a limit ordinal of cofinality ω . In the latter case we refer to these κ_{α} 's as the critical predecessors of κ .

Prikry iterations are easy to create: At each stage of the iteration hit the order 0 measure at the least measurable κ whose set of critical predecessors is finite, until there are no such κ . The result will be an iteration where the set of critical predecessors of each measurable of the final iterate has ordertype ω . In this case we can take the critical length λ to be the ordinal height

of the final iterate. In the final iterate of the Prikry iteration we consider below, the order types of the set of critical predecessors will be greater than ω for measurables below the critical length.

Lemma 22 Suppose that $(m_{\alpha} \mid \alpha \leq \beta)$ is a Prikry iteration of critical length λ . For each measurable κ of the final iterate m^* less than λ choose an ω -sequence C_{κ} cofinal in the set of critical predecessors of κ . Then $\vec{C} = (C_{\kappa} \mid \kappa \text{ measaurable in } m^*)$ is generic for the Magidor iteration of m^* using the order 0 measures at its measurables less than λ .

The previous Lemma ensures that the sequence \vec{P} of Prikry sequences resulting from the iteration of 0-sword as in Theorem 14(b) forms a generic for the Magidor iteration of Prikry forcings over the model of class theory $(m^{-}|\text{Ord}, C)$ where C consists of the subclasses of $m^{-}|\text{Ord}$ in m^{-} , and therefore $L[\text{Reg}] = m^{-}|\text{Ord}[\vec{P}]$ is a hyperclass-generic extension of $m^{-}|\text{Ord}$ via this forcing.

References

- C.Antos and S.Friedman, Hyperclass Forcing in Morse-Kelley Class Theory, Journal of Symbolic Logic, Volume 82, Number 2, (2017), pages 549V575.
- [2] O.Ben-Neria, A Mathias Criterion for the Magidor iteration of Prikry forcings, preprint.
- [3] S.Friedman, The Stable Core, Bulletin of Symbolic Logic, vol.18, no.2, June 2012, pp. 261–267.
- [4] S.Friedman, Capturing the universe, submitted.
- [5] G.Fuchs, A characterization of generalized Prikry sequences. Arch. Math. Logic, 44(8):935–971, 2005.
- [6] W.Mitchell. The core model for sequences of measures. i. Mathematical Proceed- ings of the Cambridge Philosophical Society, 95(2):229–260, 1984.
- [7] P.Welch, Closed unbounded classes and the Härtig quantifier model, preprint.

[8] M.Zeman. Inner Models and Large Cardinals. De Gruyter series in logic and its applications. Walter de Gruyter, 2002.