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UNCOUNTABLE ADMISSIBLES I: FORCING 
BY 

SY D. FRIEDMAN1 

ABSTRACT. Assume V = L. Let K be a regular cardinal and for X C K let a( X) 
denote the least ordinal a such that L,[ X] is admissible. In this paper we char- 
acterize those ordinals of the form a(X) using forcing and fine structure of L 
techniques. This generalizes a theorem of Sacks which deals with the case K = W. 

Forcing has proved to be an extremely valuable tool for the recursion-theorist. 
Generic sets are used to construct a minimal hyperdegree (Gandy and Sacks [1967]), 
establish the plus-one and plus-two theorems in higher types (Sacks [1974], Harring- 
ton [1973]), refute the (relativized) McLaughlin conjecture (Steel [1978]) and char- 
acterize the countable admissible ordinals (Sacks [1976]). This is because genericity 
provides a natural way to control the definability properties of sets. 

In the countable case generic set existence is not a problem. (This suffices for most 
applications of forcing in set theory.) However the existence of generic sets in the 
uncountable case can be an obstacle. One way around it is to exploit strong closure 
properties of the ground model in question. 

This last technique can be illustrated as follows: Suppose K is regular and M is a 
transitive set of cardinality K which is < K-closed; i.e., any sequence from M of 
length < K belongs to M. Assume that 'P is a partial ordering of a subset of M which 
is also < K-closed; i.e., for any sequence po > p > P2 > ... from 'P of length < K 

there is p C 'P s.t. p < p? for each y. Then one can easily construct (in K steps) sets 
which are 'i-generic over M. 

The main result of the present paper implies that the preceding paragraph 
describes the best existence theorem for generic sets in the uncountable case. We 
present a simple forcing problem for uncountable L,a's which can be solved posi- 
tively only in cases where L, possesses the strong closure property stated above. 

The problem in question is a generalization of Sacks' characterization of count- 
able admissible ordinals. Assume V= L and let K be an uncountable cardinal. For 
X C K we let a(X) denote the least ordinal a > K s.t. La,(X) is admissible. 

Question (V= L). Which admissible ordinals are of the form a(X) for some 
X C K? 

We deal in this paper with the case where K is regular. (The singular case will be 
treated in Friedman [1981a].) The answer to this Question is best phrased in terms of 
a strong form of < K-closure which we call < K-admissibility. 

Received by the editors June 20, 1980. The results were presented at the Greek Logic Symposium, 
University of Patras, 1980. 

1980 Mathematics Subject ClasslficatiQn. Primary 03D60, 03E45; Secondary 03E40. 
'The preparation of this paper was supported by a National Science Foundation grant. 

? 1982 American Mathematical Society 
0002-9947/81/0000-102 3/$04.25 

61 



62 S. D. FRIEDMAN 

DEFINITION. La is < K-admissible if cofinality (a) > K and La is both closed under 
and admissible relative to the function y [y]K, where [y]<= {x C y x has 
cardinality K ).2 

Notice that <K-admissibility implies < K-closure. It is natural to attempt to build 
X as above by forcing over La. If La is < K-admissible then in ?1 we construct a 
< K-closed partial ordering S such that a = a(X) whenever X is S-generic over L. 
The < K-closure of La implies the existence of such X and thus the Question is 
answered positively in this case. 

The purpose of ?2 is to provide a negative answer in all other cases. 

THEOREM. a = a(X) for some X C K iff 

(i) K < a < K, 

(ii) La iS < K-admissible. 

Thus even basic forcing results extend to the uncountable only in very special 
cases. In ?2 we will also give examples where a < K' is admissible of cofinality K but 
La is not < K-closed and also where a < K? is admissible, La is < K-closed but La is 
not < K-admissible. The former example corrects an assertion made following 
Problem 48 in H. Friedman's list of problems in logic (H. Friedman [1975]). Our 
methods can be used to give a negative solution to that problem in ZF (see Example 
3 in ?2). 

The "only if" direction of our Theorem (proved in ?2) is established via a 
combination of techniques from fl-recursion theory and the fine structure of L. We 
show that if a a( X) for some X then not only a but also En projectum (/3) must 
have cofinality K for various ordinals ,B closely related to a (for certain n C c). This 
condition in turn implies the < K-closure of L, by an induction argument. The proof 
of < K-admissibility uses related methods. 

The "if" direction is proved by a forcing technique which extends the method of 
Jensen [1972] to the uncountable. The proof is in two parts. First a predicate B C L_ 

is constructed so that KLa[B], B) is admissible but (LY[B n L], B n Ly) is 
inadmissible for each -y < a. This uses (and in fact necessitates) the < K-admissibility 
of La. Second the predicate B is coded using almost disjoint set forcing by X C K. 

Thus a = a(X). 

1. Killing admissibles. Our goal in this section is to establish 

THEOREM 1 (V - L). If a has cardinality (01, La, is c-admissible, then a - a(X) for 

some X C coi. 

Thus we consider only the case K (01. We write "co-admissible" for "< col- 
admissible". There are obvious modifications of what is described below when K iS 

any other regular L-cardinal. 
Our proof is an extension to the uncountable of a forcing method developed by 

Jensen (see Jensen [1972]). He used a combination of unbounded Levy forcing, a 

2Lemma 4 below shows that if a is admissible then the words "and admissible relative to" can be 
deleted in this definition. 
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special forcing for destroying recursive Mahloness and almost disjoint set forcing to 
prove a strengthening of Sacks' theorem that any countable admissible > X is the 
first admissible relative to some real R C co. There are several new problems which 
arise when attempting to adapt these techniques to the present context. To demon- 
strate that admissibility is preserved by unbounded Levy forcing one must use the 
co-admissibility of La. A Skolem hull argument is needed then to construct 
a predicate B C L, such that <L,[B], B) is admissible but for each y < a 

KL,Y[B n LY], B n L.) is inadmissible. Finally we make use of a technical lemma 
from Jensen [1975] to perform almost disjoint set coding in an admissibility- 
preserving way. 

An co -closed unbounded set of inadmissibles. If a is countable and admissible then 
a closed unbounded C C a is constructed in Jensen [1972] such that 

(a) La[C] La, 
(b) (L,a, C) is admissible, and 
(c) y E C -* y is inadmissible. 

Now suppose a is as in the hypothesis of Theorem 1. Then we construct a closed 
unbounded C C a such that 

(a) La[C] La, 
(b) (L,a, C) is admissible, and 
(c) y E C, cofinality (y) > co -* y is inadmissible. 

The extra hypothesis in (c) is necessary: For, there may be a closed unbounded 
D C a consisting only of admissibles. But then C n D 7# 0 since C, D are closed 
unbounded subsets of an ordinal of uncountable cofinality. We arrange that C n D 
consists only of ordinals of cofinality w. 

A condition p is a closed subset of a such that 
(i) p has a greatest element, 
(ii) y E p, cofinality (y) > X -* y inadmissible, and 

(iii) p E La. 
If p, q are conditions then p is stronger than q, p s q, if p n (max(q) + 1) = q. Let 
gj denote the collection of all conditions. gj is countably closed. If 4(G) is a ranked 
sentence of La, rank(f) = fB, then we define 

p 1 f k C<max(p) and L8[p]a k(p). 

So forcing for ranked sentences is a A, relation. Forcing for unranked sentences is 
defined in the usual way. Thus forcing for E, sentences is A, over La. The existence 
of sets '3j-generic for sentences of L,a is guaranteed by the countable closure of La, 
the countable closure of 'J and the next lemma. 

LEMMA 2. If p is a condition and . is ranked then 3q s p (q F 4 or q IF - 0). 

PROOF. Choose ,B < a to be inadmissible and greater than rank(f), max(p). Then 
p U {f} IF orp U {f}PI I- . Alsop U {f,} s p. D 

If G is 'ij-generic for sentences of L,a then C = U G is a closed unbounded subset 
of a such that L,a[C] = L,a. The next lemma guarantees that (L,,, C) is admissible. 
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LEMMA 3. Suppose 1 < a and f: ,B -* a is I I(La, C). Then f E La. 

PROOF. Let O(x, y, z, C) be a AO formula (C is a name for C). Suppose 
p IF Vy < f33!83x4(x, y, 8, C) and max(p) > 13, rank(f). Define a sequence of 
conditions as follows: po 0 p. P7+?1 = least p s py s.t. p IF 3x38+(x, -y, 8, C) and 

P-y E Lmax(p). pA U y<A py U {sup( U y<A py)} Note that (p, y < X ) is 

El(Lmax(px)) for each limit X as forcing for El sentences is Al. So max(px) is 
inadmissible for each limit X s 13. Thus pe is an extension of p and p. 
IF* "3x?(x, y, z, C) defines a function in La", where IF* denotes weak forcing. If 
f E El(La, C) is defined by 3x+(x, y, z, C) then {p I p IF "If 3x+(x, y, z, C) 
defines a function then this function is in La"} is dense and therefore 3p C G p IF 
"The function defined by 3x+(x, y, z, C) is in La". So f E La,. O 

For the application below we will need a relativized version of the preceding. If 
La[S] = La is countably closed and (La, S) is admissible then there is a closed 
unbounded C C a such that 

(a) LJ[S, C] = La, 

(b) (La, S, C) is admissible, and 
(c) -y E C, cofinality (y) > w -X (LY, S n LY) is amenable and inadmissible. 
This is proved exactly as above, replacing "admissible" by "S-admissible" and 

"2 :" by "6E in S" throughout. Thus one can define a countably closed forcing 6Ys 
which is A1 over (La, S) and such that any C which is Sj-generic over (La, S) 
satisfies (a), (b) and (c) above. 

Unbounded Levy forcing. Again let a be as in the hypothesis of Theorem 1. We will 
choose C C a to be 6Yjs-generic over La where S is defined as follows. S ={(x, y) I 
x, y E La andy [xJ'@}. But first we establish some properties of S which will be of 
use to us in ?2. 

Note that La is c-admissible if and only if cofinality (a) > 1, La is closed under 
y <-+ [y]W and (La, S) is admissible. We first show that this last condition is 

redundant. 

LEMMA 4. Suppose La is admissible and closed under y F4 [yJ'. Then (La, S) is 
admissible. 

PROOF. There are two cases. 
Case 1. There is a largest a-cardinal K. Then K has uncountable cofinality as 

otherwise the elements of [K]' are constructed cofinally in a. But [K]@' E La by 
hypothesis. 

We now show that S is actually A,V over La: Given y 6E La let c be the <L-least 
injection of y into K and let z = c[y]. Then [y]w = {c-'[s] I s E [z]W} and [z]= 
[z] n L,. This gives a E I definition for y " [y]w. 

Case 2. There is no largest a-cardinal. We show that if K is a regular a-cardinal 
then (L,,, 5 0 LK+ ) is a EI-elementary substructure of (La, S). This establishes 
the admissibility of (La, S). 

Suppose K is a regular a-cardinal. Cofinality (K) > w as La is countably closed. 
Now suppose (La, S)> 3yp(x, y, S) where 4 is AO and x E L,<+. We must show that 
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(LK+,S n LK+?) 3yP(x, y,S LK+ )' Choose y E La so that (La, S) ?4(x, y, S) 
and let X be a regular a-cardinal so that y E Lx. Then (Lx, S n L.) is amenable so 
we may choose a X1 Skolem function h for this structure. As K is a regular a-cardinal 
we may choose 8 < K+ so that LA is countably closed and x E L,. Then let H = El 
Skolem hull of LA U {Y} inside LA. 

We claim that H is countably closed. For, if X1, X2,.... E H then xl = h(n1, -y, y) 
for some n1 E c, yi < 3. Then ((n,, y1) I i E c) E LA and as the E, sentence 3zVi 
(z(i) = h(n1, yl, y)) is true in L. (by the countable closure of L.), it is true in H. So 

(xIIi ECo)ELH. 
Now collapse H isomorphically to LY, 8 < y < K+. Then LY is countably closed 

and S n H collapses to S n LY. So as (L., S n L,) ?(x, y, S n LA) we have 

(L S 0 nLY)a (x, -, S nLY) where y-=image(y) under the collapse. Hence 
(LK+, S n LK?+)k(X, 57, S n LK+) since 4 is AO, U 

This now gives us an explicit characterization of c-admissibility in terms of 
countable closure. Countable closure is in turn characterized by a "fine structure" 
condition in the next section. 

LEMMA 5. La is c-admissible iff La is countably closed and 
(*) either there is no largest a-cardinal or the largest a-cardinal has uncountable 

cofinality. 

PROOF. The "only if" direction was covered in the proof of Lemma 4, Case 1. By 
Lemma 4, to prove the "if" direction it suffices to show that La is closed under 
y F-* [y]W if La is countably closed and obeys (*). But this is clear by Godel unless y 
has cardinality = greatest a-cardinal. But then if c E La is a bijection between y and 
gc a then [y]' = {'c-[s] I s E [gc a]'} and [gc a]' = [gc o]@' E Lgca by (*). U 

Now let C be 6f S-generic over La. Then La[S, C] = La is admissible. We seek to 

build a class A ci a such that KLa[A], A, C) is admissible and La[A] 1 wl is the 

largest cardinal. We construct A to be generic for a countably closed forcing for then 
the countable closure of La guarantees the existence of generic classes. In the 
countable case this type of forcing was done in Sacks [1976] with finite conditions. 
He exploits the fact that /3 < a implies [/3<' E La in order to help reduce this class 

forcing to set forcing. The analogous property in our present context, ,B < a implies 
[/3]"' E L, is guaranteed by the co-admissibility of La. Moreover by working relative 

to S we can assume that the operation /3 " [/3] ' is effective. 
We now define the countably closed forcing 6L for making c I the largest cardinal. 

A condition p is a countable partial function a X coI -* a such that p(/3', y) < / for 

each (/3, y) E Domain(p). The condition p is stronger than the condition q, p < q, if 
p extends q as a partial function. Thus if A is LPL-generic over La then La[A] 1 coI is 

the largest cardinal. We in fact want A to be CL-generic over (La, S, C) in order to 

guarantee that KLa[A], A, C) is admissible. The countable closure of La guarantees 
the existence of such an A. 

The proof of admissibility is much as in the countable case. c-admissibility is used 

to "bound the forcing relation": For /3 < a andp E 6PL letp' p p n (/3 x co1) x /3. 
Then LY = {P ' IP EL CL} is a member of La and the function /H+ qL' is 
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( La, S). A simple induction shows 
(*) if p I (, rank(4f) < / then p<'t . 

Forcing is defined in the usual way by induction. All instances of this induction for 
ranked 0 are clearly 21iLa, S, C) except the negation case which is 2, due to (*). 
pl F- iff Vq < p(Q-q I) iff 3 3 (rank C<3 and Vq E 9L(q < p q I ) 
Thus the relation p 1 4 of p, 4 is 2 I (for ranked 4). 

It is now easy to establish the admissibility of L[A]. Suppose + is ranked and 

po 1 Vx 3yk(x, y). Thus for each p < po, constant c there is q( p, c) < p, constant 
d(p, c) such that q(p, c) IF 4(c, d(p, c)). The functions q, d can be assumed to be 21 
as the forcing relation is E I for ranked sentences. Let 3 < a be a fixed point so that 

L,6 is countably closed; i.e., 

Po ELO 

p, c E L-- q( p, c), d(p, c) E L 

[ l C L/ . 

/3 exists by admissibility of (La, S, C). 
Claim. po I Vx# 3y/30(x, y). 
PROOF OF CLAIM. Suppose p < po, c E Lft. Then p < E L/3 since L is countably 

closed. As p<' ?po we see that q = q(p'<, c), d - d(p<', c) are defined and 
belong to Lf. Thus q U p 1 4(c, d). So we have shown 

Vp < poVc E Lo 3r < p 3d E LqrIF op(c, d). 

This is exactly the statement of the Claim. 
Now if KL,[A], A, S, C) Vx 3yo(x, y), 4 ranked then for some p E A p I 

Vx 3yo(x, y). By the claim, for some 3 < a p IF VxA3y,hp(x, y) so LJ[AIi 
Vx#3yA+(x, y). We have demonstrated 112-reflection for (LJ[A], A, S, C). 

Almost disjoint set forcing. We are now in the following situation: There are 
predicates A, S, C C L., such that 

(a) (LJA], A, S, C) is admissible, 
(b) LJ[A] t o1 is the largest cardinal, 
(c) C is closed unbounded in a, and 
(d) y E C -cof(y) = X or (LY, S nLY) is inadmissible and amenable. 

It is now fairly easy to construct a predicate B C L_, such that (Ly [ B n Ly, B n LY) 
is inadmissible for each y < a and B is A1(LJ[A], A, S, C). Then the idea will be to 
code B by a subset X of o in a very efficient way, so that B n LY is A, over LY[X] 
for each y < a and L,[ X] is admissible. 

The construction of B is as follows: For each y c C let wy be the La[A]-least 
wellordering of w, of ordertype y', where y' = least member of C greater than 
y. We identify wy with a subset of o1. Let B' = {y + 3I jy E C and 8 E wy}. 
Then B = join(S, B'). (Thus B j {2[ t C S} U {2j + 1 1 E C B'}.) Certainly 

(L,Y[B n L], B n Ly) is inadmissible when y is not the limit of elements of C as 
this structure contains a wellordering of o3 of ordertype ,> y in this case. If y < a is 
the limit of elements of C and has uncountable cofinality then again this structure is 
inadmissible since (LY, S n Ly) is. 
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We now show that (LY[B n LY], B n LY) is inadmissible for every -y < a. Other- 
wise let y be the least ordinal such that (LY[B n L], B n L,) is admissible. We 
show that }y has uncountable cofinality, contradicting the previous paragraph. Note 
that as y is the limit point of elements of C, L7 [B Bn L,] w I is the largest cardinal. 

Let h be a 2: Skolem function for (LY[B n LY], B n LY). Then for each 8 < y 
h[o X L6] is transitive as L.[B n L.] o 1 is the largest cardinal. Thus h[w X L,, + I] 
is of the form (LY,[B n Ly, B n L.Y) and is admissible. The leastness of y implies 
that y' - y and so there is a 2 ILY[B F Ly], B n LY) injection g of -y into w,. For 
each 8 < xl, g-'[8] is bounded in y by the admissibility of (L,[B Fn L,] B n LY). 
The function 8 + sup g- [8] is a nondecreasing unbounded function from o into y 
so cofinality (y) = w I. 

LEMMA 6. For each y o@, L?I [B n LBny y has cardinality c1. 

PROOF. Otherwise let -y be the least 8 > xl s.t. L36+1[B F LB n 8 has cardinality 
> WI. Then LY+?[B n Lyt-y = w2 and so certainly LY[B n)LY] is admissible. But 
this contradicts the above established property of B. O 

Now we must code B by a subset of X 1. The standard way to do this is with almost 
disjoint set forcing, invented in Jensen and Solovay [1970] and perfected in Jensen 
[1972, 1975]. This method can be described as follows: First choose a A.\ La[B], B) 
sequence (XI -y < a) of subsets of oI such that -y # -y' -xy n xy7 is countable 
(X,Y Xy, are almost disjoint). This is easily done. Also define B* = 
{X1 + Y I the -yth set in <L. belongs to B}. Then consider the forcing 's where a 
typical condition is of the form (s, Y), s a countable subset of wI and Y a countable 
subset of {Xy -y E B*}. We write (s, Y) < (t, Z) if 

sDt, YDZ, x.Ez --(s-t)nXy= 0. 

We identify a generic object G with X= U {s I3 Y(s, Y) E G}. Thus if X is 

g's-generic over (LJ,,[B], B) then w, + y E B* -Xy is almost disjoint from X. So 
B nF is A I over L-[X, KX7 I y' < f y)] provided y > and is (say) primitive 
recursively closed. Conversely we arrange that KXY I y' < y) is A, over Ly[B n Ly] 
where y least p.r. closed ordinal > -y U o I. Thus knowing B n L allows one to 
determine (X.Y I y' < 5) which in turn allows one to recover B n Lq This 
"bootstrap" idea is key to the decoding process as the proof of the next lemma 
indicates. 

LEMMA 7. LY[ X] is inadmissible for each y < a. 

PROOF. It is enough to show by induction that B n Ly is A1I over LY[X] uniformly, 
for p.r. closed -y > l. If -y = x then (XY I -y' < -y) is Al over Ly so B n LY is Al 
over L'Y[X]. The uniformity renders trivial the case of y being a limit of p.r. closed 
ordinals. Otherwise y = 8 where 8 > X I is p.r. closed and hence by induction B n L3 
is A1I over L,[X]. But then (Xy, I y' < y) is A1 over LY[XI as it is A1 over 

LY[B Fn L]. Thus B nLy is A1I over LY[X] as it is A1I over 

L_Y[X,(XYIy'<y)]. EL 
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The proof of Lemma 7 depends on the fact that the sequence of codes (Xy I y < a) 
can be chosen so that (X.y I y' < y) is A, over L-[B nLy] for each y. This is 
possible thanks to Lemma 6. 

Guaranteeing the admissibility of La[XJ for Is-generic X requires a further 
restriction on the sequence (X1, I y < a). As in Jensen [1972] one must choose the 

XY's to be generic. In Jensen [1972] it suffices to arrange that for each p.r. closed y, 

XY is Cohen generic over L.+ 1[B n LY] and belongs to L.7[B n L.Y] For our 
purposes we must use the more sophisticated technology of Jensen [1975, p. 13], 
where it is arranged that for each p.r. closed y and each 1-1 function f: co 
(a - y), the sequence (Xf(o), Xf(1),...) is Cohen generic (as an c-sequence) over 

L-Y+1[B n LY] and in addition KX y <jy) is uniformly 1, definable over 

L,[B n L.Y] We now assume that the sequence (XY I -y < a) has these properties 
and in addition for each p.r. closed y and each Cohen condition p there is Xw 
extending p, y < 8 <. 

LEMMA 8. LJ[X] is admissible when X is Cs-generic over KLj[B], B). 

PROOF. For each y let SPSY {(S, Y) E Cs I Y c {X8 1C <y}}. We claim that if 
XWl < y is p.r. closed and has uncountable cofinality, M C 'Psy is a maximal antichain 
in 6siY and M E Ly+ 1 [B n L.] then M is a maximal antichain in Cs. From this it will 
be fairly easy to establish the admissibility of L[X]. But first we establish this 
claim. 

Suppose not and let (S, Y) E 's be a condition incompatible with each element of 
M. Write Y= Y1 U Y2 where Y1 C {X IS<y} and Y2 C {XI> y}. List the 
elements of Y2 in an co-sequence Xf(0), Xf),... and then since KXf(o), Xf(1),...) is 
el -generic over LY+I [B n LY] (C - Cohen forcing) there is a condition (po, Pt,'..) 
E C2' such that Xf(,) extends p, for each i and 

(Po, PI,...) I"(s, Y, U {G(n) I n EE }) 
is incompatible with each element of M." 

Now <s, Y,) E& C9s for some 8 < y since -y has uncountable cofinality. For each i 
choose Xg(,), 8 < g(i) < 8, such that Xg(,) extends pi (see the remark immediately 
before the statement of Lemma 8). As (s, Y1 U {Xg(i) I i EE co) is a condition in 6Ysy 
it is compatible with some Kt, Z) E M. Now let / 3sup(t) and consider the 
condition (Xg(0)r ,B, Xg(l)r /3,...) E C@'. This condition extends (po, pl,. ..) and 
(weakly) forces "<s, Y, U {G(n) I n E co}) is compatible with Kt, X)," contradicting 
the choice of (Po, P l, .). 

It now follows that if I <y y is p.r. closed and of uncountable cofinality and G is 

Cs-generic over KLj[B], B) then G n isP is Csr-generic over Ly+?[B n L.Y] For if 
M E L.Y+l [B n LY] is a maximal antichain in 6Psy then M is maximal in 6Ps and thus 
G n M = (G n C6s) n M 7# 0. As any dense open subset of S contains a maximal 
antichain, this proves that G n Csy is Cs'-generic over LY+ [B n LY]. We now show 
by induction on 4 E LY[B n LY] that for all Ks, Y) EE &sY 

(s, Y) IF (5S Y) IFip 
63S 1YS 
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Each step of the induction is clear save the negation case. If (s, Y) F (p then 
certainly (s, Y) IF5- (p follows by induction. Conversely suppose (s, Y) IFg, -p. 
Then for evey 'sPs5-generic H over L,+?[B n LY] extending Ks, Y) we have 

(Ly[B n L., H], B n Ly>-) (p by the truth lemma. But then for every is-generic G 
over KLa[B], B) extending (s, Y) we have <L,[B, GJ, B)t- ( since in this case 

G n s-I is Sy-generic over Ly+ lB n Lj.Y Thus (s, Y) I Fso (since we are using weak 
forcing). 

We have proved that the relation (s, Y) IF ( restricted to ranked ( is A, over 

KL,a[B], B). We can now prove the lemma. Suppose <s, Y) IF Vx 3y((x, y) where ( 
is LO. We shall produce an ordinal y < a such that (s, Y) IF Vx y3yyo(x, y) (where 

xV yY range over elements of Ly[B n Ly]). Our hypothesis and the Al\-ness of the 
forcing relation imply the existence of a E,iLa[B], B) function f: a a such 
that Vx Vt, Z)< <s, Y)[(x E L3[B n La] and (t, Z)E P) -*3(t', Z')< 
<t, Z)3y(y E Lf(J)[B n f(8)], <t', Z') IS and Kt', Z') IF (p(x, y))]. Let < y 
be a p.r. closed fixed point for f of uncountable cofinality. Then for each 

x L[B L,], D { ( t, Z ) E gs-Y |3Y E L,[B n L,] ( t, Z ) IF O(x, y)} 

is dense in ?s" below (s, Y) and belongs to L.Y+[B n L.YI Thus if (t, Z)< (s, Y) 
then <t, Z) is compatible with some element of D and hence 

3(t', Z')< (t, Z)3y E LY[B n LY](t', Z') IKF(x, y). 

We have just proved (s, Y) I1 Vxy 3y,((x, y). Thus 112-reflection holds for L,[ XI 
and so La[ X] is admissible. Li 

2. Converse to Theorem 1. We make use of Jensen's theory of projecta (see Jensen 
[1972A]) to characterize ordinals of the form a(X) for X C wi. In fact we show that 
unless La is w-admissible there is no X C co, such that La[XI is admissible and 
La[ X]J ~ is the largest cardinal. Our proof is best motivated by considering the 
following example which provides an admissible a of cardinality and cofinality W' 

such that La[ X] is inadmissible whenever La[ X] 1 wxl is the largest cardinal. 
EXAMPLE 1. Choose a < 2 to be admissible of cofinality wx and such that 

a2pa = E2 projectum of a has cofinality X in La. Such an a is obtained by choosing 
La = transitive collapse (M), M is an elementary submodel of LY of cardinality xl, 
where y = the wIst stable past K, Thus a2pa (K,)La and 2 cofinality (a) - x. 

Now let B = a2pa (K,)La. We can obtain a wellordering R of a subset of /3 of 

ordertype a which is E2(La) as follows. Choose a E2(La) injection f: a -,* 3 and let 
R(x, y) -*f l(x) < f-'(y), x, y E Range(f). Jensen's fundamental theorem about 
En projecta states that any E2n(La) bounded subest of anpa = En projectum (a) is a 
member of Lanpa- Thus if we let 3n = (Kn)La we see that R n (/3n X /3n) E L for 
each n. We can thereby "code" R by the w-sequence s: X-* LA defined by 
s(n) = R n (/3 X / ). 

Finally suppose X C cox and La[ X] 1 xl is the largest cardinal. Then there exists 
an injection c: L w ,such that c E La[XI. The composition c os belongs to L, as 
c o s is a function from X to x1 and we have assumed V = L. Thus s = c-l o (c o s) 
E La[X]. We now have U Range(s) = R E La[X] and thus La[X] contains a 
wellordering of ordertype a. So La[ X] is inadmissible. 
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The idea of this example can be used to show that not only En projectum (a) but 
also many other "projecta" associated to a must have uncountable cofinality as well. 
By establishing the uncountable cofinality of a sufficient number of these related 
projecta we are able to ultimately show that L. is countably closed. Thus we have 
also obtained a "fine structure" characterization of countable closure. 

For the sake of the definition below recall the S-hierarchy of Jensen, defined and 
discussed in Devlin [1973, p. 82]. This hierarchy is a more convenient way of 
generating L than the usual L-hierarchy. S, has very nice closure properties for limit 
1. S,B n OR 1 for limit 13. In what follows 13 always denotes a limit ordinal. 

DEFINITION. Let a < 13 and n a positive integer. The (n, 1P) projectum of a = least 
y s.t. there is a En(Sf) injection of a into y. We write (n', 13') < (n, 13) if 13' < 1 or 
(13' = 1 and n' < n). Then (n, 13) is an a-critical pair if (n', 13') projectum (a) > 
(n, 13) projectum (a) whenever (n', 13') < (n, 13). Notice that there are only finitely 
many a-critical pairs, beginning with (1, a). Let (1, a) = (n1, P 1) < (n2, 132) < 

... < (nk, fik) be a list of all a-critical pairs and let p1 > P2 > ... > Pk be a 
list of the corresponding projecta; i.e., pi = (ni, 13i) projectum (a). 

LEMMA 9. If (n, 13) is a-critical then (n, P) projectum (a) = En projectum (13). 

PROOF. Let -q = (n, 13) projectum (a) and 2 = En projectum(,B). As a < 13 it 
follows that q I 2. Now choose a - (Sg) injection f: a -* . Then R = {(x, y) 
x, y E Range(f) andf '(x) <f l(y)} is a n(S8) subset of 'I X 2. But R X Seas 
otherwise (n', /3') projectum(a) s ml for some (n', 13') < (n, 1P), contradicting the 
hypothesis that (n, 13) is a-critical. Now by Jensen's characterization of the En 

projectum we must have B2 S m1. E 
The idea used in Example 1 also establishes the next result. 

LEMMA 10. If a = a( X) for some X then pi has uncountable cofinality for each i. 

PROOF. Suppose not. Choose t: co -* p, to be unbounded. As before choose a 

En,(S5,) injection f: a -* pi and let R ={(x, y) I x, y E Range(f) and f-'(x) < 

f`(y)}. Then by Lemma 9 R n (t(n) X t(n)) E Lp for each n. We let s(n) = R n 
(t(n) X t(n)). 

If L,[X] co1 is the largest cardinal then as before s E L,[ X]. But then L,[ X] is 
inadmissible as R = U Range(s) E La,[X] and La,[X] contains a wellordering of 
ordertype a. El 

Establishing the countable closure of L, (when a =( X) for some X) necessitates 
consideration of other projecta closely related to those above. For each i, 1 < i < k, 
we define 

Pi n,- I projectum (J13). 

Recall that Pi = En projectum (1,3). If ni = 1 we define En,1 projectum (pi) = 20 
projectum (131) = 13g. The countable closure results will follow once we demonstrate 
that p' also has uncountable cofinality for each i. The proof uses a combination of 
ideas from the theory of master codes and 13-recursion theory. 
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Suppose n > 0, A C I,n projectum(/3) is a En Master Code for /3 if A is n(S ) and 
for any B C En projectum (/3) = npf, 

B isEL:}(L,np,8, A) iff BisE2n+l(S0)- 

Jensen defined and proved the existence of E2n Master Codes (Jensen [1972A]). If 
n = 0 we define 0 = Eo Master Code for /. Then for each i define 

Ai = a En,- I Master Code for Pi. 

Thus A, C p' and the structure Wi = (Sp,, A,) is amenable (that is, Ai n y c sp for 
each -y < p4). We can also think of pi as the El projectum of the structure Wf. Thus 
the introduction of master codes allows us to deal with El predicates (over an 
appropriate amenable structure) where the methods of /3-recursion theory apply. 

LEMMA 11. Suppose p' > a. Then p,1 is a p'-cardinal. 

PROOF. Since p' > a - p' we see that i > 1. Let (n, /3) be the least pair such that 
there is a En(Sfl) injection of pi-, into a smaller ordinal. Then (n, /3) is a-critical. 
Thus (n, /) =(n1, /3) and p,1 is a /3i-cardinal. We are done since P, En - 

projectum (/,B) P /,. D 
We are now prepared to prove the key lemma toward establishing countable 

closure. 

LEMMA 12. If a = a(X) for some X then p' has uncountable cofinality for each i. 

PROOF. If p; <a then the result follows from Lemma 10. For in this case 
P, =-_ P,, as p' = (n -1, /31) projectum (a) and (n,, /3i) is a-critical. 

We must deal with the case p' > a. Suppose then that cofinality (p') - W. Choose 

fo - p' to be cofinal and increasing. Again there is a En,(Sf3) wellordering R of p, 
of ordertype a. R is EI(%i) so we can choose a E, formula p(x, y, Ai) which defines 
R over sI. We let Rn be the f(n)th approximation to R; i.e., (x, y) C Rn -* 

(Sf(n), A, n f(n))> (x, y, A, n f(n)). Thus R E LpC for each n as Rn C SP, and 

pi- , is a p'-cardinal. pi- has uncountable cofinality. So there is a y < a s.t. Rn C SY 
for all n. 

Now if LJ[X] w is the largest cardinal then as before (Rn I n C co) E La[XI. So 
R E La[XI and LJ X] is inadmissible. D 

THEOREM 13. If a a( X) for some X then La is countably closed. 

PROOF. Define p0 = a. We show by induction on k - i that if f: X -* p, then 

f C La. If k - i = 0 then p, = Pk = WI so the result is clear. 
Now assume the result for k - (i + 1) and we demonstrate it for k - i. Thus we 

are given f: co -* p, and we know that g: X -4 p,+I implies g C L*. Note that 

?+> p, as either p'l+ > a or p,+'= p, (see the proof of Lemma 12). Thus f: 
Xo- P, + Also let h be a EI(Wi+ l) injection of p1+ I into pi + l. 

By induction h o f C La. Moreover h o f C Lp+ as Pi+I is an a-cardinal of 
uncountable cofinality. Now f = h- o (h o f ) is therefore E 1( + ). As cofinality 

(P'+ l) > co we see thatf C L If p'1+ a we are done. Otherwisef E Lp as p, is a 
P 1+l-cardinal of uncountable cofinality. As pi af we havef E La. ? 
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Now that we have dispensed with countable closure, w-admissibility can be easily 
dealt with. 

THEOREM 14. If a = a(X) for some X C @1 then La is o-admissible. 

PROOF. The theorem follows if we show that La is closed under y [y]W (see 
Lemma 4). Fix y E La. As we know that La is countably closed we can define a 
2i(La[X]) function as follows: Given z E [y]w let h(z) = the ordinal at which z is 
constructed in La. Then Range(h) is bounded by some /B < a and so [y] =[y](O n 
Lfl/E La. ? 

Lastly we show that o-admissibility may fail for La even when La is countably 
closed. 

EXAMPLE 2. Let M be the 22 Skolem Hull of o, inside LY where y = Ist stable 
above M . Let La be the transitive collapse of M. Then a has cofinality x l La 1 (8 , 
is the largest cardinal) and 22 projectum (a) = xl. Also a* = a. We show that La is 
countably closed in two steps: (a) If f: X- La then f is E2(LLa). For, let p: La (c1 

be a E2(La) injection. Thenp o f E L. and thusf = p' o (p o f) is Y2(La). (b) If 
f: X La is E2(La) then f C La. For, if C is a E: Master Code for La then f is 
E I( La, C) (recall that a* a a). But a has uncountable cofinality so f C La. Note 
that Lemma 5 implies that La is not w-admissible. 

We can sum up our results as follows. 

THEOREM 15 (V = L). (a) La is countably closed iff p1, p' have uncountable cofinality 
for each i. 

(b) La is (-admissible iff La is countably closed and in addition if La has a largest 
cardinal, it has uncountable cofinality. 

(c) a - a(X) for some X C o iff WI < a < 02 and La is (-admissible. 

EXAMPLE 3 (ZF). There is an admissible a, xl < a < W2 such that cofinality 
(a) = w1 and a #/ a(X) for any X C (1. 

PROOF. Let K denote true xl. As in Example I let a < (K+ )L have L-cofinality K 

and be such that a2pa has cofinality X in La. Then there is a wellordering R of 
X = a2pa of ordertype a which is 22(La). Moreover R = U n R where Rn Lx 
for each n. 

Suppose a = a(X). Then La[ X] contains an injection g: LA-- K. But then 

(g(Rn) I n E O) E [K]@f n L[X] C L,C[XI- So R C La[X], contradicting the admissi- 
bility of LJ X]. O 

3. Further results and open questions. (1) There is a version of our result for En 
admissibility, n > 1. Thus for regular K, a is the least En admissible relative to a 
subset of K iff K < a < K+ , a has cofinality K and La is closed under the En 

admissible relative to the function y [y ]< K. For example, let n = 2, K = . The 
necessity of this condition follows as in ?2. For the sufficiency, one first adds a 
closed unbounded C c a so that -y c C, cofinality (y) > ( -- (Lv, S n L.) iS 2 

inadmissible (where S is defined as before). Moreover (La, S, C) is amenable and 

22 admissible. Then generically add A C La so that (La[AI, S, C, A) is E2 admissi- 
ble and La[A] W xl is the largest cardinal. There is a predicate B C L_ so that B is 
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AIKLa[A], S, C, A) and for each -y < a (LY[B n Ly] B n Ly) is E2 inadmissible. 
Now code B by X C w, as before. Then B nLy is A, over Ly[XI for p.r. closed 
y > o so Ly[XI is 2 inadmissible for -y < a. The proof that La[X] is 2 admissible 
proceeds as before, using the fact that maximal antichains when the forcing is 
restricted to p.r. closed -y of uncountable cofinality are maximal in the whole 
partial-ordering, and the resulting fact that forcing for E2 sentences is a E2 relation. 

(2) Sacks' pointed perfect forcing (Sacks [1976]) can be adapted to the present 
context to prove: If a has cardinality and cofinality K, K regular, and La is 2n 

admissible relative to y + [y]<" then there is X C K s.t. a is the least n admissible 
relative to X and if Y E La[X], Y C K, then either X E LJY] or the least 'n 
admissible relative to Y is less than a. One must use here the full version of this 
forcing, including Sacks' "triple forcing," adapted to trees on K. 

(3) In the countable case there is a model-theoretic proof of Sacks' characteriza- 
tion of countable admissibles. Of course compactness fails at regular cardinals > W. 
But is there a model-theoretic proof of Theorem 1, say like that given of Sacks' 
theorem in Friedman [1981]? It would help to develop a countably closed version of 
Steel forcing.3 

(4) R. David [1981] has shown that if a is countable and La 1 ZF then for some 
R C , a is the least ordinal such that La[R] 1 ZF. What is the uncountable version 
of this result? 

(t) Is there a nice characterization of which sequences of admissibles (ax I y < X), 
X < K+, between K and K+ are the first X admissibles relative to some X C K (as in 
Jensen [1972] for the case K = W)? 
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