
Descriptive Set Theory on Generalised Baire Space

An exciting area of current research in set theory is Descriptive Set

Theory, the study of projective sets of reals.

The classical theory focuses on Borel, analytic and sometimes PCA

(boldface Σ1

2
) relations on reals.

Some of the highlights:
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Regularity Properties

Kuratowski-Ulam (Fubini for Category)

Mycielski (Perfectly-many classes for meager equivalence relations)

Analytic sets are P-measurable for many forcings P
Characterisations of P-measurability for ∆1

2
, Σ1

2
sets (Solovay,

Judah-Shelah, Brendle-Löwe, et.al.)

Borel Reducibility

Silver and Harrington-Kechris-Louveau Dichotomies

Countable Borel equivalence relations

The (E0,E1) Dichotomy

Isomorphism Relations

The Jump Hierarchy for Borel Isomorphism

Turbulence (Irreducibility to Isomorphism)



Descriptive Set Theory on Generalised Baire Space

Recently there has been a lot of interest in developing Descriptive

Set Theory when the classical Baire space ωω is replaced by the

generalised Baire space κκ for an uncountable regular cardinal κ.

Generalised Baire space κκ: Basic open sets are of the form

U(σ) = {η ∈ κκ | σ ⊆ η}, where σ belongs to κ<κ.

With this topology, closed sets are the sets of κ-branches through a

subtree of κ<κ.

We make the further assumption κ<κ = κ, i.e., there are only

κ-many bounded subsets of κ. This implies that there is a dense set

of size κ.
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Reasons for a Generalised Theory

1. A �ner understanding of the classical theory.

For example, Mycielski's Theorem uses the inaccessibility of ω,
whereas Kuratowski-Ulam does not.

2. Connections with forcing and combinatorial principles.

Theorems in the classical case sometimes become only consistency

results for κκ, established using forcing and ♦.

3. Surprises!

Sometimes classical results become provably false for κκ, which
presents interesting new challenges.
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4. Model theory (the original source of my interest).

Shelah's classi�cation theory for �rst-order theories �ts well with

descriptive set theory on κκ, but not with descriptive set theory on

the classical Baire space.

5. Foundational?

Maybe the generalised theory will suggest the �right� axioms to add

to ZFC.
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In outline, this tutorial looks as follows:

A. Kuratowski-Ulam, Mycielski and the Baire Property.

B. Other regularity properties.

C. Borel reducibility.

D. Isomorphism relations.

And we will see three types of results for uncountable κ:

Type 1: Results from the classical case that provably generalise.

Type 2: Results from the classical case that consistently, but not

provably, generalise.

Type 3: Results from the classical case that are false!

And in the case of Type 3, sometimes the results are better than in

the classical case.



Borel, Meager and Kuratowski-Ulam

The Borel sets for κκ are obtained by closing the basic open sets

under unions of size κ and complements.

Open sets are Borel, thanks to the assumption κ<κ = κ.

X ⊆ κκ is nowhere dense if its closure contains no nonempty open

set and is meager if it is the union of κ-many nowhere dense sets.

X has the Baire property if its symmetric di�erence with some open

set is meager.

The entire space is not meager, thanks to:
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Theorem

(Baire Category Theorem) The intersection of κ-many open dense

sets is dense.

Proof. Suppose that Di , i < κ are open dense and let U(σ) be a

basic open set.

Build a κ-sequence σ = σ0 ⊆ σ1 ⊆ · · · where U(σi+1) is contained

in Di and σλ = ∪i<λσi for limit λ < κ; this is possible as each Di is

open dense.

Then η = ∪i<κσi belongs to each Di . �
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Theorem

Borel sets have the Baire property.

Proof. It su�ces to show that the collection of sets with the Baire

property contains the basic open sets and is closed under size κ
unions and complements.

The fact that it contains the basic open sets is trivial and as any

closed set di�ers by a meager set from its interior, it is also closed

under complements.

The case of κ-unions follows from the fact that the union of

κ-many meager sets is meager. �
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Theorem

(Kuratowski-Ulam) Let X denote κκ and suppose that A ⊆ X × X

has the Baire property. For each x ∈ X let Ax denote

{y | (x , y) ∈ A}. Then:
(a) {x | Ax has the Baire Property} is comeager.
(b) A is meager i� {x | Ax is meager} is comeager (it follows that
A is comeager i� {x | Ax is comeager} is comeager).

The proof is a direct generalisation of the proof in the classical case.
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Proof. First suppose that A is open dense and we show that Ax is

open dense for comeager-many x :

Clearly Ax is open for each x , so we just have to show that Ax is

dense for comeager-many x . Let (Vi | i < κ) be a basis for the

topology on X . Then for each i , Ui = {x | (x , y) ∈ A for some

y ∈ Vi} is open dense since if W is nonempty and open,

A ∩ (W × Vi ) is nonempty by the density of A. Thus for x ∈ ∩iUi ,

Ax ∩ Vi is nonempty for each i , i.e. Ax is dense.

It follows that if A is meager then Ax is meager for comeager-many

x , which is the direction → of (b).

To prove (a), choose an open U and meager M so that A = U4M.

Then for each x , Ax = Ux4Mx and Mx is meager for

comeager-many x . It follows that Ax has the Baire property for

comeager-many x , which is (a).
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Finally, suppose that A is not meager; we show that {x | Ax is not

meager} is not meager:

Write A = U4M where U is a nonempty open set and M is

meager. U contains V0 × V1 where V0,V1 are nonempty open sets.

For x in V1, if Mx is meager then Ax = Ux4Mx is comeager on a

nonempty open set and therefore not meager. As Mx is meager for

comeager-many x , it follows that the set of x such that Ax is not

meager is comeager on a nonempty open set and therefore not

meager. �



Mycielski's Theorem

A subtree T of κ<κ is perfect if the limit of any increasing sequence

of nodes of T of length less than κ is also a node of T (i.e., T is

κ-closed) and every node of T has a splitting extension in T .

T is Sacks-perfect if in addition the limit of any increasing sequence

of splitting nodes of T of length less than κ is a splitting node of T .

A subset of κκ is perfect (Sacks-perfect) if it consists of the

κ-branches through a perfect (Sacks-perfect) subtree T of κ<κ.
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Theorem

(Mycielski for κκ) Assume that κ is regular and either ♦κ holds or

κ is strongly inaccessible. Suppose that E is a meager binary

relation on κκ. Then there is a Sacks-perfect set A such that

E (x , y) fails for all distinct x , y in A.

Corollary

Assume κ is a successor cardinal and κ 6= ω1. Then the conclusion

of the above Theorem holds.

Proof. Recall that we have assumed κ<κ = κ. For κ = γ+ this

means that 2γ = γ+. It now follows from a theorem of Shelah that

♦κ holds if γ is uncountable. �



Mycielski's Theorem

Proof of Mycielski for κκ. Write E as the union of an increasing

κ-sequence E0 ⊆ E1 ⊆ · · · of nowhere dense sets. For each

σ ∈ κ<κ recall that U(σ) denotes the basic open set determined by

σ, i.e. {η ∈ κκ | σ ⊆ η}.

First suppose that κ is inaccessible. We build the α-th splitting

level Tα of T by induction on α. For α = 0, T0 has just the single

node ∅ and for limit α, Tα consists of all limits of branches through

the levels Tβ , β < α.
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Suppose that α = β+ 1. Then we list all pairs (s ∗ i , t ∗ j) where s, t
are on level β, i , j are 0 or 1 and s ∗ i 6= t ∗ j . As κ is inaccessible

there are fewer than κ such pairs. Now choose such a pair

(s ∗ i , t ∗ j) and �nd (s ∗ i)1 extending s ∗ i and (t ∗ j)1 extending

t ∗ j so that U((s ∗ i)1)× U((t ∗ j)1) is disjoint from Eβ . This is

possible as Eβ is nowhere dense. Then choose another pair and do

the same, repeating this for all pairs and resulting in sequences

(s ∗ i)1 ⊆ (s ∗ i)2 ⊆ · · · for each s ∗ i . Let (s ∗ i)∞ be the limit of

this sequence and take level Tα to consist of all of these (s ∗ i)∞'s.

The result is that if x , y are κ-branches through T and extend

distinct nodes on level β + 1 of T then (x , y) does not belong to

Eβ and therefore (x , y) does not belong E as β can be chosen to

be arbitarily large.
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Now suppose that ♦κ holds. Fix a ♦κ sequence (Dβ | β < κ) that

guesses pairs (x , y) in κκ, i.e., for such a pair,

{β | Dβ = (x |β, y |β)} is stationary in κ. Now repeat the above

construction except at stage β + 1 only treat the four pairs

(d0 ∗ i , d1 ∗ j) if Dβ = (d0, d1) and d0, d1 belong to Tβ ,

guaranteeing that if (x , y) extends (d0, d1) then (x , y) does not

belong to Eβ . Other nodes s on level β are simply extended to s ∗ 0
and s ∗ 1 on level β + 1. The ♦κ sequence guarantees that if x , y
are distinct branches through the resulting Sacks-perfect tree then

(x , y) does not belong to Eβ for any β and therefore does not

belong to E . �

Open questions. Assume κ<κ = κ. Does Mycielski's Theorem hold

when κ equals ω1? Does Mycielski's Theorem hold when κ is

weakly (but not strongly) inaccessible?



The Baire Property

Again �x an uncountable κ such that κ<κ = κ.

Recall that Borel sets have the Baire property.

Proposition

In L there is a ∆1

1
set without the Baire property.

Proof. This is because there is a ∆1

1
wellorder of the subsets of κ:

x ≤ y i� there exists α < κ+ such that Lα models ZFC− and

Lα � x ≤L y (i� there exists z coding a wellfounded model M of

ZFC− + V = L such that x , y ∈ M and M � x ≤L y). But �z is a

wellfounded binary relation� is Borel (even closed): z is wellfounded

i� z ∩ (α× α) is wellfounded for each α < κ. It follows that x ≤ y

is a Σ1

1
and therefore ∆1

1
wellorder of the subsets of κ.

Now using the ∆1

1
wellorder it is easy to construct a ∆1

1
set without

the Baire property by diagonalisation. �
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It follows that in L, there are ∆1

1
sets which are not Borel.

Actually this holds in general:

Proposition

There are ∆1

1
sets which are not Borel.

Proof. Each Borel set B is coded as B(T ) where T is a

wellfounded, size κ tree of �nite sequences whose terminal nodes

are labelled with basic open sets and whose nonterminal nodes are

labelled with ∼ or ∪ (use the labels to assign a Borel set to each

node of the tree; B(T ) is the Borel set assigned to the top node).

The relation η ∈ B(T ) is a ∆1

1
relation of η and T .

It follows that there is a ∆1

1
set U(η, ν) which is universal for Borel

sets in the sense that for each η, Uη is Borel and each Borel set is

of this form for some η; but then U is not Borel, else by

diagonalisation, {η | not U(η, η)} would give a contradiction. �
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Remark. Later we will see a much more concrete example of a ∆1

1

set that is not Borel.

We have seen that in L there are ∆1

1
sets without the Baire

property.

However, generalising the classical result that it is consistent for all

∆1

2
sets of reals to have the Baire property, we have:
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Theorem

(???) After forcing over L with Add(κ, κ+) (the forcing which adds

κ+-many κ-Cohens), every ∆1

1
set has the Baire property.

Proof. Let G be generic for Add(κ, κ+) and let X be ∆1

1
in V [G ].

Assuming that X is ∆1

1
with parameter in V we'll show that X has

the property of Baire; the general case follows from the fact that

any subset of κ belongs to G ∩ Add(κ, α) for some α < κ+ and

Add(κ, κ+) factors as Add(κ, α)× Add(κ, [α, κ+)), the second

component of this product being isomorphic to Add(κ, κ+).
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We show that any basic open set U(σ) contains a basic open subset

U(τ) on which X is either meager or comeager. Let ϕ,ψ be Σ1

1

formulas (with parameters in V ) de�ning X and the complement of

X , respectively. We may assume that G (0), the �rst κ-Cohen
added by G , extends σ (if not, then change it below the length of σ
so that it does). Suppose that G (0) satis�es ϕ. Note that V [G ] is
an extension of V [G (0)] via the κ-closed forcing Add(κ, [1, κ+)).
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We claim that V [G (0)] is Σ1

1
elementary in V [G ] and therefore

ϕ(G (0)) holds in V [G (0)]: Indeed, suppose that ϕ is Σ1

1
with

parameter in V [G (0)] and let T be a tree in V [G (0)] on κ× κ
such that co�nal branches through T correspond to pairs (x ,w)
where w witnesses that ϕ(x) holds. Suppose that ḃ is an

Add(κ, [1, κ+))-name for a branch through T ; then we can build a

branch through T in V [G (0)] by forming a κ-sequence of

conditions p0 ≥ p1 ≥ · · · deciding initial segments of ḃ. So if ϕ has

a solution in V [G ] it also has one in V [G (0)].
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Now let τ be a κ-Cohen condition extending σ which forces ϕ(ġ)
where ġ denotes the κ-Cohen generic. Let M be a transitive model

of ZFC− of size κ which contains all bounded subsets of κ such

that τ forces ϕ(ġ) in M. The subsets of κ which are κ-Cohen over

M form a comeager set on U(τ) and if x is κ-Cohen over M

extending τ then M[x ] and therefore V [G ] satis�es ϕ(x). We have

shown that X is comeager on U(τ). If G (0) satis�es ψ, the Σ1

1

formula that de�nes the complement of X , then we have shown

that X is meager on U(τ). �

We turn now to the Baire property for Σ1

1
sets. Here there is a

surprise:
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Theorem

(Halko-Shelah) Let X be the set of η ∈ κκ such that η(i) = 0 for

all i in some closed unbounded subset of κ. Then X does not have

the Baire property.

Proof. Otherwise choose a basic open set U(σ) on which X is

either meager or comeager. Suppose that it is comeager on U(σ)
and choose sets Di , i < κ which are open dense subsets of U(σ)
with intersection contained in X . But we can build a sequence

σ = σ0 ⊆ σ1 ⊆ · · · so that U(σi+1) is contained in Di and for limit

λ, σλ is an extension of ∪i<λσi with value 1 at λ. Then the union

of the σi , i < κ, clearly does not belong to X but does belong to

each Di , i < κ, contradiction. If we instead require σλ = 0 for limit

λ then we obtain something in X belonging to each Di , verifying

that X is not meager on U(σ). �
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The Halko-Shelah result is a surprise, as in the classical setting it is

consistent that Σ1

2
and indeed Σ1

n sets for arbitrary n have the

property of Baire. Developing a notion of regularity for Σ1
n sets for

uncountable κ which copes with the Halko-Shelah result remains an

interesting challenge in the descriptive set theory of generalised

Baire space.

The Halko-Shelah result can also be used to produce examples of

∆1

1
sets without the Baire property. Indeed, for any regular cardinal

κ of L, there is a cardinal-preserving extension of L in which the

club �lter on κ is ∆1

1
de�nable (SDF-Wu-Zdomskyy). However the

club �lter on κ cannot be ∆1

1
when κ is weak compact.
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The Baire property is just one example of a regularity property for

subsets of generalised Baire space. We now consider other such

properties, each associated to a �κ-treelike� forcing in the way that

the Baire property is associated to κ-Cohen forcing.

A forcing P is κ-treelike i� it is a κ-closed suborder of the set of

subtrees of κ<κ ordered by inclusion.

Some examples of κ-treelike forcings:

κ-Cohen. These are subtrees of 2<κ consisting of a stem and all

nodes above it.

κ-Sacks. These are κ-closed subtrees of 2<κ with the property that

every node has a splitting extension and the limit of splitting nodes

is a splitting node.
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κ-Miller. These are κ-closed subtrees of the tree κ<κ↑ of increasing

sequences in κ<κ with the property that every node can be

extended to a club-splitting node and the limit of club-splitting

nodes is club-splitting. We also require continuous club-splitting,

which means that if s is a limit of club-spltting nodes then the club

witnessing club-splitting for s is the intersection of the clubs

witnessing club-splitting for the club-splitting proper initial

segments of s.

κ-Laver. These are κ-Miller trees with the property that every node

beyond some �xed node (the stem) is club-splitting.
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To de�ne �P-regularity� for the above forcing notions P we

proceed as follows.

A set A is:

Strictly P-null if every tree T ∈ P has a subtree in P, none of

whose κ-branches belongs to A.

P-null if it is the union of κ-many strictly P-null sets.
P-regular (or P-measurable) if any tree T ∈ P has a subtree

S ∈ P such that either all κ-branches through S , with a P-null set
of exceptions, belong to A or all κ-branches through S , with a

P-null set of exceptions, belong to the complement of A.
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Proposition

A set is κ-Cohen measurable i� it has the property of Baire.

Proof. Let P denote κ-Cohen forcing. First note that a set is strictly

P-null i� it is nowhere dense and therefore is P-null i� it is meager.

Now if A is P-measurable it follows that every basic open set has a

basic open subset on which A is either meager or comeager. Thus if

U is the union of the basic open sets on which A is meager or

comeager and U0 is the union of the basic open sets on which A is

comeager, it follows that A di�ers from U0 by a meager set, as the

complement of U is nowhere dense. So A has the property of Baire.



Other forms of Regularity

Conversely, if A = U4M with U open and M meager, then to verify

that A is P-measurable it su�ces to show that U is P-measurable.

But this is clear, as any basic open set not disjoint from U has a

basic open subset that is completely contained in U. �

Now let P be any of the above κ-treelike forcings.

Proposition

Any Borel set is P-measurable.

Proof. We may assume that P is not κ-Cohen, as in that case

P-measurability is the same as the property of Baire and we know

that all Borel sets have the property of Baire. A similar argument

applies to κ-Laver which is also κ+-cc and gives rise to a natural

topology, the κ-Laver topology, analagous to the standard topology

on κκ. So we assume that P is either κ-Sacks or κ-Miller.
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Note that the collection of P-measurable sets is obviously closed

under complements, so it su�ces to show that it is closed under

κ-unions and that basic open sets are P-measurable.

For the basic open sets, note that for each of the above examples

of treelike forcings P, if T belongs to P then so does T (η) for

each node η of T (where T (η) consists of all nodes in T which are

compatible with η). Now if η is an arbitrary element of κ<κ,
determining the basic open set U(η), and T belongs to P then

either η belongs to T , in which case T (η) is a strengthening of T

whose κ-branches are all contained in U(η), or η does not belong

to T , in which case no κ-branch of T belongs to U(η). So U(η) is

P-measurable.
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Suppose that A is the union of Ai , i < κ and we know that each Ai

is P-measurable. Given T ∈ P and i < κ we can strengthen T to

Ti so that either almost all κ-branches of Ti belong to Ai or almost

all κ-branches of Ti do not belong to Ai , where �almost all� refers

to a P-null set of exceptions. If the former occurs for some i then

almost all κ-branches of Ti also belong to A so we are done.

Otherwise we want to strengthen T to T ∗ so that almost no

κ-branch of T ∗ belongs to any Ai . Of course we can do this for

fewer than κ-many Ai 's using the κ-closure of the forcing P; to
handle κ-many Ai 's we use the fusion property. This is expressed as

follows:
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There are partial orders ≤i on P which re�ne the standard ordering

on P such that:

(a) i ≤ j , T ∗ ≤j T implies T ∗ ≤i T .

(b) If (Ti | i < λ), λ ≤ κ, belong to P and for all i ≤ j < λ,
Tj ≤i Ti then there is T ≤i Ti for all i < λ.
(c) Suppose that T belongs to P and D is a set of extensions of T

which is dense below T . Then for each i < κ there are T ∗ ≤i T

and d ⊆ D of size at most κ such that each κ-branch through T ∗

is also a κ-branch through some element of d .
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Now recall that we are given T such that for each i , the set of T ∗

such that almost no κ-branch through T ∗ belongs to Ai is open

dense below T . Now use fusion to build a sequence (Ti | i < κ)
such that i ≤ j → Tj ≤i Ti and each κ-branch through Ti+1 is a

κ-branch through one of κ-many extensions of Ti , almost none of

whose κ-branches belong to Ai . If T
∗ is a lower bound to the

sequence of Ti 's then almost no κ-branch of T ∗ belongs to any Ai ,

so we have veri�ed the P-measurability of A, the union of the Ai 's.

Finally we verify the fusion property for the κ-Sacks and κ-Miller

forcings:
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κ-Sacks:
If T is a condition then let fT : 2<κ → T be the natural

order-preserving bijection between the full tree 2<κ and the set of

splitting nodes of T . Then de�ne T ∗ ≤i T i� fT∗(s) = fT (s) for all

s ∈ 2<κ of length at most i . Then property (a) is clear. Note that

for limit i , this is the same as requiring this just for s of length less

than i , as the limit of spltting nodes is a splitting node; this gives

property (b). For (c), for each s ∈ 2<κ of length i and j ∈ {0, 1}
we choose Ts∗j ≤ T (fT (s) ∗ j) in D, let d be the set of such Ts∗j 's
and let T ∗ the the union of the Ts∗j 's. As κ

<κ = κ, there are only

κ-many such s ∗ j 's.
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κ-Miller:

If T is a condition then let fT : κ<κ↑ → T be the natural

order-preserving bijection between the full tree κ<κ↑ and the set of

splitting nodes of T . De�ne T ∗ ≤i T i� fT∗(s) = fT (s) for all

s ∈ 2<κ such that s(α) ≤ i for all α < |s|. Property (a) is clear and

property (b) follows using (diagonal) intersections when λ equals κ.
(c) is veri�ed as for κ-Sacks. �

Thus we know that Borel sets are P-measurable for our 4 standard

examples of κ-treelike forcings P. However as in the speci�c case of

κ-Cohen forcing:
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Theorem

Not every Σ1

1
set is P-measurable.

Proof. First we verify this for κ-Sacks. Let A consist of all x ∈ 2κ

such that {i | x(i) = 0} contains a club. Suppose that T is a

κ-Sacks tree. Then there are κ-branches of T in A and also

κ-branches of T in the complement of A: For the former simply

choose a κ-branch x through T as the union of splitting nodes si of

T of lengths αi such that for each i , si+1(αi ) = 0; this is possible

as the limit of splitting nodes of T is also a splitting node of T . For

the latter do the same, but with si+1(αi ) = 1 for limit i .

To handle the other cases we prove the following general fact,

patterned after work of Brendle-Löwe, Khomskii and Laguzzi in the

classical case.
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Lemma

Let Γ be a pointclass closed under continuous pre-images (like ∆1
n,

Σ1
n or Π1

n). Let Γ(P) be the statement that every set in Γ is

P-measurable. Then:

Γ(κ-Cohen)→ Γ(κ-Miller)
Γ(κ-Laver)→ Γ(κ-Miller)
Γ(κ-Miller)→ Γ(κ-Sacks).

Proof of Lemma. For the �rst implication, �rst note the following:
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Fact 1. Γ(κ-Cohen) (= Γ(2<κ-Cohen)) implies Γ(κ<κ↑ -Cohen).

Proof of Fact 1. Note that there is D ⊆ 2κ which is the

κ-intersection of open dense subsets of 2κ (and therefore comeager)

such that D is homeomorphic to κκ↑ . We may choose D to consist

of all x ∈ 2κ such that x(i) = 1 for co�nally many i < κ; the
homeomorphism sends x to y ∈ κκ↑ where x = 0y(0) ∗ 1 ∗ 0y(1) ∗ · · · .
If A ⊆ κκ↑ belongs to Γ then the κ<κ↑ -measurability of A follows

from that of its pre-image under this homeomorphism, which in

turn follows from Γ(κ-Cohen), as D is comeager in 2κ. � (Fact 1)
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Now let A belong to Γ and let T be a κ-Miller tree. Under the

assumption Γ(κ-Cohen) we want to �nd a κ-Miller subtree of T , all

of whose κ-branches belong to A or all of whose κ-branches belong
to the complement of A.

Let ϕ be the natural order-preserving bijection between the full tree

κ<κ↑ (of increasing < κ-sequences through κ) and the splitting

nodes of T . Also let ϕ∗ denote the induced homeomorphism

between κκ↑ and [T ], the set of κ-branches through T . Let A′ be

(ϕ∗)−1[A], which belongs to Γ as by assumption Γ is closed under

continuous pre-images. Apply Γ(κ-Cohen) to get a basic open set

U(η) such that A′ is either meager or comeager on U(η). Without

loss of generality assume the latter. Now build a κ-Miller tree S ′

such that [S ′] is contained in U(η) ∩ A′: assume that A′ ∩ U(η)
contains the intersection of Ui , i < κ, where each Ui is open dense

on U(η) and ensure that any x ∈ κκ extending a node on the i-th
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splitting level of S ′ belongs to Ui . We can also require that splitting

nodes µ of S ′ are full-splitting, in the sense that if µ ∗ α belongs to

S ′ for all α < κ. Then ϕ[S ′] consists of the splitting nodes of a

κ-Miller tree S contained in T with the property that [S ] is
contained in A.
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For the second implication (from κ-Laver to κ-Miller), note that

like κ-Cohen forcing, κ-Laver forcing is κ+-cc and we can form a

topology, which we call the Laver topology, whose basic open sets

are of the form [T ] for T a κ-Laver tree. Then in analogy to

κ-Cohen forcing we have:

Fact 2. A is κ-Laver measurable i� A is of the form O4M where O

is open in the Laver topology and M is meager in the Laver

topology.

Now we use Fact 2 to prove the second implication, by imitating

the argument used for the �rst implication. Let A belong to Γ and

let T be a κ-Miller tree. Under the assumption Γ(κ-Laver) we want

to �nd a κ-Miller subtree of T , all of whose κ-branches belong to A

or all of whose κ-branches belong to the complement of A.
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We �collapse� T into a κ-Laver tree T ′ as follows: De�ne a function

ψ from the splitting nodes of T to nodes of the full tree κ<κ↑ by

induction as follows. If η is a splitting node of T which is not the

limit of splitting nodes of T then write η as η0 ∗ α ∗ η1 where η0 is

the longest splitting node of T properly contained in η (or ∅ if η is

the least splitting node of T ) and set ψ(η) = ψ(η0) ∗ α. If η is a

limit of splitting nodes of T then set ψ(η) = the union of the

ψ(η0) for η0 a splitting node of T properly contained in η. Let ϕ be

the inverse of ψ, mapping the κ-Laver tree T ′ onto the splitting

nodes of T , and let ϕ∗ be the induced homeomorphism between

[T ′] and [T ], the sets of κ-branches of T ′ and T , respectively.
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Now let A′ be (ϕ∗)−1[A], which belongs to Γ as by assumption Γ is

closed under continuous pre-images. Apply Γ(κ-Laver) to get a

κ-Laver subtree of T ′ such that A′ is either Laver-meager or

Laver-comeager on [T ]. Without loss of generality assume the

latter. Now build a κ-Miller tree S ′ such that [S ′] is contained in

[T ] ∩ A′: assume that A′ ∩ [T ] contains the intersection of Ui ,

i < κ, where each Ui is Laver-open dense on [T ] and ensure that

any x ∈ κκ extending a node on the i-th spitting level of S ′ belongs
to Ui . Then ϕ[S ′] consists of the splitting nodes of a κ-Miller tree

S contained in T with the property that [S ] is contained in A.
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For the third implication (κ-Miller to κ-Sacks), let A belong to Γ
and let T be a κ-Sacks tree. Under the assumption Γ(κ-Miller) we

want to �nd a κ-Sacks subtree S of T such that [S ] is either
contained in or disjoint from A.

De�ne an injection ϕ0 from the full tree κ<κ↑ into 2<κ as follows:

ϕ0(∅) = ∅
ϕ0(η) = (

⋃
α<|η| ϕ0(η|α)), if |η| = the length of η is a limit ordinal

ϕ0(η ∗ α) = ϕ0(η) ∗ 0α−|η| ∗ 1, where 0β denotes a β-sequence of

0's.
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And let ϕ∗
0
be the injection from κκ↑ into 2κ induced by ϕ0. Also let

ψ be the natural bijection between 2<κ and the splitting nodes of

T and ψ∗ the induced bijection between 2κ and [T ]. De�ne
ϕ = ψ ◦ ϕ0 and ϕ∗ = ψ∗ ◦ ϕ∗

0
.

As ϕ∗ is continuous, A′ = (ϕ∗)−1[A] belongs to Γ. Apply
Γ(κ-Miller) to obtain a κ-Miller tree S ′ such that [S ′] is either
contained in or disjoint from A′. Thin S ′ to guarantee that if η is a

splitting node of S ′ then the length |η| of η is the sup of its range

and η ∗ |η| belongs to S ′. Then ϕ[S ′] = S generates a κ-Sacks
subtree S of T such that [S ] is either contained in or disjoint from

A. � (Lemma)

Using the Lemma, we conclude that Σ1

1
measurability fails for

κ-Miller, κ-Cohen and κ-Laver. �
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We have seen that ∆1

1
(κ-Cohen) is consistent, from which it

follows by the above Lemma that ∆1

1
(κ-Miller) and ∆1

1
(κ-Sacks)

are consistent. What about ∆1

1
(κ-Laver)? For this we can imitate

the proof for the κ-Cohen case. First we need a lemma.

Lemma

Let M be a transitive model of ZFC− containing κ and all bounded

subsets of κ which is elementary in H(κ+). Then x ∈ κκ is κ-Laver
generic over M i� x belongs to every Borel set coded in M which is

open dense in the Laver topology of M (equivalently, open dense in

the Laver topology of V ).
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Proof. Of course when we say that x is κ-Laver generic over M we

mean that Gx = {T ∈ M | T is a κ-Laver tree of M and x ∈ [T ]}
is κ-Laver generic over M in the strict sense. If this holds and B is

a Borel set coded in M which is open dense in the Laver topology

of M then the set of T in M such that M � [T ] ⊆ B is open dense

in the κ-Laver forcing of M and therefore there is such a T in Gx ;

by the elementarity of M in H(κ+), V � [T ] ⊆ B and therefore as

x belongs to [T ] it also belongs to B . Conversely, suppose that x

belongs to every Borel set coded in M which is open dense in the

Laver topology of M and that D ∈ M is open dense on the κ-Laver
forcing of M. Let X ∈ M be a maximal antichain contained in D;

then X has size at most κ and B = the union of the [T ] for T in X

is a Borel set coded in M which is open dense in the κ-Laver
topology of M. By hypothesis x belongs to B and therefore to

some [T ] where T belongs to X ; so Gx meets D. � (Lemma)
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Theorem

After forcing with Laver(κ, κ+) (the iteration of κ+-many κ-Laver
forcings with support of size < κ), every ∆1

1
set is κ-Laver

measurable.

Proof. Note that the forcing Laver(κ, κ+) is κ+-cc; this follows
using a ∆-system argument and the fact that κ-Laver forcing is

both κ-closed and κ-centered.

Let G be generic for Laver(κ, κ+) and let X be ∆1

1
in V [G ]. We'll

show that any κ-Laver tree T contains a κ-Laver subtree S such

that [S ] is either contained in or disjoint from X modulo a

Laver-null set. We may assume that the de�ning parameter for X

and the tree T belong to V (otherwise factor over V [G |α] for some

large enough α < κ+). Let ϕ,ψ be Σ1

1
formulas (with parameters

in V ) de�ning X and the complement of X , respectively.
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Let M be a transitive elementary submodel of H(κ+)V of size κ
which contains all bounded subsets of κ and T . Then by the κ+-cc
of Laver(κ, κ+), M[G ] is elementary in H(κ+)V [G ] = H(κ+)V [G ].

If α is M ∩ κ+ then M[G ] = M[G |α]; we may assume that G (α),
the κ-Laver generic added by G at stage α, belongs to [T ], as it is
dense to force this for some M. Note that G (α) is also κ-Laver
generic over M[G |α] as this model is Σ1 elementary in

H(κ+)V [G |α] (and the property of being a maximal antichain is

Π1). Without loss of generality assume that ϕ(G (α)) holds in V [G ]
and therefore also in V [G |α][G (α)] (as the former is a κ-closed
forcing extension of the latter).
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Now let S be a κ-Laver condition in M[G |α] extending T which

forces ϕ(ġ) where ġ denotes the κ-Laver generic. Using the

Lemma, the set of x ∈ κκ↑ which are Laver-generic over M[G |α] is
Laver-comeager in V [G ] as it is the intersection of κ-many Borel

sets, each of which is open dense in the Laver topology of M[G |α]
and therefore in the Laver topology of V [G ]. And if x is a κ-branch
through S which is Laver-generic over M[G |α] then M[G |α][x ] and
therefore V [G ] satis�es ϕ(x). We have shown that [S ] is contained
in X modulo a Laver-null set and therefore X is Laver-measurable

in V [G ]. �

Remark. In the classical case one can similarly obtain the

Laver-measurability of all ∆1

2
sets by iterating Laver forcing ω2

times over L; but Shoen�eld absoluteness makes the argument

easier.
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If E and F are equivalence relations on κκ then we say that E is

Borel reducible to F , written E ≤B F , if there is a Borel function f

such that for all x , y : E (x , y) i� F (f (x), f (y)). The relation ≤B is

re�exive and transtive and we write ≡B for the equivalence relation

it induces.

For Borel equivalence relations E ,F with at most κ-many

equivalence classes Borel reducibility is quite trivial: E ≡B F i� E

and F have the same number of equivalence classes. This is

because if E and F have the same number of classes we may

choose sets XE and XF of the same size selecting one element from

each equivalence class of E , F respectively and then extend any

bijection between XE and XF to a Borel reduction of E to F (and

similarly obtain a Borel reduction of F to E ).
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In the classical setting one has two important Dichotomies:

Silver Dichotomy. Suppose that E is a Borel (or even Π1

1
)

equivalence relation on ωω with uncountably many classes. Then id

is Borel (even continuously) reducible to E , where id is the

equivalence relation of equality on 2ω.

Harrington-Kechris-Louveau Dichotomy. Suppose that E is a Borel

equivalence relation. Then either E is Borel reducible to id or E0 is

Borel reducible to E , where E0 is the equivalence relation of

equality mod �nite.

Terminology: If id Borel reduces to E we say that E has a perfect

set of classes and if E Borel reduces to id we say that E is smooth.
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The Silver Dichotomy for κκ fails in L:

Theorem

(SDF-Hyttinen-Kulikov) Assume V = L. Then there are Borel

equivalence relations E with more than κ classes which are strictly

below id with respect to Borel reducibility.

Proof. If V = L then there is a weak Kurepa tree on κ, a tree T of

height κ with κ+ many branches such that the α-th splitting level

of T has size at most card(α) for stationary-many α < κ.

There can be no continuous injection from 2κ into [T ], the set of

κ-branches through T , because this would yield a club of α < κ
such that the α-th splitting level of T has 2α many nodes. In fact

there cannot be such an injection which is Borel, as any Borel
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function is continuous on a comeager set and any comeager set

contains a copy of 2κ.

Now de�ne xET y i� x , y are not branches through T or x = y .

Then ET is a Borel equivalence relation with κ+ classes yet id

cannot Borel reduce to ET for the reasons given above. Clearly ET
is Borel reducible to id. �

Remark. This can be improved to get (assuming V = L) 2κ Borel

Reducibility Degrees below id as well as Borel equivalence relations

which are incomparable with id with respect to Borel reducibility.
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One might hope that if a Borel equivalence relation has not just κ+

many classes but a large number of classes then it must have a

perfect set of classes. But also this can consistently fail:

Theorem

Let κ be regular and uncountable in L. Then in a

cardinal-preserving forcing extension of L, 2κ = κ+++ and there is

a Borel equivalence relation on κκ with exactly κ++ classes. (The

same holds with κ+++, κ++ replaced by any pair of cardinals

λ1 ≥ λ0 of co�nality greater than κ.)

Proof. Add a (weak) Kurepa tree T on κ with κ++ branches. The

forcing for doing this is κ-closed and κ+-cc and therefore preserves

cardinals. Then follow this by adding κ+++ many κ-Cohen sets (by

a product with supports of size less than κ). Again cardinals are
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preserved. But notice that the second forcing does not add

branches to T as it is κ-closed. Now (as before) take the

equivalence relation ET de�ned by xET y i� x , y are not κ branches

through T or x = y . �

We'll return to the Silver Dichotomy later, but now turn to the

Harrington-Kechris-Louveau Dichotomy. Recall that in the classical

case, E0 is de�ned by: xE0y i� x4y is �nite.

The �rst question to resolve is: How shall we de�ne E0 on κκ? The

next result answers this question:
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Theorem

For λ an in�nite cardinal ≤ κ de�ne E0,λ by xE0,λy i� x4y has

size less than λ. Then id ≤B E0,λ, E0,λ is Borel and:

(∗) E0,κ is not Borel reducible to id but E0,λ is Borel reducible to id

for λ < κ.

In light of this result we take E0 to be E0,κ.

Proof. To prove (∗), �rst suppose that λ is less than κ. For each
α < κ use the axiom of choice to choose a function fα : 2α → 2α

such that for x , y in 2α, x4y has size less than λ i� fα(x) = fα(y).
Then for x , y in 2κ, x4y has size less than λ i� fα(x |α) = fα(y |α)
for all α < κ (here we use λ < κ). So we obtain a reduction of E0,λ
to id by sending x to (fα(x) | α < κ).
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The proof that E0,κ is not Borel reducible to id is just as in the

classical case: Suppose that f were a reduction and let x be

su�ciently κ-Cohen (i.e., κ-Cohen over a transitive model of ZFC−

of size κ containing all bounded subsets of κ as well as the

parameter for this reduction). De�ne x̄(i) = 1− x(i) for i < κ. As
∼ xE0x̄ we can choose σ ⊆ x , i < κ and j ∈ {0, 1} such that for

su�ciently κ-Cohen y , f (y)(i) = j if y extends σ and

f (y)(i) = 1− j if y extends σ̄. But y = σ̄ ∗ (x above σ̄) is E0
equivalent to x yet f (y) 6= f (x), contradiction.
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Unfortunately the Harrington-Kechris-Louveau Dichotomy is

provably false for κκ, κ uncountable:

Theorem

(SDF-Hyttinen-Kulikov) There is a Borel equivalence relation E ′
0

which is strictly above id and strictly below E0 with respect to

Borel reducibility.

Proof. We de�ne E ′
0
on 2κ as follows:
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xE ′
0
y i�

xE0y and {i < κ | x(i) 6= y(i)} is a �nite union of intervals.

Claim 1. id ≤B E ′
0
≤B E0.

For the �rst reduction use f (x) = the set of codes for proper initial

segments of x ; then x = y → f (x)E ′
0
f (y) and

x 6= y →∼ f (x)E0f (y)→∼ f (x)E ′
0
f (y).

For the second reduction: for each α < κ choose fα : 2α → 2α such

that for x , y ∈ 2α, {i < κ | x(i) 6= y(i)} is a �nite union of

intervals i� fα(x) = fα(y) and for x ∈ 2κ de�ne f (x) = the set of

codes for the pairs (fα(x |α), x(α)), α < κ; then
xE ′

0
y → f (x)E0f (y) and ∼ xE ′

0
y →∼ f (x)E0f (y).
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Claim 2. E ′
0
�B id.

Otherwise let M be a transitive model of ZFC− of size κ containing

all bounded subsets of κ as well as a code for the Borel reduction f .

Let x ∈ 2κ be κ-Cohen generic over M and de�ne x̄(i) = 1− x(i)
for each i < κ.
Then as ∼ xE0x̄ there is α < κ such that f (x) 6= f (y) whenever y

is κ-Cohen generic over M and extends x̄ |α. But then
f (x) 6= f ((x̄ |α) ∗ (x |[α, κ))), contradicting xE ′

0
((x̄ |α) ∗ (x |[α, κ))).
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Claim 3. E0 �B E ′
0
.

As in the previous argument choose a reduction f , a transitive

model M of ZFC− of size κ containing all bounded subsets of κ as

well as a Borel code for f and x ∈ 2κ which is κ-Cohen over M.

Choose α0 so that for some ordinal i0 < α0, f (x)(i0) 6= f (y)(i0)
whenever y is κ-Cohen over M and extends x̄ |α0; this is possible as

∼ xE0x̄ and therefore ∼ f (x)E ′
0
f (x̄). Then choose α1 > α0 so that

for some ordinal i1 ∈ [α0, α1), f (x)(i1) = f (y)(i1) whenever y is

κ-Cohen over M and extends (x̄ |α) ∗ (x |[α0, α1)); this is possible as
xE0((x̄ |α) ∗ (x |[α0, κ))) and therefore f (x)E ′

0
f ((x̄ |α) ∗ (x |[α0, κ))).

After ω steps we obtain ∼ f (x)E ′
0
f (y) whenever y is κ-Cohen over

M and extends (x̄ |α0) ∗ (x |[α0, α1)) ∗ (x̄ |[α1, α2)) ∗ · · · ,
contradicting the fact that there is such a y which is E0 equivalent

to x . �
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In summary: Even for Borel equivalence relations, the Silver

Dichotomy can consistently fail and the

Harrington-Kechris-Louveau Dichotomy is provably false.

But there is still some hope for the Harrington-Kechris-Louveau

Dichotomy and also some good news for the Silver Dichotomy.

Regarding the Harrington-Kechris-Louveau Dichotomy: Recall that

we found a Borel equivalence relation E ′
0
strictly between id and E0

with respect to Borel reducibility.

Open question. Suppose that a Borel equivalence relation E is not

Borel reducible to id. Then is E ′
0
Borel reducible to E?

This seems unlikely, but so far has not been ruled out as a possible

valid generalisation of the Harrington-Kechris-Louveau Dichotomy

for κκ.
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Regarding the Silver Dichotomy, �rst consider one more negative

result:

Theorem

There is a ∆1

1
equivalence relation with κ+ classes but no perfect

set of classes. So the Silver Dichotomy provably fails for ∆1

1
.

Proof. The relation is xE ranky i� x , y do not code wellorders or

x , y code wellorders of the same length. This has exactly κ+ classes

and is ∆1

1
. Suppose T were a perfect tree whose distinct

κ-branches were E rank-inequivalent. Now let x be a generic branch

through T (treating T as a version of κ-Cohen forcing) and let

p ∈ T be a condition forcing that x codes a wellorder of some rank

α < κ+. Then any su�ciently generic branch through T extending

p codes a wellorder of rank α, which contradicts the fact that there

are distinct such branches in V . �
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So a �rst step toward obtaining the consistency of Silver's

Dichotomy for κκ is the following.

Theorem

The relation E rank of the previous theorem is not Borel.

Proof. For α < κ let Lα denote the forcing to Lévy collapse α to κ
(using conditions of size less than κ). If g is Lα-generic then g∗

denotes the subset of κ de�ned by i ∈ g∗ i� g((i)0) ≤ g((i)1)
where i 7→ ((i)0, (i)1) is a bijection between κ and κ× κ.

By induction on Borel rank we show that if B is Borel then there is

a club C in κ+ such that:

(∗) For α ≤ β in C and (p0, p1) a condition in Lα × Lα, (p0, p1)
Lα × Lα-forces that (g∗

0
, g∗

1
) belongs to B i� it Lα × Lβ forces

that (g∗
0
, g∗

1
) belongs to B .
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If B is a basic open set then we may take C to consist of all

ordinals greater than κ in κ+.
Inductively, suppose that B is the intersection of Borel sets Bi ,

i < κ, of smaller Borel rank. By intersecting clubs obtained by

applying (∗) to the Bi 's we obtain a club C ensuring the desired

conclusion for B .

Finally if B is the complement of the Borel set B0 then by

induction we have a club C0 such that for α ≤ β in C0 and

(p0, p1) ∈ Lα × Lα, (p0, p1) Lα × Lα-forces (g∗
0
, g∗

1
) ∈ B0 i� it

Lα × Lβ-forces this. Now thin out the club C0 to a club C so that

for α in C , if (p0, p1) in Lα × Lα and there is some β in C0 and

some (q0, q1) in Lα × Lβ below (p0, p1) which Lα × Lβ-forces
(g∗

0
, g∗

1
) in B0 then there is such a (q0, q1) in Lα × Lα. Then

(p0, p1) Lα × Lα-forces (g∗
0
, g∗

1
) in B i� it Lα × Lβ-forces for any

α ≤ β in this thinner club, completing the induction.
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It follows that E rank is not Borel, as otherwise we have g∗
0
E rankg∗

1

where g0, g1 are su�ciently generic Lévy collapse generics for

ordinals α < β. �
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Now using an analogous argument we have:

Theorem

Suppose that 0# exists, κ is regular in L and λ is the κ+ of V .

Then after forcing over L with the Lévy collapse turning λ into κ+,
the Silver Dichotomy holds for κκ.

Proof Sketch. Suppose that p is a condition forcing that

(σi | i < λ) are pairwise E -inequivalent (where E is a Borel

equivalence relation with parameter in L). Assuming that E does

not have a perfect set of classes we may assume that the class of σi
does not depend on the choice of Lévy generic. Let I denote the

Silver indiscernibles i < λ such that p belongs to Li . For i < j in I

let πij be an elementary embedding from L to L with critical point

i , sending i to j . Also for each i ∈ I let f (i) denote the L-rank of

the name σi . Then in analogy to the previous proof, show that as E
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is Borel there is a club C contained in I such that for i ≤ j in C

and (p0, p1) in Lf (i) × Lf (i) below (p, p), Lf (i) × Lf (i)-forces
σg0i Eσg1i i� (p0, πij(p1)) Lf (i) × Lf (j)-forces σ

g0
i Eσg1j . But (p0, p1)

does Lf (i) × Lf (i)-force σ
g0
i Eσg1i as the class of σi is independent

of the choice of generic; it follows that for i < j in C some

condition forces σiEσj , contradicting our assumption that σi , σj are
forced to be pairwise E -inequivalent. �
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I'll now discuss some recent work regarding the analogue of the

countable Borel equivalence relations for κκ, i.e., those Borel

equivalence relations whose classes have size at most κ.

An orbit equivalence relation is one induced by a Borel action of a

Polish group G : xEy i� g · x = y for some g ∈ G . Two important

facts about countable equivalence relations in the clasical setting

are:

E∞. Among orbit equivalence relations induced by a Borel action of

a countable group, there is one of maximum complexity, called E∞.

Feldman-Moore. In fact any countable Borel equivalence relation is

the orbit equivalence relation induced by a Borel action of a

countable group.

The �rst of these facts holds true for κκ, but in a surprising way:
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Theorem

(SDF-Hyttinen-Kulikov) If E is the orbit equivalence relation of a

Borel action of a group of size at most κ then E is Borel reducible

to E0.

Proof. The key observation is this: Let Fκ denote the free group on

κ generators. Then Fα has cardinality less than κ for α < κ (this

fails when κ equals ω). Using this one shows that the shift action of

Fκ (sending (g ,X ) in G ×P(Fκ) to {g · x | x ∈ X}) reduces to E0:

Map X ⊆ Fκ to the sequence f (X ) = (<α-least element of

{gα · (X ∩ Fα) | gα ∈ Fα} | α < κ). If X ,Y are equivalent under

shift then it is easy to check f (X )E0f (Y ); the converse uses

Fodor's theorem. �
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The Feldman-Moore Theorem however consistently fails for κκ:

Theorem

(SDF-Hyttinen-Kulikov) Assume V = L. Then there is a Borel

equivalence relation with classes of size 2 which is Borel reducible

to id but which is not the orbit equivalence relation of any Borel

action of a group of size at most κ.

Proof. Let X be the Borel set of Master Codes for initial segments

of L of size κ and ∼ X its complement. De�ne a bijection

f :∼ X → X with Borel graph and de�ne E (x , y) i� y = f (x) or

x = f (y). Then E is smooth. If it were induced by a Borel action of

a group of size at most κ then f would be Borel on a non-meager

set, which is impossible. �
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Questions. (1) Are all Borel equivalence relations with classes of

size at most κ Borel reducible to E0? (2) Is the Feldman-Moore

Theorem for κκ consistent?
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Another interesting dichotomy from the classical case, due to

Kechris-Louveau, is:

(E0,E1) Dichotomy. There is no Borel equivalence relation strictly

between E0 and E1 with respect to Borel reducibility.

Theorem

(SDF-Hyttinen-Kulikov) For κκ there is a Borel equivalence relation

strictly between E0 and E1 with respect to Borel reducibility.

This counterexample to the (E0,E1) Dichotomy is de�ned

analagously to the counterexample to the

Harrington-Kechris-Louveau Dichotomy; for x = (xα | α < κ) and

y = (yα | α < κ) where xα, yα ∈ 2κ:

xE ′
1
y i� xE1y and {α < κ | xα 6= yα} is a �nite union of intervals

and xα 6= yα → xα(i) 6= yα(i) for all i < κ.



Borel Reducibility: Isomorphism Relations

An important class of Σ1

1
equivalence relations is the class of

isomorphism relations. View the elements of κκ as codes for

structures with universe κ (for a language of size at most κ). An
isomorphism relation is given by specifying a sentence ϕ of the

in�nitary logic Lκ+κ and de�ning:

xEϕy i� x , y do not code models of ϕ or x , y code isomorphiic

models of ϕ.
We can eliminate the logic using the following result:

Theorem

(Vaught) X is the set of codes for models of a sentence of Lκ+κ i�

X is Borel and invariant: if x belongs to X and y codes a model

isomorphic to the model coded by x then y also belongs to X .

These relations need not be Borel and there is one of maximum

complexity, the relation of isomorphism of graphs.



Borel Reducibility: Isomorphism Relations

As in the classical case the Borel isomorphism relations are

classi�ed using a version of the Friedman-Stanley jump. De�ne:

xE+y i� {[(x)i ]E | i < κ} = {[(y)i ]E | i < κ}

where ((x)i | i < κ) is a canonical decomposition of x ∈ κκ into a

κ-sequence of elements of κκ.

One de�nes trans�nite iterates E+α of the jump in the natural way.

Then imitating the proof from the classical case one has:

Theorem

The relations id+α for α < κ+ are Borel bireducible to Borel

isomorphism relations and any Borel isomorphism relation is Borel

reducible to one of these.



Borel Reducibility: Isomorphism Relations

Adapting some of the theory of Hjorth's turbulence to κκ we have:

Theorem

(Hyttinen-Kulikov-Schlicht) E1 is not Borel reducible to id+ nor to

any of its iterates id+α, α < κ+.

Corollary

E1 is not Borel reducible to any Borel isomorphism relation.

But in the classical case one has more: E1 is not Borel reducible to

any isomorphism relation (nor to any orbit equivalence relation of a

Polish group action). Unfortunately Hjorth's turbulence theory does

not fully adapt to κκ (due to failures of the Baire property) and

indeed:



Borel Reducibility: Isomorphism Relations

Theorem

(SDF-Hyttinen-Kulikov) Assume V = L and let κ be the successor

of a regular cardinal. Then all Σ1

1
equivalence relations (including

E1) are Borel reducible to isomorphism.

I give a hint of the proof. Write κ = λ+ where λ is regular, let Q
be a λ-saturated dense linear order without endpoints and let Q0

be Q together with a least point. For any subset S of κ let L(S) be

obtained from the natural order on κ by replacing α by Q0 if α is a

limit ordinal in S and by Q otherwise.



Borel Reducibility: Isomorphism Relations

Fact. L(S) is isomorphic to L(T ) i� S4T is nonstationary in κ.

Now the key Lemma is that in L, any Σ1

1
set X is Borel reducible to

the collection (ideal) of nonstationary sets in the sense that there is

a Borel function f such that x ∈ X i� f (x) is nonstationary. One

strengthens this to show that in fact any Σ1

1
equivalence relation is

Borel reducible to equality modulo a nonstationary set and

therefore by the above Fact to isomorphism of dense linear orders.



Borel Reducibility: Isomorphism Relations

More Questions. Is it consistent that isomorphism is not complete

for Σ1

1
equivalence relations under Borel reduciblity? Is it consistent

that E1 is not Borel reducible to isomorphism? Is the

Friedman-Stanley jump strict in the sense that E+ is never Borel

reducible to E? Does this at least hold for isomorphism relations E?



Borel Reducibility: First-order Isomorphism Relations

Another interesting aspect of Descriptive Set Theory on κκ is its

connection with Shelah's stability theory. The basic question is:

Question. How does the model-theoretic complexity of a countable

�rst-order theory T compare to the complexity in terms of Borel

reducibility of the equivalence relation of isomorphism on the

models of T?

Koerwien looked at this question in terms of the countable models

of T and discovered a surprising discrepancy in these two notions

of complexity:



Borel Reducibility: First-order Isomorphism Relations

Theorem

There is a countable �rst-order theory which is ω-stable of depth 2

and NDOP such that isomorphism on its countable models is not

Borel.

I.e., the above �rst-order theory is very simple model-theoretically

but rather complicated in terms of classical descriptive set theory.

Conversely, Dense Linear Orders is a simple example of a �rst-order

theory which is complex model-theoretically (it is unstable) but is

trivial in terms of classical descriptive set theory (it is

ω-categorical).

This discrepancy is eliminated by turning to Descriptive Set Theory

on κκ:



Borel Reducibility: First-order Isomorphism Relations

Theorem

(SDF-Hyttinen-Kulikov)

(a) Suppose that κ = κ<κ is a successor cardinal bigger than 2ℵ0 .
Then a �rst-order theory is classi�able and shallow i� the

isomorphism relation on its models of size κ is Borel.

(b) Suppose in addition that κ = λ+ where λ<λ = λ. Then T is

classi�able i� equality modulo a µ-nonstationary set is not Borel
reducible to the isomorphism relation on its models of size κ for all

regular µ < κ.



Borel Reducibility: First-order Isomorphism Relations

On the other hand, Hyttinen-Kulikov have shown that if V = L

then there is a theory which is stable with NDOP and NOTOP

such that the isomorphism relation on its models of size κ (where

κ = λ+, λℵ0 = λ) is complete as a Σ1

1
equivalence relation.

Thus if V = L we again lose some of the correlation between

model-theoretic and descriptive set-theoretic complexity.



The Right Axioms?

The above results strongly suggest that V = L is an unsatisfying

hypothesis both for the Descriptive Set Theory of κκ and for its

connections with model-theoretic complexity.

Rather it seems that a hypothesis which ensures maximum

regularity for ∆1

1
sets, the Silver Dichotomy for Borel equivalence

relations and a restored correlation of the complexity of

isomorphism relations with �rst-order stability theory is desired.

I don't yet know what this hyothesis would be. But surely this

question, together with the other open questions mentioned earlier

in this tutorial, suggest that much interesting work remains to be

done in order to gain a full understanding of the Descriptive Set

theory on Generalised Baire Space.

Thanks for listening.


