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Abstract

The goal of this thesis is to underline the connection between Ehrenfeucht-
Fraïssé games and non-definable properties, in particular the connectivity
of finite graphs. In the first chapter, I will give a brief introduction about
why games are used in logic and I will give the mathematical definition of a
game. In the second chapter, I will state what it means to define a property
and I will give a proof of the inexpressibility of connectivity over arbitrary
graphs. This proof fails over finite graphs, which motivates the definition of
Ehrenfeucht-Fraïssé games. I will define the concepts of quantifier rank and
rank-k types in order to state and prove the Ehrenfeucht-Fraïssé Theorem.
The most interesting result of this thesis is a corollary of that theorem that
shows the connection between games and definable properties. In the third
chapter, I will prove that the property of a linear order to have even cardinality
is not definable. I will use this and the corollary in Chapter 2 to prove that
connectivity over finite graphs is not definable.

A note for the reader

In this thesis, I will assume that the reader is comfortable with the following
concepts and theorems:

· language, formula, sentence, structure and elementary equivalence;

· theory and model;

· a theory is consistent if and only if it has a model;

· basic notions of graph theory, like graph, node, edge, path.

Furthermore, if not otherwise stated, L is a finite language.
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1 Logic and Games

1.1 Why games?

The main source for this section is [1].
One could argue that logic and games have always been connected: already

Aristotle’s writings about syllogism are closely interconnected with his study
of debate – and what is a debate, if not some sort of game? Mathematical
game theory, however, was only founded at the beginning of the last century.
Yet, most mathematicians in the first half of the twentieth century would
not have thought of using games in the field of logic. It was only around
1960, when the focus of logical research switched from studying foundations
to searching for techniques, that games really came into play. As a matter of
fact, it became clear to logicians that they were able to make certain ideas
more intuitive if they connected them to a goal: there are many examples of
logical games that are centred around (the existence of) a winning strategy
for one of the players. More often than not, this strategy - or its existence - is
equivalent to something of logical significance, which one could have probably
defined without games too. Nonetheless, a definition through a game is more
e�ective, because it provides a concrete motivation: a player wants to win.

1.2 Games in Logic

The main source for this section is [5].
In logic, there are fundamentally three kinds of games: the Semantic

Game, the Model Existence Game and the Ehrenfeucht-Fraïssé Game. In
the Semantic Game, we are given a sentence and a model; we then want to
question the truth of this sentence in this model. In the Model Existence
Game, we are only given a sentence; we question the existence of a model
for this sentence. Finally, in the Ehrenfeucht-Fraïssé Game, we are given two
models; we question whether there exists a sentence that is true in one but
false in the other. These games are deeply interconnected: one can "translate"
strategies from one game to another. The a�nity of these games goes by the
name Strategic Balance of Games in Logic (see [6]).
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But what is a game? Let M be any set, n œ N a natural number and
W ™ M

2n. Fix two players, Alice (player a) and Bob (player b). We are
going to give the game the name Gn(M, W ).

Definition 1.1. A sequence ā = (a1, . . . , an), where ai œ M , is called a play

of one of the players. Furthermore, a sequence (ā; b̄) = (a1, b1, . . . , an, bn),
where ai, bi œ M is called a play of Gn(M, W ).

Definition 1.2. We define a play (ā; b̄) to be a win for Bob, if (a1, b1, . . . , an, bn) œ
W , otherwise it’s a win for Alice.

Definition 1.3. Next, we call a sequence f = (f1, . . . , fn) of functions
fi : M

i æ M a strategy of Alice in the game Gn(M, W ).
Likewise, we call a sequence g = (g1, . . . , gn) of functions gi : M

i+1 æ M a
strategy of Bob.
We say that Alice has used the strategy f in the play (ā; b̄), if, for all i =
1, . . . , n: a1 = f1 and ai = fi(b1, . . . , bn).
Similarly, we say that Bob has used the strategy g in the play (ā; b̄), if, for all
i = 1, . . . , n: b1 = g1 and bi = gi(a1, . . . , ai).
It is worth noticing, though expected, that strategies only depend on the
opponent’s moves up until that point.

Definition 1.4. A strategy is called a winning strategy for player a, if a wins
every game where she uses that strategy, no matter how player b plays. If
one player has a winning strategy on a game, we call that a determined game.

Example 1.1. Consider the following game: given a set of integers M , Alice
chooses an integer a œ M , then Bob chooses an integer b œ M . Bob wins if
a + b œ M . We are going to express this game in the form G2(M, W ). Here,
M ™ Z and W = {(a, b) œ M

2 : a + b œ M}. This is a determined game,
because whatever M is, one player has a winning strategy: as a matter of
fact, if Bob does not have a winning strategy, that means that for all b œ M

there is an a œ M such that a + b ”œ M . Then Alice has a winning strategy:
she plays a. But when does Bob have a winning strategy? Let L = {W} be a
language, where W is a binary relation symbol. Consider then an L-structure
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M with universe M œ Z and W
M = W . Then Bob has a winning strategy if

and only if
M |= ’v÷uW(v, u).

2 Ehrenfeucht-Fraïssé Games

The main source for this chapter is, unless otherwise stated, [2].
As mentioned before, Ehrenfeucht-Fraïssé games are, essentially, games

where one is given two structures and tries to find sentences that are true
in one and false in the other one. Nonetheless, they have many interesting
applications. One of them relates to the impossibility of expressing some
properties.

2.1 Defining properties

In this section, the source for Definition 2.1 is [3] and the source for Remark
2.1 is [5].

What does "expressing some properties" even mean? Let’s start with a
basic definition.

Definition 2.1. Let L be a language and S = (S, C, F , R) an L-structure. A
set A ™ S

n is called definable if there exists an L-formula Ï = Ï(v1, . . . , vn),
such that

A = {(a1, . . . , an) : S |= Ï[a1, . . . , an]}.

Remark 2.1. In the above definition, S |= Ï[a1, . . . , an] means that the formula
Ï is true in S for the assignment (a1, . . . , an) of the free variables (v1, . . . , vn).
But what does it mean for a formula to be true? The truth of a formula can be
interpreted as the existence of a winning strategy for Bob in a type of Semantic
Game, the Evaluation Game. Let us have a look at this game for quantifier-
free formulas. We have two players, Alice and Bob. Bob wants to show that
Ï is true in S for the assignment (a1, . . . , an) and Alice wants to show the
opposite. At the start, Bob holds the pair (Ï, ā), where ā = (a1, . . . , an) is an
assignment of the free variables of Ï. During the first round of the game, the
two players exchange pairs of formulas and assignments follows:
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(i). If Ï is an atomic formula and it is satisfied by ā in S, then Bob wins -
otherwise Alice wins;

(ii). if Ï © ¬Â, then Bob gives (Â, ā) to Alice;

(iii). if Ï © Â1 · Â2, then Bob switches to hold (Â1, ā) or (Â2, ā) and Alice
chooses which one;

(iv). if Ï © Â1 ‚ Â2, then Bob switches to hold (Â1, ā) or (Â2, ā) and he
chooses which one.

Now either Alice or Bob hold a pair. If Bob holds it, the next round is going
to be like the first one. If Alice holds it, the next round is going to look like
this:

(i). If Ï is an atomic formula and it is not satisfied by ā in S, then Alice
wins - otherwise Bob wins;

(ii). if Ï © ¬Â, then Alice gives (Â, ā) to Bob;

(iii). if Ï © Â1 · Â2, then Alice switches to hold (Â1, ā) or (Â2, ā) and Bob
chooses which one;

(iv). if Ï © Â1 ‚ Â2, then Alice switches to hold (Â1, ā) or (Â2, ā) and she
chooses which one.

Note that S |= Ï[a1, . . . , an] if and only if Bob has a winning strategy in the
above game. As a matter of fact, assuming that S |= Ï[a1, . . . , an], Bob can
always play in a way that, by the end, he will hold the pair (Ï, ā). Conversely,
by induction, if Bob has a winning strategy, then S |= Ï[a1, . . . , an] must
hold.
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Definition 2.2. Let L be a language and STR(L) the class of all L-structures.
A property P is a mapping

P : STR(L) æ {true, false}

from the class of all L-structures to the set {true, false}. Since the codomain
of P only has two elements, a property can be identified with a collection of
structures like so:

P = {S œ STR(L) : P(S) = true}.

If S œ P, we say that S has the property P.
A property is called definable if there exist a L-sentence Ï such that S œ P if
and only if S |= Ï.

2.2 One inexpressibility proof

In this section, the source for Lemma 2.1 is [3].
In this section, we are going to have a look at a property that is not

definable. First, we will start with a useful lemma.

Lemma 2.1. A theory T has a model if and only if every finite subset of T

has a model.

Proof. [∆] Assume there exists a finite subset T
Õ ™ T that has no model.

Then there is a sentence Ï œ T such that S 2 Ï for all L-structures S. But
since T

Õ ™ T , then Ï œ T and therefore T has no model either. Contradiction!
[≈] Assume that every finite subset of T has a model, but T itself has no model.
We know that a theory has a model if and only if it is consistent, therefore
T is not consistent. That means that there exist sentences Ï1, . . . , Ïn œ T

such that {Ï1, . . . , Ïn}, a finite subset of T , is not consistent. But then
{Ï1, . . . , Ïn} has no model. Contradiction!

It is possible to show that some properties cannot be expressed without
Ehrenfeucht-Fraïssé games as well. Here is an example of how this can be
done using fairly easy tools. It will be about connectivity of graphs. As a
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reminder: a graph is called connected if any two nodes are connected by a
path.

Theorem 2.2. The property of an arbitrary graph to be connected is not

definable.

Proof. Let L = {E, a, b} be a language, where E is a relational symbol and
a, b are constant symbols. Assume that it is possible to define connectivity
by a sentence Ï over L. For each natural number n, define the sentence Ân

as follows:

¬(÷v1, . . . , ÷vn(E(a, v1) · E(v1, v2) · . . . · E(vn, b))).

This sentence says that there is no path from a to b of length n + 1. Further-
more, define the theory

· = {Ï} fi {¬(a = b)} fi {¬E(a, b)} fi {Ân’n œ N : n > 0}.

Our claim is that the theory · is consistent. To prove that, we are going
to show that every finite subset ·

Õ of · is consistent. That is equivalent to
proving that every finite subset of · has a model. So, let ·

Õ ™ · be finite.
Then there exists an m œ N such that for all Ân in · , n < m. Then ·

Õ has a
model: a connected graph, in which the shortest path from a to b has length
m + 1. This shows that · has a model G as well. Then G is connected, since
G |= Ï. However, since G |= Ân for all n œ N, we know that, for all natural
numbers n, there is no path from a to b of length n. Contradiction!

This proof is nice, but it only tells us that connectivity is not definable for
arbitrary graphs. So there is still the possibility that connectivity is definable
for finite graphs: there might be a sentence that successfully checks whether
a finite graph is connected or not.

We could try modifying the proof above. There, we used the argument
that a theory · has a model if and only if every finite subset of · has a model.
Is that true for finite models as well? Does a theory · have a finite model if
every finite subset of · has a finite model? Unfortunately, this is not true.
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Theorem 2.3. There exists a theory · that has no finite models, even though

every finite subset of · has a finite model.

Proof. Define the sentence Ân as follows:

÷v1, . . . , ÷vn

fi

¬(k=l)
¬(vk = vl).

The sentence Ân states that there is a minimum of n distinct elements in the
universe. Let · := {Ân : n œ N}, it is clear that the theory · does not have a
finite model. However, take any finite subset ·

Õ = {Ânk
: k = 1, . . . , l} of · .

Any set A with |A| > nk ’k is a finite model for ·
Õ.

It looks like we need to find a new, more powerful tool for proving
inexpressibility over finite models.

2.3 Ehrenfeucht-Fraïssé Games

All the examples and pictures in this section are from [4].
Before we start, we are going to have a look at some interesting objects

that will be useful later.

2.3.1 Quantifier Rank and Rank-k Types

Definition 2.3. Given a formula Â, its quantifier rank qr(Â) is defined as
follows:

· if Â is atomic, then qr(Â) = 0;

· qr(¬Â) = qr(Â)

· qr(Â1 · Â2) = qr(Â1 ‚ Â2) = max(qr(Â1), qr(Â2));

· qr(’xÂ) = qr(÷xÂ) = qr(Â) + 1.

To denote all formulas of quantifier rank up to k, we write FO[k].
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Remark 2.2. It is worth noticing that the quantifier rank of a formula is, in
general, not equal to the number of quantifiers that appear in the formula.
Consider the following example.
Define

Ï © ’u(’u(v < u) ‚ ÷u(u < v)).

The formula Ï contains three quantifiers, however qr(Ï) = 2:

qr(Ï) = 1 + qr(’u(v < u) ‚ ÷u(u < v))

= 1 + max(qr(’u(v < u)), qr(÷u(u < v)))

= 1 + max(1 + 0, 1 + 0)

= 2.

Definition 2.4. Let L be a relational language, S a L-structure and ā =
(a1, . . . , an) a n-tuple over S. The rank-k n-type of ā over S is defined like so:

tp
k
(S, ā) = {Â œ FO[k] : S |= Â[ā]}.

Remark 2.3. If n = 0, we speak of the rank-k type of S, tp
k
(S). This is the

set of sentences of sentences of quantifier rank up to k that are true in S.

Theorem 2.4. Let T be a rank-k n-type. Then there exists a FO[k] formula

–T such that, for every structure S and ā œ S
n
, we have

S |= –T [ā] … tp
k
(S, ā) = T.

Proof. Step 1. We are going to prove by induction that rank-k types are
finite objects. It is enough to show that, up to logical equivalence, for every
k, FO[k] only contains finitely many formulas with n free variables.

· k = 0: FO[0] simply contains all Boolean combinations of atomic
formulas. Since there is only a finite amount of atomic formulas and
thus a finite amount of Boolean combinations of these, the conclusion
follows;
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· k ≠ 1 æ k: assume that there are only finitely many formulas with
n free variables in FO[k ≠ 1]. Note that each formula with n free
variables in FO[k] is a Boolean combination of ÷anÏ(a1, . . . , an≠1, an),
where Ï œ FO[k≠1]. Hence, we can conclude that there are only finitely
many formulas with n free variables in FO[k].

Step 2. Let T ™ FO[k] be a rank-k n-type. Since FO[k] is finite, we have:

T ™ FO[k] = {Â1, . . . , ÂN},

where Â1, . . . , ÂN are all the nonequivalent formulas with free variables ā =
(a1, . . . , an) in FO[k]. Then there is one unique set A ™ {1, . . . , N} that
specifies which ones of the Âj’s belong to T . This way, A uniquely determines
T . Define the formula

–T (ā) ©
fi

jœA

Âj ·
fi

i”œA

¬Âi. (2.1)

It is easy to see that, for all L-structures S and for all j œ A, i ”œ A, we have:

S |= –T [ā] … S |= Âj[ā] · S ”|= Âi[ā].

This is equivalent to the statement we wanted to prove. Furthermore, note
that we did not introduce any new quantifiers in –T (x̄), hence it is a FO[k]
formula.

Remark 2.4. We say that –T defines T .

2.3.2 Graphs in logical formalism

All the examples in the following sections are going to be finite graphs. What
is a finite graph in logic?

Definition 2.5. A finite graph is a finite structure in the language L = {E},
where E is a binary relation symbol.
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2.3.3 Definition of the Ehrenfeucht-Fraïssé game

Let us now have a look at the fundamental idea of the Ehrenfeucht-Fraïssé
game. There are two players, usually called the duplicator (female player)
and the spoiler (male player), and two structures, S1 and S2. The goal of the
duplicator is to show that S1 and S2 are the same, whereas the goal of the
spoiler is to show that they are di�erent. This can be done in a number of
rounds, each round consisting of these three steps:

(i). The spoiler chooses one structure, S1 or S2;

(ii). The spoiler chooses one element in that structure, s1 œ S1 or s2 œ S2;

(iii). The duplicator chooses one element in the other structure.

Figure 1: Graphs in Example 2.1

Example 2.1. Assume the two structures are graphs, like in Figure 1. The
spoiler starts the game by choosing one graph and then one node in that
graph. So he can choose either a1, a2 or b1. If he chooses a1 or a2, then the
only option for the duplicator is to choose b1. If he chooses b1, then the
duplicator must choose either a1 or a2. This ends the first round. We can
represent this game as a tree, like in Figure 2.

Figure 2: Tree
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But what does it mean for two structures to be the same? In order to
define the winning condition more precisely, we need the following definition.

Definition 2.6. Let S1, S2 be L-structures, where L is a relational language.
Furthermore, let S̄1 = (s1

1, . . . , s
1
n
) ™ S1 and S̄2 = (s2

1, . . . , s
2
n
) ™ S2. If the

three following conditions hold, then (S̄1, S̄2) defines a partial embedding:

(i). for each i,j Æ n:
s

1
i

= s
1
j

… s
2
i

= s
2
j
;

(ii). for each constant symbol c from L and for each i Æ n:

s
1
i

= c
S1 … s

2
i

= c
S2 ;

(iii). for each k-ary relation symbol R from L and for each k-tuple (i1, . . . , ik)
of (not necessarily distinct) numbers from {1, . . . , n}:

R
S1(s1

i1 , . . . , s
1
ik

) … R
S2(s2

i1 , . . . , s
2
ik

).

Remark 2.5. Define S Õ
1 and S Õ

2 to be the substructures of S1 and S2 generated
by {s

1
1, . . . , s

1
n
} and {s

2
1, . . . , s

2
n
}, respectively. Note that, if L has no constant

symbols, like in the case of graphs, the above definition of a partial embedding
just says that

f : S Õ
1 æ S Õ

2, s
1
i

‘æ s
2
i
, i Æ n,

is an isomorphism.

So the duplicator wins if she plays in a way that her moves define a partial
embedding between the structures. Otherwise, the spoiler wins. Intuitively,
the duplicator wins as long as the spoiler hasn’t won - as long as she can
maintain a partial embedding between the structures.

Definition 2.7. The duplicator has an n-round winning strategy in the

Ehrenfeucht-Fraïssé game on S1 and S2, if she has a strategy that can always
guarantee her a winning position after n rounds, independently from the
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moves of the spoiler, and we write

S1 ©n S2.

(see [2])

Example 2.2. With this new notion, we can finish the game we started in
Example 2.1. The second round looks like the first round, and now we can
have a look at who the winners are. Let’s observe the tree in Figure 3. One

Figure 3: Tree

can notice that the spoiler has a winning strategy in the 2-rounds Ehrenfeucht-
Fraïssé Game played on these two graphs: he chooses a1 in the first round,
forcing the duplicator to choose b1; then he chooses a2 in the second round,
forcing the duplicator to choose b1 again. Using the notation introduced in
Definition 2.4, we can say that (ā, b̄), where ā = (a1, a2) and b̄ = (b1, b1) is
not a partial embedding, because condition (i) does not hold.
Since the spoiler has a winning strategy, the duplicator cannot have one.
Example 2.3. Let us have a look at another game where the duplicator has a
winning strategy in the 2-rounds Ehrenfeucht-Fraïssé Game. Consider two
graphs like in Figure 4. In the first round, the spoiler either chooses a node
x from A or from B; if he chooses from A, the duplicator will pick b1, if he
chooses from B, the duplicator will pick a1. In the second round, no matter
which node the spoiler chooses, the duplicator will always be able to mirror
that choice and define a partial embedding.
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Figure 4: Graphs in Example 2.3

· Assume the duplicator had chosen b1 in the first round. If, in the second
round, the spoiler chooses a node from A, then that node is either x

(and the duplicator will choose b1 again) or it is the other one, which is
connected to x (and the duplicator will choose either b2 or b3). If, in
the second round, the spoiler chooses a node from B, then that node
is either b1 (and the duplicator will choose x) or another one, which is
connected to b1 (and the duplicator will choose the node in A that is
connected to x).

· Assume the duplicator had chosen a1 in the first round. If, in the second
round, the spoiler chooses a node from B, then that node is either x

(and the duplicator will choose a1 again) or it is another one, which is
connected to x (and the duplicator will choose a2). If, in the second
round, the spoiler chooses a node from A, then that node is either a1

(and the duplicator will choose x) or a2, which is connected to a1 (and
the duplicator will choose any node in B since they’re all connected to
x).

2.3.4 The Ehrenfeucht-Fraïssé Theorem

Definition 2.8. Let L be a language, S a L-structure and ā = (a1, . . . , an).
Then (S, ā) is a (Lfi{c1, . . . , cn})-structure, where c1, . . . , cn are new constant
symbols and

c
(S,ā)
i = ai for each i œ {1, . . . , n}.
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We now have all the ingredients we need to formulate and prove the main
theorem of this section. As we will see later, this theorem is very useful when
it comes to proving inexpressibility results.

Theorem 2.5. Let S1, S2 be L-structures in a relational language and k œ N.

Then the following are equivalent:

(i). for all FO-formulas Ï of quantifier rank up to k, S1 |= Ï … S2 |= Ï;

(ii). S1 ©k S2.

Proof. Step 1. We will analyse the relation ©0. How can the duplicator
already have a winning strategy before the game even starts? By definition,
that is the case if and only if (ÿ, ÿ) defines a partial embedding between S1

and S2. Again, by definition, that is the case if and only if:

· for each couple of constant symbols ci, cj from L we have that:

c
S1
i = c

S1
j … c

S2
i = c

S2
j

· for each k-ary relation symbol R from L and for each k-tuple (i1, . . . , ik)
of (not necessarily distinct) numbers from {1, . . . , n}:

R
S1(cS1

i1 , . . . , c
S1
ik

) … R
S2(cS2

i1 , . . . , c
S2
ik

).

In conclusion, we found that S1 ©0 S2 if and only if the two structures satisfy
the same atomic sentences.
Step 2. For each k œ N, we will define inductively the relation ƒk. Let S1,
S2 be L-structures. Then we define:

· S1 ƒ0 S2 if and only if S1 ©0 S2;

· S1 ƒk S2 if and only if the following conditions hold:

– forth: for every s1 œ S1, there exists a s2 œ S2 such that
(S1, s1) ƒk≠1 (S2, s2);
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– back: for every s2 œ S2, there exists a s1 œ S1 such that
(S1, s1) ƒk≠1 (S2, s2).

Step 3. We will prove the following extension of the Ehrenfeucht-Fraïssé Theorem:

Theorem 2.6. Let S1, S2 be L-structures in a relational language and k œ N.

Then the following are equivalent:

(i). for all FO-formulas Ï of quantifier rank up to k, S1 |= Ï … S2 |= Ï;

(ii). S1 ©k S2;

(iii). S1 ƒk S2.

Proof. We will prove the equivalence of the three statements by induction.
For the base case k = 0, the equivalence of the three statements follows
directly by Step 1 and by definition.

[(iii) ∆ (ii)] Going from k ≠ 1 to k. We are assuming S1 ƒk S2 and
we need to show that S1 ©k S2, which means that the duplicator wins the
k-move EF-game. Indeed, assume that the spoiler plays s1 œ S1 for his first
move. By the forth condition, the duplicator can find s2 œ S2 such that
(S1, s1) ƒk≠1 (S2, s2). Then, by the induction hypothesis, (S1, s1) ©k≠1 (S2, s2)
must hold. Hence, the duplicator can continue playing for k ≠ 1 moves, thus
winning the k-move game. In case the spoiler plays s2 œ S2 for his first move,
the proof is identical, one simply uses the back condition.

[(ii) ∆ (iii)] Going from k ≠ 1 to k. We are assuming S1 ©k S2 and
we need to show that S1 ƒk S2. We know that S1 ©k≠1 S2, which, by the
induction hypothesis, yields S1 ƒk≠1 S2. However, assuming that S1¬ ƒk S2,
then the conditions forth and back would not hold, and the duplicator would
not win the k-move EF-game, a contradiction.

[(i) ∆ (iii)] Going from k ≠ 1 to k. We are assuming that S1 and S2

agree on all FO[k] formulas, and we need to show that S1 ƒk S2. First, we
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prove the forth condition. Choose s1 œ S1 and let – be the sentence that de-
fines its rank-(k ≠ 1) 1-type. Then S1 |= Ï, where Ï © ÷x–(x). We know that
qr(–) = k≠1, hence qr(Ï) = k. Therefore, by assumption, S2 |= Ï. Let s2 be
the witness for ÷ in Ï. That is, tp

k≠1(S1, s1) = tp
k≠1(S2, s2). Hence, we have

that (S1, s1) and (S2, s2) agree on all FO[k-1] formulas. By the induction hy-
pothesis, this yields that (S1, s1) ƒk≠1 (S2, s2). The back condition is similar.

[(iii) ∆ (i)] Going from k ≠ 1 to k. We are assuming that S1 ƒk S2 and we
need to show that S1 and S2 agree on all formulas of quantifier rank up to k.
First we notice that it is enough to prove the statement for formulas Â of the
form ÷vÏ(v), where Ï is a formula of quantifier rank up to k ≠ 1. Indeed, any
formula of quantifier rank up to k is a Boolean combination of formulas of the
form Â. So assume that S1 |= ÷vÏ(v), which means that, for some s1 œ S1, it
holds S1 |= Ï(s1). By the forth condition, we can find a s2 œ S2 such that
(S1, s1) ƒk≠1 (S2, s2). Thus, by the induction hypothesis, S1 and S2 agree
on all formulas of quantifier rank up to k ≠ 1. Therefore, S2 |= Ï(s2) and
finally S2 |= ÷vÏ(v), which is what we wanted to show. Conversely, one can
show with an identical argument that S2 |= ÷vÏ(v) implies that S1 |= ÷vÏ(v).
With this, the proof is complete.

Remark 2.6. In light of Theorem 2.5, one can notice that k-equivalence is the
finite counterpart of elementary equivalence, since:

S1 ©k S2 ’k œ N ∆ S1 © S2.

Example 2.4. Looking at the oriented graphs in Figure 5, one can notice all
the nodes in the left graph (graph A) have an outgoing edge, whereas the
node b4 in the right graph (graph B) has no outgoing edges. Now consider
the following sentence, where the relational symbol E expresses the oriented
edge relation:

Ï © ÷x’y¬E(x, y),

16



Figure 5: Oriented graphs in Example 2.4

saying that there is a node x that has no outgoing edges. This sentence is
true for B but not for A. Furthermore, qr(Ï) = 2. In light of Theorem 2.5,
this means that the spoiler has a strategy to win the Ehrenfeucht-Fraïssé
game on A and B in two rounds. Indeed, he can play as follows:

(i). Round 1.

(a) The spoiler picks graph B;

(b) the spoiler picks node b4;

(c) the duplicator picks a node ai in A.

(ii). Round 2.

(a) The spoiler picks graph A;

(b) the spoiler picks a node aj such that there is an edge from aj to ai;

(c) the duplicator loses, because she is unable to find a node bk in B

such that there is an edge from bk to b4.
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2.3.5 A corollary about inexpressibility

A very useful consequence of Theorem 2.5 is the following corollary.

Corollary 2.7. A property P of finite L-structures is expressible if and only

if there exists a number k œ N such that, for any two finite L-structures S1

and S2, we have the following:

S1 ©k S2 · S1 has the property P ∆ S2 has the property P. (2.2)

(see [2])

Proof. [∆] By contradiction. Assume that the property P is definable by a
sentence Ï and let k = qr(Ï). If S1 has the property P, then, by definition,
S1 |= Ï. Therefore, since S1 ©k S2, and by Theorem 2.5, we have that S2 |= Ï.
Thus, S2 has the property P too.
[≈] Assume that S1 ©k S2. This means, in light of Theorem 2.5, that S1 and
S2 agree on the same formulas of quantifier rank up to k. Therefore, S1 and
S2 have the same rank-k type. In addition, if (2.2) holds, we have that S1

and S2 agree on P. Therefore, P is a union of types. By Theorem 2.4, P is
definable.

This is equivalent to the following.

Corollary 2.8. A property P of finite L-structures is not expressible in FO
if and only if, for every k œ N, there exist two finite L-structures, S1 and S2

such that:

· S1 ©k S2, and

· S1 has the property P and S2 does not.

(see [2])
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3 Connectivity of finite graphs

The main source for this chapter is [2].
We have seen in Section 2.2 that connectivity is not definable over arbitrary

graphs. Now we have the tools to prove that it is not definable over finite
graphs either.

3.1 Games on Linear Orders

In this section, we will prove that the property even is not definable over
linear orders.

Definition 3.1. A linear order is a structure of the form ({1, . . . , n}, <),
where < is a binary relation symbol that satisfies antisymmetry, transitivity
and connexity (< is also called a linear order).

Lemma 3.1. Let n œ N and let O1, O2 be linear orders, the cardinality of

whose universe is at least 2n
. Then O1 ©n O2.

Proof. We are going to prove the lemma by induction on k, the number of
rounds. Furthermore, the induction hypothesis is going to be stronger than
the mere partial embedding claim - that is because, otherwise, the induction
step would not work. So let O1 have the universe {1, . . . , x} and O2 the uni-
verse {1, . . . , y}, where x, y > 2n. Moreover, let us expand the language with
two constant symbols M and m, the interpretation of which is, respectively,
the maximum and minimum element of the linear orders.

Induction hypothesis. Let o
≠1
1 := m

O1 and o
≠1
2 := m

O2 be the min-
imum elements of O1, O2 respectively, and o

0
1 := M

O1 , o
0
2 := M

O2 be
the maximum elements of O1, O2. Furthermore, let o

1
1, . . . , o

k

1 be the k

moves in O1 and o
1
2, . . . , o

k

2 be the k moves in O2. Now consider the tu-
ples ō1 := (o≠1

1 , o
0
1, o

1
1, . . . , o

k

1) and ō2 := (o≠1
2 , o

0
2, o

1
2, . . . , o

k

2). The induction
hypothesis is that the duplicator can play so that, after the k-th round, the
following holds:

(i). if |oi

1 ≠ o
j

1| < 2n≠k, then |oi

2 ≠ o
j

2| = |oi

1 ≠ o
j

1|;
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(ii). if |oi

1 ≠ o
j

1| Ø 2n≠k, then |oi

2 ≠ o
j

2| Ø 2n≠k;

(iii). o
i

1 Æ o
j

1 … o
i

2 Æ o
j

2;

for all ≠1 Æ i, j Æ k. Notice that the condition (iii) is enough to guarantee a
partial embedding.

Base case. The case k = 0 is trivial, since we assumed that |o≠1
1 ≠ o

0
1| Ø 2n

and |o≠1
2 ≠ o

0
2| Ø 2n.

Induction step. Going from k to k + 1. We can assume, without loss
of generality, that the spoiler makes his (k + 1)st move in O1. If the spoiler
plays an element that has already been played, that is, if he plays one of o

i

1,
i Æ k, then the duplicator’s response will be o

i

2. The three conditions are
preserved. If not, since we assumed the universe is large enough, the spoiler’s
choice o

i+1
1 will fall into an interval [or

1, o
s

1] such that none of the elements
in ō1 are in that interval. Therefore, by condition (iii), the interval [or

2, o
s

2]
contains no elements of ō2. Now we have two cases:

· |or

1 ≠ o
s

1| < 2n≠k. In this case, by the induction hypothesis, we have that
|or

1 ≠ o
s

1| = |or

2 ≠ o
s

2|; so, [or

1, o
s

1] and [or

2, o
s

2] are isomorphic. Then the
duplicator can find an element o

i+1
2 such that |or

2 ≠ o
i+1
2 | = |or

1 ≠ o
i+1
1 |

and |oi+1
2 ≠ o

s

2| = |oi+1
1 ≠ o

s

1|. In this way, all the conditions above are
preserved.

· |or

1 ≠ o
s

1| Ø 2n≠k. In this case, by the induction hypothesis, we have that
|or

2 ≠ o
s

2| Ø 2n≠k. There are four cases:

– |or

1≠o
i+1
1 | < 2n≠(i+1). Then |oi+1

1 ≠o
s

1| Ø 2n≠(i+1) and the duplicator
can find an element o

i+1
2 such that |or

2 ≠ o
i+1
2 | = |or

1 ≠ o
i+1
1 | and

|oi+1
2 ≠ o

s

2| Ø 2n≠(i+1).

– |oi+1
1 ≠ o

s

1| < 2n≠(i+1). This case is similar to the one above.

– |or

1 ≠ o
i+1
1 | Ø 2n≠(i+1). In this case, the duplicator chooses o

i+1
2

to be the middle of [or

2, o
s

2]. This way, since |or

2 ≠ o
s

2| Ø 2n≠k, we
ensure that |oi+1

2 ≠ o
s

2| Ø 2n≠(i+1).
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– |oi+1
1 ≠ o

s

1| Ø 2n≠(i+1). This case is similar to the one above.

In any case, the three conditions will hold. This completes the proof.

Theorem 3.2. Even cardinality is not definable over linear orders.

Proof. We will take for every k œ N two linear orders O1, the cardinality of
whose universe is 2k, and O2, the cardinality of whose universe is 2k + 1. In
light of Lemma 3.1, we have that O1 ©k O2. However, O1 has the property
even and O2 does not. Corollary 2.8 yields the desired result.

3.2 Connectivity of finite graphs

Theorem 3.3. The property of a finite graph to be connected is not definable.

Proof. Let L = {E} be a language. Assume that connectivity of finite graphs
is definable by a L-sentence Ï. The idea of the proof is the following: we
will start from a linear order and, from its elements, we will construct a
graph (Step 1 and Step 2); this graph will be connected if and only if the
cardinality of the universe of the underlying linear order is odd, which will
lead to a contradiction (Step 3).
Step 1. Starting from a linear order <, we will define the successor relation:

S(v, w) … (v < w) · ’u((u Æ v) ‚ (u Ø w)).

Furthermore, we will define a formula Â(v, w) that is true if and only if one
of these conditions hold:

· ÷u(S(v, u) · S(u, w)), that is, w is the successor of the successor of v;

· (’z(w Æ z)) ‚ (÷u(S(v, u) · ’z(z Æ u)))), that is, w is the first element
and v is the second to last element;

· (’z(z Æ v)) ‚ (÷u(S(u, w) · ’z(u Æ z)))), that is, v is the last element
and w is the second element;
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Step 2. Let {v1, . . . , vn} be the universe of the linear order. On these
elements, we will define a graph like so:

E(vi, vj) … Â(vi, vj),

meaning that there is an edge between vi, vj if one of the three conditions
above is satisfied. This construction is illustrated in Figure 6 and Figure 7.

Figure 6: The odd case (see [2])

Figure 7: The even case (see [2])

Step 3. Clearly, the constructed graph is connected if and only if n is odd.
Since we assumed that connectivity is definable by the sentence Ï, we obtain
that even is definable on linear orders by the sentence ¬Ï. Contradiction!
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